Repository URL to install this package:
Version:
1.12.1+cpu ▾
|
# @generated from torch/_C/__init__.pyi.in
import torch
from torch.package import PackageExporter
from torch import Tensor
from enum import Enum
from pathlib import Path
from typing import (
Any, BinaryIO, Callable, ContextManager, Dict, Iterable, Iterator, List,
NamedTuple, Optional, overload, Sequence, Tuple, TypeVar, Type, Union,
Generic, Set, AnyStr)
from typing_extensions import Literal
from torch._six import inf
from torch.types import _int, _float, _bool, _dtype, _device, _qscheme, _size, _layout, Device, Number, Storage, SymInt
from torch.storage import _TypedStorage
import builtins
# This module is defined in torch/csrc/Module.cpp
from . import _nn as _nn
from . import _onnx as _onnx
from . import _VariableFunctions as _VariableFunctions
from . import _lazy as _lazy
from . import _lazy_ts_backend as _lazy_ts_backend
T = TypeVar('T')
# Defined in torch/csrc/Device.cpp
class device:
type: str # THPDevice_type
index: _int # THPDevice_index
def __get__(self, instance, owner=None) -> device: ...
# THPDevice_pynew
@overload
def __init__(self, device: Union[_device, _int, str]) -> None: ...
@overload
def __init__(self, type: str, index: _int) -> None: ...
def __reduce__(self) -> Tuple[Any, ...]: ... # THPDevice_reduce
# Defined in torch/csrc/Stream.cpp
class Stream:
_cdata: _int # Stream handle
device: device # The device of the stream
...
# Defined in torch/csrc/Size.cpp
class Size(Tuple[_int, ...]):
# TODO: __reduce__
@overload # type: ignore[override]
def __getitem__(self: Size, key: _int) -> _int: ...
@overload
def __getitem__(self: Size, key: slice) -> Size: ...
def numel(self: Size) -> _int: ...
...
# Defined in torch/csrc/Dtype.cpp
class dtype:
# TODO: __reduce__
is_floating_point: _bool
is_complex: _bool
is_signed: _bool
...
# Defined in torch/csrc/TypeInfo.cpp
class iinfo:
bits: _int
min: _int
max: _int
dtype: str
def __init__(self, dtype: _dtype) -> None: ...
class finfo:
bits: _int
min: _float
max: _float
eps: _float
tiny: _float
smallest_normal: _float
resolution: _float
dtype: str
@overload
def __init__(self, dtype: _dtype) -> None: ...
@overload
def __init__(self) -> None: ...
float32: dtype = ...
float: dtype = ...
float64: dtype = ...
double: dtype = ...
float16: dtype = ...
bfloat16: dtype = ...
half: dtype = ...
uint8: dtype = ...
int8: dtype = ...
int16: dtype = ...
short: dtype = ...
int32: dtype = ...
int: dtype = ...
int64: dtype = ...
long: dtype = ...
complex32: dtype = ...
complex64: dtype = ...
cfloat: dtype = ...
complex128: dtype = ...
cdouble: dtype = ...
quint8: dtype = ...
qint8: dtype = ...
qint32: dtype = ...
bool: dtype = ...
quint4x2: dtype = ...
quint2x4: dtype = ...
# Defined in torch/csrc/Layout.cpp
class layout:
...
# Defined in torch/csrc/utils/disable_torch_function.cpp
def DisableTorchFunction(): ...
# Defined in torch/csrc/utils/tensor_layouts.cpp
strided : layout = ...
sparse_coo : layout = ...
sparse_csr : layout = ...
sparse_csc : layout = ...
sparse_bsr : layout = ...
sparse_bsc : layout = ...
_mkldnn : layout = ...
# Defined in torch/csrc/MemoryFormat.cpp
class memory_format: ...
# Defined in torch/csrc/utils/tensor_memoryformats.cpp
contiguous_format: memory_format = ...
channels_last: memory_format = ...
channels_last_3d: memory_format = ...
preserve_format: memory_format = ...
# Defined in torch/csrc/QScheme.cpp
class qscheme: ...
# Defined in torch/csrc/utils/tensor_qschemes.h
per_tensor_affine: qscheme = ...
per_channel_affine: qscheme = ...
per_tensor_symmetric: qscheme = ...
per_channel_symmetric: qscheme = ...
per_channel_affine_float_qparams: qscheme = ...
# Defined in torch/csrc/autograd/python_function.cpp
class _FunctionBase(object):
...
# Defined in torch/csrc/autograd/python_legacy_variable.cpp
class _LegacyVariableBase(object):
def __init__(
self,
data: Optional[Tensor]=...,
requires_grad: Optional[_bool]=...,
volatile: Optional[_bool]=...,
_grad_fn: Optional[_FunctionBase]=...
) -> None: ...
# Defined in torch/csrc/jit/python/init.cpp
class IODescriptor: ...
class JITException: ...
class Future(object):
def __init__(self, devices: List[device]) -> None: ...
def done(self) -> _bool: ...
def value(self) -> Any: ...
def wait(self) -> Any: ...
def add_done_callback(self, callback: Callable) -> None: ...
def then(self, callback: Callable) -> Future: ...
def set_result(self, result: Any) -> None: ...
def _set_unwrap_func(self, callback: Callable) -> None: ...
def _jit_set_num_profiled_runs(num: _size) -> _size: ...
# Defined in torch/csrc/jit/passes/xnnpack_rewrite.h
class MobileOptimizerType:
...
CONV_BN_FUSION: MobileOptimizerType
INSERT_FOLD_PREPACK_OPS: MobileOptimizerType
REMOVE_DROPOUT: MobileOptimizerType
FUSE_ADD_RELU: MobileOptimizerType
HOIST_CONV_PACKED_PARAMS: MobileOptimizerType
def fork(*args: Any, **kwargs: Any) -> Future: ...
def wait(fut: Future) -> Any: ...
def _collect_all(futures: List[Future]) -> Future: ...
def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ...
def unify_type_list(types: List[JitType]) -> JitType: ...
def _freeze_module(module: ScriptModule,
preserved_attrs: List[str] = [],
freeze_interfaces: _bool = True,
preserveParameters: _bool = True) -> ScriptModule: ...
def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ...
def _jit_pass_optimize_for_inference(module: 'torch.jit.ScriptModule',
other_methods: List[str] = []) -> None: ...
def _jit_pass_fold_frozen_conv_bn(graph: Graph): ...
def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ...
def _jit_pass_fold_frozen_conv_mul_or_div(graph: Graph): ...
def _jit_pass_fuse_frozen_conv_add_relu(graph: Graph): ...
def _jit_pass_concat_frozen_linear(graph: Graph): ...
def _jit_pass_convert_frozen_ops_to_mkldnn(graph: Graph): ...
def _jit_pass_transpose_frozen_linear(graph:Graph): ...
def _jit_pass_remove_dropout(module: 'torch.jit.ScriptModule'): ...
def _is_tracing() -> _bool: ...
def _jit_init() -> _bool: ...
def _jit_flatten(arg: Any) -> Tuple[List[Tensor], IODescriptor]: ...
def _jit_unflatten(vars: List[Tensor], desc: IODescriptor) -> Any: ...
def _jit_get_operation(op_name: str) -> Tuple[Callable, List[str]]: ...
def _get_operation_overload(op_name: str, op_overload_name: str) -> Callable: ...
def _get_schema(op_name: str, overload_name: str) -> FunctionSchema: ...
def _jit_pass_optimize_for_mobile(module: 'torch.jit.ScriptModule',
optimization_blocklist: Set[MobileOptimizerType],
preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _clone_module_with_class(module: 'torch.jit.ScriptModule',
ignored_methods: List[AnyStr],
ignored_attributes: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _jit_pass_vulkan_optimize_for_mobile(module: 'torch.jit.ScriptModule',
preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _jit_pass_metal_optimize_for_mobile(module: 'torch.jit.ScriptModule',
preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _jit_pass_inline(Graph) -> None: ...
def _jit_pass_constant_propagation(Graph) -> None: ...
def _jit_pass_propagate_shapes_on_graph(Graph) -> None: ...
def _jit_register_decomposition_for_schema(schema: FunctionSchema, Graph) -> None: ...
def _jit_erase_non_input_shape_information(Graph) -> None: ...
def _jit_get_schemas_for_operator(name :str) -> List[FunctionSchema]: ...
def _jit_get_all_schemas() -> List[FunctionSchema]: ...
def _jit_check_alias_annotation(g: Graph, args: Tuple[Any, ...], unqualified_op_name: str): ...
def _jit_can_fuse_on_cpu() -> _bool: ...
def _jit_can_fuse_on_gpu() -> _bool: ...
def _jit_can_fuse_on_cpu_legacy() -> _bool: ...
def _debug_get_fusion_group_inlining() -> _bool: ...
def _debug_set_fusion_group_inlining(enable: _bool): ...
def _jit_texpr_fuser_enabled() -> _bool: ...
def _jit_nvfuser_enabled() -> _bool: ...
def _jit_llga_enabled() -> _bool: ...
def _jit_set_llga_enabled(enable: _bool): ...
def _llvm_enabled() -> _bool: ...
def _jit_override_can_fuse_on_cpu(override: _bool): ...
def _jit_override_can_fuse_on_gpu(override: _bool): ...
def _jit_override_can_fuse_on_cpu_legacy(override: _bool): ...
def _jit_set_symbolic_shapes_test_mode(override: _bool): ...
def _jit_symbolic_shapes_test_mode_enabled() -> _bool: ...
def _jit_set_texpr_fuser_enabled(enable: _bool): ...
def _jit_set_te_must_use_llvm_cpu(use_llvm: _bool): ...
def _jit_set_nvfuser_enabled(enable: _bool) -> _bool: ...
def _jit_cat_wo_conditionals(optimize_cat: _bool): ...
def _jit_opt_conditionals(opt_conds: _bool): ...
def _jit_pass_canonicalize(graph: Graph, keep_unique_names: _bool = True): ...
def _jit_pass_erase_shape_information(graph: Graph): ...
def _jit_pass_fold_convbn(module: 'torch.jit.ScriptModule'): ...
def _jit_pass_insert_observers(module: 'torch.jit.ScriptModule',
method_name: str,
qconfig_dict: Dict[str, Any],
inplace: _bool,
quant_type: _int): ...
def _jit_pass_insert_quant_dequant(module: 'torch.jit.ScriptModule',
method_name: str,
inplace: _bool,
debug: _bool,
quant_type: _int): ...
def _jit_pass_quant_finalize(module: 'torch.jit.ScriptModule',
quant_type: _int,
preserved_attrs: Sequence[str]): ...
def _jit_set_profiling_executor(profiling_flag: _bool) -> _bool: ...
def _jit_set_profiling_mode(profiling_flag: _bool) -> _bool: ...
def _jit_set_fusion_strategy(strategy: List[Tuple[str, _int]]) -> List[Tuple[str, _int]]: ...
def _jit_try_infer_type(obj: Any) -> InferredType: ...
def _jit_get_trigger_value(trigger_name: str) -> _int: ...
# Defined in torch/csrc/jit/python/script_init.cpp
ResolutionCallback = Callable[[str], Callable[..., Any]]
# Defined in torch/csrc/jit/python/script_init.cpp
# and torch/csrc/jit/python/init.cpp
def _create_function_from_graph(qualname: str, graph: Graph) -> ScriptFunction: ...
def _debug_set_autodiff_subgraph_inlining(disabled: _bool) -> None: ...
def _ivalue_tags_match(lhs: ScriptModule, rhs: ScriptModule) -> _bool: ...
def _jit_assert_is_instance(obj: Any, type: JitType): ...
def _jit_clear_class_registry() -> None: ...
def _jit_set_emit_hooks(ModuleHook: Optional[Callable], FunctionHook: Optional[Callable]) -> None: ...
def _jit_get_emit_hooks() -> Tuple[Callable, Callable]: ...
def _load_for_lite_interpreter(filename: Union[str, Path], map_location: Union[_device, str, None]): ...
def _load_for_lite_interpreter_from_buffer(buffer: BinaryIO, map_location: Union[_device, str, None]): ...
def _export_operator_list(module: LiteScriptModule): ...
def _get_model_bytecode_version(filename: Union[str, Path]) -> _int: ...
def _get_model_bytecode_version_from_buffer(buffer: BinaryIO) -> _int: ...
def _backport_for_mobile(filename_input: Union[str, Path], filename_output: Union[str, Path], to_version: _int) -> None: ...
def _backport_for_mobile_from_buffer(buffer: BinaryIO, filename_output: Union[str, Path], to_version: _int) -> None: ...
def _backport_for_mobile_to_buffer(filename_input: Union[str, Path], to_version: _int) -> bytes:...
def _backport_for_mobile_from_buffer_to_buffer(buffer: BinaryIO, to_version: _int) -> bytes:...
def _get_model_ops_and_info(filename: Union[str, Path]): ...
def _get_model_ops_and_info_from_buffer(buffer: BinaryIO): ...
def _get_mobile_model_contained_types(filename: Union[str, Path]): ...
def _get_mobile_model_contained_types_from_buffer(buffer: BinaryIO): ...
def _logging_set_logger(logger: LoggerBase) -> LoggerBase: ...
def _get_graph_executor_optimize(optimize: Optional[_bool] = None) -> _bool: ...
def _set_graph_executor_optimize(optimize: _bool): ...
def _export_opnames(module: ScriptModule) -> List[str]: ...
def _create_function_from_trace(
qualname: str,
func: Callable[..., Any],
input_tuple: Tuple[Any, ...],
var_lookup_fn: Callable[[Tensor], str],
strict: _bool,
force_outplace: _bool,
argument_names: List[str]
) -> Tuple[Graph, Stack]: ...
def _jit_is_script_object(obj: Any) -> _bool: ...
def _last_executed_optimized_graph() -> Graph: ...
def parse_type_comment(comment: str) -> Decl: ...
def _is_upgraders_enabled() -> _bool: ...
def _get_upgraders_map_size() -> _int: ...
def _dump_upgraders_map() -> Dict[str, str]: ...
def _test_only_populate_upgraders(content: Dict[str, str]) -> None: ...
def _test_only_remove_upgraders(content: Dict[str, str]) -> None: ...
def merge_type_from_type_comment(decl: Decl, type_annotation_decl: Decl, is_method: _bool) -> Decl: ...
def parse_ir(input: str, parse_tensor_constants: _bool) -> Graph: ...
def parse_schema(schema: str) -> FunctionSchema: ...
def get_device(input: Tensor) -> _int: ...
def _resolve_type_from_object(obj: Any, range: SourceRange, rcb: ResolutionCallback) -> JitType: ...
def _create_module_with_type(ty: JitType) -> ScriptModule: ...
def _create_object_with_type(ty: ClassType) -> ScriptObject: ...
def _run_emit_module_hook(m: ScriptModule): ...
def _replace_overloaded_method_decl(overload_decl: Decl, implementation_def: Def, new_name: str) -> Def: ...
def _jit_pass_lower_all_tuples(graph: Graph) -> None: ...
def _jit_pass_onnx_set_dynamic_input_shape(graph: Graph, dynamic_axes: Dict[str, Dict[_int, str]], input_names: List[str]) -> None: ...
def _jit_pass_onnx_graph_shape_type_inference(graph: Graph, paramsDict: Dict[str, IValue], opset_version: _int) -> None: ...
def _jit_pass_onnx_assign_output_shape(graph: Graph, tensors: List[Tensor], desc: IODescriptor, onnx_shape_inference: _bool, is_script: _bool) -> None: ...
def _jit_pass_onnx_remove_inplace_ops_for_onnx(graph: Graph, module: Module) -> None: ...
def _jit_pass_remove_inplace_ops(graph: Graph) -> None: ...
def _jit_pass_canonicalize_graph_fuser_ops(graph: Graph) -> None: ...
def _jit_pass_peephole(graph: Graph, disable_shape_peepholes: _bool = False) -> None: ...
def _jit_pass_fuse_addmm(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess(graph: Graph) -> None: ...
def _jit_pass_prepare_division_for_onnx(graph: Graph) -> None: ...
def _jit_pass_onnx_remove_print(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess_caffe2(graph: Graph) -> None: ...
def _jit_pass_onnx_unpack_quantized_weights(
graph: Graph,
paramsDict: Dict[str, IValue],
caffe2: _bool
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_quantization_insert_permutes(
graph: Graph,
paramsDict: Dict[str, IValue]
) -> Dict[str, IValue]: ...
def _jit_pass_custom_pattern_based_rewrite_graph(pattern: str, fused_node_name: str, graph: Graph) -> None: ...
def _jit_onnx_list_model_parameters(module: ScriptModule) -> Tuple[ScriptModule, List[IValue]]: ...
def _jit_pass_erase_number_types(graph: Graph) -> None: ...
def _jit_pass_onnx_lint(graph: Graph) -> None: ...
def _jit_pass_onnx(graph: Graph, _jit_pass_onnx: _onnx.OperatorExportTypes) -> Graph: ...
def _jit_pass_onnx_scalar_type_analysis(graph: Graph, lowprecision_cast: _bool, opset_version: _int) -> None: ...
def _jit_pass_onnx_peephole(graph: Graph, opset_version: _int, fixed_batch_size: _bool) -> None: ...
def _jit_pass_dce_allow_deleting_nodes_with_side_effects(graph: Graph) -> None: ...
def _jit_pass_onnx_function_substitution(graph: Graph) -> None: ...
def _jit_pass_onnx_function_extraction(graph: Graph, module_names : Set[str], param_names : List[str]) -> Dict[Node, Dict[str, str]]: ...
def _jit_pass_onnx_clear_scope_records() -> None: ...
def _jit_pass_onnx_track_scope_attributes(graph: Graph, onnx_attrs: Dict[str, Any]) -> None: ...
def _jit_is_onnx_log_enabled() -> _bool: ...
def _jit_set_onnx_log_enabled(enabled: _bool) -> None: ...
def _jit_set_onnx_log_output_stream(stream_name: str) -> None: ...
def _jit_onnx_log(*args: Any) -> None: ...
def _jit_pass_lower_graph(graph: Graph, m: Module) -> Tuple[Graph, List[IValue]]: ...
def _jit_pass_inline_fork_wait(graph: Graph) -> None: ...
def _jit_pass_onnx_deduplicate_initializers(graph: Graph, params_dict: Dict[str, IValue], is_train: _bool) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eval_peephole(graph: Graph, paramsDict: Dict[str, IValue]) -> Dict[str, IValue]: ...
def _jit_pass_onnx_constant_fold(graph: Graph, paramsDict: Dict[str, IValue], opset_version: _int) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eliminate_unused_items(graph: Graph, paramsDict: Dict[str, IValue]) -> Dict[str, IValue]: ...
def _jit_pass_onnx_cast_all_constant_to_floating(graph: Graph) -> None: ...
def _jit_pass_filter_non_tensor_arguments(params: Dict[str, IValue]) -> Dict[str, Tensor]: ...
def _jit_decay_packed_param_input_types(graph: Graph) -> None: ...
def _jit_pass_onnx_node_shape_type_inference(n: Node, paramsDict: Dict[str, IValue], opset_version: _int) -> None: ...
def _jit_onnx_convert_pattern_from_subblock(block: Block, n: Node, env: Dict[Value, Value]) -> List[Value]: ...
def _jit_pass_onnx_block(
old_block: Block,
new_block: Block,
operator_export_type: _onnx.OperatorExportTypes,
env: Dict[Value, Value],
is_sub_block: _bool
) -> Dict[Value, Value]: ...
def _jit_pass_fixup_onnx_controlflow_node(n: Node, opset_version: _int) -> Node: ...
def _compile_graph_to_code_table(name: str, graph: Graph) -> IValue: ...
def _generate_upgraders_graph() -> Dict[str, Graph]: ...
def _calculate_package_version_based_on_upgraders(val: _bool): ...
def _get_version_calculator_flag() -> _bool: ...
def _jit_script_interface_compile(name: str, class_def: ClassDef, rcb: ResolutionCallback, is_module: _bool): ...
def _jit_script_compile_overload(
qualname: str,
overload_decl: Decl,
implementation_def: Def,
rcb: ResolutionCallback,
implementation_defaults: Dict[str, Any],
signature: Any
): ...
def _jit_script_compile(
qual_name: str,
definition: Def,
rcb: ResolutionCallback,
defaults: Dict[str, Any]
): ...
def _jit_script_class_compile(
qual_name: str,
definition: ClassDef,
defaults: Dict[str, Dict[str, Any]],
rcb: ResolutionCallback
): ...
def _parse_source_def(src: str) -> Def: ...
def import_ir_module(
cu: CompilationUnit,
filename: Union[str, Path],
map_location: Union[_device, str, None],
extra_files: Dict[str, Any]
) -> ScriptModule: ...
def import_ir_module_from_buffer(
cu: CompilationUnit,
buffer: BinaryIO,
map_location: Union[_device, str, None],
extra_files: Dict[str, Any]
) -> ScriptModule: ...
def _import_ir_module_from_package(
cu: CompilationUnit,
reader: PyTorchFileReader,
storage_context: DeserializationStorageContext,
map_location: Union[_device, str, None],
ts_id: str
) -> ScriptModule: ...
def _assign_output_shapes(graph: Graph, inputs: List[Tensor]) -> Graph: ...
def _check_onnx_proto(proto: str, full_check: _bool = False) -> None: ...
def _propagate_and_assign_input_shapes(
graph: Graph,
inputs: Tuple[Tensor, ...],
param_count_list: List[_int],
with_grad: _bool,
propagate: _bool
) -> Graph: ...
# Defined in torch/csrc/jit/runtime/graph_executor.h
class GraphExecutorState:
...
# Defined in torch/torch/csrc/jit/ir/alias_analysis.h
class AliasDb:
def __str__(self) -> str: ...
...
class _InsertPoint:
def __enter__(self) -> None: ...
def __exit__(self, *args) -> None: ...
# Defined in torch/csrc/jit/ir/ir.h
class Use:
@property
def user(self) -> Node: ...
@property
def offset(self) -> _int: ...
def isAfter(self, other: Use) -> _bool: ...
...
# Defined in torch/csrc/jit/ir/ir.h
class Value:
def type(self)-> JitType: ...
def setType(self, t: JitType) -> Value: ...
def setTypeAs(self, other: Value) -> Value: ...
def inferTypeFrom(self, t: Tensor) -> None: ...
def debugName(self) -> str: ...
def setDebugName(self, name: str) -> None: ...
def unique(self) -> _int: ...
def offset(self) -> _int: ...
def node(self) -> Node: ...
def uses(self) -> List[Use]: ...
def replaceAllUsesWith(self, val: Value) -> None: ...
def replaceAllUsesAfterNodeWith(self, node: Node, val: Value) -> None: ...
def requires_grad(self) -> _bool: ...
def requiresGrad(self) -> _bool: ...
def copyMetadata(self, other: Value) -> Value: ...
def isCompleteTensor(self) -> _bool: ...
def toIValue(self) -> IValue: ...
...
# Defined in torch/csrc/jit/ir/ir.h
class Block:
def inputs(self) -> List[Value]: ...
def outputs(self) -> List[Value]: ...
...
# Defined in torch/csrc/jit/ir/ir.h
class Node:
def schema(self) -> str: ...
def input(self) -> Value: ...
def inputs(self) -> List[Value]: ...
def inputsAt(self, idx: _int) -> Value: ...
def inputsSize(self) -> _int: ...
def output(self) -> Value: ...
def outputs(self) -> List[Value]: ...
def outputsAt(self, idx: _int) -> Value: ...
def outputsSize(self) -> _int: ...
def hasMultipleOutputs(self) -> _bool: ...
def blocks(self) -> List[Block]: ...
def mustBeNone(self) -> _bool: ...
def __getitem__(self, key: str) -> Any: ...
def matches(self, pattern: str) -> _bool: ...
def kind(self) -> str: ...
def kindOf(self, name: str) -> str: ...
def addInput(self, name: str) -> Value: ...
def replaceInput(self, i: _int, newValue: Value) -> Value: ...
def replaceInputWith(self, from_: Value, to: Value) -> None: ...
def replaceAllUsesWith(self, n: Node) -> None: ...
def insertBefore(self, n: Node) -> Node: ...
def insertAfter(self, n: Node) -> Node: ...
def isBefore(self, n: Node) -> _bool: ...
def isAfter(self, n: Node) -> _bool: ...
def moveBefore(self, n: Node) -> None: ...
def moveAfter(self, n: Node) -> None: ...
def removeInput(self, i: _int) -> None: ...
def removeAllInputs(self, i: _int) -> None: ...
def hasUses(self) -> _bool: ...
def eraseOutput(self, i: _int) -> None: ...
def addOutput(self) -> Value: ...
def scopeName(self) -> str: ...
def isNondeterministic(self) -> _bool: ...
def copyAttributes(self, rhs: Node) -> Node: ...
def copyMetadata(self, rhs: Node) -> Node: ...
def hasAttributes(self) -> _bool: ...
def hasAttribute(self, name: str) -> _bool: ...
def removeAttribute(self, attr: str) -> Node: ...
def namedInput(self, name: str) -> Value: ...
def sourceRange(self) -> SourceRange: ...
def owningBlock(self) -> Block: ...
def findNode(self, kind: str, recurse: _bool = True) -> Node: ...
def findAllNodes(self, kind: str, recurse: _bool = True) -> List[Node]: ...
def getModuleHierarchy(self) -> str: ...
def prev(self) -> Node: ...
def destroy(self) -> None: ...
# Accessors for attributes as types.
def f(self, name: str) -> _float: ...
def f_(self, name: str, val: _float) -> Node: ...
def fs(self, name: str) -> List[_float]: ...
def fs_(self, name: str, val: List[_float]) -> Node: ...
def c(self, name: str) -> complex: ...
def c_(self, name: str, val: complex) -> Node: ...
def s(self, name: str) -> str: ...
def s_(self, name: str, val: str) -> Node: ...
def ss(self, name: str) -> List[str]: ...
def ss_(self, name: str, val: List[str]) -> Node: ...
def i(self, name: str) -> _int: ...
def i_(self, name: str, val: _int) -> Node: ...
# Cannot define "is" like this because it's a reserved keyword in python.
# def is(self, name: str) -> List[_int]: ...
# def is_(self, name: str, val: List[_int]) -> Node: ...
def g(self, name: str) -> Graph: ...
def g_(self, name: str, val: Graph) -> Node: ...
def gs(self, name: str) -> List[Graph]: ...
def gs_(self, name: str, val: List[Graph]) -> Node: ...
def ival(self, name: str) -> IValue: ...
def ival_(self, name: str, val: IValue) -> Node: ...
def t(self, name: str) -> Tensor: ...
def t_(self, name: str, val: Tensor) -> Node: ...
def ts(self, name: str) -> List[Tensor]: ...
def ts_(self, name: str, val: List[Tensor]) -> Node: ...
def ty_(self, name: str, val: JitType) -> Node: ...
def tys_(self, name: str, val: List[JitType]) -> Node: ...
...
# Defined in torch/torch/csrc/jit/ir/ir.h
class Graph:
def eraseInput(self, i: _int) -> None: ...
def alias_db(self) -> AliasDb: ...
def inputs(self) -> List[Value]: ...
def setInsertPoint(self, n: Union[Block, Node]) -> None: ...
def insert_point_guard(self, n: Union[Block, Node]) -> _InsertPoint: ...
def insertPoint(self) -> Node: ...
def insertGraph(self, callee: Graph, inputs: List[Value]) -> List[Value]: ...
def makeMultiOutputIntoTuple(self) -> None: ...
...
# Defined in torch/aten/src/ATen/core/function_schema.h
class Argument:
name: str
type: JitType
default_value: Optional[Any]
def has_default_value(self) -> _bool: ...
kwarg_only : _bool
...
class FunctionSchema:
arguments: List[Argument]
returns: List[Argument]
name: str
overload_name: str
...
class _UpgraderEntry:
bumped_at_version: _int
upgrader_name: str
old_schema: str
def __init__(self, bumped_at_version: _int, upgrader_name: str, old_schema: str) -> None: ...
class _UpgraderRange:
min_version: _int
max_version: _int
def _get_max_operator_version() -> _int: ...
def _get_operator_version_map() -> Dict[str, List[_UpgraderEntry]]: ...
def _get_upgrader_ranges(name: str) -> List[_UpgraderRange]: ...
def _test_only_add_entry_to_op_version(op_name: str, entry: _UpgraderEntry) -> None: ...
def _test_only_remove_entry_to_op_version(op_name: str) -> None: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class ScriptModuleSerializer(object):
def __init__(self, export_writer: PyTorchFileWriter) -> None: ...
def serialize(self, model: ScriptModule, script_module_id: _int) -> None: ...
def write_files(self) -> None: ...
def storage_context(self) -> SerializationStorageContext: ...
...
# Defined in torch/csrc/jit/python/script_init.cpp
class SerializationStorageContext(object):
def __init__(self) -> None: ...
def has_storage(self, storage: Storage) -> _bool: ...
def get_or_add_storage(self, storage: Storage) -> _int: ...
...
# Defined in torch/csrc/jit/python/script_init.cpp
class DeserializationStorageContext(object):
def __init__(self) -> None: ...
def get_storage(self, name: str, dtype: _dtype) -> Tensor: ...
def has_storage(self, name: str) -> _bool: ...
def add_storage(self, name: str, tensor: Tensor) -> _int: ...
...
# Defined in torch/csrc/jit/python/script_init.cpp
class ConcreteModuleTypeBuilder:
def __init__(self, obj: Any) -> None: ...
def set_module_dict(self): ...
def set_module_list(self): ...
def set_parameter_list(self): ...
def set_parameter_dict(self): ...
def add_attribute(self, name: str, ty: JitType, is_param: _bool, is_buffer: _bool): ...
def add_module(self, name: str, meta: ConcreteModuleType): ...
def add_constant(self, name: str, value: Any): ...
def add_overload(self, method_name: str, overloaded_method_names: List[str]): ...
def add_builtin_function(self, name: str, symbol_name: str): ...
def add_failed_attribute(self, name: str, failure_reason: str): ...
def add_function_attribute(self, name: str, ty: JitType, func: Callable[..., Any]): ...
def add_ignored_attribute(self, name: str): ...
def add_ignored_attributes(self, names: List[str]): ...
def add_forward_hook(self, hook: Callable[..., Any]): ...
def add_forward_pre_hook(self, pre_hook: Callable[..., Any]): ...
class ConcreteModuleType:
def get_constants(self) -> Dict[str, Any]: ...
def equals(self, other: 'ConcreteModuleType') -> _bool: ...
@staticmethod
def from_jit_type(ty: JitType) -> ConcreteModuleType: ...
class CallStack:
def __init__(self, name: str, range: SourceRange): ...
class ErrorReport:
def __init__(self, range: SourceRange) -> None: ...
def what(self) -> str: ...
@staticmethod
def call_stack() -> str: ...
class CompilationUnit:
def __init__(self, lang: str=..., _frames_up: _int=...) -> None: ...
def find_function(self, name: str) -> ScriptFunction: ...
def __getattr__(self, name: str) -> ScriptFunction: ...
def define(self, script: str, rcb: ResolutionCallback=..., _frames_up: _int=...): ...
def get_interface(self, name: str) -> InterfaceType: ...
def get_functions(self) -> List[ScriptFunction]: ...
def create_function(self, name: str, graph: Graph, shouldMangle: _bool=...) -> ScriptFunction: ...
def get_class(self, name: str) -> ClassType: ...
class ScriptObject:
def setattr(self, name: str, value: Any): ...
class ScriptModule(ScriptObject):
def _method_names(self) -> List[str]: ...
def _get_method(self, name: str) -> ScriptMethod: ...
class LiteScriptModule:
def __call__(self, *input): ...
def find_method(self, method_name: str): ...
def forward(self, *input) -> List[str]: ...
def run_method(self, method_name: str, *input): ...
class ScriptFunction:
def __call__(self, *args, **kwargs) -> Tensor: ...
def save(self, filename: str, _extra_files: Dict[str, bytes]) -> None: ...
def save_to_buffer(self, _extra_files: Dict[str, bytes]) -> bytes: ...
@property
def graph(self) -> Graph: ...
def inlined_graph(self) -> Graph: ...
def schema(self) -> FunctionSchema: ...
def code(self) -> str: ...
def name(self) -> str: ...
@property
def qualified_name(self) -> str: ...
class ScriptMethod:
graph: Graph
@property
def owner(self) -> ScriptModule: ...
@property
def name(self) -> str: ...
class ModuleDict:
def __init__(self, mod: ScriptModule) -> None: ...
def items(self) -> List[Tuple[str, Any]]: ...
class ParameterDict:
def __init__(self, mod: ScriptModule) -> None: ...
class BufferDict:
def __init__(self, mod: ScriptModule) -> None: ...
# Defined in torch/csrc/jit/api/module.h
class Module:
...
# Defined in torch/csrc/Module.cpp
def _initExtension(shm_manager_path: str) -> None: ... # THPModule_initExtension
def _autograd_init() -> _bool: ... # THPAutograd_initExtension
def _add_docstr(obj: T, doc_obj: str) -> T: ... # THPModule_addDocStr
def _init_names(arg: Sequence[Type]) -> None: ... # THPModule_initNames
def _has_distributed() -> _bool: ... # THPModule_hasDistributed
def _set_default_tensor_type(type) -> None: ... # THPModule_setDefaultTensorType
def _set_default_dtype(d: _dtype) -> None: ... # THPModule_setDefaultDtype
def _infer_size(arg1: Size, arg2: Size) -> Size: ... # THPModule_inferSize
def _crash_if_csrc_asan() -> _int: ... # THPModule_crashIfCsrcASAN
def _crash_if_csrc_ubsan() -> _int: ... # THPModule_crashIfCsrcUBSAN
def _crash_if_aten_asan() -> _int: ... # THPModule_crashIfATenASAN
def _show_config() -> str: ... # THPModule_showConfig
def _cxx_flags() -> str: ... # THPModule_cxxFlags
def _parallel_info() -> str: ... # THPModule_parallelInfo
def _set_backcompat_broadcast_warn(arg: _bool) -> None: ... # THPModule_setBackcompatBroadcastWarn
def _get_backcompat_broadcast_warn() -> _bool: ... # THPModule_getBackcompatBroadcastWarn
def _set_backcompat_keepdim_warn(arg: _bool) -> None: ... # THPModule_setBackcompatKeepdimWarn
def _get_backcompat_keepdim_warn() -> _bool: ... # THPModule_getBackcompatKeepdimWarn
def get_num_thread() -> _int: ... # THPModule_getNumThreads
def set_num_threads(nthreads: _int) -> None: ... # THPModule_setNumThreads
def get_num_interop_threads() -> _int: ... # THPModule_getNumInteropThreads
def set_num_interop_threads(nthreads: _int) -> None: ... # THPModule_setNumInteropThreads
def _get_cudnn_enabled() -> _bool: ... # THPModule_userEnabledCuDNN
def _set_cudnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledCuDNN
def _get_mkldnn_enabled() -> _bool: ... # THPModule_userEnabledMkldnn
def _set_mkldnn_enabled(arg: _bool) -> None: ... # THPModule_setUserEnabledMkldnn
def _get_cudnn_benchmark() -> _bool: ... # THPModule_benchmarkCuDNN
def _set_cudnn_benchmark(arg: _bool) -> None: ... # THPModule_setBenchmarkCuDNN
def _get_cudnn_deterministic() -> _bool: ... # THPModule_deterministicCuDNN
def _set_cudnn_deterministic(arg: _bool) -> None: ... # THPModule_setDeterministicCuDNN
def _get_deterministic_algorithms() -> _bool: ... # THPModule_deterministicAlgorithms
def _get_deterministic_algorithms_warn_only() -> _bool: ... # THPModule_deterministicAlgorithmsWarnOnly
def _set_deterministic_algorithms(mode: _bool, *, warn_only: _bool=...) -> None: ... # THPModule_setDeterministicAlgorithms
def _get_warnAlways() -> _bool: ... # THPModule_warnAlways
def _set_warnAlways(arg: _bool) -> None: ... # THPModule_setWarnAlways
def _get_cudnn_allow_tf32() -> _bool: ... # THPModule_allowTF32CuDNN
def _set_cudnn_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuDNN
def _get_cublas_allow_tf32() -> _bool: ... # THPModule_allowTF32CuBLAS
def _set_cublas_allow_tf32(arg: _bool) -> None: ... # THPModule_setAllowTF32CuBLAS
def _get_float32_matmul_precision() -> str: ... #THPModule_float32MatmulPrecision
def _set_float32_matmul_precision(arg: str) -> None: ... #THPModule_setFloat32MatmulPrecision
def _get_cublas_allow_fp16_reduced_precision_reduction() -> _bool: ... #THPModule_allowFP16ReductionCuBLAS
def _set_cublas_allow_fp16_reduced_precision_reduction(arg: _bool) -> None: ... #THPModule_setAllowFP16ReductionCuBLAS
# NB: There is no Capsule type in typing, see
# https://code.activestate.com/lists/python-dev/139675/
def _to_dlpack(data: Tensor) -> Any: ... # THPModule_toDLPack
def _from_dlpack(data: Any) -> Tensor: ... # THPModule_fromDLPack
def set_flush_denormal(arg: _bool) -> _bool: ... # THPModule_setFlushDenormal
def get_default_dtype() -> _dtype: ... # THPModule_getDefaultDtype
def _get_default_device() -> str: ... # THPModule_getDefaultDevice
def _get_qengine() -> _int: ... # THPModule_qEngine
def _set_qengine(qegine: _int) -> None: ... # THPModule_setQEngine
def _supported_qengines() -> List[_int]: ... # THPModule_supportedQEngines
def _is_xnnpack_enabled() -> _bool: ... # THPModule_isEnabledXNNPACK
def _set_default_mobile_cpu_allocator() -> None: ... # THPModule_setDefaultMobileCPUAllocator
def _unset_default_mobile_cpu_allocator() -> None: ... # THPModule_unsetDefaultMobileCPUAllocator
def _is_torch_function_enabled() -> _bool: ... # THPModule_isEnabledTorchFunction
def _has_torch_function(args: Iterable[Any]) -> _bool: ... # THPModule_has_torch_function
def _has_torch_function_unary(Any) -> _bool: ... # THPModule_has_torch_function_unary
def _has_torch_function_variadic(*args: Any) -> _bool: ... # THPModule_has_torch_function_variadic
def _vmapmode_increment_nesting() -> _int: ... # THPModule_vmapmode_increment_nesting
def _vmapmode_decrement_nesting() -> _int: ... # THPModule_vmapmode_decrement_nesting
def _log_api_usage_once(str) -> None: ... # LogAPIUsageOnceFromPython
def _demangle(str) -> str: ... # c10::demangle
def _disabled_torch_function_impl(func: Callable, types: Iterable[Type], args: Tuple, kwargs: Dict) -> Any: ... # THPModule_disable_torch_function
def _disabled_torch_dispatch_impl(func: Callable, types: Iterable[Type], args: Tuple, kwargs: Dict) -> Any: ... # THPModule_disable_dispatch_function
def _get_linalg_preferred_backend() -> torch._C._LinalgBackend: ...
def _set_linalg_preferred_backend(arg: torch._C._LinalgBackend): ...
def _is_mps_available() -> _bool: ...
class _LinalgBackend:
Default: _LinalgBackend
Cusolver: _LinalgBackend
Magma: _LinalgBackend
# Defined in `valgrind.h` and `callgrind.h` respecitively.
def _valgrind_supported_platform() -> _bool: ... # NVALGRIND
def _valgrind_toggle() -> None: ... # CALLGRIND_TOGGLE_COLLECT
def _valgrind_toggle_and_dump_stats() -> None: ... # CALLGRIND_TOGGLE_COLLECT and CALLGRIND_DUMP_STATS
has_openmp: _bool
has_mkl: _bool
has_mps: _bool
has_lapack: _bool
has_cuda: _bool
has_mkldnn: _bool
has_cudnn: _bool
has_spectral: _bool
_GLIBCXX_USE_CXX11_ABI: _bool
default_generator: Generator
# Defined in torch/csrc/autograd/init.cpp
def _set_grad_enabled(enabled: _bool) -> None: ...
def is_grad_enabled() -> _bool: ...
def is_inference_mode_enabled() -> _bool: ...
def set_autocast_enabled(enabled: _bool) -> None: ...
def is_autocast_enabled() -> _bool: ...
def clear_autocast_cache() -> None: ...
def set_autocast_cpu_enabled(enabled: _bool) -> None: ...
def is_autocast_cpu_enabled() -> _bool: ...
def set_autocast_cpu_dtype(dtype: _dtype) -> None: ...
def set_autocast_gpu_dtype(dtype: _dtype) -> None: ...
def get_autocast_cpu_dtype() -> _dtype: ...
def get_autocast_gpu_dtype() -> _dtype: ...
def autocast_increment_nesting() -> _int: ...
def autocast_decrement_nesting() -> _int: ...
def is_autocast_cache_enabled() -> _bool: ...
def set_autocast_cache_enabled(enabled: _bool) -> None: ...
def set_anomaly_enabled(enabled: _bool) -> None: ...
def is_anomaly_enabled() -> _bool: ...
def _enter_dual_level() -> _int: ...
def _exit_dual_level(level: _int) -> None: ...
def _make_dual(tensor: Tensor, tangent: Tensor, level: _int) -> Tensor: ...
def _unpack_dual(tensor: Tensor, level: _int) -> Tensor: ...
def __set_forward_AD_enabled(enabled: _bool) -> None: ...
def __is_forward_AD_enabled() -> _bool: ...
def _register_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ...
def _reset_default_hooks() -> None: ...
# Defined in torch/overrides.py
class TorchFunctionMode(object):
...
def _set_torch_function_mode(cls: Optional[Union[type, TorchFunctionMode]]) -> None: ...
def _get_torch_function_mode() -> Optional[Union[type, TorchFunctionMode]]: ...
# Defined in torch/utils/_python_dispatch.py
class TorchDispatchMode(object):
...
def _set_torch_dispatch_mode(cls: Optional[Union[type, TorchDispatchMode]]) -> None: ...
def _get_torch_dispatch_mode() -> Optional[Union[type, TorchDispatchMode]]: ...
class _InferenceMode(object):
def __init__(self, mode: _bool) -> None: ...
# Defined in torch/csrc/jit/python/script_init.cpp
class LoggerBase(object):
...
class NoopLogger(LoggerBase):
...
class LockingLogger(LoggerBase):
...
class AggregationType(Enum):
SUM = 0
AVG = 1
class FileCheck(object):
# TODO (add more FileCheck signature)
def check_source_highlighted(self, highlight: str) -> 'FileCheck': ...
def run(self, test_string: str) -> None: ...
...
# Defined in torch/csrc/jit/python/init.cpp
class PyTorchFileReader(object):
@overload
def __init__(self, name: str) -> None: ...
@overload
def __init__(self, buffer: BinaryIO) -> None: ...
def get_record(self, name: str) -> bytes: ...
...
class PyTorchFileWriter(object):
@overload
def __init__(self, name: str) -> None: ...
@overload
def __init__(self, buffer: BinaryIO) -> None: ...
def write_record(self, name: str, data: Union[bytes, _int], size: _int) -> None: ...
def write_end_of_file(self) -> None: ...
def set_min_version(self, version: _int) -> None: ...
def get_all_written_records(self) -> List[str]: ...
def archive_name(self) -> str: ...
...
def _jit_get_inline_everything_mode() -> _bool: ...
def _jit_set_inline_everything_mode(enabled: _bool) -> None: ...
def _jit_get_logging_option() -> str: ...
def _jit_set_logging_option(option: str) -> None: ...
def _jit_set_logging_stream(stream_name: str) -> None: ...
def _jit_pass_dce(Graph) -> None: ...
def _jit_pass_lint(Graph) -> None: ...
# Defined in torch/csrc/jit/python/python_custome_class.cpp
def _get_custom_class_python_wrapper(name: str, attr: str) -> Any: ...
# Defined in torch/csrc/Generator.cpp
class Generator(object):
device: _device
def __init__(self, device: Union[_device, str, None] = None) -> None: ...
def get_state(self) -> Tensor: ...
def set_state(self, _new_state: Tensor) -> Generator: ...
def manual_seed(self, seed: _int) -> Generator: ...
def seed(self) -> _int: ...
def initial_seed(self) -> _int: ...
# Defined in torch/csrc/utils/python_dispatch.cpp
def _dispatch_library(kind: str, name: str, dispatch: str, file: str = "", linenum: Any = 0) -> Any: ...
def _dispatch_has_kernel_for_dispatch_key(name: str, dispatch: str) -> _bool: ...
def _dispatch_has_kernel(name: str) -> _bool: ...
# Defined in torch/csrc/utils/init.cpp
class BenchmarkConfig(object):
num_calling_threads: _int
num_worker_threads: _int
num_warmup_iters: _int
num_iters: _int
profiler_output_path: str
class BenchmarkExecutionStats(object):
latency_avg_ms: _float
num_iters: _int
class ThroughputBenchmark(object):
def __init__(self, module: Any) -> None: ...
def add_input(self, *args: Any, **kwargs: Any) -> None: ...
def run_once(self, *args: Any, **kwargs: Any) -> Any: ...
def benchmark(self, config: BenchmarkConfig) -> BenchmarkExecutionStats: ...
# Defined in torch/csrc/generic/Storage.cpp
class StorageBase(object): ...
# TODO: where
class DoubleTensor(Tensor): ...
class FloatTensor(Tensor): ...
class LongTensor(Tensor): ...
class IntTensor(Tensor): ...
class ShortTensor(Tensor): ...
class HalfTensor(Tensor): ...
class CharTensor(Tensor): ...
class ByteTensor(Tensor): ...
class BoolTensor(Tensor): ...
# Defined in torch/csrc/autograd/python_engine.cpp
class _ImperativeEngine:
...
# Defined in torch/csrc/autograd/python_variable.cpp
class _TensorMeta(type):
pass
# Defined in torch/csrc/autograd/python_variable.cpp
class _TensorBase(metaclass=_TensorMeta):
requires_grad: _bool
shape: Size
data: Tensor
names: List[str]
device: _device
dtype: _dtype
layout: _layout
real: Tensor
imag: Tensor
T: Tensor
H: Tensor
mT: Tensor
mH: Tensor
ndim: _int
output_nr: _int
_version: _int
_base: Optional[Tensor]
_cdata: _int
grad_fn: Any
_grad_fn: Any
_grad: Optional[Tensor]
_backward_hooks: Optional[Dict[_int, Callable[[Tensor], Optional[Tensor]]]]
def __abs__(self) -> Tensor: ...
def __add__(self, other: Any) -> Tensor: ...
@overload
def __and__(self, other: Tensor) -> Tensor: ...
@overload
def __and__(self, other: Number) -> Tensor: ...
@overload
def __and__(self, other: Any) -> Tensor: ...
def __bool__(self) -> builtins.bool: ...
def __complex__(self) -> builtins.complex: ...
def __div__(self, other: Any) -> Tensor: ...
def __eq__(self, other: Any) -> Tensor: ... # type: ignore[override]
def __float__(self) -> builtins.float: ...
def __floordiv__(self, other: Any) -> Tensor: ...
def __ge__(self, other: Any) -> Tensor: ...
def __getitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor: ...
def __gt__(self, other: Any) -> Tensor: ...
def __iadd__(self, other: Any) -> Tensor: ...
@overload
def __iand__(self, other: Tensor) -> Tensor: ...
@overload
def __iand__(self, other: Number) -> Tensor: ...
@overload
def __iand__(self, other: Any) -> Tensor: ...
def __idiv__(self, other: Any) -> Tensor: ...
def __ifloordiv__(self, other: Any) -> Tensor: ...
@overload
def __ilshift__(self, other: Tensor) -> Tensor: ...
@overload
def __ilshift__(self, other: Number) -> Tensor: ...
@overload
def __ilshift__(self, other: Any) -> Tensor: ...
def __imod__(self, other: Any) -> Tensor: ...
def __imul__(self, other: Any) -> Tensor: ...
def __index__(self) -> builtins.int: ...
@overload
def __init__(self, *args: Any, device: Union[_device, str, None]=None) -> None: ...
@overload
def __init__(self, storage: Storage) -> None: ...
@overload
def __init__(self, other: Tensor) -> None: ...
@overload
def __init__(self, size: _size, *, device: Union[_device, str, None]=None) -> None: ...
def __int__(self) -> builtins.int: ...
def __invert__(self) -> Tensor: ...
@overload
def __ior__(self, other: Tensor) -> Tensor: ...
@overload
def __ior__(self, other: Number) -> Tensor: ...
@overload
def __ior__(self, other: Any) -> Tensor: ...
@overload
def __irshift__(self, other: Tensor) -> Tensor: ...
@overload
def __irshift__(self, other: Number) -> Tensor: ...
@overload
def __irshift__(self, other: Any) -> Tensor: ...
def __isub__(self, other: Any) -> Tensor: ...
@overload
def __ixor__(self, other: Tensor) -> Tensor: ...
@overload
def __ixor__(self, other: Number) -> Tensor: ...
@overload
def __ixor__(self, other: Any) -> Tensor: ...
def __le__(self, other: Any) -> Tensor: ...
def __long__(self) -> builtins.int: ...
@overload
def __lshift__(self, other: Tensor) -> Tensor: ...
@overload
def __lshift__(self, other: Number) -> Tensor: ...
@overload
def __lshift__(self, other: Any) -> Tensor: ...
def __lt__(self, other: Any) -> Tensor: ...
def __matmul__(self, other: Any) -> Tensor: ...
def __mod__(self, other: Any) -> Tensor: ...
def __mul__(self, other: Any) -> Tensor: ...
def __ne__(self, other: Any) -> Tensor: ... # type: ignore[override]
def __neg__(self) -> Tensor: ...
def __nonzero__(self) -> builtins.bool: ...
@overload
def __or__(self, other: Tensor) -> Tensor: ...
@overload
def __or__(self, other: Number) -> Tensor: ...
@overload
def __or__(self, other: Any) -> Tensor: ...
def __pow__(self, other: Any) -> Tensor: ...
def __radd__(self, other: Any) -> Tensor: ...
def __rand__(self, other: Any) -> Tensor: ...
def __rfloordiv__(self, other: Any) -> Tensor: ...
def __rmul__(self, other: Any) -> Tensor: ...
def __ror__(self, other: Any) -> Tensor: ...
def __rpow__(self, other: Any) -> Tensor: ...
@overload
def __rshift__(self, other: Tensor) -> Tensor: ...
@overload
def __rshift__(self, other: Number) -> Tensor: ...
@overload
def __rshift__(self, other: Any) -> Tensor: ...
def __rsub__(self, other: Any) -> Tensor: ...
def __rtruediv__(self, other: Any) -> Tensor: ...
def __rxor__(self, other: Any) -> Tensor: ...
def __setitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple], val: Union[Tensor, Number]) -> None: ...
def __sub__(self, other: Any) -> Tensor: ...
def __truediv__(self, other: Any) -> Tensor: ...
@overload
def __xor__(self, other: Tensor) -> Tensor: ...
@overload
def __xor__(self, other: Number) -> Tensor: ...
@overload
def __xor__(self, other: Any) -> Tensor: ...
def _addmm_activation(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, use_gelu: _bool=False) -> Tensor: ...
def _autocast_to_full_precision(self, cuda_enabled: _bool, cpu_enabled: _bool) -> Tensor: ...
def _autocast_to_reduced_precision(self, cuda_enabled: _bool, cpu_enabled: _bool, cuda_dtype: _dtype, cpu_dtype: _dtype) -> Tensor: ...
def _coalesced_(self, coalesced: _bool) -> Tensor: ...
def _conj(self) -> Tensor: ...
def _conj_physical(self) -> Tensor: ...
def _dimI(self) -> _int: ...
def _dimV(self) -> _int: ...
def _indices(self) -> Tensor: ...
def _is_view(self) -> _bool: ...
def _is_zerotensor(self) -> _bool: ...
def _make_subclass(cls, data: Tensor, require_grad: _bool = False) -> Tensor: ...
def _neg_view(self) -> Tensor: ...
def _nested_tensor_layer_norm(self, weight: Optional[Tensor], bias: Optional[Tensor], eps: _float) -> Tensor: ...
def _nnz(self) -> _int: ...
def _to_dense(self, dtype: Optional[_dtype]=None) -> Tensor: ...
def _values(self) -> Tensor: ...
def abs(self) -> Tensor: ...
def abs_(self) -> Tensor: ...
def absolute(self) -> Tensor: ...
def absolute_(self) -> Tensor: ...
def acos(self) -> Tensor: ...
def acos_(self) -> Tensor: ...
def acosh(self) -> Tensor: ...
def acosh_(self) -> Tensor: ...
def add(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
def add_(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1) -> Tensor: ...
def addbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addcdiv(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addcdiv_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addcmul(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addcmul_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
def addmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addmm_(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addmv(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addmv_(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addr(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def addr_(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def adjoint(self) -> Tensor: ...
def align_as(self, other: Tensor) -> Tensor: ...
@overload
def align_to(self, order: Sequence[Union[str, ellipsis, None]], ellipsis_idx: _int) -> Tensor: ...
@overload
def align_to(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
@overload
def all(self) -> Tensor: ...
@overload
def all(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
@overload
def all(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> Tensor: ...
def allclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool: ...
def amax(self, dim: Union[_int, _size]=(), keepdim: _bool=False) -> Tensor: ...
def amin(self, dim: Union[_int, _size]=(), keepdim: _bool=False) -> Tensor: ...
def aminmax(self, *, dim: Optional[_int]=None, keepdim: _bool=False) -> torch.return_types.aminmax: ...
def angle(self) -> Tensor: ...
@overload
def any(self) -> Tensor: ...
@overload
def any(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
@overload
def any(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> Tensor: ...
def apply_(self, callable: Callable) -> Tensor: ...
def arccos(self) -> Tensor: ...
def arccos_(self) -> Tensor: ...
def arccosh(self) -> Tensor: ...
def arccosh_(self) -> Tensor: ...
def arcsin(self) -> Tensor: ...
def arcsin_(self) -> Tensor: ...
def arcsinh(self) -> Tensor: ...
def arcsinh_(self) -> Tensor: ...
def arctan(self) -> Tensor: ...
def arctan2(self, other: Tensor) -> Tensor: ...
def arctan2_(self, other: Tensor) -> Tensor: ...
def arctan_(self) -> Tensor: ...
def arctanh(self) -> Tensor: ...
def arctanh_(self) -> Tensor: ...
def argmax(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
def argmin(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
@overload
def argsort(self, dim: _int=-1, descending: _bool=False) -> Tensor: ...
@overload
def argsort(self, dim: Union[str, ellipsis, None], descending: _bool=False) -> Tensor: ...
def argwhere(self) -> Tensor: ...
def as_strided(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_strided_(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
def as_subclass(self, cls: Tensor) -> Tensor: ...
def asin(self) -> Tensor: ...
def asin_(self) -> Tensor: ...
def asinh(self) -> Tensor: ...
def asinh_(self) -> Tensor: ...
def atan(self) -> Tensor: ...
def atan2(self, other: Tensor) -> Tensor: ...
def atan2_(self, other: Tensor) -> Tensor: ...
def atan_(self) -> Tensor: ...
def atanh(self) -> Tensor: ...
def atanh_(self) -> Tensor: ...
def baddbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
def baddbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def bernoulli(self, *, generator: Optional[Generator]=None) -> Tensor: ...
@overload
def bernoulli(self, p: _float, *, generator: Optional[Generator]=None) -> Tensor: ...
@overload
def bernoulli_(self, p: Tensor, *, generator: Optional[Generator]=None) -> Tensor: ...
@overload
def bernoulli_(self, p: _float=0.5, *, generator: Optional[Generator]=None) -> Tensor: ...
def bfloat16(self) -> Tensor: ...
def bincount(self, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
@overload
def bitwise_and(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_and(self, other: Number) -> Tensor: ...
@overload
def bitwise_and_(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_and_(self, other: Number) -> Tensor: ...
@overload
def bitwise_left_shift(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_left_shift(self, other: Number) -> Tensor: ...
@overload
def bitwise_left_shift_(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_left_shift_(self, other: Number) -> Tensor: ...
def bitwise_not(self) -> Tensor: ...
def bitwise_not_(self) -> Tensor: ...
@overload
def bitwise_or(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_or(self, other: Number) -> Tensor: ...
@overload
def bitwise_or_(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_or_(self, other: Number) -> Tensor: ...
@overload
def bitwise_right_shift(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_right_shift(self, other: Number) -> Tensor: ...
@overload
def bitwise_right_shift_(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_right_shift_(self, other: Number) -> Tensor: ...
@overload
def bitwise_xor(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_xor(self, other: Number) -> Tensor: ...
@overload
def bitwise_xor_(self, other: Tensor) -> Tensor: ...
@overload
def bitwise_xor_(self, other: Number) -> Tensor: ...
def bmm(self, mat2: Tensor) -> Tensor: ...
def bool(self) -> Tensor: ...
@overload
def broadcast_to(self, size: _size) -> Tensor: ...
@overload
def broadcast_to(self, *size: _int) -> Tensor: ...
def byte(self) -> Tensor: ...
def cauchy_(self, median: _float=0, sigma: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
def ccol_indices(self) -> Tensor: ...
def ceil(self) -> Tensor: ...
def ceil_(self) -> Tensor: ...
def chalf(self, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
def char(self) -> Tensor: ...
def cholesky(self, upper: _bool=False) -> Tensor: ...
def cholesky_inverse(self, upper: _bool=False) -> Tensor: ...
def cholesky_solve(self, input2: Tensor, upper: _bool=False) -> Tensor: ...
def chunk(self, chunks: _int, dim: _int=0) -> List[Tensor]: ...
@overload
def clamp(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
@overload
def clamp(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
@overload
def clamp_(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
@overload
def clamp_(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
@overload
def clamp_max(self, max: Tensor) -> Tensor: ...
@overload
def clamp_max(self, max: Number) -> Tensor: ...
@overload
def clamp_max_(self, max: Tensor) -> Tensor: ...
@overload
def clamp_max_(self, max: Number) -> Tensor: ...
@overload
def clamp_min(self, min: Tensor) -> Tensor: ...
@overload
def clamp_min(self, min: Number) -> Tensor: ...
@overload
def clamp_min_(self, min: Tensor) -> Tensor: ...
@overload
def clamp_min_(self, min: Number) -> Tensor: ...
@overload
def clip(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
@overload
def clip(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
@overload
def clip_(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
@overload
def clip_(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
def clone(self, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
def coalesce(self) -> Tensor: ...
def col_indices(self) -> Tensor: ...
def conj(self) -> Tensor: ...
def conj_physical(self) -> Tensor: ...
def conj_physical_(self) -> Tensor: ...
def contiguous(self, memory_format=torch.contiguous_format) -> Tensor: ...
def copy_(self, src: Tensor, non_blocking: _bool=False) -> Tensor: ...
@overload
def copysign(self, other: Tensor) -> Tensor: ...
@overload
def copysign(self, other: Number) -> Tensor: ...
@overload
def copysign_(self, other: Tensor) -> Tensor: ...
@overload
def copysign_(self, other: Number) -> Tensor: ...
def corrcoef(self) -> Tensor: ...
def cos(self) -> Tensor: ...
def cos_(self) -> Tensor: ...
def cosh(self) -> Tensor: ...
def cosh_(self) -> Tensor: ...
@overload
def count_nonzero(self, dim: Optional[_int]=None) -> Tensor: ...
@overload
def count_nonzero(self, dim: _size) -> Tensor: ...
@overload
def count_nonzero(self, *dim: _int) -> Tensor: ...
def cov(self, *, correction: _int=1, fweights: Optional[Tensor]=None, aweights: Optional[Tensor]=None) -> Tensor: ...
def cpu(self) -> Tensor: ...
def cross(self, other: Tensor, dim: Optional[_int]=None) -> Tensor: ...
def crow_indices(self) -> Tensor: ...
def cuda(self, device: Optional[Union[_device, _int, str]]=None, non_blocking: _bool=False) -> Tensor: ...
@overload
def cummax(self, dim: _int) -> torch.return_types.cummax: ...
@overload
def cummax(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummax: ...
@overload
def cummin(self, dim: _int) -> torch.return_types.cummin: ...
@overload
def cummin(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummin: ...
@overload
def cumprod(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumprod(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumprod_(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumprod_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumsum(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumsum(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumsum_(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def cumsum_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
def data_ptr(self) -> _int: ...
def deg2rad(self) -> Tensor: ...
def deg2rad_(self) -> Tensor: ...
def dense_dim(self) -> _int: ...
def dequantize(self) -> Tensor: ...
def det(self) -> Tensor: ...
def detach(self) -> Tensor: ...
def detach_(self) -> Tensor: ...
def diag(self, diagonal: _int=0) -> Tensor: ...
def diag_embed(self, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
def diagflat(self, offset: _int=0) -> Tensor: ...
@overload
def diagonal(self, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
@overload
def diagonal(self, *, outdim: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None], dim2: Union[str, ellipsis, None], offset: _int=0) -> Tensor: ...
def diagonal_scatter(self, src: Tensor, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
def diff(self, n: _int=1, dim: _int=-1, prepend: Optional[Tensor]=None, append: Optional[Tensor]=None) -> Tensor: ...
def digamma(self) -> Tensor: ...
def digamma_(self) -> Tensor: ...
def dim(self) -> _int: ...
def dist(self, other: Tensor, p: Number=2) -> Tensor: ...
def div(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ...
def div_(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ...
@overload
def divide(self, other: Tensor) -> Tensor: ...
@overload
def divide(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: ...
@overload
def divide(self, other: Number, *, rounding_mode: Optional[str]) -> Tensor: ...
@overload
def divide(self, other: Number) -> Tensor: ...
@overload
def divide_(self, other: Tensor) -> Tensor: ...
@overload
def divide_(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: ...
@overload
def divide_(self, other: Number, *, rounding_mode: Optional[str]) -> Tensor: ...
@overload
def divide_(self, other: Number) -> Tensor: ...
def dot(self, tensor: Tensor) -> Tensor: ...
def double(self) -> Tensor: ...
@overload
def dsplit(self, sections: _int) -> List[Tensor]: ...
@overload
def dsplit(self, indices: _size) -> List[Tensor]: ...
@overload
def dsplit(self, *indices: _int) -> List[Tensor]: ...
def eig(self, eigenvectors: _bool=False) -> torch.return_types.eig: ...
def element_size(self) -> _int: ...
@overload
def eq(self, other: Tensor) -> Tensor: ...
@overload
def eq(self, other: Number) -> Tensor: ...
@overload
def eq_(self, other: Tensor) -> Tensor: ...
@overload
def eq_(self, other: Number) -> Tensor: ...
def equal(self, other: Tensor) -> _bool: ...
def erf(self) -> Tensor: ...
def erf_(self) -> Tensor: ...
def erfc(self) -> Tensor: ...
def erfc_(self) -> Tensor: ...
def erfinv(self) -> Tensor: ...
def erfinv_(self) -> Tensor: ...
def exp(self) -> Tensor: ...
def exp2(self) -> Tensor: ...
def exp2_(self) -> Tensor: ...
def exp_(self) -> Tensor: ...
@overload
def expand(self, size: Sequence[SymInt], *, implicit: _bool=False) -> Tensor: ...
@overload
def expand(self, size: _size, *, implicit: _bool=False) -> Tensor: ...
@overload
def expand(self, *size: _int, implicit: _bool=False) -> Tensor: ...
def expand_as(self, other: Tensor) -> Tensor: ...
def expm1(self) -> Tensor: ...
def expm1_(self) -> Tensor: ...
def exponential_(self, lambd: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
@overload
def fill_(self, value: Tensor) -> Tensor: ...
@overload
def fill_(self, value: Number) -> Tensor: ...
def fill_diagonal_(self, fill_value: Number, wrap: _bool=False) -> Tensor: ...
def fix(self) -> Tensor: ...
def fix_(self) -> Tensor: ...
@overload
def flatten(self, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
@overload
def flatten(self, start_dim: _int, end_dim: _int, out_dim: Union[str, ellipsis, None]) -> Tensor: ...
@overload
def flatten(self, start_dim: Union[str, ellipsis, None], end_dim: Union[str, ellipsis, None], out_dim: Union[str, ellipsis, None]) -> Tensor: ...
@overload
def flatten(self, dims: Sequence[Union[str, ellipsis, None]], out_dim: Union[str, ellipsis, None]) -> Tensor: ...
@overload
def flip(self, dims: _size) -> Tensor: ...
@overload
def flip(self, *dims: _int) -> Tensor: ...
def fliplr(self) -> Tensor: ...
def flipud(self) -> Tensor: ...
def float(self) -> Tensor: ...
@overload
def float_power(self, exponent: Tensor) -> Tensor: ...
@overload
def float_power(self, exponent: Number) -> Tensor: ...
@overload
def float_power_(self, exponent: Tensor) -> Tensor: ...
@overload
def float_power_(self, exponent: Number) -> Tensor: ...
def floor(self) -> Tensor: ...
def floor_(self) -> Tensor: ...
def floor_divide(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
def floor_divide_(self, other: Union[Tensor, Number]) -> Tensor: ...
def fmax(self, other: Tensor) -> Tensor: ...
def fmin(self, other: Tensor) -> Tensor: ...
@overload
def fmod(self, other: Tensor) -> Tensor: ...
@overload
def fmod(self, other: Number) -> Tensor: ...
@overload
def fmod_(self, other: Tensor) -> Tensor: ...
@overload
def fmod_(self, other: Number) -> Tensor: ...
def frac(self) -> Tensor: ...
def frac_(self) -> Tensor: ...
def frexp(self) -> torch.return_types.frexp: ...
@overload
def gather(self, dim: _int, index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
@overload
def gather(self, dim: Union[str, ellipsis, None], index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
def gcd(self, other: Tensor) -> Tensor: ...
def gcd_(self, other: Tensor) -> Tensor: ...
@overload
def ge(self, other: Tensor) -> Tensor: ...
@overload
def ge(self, other: Number) -> Tensor: ...
@overload
def ge_(self, other: Tensor) -> Tensor: ...
@overload
def ge_(self, other: Number) -> Tensor: ...
def geometric_(self, p: _float, *, generator: Optional[Generator]=None) -> Tensor: ...
def geqrf(self) -> torch.return_types.geqrf: ...
def ger(self, vec2: Tensor) -> Tensor: ...
def get_device(self) -> _int: ...
@overload
def greater(self, other: Tensor) -> Tensor: ...
@overload
def greater(self, other: Number) -> Tensor: ...
@overload
def greater_(self, other: Tensor) -> Tensor: ...
@overload
def greater_(self, other: Number) -> Tensor: ...
@overload
def greater_equal(self, other: Tensor) -> Tensor: ...
@overload
def greater_equal(self, other: Number) -> Tensor: ...
@overload
def greater_equal_(self, other: Tensor) -> Tensor: ...
@overload
def greater_equal_(self, other: Number) -> Tensor: ...
@overload
def gt(self, other: Tensor) -> Tensor: ...
@overload
def gt(self, other: Number) -> Tensor: ...
@overload
def gt_(self, other: Tensor) -> Tensor: ...
@overload
def gt_(self, other: Number) -> Tensor: ...
def half(self) -> Tensor: ...
def hardshrink(self, lambd: Number=0.5) -> Tensor: ...
def has_names(self) -> _bool: ...
def heaviside(self, values: Tensor) -> Tensor: ...
def heaviside_(self, values: Tensor) -> Tensor: ...
def histc(self, bins: _int=100, min: Number=0, max: Number=0) -> Tensor: ...
@overload
def histogram(self, bins: Tensor, *, weight: Optional[Tensor]=None, density: _bool=False) -> torch.return_types.histogram: ...
@overload
def histogram(self, bins: _int=100, *, range: Optional[Sequence[_float]]=None, weight: Optional[Tensor]=None, density: _bool=False) -> torch.return_types.histogram: ...
@overload
def hsplit(self, sections: _int) -> List[Tensor]: ...
@overload
def hsplit(self, indices: _size) -> List[Tensor]: ...
@overload
def hsplit(self, *indices: _int) -> List[Tensor]: ...
def hypot(self, other: Tensor) -> Tensor: ...
def hypot_(self, other: Tensor) -> Tensor: ...
def i0(self) -> Tensor: ...
def i0_(self) -> Tensor: ...
def igamma(self, other: Tensor) -> Tensor: ...
def igamma_(self, other: Tensor) -> Tensor: ...
def igammac(self, other: Tensor) -> Tensor: ...
def igammac_(self, other: Tensor) -> Tensor: ...
@overload
def index_add(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Number=1) -> Tensor: ...
@overload
def index_add(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor, *, alpha: Number=1) -> Tensor: ...
def index_add_(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Number=1) -> Tensor: ...
@overload
def index_copy(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_copy_(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: ...
@overload
def index_fill(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
@overload
def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ...
@overload
def index_fill(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
@overload
def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ...
@overload
def index_fill_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Number) -> Tensor: ...
def index_put(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
def index_put_(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
def index_reduce(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
def index_reduce_(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
@overload
def index_select(self, dim: _int, index: Tensor) -> Tensor: ...
@overload
def index_select(self, dim: Union[str, ellipsis, None], index: Tensor) -> Tensor: ...
def indices(self) -> Tensor: ...
def inner(self, other: Tensor) -> Tensor: ...
def int(self) -> Tensor: ...
def int_repr(self) -> Tensor: ...
def inverse(self) -> Tensor: ...
def is_coalesced(self) -> _bool: ...
def is_complex(self) -> _bool: ...
def is_conj(self) -> _bool: ...
def is_contiguous(self, memory_format=torch.contiguous_format) -> _bool: ...
is_cuda: _bool
def is_distributed(self) -> _bool: ...
def is_floating_point(self) -> _bool: ...
def is_inference(self) -> _bool: ...
is_ipu: _bool
is_leaf: _bool
is_meta: _bool
is_mkldnn: _bool
is_mps: _bool
def is_neg(self) -> _bool: ...
is_nested: _bool
def is_nonzero(self) -> _bool: ...
is_ort: _bool
def is_pinned(self, device: Optional[Union[_device, str, None]]=None) -> _bool: ...
is_quantized: _bool
def is_same_size(self, other: Tensor) -> _bool: ...
def is_set_to(self, tensor: Tensor) -> _bool: ...
def is_signed(self) -> _bool: ...
is_sparse: _bool
is_sparse_csr: _bool
is_vulkan: _bool
def isclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> Tensor: ...
def isfinite(self) -> Tensor: ...
def isinf(self) -> Tensor: ...
def isnan(self) -> Tensor: ...
def isneginf(self) -> Tensor: ...
def isposinf(self) -> Tensor: ...
def isreal(self) -> Tensor: ...
def istft(self, n_fft: _int, hop_length: Optional[_int]=None, win_length: Optional[_int]=None, window: Optional[Tensor]=None, center: _bool=True, normalized: _bool=False, onesided: Optional[_bool]=None, length: Optional[_int]=None, return_complex: _bool=False) -> Tensor: ...
def item(self) -> Number: ...
def kron(self, other: Tensor) -> Tensor: ...
@overload
def kthvalue(self, k: _int, dim: _int=-1, keepdim: _bool=False) -> torch.return_types.kthvalue: ...
@overload
def kthvalue(self, k: _int, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.kthvalue: ...
def lcm(self, other: Tensor) -> Tensor: ...
def lcm_(self, other: Tensor) -> Tensor: ...
def ldexp(self, other: Tensor) -> Tensor: ...
def ldexp_(self, other: Tensor) -> Tensor: ...
@overload
def le(self, other: Tensor) -> Tensor: ...
@overload
def le(self, other: Number) -> Tensor: ...
@overload
def le_(self, other: Tensor) -> Tensor: ...
@overload
def le_(self, other: Number) -> Tensor: ...
@overload
def lerp(self, end: Tensor, weight: Tensor) -> Tensor: ...
@overload
def lerp(self, end: Tensor, weight: Number) -> Tensor: ...
@overload
def lerp_(self, end: Tensor, weight: Tensor) -> Tensor: ...
@overload
def lerp_(self, end: Tensor, weight: Number) -> Tensor: ...
@overload
def less(self, other: Tensor) -> Tensor: ...
@overload
def less(self, other: Number) -> Tensor: ...
@overload
def less_(self, other: Tensor) -> Tensor: ...
@overload
def less_(self, other: Number) -> Tensor: ...
@overload
def less_equal(self, other: Tensor) -> Tensor: ...
@overload
def less_equal(self, other: Number) -> Tensor: ...
@overload
def less_equal_(self, other: Tensor) -> Tensor: ...
@overload
def less_equal_(self, other: Number) -> Tensor: ...
def lgamma(self) -> Tensor: ...
def lgamma_(self) -> Tensor: ...
def log(self) -> Tensor: ...
def log10(self) -> Tensor: ...
def log10_(self) -> Tensor: ...
def log1p(self) -> Tensor: ...
def log1p_(self) -> Tensor: ...
def log2(self) -> Tensor: ...
def log2_(self) -> Tensor: ...
def log_(self) -> Tensor: ...
def log_normal_(self, mean: _float=1, std: _float=2, *, generator: Optional[Generator]=None) -> Tensor: ...
@overload
def log_softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def log_softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
def logaddexp(self, other: Tensor) -> Tensor: ...
def logaddexp2(self, other: Tensor) -> Tensor: ...
@overload
def logcumsumexp(self, dim: _int) -> Tensor: ...
@overload
def logcumsumexp(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
def logdet(self) -> Tensor: ...
def logical_and(self, other: Tensor) -> Tensor: ...
def logical_and_(self, other: Tensor) -> Tensor: ...
def logical_not(self) -> Tensor: ...
def logical_not_(self) -> Tensor: ...
def logical_or(self, other: Tensor) -> Tensor: ...
def logical_or_(self, other: Tensor) -> Tensor: ...
def logical_xor(self, other: Tensor) -> Tensor: ...
def logical_xor_(self, other: Tensor) -> Tensor: ...
def logit(self, eps: Optional[_float]=None) -> Tensor: ...
def logit_(self, eps: Optional[_float]=None) -> Tensor: ...
@overload
def logsumexp(self, dim: Union[_int, _size], keepdim: _bool=False) -> Tensor: ...
@overload
def logsumexp(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False) -> Tensor: ...
def long(self) -> Tensor: ...
def lstsq(self, A: Tensor) -> torch.return_types.lstsq: ...
@overload
def lt(self, other: Tensor) -> Tensor: ...
@overload
def lt(self, other: Number) -> Tensor: ...
@overload
def lt_(self, other: Tensor) -> Tensor: ...
@overload
def lt_(self, other: Number) -> Tensor: ...
def lu_solve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
def map2_(self, x: Tensor, y: Tensor, callable: Callable) -> Tensor: ...
def map_(self, tensor: Tensor, callable: Callable) -> Tensor: ...
@overload
def masked_fill(self, mask: Tensor, value: Tensor) -> Tensor: ...
@overload
def masked_fill(self, mask: Tensor, value: Number) -> Tensor: ...
@overload
def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: ...
@overload
def masked_fill_(self, mask: Tensor, value: Number) -> Tensor: ...
def masked_scatter(self, mask: Tensor, source: Tensor) -> Tensor: ...
def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: ...
def masked_select(self, mask: Tensor) -> Tensor: ...
def matmul(self, other: Tensor) -> Tensor: ...
def matrix_exp(self) -> Tensor: ...
def matrix_power(self, n: _int) -> Tensor: ...
@overload
def max(self) -> Tensor: ...
@overload
def max(self, other: Tensor) -> Tensor: ...
@overload
def max(self, dim: _int, keepdim: _bool=False) -> torch.return_types.max: ...
@overload
def max(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.max: ...
def maximum(self, other: Tensor) -> Tensor: ...
@overload
def mean(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def mean(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def mean(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def median(self) -> Tensor: ...
@overload
def median(self, dim: _int, keepdim: _bool=False) -> torch.return_types.median: ...
@overload
def median(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.median: ...
@overload
def min(self) -> Tensor: ...
@overload
def min(self, other: Tensor) -> Tensor: ...
@overload
def min(self, dim: _int, keepdim: _bool=False) -> torch.return_types.min: ...
@overload
def min(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.min: ...
def minimum(self, other: Tensor) -> Tensor: ...
def mm(self, mat2: Tensor) -> Tensor: ...
@overload
def mode(self, dim: _int=-1, keepdim: _bool=False) -> torch.return_types.mode: ...
@overload
def mode(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.mode: ...
@overload
def moveaxis(self, source: _int, destination: _int) -> Tensor: ...
@overload
def moveaxis(self, source: _size, destination: _size) -> Tensor: ...
@overload
def movedim(self, source: _int, destination: _int) -> Tensor: ...
@overload
def movedim(self, source: _size, destination: _size) -> Tensor: ...
def msort(self) -> Tensor: ...
def mul(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
def mul_(self, other: Union[Tensor, Number]) -> Tensor: ...
def multinomial(self, num_samples: _int, replacement: _bool=False, *, generator: Optional[Generator]=None) -> Tensor: ...
@overload
def multiply(self, other: Tensor) -> Tensor: ...
@overload
def multiply(self, other: Number) -> Tensor: ...
@overload
def multiply_(self, other: Tensor) -> Tensor: ...
@overload
def multiply_(self, other: Number) -> Tensor: ...
def mv(self, vec: Tensor) -> Tensor: ...
def mvlgamma(self, p: _int) -> Tensor: ...
def mvlgamma_(self, p: _int) -> Tensor: ...
def nan_to_num(self, nan: Optional[_float]=None, posinf: Optional[_float]=None, neginf: Optional[_float]=None) -> Tensor: ...
def nan_to_num_(self, nan: Optional[_float]=None, posinf: Optional[_float]=None, neginf: Optional[_float]=None) -> Tensor: ...
def nanmean(self, dim: Union[_int, _size]=(), keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def nanmedian(self) -> Tensor: ...
@overload
def nanmedian(self, dim: _int, keepdim: _bool=False) -> torch.return_types.nanmedian: ...
@overload
def nanmedian(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.nanmedian: ...
@overload
def nanquantile(self, q: Tensor, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
@overload
def nanquantile(self, q: _float, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
def nansum(self, dim: Union[_int, _size]=(), keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def narrow(self, dim: _int, start: Tensor, length: _int) -> Tensor: ...
@overload
def narrow(self, dim: _int, start: _int, length: _int) -> Tensor: ...
@overload
def narrow_copy(self, dim: _int, start: _int, length: SymInt) -> Tensor: ...
@overload
def narrow_copy(self, dim: _int, start: _int, length: _int) -> Tensor: ...
def ndimension(self) -> _int: ...
@overload
def ne(self, other: Tensor) -> Tensor: ...
@overload
def ne(self, other: Number) -> Tensor: ...
@overload
def ne_(self, other: Tensor) -> Tensor: ...
@overload
def ne_(self, other: Number) -> Tensor: ...
def neg(self) -> Tensor: ...
def neg_(self) -> Tensor: ...
def negative(self) -> Tensor: ...
def negative_(self) -> Tensor: ...
def nelement(self) -> _int: ...
@overload
def new(self, *args: Any, device: Union[_device, str, None]=None) ->Tensor: ...
@overload
def new(self, storage: Storage) -> Tensor: ...
@overload
def new(self, other: Tensor) -> Tensor: ...
@overload
def new(self, size: _size, *, device: Union[_device, str, None]=None) -> Tensor: ...
@overload
def new_empty(self, size: _size, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
@overload
def new_empty(self, *size: _int, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
def new_empty_strided(self, size: _size, stride: _size, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
def new_full(self, size: _size, fill_value: Number, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
@overload
def new_ones(self, size: _size, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
@overload
def new_ones(self, size: _size, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
@overload
def new_ones(self, *size: _int, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
def new_tensor(self, data: Any, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
@overload
def new_zeros(self, size: _size, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
@overload
def new_zeros(self, *size: _int, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
def nextafter(self, other: Tensor) -> Tensor: ...
def nextafter_(self, other: Tensor) -> Tensor: ...
@overload
def nonzero(self, *, as_tuple: Literal[False]=False) -> Tensor: ...
@overload
def nonzero(self, *, as_tuple: Literal[True]) -> Tuple[Tensor, ...]: ...
def normal_(self, mean: _float=0, std: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
@overload
def not_equal(self, other: Tensor) -> Tensor: ...
@overload
def not_equal(self, other: Number) -> Tensor: ...
@overload
def not_equal_(self, other: Tensor) -> Tensor: ...
@overload
def not_equal_(self, other: Number) -> Tensor: ...
def numel(self) -> _int: ...
def numpy(self) -> Any: ...
def orgqr(self, input2: Tensor) -> Tensor: ...
def ormqr(self, input2: Tensor, input3: Tensor, left: _bool=True, transpose: _bool=False) -> Tensor: ...
def outer(self, vec2: Tensor) -> Tensor: ...
@overload
def permute(self, dims: _size) -> Tensor: ...
@overload
def permute(self, *dims: _int) -> Tensor: ...
def pin_memory(self, device: Optional[Union[_device, str, None]]=None) -> Tensor: ...
def pinverse(self, rcond: _float=1e-15) -> Tensor: ...
def polygamma(self, n: _int) -> Tensor: ...
def polygamma_(self, n: _int) -> Tensor: ...
def positive(self) -> Tensor: ...
@overload
def pow(self, exponent: Tensor) -> Tensor: ...
@overload
def pow(self, exponent: Number) -> Tensor: ...
@overload
def pow_(self, exponent: Tensor) -> Tensor: ...
@overload
def pow_(self, exponent: Number) -> Tensor: ...
def prelu(self, weight: Tensor) -> Tensor: ...
@overload
def prod(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def prod(self, dim: _int, keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def prod(self, dim: Union[str, ellipsis, None], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
def put(self, index: Tensor, source: Tensor, accumulate: _bool=False) -> Tensor: ...
def put_(self, index: Tensor, source: Tensor, accumulate: _bool=False) -> Tensor: ...
def q_per_channel_axis(self) -> _int: ...
def q_per_channel_scales(self) -> Tensor: ...
def q_per_channel_zero_points(self) -> Tensor: ...
def q_scale(self) -> _float: ...
def q_zero_point(self) -> _int: ...
def qr(self, some: _bool=True) -> torch.return_types.qr: ...
def qscheme(self) -> _qscheme: ...
@overload
def quantile(self, q: Tensor, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
@overload
def quantile(self, q: _float, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
def rad2deg(self) -> Tensor: ...
def rad2deg_(self) -> Tensor: ...
@overload
def random_(self, *, generator: Optional[Generator]=None) -> Tensor: ...
@overload
def random_(self, from_: _int, to: Optional[_int], *, generator: Optional[Generator]=None) -> Tensor: ...
@overload
def random_(self, to: _int, *, generator: Optional[Generator]=None) -> Tensor: ...
def ravel(self) -> Tensor: ...
def reciprocal(self) -> Tensor: ...
def reciprocal_(self) -> Tensor: ...
def record_stream(self, s: Stream) -> None: ...
def refine_names(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
def relu(self) -> Tensor: ...
def relu_(self) -> Tensor: ...
@overload
def remainder(self, other: Tensor) -> Tensor: ...
@overload
def remainder(self, other: Number) -> Tensor: ...
@overload
def remainder_(self, other: Tensor) -> Tensor: ...
@overload
def remainder_(self, other: Number) -> Tensor: ...
def rename(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ...
def rename_(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ...
def renorm(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
def renorm_(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
@overload
def repeat(self, repeats: _size) -> Tensor: ...
@overload
def repeat(self, *repeats: _int) -> Tensor: ...
@overload
def repeat_interleave(self, repeats: Tensor, dim: Optional[_int]=None, *, output_size: Optional[_int]=None) -> Tensor: ...
@overload
def repeat_interleave(self, repeats: _int, dim: Optional[_int]=None, *, output_size: Optional[_int]=None) -> Tensor: ...
def requires_grad_(self, mode: _bool=True) -> Tensor: ...
@overload
def reshape(self, shape: _size) -> Tensor: ...
@overload
def reshape(self, *shape: _int) -> Tensor: ...
def reshape_as(self, other: Tensor) -> Tensor: ...
@overload
def resize_(self, size: _size, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
@overload
def resize_(self, *size: _int, memory_format: Optional[memory_format]=None) -> Tensor: ...
def resize_as_(self, the_template: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
def resize_as_sparse_(self, the_template: Tensor) -> Tensor: ...
def resolve_conj(self) -> Tensor: ...
def resolve_neg(self) -> Tensor: ...
def retain_grad(self) -> None: ...
def roll(self, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
def rot90(self, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
@overload
def round(self) -> Tensor: ...
@overload
def round(self, *, decimals: _int) -> Tensor: ...
@overload
def round_(self) -> Tensor: ...
@overload
def round_(self, *, decimals: _int) -> Tensor: ...
def row_indices(self) -> Tensor: ...
def rsqrt(self) -> Tensor: ...
def rsqrt_(self) -> Tensor: ...
@overload
def scatter(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: ...
@overload
def scatter(self, dim: _int, index: Tensor, value: Number, *, reduce: str) -> Tensor: ...
@overload
def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter_(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: ...
@overload
def scatter_(self, dim: _int, index: Tensor, value: Number, *, reduce: str) -> Tensor: ...
@overload
def scatter_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
@overload
def scatter_add(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
@overload
def scatter_add(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: ...
def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
def scatter_reduce(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
def scatter_reduce_(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
@overload
def select(self, dim: _int, index: _int) -> Tensor: ...
@overload
def select(self, dim: Union[str, ellipsis, None], index: _int) -> Tensor: ...
def select_scatter(self, src: Tensor, dim: _int, index: _int) -> Tensor: ...
@overload
def set_(self, storage: Union[Storage, _TypedStorage], offset: _int, size: _size, stride: _size) -> Tensor: ...
@overload
def set_(self, storage: Union[Storage, _TypedStorage]) -> Tensor: ...
def sgn(self) -> Tensor: ...
def sgn_(self) -> Tensor: ...
def short(self) -> Tensor: ...
def sigmoid(self) -> Tensor: ...
def sigmoid_(self) -> Tensor: ...
def sign(self) -> Tensor: ...
def sign_(self) -> Tensor: ...
def signbit(self) -> Tensor: ...
def sin(self) -> Tensor: ...
def sin_(self) -> Tensor: ...
def sinc(self) -> Tensor: ...
def sinc_(self) -> Tensor: ...
def sinh(self) -> Tensor: ...
def sinh_(self) -> Tensor: ...
@overload
def size(self) -> Size: ...
@overload
def size(self, dim: _int) -> _int: ...
def slice_scatter(self, src: Tensor, dim: _int=0, start: Optional[_int]=None, end: Optional[_int]=None, step: _int=1) -> Tensor: ...
def slogdet(self) -> torch.return_types.slogdet: ...
def smm(self, mat2: Tensor) -> Tensor: ...
@overload
def softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def sort(self, *, stable: Optional[_bool], dim: _int=-1, descending: _bool=False) -> torch.return_types.sort: ...
@overload
def sort(self, dim: _int=-1, descending: _bool=False) -> torch.return_types.sort: ...
@overload
def sort(self, *, stable: Optional[_bool], dim: Union[str, ellipsis, None], descending: _bool=False) -> torch.return_types.sort: ...
@overload
def sort(self, dim: Union[str, ellipsis, None], descending: _bool=False) -> torch.return_types.sort: ...
def sparse_dim(self) -> _int: ...
def sparse_mask(self, mask: Tensor) -> Tensor: ...
def sparse_resize_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
def sparse_resize_and_clear_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
@overload
def split(self, split_size: _int, dim: _int=0) -> Sequence[Tensor]: ...
@overload
def split(self, split_size: Tuple[_int, ...], dim: _int=0) -> Sequence[Tensor]: ...
def split_with_sizes(self, split_sizes: _size, dim: _int=0) -> List[Tensor]: ...
def sqrt(self) -> Tensor: ...
def sqrt_(self) -> Tensor: ...
def square(self) -> Tensor: ...
def square_(self) -> Tensor: ...
@overload
def squeeze(self) -> Tensor: ...
@overload
def squeeze(self, dim: _int) -> Tensor: ...
@overload
def squeeze(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
@overload
def squeeze_(self) -> Tensor: ...
@overload
def squeeze_(self, dim: _int) -> Tensor: ...
@overload
def squeeze_(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
def sspaddmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
@overload
def std(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
@overload
def std(self, dim: Optional[Union[_int, _size]], *, correction: Optional[_int], keepdim: _bool=False) -> Tensor: ...
@overload
def std(self, unbiased: _bool=True) -> Tensor: ...
@overload
def std(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
@overload
def std(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[_int], keepdim: _bool=False) -> Tensor: ...
def _storage(self) -> Storage: ...
def storage_offset(self) -> _int: ...
def storage_type(self) -> Storage: ...
@overload
def stride(self) -> Tuple[_int]: ...
@overload
def stride(self, _int) -> _int: ...
def sub(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
def sub_(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1) -> Tensor: ...
@overload
def subtract(self, other: Tensor, *, alpha: Number=1) -> Tensor: ...
@overload
def subtract(self, other: Number, alpha: Number=1) -> Tensor: ...
@overload
def subtract_(self, other: Tensor, *, alpha: Number=1) -> Tensor: ...
@overload
def subtract_(self, other: Number, alpha: Number=1) -> Tensor: ...
@overload
def sum(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def sum(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def sum(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
@overload
def sum_to_size(self, size: _size) -> Tensor: ...
@overload
def sum_to_size(self, *size: _int) -> Tensor: ...
def svd(self, some: _bool=True, compute_uv: _bool=True) -> torch.return_types.svd: ...
def swapaxes(self, axis0: _int, axis1: _int) -> Tensor: ...
def swapaxes_(self, axis0: _int, axis1: _int) -> Tensor: ...
def swapdims(self, dim0: _int, dim1: _int) -> Tensor: ...
def swapdims_(self, dim0: _int, dim1: _int) -> Tensor: ...
def symeig(self, eigenvectors: _bool=False, upper: _bool=True) -> torch.return_types.symeig: ...
def t(self) -> Tensor: ...
def t_(self) -> Tensor: ...
def take(self, index: Tensor) -> Tensor: ...
def take_along_dim(self, indices: Tensor, dim: Optional[_int]=None) -> Tensor: ...
def tan(self) -> Tensor: ...
def tan_(self) -> Tensor: ...
def tanh(self) -> Tensor: ...
def tanh_(self) -> Tensor: ...
@overload
def tensor_split(self, tensor_indices_or_sections: Tensor, dim: _int=0) -> List[Tensor]: ...
@overload
def tensor_split(self, sections: _int, dim: _int=0) -> List[Tensor]: ...
@overload
def tensor_split(self, indices: _size, dim: _int=0) -> List[Tensor]: ...
@overload
def tile(self, dims: _size) -> Tensor: ...
@overload
def tile(self, *dims: _int) -> Tensor: ...
@overload
def to(self, dtype: _dtype, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
@overload
def to(self, device: Optional[Union[_device, str]]=None, dtype: Optional[_dtype]=None, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
@overload
def to(self, other: Tensor, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
def to_dense(self, dtype: Optional[_dtype]=None) -> Tensor: ...
def to_mkldnn(self, dtype: Optional[_dtype]=None) -> Tensor: ...
def to_padded_tensor(self, padding: _float, output_size: Optional[_size]=None) -> Tensor: ...
@overload
def to_sparse(self) -> Tensor: ...
@overload
def to_sparse(self, sparse_dim: _int) -> Tensor: ...
@overload
def to_sparse_bsc(self, blocksize: Union[_int, _size]) -> Tensor: ...
@overload
def to_sparse_bsc(self, *blocksize: _int) -> Tensor: ...
@overload
def to_sparse_bsr(self, blocksize: Union[_int, _size]) -> Tensor: ...
@overload
def to_sparse_bsr(self, *blocksize: _int) -> Tensor: ...
def to_sparse_csc(self) -> Tensor: ...
def to_sparse_csr(self) -> Tensor: ...
def tolist(self) -> List: ...
def topk(self, k: _int, dim: _int=-1, largest: _bool=True, sorted: _bool=True) -> torch.return_types.topk: ...
def trace(self) -> Tensor: ...
@overload
def transpose(self, dim0: _int, dim1: _int) -> Tensor: ...
@overload
def transpose(self, dim0: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None]) -> Tensor: ...
def transpose_(self, dim0: _int, dim1: _int) -> Tensor: ...
def triangular_solve(self, A: Tensor, upper: _bool=True, transpose: _bool=False, unitriangular: _bool=False) -> torch.return_types.triangular_solve: ...
def tril(self, diagonal: _int=0) -> Tensor: ...
def tril_(self, diagonal: _int=0) -> Tensor: ...
def triu(self, diagonal: _int=0) -> Tensor: ...
def triu_(self, diagonal: _int=0) -> Tensor: ...
def true_divide(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
def true_divide_(self, other: Union[Tensor, Number]) -> Tensor: ...
def trunc(self) -> Tensor: ...
def trunc_(self) -> Tensor: ...
@overload
def type(self, dtype: None=None, non_blocking: _bool=False) -> str: ...
@overload
def type(self, dtype: Union[str, _dtype], non_blocking: _bool=False) -> Tensor: ...
def type_as(self, other: Tensor) -> Tensor: ...
@overload
def unbind(self, dim: _int=0) -> List[Tensor]: ...
@overload
def unbind(self, dim: Union[str, ellipsis, None]) -> List[Tensor]: ...
@overload
def unflatten(self, dim: _int, sizes: _size, names: Optional[Sequence[Union[str, ellipsis, None]]]=None) -> Tensor: ...
@overload
def unflatten(self, dim: Union[str, ellipsis, None], sizes: _size, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: ...
def uniform_(self, from_: _float=0, to: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
def unsafe_chunk(self, chunks: _int, dim: _int=0) -> List[Tensor]: ...
def unsafe_split(self, split_size: _int, dim: _int=0) -> List[Tensor]: ...
def unsafe_split_with_sizes(self, split_sizes: _size, dim: _int=0) -> List[Tensor]: ...
def unsqueeze(self, dim: _int) -> Tensor: ...
def unsqueeze_(self, dim: _int) -> Tensor: ...
def values(self) -> Tensor: ...
@overload
def var(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
@overload
def var(self, dim: Optional[Union[_int, _size]], *, correction: Optional[_int], keepdim: _bool=False) -> Tensor: ...
@overload
def var(self, unbiased: _bool=True) -> Tensor: ...
@overload
def var(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
@overload
def var(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[_int], keepdim: _bool=False) -> Tensor: ...
def vdot(self, other: Tensor) -> Tensor: ...
@overload
def view(self, dtype: _dtype) -> Tensor: ...
@overload
def view(self, size: _size) -> Tensor: ...
@overload
def view(self, *size: _int) -> Tensor: ...
def view_as(self, other: Tensor) -> Tensor: ...
@overload
def vsplit(self, sections: _int) -> List[Tensor]: ...
@overload
def vsplit(self, indices: _size) -> List[Tensor]: ...
@overload
def vsplit(self, *indices: _int) -> List[Tensor]: ...
def where(self, condition: Tensor, other: Tensor) -> Tensor: ...
@overload
def xlogy(self, other: Tensor) -> Tensor: ...
@overload
def xlogy(self, other: Number) -> Tensor: ...
@overload
def xlogy_(self, other: Tensor) -> Tensor: ...
@overload
def xlogy_(self, other: Number) -> Tensor: ...
def zero_(self) -> Tensor: ...
# Defined in torch/csrc/multiprocessing/init.cpp
def _multiprocessing_init() -> None: ...
# Defined in torch/csrc/cuda/Module.cpp
def _cuda_getCurrentStream(device: _int) -> _int: ...
def _cuda_getDefaultStream(device: _int) -> _int: ...
def _cuda_getCurrentBlasHandle() -> _int: ...
def _cuda_setDevice(device: _int) -> None: ...
def _cuda_getDevice() -> _int: ...
def _cuda_getDeviceCount() -> _int: ...
def _cuda_set_sync_debug_mode(warn_level: Union[_int, str]) -> None: ...
def _cuda_get_sync_debug_mode() -> _int: ...
def _cuda_sleep(cycles: _int) -> None: ...
def _cuda_synchronize() -> None: ...
def _cuda_ipc_collect() -> None: ...
def _cuda_getArchFlags() -> Optional[str]: ...
def _cuda_init() -> None: ...
def _cuda_setStream(cuda_stream: _int) -> None: ...
def _cuda_getCompiledVersion() -> _int: ...
def _cuda_cudaHostAllocator() -> _int: ...
def _cuda_cudaCachingAllocator_raw_alloc(size: _int, cuda_stream: _int) -> _int: ...
def _cuda_cudaCachingAllocator_raw_delete(ptr: _int) -> None: ...
def _cuda_setMemoryFraction(fraction: _float, device: _int) -> None: ...
def _cuda_emptyCache() -> None: ...
def _cuda_memoryStats(device: _int) -> Dict[str, Any]: ...
def _cuda_resetAccumulatedMemoryStats(device: _int) -> None: ...
def _cuda_resetPeakMemoryStats(device: _int) -> None: ...
def _cuda_memorySnapshot() -> List[Dict[str, Any]]: ...
def _cuda_lock_mutex() -> None: ...
def _cuda_unlock_mutex() -> None: ...
def _cuda_canDeviceAccessPeer(device: _int, peer_device: _int) -> _bool: ...
def _cuda_jiterator_compile_and_launch_kernel(code_string: str,
kernel_name: str,
tensors: Tuple,
kwargs: Dict[str, Union[_int, _float, _bool]]) -> Tensor: ...
def _nccl_version() -> _int: ...
def _nccl_unique_id() -> bytes: ...
def _nccl_init_rank(nranks: _int, comm_id: bytes, rank: _int) -> object: ...
def _nccl_reduce(input: Sequence[Tensor],
output: Tensor,
root: _int,
op: _int,
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]]) -> None: ...
def _nccl_all_reduce(input: Sequence[Tensor],
output: Sequence[Tensor],
op: _int,
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]]) -> None: ...
def _nccl_broadcast(input: Sequence[Tensor],
root: _int,
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]]) -> None: ...
def _nccl_all_gather(input: Sequence[Tensor],
output: Sequence[Tensor],
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]]) -> None: ...
def _nccl_reduce_scatter(input: Sequence[Tensor],
output: Sequence[Tensor],
op: _int,
streams: Optional[Sequence[_CudaStreamBase]],
comms: Optional[Sequence[object]]) -> None: ...
def _rocm_is_backward_pass() -> _bool: ...
class _CudaDeviceProperties:
name: str
major: _int
minor: _int
multi_processor_count: _int
total_memory: _int
is_integrated: _int
is_multi_gpu_board: _int
# Defined in torch/csrc/cuda/python_comm.cpp
def _broadcast(tensor: Tensor, devices: List[_int]) -> List[Tensor]: ...
def _broadcast_out(tensor: Tensor, out_tensors: List[Tensor]) -> List[Tensor]: ...
def _broadcast_coalesced(
tensors: List[Tensor],
devices: List[_int],
buffer_size: _int
) -> List[List[Tensor]]: ...
def _scatter(tensor: Tensor, devices: List[_int], chunk_sizes: Optional[List[_int]], dim: _int, streams: Optional[List[Stream]]) -> List[Tensor]: ...
def _scatter_out(tensor: Tensor, out_tensors: List[Tensor], dim: _int, streams: Optional[List[Stream]]) -> List[Tensor]: ...
def _gather(tensors: List[Tensor], dim: _int, destination_index: Optional[_int]) -> Tensor: ...
def _gather_out(tensors: List[Tensor], out_tensor: Tensor, dim: _int) -> Tensor: ...
# Defined in torch/csrc/cuda/Stream.cpp
class _CudaStreamBase:
_cdata: _int
device: _device
cuda_stream: _int
priority: _int
def __new__(self, priority: _int = 0, _cdata: _int = 0, stream_ptr: _int = 0) -> _CudaStreamBase: ...
def query(self) -> _bool: ...
def synchronize(self) -> None: ...
def priority_range(self) -> Tuple[_int, _int]: ...
# Defined in torch/csrc/cuda/Event.cpp
class _CudaEventBase:
device: _device
cuda_event: _int
def __new__(cls, enable_timing: _bool = False, blocking: _bool = False, interprocess: _bool = False) -> _CudaEventBase: ...
@classmethod
def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> _CudaEventBase: ...
def record(self, stream: _CudaStreamBase) -> None: ...
def wait(self, stream: _CudaStreamBase) -> None: ...
def query(self) -> _bool: ...
def elapsed_time(self, other: _CudaEventBase) -> _float: ...
def synchronize(self) -> None: ...
def ipc_handle(self) -> bytes: ...
# Defined in torch/csrc/cuda/Graph.cpp
class _CUDAGraph:
def capture_begin(self,
pool: Optional[Tuple[_int, _int]]=...) -> None: ...
def capture_end(self) -> None: ...
def replay(self) -> None: ...
def reset(self) -> None: ...
def pool(self) -> Tuple[_int, _int]: ...
def _cuda_isCurrentStreamCapturing() -> _bool: ...
def _graph_pool_handle() -> Tuple[_int, _int]: ...
# Defined in torch/csrc/DataLoader.cpp
def _set_worker_signal_handlers(*arg: Any) -> None: ... # THPModule_setWorkerSignalHandlers
def _set_worker_pids(key: _int, child_pids: Tuple[_int, ...]) -> None: ... # THPModule_setWorkerPIDs
def _remove_worker_pids(loader_id: _int) -> None: ... # THPModule_removeWorkerPIDs
def _error_if_any_worker_fails() -> None: ... # THPModule_errorIfAnyWorkerFails
# Defined in torch/csrc/jit/python/python_tracer.cpp
class TracingState:
def push_scope(self, scope_name: str) -> None: ...
def pop_scope(self) -> None: ...
def current_scope(self) -> str: ...
def set_graph(self, graph: Graph) -> None: ...
def graph(self) -> Graph: ...
...
def _create_graph_by_tracing(
func: Callable[..., Any],
inputs: Any,
var_name_lookup_fn: Callable[[Tensor], str],
strict: Any,
force_outplace: Any,
self: Any = None,
argument_names: List[str] = []
) -> Tuple[Graph, Stack]: ...
def _tracer_warn_use_python(): ...
def _get_tracing_state() -> TracingState: ...
# Defined in torch/csrc/jit/python/python_ir.cpp
# Not actually defined in python_ir.cpp, not sure where they are.
class IValue:
...
Stack = List[IValue]
class JitType:
annotation_str : str
def isSubtypeOf(self, other: JitType) -> _bool: ...
def with_dtype(self, dtype: _dtype) -> JitType: ...
def with_sizes(self, sizes: List[Optional[_int]]) -> JitType: ...
def kind(self) -> str: ...
class InferredType:
def __init__(self, arg: Union[JitType, str]): ...
def type(self) -> JitType: ...
def success(self) -> _bool: ...
def reason(self) -> str: ...
R = TypeVar('R', bound=JitType)
class AnyType(JitType):
@staticmethod
def get() -> AnyType: ...
class NoneType(JitType):
@staticmethod
def get() -> NoneType: ...
class BoolType(JitType):
@staticmethod
def get() -> BoolType: ...
class FloatType(JitType):
@staticmethod
def get() -> FloatType: ...
class ComplexType(JitType):
@staticmethod
def get() -> ComplexType: ...
class IntType(JitType):
@staticmethod
def get() -> IntType: ...
class NumberType(JitType):
@staticmethod
def get() -> NumberType: ...
class StringType(JitType):
@staticmethod
def get() -> StringType: ...
class DeviceObjType(JitType):
@staticmethod
def get() -> DeviceObjType: ...
class StreamObjType(JitType):
@staticmethod
def get() -> StreamObjType: ...
class ListType(JitType):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
@staticmethod
def ofInts() -> ListType: ...
@staticmethod
def ofTensors() -> ListType: ...
@staticmethod
def ofFloats() -> ListType: ...
@staticmethod
def ofComplexDoubles() -> ListType: ...
@staticmethod
def ofBools() -> ListType: ...
class DictType(JitType):
def __init__(self, key: JitType, value: JitType) -> None: ...
def getKeyType(self) -> JitType: ...
def getValueType(self) -> JitType: ...
class TupleType(JitType):
def __init__(self, a: List[Optional[JitType]]) -> None: ...
def elements(self) -> List[JitType]: ...
class UnionType(JitType):
def __init__(self, a: List[JitType]) -> None: ...
class ClassType(JitType):
def __init__(self, qualified_name: str) -> None: ...
class InterfaceType(JitType):
def __init__(self, qualified_name: str) -> None: ...
def getMethod(self, name: str) -> Optional[FunctionSchema]: ...
def getMethodNames(self) -> List[str]: ...
class OptionalType(JitType, Generic[R]):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
@staticmethod
def ofTensor() -> OptionalType: ...
class FutureType(JitType):
def __init__(self, a: JitType) -> None: ...
def getElementType(self) -> JitType: ...
class RRefType(JitType):
def __init__(self, a: JitType) -> None: ...
class EnumType(JitType):
def __init__(
self,
qualified_name: str,
value_type: JitType,
enum_names_values: List[Any]
) -> None:
...
class TensorType(JitType):
@classmethod
def get(cls) -> TensorType: ...
@classmethod
def getInferred(cls) -> TensorType: ...
def with_sizes(self, other: Optional[List[Optional[_int]]]) -> TensorType: ...
def sizes(self) -> Optional[List[_int]]: ...
def strides(self) -> Optional[List[_int]]: ...
def device(self) -> Optional[_device]: ...
def dtype(self) -> Optional[_dtype]: ...
@staticmethod
def create_from_tensor(t: Tensor) -> TensorType: ...
# Defined in torch/csrc/jit/python/python_tree_views.cpp
class SourceRange:
...
class TreeView:
...
class Ident(TreeView):
@property
def name(self) -> str: ...
class ClassDef(TreeView):
...
class Def(TreeView):
def name(self) -> Ident: ...
class Decl(TreeView):
...
# Defined in torch/csrc/distributed/rpc/init.cpp
def _rpc_init() -> _bool: ...
# Defined in torch/csrc/distributed/autograd/init.cpp
def _dist_autograd_init() -> _bool: ...
# Defined in torch/csrc/distributed/c10d/init.cpp
def _c10d_init() -> _bool: ...
# Defined in torch/csrc/distributed/rpc/testing/init.cpp
def _faulty_agent_init() -> _bool: ...
def _enable_minidumps(directory: str) -> None: ...
def _disable_minidumps() -> None: ...
def _enable_minidumps_on_exceptions() -> None: ...
def _register_py_class_for_device(device: str, cls: Any) -> None: ...