Repository URL to install this package:
Version:
2.0.0rc1 ▾
|
import numpy as np
import time
class _Timer:
"""A running stat for conveniently logging the duration of a code block.
Example:
wait_timer = TimerStat()
with wait_timer:
ray.wait(...)
Note that this class is *not* thread-safe.
"""
def __init__(self, window_size=10):
self._window_size = window_size
self._samples = []
self._units_processed = []
self._start_time = None
self._total_time = 0.0
self.count = 0
def __enter__(self):
assert self._start_time is None, "concurrent updates not supported"
self._start_time = time.time()
def __exit__(self, exc_type, exc_value, tb):
assert self._start_time is not None
time_delta = time.time() - self._start_time
self.push(time_delta)
self._start_time = None
def push(self, time_delta):
self._samples.append(time_delta)
if len(self._samples) > self._window_size:
self._samples.pop(0)
self.count += 1
self._total_time += time_delta
def push_units_processed(self, n):
self._units_processed.append(n)
if len(self._units_processed) > self._window_size:
self._units_processed.pop(0)
def has_units_processed(self):
return len(self._units_processed) > 0
@property
def mean(self):
if not self._samples:
return 0.0
return float(np.mean(self._samples))
@property
def mean_units_processed(self):
if not self._units_processed:
return 0.0
return float(np.mean(self._units_processed))
@property
def mean_throughput(self):
time_total = float(sum(self._samples))
if not time_total:
return 0.0
return float(sum(self._units_processed)) / time_total