Repository URL to install this package:
|
Version:
2.1.2+cpu ▾
|
#pragma once
#include <ATen/cuda/Atomic.cuh>
#if !(defined(USE_ROCM) || ((defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800))))
#include <cuda_bf16.h>
#endif
namespace at {
namespace native {
__device__ __forceinline__ size_t
idx(const size_t nc,
const size_t height,
const size_t width,
const size_t h,
const size_t w) {
return (nc * height + h) * width + w;
}
// for channels-last
__device__ __forceinline__ size_t
idx_cl(
const size_t n, const size_t h, const size_t w, const size_t c,
const size_t height, const size_t width, const size_t channel
) {
return ((n * height + h) * width + w) * channel + c;
}
// fastSpecializedAtomicAdd (and fastAtomicAdd) are an optimization
// that speed up half-precision atomics. The situation with half
// precision atomics is that we have a slow __half atomic, and
// a fast vectored __half2 atomic (this can be worth up to a 6x
// speedup, see https://github.com/pytorch/pytorch/pull/21879).
// We can convert a __half atomic into a __half2 atomic by simply
// pairing the __half with a zero entry on the left/right depending
// on alignment... but only if this wouldn't cause an out of bounds
// access! Thus, you must specify tensor and numel so we can check
// if you would be out-of-bounds and use a plain __half atomic if
// you would be.
template <
typename scalar_t,
typename index_t,
typename std::enable_if<std::is_same<c10::Half, scalar_t>::value>::type* =
nullptr>
__device__ __forceinline__ void fastSpecializedAtomicAdd(
scalar_t* tensor,
index_t index,
const index_t numel,
scalar_t value) {
#if ( \
(defined(USE_ROCM)) || \
(defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 700)))
gpuAtomicAddNoReturn(
reinterpret_cast<at::Half*>(tensor) + index,
static_cast<at::Half>(value));
#else
// Accounts for the chance tensor falls on an odd 16 bit alignment (ie, not 32 bit aligned)
__half* target_addr = reinterpret_cast<__half*>(tensor + index);
bool low_byte = (reinterpret_cast<std::uintptr_t>(target_addr) % sizeof(__half2) == 0);
if (low_byte && index < (numel - 1)) {
__half2 value2;
value2.x = static_cast<__half>(value);
value2.y = __int2half_rz(0);
atomicAdd(reinterpret_cast<__half2*>(target_addr), value2);
} else if (!low_byte && index > 0) {
__half2 value2;
value2.x = __int2half_rz(0);
value2.y = static_cast<__half>(value);
atomicAdd(reinterpret_cast<__half2*>(target_addr - 1), value2);
} else {
atomicAdd(
reinterpret_cast<__half*>(tensor) + index, static_cast<__half>(value));
}
#endif
}
template <
typename scalar_t,
typename index_t,
typename std::enable_if<std::is_same<c10::BFloat16, scalar_t>::value>::type* =
nullptr>
__device__ __forceinline__ void fastSpecializedAtomicAdd(
scalar_t* tensor,
index_t index,
const index_t numel,
scalar_t value) {
#if ( \
(defined(USE_ROCM)) || \
(defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 800)))
gpuAtomicAddNoReturn(
reinterpret_cast<at::BFloat16*>(tensor) + index,
static_cast<at::BFloat16>(value));
#else
// Accounts for the chance tensor falls on an odd 16 bit alignment (ie, not 32 bit aligned)
__nv_bfloat16* target_addr = reinterpret_cast<__nv_bfloat16*>(tensor + index);
bool low_byte = (reinterpret_cast<std::uintptr_t>(target_addr) % sizeof(__nv_bfloat162) == 0);
if (low_byte && index < (numel - 1)) {
__nv_bfloat162 value2;
value2.x = *reinterpret_cast<__nv_bfloat16*>(&value);
value2.y = __int2bfloat16_rz(0);
atomicAdd(reinterpret_cast<__nv_bfloat162*>(target_addr), value2);
} else if (!low_byte && index > 0) {
__nv_bfloat162 value2;
value2.x = __int2bfloat16_rz(0);
value2.y = *reinterpret_cast<__nv_bfloat16*>(&value);
atomicAdd(reinterpret_cast<__nv_bfloat162*>(target_addr - 1), value2);
} else {
atomicAdd(
reinterpret_cast<__nv_bfloat16*>(tensor) + index, *reinterpret_cast<__nv_bfloat16*>(&value));
}
#endif
}
template <
typename scalar_t,
typename index_t,
typename std::enable_if<!std::is_same<c10::Half, scalar_t>::value && !std::is_same<c10::BFloat16, scalar_t>::value >::type* =
nullptr>
__device__ __forceinline__ void fastSpecializedAtomicAdd(
scalar_t* tensor,
index_t index,
const index_t numel,
scalar_t value) {
gpuAtomicAddNoReturn(tensor + index, value);
}
template <class scalar_t, class index_t>
__device__ __forceinline__ void fastAtomicAdd(
scalar_t* tensor,
index_t index,
const index_t numel,
scalar_t value,
bool fast_atomics) {
if (fast_atomics) {
fastSpecializedAtomicAdd(tensor, index, numel, value);
} else {
gpuAtomicAddNoReturn(tensor + index, value);
}
}
} // namespace native
} // namespace at