Repository URL to install this package:
|
Version:
2.0.0rc1 ▾
|
from ray.air import ScalingConfig, RunConfig, session
from ray.train.torch import TorchTrainer
from ray.tune.integration.mlflow import MLflowLoggerCallback
from ray.tune.logger import TBXLoggerCallback
def train_func():
for i in range(3):
session.report(dict(epoch=i))
trainer = TorchTrainer(
train_func,
scaling_config=ScalingConfig(num_workers=2),
run_config=RunConfig(
callbacks=[
MLflowLoggerCallback(experiment_name="train_experiment"),
TBXLoggerCallback(),
],
),
)
# Run the training function, logging all the intermediate results
# to MLflow and Tensorboard.
result = trainer.fit()
# For MLFLow logs:
# MLFlow logs will by default be saved in an `mlflow` directory
# in the current working directory.
# $ cd mlflow
# # View the MLflow UI.
# $ mlflow ui
# You can change the directory by setting the `tracking_uri` argument
# in `MLflowLoggerCallback`.
# For TensorBoard logs:
# Print the latest run directory and keep note of it.
# For example: /home/ubuntu/ray_results/TorchTrainer_2022-06-13_20-31-06
print("Run directory:", result.log_dir.parent) # TensorBoard is saved in parent dir
# How to visualize the logs
# Navigate to the run directory of the trainer.
# For example `cd /home/ubuntu/ray_results/TorchTrainer_2022-06-13_20-31-06`
# $ cd <TRAINER_RUN_DIR>
#
# # View the tensorboard UI.
# $ tensorboard --logdir .