Repository URL to install this package:
Version:
2.1.2+cpu ▾
|
import inspect
from typing import Dict, List
import torch._C
from torch._guards import Guard
from .. import variables
from ..bytecode_transformation import create_call_function, create_instruction
from ..exc import unimplemented
from ..guards import GuardBuilder
from ..source import AttrSource, DummyGlobalSource
from .base import VariableTracker
from .functions import (
NestedUserFunctionVariable,
UserFunctionVariable,
UserMethodVariable,
WrappedUserFunctionVariable,
WrappedUserMethodVariable,
)
class ContextWrappingVariable(VariableTracker):
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(**kwargs)
self.target_values = target_values
self.initial_values = initial_values
self.recursively_contains = (
set()
) # This var doesn't contain any child vars and doesn't support clone() properly,
# so don't populate this automatically
def enter(self, tx):
self._call_func(tx, self.target_values)
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
def exit(self, tx, *args):
self._call_func(tx, self.initial_values)
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
def reconstruct(self, codegen):
attr_source = AttrSource(
codegen.tx.import_source(self.module_name()), self.fn_name()
)
return attr_source.reconstruct(codegen)
def module_name(self):
raise NotImplementedError("module_name called on base")
def fn_name(self):
raise NotImplementedError("fn_name called on base")
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
assert len(args) == 1
if isinstance(args[0], NestedUserFunctionVariable):
args[0] = UserFunctionVariable(args[0].get_function())
assert isinstance(args[0], (UserMethodVariable, UserFunctionVariable))
if isinstance(args[0], UserMethodVariable):
return WrappedUserMethodVariable(args[0], self)
if isinstance(args[0], UserFunctionVariable):
return WrappedUserFunctionVariable(args[0], self)
class GenericContextWrappingVariable(ContextWrappingVariable):
def __init__(self, target_values, initial_values=None, **kwargs):
cm_obj = kwargs.pop("cm_obj", None)
assert cm_obj is not None
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
self.cm_obj = cm_obj
def enter(self, tx):
options = VariableTracker.propagate(self)
options["source"] = (
None if self.source is None else AttrSource(self.source, "__enter__")
)
return variables.UserMethodVariable(
self.cm_obj.__enter__.__func__,
variables.UserDefinedObjectVariable(self.cm_obj, **options),
**options,
).call_function(tx, [], {})
def exit(self, tx, *args):
options = VariableTracker.propagate(self)
options["source"] = (
None if self.source is None else AttrSource(self.source, "__exit__")
)
x = variables.UserMethodVariable(
self.cm_obj.__exit__.__func__,
variables.UserDefinedObjectVariable(self.cm_obj, **options),
**options,
).call_function(
tx,
[
variables.ConstantVariable(None),
variables.ConstantVariable(None),
variables.ConstantVariable(None),
],
{},
)
# Remove the checkpoint if there is no graph break
# under this GenericContextWrappingVariable.
tx.states_before_block.pop()
return x
class GradModeVariable(ContextWrappingVariable):
"""represents torch.{no_grad,enable_grad,set_grad_mode}()"""
_guards_singleton = {Guard(DummyGlobalSource(), GuardBuilder.GRAD_MODE)}
@staticmethod
def create(tx, target_value, **kwargs):
var = GradModeVariable(
target_values=[target_value],
initial_values=[torch.is_grad_enabled()],
**kwargs,
)
var._call_func(tx, [target_value])
return var
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
self.guards = self.guards | self._guards_singleton
def enter(self, tx):
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
def _call_func(self, tx, values):
assert len(values) == 1
value = values[0]
tx.output.create_node(
"call_function", torch._C._set_grad_enabled, (value,), {}
),
torch._C._set_grad_enabled(value)
def module_name(self):
return "torch"
def fn_name(self):
return "set_grad_enabled"
class TorchFunctionDisableVariable(ContextWrappingVariable):
"""represents whether torch function overrides are enabled or not"""
_guards_singleton = {Guard(DummyGlobalSource(), GuardBuilder.TORCH_FUNCTION_STATE)}
@staticmethod
def create(tx, **kwargs):
var = TorchFunctionDisableVariable(
target_values=[False],
initial_values=[torch._C._is_torch_function_enabled()],
**kwargs,
)
# mlazos: I think this is here to make sure we don't reinvoke on clone()
var._call_func(tx, [False])
return var
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
self.guards = self.guards | self._guards_singleton
def enter(self, tx):
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
def _call_func(self, tx, values):
assert len(values) == 1
tx.output.set_torch_function_state(values[0])
class DeterministicAlgorithmsVariable(ContextWrappingVariable):
"""represents torch.{are_deterministic_algorithms_enabled,use_deterministic_algorithms}()"""
_guards_singleton = {
Guard(DummyGlobalSource(), GuardBuilder.DETERMINISTIC_ALGORITHMS)
}
@staticmethod
def create(tx, target_value, **kwargs):
var = DeterministicAlgorithmsVariable(
target_values=[target_value],
initial_values=[torch.are_deterministic_algorithms_enabled()],
**kwargs,
)
var._call_func(tx, [target_value])
return var
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
self.guards = self.guards | self._guards_singleton
def enter(self, tx):
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
def _call_func(self, tx, values):
assert len(values) == 1
value = values[0]
tx.output.create_node(
"call_function", torch._C._set_deterministic_algorithms, (value,), {}
),
torch._C._set_deterministic_algorithms(value)
def module_name(self):
return "torch"
def fn_name(self):
return "use_deterministic_algorithms"
class DisabledSavedTensorsHooksVariable(ContextWrappingVariable):
"""represents torch.autograd.graph.disable_saved_tensors_hook."""
@staticmethod
def create(tx, target_value, **kwargs):
var = DisabledSavedTensorsHooksVariable(
target_values=[target_value],
initial_values=[
torch._C._autograd._saved_tensors_hooks_get_disabled_error_message()
],
**kwargs,
)
var._call_func(tx, [target_value])
return var
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
def enter(self, tx):
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
def _call_func(self, tx, values):
assert len(values) == 1
value = values[0]
if value is not None:
# Disable `saved_tensors_hooks` with message (`value`)
# OR
# we are exiting this context and restoring the previous message.
tx.output.create_node(
"call_function",
torch._C._autograd._saved_tensors_hooks_disable,
(value,),
{},
)
torch._C._autograd._saved_tensors_hooks_disable(value)
else:
# We are exiting this context and if prev_message was None, we re-enable `saved_tensors_hooks`.
tx.output.create_node(
"call_function", torch._C._autograd._saved_tensors_hooks_enable, (), {}
)
torch._C._autograd._saved_tensors_hooks_enable()
def module_name(self):
return "torch.autograd.graph"
def fn_name(self):
return "disable_saved_tensors_hooks"
class AutocastModeVariable(ContextWrappingVariable):
@staticmethod
def create(func, args, kwargs):
assert func in [
torch.amp.autocast_mode.autocast,
torch.cuda.amp.autocast,
torch.cpu.amp.autocast,
]
# device_type : str,
# dtype : Optional[_dtype] = None,
# enabled : bool = True,
# cache_enabled : Optional[bool] = None):cache_enabled
bound_args = inspect.signature(func).bind(*args, **kwargs)
bound_args.apply_defaults()
target_values = []
kwargs.clear()
for key in ["device_type", "dtype", "enabled", "cache_enabled"]:
if key == "device_type" and func in [
torch.cuda.amp.autocast,
torch.cpu.amp.autocast,
]:
arg = "cuda" if func is torch.cuda.amp.autocast else "cpu"
else:
arg = bound_args.arguments[key]
if isinstance(arg, VariableTracker):
target_values.append(arg.as_python_constant())
else:
target_values.append(arg)
var = AutocastModeVariable(target_values, initial_values=None, **kwargs)
return var
def __init__(self, target_values, initial_values=None, **kwargs):
mode = kwargs.pop("mode", None)
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
self.target_values = target_values
self.mode = mode
def exit(self, tx, *args):
self.mode = (
torch.amp._exit_autocast(self.mode[0]),
tx.output.create_node(
"call_function", torch.amp._exit_autocast, (self.mode[1],), {}
),
)
def enter(self, tx):
self.mode = (
torch.amp._enter_autocast(*self.target_values),
tx.output.create_node(
"call_function", torch.amp._enter_autocast, (*self.target_values,), {}
),
)
def module_name(self):
return "torch.amp.autocast_mode"
def fn_name(self):
return "autocast"
class NullContextVariable(ContextWrappingVariable):
"""
This class represents Python contextlib.nullcontext.
It's used as a placeholder for other context managers that Dynamo doesn't
support yet, e.g, torch.autograd.profiler.record_function.
"""
def __init__(self, target_values=None, **kwargs):
super().__init__(target_values=target_values, **kwargs)
def enter(self, tx):
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
def exit(self, tx, *args):
return variables.ConstantVariable(None, **VariableTracker.propagate(self))
def module_name(self):
return "contextlib"
def fn_name(self):
return "nullcontext"
class CUDAStreamContextVariable(ContextWrappingVariable):
@staticmethod
def create(tx, target_value, **kwargs):
from .builder import wrap_fx_proxy_cls
current_stream = wrap_fx_proxy_cls(
CUDAStreamVariable,
tx,
tx.output.create_proxy(
"call_function",
torch.cuda.current_stream,
(None,),
{},
),
)
return CUDAStreamContextVariable(
target_values=[target_value],
initial_values=[current_stream],
**kwargs,
)
def __init__(self, target_values, initial_values=None, **kwargs):
super().__init__(
target_values=target_values, initial_values=initial_values, **kwargs
)
def enter(self, tx):
# CUDA stream generated inside of traced function
if self.target_values[0].as_proxy() is not None:
tx.output.create_proxy(
"call_function",
torch.cuda.set_stream,
(self.target_values[0].as_proxy(),),
{},
)
# CUDA stream passed from outside of traced function
else:
stream = self.target_values[0].value
tx.output.create_proxy(
"call_function",
torch._C._cuda_setStream,
(stream.stream_id, stream.device_index, stream.device_type),
{},
)
torch.cuda.set_stream(self.target_values[0].value)
def exit(self, tx, *args):
tx.output.create_proxy(
"call_function",
torch.cuda.set_stream,
(self.initial_values[0].as_proxy(),),
{},
)
torch.cuda.set_stream(self.initial_values[0].value)
def module_name(self):
return "torch.cuda"
def fn_name(self):
return "stream"
class CUDAStreamVariable(VariableTracker):
def __init__(self, proxy, value, **kwargs):
if proxy is not None and "example_value" in proxy.node.meta:
assert proxy.node.meta["example_value"] == value
super().__init__(**kwargs)
self.proxy = proxy
self.value = value
def call_method(
self,
tx,
name,
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
unimplemented("cuda stream")
def as_proxy(self):
return self.proxy
class WithExitFunctionVariable(VariableTracker):
def __init__(self, ctx: ContextWrappingVariable, target, **kwargs):
super().__init__(**kwargs)
assert isinstance(ctx, ContextWrappingVariable)
self.ctx = ctx
self.target = target
def call_function(
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
) -> "VariableTracker":
assert not kwargs
return self.ctx.exit(tx, *args)
def reconstruct(self, codegen):
# Note here we reconstruct the context manager rather than the
# exit function. The handler generated by BlockStackEntry
# will re-enter the context in the resume function.
output = AttrSource(
codegen.tx.import_source(self.ctx.module_name()), self.ctx.fn_name()
).reconstruct(codegen)
if codegen.tx.output.partial_convert:
loads = [codegen.create_load_const(val) for val in self.ctx.target_values]
output.extend(loads)
output.extend(
[
*create_call_function(len(loads), True),
create_instruction("SETUP_WITH", target=self.target),
create_instruction("POP_TOP"),
]
)
return output