Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
ray / purelib / ray / train / examples / mlflow_simple_example.py
Size: Mime:
from ray.air import ScalingConfig, RunConfig, session
from ray.train.torch import TorchTrainer
from ray.tune.integration.mlflow import MLflowLoggerCallback
from ray.tune.logger import TBXLoggerCallback


def train_func():
    for i in range(3):
        session.report(dict(epoch=i))


trainer = TorchTrainer(
    train_func,
    scaling_config=ScalingConfig(num_workers=2),
    run_config=RunConfig(
        callbacks=[
            MLflowLoggerCallback(experiment_name="train_experiment"),
            TBXLoggerCallback(),
        ],
    ),
)

# Run the training function, logging all the intermediate results
# to MLflow and Tensorboard.
result = trainer.fit()

# For MLFLow logs:

# MLFlow logs will by default be saved in an `mlflow` directory
# in the current working directory.

# $ cd mlflow
# # View the MLflow UI.
# $ mlflow ui

# You can change the directory by setting the `tracking_uri` argument
# in `MLflowLoggerCallback`.

# For TensorBoard logs:

# Print the latest run directory and keep note of it.
# For example: /home/ubuntu/ray_results/TorchTrainer_2022-06-13_20-31-06
print("Run directory:", result.log_dir.parent)  # TensorBoard is saved in parent dir

# How to visualize the logs

# Navigate to the run directory of the trainer.
# For example `cd /home/ubuntu/ray_results/TorchTrainer_2022-06-13_20-31-06`
# $ cd <TRAINER_RUN_DIR>
#
# # View the tensorboard UI.
# $ tensorboard --logdir .