Repository URL to install this package:
|
Version:
1.4.3 ▾
|
"""
Provide classes to perform the groupby aggregate operations.
These are not exposed to the user and provide implementations of the grouping
operations, primarily in cython. These classes (BaseGrouper and BinGrouper)
are contained *in* the SeriesGroupBy and DataFrameGroupBy objects.
"""
from __future__ import annotations
import collections
import functools
from typing import (
Callable,
Generic,
Hashable,
Iterator,
Sequence,
final,
overload,
)
import numpy as np
from pandas._libs import (
NaT,
lib,
)
import pandas._libs.groupby as libgroupby
import pandas._libs.reduction as libreduction
from pandas._typing import (
ArrayLike,
DtypeObj,
NDFrameT,
Shape,
npt,
)
from pandas.errors import AbstractMethodError
from pandas.util._decorators import cache_readonly
from pandas.core.dtypes.cast import (
maybe_cast_pointwise_result,
maybe_downcast_to_dtype,
)
from pandas.core.dtypes.common import (
ensure_float64,
ensure_int64,
ensure_platform_int,
is_1d_only_ea_obj,
is_bool_dtype,
is_categorical_dtype,
is_complex_dtype,
is_datetime64_any_dtype,
is_float_dtype,
is_integer_dtype,
is_numeric_dtype,
is_sparse,
is_timedelta64_dtype,
needs_i8_conversion,
)
from pandas.core.dtypes.dtypes import ExtensionDtype
from pandas.core.dtypes.missing import (
isna,
maybe_fill,
)
from pandas.core.arrays import (
DatetimeArray,
ExtensionArray,
PeriodArray,
TimedeltaArray,
)
from pandas.core.arrays.boolean import BooleanDtype
from pandas.core.arrays.floating import (
Float64Dtype,
FloatingDtype,
)
from pandas.core.arrays.integer import (
Int64Dtype,
_IntegerDtype,
)
from pandas.core.arrays.masked import (
BaseMaskedArray,
BaseMaskedDtype,
)
from pandas.core.arrays.string_ import StringDtype
from pandas.core.frame import DataFrame
from pandas.core.generic import NDFrame
from pandas.core.groupby import grouper
from pandas.core.indexes.api import (
CategoricalIndex,
Index,
MultiIndex,
ensure_index,
)
from pandas.core.series import Series
from pandas.core.sorting import (
compress_group_index,
decons_obs_group_ids,
get_flattened_list,
get_group_index,
get_group_index_sorter,
get_indexer_dict,
)
class WrappedCythonOp:
"""
Dispatch logic for functions defined in _libs.groupby
"""
# Functions for which we do _not_ attempt to cast the cython result
# back to the original dtype.
cast_blocklist = frozenset(["rank", "count", "size", "idxmin", "idxmax"])
def __init__(self, kind: str, how: str):
self.kind = kind
self.how = how
_CYTHON_FUNCTIONS = {
"aggregate": {
"add": "group_add",
"prod": "group_prod",
"min": "group_min",
"max": "group_max",
"mean": "group_mean",
"median": "group_median",
"var": "group_var",
"first": "group_nth",
"last": "group_last",
"ohlc": "group_ohlc",
},
"transform": {
"cumprod": "group_cumprod",
"cumsum": "group_cumsum",
"cummin": "group_cummin",
"cummax": "group_cummax",
"rank": "group_rank",
},
}
_MASKED_CYTHON_FUNCTIONS = {"cummin", "cummax", "min", "max"}
_cython_arity = {"ohlc": 4} # OHLC
# Note: we make this a classmethod and pass kind+how so that caching
# works at the class level and not the instance level
@classmethod
@functools.lru_cache(maxsize=None)
def _get_cython_function(
cls, kind: str, how: str, dtype: np.dtype, is_numeric: bool
):
dtype_str = dtype.name
ftype = cls._CYTHON_FUNCTIONS[kind][how]
# see if there is a fused-type version of function
# only valid for numeric
f = getattr(libgroupby, ftype)
if is_numeric:
return f
elif dtype == object:
if "object" not in f.__signatures__:
# raise NotImplementedError here rather than TypeError later
raise NotImplementedError(
f"function is not implemented for this dtype: "
f"[how->{how},dtype->{dtype_str}]"
)
return f
def get_cython_func_and_vals(self, values: np.ndarray, is_numeric: bool):
"""
Find the appropriate cython function, casting if necessary.
Parameters
----------
values : np.ndarray
is_numeric : bool
Returns
-------
func : callable
values : np.ndarray
"""
how = self.how
kind = self.kind
if how in ["median", "cumprod"]:
# these two only have float64 implementations
if is_numeric:
values = ensure_float64(values)
else:
raise NotImplementedError(
f"function is not implemented for this dtype: "
f"[how->{how},dtype->{values.dtype.name}]"
)
func = getattr(libgroupby, f"group_{how}_float64")
return func, values
func = self._get_cython_function(kind, how, values.dtype, is_numeric)
if values.dtype.kind in ["i", "u"]:
if how in ["add", "var", "prod", "mean", "ohlc"]:
# result may still include NaN, so we have to cast
values = ensure_float64(values)
return func, values
def _disallow_invalid_ops(self, dtype: DtypeObj, is_numeric: bool = False):
"""
Check if we can do this operation with our cython functions.
Raises
------
NotImplementedError
This is either not a valid function for this dtype, or
valid but not implemented in cython.
"""
how = self.how
if is_numeric:
# never an invalid op for those dtypes, so return early as fastpath
return
if is_categorical_dtype(dtype):
# NotImplementedError for methods that can fall back to a
# non-cython implementation.
if how in ["add", "prod", "cumsum", "cumprod"]:
raise TypeError(f"{dtype} type does not support {how} operations")
raise NotImplementedError(f"{dtype} dtype not supported")
elif is_sparse(dtype):
# categoricals are only 1d, so we
# are not setup for dim transforming
raise NotImplementedError(f"{dtype} dtype not supported")
elif is_datetime64_any_dtype(dtype):
# we raise NotImplemented if this is an invalid operation
# entirely, e.g. adding datetimes
if how in ["add", "prod", "cumsum", "cumprod"]:
raise TypeError(f"datetime64 type does not support {how} operations")
elif is_timedelta64_dtype(dtype):
if how in ["prod", "cumprod"]:
raise TypeError(f"timedelta64 type does not support {how} operations")
def _get_output_shape(self, ngroups: int, values: np.ndarray) -> Shape:
how = self.how
kind = self.kind
arity = self._cython_arity.get(how, 1)
out_shape: Shape
if how == "ohlc":
out_shape = (ngroups, 4)
elif arity > 1:
raise NotImplementedError(
"arity of more than 1 is not supported for the 'how' argument"
)
elif kind == "transform":
out_shape = values.shape
else:
out_shape = (ngroups,) + values.shape[1:]
return out_shape
def get_out_dtype(self, dtype: np.dtype) -> np.dtype:
how = self.how
if how == "rank":
out_dtype = "float64"
else:
if is_numeric_dtype(dtype):
out_dtype = f"{dtype.kind}{dtype.itemsize}"
else:
out_dtype = "object"
return np.dtype(out_dtype)
@overload
def _get_result_dtype(self, dtype: np.dtype) -> np.dtype:
... # pragma: no cover
@overload
def _get_result_dtype(self, dtype: ExtensionDtype) -> ExtensionDtype:
... # pragma: no cover
def _get_result_dtype(self, dtype: DtypeObj) -> DtypeObj:
"""
Get the desired dtype of a result based on the
input dtype and how it was computed.
Parameters
----------
dtype : np.dtype or ExtensionDtype
Input dtype.
Returns
-------
np.dtype or ExtensionDtype
The desired dtype of the result.
"""
how = self.how
if how in ["add", "cumsum", "sum", "prod"]:
if dtype == np.dtype(bool):
return np.dtype(np.int64)
elif isinstance(dtype, (BooleanDtype, _IntegerDtype)):
return Int64Dtype()
elif how in ["mean", "median", "var"]:
if isinstance(dtype, (BooleanDtype, _IntegerDtype)):
return Float64Dtype()
elif is_float_dtype(dtype) or is_complex_dtype(dtype):
return dtype
elif is_numeric_dtype(dtype):
return np.dtype(np.float64)
return dtype
def uses_mask(self) -> bool:
return self.how in self._MASKED_CYTHON_FUNCTIONS
@final
def _ea_wrap_cython_operation(
self,
values: ExtensionArray,
min_count: int,
ngroups: int,
comp_ids: np.ndarray,
**kwargs,
) -> ArrayLike:
"""
If we have an ExtensionArray, unwrap, call _cython_operation, and
re-wrap if appropriate.
"""
# TODO: general case implementation overridable by EAs.
if isinstance(values, BaseMaskedArray) and self.uses_mask():
return self._masked_ea_wrap_cython_operation(
values,
min_count=min_count,
ngroups=ngroups,
comp_ids=comp_ids,
**kwargs,
)
if isinstance(values, (DatetimeArray, PeriodArray, TimedeltaArray)):
# All of the functions implemented here are ordinal, so we can
# operate on the tz-naive equivalents
npvalues = values._ndarray.view("M8[ns]")
elif isinstance(values.dtype, (BooleanDtype, _IntegerDtype)):
# IntegerArray or BooleanArray
npvalues = values.to_numpy("float64", na_value=np.nan)
elif isinstance(values.dtype, FloatingDtype):
# FloatingArray
npvalues = values.to_numpy(values.dtype.numpy_dtype, na_value=np.nan)
elif isinstance(values.dtype, StringDtype):
# StringArray
npvalues = values.to_numpy(object, na_value=np.nan)
else:
raise NotImplementedError(
f"function is not implemented for this dtype: {values.dtype}"
)
res_values = self._cython_op_ndim_compat(
npvalues,
min_count=min_count,
ngroups=ngroups,
comp_ids=comp_ids,
mask=None,
**kwargs,
)
if self.how in ["rank"]:
# i.e. how in WrappedCythonOp.cast_blocklist, since
# other cast_blocklist methods dont go through cython_operation
return res_values
return self._reconstruct_ea_result(values, res_values)
def _reconstruct_ea_result(self, values, res_values):
"""
Construct an ExtensionArray result from an ndarray result.
"""
# TODO: allow EAs to override this logic
if isinstance(
values.dtype, (BooleanDtype, _IntegerDtype, FloatingDtype, StringDtype)
):
dtype = self._get_result_dtype(values.dtype)
cls = dtype.construct_array_type()
return cls._from_sequence(res_values, dtype=dtype)
elif needs_i8_conversion(values.dtype):
i8values = res_values.view("i8")
return type(values)(i8values, dtype=values.dtype)
raise NotImplementedError
@final
def _masked_ea_wrap_cython_operation(
self,
values: BaseMaskedArray,
min_count: int,
ngroups: int,
comp_ids: np.ndarray,
**kwargs,
) -> BaseMaskedArray:
"""
Equivalent of `_ea_wrap_cython_operation`, but optimized for masked EA's
and cython algorithms which accept a mask.
"""
orig_values = values
# Copy to ensure input and result masks don't end up shared
mask = values._mask.copy()
result_mask = np.zeros(ngroups, dtype=bool)
arr = values._data
res_values = self._cython_op_ndim_compat(
arr,
min_count=min_count,
ngroups=ngroups,
comp_ids=comp_ids,
mask=mask,
result_mask=result_mask,
**kwargs,
)
dtype = self._get_result_dtype(orig_values.dtype)
assert isinstance(dtype, BaseMaskedDtype)
cls = dtype.construct_array_type()
if self.kind != "aggregate":
return cls(res_values.astype(dtype.type, copy=False), mask)
else:
return cls(res_values.astype(dtype.type, copy=False), result_mask)
@final
def _cython_op_ndim_compat(
self,
values: np.ndarray,
*,
min_count: int,
ngroups: int,
comp_ids: np.ndarray,
mask: np.ndarray | None = None,
result_mask: np.ndarray | None = None,
**kwargs,
) -> np.ndarray:
if values.ndim == 1:
# expand to 2d, dispatch, then squeeze if appropriate
values2d = values[None, :]
if mask is not None:
mask = mask[None, :]
if result_mask is not None:
result_mask = result_mask[None, :]
res = self._call_cython_op(
values2d,
min_count=min_count,
ngroups=ngroups,
comp_ids=comp_ids,
mask=mask,
result_mask=result_mask,
**kwargs,
)
if res.shape[0] == 1:
return res[0]
# otherwise we have OHLC
return res.T
return self._call_cython_op(
values,
min_count=min_count,
ngroups=ngroups,
comp_ids=comp_ids,
mask=mask,
result_mask=result_mask,
**kwargs,
)
@final
def _call_cython_op(
self,
values: np.ndarray, # np.ndarray[ndim=2]
*,
min_count: int,
ngroups: int,
comp_ids: np.ndarray,
mask: np.ndarray | None,
result_mask: np.ndarray | None,
**kwargs,
) -> np.ndarray: # np.ndarray[ndim=2]
orig_values = values
dtype = values.dtype
is_numeric = is_numeric_dtype(dtype)
is_datetimelike = needs_i8_conversion(dtype)
if is_datetimelike:
values = values.view("int64")
is_numeric = True
elif is_bool_dtype(dtype):
values = values.astype("int64")
elif is_integer_dtype(dtype):
# GH#43329 If the dtype is explicitly of type uint64 the type is not
# changed to prevent overflow.
if dtype != np.uint64:
values = values.astype(np.int64, copy=False)
elif is_numeric:
if not is_complex_dtype(dtype):
values = ensure_float64(values)
values = values.T
if mask is not None:
mask = mask.T
if result_mask is not None:
result_mask = result_mask.T
out_shape = self._get_output_shape(ngroups, values)
func, values = self.get_cython_func_and_vals(values, is_numeric)
out_dtype = self.get_out_dtype(values.dtype)
result = maybe_fill(np.empty(out_shape, dtype=out_dtype))
if self.kind == "aggregate":
counts = np.zeros(ngroups, dtype=np.int64)
if self.how in ["min", "max", "mean"]:
func(
result,
counts,
values,
comp_ids,
min_count,
mask=mask,
result_mask=result_mask,
is_datetimelike=is_datetimelike,
)
elif self.how in ["add"]:
# We support datetimelike
func(
result,
counts,
values,
comp_ids,
min_count,
datetimelike=is_datetimelike,
)
else:
func(result, counts, values, comp_ids, min_count)
else:
# TODO: min_count
if self.uses_mask():
func(
result,
values,
comp_ids,
ngroups,
is_datetimelike,
mask=mask,
**kwargs,
)
else:
func(result, values, comp_ids, ngroups, is_datetimelike, **kwargs)
if self.kind == "aggregate":
# i.e. counts is defined. Locations where count<min_count
# need to have the result set to np.nan, which may require casting,
# see GH#40767
if is_integer_dtype(result.dtype) and not is_datetimelike:
cutoff = max(1, min_count)
empty_groups = counts < cutoff
if empty_groups.any():
# Note: this conversion could be lossy, see GH#40767
result = result.astype("float64")
result[empty_groups] = np.nan
result = result.T
if self.how not in self.cast_blocklist:
# e.g. if we are int64 and need to restore to datetime64/timedelta64
# "rank" is the only member of cast_blocklist we get here
res_dtype = self._get_result_dtype(orig_values.dtype)
op_result = maybe_downcast_to_dtype(result, res_dtype)
else:
op_result = result
# error: Incompatible return value type (got "Union[ExtensionArray, ndarray]",
# expected "ndarray")
return op_result # type: ignore[return-value]
@final
def cython_operation(
self,
*,
values: ArrayLike,
axis: int,
min_count: int = -1,
comp_ids: np.ndarray,
ngroups: int,
**kwargs,
) -> ArrayLike:
"""
Call our cython function, with appropriate pre- and post- processing.
"""
if values.ndim > 2:
raise NotImplementedError("number of dimensions is currently limited to 2")
elif values.ndim == 2:
assert axis == 1, axis
elif not is_1d_only_ea_obj(values):
# Note: it is *not* the case that axis is always 0 for 1-dim values,
# as we can have 1D ExtensionArrays that we need to treat as 2D
assert axis == 0
dtype = values.dtype
is_numeric = is_numeric_dtype(dtype)
# can we do this operation with our cython functions
# if not raise NotImplementedError
self._disallow_invalid_ops(dtype, is_numeric)
if not isinstance(values, np.ndarray):
# i.e. ExtensionArray
return self._ea_wrap_cython_operation(
values,
min_count=min_count,
ngroups=ngroups,
comp_ids=comp_ids,
**kwargs,
)
return self._cython_op_ndim_compat(
values,
min_count=min_count,
ngroups=ngroups,
comp_ids=comp_ids,
mask=None,
**kwargs,
)
class BaseGrouper:
"""
This is an internal Grouper class, which actually holds
the generated groups
Parameters
----------
axis : Index
groupings : Sequence[Grouping]
all the grouping instances to handle in this grouper
for example for grouper list to groupby, need to pass the list
sort : bool, default True
whether this grouper will give sorted result or not
group_keys : bool, default True
mutated : bool, default False
indexer : np.ndarray[np.intp], optional
the indexer created by Grouper
some groupers (TimeGrouper) will sort its axis and its
group_info is also sorted, so need the indexer to reorder
"""
axis: Index
def __init__(
self,
axis: Index,
groupings: Sequence[grouper.Grouping],
sort: bool = True,
group_keys: bool = True,
mutated: bool = False,
indexer: npt.NDArray[np.intp] | None = None,
dropna: bool = True,
):
assert isinstance(axis, Index), axis
self.axis = axis
self._groupings: list[grouper.Grouping] = list(groupings)
self._sort = sort
self.group_keys = group_keys
self.mutated = mutated
self.indexer = indexer
self.dropna = dropna
@property
def groupings(self) -> list[grouper.Grouping]:
return self._groupings
@property
def shape(self) -> Shape:
return tuple(ping.ngroups for ping in self.groupings)
def __iter__(self):
return iter(self.indices)
@property
def nkeys(self) -> int:
return len(self.groupings)
def get_iterator(
self, data: NDFrameT, axis: int = 0
) -> Iterator[tuple[Hashable, NDFrameT]]:
"""
Groupby iterator
Returns
-------
Generator yielding sequence of (name, subsetted object)
for each group
"""
splitter = self._get_splitter(data, axis=axis)
keys = self.group_keys_seq
for key, group in zip(keys, splitter):
yield key, group.__finalize__(data, method="groupby")
@final
def _get_splitter(self, data: NDFrame, axis: int = 0) -> DataSplitter:
"""
Returns
-------
Generator yielding subsetted objects
__finalize__ has not been called for the subsetted objects returned.
"""
ids, _, ngroups = self.group_info
return get_splitter(data, ids, ngroups, axis=axis)
def _get_grouper(self):
"""
We are a grouper as part of another's groupings.
We have a specific method of grouping, so cannot
convert to a Index for our grouper.
"""
return self.groupings[0].grouping_vector
@final
@cache_readonly
def group_keys_seq(self):
if len(self.groupings) == 1:
return self.levels[0]
else:
ids, _, ngroups = self.group_info
# provide "flattened" iterator for multi-group setting
return get_flattened_list(ids, ngroups, self.levels, self.codes)
@final
def apply(
self, f: Callable, data: DataFrame | Series, axis: int = 0
) -> tuple[list, bool]:
mutated = self.mutated
splitter = self._get_splitter(data, axis=axis)
group_keys = self.group_keys_seq
result_values = []
# This calls DataSplitter.__iter__
zipped = zip(group_keys, splitter)
for key, group in zipped:
group = group.__finalize__(data, method="groupby")
object.__setattr__(group, "name", key)
# group might be modified
group_axes = group.axes
res = f(group)
if not mutated and not _is_indexed_like(res, group_axes, axis):
mutated = True
result_values.append(res)
# getattr pattern for __name__ is needed for functools.partial objects
if len(group_keys) == 0 and getattr(f, "__name__", None) not in [
"idxmin",
"idxmax",
"nanargmin",
"nanargmax",
]:
# If group_keys is empty, then no function calls have been made,
# so we will not have raised even if this is an invalid dtype.
# So do one dummy call here to raise appropriate TypeError.
f(data.iloc[:0])
return result_values, mutated
@cache_readonly
def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]:
"""dict {group name -> group indices}"""
if len(self.groupings) == 1 and isinstance(self.result_index, CategoricalIndex):
# This shows unused categories in indices GH#38642
return self.groupings[0].indices
codes_list = [ping.codes for ping in self.groupings]
keys = [ping.group_index for ping in self.groupings]
return get_indexer_dict(codes_list, keys)
@final
@property
def codes(self) -> list[np.ndarray]:
return [ping.codes for ping in self.groupings]
@property
def levels(self) -> list[Index]:
return [ping.group_index for ping in self.groupings]
@property
def names(self) -> list[Hashable]:
return [ping.name for ping in self.groupings]
@final
def size(self) -> Series:
"""
Compute group sizes.
"""
ids, _, ngroups = self.group_info
out: np.ndarray | list
if ngroups:
out = np.bincount(ids[ids != -1], minlength=ngroups)
else:
out = []
return Series(out, index=self.result_index, dtype="int64")
@cache_readonly
def groups(self) -> dict[Hashable, np.ndarray]:
"""dict {group name -> group labels}"""
if len(self.groupings) == 1:
return self.groupings[0].groups
else:
to_groupby = zip(*(ping.grouping_vector for ping in self.groupings))
index = Index(to_groupby)
return self.axis.groupby(index)
@final
@cache_readonly
def is_monotonic(self) -> bool:
# return if my group orderings are monotonic
return Index(self.group_info[0]).is_monotonic
@cache_readonly
def group_info(self) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp], int]:
comp_ids, obs_group_ids = self._get_compressed_codes()
ngroups = len(obs_group_ids)
comp_ids = ensure_platform_int(comp_ids)
return comp_ids, obs_group_ids, ngroups
@final
@cache_readonly
def codes_info(self) -> npt.NDArray[np.intp]:
# return the codes of items in original grouped axis
ids, _, _ = self.group_info
if self.indexer is not None:
sorter = np.lexsort((ids, self.indexer))
ids = ids[sorter]
ids = ensure_platform_int(ids)
# TODO: if numpy annotates np.lexsort, this ensure_platform_int
# may become unnecessary
return ids
@final
def _get_compressed_codes(self) -> tuple[np.ndarray, npt.NDArray[np.intp]]:
# The first returned ndarray may have any signed integer dtype
if len(self.groupings) > 1:
group_index = get_group_index(self.codes, self.shape, sort=True, xnull=True)
return compress_group_index(group_index, sort=self._sort)
ping = self.groupings[0]
return ping.codes, np.arange(len(ping.group_index), dtype=np.intp)
@final
@cache_readonly
def ngroups(self) -> int:
return len(self.result_index)
@property
def reconstructed_codes(self) -> list[np.ndarray]:
codes = self.codes
ids, obs_ids, _ = self.group_info
return decons_obs_group_ids(ids, obs_ids, self.shape, codes, xnull=True)
@final
@cache_readonly
def result_arraylike(self) -> ArrayLike:
"""
Analogous to result_index, but returning an ndarray/ExtensionArray
allowing us to retain ExtensionDtypes not supported by Index.
"""
# TODO(ExtensionIndex): once Index supports arbitrary EAs, this can
# be removed in favor of result_index
if len(self.groupings) == 1:
return self.groupings[0].group_arraylike
# result_index is MultiIndex
return self.result_index._values
@cache_readonly
def result_index(self) -> Index:
if len(self.groupings) == 1:
return self.groupings[0].result_index.rename(self.names[0])
codes = self.reconstructed_codes
levels = [ping.result_index for ping in self.groupings]
return MultiIndex(
levels=levels, codes=codes, verify_integrity=False, names=self.names
)
@final
def get_group_levels(self) -> list[ArrayLike]:
# Note: only called from _insert_inaxis_grouper_inplace, which
# is only called for BaseGrouper, never for BinGrouper
if len(self.groupings) == 1:
return [self.groupings[0].group_arraylike]
name_list = []
for ping, codes in zip(self.groupings, self.reconstructed_codes):
codes = ensure_platform_int(codes)
levels = ping.group_arraylike.take(codes)
name_list.append(levels)
return name_list
# ------------------------------------------------------------
# Aggregation functions
@final
def _cython_operation(
self,
kind: str,
values,
how: str,
axis: int,
min_count: int = -1,
**kwargs,
) -> ArrayLike:
"""
Returns the values of a cython operation.
"""
assert kind in ["transform", "aggregate"]
cy_op = WrappedCythonOp(kind=kind, how=how)
ids, _, _ = self.group_info
ngroups = self.ngroups
return cy_op.cython_operation(
values=values,
axis=axis,
min_count=min_count,
comp_ids=ids,
ngroups=ngroups,
**kwargs,
)
@final
def agg_series(
self, obj: Series, func: Callable, preserve_dtype: bool = False
) -> ArrayLike:
"""
Parameters
----------
obj : Series
func : function taking a Series and returning a scalar-like
preserve_dtype : bool
Whether the aggregation is known to be dtype-preserving.
Returns
-------
np.ndarray or ExtensionArray
"""
# test_groupby_empty_with_category gets here with self.ngroups == 0
# and len(obj) > 0
if len(obj) == 0:
# SeriesGrouper would raise if we were to call _aggregate_series_fast
result = self._aggregate_series_pure_python(obj, func)
elif not isinstance(obj._values, np.ndarray):
result = self._aggregate_series_pure_python(obj, func)
# we can preserve a little bit more aggressively with EA dtype
# because maybe_cast_pointwise_result will do a try/except
# with _from_sequence. NB we are assuming here that _from_sequence
# is sufficiently strict that it casts appropriately.
preserve_dtype = True
else:
result = self._aggregate_series_pure_python(obj, func)
npvalues = lib.maybe_convert_objects(result, try_float=False)
if preserve_dtype:
out = maybe_cast_pointwise_result(npvalues, obj.dtype, numeric_only=True)
else:
out = npvalues
return out
@final
def _aggregate_series_pure_python(
self, obj: Series, func: Callable
) -> npt.NDArray[np.object_]:
ids, _, ngroups = self.group_info
counts = np.zeros(ngroups, dtype=int)
result = np.empty(ngroups, dtype="O")
initialized = False
# equiv: splitter = self._get_splitter(obj, axis=0)
splitter = get_splitter(obj, ids, ngroups, axis=0)
for i, group in enumerate(splitter):
group = group.__finalize__(obj, method="groupby")
res = func(group)
res = libreduction.extract_result(res)
if not initialized:
# We only do this validation on the first iteration
libreduction.check_result_array(res, group.dtype)
initialized = True
counts[i] = group.shape[0]
result[i] = res
return result
class BinGrouper(BaseGrouper):
"""
This is an internal Grouper class
Parameters
----------
bins : the split index of binlabels to group the item of axis
binlabels : the label list
mutated : bool, default False
indexer : np.ndarray[np.intp]
Examples
--------
bins: [2, 4, 6, 8, 10]
binlabels: DatetimeIndex(['2005-01-01', '2005-01-03',
'2005-01-05', '2005-01-07', '2005-01-09'],
dtype='datetime64[ns]', freq='2D')
the group_info, which contains the label of each item in grouped
axis, the index of label in label list, group number, is
(array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]), array([0, 1, 2, 3, 4]), 5)
means that, the grouped axis has 10 items, can be grouped into 5
labels, the first and second items belong to the first label, the
third and forth items belong to the second label, and so on
"""
bins: npt.NDArray[np.int64]
binlabels: Index
mutated: bool
def __init__(
self,
bins,
binlabels,
mutated: bool = False,
indexer=None,
):
self.bins = ensure_int64(bins)
self.binlabels = ensure_index(binlabels)
self.mutated = mutated
self.indexer = indexer
# These lengths must match, otherwise we could call agg_series
# with empty self.bins, which would raise in libreduction.
assert len(self.binlabels) == len(self.bins)
@cache_readonly
def groups(self):
"""dict {group name -> group labels}"""
# this is mainly for compat
# GH 3881
result = {
key: value
for key, value in zip(self.binlabels, self.bins)
if key is not NaT
}
return result
@property
def nkeys(self) -> int:
# still matches len(self.groupings), but we can hard-code
return 1
def _get_grouper(self):
"""
We are a grouper as part of another's groupings.
We have a specific method of grouping, so cannot
convert to a Index for our grouper.
"""
return self
def get_iterator(self, data: NDFrame, axis: int = 0):
"""
Groupby iterator
Returns
-------
Generator yielding sequence of (name, subsetted object)
for each group
"""
if axis == 0:
slicer = lambda start, edge: data.iloc[start:edge]
else:
slicer = lambda start, edge: data.iloc[:, start:edge]
length = len(data.axes[axis])
start = 0
for edge, label in zip(self.bins, self.binlabels):
if label is not NaT:
yield label, slicer(start, edge)
start = edge
if start < length:
yield self.binlabels[-1], slicer(start, None)
@cache_readonly
def indices(self):
indices = collections.defaultdict(list)
i = 0
for label, bin in zip(self.binlabels, self.bins):
if i < bin:
if label is not NaT:
indices[label] = list(range(i, bin))
i = bin
return indices
@cache_readonly
def group_info(self) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp], int]:
ngroups = self.ngroups
obs_group_ids = np.arange(ngroups, dtype=np.intp)
rep = np.diff(np.r_[0, self.bins])
rep = ensure_platform_int(rep)
if ngroups == len(self.bins):
comp_ids = np.repeat(np.arange(ngroups), rep)
else:
comp_ids = np.repeat(np.r_[-1, np.arange(ngroups)], rep)
return (
ensure_platform_int(comp_ids),
obs_group_ids,
ngroups,
)
@cache_readonly
def reconstructed_codes(self) -> list[np.ndarray]:
# get unique result indices, and prepend 0 as groupby starts from the first
return [np.r_[0, np.flatnonzero(self.bins[1:] != self.bins[:-1]) + 1]]
@cache_readonly
def result_index(self):
if len(self.binlabels) != 0 and isna(self.binlabels[0]):
return self.binlabels[1:]
return self.binlabels
@property
def levels(self) -> list[Index]:
return [self.binlabels]
@property
def names(self) -> list[Hashable]:
return [self.binlabels.name]
@property
def groupings(self) -> list[grouper.Grouping]:
lev = self.binlabels
ping = grouper.Grouping(lev, lev, in_axis=False, level=None)
return [ping]
def _aggregate_series_fast(self, obj: Series, func: Callable) -> np.ndarray:
# -> np.ndarray[object]
raise NotImplementedError(
"This should not be reached; use _aggregate_series_pure_python"
)
def _is_indexed_like(obj, axes, axis: int) -> bool:
if isinstance(obj, Series):
if len(axes) > 1:
return False
return obj.axes[axis].equals(axes[axis])
elif isinstance(obj, DataFrame):
return obj.axes[axis].equals(axes[axis])
return False
# ----------------------------------------------------------------------
# Splitting / application
class DataSplitter(Generic[NDFrameT]):
def __init__(
self,
data: NDFrameT,
labels: npt.NDArray[np.intp],
ngroups: int,
axis: int = 0,
):
self.data = data
self.labels = ensure_platform_int(labels) # _should_ already be np.intp
self.ngroups = ngroups
self.axis = axis
assert isinstance(axis, int), axis
@cache_readonly
def slabels(self) -> npt.NDArray[np.intp]:
# Sorted labels
return self.labels.take(self._sort_idx)
@cache_readonly
def _sort_idx(self) -> npt.NDArray[np.intp]:
# Counting sort indexer
return get_group_index_sorter(self.labels, self.ngroups)
def __iter__(self):
sdata = self.sorted_data
if self.ngroups == 0:
# we are inside a generator, rather than raise StopIteration
# we merely return signal the end
return
starts, ends = lib.generate_slices(self.slabels, self.ngroups)
for start, end in zip(starts, ends):
yield self._chop(sdata, slice(start, end))
@cache_readonly
def sorted_data(self) -> NDFrameT:
return self.data.take(self._sort_idx, axis=self.axis)
def _chop(self, sdata, slice_obj: slice) -> NDFrame:
raise AbstractMethodError(self)
class SeriesSplitter(DataSplitter):
def _chop(self, sdata: Series, slice_obj: slice) -> Series:
# fastpath equivalent to `sdata.iloc[slice_obj]`
mgr = sdata._mgr.get_slice(slice_obj)
# __finalize__ not called here, must be applied by caller if applicable
return sdata._constructor(mgr, name=sdata.name, fastpath=True)
class FrameSplitter(DataSplitter):
def _chop(self, sdata: DataFrame, slice_obj: slice) -> DataFrame:
# Fastpath equivalent to:
# if self.axis == 0:
# return sdata.iloc[slice_obj]
# else:
# return sdata.iloc[:, slice_obj]
mgr = sdata._mgr.get_slice(slice_obj, axis=1 - self.axis)
# __finalize__ not called here, must be applied by caller if applicable
return sdata._constructor(mgr)
def get_splitter(
data: NDFrame, labels: np.ndarray, ngroups: int, axis: int = 0
) -> DataSplitter:
if isinstance(data, Series):
klass: type[DataSplitter] = SeriesSplitter
else:
# i.e. DataFrame
klass = FrameSplitter
return klass(data, labels, ngroups, axis)