Repository URL to install this package:
|
Version:
2.0.0rc1 ▾
|
import argparse
from typing import Dict
from ray.air import session
import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor
import ray.train as train
from ray.train.torch import TorchTrainer
from ray.air.config import ScalingConfig
# Download training data from open datasets.
training_data = datasets.FashionMNIST(
root="~/data",
train=True,
download=True,
transform=ToTensor(),
)
# Download test data from open datasets.
test_data = datasets.FashionMNIST(
root="~/data",
train=False,
download=True,
transform=ToTensor(),
)
# Define model
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
nn.Linear(28 * 28, 512),
nn.ReLU(),
nn.Linear(512, 512),
nn.ReLU(),
nn.Linear(512, 10),
nn.ReLU(),
)
def forward(self, x):
x = self.flatten(x)
logits = self.linear_relu_stack(x)
return logits
def train_epoch(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) // session.get_world_size()
model.train()
for batch, (X, y) in enumerate(dataloader):
# Compute prediction error
pred = model(X)
loss = loss_fn(pred, y)
# Backpropagation
optimizer.zero_grad()
loss.backward()
optimizer.step()
if batch % 100 == 0:
loss, current = loss.item(), batch * len(X)
print(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}]")
def validate_epoch(dataloader, model, loss_fn):
size = len(dataloader.dataset) // session.get_world_size()
num_batches = len(dataloader)
model.eval()
test_loss, correct = 0, 0
with torch.no_grad():
for X, y in dataloader:
pred = model(X)
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(1) == y).type(torch.float).sum().item()
test_loss /= num_batches
correct /= size
print(
f"Test Error: \n "
f"Accuracy: {(100 * correct):>0.1f}%, "
f"Avg loss: {test_loss:>8f} \n"
)
return test_loss
def train_func(config: Dict):
batch_size = config["batch_size"]
lr = config["lr"]
epochs = config["epochs"]
worker_batch_size = batch_size // session.get_world_size()
# Create data loaders.
train_dataloader = DataLoader(training_data, batch_size=worker_batch_size)
test_dataloader = DataLoader(test_data, batch_size=worker_batch_size)
train_dataloader = train.torch.prepare_data_loader(train_dataloader)
test_dataloader = train.torch.prepare_data_loader(test_dataloader)
# Create model.
model = NeuralNetwork()
model = train.torch.prepare_model(model)
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=lr)
loss_results = []
for _ in range(epochs):
train_epoch(train_dataloader, model, loss_fn, optimizer)
loss = validate_epoch(test_dataloader, model, loss_fn)
loss_results.append(loss)
session.report(dict(loss=loss))
# return required for backwards compatibility with the old API
# TODO(team-ml) clean up and remove return
return loss_results
def train_fashion_mnist(num_workers=2, use_gpu=False):
trainer = TorchTrainer(
train_func,
train_loop_config={"lr": 1e-3, "batch_size": 64, "epochs": 4},
scaling_config=ScalingConfig(num_workers=num_workers, use_gpu=use_gpu),
)
result = trainer.fit()
print(f"Results: {result.metrics}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--address", required=False, type=str, help="the address to use for Ray"
)
parser.add_argument(
"--num-workers",
"-n",
type=int,
default=2,
help="Sets number of workers for training.",
)
parser.add_argument(
"--use-gpu", action="store_true", default=False, help="Enables GPU training"
)
args, _ = parser.parse_known_args()
import ray
ray.init(address=args.address)
train_fashion_mnist(num_workers=args.num_workers, use_gpu=args.use_gpu)