Repository URL to install this package:
Version:
1.4.3 ▾
|
import numpy as np
import pytest
from pandas import Series
import pandas._testing as tm
def no_nans(x):
return x.notna().all().all()
def all_na(x):
return x.isnull().all().all()
@pytest.mark.parametrize("f", [lambda v: Series(v).sum(), np.nansum, np.sum])
def test_expanding_apply_consistency_sum_nans(request, all_data, min_periods, f):
if f is np.sum:
if not no_nans(all_data) and not (
all_na(all_data) and not all_data.empty and min_periods > 0
):
request.node.add_marker(
pytest.mark.xfail(reason="np.sum has different behavior with NaNs")
)
expanding_f_result = all_data.expanding(min_periods=min_periods).sum()
expanding_apply_f_result = all_data.expanding(min_periods=min_periods).apply(
func=f, raw=True
)
tm.assert_equal(expanding_f_result, expanding_apply_f_result)
@pytest.mark.parametrize("ddof", [0, 1])
def test_moments_consistency_var(all_data, min_periods, ddof):
var_x = all_data.expanding(min_periods=min_periods).var(ddof=ddof)
assert not (var_x < 0).any().any()
if ddof == 0:
# check that biased var(x) == mean(x^2) - mean(x)^2
mean_x2 = (all_data * all_data).expanding(min_periods=min_periods).mean()
mean_x = all_data.expanding(min_periods=min_periods).mean()
tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x))
@pytest.mark.parametrize("ddof", [0, 1])
def test_moments_consistency_var_constant(consistent_data, min_periods, ddof):
count_x = consistent_data.expanding(min_periods=min_periods).count()
var_x = consistent_data.expanding(min_periods=min_periods).var(ddof=ddof)
# check that variance of constant series is identically 0
assert not (var_x > 0).any().any()
expected = consistent_data * np.nan
expected[count_x >= max(min_periods, 1)] = 0.0
if ddof == 1:
expected[count_x < 2] = np.nan
tm.assert_equal(var_x, expected)
@pytest.mark.parametrize("ddof", [0, 1])
def test_expanding_consistency_var_std_cov(all_data, min_periods, ddof):
var_x = all_data.expanding(min_periods=min_periods).var(ddof=ddof)
assert not (var_x < 0).any().any()
std_x = all_data.expanding(min_periods=min_periods).std(ddof=ddof)
assert not (std_x < 0).any().any()
# check that var(x) == std(x)^2
tm.assert_equal(var_x, std_x * std_x)
cov_x_x = all_data.expanding(min_periods=min_periods).cov(all_data, ddof=ddof)
assert not (cov_x_x < 0).any().any()
# check that var(x) == cov(x, x)
tm.assert_equal(var_x, cov_x_x)
@pytest.mark.parametrize("ddof", [0, 1])
def test_expanding_consistency_series_cov_corr(series_data, min_periods, ddof):
var_x_plus_y = (
(series_data + series_data).expanding(min_periods=min_periods).var(ddof=ddof)
)
var_x = series_data.expanding(min_periods=min_periods).var(ddof=ddof)
var_y = series_data.expanding(min_periods=min_periods).var(ddof=ddof)
cov_x_y = series_data.expanding(min_periods=min_periods).cov(series_data, ddof=ddof)
# check that cov(x, y) == (var(x+y) - var(x) -
# var(y)) / 2
tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y))
# check that corr(x, y) == cov(x, y) / (std(x) *
# std(y))
corr_x_y = series_data.expanding(min_periods=min_periods).corr(series_data)
std_x = series_data.expanding(min_periods=min_periods).std(ddof=ddof)
std_y = series_data.expanding(min_periods=min_periods).std(ddof=ddof)
tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y))
if ddof == 0:
# check that biased cov(x, y) == mean(x*y) -
# mean(x)*mean(y)
mean_x = series_data.expanding(min_periods=min_periods).mean()
mean_y = series_data.expanding(min_periods=min_periods).mean()
mean_x_times_y = (
(series_data * series_data).expanding(min_periods=min_periods).mean()
)
tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y))
def test_expanding_consistency_mean(all_data, min_periods):
result = all_data.expanding(min_periods=min_periods).mean()
expected = (
all_data.expanding(min_periods=min_periods).sum()
/ all_data.expanding(min_periods=min_periods).count()
)
tm.assert_equal(result, expected.astype("float64"))
def test_expanding_consistency_constant(consistent_data, min_periods):
count_x = consistent_data.expanding().count()
mean_x = consistent_data.expanding(min_periods=min_periods).mean()
# check that correlation of a series with itself is either 1 or NaN
corr_x_x = consistent_data.expanding(min_periods=min_periods).corr(consistent_data)
exp = (
consistent_data.max()
if isinstance(consistent_data, Series)
else consistent_data.max().max()
)
# check mean of constant series
expected = consistent_data * np.nan
expected[count_x >= max(min_periods, 1)] = exp
tm.assert_equal(mean_x, expected)
# check correlation of constant series with itself is NaN
expected[:] = np.nan
tm.assert_equal(corr_x_x, expected)
def test_expanding_consistency_var_debiasing_factors(all_data, min_periods):
# check variance debiasing factors
var_unbiased_x = all_data.expanding(min_periods=min_periods).var()
var_biased_x = all_data.expanding(min_periods=min_periods).var(ddof=0)
var_debiasing_factors_x = all_data.expanding().count() / (
all_data.expanding().count() - 1.0
).replace(0.0, np.nan)
tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x)