Repository URL to install this package:
Version:
2.1.2+cpu ▾
|
from __future__ import annotations
import io
import os
from typing import Tuple, TYPE_CHECKING, Union
import torch
from torch.onnx import _type_utils as jit_type_utils
from torch.onnx._internal import _beartype
if TYPE_CHECKING:
import onnx
@_beartype.beartype
def _create_tensor_proto_with_external_data(
tensor: torch.Tensor, name: str, location: str, basepath: str
) -> onnx.TensorProto: # type: ignore[name-defined]
"""Create a TensorProto with external data from a PyTorch tensor.
The external data is saved to os.path.join(basepath, location).
Args:
tensor: Tensor to be saved.
name: Name of the tensor (i.e., initializer name in ONNX graph).
location: Relative location of the external data file
(e.g., "/tmp/initializers/weight_0" when model is "/tmp/model_name.onnx").
basepath: Base path of the external data file (e.g., "/tmp/external_data" while model must be in "/tmp").
Reference for ONNX's external data format:
How to load?
https://github.com/onnx/onnx/blob/5dac81ac0707bdf88f56c35c0a5e8855d3534673/onnx/external_data_helper.py#L187
How to save?
https://github.com/onnx/onnx/blob/5dac81ac0707bdf88f56c35c0a5e8855d3534673/onnx/external_data_helper.py#L43
How to set ONNX fields?
https://github.com/onnx/onnx/blob/5dac81ac0707bdf88f56c35c0a5e8855d3534673/onnx/external_data_helper.py#L88
"""
# FIXME: Avoid importing onnx into torch.onnx.
import onnx
tensor_proto = onnx.TensorProto() # type: ignore[attr-defined]
tensor_proto.name = name
tensor_proto.data_type = jit_type_utils.JitScalarType.from_dtype(
tensor.dtype
).onnx_type()
tensor_proto.dims.extend(tensor.shape)
tensor_proto.data_location = onnx.TensorProto.EXTERNAL # type: ignore[attr-defined]
# Settings for saving one tensor per file.
# Offset is zero because there is no other tensor in the same file.
key_value_pairs = {
"location": location,
"offset": 0,
"length": tensor.untyped_storage().nbytes(),
}
for k, v in key_value_pairs.items():
entry = tensor_proto.external_data.add()
entry.key = k
entry.value = str(v)
# Actual path to write content of tensor.
external_data_file_path = os.path.join(basepath, location)
if os.path.exists(external_data_file_path):
os.remove(external_data_file_path)
# Create external data's folder if not exists.
external_data_dir_path = os.path.dirname(external_data_file_path)
if not os.path.exists(external_data_dir_path):
# if the demo_folder directory is not present
# then create it.
os.makedirs(external_data_dir_path)
# Create a fresh file.
with open(external_data_file_path, "xb") as data_file:
# No need to call "seek" because offset is 0.
# data_file.seek(0)
# Write tensor content to the file.
data_file.write(tensor.numpy().tobytes())
return tensor_proto
@_beartype.beartype
def save_model_with_external_data(
basepath: str,
model_location: str,
initializer_location: str,
torch_load_paths: Tuple[Union[str, io.BytesIO], ...],
onnx_model: onnx.ModelProto, # type: ignore[name-defined]
rename_initializer: bool = False,
) -> None:
"""Load PyTorch tensors from files and add to "onnx_model" as external initializers.
Output files:
ONNX model file path:
ONNX initializer folder: os.path.join(basepath, initializer_location)
After running this function, you can do
ort_sess = onnxruntime.InferenceSession(os.path.join(basepath, model_location))
to execute the model.
Arguments:
basepath: Base path of the external data file (e.g., "/tmp/large-onnx-model").
model_location: Relative location of the ONNX model file.
E.g., "model.onnx" so that the model file is saved to
"/tmp/large-onnx-model/model.onnx".
initializer_location: Relative location of the ONNX initializer folder.
E.g., "initializers" so that the initializers are saved to
"/tmp/large-onnx-model/initializers".
torch_load_paths: Files which containing serialized PyTorch tensors to be saved
as ONNX initializers. They are loaded by torch.load.
onnx_model: ONNX model to be saved with external initializers.
If an input name matches a tensor loaded from "torch_load_paths",
the tensor will be saved as that input's external initializer.
rename_initializer: Replaces "." by "_" for all ONNX initializer names.
Not needed by the official torch.onnx.dynamo_export. This is a hack
for supporting `FXSymbolicTracer` tracer with fake tensor mode.
In short, `FXSymbolicTracer` lifts FX parameters (self.linear_weight)
as inputs (`def forward(self, linear_weight)`) and therefore, `.` cannot be used.
"""
# FIXME: Avoid importing onnx into torch.onnx.
import onnx
onnx_model_with_initializers = onnx.ModelProto() # type: ignore[attr-defined]
onnx_model_with_initializers.CopyFrom(onnx_model)
onnx_input_names = [input.name for input in onnx_model.graph.input]
for path in torch_load_paths:
state_dict = torch.load(path)
for name, tensor in state_dict.items():
if rename_initializer:
# Basically, "transformer.attention.self.query.weight" is mapped
# to "transformer_attention_self_query_weight" for mimicking the
# name-modifying code in FX-to-ONNX exporter.
# See function _replace_get_attr_with_placeholder for details.
name = name.replace(".", "_")
# This block tries to match the onnx initializer name with torch parameter/buffer
# e.g. A pytorch buffer 'transformer.h.0.attn.bias' can be named 'h.0.attn.bias' in a ONNX initializer
# For each PyTorch tensor name loaded by torch.load,
# 1. Search its best match in ONNX model. E.g., the match of
# "transformer_attention_weight" could be "attention_weight".
# 2. Set "tensor" as the initializer of the matched ONNX input.
# E.g., "tensor" is stored as the initializer of "attention_weight".
# Step 1 is required because sometimes, tensor names are stored with prefix the dictionary
# loaded by torch.load.
for onnx_input_name in onnx_input_names:
if onnx_input_name.endswith(name) or name.endswith(onnx_input_name):
# Find a match. Change name to the matched ONNX input name, so that we
# create initializer with the right ONNX name.
name = onnx_input_name
break
relative_tensor_file_path = os.path.join(initializer_location, name)
# Create one file per tensor.
# tensor_proto.raw_data is stored to external file at
# os.path.join(basepath, relative_tensor_file_path).
tensor_proto = _create_tensor_proto_with_external_data(
tensor, name, relative_tensor_file_path, basepath
)
# Add the tensor_proto to the ONNX model as an initializer with external data.
onnx_model_with_initializers.graph.initializer.append(tensor_proto)
# model_location should be a pure file name such as "file_name.onnx", not "folder/file_name.onnx".
onnx.save(onnx_model_with_initializers, os.path.join(basepath, model_location)) # type: ignore[attr-defined]