Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
torch / _C / __init__.pyi
Size: Mime:
# @generated from torch/_C/__init__.pyi.in

import torch
from torch.package import PackageExporter
from torch import Tensor
from enum import Enum
from pathlib import Path
from typing import (
    Any, BinaryIO, Callable, ContextManager, Dict, Iterable, Iterator, List,
    NamedTuple, Optional, overload, Sequence, Tuple, TypeVar, Type, Union,
    Generic, Set, AnyStr)
from typing_extensions import Literal
from torch._six import inf

from torch.types import _int, _float, _bool, _dtype, _device, _qscheme, _size, _layout, Device, Number, Storage, SymInt
from torch.storage import _TypedStorage

import builtins

# This module is defined in torch/csrc/Module.cpp

from . import _nn as _nn
from . import _onnx as _onnx
from . import _VariableFunctions as _VariableFunctions
from . import _lazy as _lazy
from . import _lazy_ts_backend as _lazy_ts_backend

T = TypeVar('T')

# Defined in torch/csrc/Device.cpp
class device:
    type: str  # THPDevice_type
    index: _int  # THPDevice_index

    def __get__(self, instance, owner=None) -> device: ...

    # THPDevice_pynew
    @overload
    def __init__(self, device: Union[_device, _int, str]) -> None: ...

    @overload
    def __init__(self, type: str, index: _int) -> None: ...

    def __reduce__(self) -> Tuple[Any, ...]: ...  # THPDevice_reduce

# Defined in torch/csrc/Stream.cpp
class Stream:
    _cdata: _int  # Stream handle
    device: device # The device of the stream

    ...

# Defined in torch/csrc/Size.cpp
class Size(Tuple[_int, ...]):
    # TODO: __reduce__

    @overload  # type: ignore[override]
    def __getitem__(self: Size, key: _int) -> _int: ...

    @overload
    def __getitem__(self: Size, key: slice) -> Size: ...

    def numel(self: Size) -> _int: ...

    ...

# Defined in torch/csrc/Dtype.cpp
class dtype:
    # TODO: __reduce__
    is_floating_point: _bool
    is_complex: _bool
    is_signed: _bool
    ...

# Defined in torch/csrc/TypeInfo.cpp
class iinfo:
    bits: _int
    min: _int
    max: _int
    dtype: str

    def __init__(self, dtype: _dtype) -> None: ...

class finfo:
    bits: _int
    min: _float
    max: _float
    eps: _float
    tiny: _float
    smallest_normal: _float
    resolution: _float
    dtype: str

    @overload
    def __init__(self, dtype: _dtype) -> None: ...

    @overload
    def __init__(self) -> None: ...

float32: dtype = ...
float: dtype = ...
float64: dtype = ...
double: dtype = ...
float16: dtype = ...
bfloat16: dtype = ...
half: dtype = ...
uint8: dtype = ...
int8: dtype = ...
int16: dtype = ...
short: dtype = ...
int32: dtype = ...
int: dtype = ...
int64: dtype = ...
long: dtype = ...
complex32: dtype = ...
complex64: dtype = ...
cfloat: dtype = ...
complex128: dtype = ...
cdouble: dtype = ...
quint8: dtype = ...
qint8: dtype = ...
qint32: dtype = ...
bool: dtype = ...
quint4x2: dtype = ...
quint2x4: dtype = ...

# Defined in torch/csrc/Layout.cpp
class layout:
    ...

# Defined in torch/csrc/utils/disable_torch_function.cpp
def DisableTorchFunction(): ...

# Defined in torch/csrc/utils/tensor_layouts.cpp
strided : layout = ...
sparse_coo : layout = ...
sparse_csr : layout = ...
sparse_csc : layout = ...
sparse_bsr : layout = ...
sparse_bsc : layout = ...
_mkldnn : layout = ...

# Defined in torch/csrc/MemoryFormat.cpp
class memory_format: ...

# Defined in torch/csrc/utils/tensor_memoryformats.cpp
contiguous_format: memory_format = ...
channels_last: memory_format = ...
channels_last_3d: memory_format = ...
preserve_format: memory_format = ...

# Defined in torch/csrc/QScheme.cpp
class qscheme: ...

# Defined in torch/csrc/utils/tensor_qschemes.h
per_tensor_affine: qscheme = ...
per_channel_affine: qscheme = ...
per_tensor_symmetric: qscheme = ...
per_channel_symmetric: qscheme = ...
per_channel_affine_float_qparams: qscheme = ...

# Defined in torch/csrc/autograd/python_function.cpp
class _FunctionBase(object):
    ...

# Defined in torch/csrc/autograd/python_legacy_variable.cpp
class _LegacyVariableBase(object):
    def __init__(
        self,
        data: Optional[Tensor]=...,
        requires_grad: Optional[_bool]=...,
        volatile: Optional[_bool]=...,
        _grad_fn: Optional[_FunctionBase]=...
    ) -> None: ...

# Defined in torch/csrc/jit/python/init.cpp
class IODescriptor: ...

class JITException: ...

class Future(object):
  def __init__(self, devices: List[device]) -> None: ...
  def done(self) -> _bool: ...
  def value(self) -> Any: ...
  def wait(self) -> Any: ...
  def add_done_callback(self, callback: Callable) -> None: ...
  def then(self, callback: Callable) -> Future: ...
  def set_result(self, result: Any) -> None: ...
  def _set_unwrap_func(self, callback: Callable) -> None: ...

def _jit_set_num_profiled_runs(num: _size) -> _size: ...

# Defined in torch/csrc/jit/passes/xnnpack_rewrite.h
class MobileOptimizerType:
    ...

CONV_BN_FUSION: MobileOptimizerType
INSERT_FOLD_PREPACK_OPS: MobileOptimizerType
REMOVE_DROPOUT: MobileOptimizerType
FUSE_ADD_RELU: MobileOptimizerType
HOIST_CONV_PACKED_PARAMS: MobileOptimizerType

def fork(*args: Any, **kwargs: Any) -> Future: ...
def wait(fut: Future) -> Any: ...
def _collect_all(futures: List[Future]) -> Future: ...
def _set_print_stack_traces_on_fatal_signal(print: _bool) -> None: ...

def unify_type_list(types: List[JitType]) -> JitType: ...
def _freeze_module(module: ScriptModule,
                   preserved_attrs: List[str] = [],
                   freeze_interfaces: _bool = True,
                   preserveParameters: _bool = True) -> ScriptModule: ...
def _jit_pass_optimize_frozen_graph(Graph, optimize_numerics: _bool = True) -> None: ...
def _jit_pass_optimize_for_inference(module: 'torch.jit.ScriptModule',
                                     other_methods: List[str] = []) -> None: ...
def _jit_pass_fold_frozen_conv_bn(graph: Graph): ...
def _jit_pass_fold_frozen_conv_add_or_sub(graph: Graph): ...
def _jit_pass_fold_frozen_conv_mul_or_div(graph: Graph): ...
def _jit_pass_fuse_frozen_conv_add_relu(graph: Graph): ...
def _jit_pass_concat_frozen_linear(graph: Graph): ...
def _jit_pass_convert_frozen_ops_to_mkldnn(graph: Graph): ...
def _jit_pass_transpose_frozen_linear(graph:Graph): ...
def _jit_pass_remove_dropout(module: 'torch.jit.ScriptModule'): ...

def _is_tracing() -> _bool: ...
def _jit_init() -> _bool: ...
def _jit_flatten(arg: Any) -> Tuple[List[Tensor], IODescriptor]: ...
def _jit_unflatten(vars: List[Tensor], desc: IODescriptor) -> Any: ...
def _jit_get_operation(op_name: str) -> Tuple[Callable, List[str]]: ...
def _get_operation_overload(op_name: str, op_overload_name: str) -> Callable: ...
def _get_schema(op_name: str, overload_name: str) -> FunctionSchema: ...
def _jit_pass_optimize_for_mobile(module: 'torch.jit.ScriptModule',
                                  optimization_blocklist: Set[MobileOptimizerType],
                                  preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _clone_module_with_class(module: 'torch.jit.ScriptModule',
                             ignored_methods: List[AnyStr],
                             ignored_attributes: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _jit_pass_vulkan_optimize_for_mobile(module: 'torch.jit.ScriptModule',
                                         preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _jit_pass_metal_optimize_for_mobile(module: 'torch.jit.ScriptModule',
                                         preserved_methods: List[AnyStr]) -> 'torch.jit.ScriptModule': ...
def _jit_pass_inline(Graph) -> None: ...
def _jit_pass_constant_propagation(Graph) -> None: ...
def _jit_pass_propagate_shapes_on_graph(Graph) -> None: ...
def _jit_register_decomposition_for_schema(schema: FunctionSchema, Graph) -> None: ...
def _jit_erase_non_input_shape_information(Graph) -> None: ...
def _jit_get_schemas_for_operator(name :str) -> List[FunctionSchema]: ...
def _jit_get_all_schemas() -> List[FunctionSchema]: ...
def _jit_check_alias_annotation(g: Graph, args: Tuple[Any, ...], unqualified_op_name: str): ...
def _jit_can_fuse_on_cpu() -> _bool: ...
def _jit_can_fuse_on_gpu() -> _bool: ...
def _jit_can_fuse_on_cpu_legacy() -> _bool: ...
def _debug_get_fusion_group_inlining() -> _bool: ...
def _debug_set_fusion_group_inlining(enable: _bool): ...
def _jit_texpr_fuser_enabled() -> _bool: ...
def _jit_nvfuser_enabled() -> _bool: ...
def _jit_llga_enabled() -> _bool: ...
def _jit_set_llga_enabled(enable: _bool): ...
def _llvm_enabled() -> _bool: ...
def _jit_override_can_fuse_on_cpu(override: _bool): ...
def _jit_override_can_fuse_on_gpu(override: _bool): ...
def _jit_override_can_fuse_on_cpu_legacy(override: _bool): ...
def _jit_set_symbolic_shapes_test_mode(override: _bool): ...
def _jit_symbolic_shapes_test_mode_enabled() -> _bool: ...
def _jit_set_texpr_fuser_enabled(enable: _bool): ...
def _jit_set_te_must_use_llvm_cpu(use_llvm: _bool): ...
def _jit_set_nvfuser_enabled(enable: _bool) -> _bool: ...
def _jit_cat_wo_conditionals(optimize_cat: _bool): ...
def _jit_opt_conditionals(opt_conds: _bool): ...
def _jit_pass_canonicalize(graph: Graph, keep_unique_names: _bool = True): ...
def _jit_pass_erase_shape_information(graph: Graph): ...
def _jit_pass_fold_convbn(module: 'torch.jit.ScriptModule'): ...
def _jit_pass_insert_observers(module: 'torch.jit.ScriptModule',
                               method_name: str,
                               qconfig_dict: Dict[str, Any],
                               inplace: _bool,
                               quant_type: _int): ...
def _jit_pass_insert_quant_dequant(module: 'torch.jit.ScriptModule',
                                   method_name: str,
                                   inplace: _bool,
                                   debug: _bool,
                                   quant_type: _int): ...
def _jit_pass_quant_finalize(module: 'torch.jit.ScriptModule',
                             quant_type: _int,
                             preserved_attrs: Sequence[str]): ...
def _jit_set_profiling_executor(profiling_flag: _bool) -> _bool: ...
def _jit_set_profiling_mode(profiling_flag: _bool) -> _bool: ...
def _jit_set_fusion_strategy(strategy: List[Tuple[str, _int]]) -> List[Tuple[str, _int]]: ...
def _jit_try_infer_type(obj: Any) -> InferredType: ...
def _jit_get_trigger_value(trigger_name: str) -> _int: ...

# Defined in torch/csrc/jit/python/script_init.cpp
ResolutionCallback = Callable[[str], Callable[..., Any]]

# Defined in torch/csrc/jit/python/script_init.cpp
#        and torch/csrc/jit/python/init.cpp
def _create_function_from_graph(qualname: str, graph: Graph) -> ScriptFunction: ...
def _debug_set_autodiff_subgraph_inlining(disabled: _bool) -> None: ...
def _ivalue_tags_match(lhs: ScriptModule, rhs: ScriptModule) -> _bool: ...
def _jit_assert_is_instance(obj: Any, type: JitType): ...
def _jit_clear_class_registry() -> None: ...
def _jit_set_emit_hooks(ModuleHook: Optional[Callable], FunctionHook: Optional[Callable]) -> None: ...
def _jit_get_emit_hooks() -> Tuple[Callable, Callable]: ...
def _load_for_lite_interpreter(filename: Union[str, Path], map_location: Union[_device, str, None]): ...
def _load_for_lite_interpreter_from_buffer(buffer: BinaryIO, map_location: Union[_device, str, None]): ...
def _export_operator_list(module: LiteScriptModule): ...
def _get_model_bytecode_version(filename: Union[str, Path]) -> _int: ...
def _get_model_bytecode_version_from_buffer(buffer: BinaryIO) -> _int: ...
def _backport_for_mobile(filename_input: Union[str, Path], filename_output: Union[str, Path], to_version: _int) -> None: ...
def _backport_for_mobile_from_buffer(buffer: BinaryIO, filename_output: Union[str, Path], to_version: _int) -> None: ...
def _backport_for_mobile_to_buffer(filename_input: Union[str, Path], to_version: _int) -> bytes:...
def _backport_for_mobile_from_buffer_to_buffer(buffer: BinaryIO, to_version: _int) -> bytes:...
def _get_model_ops_and_info(filename: Union[str, Path]): ...
def _get_model_ops_and_info_from_buffer(buffer: BinaryIO): ...
def _get_mobile_model_contained_types(filename: Union[str, Path]): ...
def _get_mobile_model_contained_types_from_buffer(buffer: BinaryIO): ...
def _logging_set_logger(logger: LoggerBase) -> LoggerBase: ...
def _get_graph_executor_optimize(optimize: Optional[_bool] = None) -> _bool: ...
def _set_graph_executor_optimize(optimize: _bool): ...
def _export_opnames(module: ScriptModule) -> List[str]: ...
def _create_function_from_trace(
    qualname: str,
    func: Callable[..., Any],
    input_tuple: Tuple[Any, ...],
    var_lookup_fn: Callable[[Tensor], str],
    strict: _bool,
    force_outplace: _bool,
    argument_names: List[str]
) -> Tuple[Graph, Stack]: ...
def _jit_is_script_object(obj: Any) -> _bool: ...
def _last_executed_optimized_graph() -> Graph: ...
def parse_type_comment(comment: str) -> Decl: ...
def _is_upgraders_enabled() -> _bool: ...
def _get_upgraders_map_size() -> _int: ...
def _dump_upgraders_map() -> Dict[str, str]: ...
def _test_only_populate_upgraders(content: Dict[str, str]) -> None: ...
def _test_only_remove_upgraders(content: Dict[str, str]) -> None: ...
def merge_type_from_type_comment(decl: Decl, type_annotation_decl: Decl, is_method: _bool) -> Decl: ...
def parse_ir(input: str, parse_tensor_constants: _bool) -> Graph: ...
def parse_schema(schema: str) -> FunctionSchema: ...
def get_device(input: Tensor) -> _int: ...
def _resolve_type_from_object(obj: Any, range: SourceRange, rcb: ResolutionCallback) -> JitType: ...
def _create_module_with_type(ty: JitType) -> ScriptModule: ...
def _create_object_with_type(ty: ClassType) -> ScriptObject: ...
def _run_emit_module_hook(m: ScriptModule): ...
def _replace_overloaded_method_decl(overload_decl: Decl, implementation_def: Def, new_name: str) -> Def: ...

def _jit_pass_lower_all_tuples(graph: Graph) -> None: ...
def _jit_pass_onnx_set_dynamic_input_shape(graph: Graph, dynamic_axes: Dict[str, Dict[_int, str]], input_names: List[str]) -> None: ...
def _jit_pass_onnx_graph_shape_type_inference(graph: Graph, paramsDict: Dict[str, IValue], opset_version: _int) -> None: ...
def _jit_pass_onnx_assign_output_shape(graph: Graph, tensors: List[Tensor], desc: IODescriptor, onnx_shape_inference: _bool, is_script: _bool) -> None: ...
def _jit_pass_onnx_remove_inplace_ops_for_onnx(graph: Graph, module: Module) -> None: ...
def _jit_pass_remove_inplace_ops(graph: Graph) -> None: ...
def _jit_pass_canonicalize_graph_fuser_ops(graph: Graph) -> None: ...
def _jit_pass_peephole(graph: Graph, disable_shape_peepholes: _bool = False) -> None: ...
def _jit_pass_fuse_addmm(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess(graph: Graph) -> None: ...
def _jit_pass_prepare_division_for_onnx(graph: Graph) -> None: ...
def _jit_pass_onnx_remove_print(graph: Graph) -> None: ...
def _jit_pass_onnx_preprocess_caffe2(graph: Graph) -> None: ...
def _jit_pass_onnx_unpack_quantized_weights(
    graph: Graph,
    paramsDict: Dict[str, IValue],
    caffe2: _bool
) -> Dict[str, IValue]: ...
def _jit_pass_onnx_quantization_insert_permutes(
    graph: Graph,
    paramsDict: Dict[str, IValue]
) -> Dict[str, IValue]: ...
def _jit_pass_custom_pattern_based_rewrite_graph(pattern: str, fused_node_name: str, graph: Graph) -> None: ...
def _jit_onnx_list_model_parameters(module: ScriptModule) -> Tuple[ScriptModule, List[IValue]]: ...
def _jit_pass_erase_number_types(graph: Graph) -> None: ...
def _jit_pass_onnx_lint(graph: Graph) -> None: ...
def _jit_pass_onnx(graph: Graph, _jit_pass_onnx: _onnx.OperatorExportTypes) -> Graph: ...
def _jit_pass_onnx_scalar_type_analysis(graph: Graph, lowprecision_cast: _bool, opset_version: _int) -> None: ...
def _jit_pass_onnx_peephole(graph: Graph, opset_version: _int, fixed_batch_size: _bool) -> None: ...
def _jit_pass_dce_allow_deleting_nodes_with_side_effects(graph: Graph) -> None: ...
def _jit_pass_onnx_function_substitution(graph: Graph) -> None: ...
def _jit_pass_onnx_function_extraction(graph: Graph, module_names : Set[str], param_names : List[str]) -> Dict[Node, Dict[str, str]]: ...
def _jit_pass_onnx_clear_scope_records() -> None: ...
def _jit_pass_onnx_track_scope_attributes(graph: Graph, onnx_attrs: Dict[str, Any]) -> None: ...
def _jit_is_onnx_log_enabled() -> _bool: ...
def _jit_set_onnx_log_enabled(enabled: _bool) -> None: ...
def _jit_set_onnx_log_output_stream(stream_name: str) -> None: ...
def _jit_onnx_log(*args: Any) -> None: ...
def _jit_pass_lower_graph(graph: Graph, m: Module) -> Tuple[Graph, List[IValue]]: ...
def _jit_pass_inline_fork_wait(graph: Graph) -> None: ...
def _jit_pass_onnx_deduplicate_initializers(graph: Graph, params_dict: Dict[str, IValue], is_train: _bool) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eval_peephole(graph: Graph, paramsDict: Dict[str, IValue]) -> Dict[str, IValue]: ...
def _jit_pass_onnx_constant_fold(graph: Graph, paramsDict: Dict[str, IValue], opset_version: _int) -> Dict[str, IValue]: ...
def _jit_pass_onnx_eliminate_unused_items(graph: Graph, paramsDict: Dict[str, IValue]) -> Dict[str, IValue]: ...
def _jit_pass_onnx_cast_all_constant_to_floating(graph: Graph) -> None: ...
def _jit_pass_filter_non_tensor_arguments(params: Dict[str, IValue]) -> Dict[str, Tensor]: ...
def _jit_decay_packed_param_input_types(graph: Graph) -> None: ...
def _jit_pass_onnx_node_shape_type_inference(n: Node, paramsDict: Dict[str, IValue], opset_version: _int) -> None: ...
def _jit_onnx_convert_pattern_from_subblock(block: Block, n: Node, env: Dict[Value, Value]) -> List[Value]: ...
def _jit_pass_onnx_block(
    old_block: Block,
    new_block: Block,
    operator_export_type: _onnx.OperatorExportTypes,
    env: Dict[Value, Value],
    is_sub_block: _bool
) -> Dict[Value, Value]: ...
def _jit_pass_fixup_onnx_controlflow_node(n: Node, opset_version: _int) -> Node: ...

def _compile_graph_to_code_table(name: str, graph: Graph) -> IValue: ...

def _generate_upgraders_graph() -> Dict[str, Graph]: ...

def _calculate_package_version_based_on_upgraders(val: _bool): ...

def _get_version_calculator_flag() -> _bool: ...

def _jit_script_interface_compile(name: str, class_def: ClassDef, rcb: ResolutionCallback, is_module: _bool): ...
def _jit_script_compile_overload(
    qualname: str,
    overload_decl: Decl,
    implementation_def: Def,
    rcb: ResolutionCallback,
    implementation_defaults: Dict[str, Any],
    signature: Any
): ...
def _jit_script_compile(
    qual_name: str,
    definition: Def,
    rcb: ResolutionCallback,
    defaults: Dict[str, Any]
): ...
def _jit_script_class_compile(
    qual_name: str,
    definition: ClassDef,
    defaults: Dict[str, Dict[str, Any]],
    rcb: ResolutionCallback
): ...
def _parse_source_def(src: str) -> Def: ...
def import_ir_module(
    cu: CompilationUnit,
    filename: Union[str, Path],
    map_location: Union[_device, str, None],
    extra_files: Dict[str, Any]
) -> ScriptModule: ...
def import_ir_module_from_buffer(
    cu: CompilationUnit,
    buffer: BinaryIO,
    map_location: Union[_device, str, None],
    extra_files: Dict[str, Any]
) -> ScriptModule: ...
def _import_ir_module_from_package(
    cu: CompilationUnit,
    reader: PyTorchFileReader,
    storage_context: DeserializationStorageContext,
    map_location: Union[_device, str, None],
    ts_id: str
) -> ScriptModule: ...

def _assign_output_shapes(graph: Graph, inputs: List[Tensor]) -> Graph: ...
def _check_onnx_proto(proto: str, full_check: _bool = False) -> None: ...
def _propagate_and_assign_input_shapes(
    graph: Graph,
    inputs: Tuple[Tensor, ...],
    param_count_list: List[_int],
    with_grad: _bool,
    propagate: _bool
) -> Graph: ...

# Defined in torch/csrc/jit/runtime/graph_executor.h
class GraphExecutorState:
    ...

# Defined in torch/torch/csrc/jit/ir/alias_analysis.h
class AliasDb:
    def __str__(self) -> str: ...
    ...

class _InsertPoint:
    def __enter__(self) -> None: ...
    def __exit__(self, *args) -> None: ...

# Defined in torch/csrc/jit/ir/ir.h
class Use:
    @property
    def user(self) -> Node: ...
    @property
    def offset(self) -> _int: ...
    def isAfter(self, other: Use) -> _bool: ...
    ...

# Defined in torch/csrc/jit/ir/ir.h
class Value:
    def type(self)-> JitType: ...
    def setType(self, t: JitType) -> Value: ...
    def setTypeAs(self, other: Value) -> Value: ...
    def inferTypeFrom(self, t: Tensor) -> None: ...
    def debugName(self) -> str: ...
    def setDebugName(self, name: str) -> None: ...
    def unique(self) -> _int: ...
    def offset(self) -> _int: ...
    def node(self) -> Node: ...
    def uses(self) -> List[Use]: ...
    def replaceAllUsesWith(self, val: Value) -> None: ...
    def replaceAllUsesAfterNodeWith(self, node: Node, val: Value) -> None: ...
    def requires_grad(self) -> _bool: ...
    def requiresGrad(self) -> _bool: ...
    def copyMetadata(self, other: Value) -> Value: ...
    def isCompleteTensor(self) -> _bool: ...
    def toIValue(self) -> IValue: ...
    ...

# Defined in torch/csrc/jit/ir/ir.h
class Block:
    def inputs(self) -> List[Value]: ...
    def outputs(self) -> List[Value]: ...
    ...

# Defined in torch/csrc/jit/ir/ir.h
class Node:
    def schema(self) -> str: ...
    def input(self) -> Value: ...
    def inputs(self) -> List[Value]: ...
    def inputsAt(self, idx: _int) -> Value: ...
    def inputsSize(self) -> _int: ...
    def output(self) -> Value: ...
    def outputs(self) -> List[Value]: ...
    def outputsAt(self, idx: _int) -> Value: ...
    def outputsSize(self) -> _int: ...
    def hasMultipleOutputs(self) -> _bool: ...
    def blocks(self) -> List[Block]: ...
    def mustBeNone(self) -> _bool: ...
    def __getitem__(self, key: str) -> Any: ...
    def matches(self, pattern: str) -> _bool: ...
    def kind(self) -> str: ...
    def kindOf(self, name: str) -> str: ...
    def addInput(self, name: str) -> Value: ...
    def replaceInput(self, i: _int, newValue: Value) -> Value: ...
    def replaceInputWith(self, from_: Value, to: Value) -> None: ...
    def replaceAllUsesWith(self, n: Node) -> None: ...
    def insertBefore(self, n: Node) -> Node: ...
    def insertAfter(self, n: Node) -> Node: ...
    def isBefore(self, n: Node) -> _bool: ...
    def isAfter(self, n: Node) -> _bool: ...
    def moveBefore(self, n: Node) -> None: ...
    def moveAfter(self, n: Node) -> None: ...
    def removeInput(self, i: _int) -> None: ...
    def removeAllInputs(self, i: _int) -> None: ...
    def hasUses(self) -> _bool: ...
    def eraseOutput(self, i: _int) -> None: ...
    def addOutput(self) -> Value: ...
    def scopeName(self) -> str: ...
    def isNondeterministic(self) -> _bool: ...
    def copyAttributes(self, rhs: Node) -> Node: ...
    def copyMetadata(self, rhs: Node) -> Node: ...
    def hasAttributes(self) -> _bool: ...
    def hasAttribute(self, name: str) -> _bool: ...
    def removeAttribute(self, attr: str) -> Node: ...
    def namedInput(self, name: str) -> Value: ...
    def sourceRange(self) -> SourceRange: ...
    def owningBlock(self) -> Block: ...
    def findNode(self, kind: str, recurse: _bool = True) -> Node: ...
    def findAllNodes(self, kind: str, recurse: _bool = True) -> List[Node]: ...
    def getModuleHierarchy(self) -> str: ...
    def prev(self) -> Node: ...
    def destroy(self) -> None: ...

    # Accessors for attributes as types.
    def f(self, name: str) -> _float: ...
    def f_(self, name: str, val: _float) -> Node: ...
    def fs(self, name: str) -> List[_float]: ...
    def fs_(self, name: str, val: List[_float]) -> Node: ...
    def c(self, name: str) -> complex: ...
    def c_(self, name: str, val: complex) -> Node: ...
    def s(self, name: str) -> str: ...
    def s_(self, name: str, val: str) -> Node: ...
    def ss(self, name: str) -> List[str]: ...
    def ss_(self, name: str, val: List[str]) -> Node: ...
    def i(self, name: str) -> _int: ...
    def i_(self, name: str, val: _int) -> Node: ...
    # Cannot define "is" like this because it's a reserved keyword in python.
    # def is(self, name: str) -> List[_int]: ...
    # def is_(self, name: str, val: List[_int]) -> Node: ...
    def g(self, name: str) -> Graph: ...
    def g_(self, name: str, val: Graph) -> Node: ...
    def gs(self, name: str) -> List[Graph]: ...
    def gs_(self, name: str, val: List[Graph]) -> Node: ...
    def ival(self, name: str) -> IValue: ...
    def ival_(self, name: str, val: IValue) -> Node: ...
    def t(self, name: str) -> Tensor: ...
    def t_(self, name: str, val: Tensor) -> Node: ...
    def ts(self, name: str) -> List[Tensor]: ...
    def ts_(self, name: str, val: List[Tensor]) -> Node: ...
    def ty_(self, name: str, val: JitType) -> Node: ...
    def tys_(self, name: str, val: List[JitType]) -> Node: ...
    ...

# Defined in torch/torch/csrc/jit/ir/ir.h
class Graph:
    def eraseInput(self, i: _int) -> None: ...
    def alias_db(self) -> AliasDb: ...
    def inputs(self) -> List[Value]: ...
    def setInsertPoint(self, n: Union[Block, Node]) -> None: ...
    def insert_point_guard(self, n: Union[Block, Node]) -> _InsertPoint: ...
    def insertPoint(self) -> Node: ...
    def insertGraph(self, callee: Graph, inputs: List[Value]) -> List[Value]: ...
    def makeMultiOutputIntoTuple(self) -> None: ...
    ...


# Defined in torch/aten/src/ATen/core/function_schema.h
class Argument:
    name: str
    type: JitType
    default_value: Optional[Any]
    def has_default_value(self) -> _bool: ...
    kwarg_only : _bool
    ...
class FunctionSchema:
    arguments: List[Argument]
    returns: List[Argument]
    name: str
    overload_name: str
    ...

class _UpgraderEntry:
    bumped_at_version: _int
    upgrader_name: str
    old_schema: str
    def __init__(self, bumped_at_version: _int, upgrader_name: str, old_schema: str) -> None: ...

class _UpgraderRange:
    min_version: _int
    max_version: _int

def _get_max_operator_version() -> _int: ...

def _get_operator_version_map() -> Dict[str, List[_UpgraderEntry]]: ...

def _get_upgrader_ranges(name: str) -> List[_UpgraderRange]: ...

def _test_only_add_entry_to_op_version(op_name: str, entry: _UpgraderEntry) -> None: ...

def _test_only_remove_entry_to_op_version(op_name: str) -> None: ...

# Defined in torch/csrc/jit/python/script_init.cpp
class ScriptModuleSerializer(object):
    def __init__(self, export_writer: PyTorchFileWriter) -> None: ...
    def serialize(self, model: ScriptModule, script_module_id: _int) -> None: ...
    def write_files(self) -> None: ...
    def storage_context(self) -> SerializationStorageContext: ...
    ...

# Defined in torch/csrc/jit/python/script_init.cpp
class SerializationStorageContext(object):
    def __init__(self) -> None: ...
    def has_storage(self, storage: Storage) -> _bool: ...
    def get_or_add_storage(self, storage: Storage) -> _int: ...
    ...

# Defined in torch/csrc/jit/python/script_init.cpp
class DeserializationStorageContext(object):
    def __init__(self) -> None: ...
    def get_storage(self, name: str, dtype: _dtype) -> Tensor: ...
    def has_storage(self, name: str) -> _bool: ...
    def add_storage(self, name: str, tensor: Tensor) -> _int: ...
    ...

# Defined in torch/csrc/jit/python/script_init.cpp
class ConcreteModuleTypeBuilder:
    def __init__(self, obj: Any) -> None: ...
    def set_module_dict(self): ...
    def set_module_list(self): ...
    def set_parameter_list(self): ...
    def set_parameter_dict(self): ...
    def add_attribute(self, name: str, ty: JitType, is_param: _bool, is_buffer: _bool): ...
    def add_module(self, name: str, meta: ConcreteModuleType): ...
    def add_constant(self, name: str, value: Any): ...
    def add_overload(self, method_name: str, overloaded_method_names: List[str]): ...
    def add_builtin_function(self, name: str, symbol_name: str): ...
    def add_failed_attribute(self, name: str, failure_reason: str): ...
    def add_function_attribute(self, name: str, ty: JitType, func: Callable[..., Any]): ...
    def add_ignored_attribute(self, name: str): ...
    def add_ignored_attributes(self, names: List[str]): ...
    def add_forward_hook(self, hook: Callable[..., Any]): ...
    def add_forward_pre_hook(self, pre_hook: Callable[..., Any]): ...

class ConcreteModuleType:
    def get_constants(self) -> Dict[str, Any]: ...
    def equals(self, other: 'ConcreteModuleType') -> _bool: ...

    @staticmethod
    def from_jit_type(ty: JitType) -> ConcreteModuleType: ...

class CallStack:
    def __init__(self, name: str, range: SourceRange): ...

class ErrorReport:
    def __init__(self, range: SourceRange) -> None: ...
    def what(self) -> str: ...

    @staticmethod
    def call_stack() -> str: ...

class CompilationUnit:
    def __init__(self, lang: str=..., _frames_up: _int=...) -> None: ...
    def find_function(self, name: str) -> ScriptFunction: ...
    def __getattr__(self, name: str) -> ScriptFunction: ...
    def define(self, script: str, rcb: ResolutionCallback=..., _frames_up: _int=...): ...
    def get_interface(self, name: str) -> InterfaceType: ...
    def get_functions(self) -> List[ScriptFunction]: ...
    def create_function(self, name: str, graph: Graph, shouldMangle: _bool=...) -> ScriptFunction: ...
    def get_class(self, name: str) -> ClassType: ...

class ScriptObject:
    def setattr(self, name: str, value: Any): ...

class ScriptModule(ScriptObject):
    def _method_names(self) -> List[str]: ...
    def _get_method(self, name: str) -> ScriptMethod: ...

class LiteScriptModule:
    def __call__(self, *input): ...
    def find_method(self, method_name: str): ...
    def forward(self, *input) -> List[str]: ...
    def run_method(self, method_name: str, *input): ...

class ScriptFunction:
    def __call__(self, *args, **kwargs) -> Tensor: ...
    def save(self, filename: str, _extra_files: Dict[str, bytes]) -> None: ...
    def save_to_buffer(self, _extra_files: Dict[str, bytes]) -> bytes: ...
    @property
    def graph(self) -> Graph: ...
    def inlined_graph(self) -> Graph: ...
    def schema(self) -> FunctionSchema: ...
    def code(self) -> str: ...
    def name(self) -> str: ...
    @property
    def qualified_name(self) -> str: ...

class ScriptMethod:
    graph: Graph
    @property
    def owner(self) -> ScriptModule: ...
    @property
    def name(self) -> str: ...

class ModuleDict:
    def __init__(self, mod: ScriptModule) -> None: ...
    def items(self) -> List[Tuple[str, Any]]: ...

class ParameterDict:
    def __init__(self, mod: ScriptModule) -> None: ...

class BufferDict:
    def __init__(self, mod: ScriptModule) -> None: ...

# Defined in torch/csrc/jit/api/module.h
class Module:
    ...

# Defined in torch/csrc/Module.cpp
def _initExtension(shm_manager_path: str) -> None: ...  # THPModule_initExtension
def _autograd_init() -> _bool: ...  # THPAutograd_initExtension
def _add_docstr(obj: T, doc_obj: str) -> T: ...  # THPModule_addDocStr
def _init_names(arg: Sequence[Type]) -> None: ...  # THPModule_initNames
def _has_distributed() -> _bool: ...  # THPModule_hasDistributed
def _set_default_tensor_type(type) -> None: ...  # THPModule_setDefaultTensorType
def _set_default_dtype(d: _dtype) -> None: ...  # THPModule_setDefaultDtype
def _infer_size(arg1: Size, arg2: Size) -> Size: ...  # THPModule_inferSize
def _crash_if_csrc_asan() -> _int: ...  # THPModule_crashIfCsrcASAN
def _crash_if_csrc_ubsan() -> _int: ...  # THPModule_crashIfCsrcUBSAN
def _crash_if_aten_asan() -> _int: ...  # THPModule_crashIfATenASAN
def _show_config() -> str: ...  # THPModule_showConfig
def _cxx_flags() -> str: ...  # THPModule_cxxFlags
def _parallel_info() -> str: ...  # THPModule_parallelInfo
def _set_backcompat_broadcast_warn(arg: _bool) -> None: ...  # THPModule_setBackcompatBroadcastWarn
def _get_backcompat_broadcast_warn() -> _bool: ...  # THPModule_getBackcompatBroadcastWarn
def _set_backcompat_keepdim_warn(arg: _bool) -> None: ...  # THPModule_setBackcompatKeepdimWarn
def _get_backcompat_keepdim_warn() -> _bool: ...  # THPModule_getBackcompatKeepdimWarn
def get_num_thread() -> _int: ...  # THPModule_getNumThreads
def set_num_threads(nthreads: _int) -> None: ...  # THPModule_setNumThreads
def get_num_interop_threads() -> _int: ...  # THPModule_getNumInteropThreads
def set_num_interop_threads(nthreads: _int) -> None: ...  # THPModule_setNumInteropThreads
def _get_cudnn_enabled() -> _bool: ...  # THPModule_userEnabledCuDNN
def _set_cudnn_enabled(arg: _bool) -> None: ...  # THPModule_setUserEnabledCuDNN
def _get_mkldnn_enabled() -> _bool: ...  # THPModule_userEnabledMkldnn
def _set_mkldnn_enabled(arg: _bool) -> None: ...  # THPModule_setUserEnabledMkldnn
def _get_cudnn_benchmark() -> _bool: ...  # THPModule_benchmarkCuDNN
def _set_cudnn_benchmark(arg: _bool) -> None: ...  # THPModule_setBenchmarkCuDNN
def _get_cudnn_deterministic() -> _bool: ...  # THPModule_deterministicCuDNN
def _set_cudnn_deterministic(arg: _bool) -> None: ...  # THPModule_setDeterministicCuDNN
def _get_deterministic_algorithms() -> _bool: ...  # THPModule_deterministicAlgorithms
def _get_deterministic_algorithms_warn_only() -> _bool: ...  # THPModule_deterministicAlgorithmsWarnOnly
def _set_deterministic_algorithms(mode: _bool, *, warn_only: _bool=...) -> None: ...  # THPModule_setDeterministicAlgorithms
def _get_warnAlways() -> _bool: ...  # THPModule_warnAlways
def _set_warnAlways(arg: _bool) -> None: ...  # THPModule_setWarnAlways
def _get_cudnn_allow_tf32() -> _bool: ...  # THPModule_allowTF32CuDNN
def _set_cudnn_allow_tf32(arg: _bool) -> None: ...  # THPModule_setAllowTF32CuDNN
def _get_cublas_allow_tf32() -> _bool: ...  # THPModule_allowTF32CuBLAS
def _set_cublas_allow_tf32(arg: _bool) -> None: ...  # THPModule_setAllowTF32CuBLAS
def _get_float32_matmul_precision() -> str: ... #THPModule_float32MatmulPrecision
def _set_float32_matmul_precision(arg: str) -> None: ... #THPModule_setFloat32MatmulPrecision
def _get_cublas_allow_fp16_reduced_precision_reduction() -> _bool: ... #THPModule_allowFP16ReductionCuBLAS
def _set_cublas_allow_fp16_reduced_precision_reduction(arg: _bool) -> None: ... #THPModule_setAllowFP16ReductionCuBLAS
# NB: There is no Capsule type in typing, see
# https://code.activestate.com/lists/python-dev/139675/
def _to_dlpack(data: Tensor) -> Any: ...  # THPModule_toDLPack
def _from_dlpack(data: Any) -> Tensor: ...  # THPModule_fromDLPack
def set_flush_denormal(arg: _bool) -> _bool: ...  # THPModule_setFlushDenormal
def get_default_dtype() -> _dtype: ...  # THPModule_getDefaultDtype
def _get_default_device() -> str: ...  # THPModule_getDefaultDevice
def _get_qengine() -> _int: ...  # THPModule_qEngine
def _set_qengine(qegine: _int) -> None: ...  # THPModule_setQEngine
def _supported_qengines() -> List[_int]: ...  # THPModule_supportedQEngines
def _is_xnnpack_enabled() -> _bool: ...  # THPModule_isEnabledXNNPACK
def _set_default_mobile_cpu_allocator() -> None: ...  # THPModule_setDefaultMobileCPUAllocator
def _unset_default_mobile_cpu_allocator() -> None: ...  # THPModule_unsetDefaultMobileCPUAllocator
def _is_torch_function_enabled() -> _bool: ...  # THPModule_isEnabledTorchFunction
def _has_torch_function(args: Iterable[Any]) -> _bool: ...  # THPModule_has_torch_function
def _has_torch_function_unary(Any) -> _bool: ...  # THPModule_has_torch_function_unary
def _has_torch_function_variadic(*args: Any) -> _bool: ...  # THPModule_has_torch_function_variadic
def _vmapmode_increment_nesting() -> _int: ...  # THPModule_vmapmode_increment_nesting
def _vmapmode_decrement_nesting() -> _int: ...  # THPModule_vmapmode_decrement_nesting
def _log_api_usage_once(str) -> None: ...  # LogAPIUsageOnceFromPython
def _demangle(str) -> str: ...  # c10::demangle
def _disabled_torch_function_impl(func: Callable, types: Iterable[Type], args: Tuple, kwargs: Dict) -> Any: ...  # THPModule_disable_torch_function
def _disabled_torch_dispatch_impl(func: Callable, types: Iterable[Type], args: Tuple, kwargs: Dict) -> Any: ...  # THPModule_disable_dispatch_function
def _get_linalg_preferred_backend() -> torch._C._LinalgBackend: ...
def _set_linalg_preferred_backend(arg: torch._C._LinalgBackend): ...
def _is_mps_available() -> _bool: ...
class _LinalgBackend:
    Default: _LinalgBackend
    Cusolver: _LinalgBackend
    Magma: _LinalgBackend

# Defined in `valgrind.h` and `callgrind.h` respecitively.
def _valgrind_supported_platform() -> _bool: ...  # NVALGRIND
def _valgrind_toggle() -> None: ...  # CALLGRIND_TOGGLE_COLLECT
def _valgrind_toggle_and_dump_stats() -> None: ...  # CALLGRIND_TOGGLE_COLLECT and CALLGRIND_DUMP_STATS

has_openmp: _bool
has_mkl: _bool
has_mps: _bool
has_lapack: _bool
has_cuda: _bool
has_mkldnn: _bool
has_cudnn: _bool
has_spectral: _bool
_GLIBCXX_USE_CXX11_ABI: _bool
default_generator: Generator

# Defined in torch/csrc/autograd/init.cpp
def _set_grad_enabled(enabled: _bool) -> None: ...
def is_grad_enabled() -> _bool: ...
def is_inference_mode_enabled() -> _bool: ...
def set_autocast_enabled(enabled: _bool) -> None: ...
def is_autocast_enabled() -> _bool: ...
def clear_autocast_cache() -> None: ...
def set_autocast_cpu_enabled(enabled: _bool) -> None: ...
def is_autocast_cpu_enabled() -> _bool: ...
def set_autocast_cpu_dtype(dtype: _dtype) -> None: ...
def set_autocast_gpu_dtype(dtype: _dtype) -> None: ...
def get_autocast_cpu_dtype() -> _dtype: ...
def get_autocast_gpu_dtype() -> _dtype: ...
def autocast_increment_nesting() -> _int: ...
def autocast_decrement_nesting() -> _int: ...
def is_autocast_cache_enabled() -> _bool: ...
def set_autocast_cache_enabled(enabled: _bool) -> None: ...
def set_anomaly_enabled(enabled: _bool) -> None: ...
def is_anomaly_enabled() -> _bool: ...
def _enter_dual_level() -> _int: ...
def _exit_dual_level(level: _int) -> None: ...
def _make_dual(tensor: Tensor, tangent: Tensor, level: _int) -> Tensor: ...
def _unpack_dual(tensor: Tensor, level: _int) -> Tensor: ...
def __set_forward_AD_enabled(enabled: _bool) -> None: ...
def __is_forward_AD_enabled() -> _bool: ...
def _register_default_hooks(pack_hook: Callable, unpack_hook: Callable) -> None: ...
def _reset_default_hooks() -> None: ...

# Defined in torch/overrides.py
class TorchFunctionMode(object):
    ...

def _set_torch_function_mode(cls: Optional[Union[type, TorchFunctionMode]]) -> None: ...
def _get_torch_function_mode() -> Optional[Union[type, TorchFunctionMode]]: ...

# Defined in torch/utils/_python_dispatch.py
class TorchDispatchMode(object):
    ...

def _set_torch_dispatch_mode(cls: Optional[Union[type, TorchDispatchMode]]) -> None: ...
def _get_torch_dispatch_mode() -> Optional[Union[type, TorchDispatchMode]]: ...

class _InferenceMode(object):
    def __init__(self, mode: _bool) -> None: ...

# Defined in torch/csrc/jit/python/script_init.cpp
class LoggerBase(object):
    ...

class NoopLogger(LoggerBase):
    ...

class LockingLogger(LoggerBase):
    ...

class AggregationType(Enum):
    SUM = 0
    AVG = 1

class FileCheck(object):
    # TODO (add more FileCheck signature)
    def check_source_highlighted(self, highlight: str) -> 'FileCheck': ...
    def run(self, test_string: str) -> None: ...
    ...

# Defined in torch/csrc/jit/python/init.cpp
class PyTorchFileReader(object):
    @overload
    def __init__(self, name: str) -> None: ...
    @overload
    def __init__(self, buffer: BinaryIO) -> None: ...
    def get_record(self, name: str) -> bytes: ...
    ...

class PyTorchFileWriter(object):
    @overload
    def __init__(self, name: str) -> None: ...
    @overload
    def __init__(self, buffer: BinaryIO) -> None: ...
    def write_record(self, name: str, data: Union[bytes, _int], size: _int) -> None: ...
    def write_end_of_file(self) -> None: ...
    def set_min_version(self, version: _int) -> None: ...
    def get_all_written_records(self) -> List[str]: ...
    def archive_name(self) -> str: ...
    ...

def _jit_get_inline_everything_mode() -> _bool: ...
def _jit_set_inline_everything_mode(enabled: _bool) -> None: ...
def _jit_get_logging_option() -> str: ...
def _jit_set_logging_option(option: str) -> None: ...
def _jit_set_logging_stream(stream_name: str) -> None: ...
def _jit_pass_dce(Graph) -> None: ...
def _jit_pass_lint(Graph) -> None: ...

# Defined in torch/csrc/jit/python/python_custome_class.cpp
def _get_custom_class_python_wrapper(name: str, attr: str) -> Any: ...

# Defined in torch/csrc/Generator.cpp
class Generator(object):
    device: _device
    def __init__(self, device: Union[_device, str, None] = None) -> None: ...
    def get_state(self) -> Tensor: ...
    def set_state(self, _new_state: Tensor) -> Generator: ...
    def manual_seed(self, seed: _int) -> Generator: ...
    def seed(self) -> _int: ...
    def initial_seed(self) -> _int: ...


# Defined in torch/csrc/utils/python_dispatch.cpp
def _dispatch_library(kind: str, name: str, dispatch: str, file: str = "", linenum: Any = 0) -> Any: ...
def _dispatch_has_kernel_for_dispatch_key(name: str, dispatch: str) -> _bool: ...
def _dispatch_has_kernel(name: str) -> _bool: ...

# Defined in torch/csrc/utils/init.cpp
class BenchmarkConfig(object):
    num_calling_threads: _int
    num_worker_threads: _int
    num_warmup_iters: _int
    num_iters: _int
    profiler_output_path: str

class BenchmarkExecutionStats(object):
    latency_avg_ms: _float
    num_iters: _int

class ThroughputBenchmark(object):
    def __init__(self, module: Any) -> None: ...
    def add_input(self, *args: Any, **kwargs: Any) -> None: ...
    def run_once(self, *args: Any, **kwargs: Any) -> Any: ...
    def benchmark(self, config: BenchmarkConfig) -> BenchmarkExecutionStats: ...

# Defined in torch/csrc/generic/Storage.cpp
class StorageBase(object): ...

# TODO: where
class DoubleTensor(Tensor): ...
class FloatTensor(Tensor): ...
class LongTensor(Tensor): ...
class IntTensor(Tensor): ...
class ShortTensor(Tensor): ...
class HalfTensor(Tensor): ...
class CharTensor(Tensor): ...
class ByteTensor(Tensor): ...
class BoolTensor(Tensor): ...

# Defined in torch/csrc/autograd/python_engine.cpp
class _ImperativeEngine:
    ...

# Defined in torch/csrc/autograd/python_variable.cpp
class _TensorMeta(type):
    pass

# Defined in torch/csrc/autograd/python_variable.cpp
class _TensorBase(metaclass=_TensorMeta):
    requires_grad: _bool
    shape: Size
    data: Tensor
    names: List[str]
    device: _device
    dtype: _dtype
    layout: _layout
    real: Tensor
    imag: Tensor
    T: Tensor
    H: Tensor
    mT: Tensor
    mH: Tensor
    ndim: _int
    output_nr: _int
    _version: _int
    _base: Optional[Tensor]
    _cdata: _int
    grad_fn: Any
    _grad_fn: Any
    _grad: Optional[Tensor]
    _backward_hooks: Optional[Dict[_int, Callable[[Tensor], Optional[Tensor]]]]
    def __abs__(self) -> Tensor: ...
    def __add__(self, other: Any) -> Tensor: ...
    @overload
    def __and__(self, other: Tensor) -> Tensor: ...
    @overload
    def __and__(self, other: Number) -> Tensor: ...
    @overload
    def __and__(self, other: Any) -> Tensor: ...
    def __bool__(self) -> builtins.bool: ...
    def __complex__(self) -> builtins.complex: ...
    def __div__(self, other: Any) -> Tensor: ...
    def __eq__(self, other: Any) -> Tensor: ...  # type: ignore[override]
    def __float__(self) -> builtins.float: ...
    def __floordiv__(self, other: Any) -> Tensor: ...
    def __ge__(self, other: Any) -> Tensor: ...
    def __getitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple]) -> Tensor: ...
    def __gt__(self, other: Any) -> Tensor: ...
    def __iadd__(self, other: Any) -> Tensor: ...
    @overload
    def __iand__(self, other: Tensor) -> Tensor: ...
    @overload
    def __iand__(self, other: Number) -> Tensor: ...
    @overload
    def __iand__(self, other: Any) -> Tensor: ...
    def __idiv__(self, other: Any) -> Tensor: ...
    def __ifloordiv__(self, other: Any) -> Tensor: ...
    @overload
    def __ilshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __ilshift__(self, other: Number) -> Tensor: ...
    @overload
    def __ilshift__(self, other: Any) -> Tensor: ...
    def __imod__(self, other: Any) -> Tensor: ...
    def __imul__(self, other: Any) -> Tensor: ...
    def __index__(self) -> builtins.int: ...
    @overload
    def __init__(self, *args: Any, device: Union[_device, str, None]=None) -> None: ...
    @overload
    def __init__(self, storage: Storage) -> None: ...
    @overload
    def __init__(self, other: Tensor) -> None: ...
    @overload
    def __init__(self, size: _size, *, device: Union[_device, str, None]=None) -> None: ...
    def __int__(self) -> builtins.int: ...
    def __invert__(self) -> Tensor: ...
    @overload
    def __ior__(self, other: Tensor) -> Tensor: ...
    @overload
    def __ior__(self, other: Number) -> Tensor: ...
    @overload
    def __ior__(self, other: Any) -> Tensor: ...
    @overload
    def __irshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __irshift__(self, other: Number) -> Tensor: ...
    @overload
    def __irshift__(self, other: Any) -> Tensor: ...
    def __isub__(self, other: Any) -> Tensor: ...
    @overload
    def __ixor__(self, other: Tensor) -> Tensor: ...
    @overload
    def __ixor__(self, other: Number) -> Tensor: ...
    @overload
    def __ixor__(self, other: Any) -> Tensor: ...
    def __le__(self, other: Any) -> Tensor: ...
    def __long__(self) -> builtins.int: ...
    @overload
    def __lshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __lshift__(self, other: Number) -> Tensor: ...
    @overload
    def __lshift__(self, other: Any) -> Tensor: ...
    def __lt__(self, other: Any) -> Tensor: ...
    def __matmul__(self, other: Any) -> Tensor: ...
    def __mod__(self, other: Any) -> Tensor: ...
    def __mul__(self, other: Any) -> Tensor: ...
    def __ne__(self, other: Any) -> Tensor: ...  # type: ignore[override]
    def __neg__(self) -> Tensor: ...
    def __nonzero__(self) -> builtins.bool: ...
    @overload
    def __or__(self, other: Tensor) -> Tensor: ...
    @overload
    def __or__(self, other: Number) -> Tensor: ...
    @overload
    def __or__(self, other: Any) -> Tensor: ...
    def __pow__(self, other: Any) -> Tensor: ...
    def __radd__(self, other: Any) -> Tensor: ...
    def __rand__(self, other: Any) -> Tensor: ...
    def __rfloordiv__(self, other: Any) -> Tensor: ...
    def __rmul__(self, other: Any) -> Tensor: ...
    def __ror__(self, other: Any) -> Tensor: ...
    def __rpow__(self, other: Any) -> Tensor: ...
    @overload
    def __rshift__(self, other: Tensor) -> Tensor: ...
    @overload
    def __rshift__(self, other: Number) -> Tensor: ...
    @overload
    def __rshift__(self, other: Any) -> Tensor: ...
    def __rsub__(self, other: Any) -> Tensor: ...
    def __rtruediv__(self, other: Any) -> Tensor: ...
    def __rxor__(self, other: Any) -> Tensor: ...
    def __setitem__(self, indices: Union[None, _int, slice, Tensor, List, Tuple], val: Union[Tensor, Number]) -> None: ...
    def __sub__(self, other: Any) -> Tensor: ...
    def __truediv__(self, other: Any) -> Tensor: ...
    @overload
    def __xor__(self, other: Tensor) -> Tensor: ...
    @overload
    def __xor__(self, other: Number) -> Tensor: ...
    @overload
    def __xor__(self, other: Any) -> Tensor: ...
    def _addmm_activation(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1, use_gelu: _bool=False) -> Tensor: ...
    def _autocast_to_full_precision(self, cuda_enabled: _bool, cpu_enabled: _bool) -> Tensor: ...
    def _autocast_to_reduced_precision(self, cuda_enabled: _bool, cpu_enabled: _bool, cuda_dtype: _dtype, cpu_dtype: _dtype) -> Tensor: ...
    def _coalesced_(self, coalesced: _bool) -> Tensor: ...
    def _conj(self) -> Tensor: ...
    def _conj_physical(self) -> Tensor: ...
    def _dimI(self) -> _int: ...
    def _dimV(self) -> _int: ...
    def _indices(self) -> Tensor: ...
    def _is_view(self) -> _bool: ...
    def _is_zerotensor(self) -> _bool: ...
    def _make_subclass(cls, data: Tensor, require_grad: _bool = False) -> Tensor: ...
    def _neg_view(self) -> Tensor: ...
    def _nested_tensor_layer_norm(self, weight: Optional[Tensor], bias: Optional[Tensor], eps: _float) -> Tensor: ...
    def _nnz(self) -> _int: ...
    def _to_dense(self, dtype: Optional[_dtype]=None) -> Tensor: ...
    def _values(self) -> Tensor: ...
    def abs(self) -> Tensor: ...
    def abs_(self) -> Tensor: ...
    def absolute(self) -> Tensor: ...
    def absolute_(self) -> Tensor: ...
    def acos(self) -> Tensor: ...
    def acos_(self) -> Tensor: ...
    def acosh(self) -> Tensor: ...
    def acosh_(self) -> Tensor: ...
    def add(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
    def add_(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1) -> Tensor: ...
    def addbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addcdiv(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
    def addcdiv_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
    def addcmul(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
    def addcmul_(self, tensor1: Tensor, tensor2: Tensor, *, value: Number=1) -> Tensor: ...
    def addmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addmm_(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addmv(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addmv_(self, mat: Tensor, vec: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addr(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def addr_(self, vec1: Tensor, vec2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def adjoint(self) -> Tensor: ...
    def align_as(self, other: Tensor) -> Tensor: ...
    @overload
    def align_to(self, order: Sequence[Union[str, ellipsis, None]], ellipsis_idx: _int) -> Tensor: ...
    @overload
    def align_to(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
    @overload
    def all(self) -> Tensor: ...
    @overload
    def all(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
    @overload
    def all(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> Tensor: ...
    def allclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> _bool: ...
    def amax(self, dim: Union[_int, _size]=(), keepdim: _bool=False) -> Tensor: ...
    def amin(self, dim: Union[_int, _size]=(), keepdim: _bool=False) -> Tensor: ...
    def aminmax(self, *, dim: Optional[_int]=None, keepdim: _bool=False) -> torch.return_types.aminmax: ...
    def angle(self) -> Tensor: ...
    @overload
    def any(self) -> Tensor: ...
    @overload
    def any(self, dim: _int, keepdim: _bool=False) -> Tensor: ...
    @overload
    def any(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> Tensor: ...
    def apply_(self, callable: Callable) -> Tensor: ...
    def arccos(self) -> Tensor: ...
    def arccos_(self) -> Tensor: ...
    def arccosh(self) -> Tensor: ...
    def arccosh_(self) -> Tensor: ...
    def arcsin(self) -> Tensor: ...
    def arcsin_(self) -> Tensor: ...
    def arcsinh(self) -> Tensor: ...
    def arcsinh_(self) -> Tensor: ...
    def arctan(self) -> Tensor: ...
    def arctan2(self, other: Tensor) -> Tensor: ...
    def arctan2_(self, other: Tensor) -> Tensor: ...
    def arctan_(self) -> Tensor: ...
    def arctanh(self) -> Tensor: ...
    def arctanh_(self) -> Tensor: ...
    def argmax(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
    def argmin(self, dim: Optional[_int]=None, keepdim: _bool=False) -> Tensor: ...
    @overload
    def argsort(self, dim: _int=-1, descending: _bool=False) -> Tensor: ...
    @overload
    def argsort(self, dim: Union[str, ellipsis, None], descending: _bool=False) -> Tensor: ...
    def argwhere(self) -> Tensor: ...
    def as_strided(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
    def as_strided_(self, size: _size, stride: _size, storage_offset: Optional[_int]=None) -> Tensor: ...
    def as_subclass(self, cls: Tensor) -> Tensor: ...
    def asin(self) -> Tensor: ...
    def asin_(self) -> Tensor: ...
    def asinh(self) -> Tensor: ...
    def asinh_(self) -> Tensor: ...
    def atan(self) -> Tensor: ...
    def atan2(self, other: Tensor) -> Tensor: ...
    def atan2_(self, other: Tensor) -> Tensor: ...
    def atan_(self) -> Tensor: ...
    def atanh(self) -> Tensor: ...
    def atanh_(self) -> Tensor: ...
    def baddbmm(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    def baddbmm_(self, batch1: Tensor, batch2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    @overload
    def bernoulli(self, *, generator: Optional[Generator]=None) -> Tensor: ...
    @overload
    def bernoulli(self, p: _float, *, generator: Optional[Generator]=None) -> Tensor: ...
    @overload
    def bernoulli_(self, p: Tensor, *, generator: Optional[Generator]=None) -> Tensor: ...
    @overload
    def bernoulli_(self, p: _float=0.5, *, generator: Optional[Generator]=None) -> Tensor: ...
    def bfloat16(self) -> Tensor: ...
    def bincount(self, weights: Optional[Tensor]=None, minlength: _int=0) -> Tensor: ...
    @overload
    def bitwise_and(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_and(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_and_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_and_(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_left_shift(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_left_shift(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_left_shift_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_left_shift_(self, other: Number) -> Tensor: ...
    def bitwise_not(self) -> Tensor: ...
    def bitwise_not_(self) -> Tensor: ...
    @overload
    def bitwise_or(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_or(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_or_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_or_(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_right_shift(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_right_shift(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_right_shift_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_right_shift_(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_xor(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_xor(self, other: Number) -> Tensor: ...
    @overload
    def bitwise_xor_(self, other: Tensor) -> Tensor: ...
    @overload
    def bitwise_xor_(self, other: Number) -> Tensor: ...
    def bmm(self, mat2: Tensor) -> Tensor: ...
    def bool(self) -> Tensor: ...
    @overload
    def broadcast_to(self, size: _size) -> Tensor: ...
    @overload
    def broadcast_to(self, *size: _int) -> Tensor: ...
    def byte(self) -> Tensor: ...
    def cauchy_(self, median: _float=0, sigma: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
    def ccol_indices(self) -> Tensor: ...
    def ceil(self) -> Tensor: ...
    def ceil_(self) -> Tensor: ...
    def chalf(self, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
    def char(self) -> Tensor: ...
    def cholesky(self, upper: _bool=False) -> Tensor: ...
    def cholesky_inverse(self, upper: _bool=False) -> Tensor: ...
    def cholesky_solve(self, input2: Tensor, upper: _bool=False) -> Tensor: ...
    def chunk(self, chunks: _int, dim: _int=0) -> List[Tensor]: ...
    @overload
    def clamp(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def clamp(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
    @overload
    def clamp_(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def clamp_(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
    @overload
    def clamp_max(self, max: Tensor) -> Tensor: ...
    @overload
    def clamp_max(self, max: Number) -> Tensor: ...
    @overload
    def clamp_max_(self, max: Tensor) -> Tensor: ...
    @overload
    def clamp_max_(self, max: Number) -> Tensor: ...
    @overload
    def clamp_min(self, min: Tensor) -> Tensor: ...
    @overload
    def clamp_min(self, min: Number) -> Tensor: ...
    @overload
    def clamp_min_(self, min: Tensor) -> Tensor: ...
    @overload
    def clamp_min_(self, min: Number) -> Tensor: ...
    @overload
    def clip(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def clip(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
    @overload
    def clip_(self, min: Optional[Tensor]=None, max: Optional[Tensor]=None) -> Tensor: ...
    @overload
    def clip_(self, min: Optional[Number]=None, max: Optional[Number]=None) -> Tensor: ...
    def clone(self, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
    def coalesce(self) -> Tensor: ...
    def col_indices(self) -> Tensor: ...
    def conj(self) -> Tensor: ...
    def conj_physical(self) -> Tensor: ...
    def conj_physical_(self) -> Tensor: ...
    def contiguous(self, memory_format=torch.contiguous_format) -> Tensor: ...
    def copy_(self, src: Tensor, non_blocking: _bool=False) -> Tensor: ...
    @overload
    def copysign(self, other: Tensor) -> Tensor: ...
    @overload
    def copysign(self, other: Number) -> Tensor: ...
    @overload
    def copysign_(self, other: Tensor) -> Tensor: ...
    @overload
    def copysign_(self, other: Number) -> Tensor: ...
    def corrcoef(self) -> Tensor: ...
    def cos(self) -> Tensor: ...
    def cos_(self) -> Tensor: ...
    def cosh(self) -> Tensor: ...
    def cosh_(self) -> Tensor: ...
    @overload
    def count_nonzero(self, dim: Optional[_int]=None) -> Tensor: ...
    @overload
    def count_nonzero(self, dim: _size) -> Tensor: ...
    @overload
    def count_nonzero(self, *dim: _int) -> Tensor: ...
    def cov(self, *, correction: _int=1, fweights: Optional[Tensor]=None, aweights: Optional[Tensor]=None) -> Tensor: ...
    def cpu(self) -> Tensor: ...
    def cross(self, other: Tensor, dim: Optional[_int]=None) -> Tensor: ...
    def crow_indices(self) -> Tensor: ...
    def cuda(self, device: Optional[Union[_device, _int, str]]=None, non_blocking: _bool=False) -> Tensor: ...
    @overload
    def cummax(self, dim: _int) -> torch.return_types.cummax: ...
    @overload
    def cummax(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummax: ...
    @overload
    def cummin(self, dim: _int) -> torch.return_types.cummin: ...
    @overload
    def cummin(self, dim: Union[str, ellipsis, None]) -> torch.return_types.cummin: ...
    @overload
    def cumprod(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumprod(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumprod_(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumprod_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumsum(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumsum(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumsum_(self, dim: _int, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def cumsum_(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    def data_ptr(self) -> _int: ...
    def deg2rad(self) -> Tensor: ...
    def deg2rad_(self) -> Tensor: ...
    def dense_dim(self) -> _int: ...
    def dequantize(self) -> Tensor: ...
    def det(self) -> Tensor: ...
    def detach(self) -> Tensor: ...
    def detach_(self) -> Tensor: ...
    def diag(self, diagonal: _int=0) -> Tensor: ...
    def diag_embed(self, offset: _int=0, dim1: _int=-2, dim2: _int=-1) -> Tensor: ...
    def diagflat(self, offset: _int=0) -> Tensor: ...
    @overload
    def diagonal(self, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
    @overload
    def diagonal(self, *, outdim: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None], dim2: Union[str, ellipsis, None], offset: _int=0) -> Tensor: ...
    def diagonal_scatter(self, src: Tensor, offset: _int=0, dim1: _int=0, dim2: _int=1) -> Tensor: ...
    def diff(self, n: _int=1, dim: _int=-1, prepend: Optional[Tensor]=None, append: Optional[Tensor]=None) -> Tensor: ...
    def digamma(self) -> Tensor: ...
    def digamma_(self) -> Tensor: ...
    def dim(self) -> _int: ...
    def dist(self, other: Tensor, p: Number=2) -> Tensor: ...
    def div(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ...
    def div_(self, other: Union[Tensor, Number], *, rounding_mode: Optional[str] = None) -> Tensor: ...
    @overload
    def divide(self, other: Tensor) -> Tensor: ...
    @overload
    def divide(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: ...
    @overload
    def divide(self, other: Number, *, rounding_mode: Optional[str]) -> Tensor: ...
    @overload
    def divide(self, other: Number) -> Tensor: ...
    @overload
    def divide_(self, other: Tensor) -> Tensor: ...
    @overload
    def divide_(self, other: Tensor, *, rounding_mode: Optional[str]) -> Tensor: ...
    @overload
    def divide_(self, other: Number, *, rounding_mode: Optional[str]) -> Tensor: ...
    @overload
    def divide_(self, other: Number) -> Tensor: ...
    def dot(self, tensor: Tensor) -> Tensor: ...
    def double(self) -> Tensor: ...
    @overload
    def dsplit(self, sections: _int) -> List[Tensor]: ...
    @overload
    def dsplit(self, indices: _size) -> List[Tensor]: ...
    @overload
    def dsplit(self, *indices: _int) -> List[Tensor]: ...
    def eig(self, eigenvectors: _bool=False) -> torch.return_types.eig: ...
    def element_size(self) -> _int: ...
    @overload
    def eq(self, other: Tensor) -> Tensor: ...
    @overload
    def eq(self, other: Number) -> Tensor: ...
    @overload
    def eq_(self, other: Tensor) -> Tensor: ...
    @overload
    def eq_(self, other: Number) -> Tensor: ...
    def equal(self, other: Tensor) -> _bool: ...
    def erf(self) -> Tensor: ...
    def erf_(self) -> Tensor: ...
    def erfc(self) -> Tensor: ...
    def erfc_(self) -> Tensor: ...
    def erfinv(self) -> Tensor: ...
    def erfinv_(self) -> Tensor: ...
    def exp(self) -> Tensor: ...
    def exp2(self) -> Tensor: ...
    def exp2_(self) -> Tensor: ...
    def exp_(self) -> Tensor: ...
    @overload
    def expand(self, size: Sequence[SymInt], *, implicit: _bool=False) -> Tensor: ...
    @overload
    def expand(self, size: _size, *, implicit: _bool=False) -> Tensor: ...
    @overload
    def expand(self, *size: _int, implicit: _bool=False) -> Tensor: ...
    def expand_as(self, other: Tensor) -> Tensor: ...
    def expm1(self) -> Tensor: ...
    def expm1_(self) -> Tensor: ...
    def exponential_(self, lambd: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
    @overload
    def fill_(self, value: Tensor) -> Tensor: ...
    @overload
    def fill_(self, value: Number) -> Tensor: ...
    def fill_diagonal_(self, fill_value: Number, wrap: _bool=False) -> Tensor: ...
    def fix(self) -> Tensor: ...
    def fix_(self) -> Tensor: ...
    @overload
    def flatten(self, start_dim: _int=0, end_dim: _int=-1) -> Tensor: ...
    @overload
    def flatten(self, start_dim: _int, end_dim: _int, out_dim: Union[str, ellipsis, None]) -> Tensor: ...
    @overload
    def flatten(self, start_dim: Union[str, ellipsis, None], end_dim: Union[str, ellipsis, None], out_dim: Union[str, ellipsis, None]) -> Tensor: ...
    @overload
    def flatten(self, dims: Sequence[Union[str, ellipsis, None]], out_dim: Union[str, ellipsis, None]) -> Tensor: ...
    @overload
    def flip(self, dims: _size) -> Tensor: ...
    @overload
    def flip(self, *dims: _int) -> Tensor: ...
    def fliplr(self) -> Tensor: ...
    def flipud(self) -> Tensor: ...
    def float(self) -> Tensor: ...
    @overload
    def float_power(self, exponent: Tensor) -> Tensor: ...
    @overload
    def float_power(self, exponent: Number) -> Tensor: ...
    @overload
    def float_power_(self, exponent: Tensor) -> Tensor: ...
    @overload
    def float_power_(self, exponent: Number) -> Tensor: ...
    def floor(self) -> Tensor: ...
    def floor_(self) -> Tensor: ...
    def floor_divide(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    def floor_divide_(self, other: Union[Tensor, Number]) -> Tensor: ...
    def fmax(self, other: Tensor) -> Tensor: ...
    def fmin(self, other: Tensor) -> Tensor: ...
    @overload
    def fmod(self, other: Tensor) -> Tensor: ...
    @overload
    def fmod(self, other: Number) -> Tensor: ...
    @overload
    def fmod_(self, other: Tensor) -> Tensor: ...
    @overload
    def fmod_(self, other: Number) -> Tensor: ...
    def frac(self) -> Tensor: ...
    def frac_(self) -> Tensor: ...
    def frexp(self) -> torch.return_types.frexp: ...
    @overload
    def gather(self, dim: _int, index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
    @overload
    def gather(self, dim: Union[str, ellipsis, None], index: Tensor, *, sparse_grad: _bool=False) -> Tensor: ...
    def gcd(self, other: Tensor) -> Tensor: ...
    def gcd_(self, other: Tensor) -> Tensor: ...
    @overload
    def ge(self, other: Tensor) -> Tensor: ...
    @overload
    def ge(self, other: Number) -> Tensor: ...
    @overload
    def ge_(self, other: Tensor) -> Tensor: ...
    @overload
    def ge_(self, other: Number) -> Tensor: ...
    def geometric_(self, p: _float, *, generator: Optional[Generator]=None) -> Tensor: ...
    def geqrf(self) -> torch.return_types.geqrf: ...
    def ger(self, vec2: Tensor) -> Tensor: ...
    def get_device(self) -> _int: ...
    @overload
    def greater(self, other: Tensor) -> Tensor: ...
    @overload
    def greater(self, other: Number) -> Tensor: ...
    @overload
    def greater_(self, other: Tensor) -> Tensor: ...
    @overload
    def greater_(self, other: Number) -> Tensor: ...
    @overload
    def greater_equal(self, other: Tensor) -> Tensor: ...
    @overload
    def greater_equal(self, other: Number) -> Tensor: ...
    @overload
    def greater_equal_(self, other: Tensor) -> Tensor: ...
    @overload
    def greater_equal_(self, other: Number) -> Tensor: ...
    @overload
    def gt(self, other: Tensor) -> Tensor: ...
    @overload
    def gt(self, other: Number) -> Tensor: ...
    @overload
    def gt_(self, other: Tensor) -> Tensor: ...
    @overload
    def gt_(self, other: Number) -> Tensor: ...
    def half(self) -> Tensor: ...
    def hardshrink(self, lambd: Number=0.5) -> Tensor: ...
    def has_names(self) -> _bool: ...
    def heaviside(self, values: Tensor) -> Tensor: ...
    def heaviside_(self, values: Tensor) -> Tensor: ...
    def histc(self, bins: _int=100, min: Number=0, max: Number=0) -> Tensor: ...
    @overload
    def histogram(self, bins: Tensor, *, weight: Optional[Tensor]=None, density: _bool=False) -> torch.return_types.histogram: ...
    @overload
    def histogram(self, bins: _int=100, *, range: Optional[Sequence[_float]]=None, weight: Optional[Tensor]=None, density: _bool=False) -> torch.return_types.histogram: ...
    @overload
    def hsplit(self, sections: _int) -> List[Tensor]: ...
    @overload
    def hsplit(self, indices: _size) -> List[Tensor]: ...
    @overload
    def hsplit(self, *indices: _int) -> List[Tensor]: ...
    def hypot(self, other: Tensor) -> Tensor: ...
    def hypot_(self, other: Tensor) -> Tensor: ...
    def i0(self) -> Tensor: ...
    def i0_(self) -> Tensor: ...
    def igamma(self, other: Tensor) -> Tensor: ...
    def igamma_(self, other: Tensor) -> Tensor: ...
    def igammac(self, other: Tensor) -> Tensor: ...
    def igammac_(self, other: Tensor) -> Tensor: ...
    @overload
    def index_add(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Number=1) -> Tensor: ...
    @overload
    def index_add(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor, *, alpha: Number=1) -> Tensor: ...
    def index_add_(self, dim: _int, index: Tensor, source: Tensor, *, alpha: Number=1) -> Tensor: ...
    @overload
    def index_copy(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy_(self, dim: _int, index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_copy_(self, dim: Union[str, ellipsis, None], index: Tensor, source: Tensor) -> Tensor: ...
    @overload
    def index_fill(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
    @overload
    def index_fill(self, dim: Union[str, ellipsis, None], index: Tensor, value: Number) -> Tensor: ...
    @overload
    def index_fill_(self, dim: _int, index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def index_fill_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
    @overload
    def index_fill_(self, dim: Union[str, ellipsis, None], index: Tensor, value: Number) -> Tensor: ...
    def index_put(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
    def index_put_(self, indices: Optional[Union[Tuple[Tensor, ...], List[Tensor]]], values: Tensor, accumulate: _bool=False) -> Tensor: ...
    def index_reduce(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
    def index_reduce_(self, dim: _int, index: Tensor, source: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
    @overload
    def index_select(self, dim: _int, index: Tensor) -> Tensor: ...
    @overload
    def index_select(self, dim: Union[str, ellipsis, None], index: Tensor) -> Tensor: ...
    def indices(self) -> Tensor: ...
    def inner(self, other: Tensor) -> Tensor: ...
    def int(self) -> Tensor: ...
    def int_repr(self) -> Tensor: ...
    def inverse(self) -> Tensor: ...
    def is_coalesced(self) -> _bool: ...
    def is_complex(self) -> _bool: ...
    def is_conj(self) -> _bool: ...
    def is_contiguous(self, memory_format=torch.contiguous_format) -> _bool: ...
    is_cuda: _bool
    def is_distributed(self) -> _bool: ...
    def is_floating_point(self) -> _bool: ...
    def is_inference(self) -> _bool: ...
    is_ipu: _bool
    is_leaf: _bool
    is_meta: _bool
    is_mkldnn: _bool
    is_mps: _bool
    def is_neg(self) -> _bool: ...
    is_nested: _bool
    def is_nonzero(self) -> _bool: ...
    is_ort: _bool
    def is_pinned(self, device: Optional[Union[_device, str, None]]=None) -> _bool: ...
    is_quantized: _bool
    def is_same_size(self, other: Tensor) -> _bool: ...
    def is_set_to(self, tensor: Tensor) -> _bool: ...
    def is_signed(self) -> _bool: ...
    is_sparse: _bool
    is_sparse_csr: _bool
    is_vulkan: _bool
    def isclose(self, other: Tensor, rtol: _float=1e-05, atol: _float=1e-08, equal_nan: _bool=False) -> Tensor: ...
    def isfinite(self) -> Tensor: ...
    def isinf(self) -> Tensor: ...
    def isnan(self) -> Tensor: ...
    def isneginf(self) -> Tensor: ...
    def isposinf(self) -> Tensor: ...
    def isreal(self) -> Tensor: ...
    def istft(self, n_fft: _int, hop_length: Optional[_int]=None, win_length: Optional[_int]=None, window: Optional[Tensor]=None, center: _bool=True, normalized: _bool=False, onesided: Optional[_bool]=None, length: Optional[_int]=None, return_complex: _bool=False) -> Tensor: ...
    def item(self) -> Number: ...
    def kron(self, other: Tensor) -> Tensor: ...
    @overload
    def kthvalue(self, k: _int, dim: _int=-1, keepdim: _bool=False) -> torch.return_types.kthvalue: ...
    @overload
    def kthvalue(self, k: _int, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.kthvalue: ...
    def lcm(self, other: Tensor) -> Tensor: ...
    def lcm_(self, other: Tensor) -> Tensor: ...
    def ldexp(self, other: Tensor) -> Tensor: ...
    def ldexp_(self, other: Tensor) -> Tensor: ...
    @overload
    def le(self, other: Tensor) -> Tensor: ...
    @overload
    def le(self, other: Number) -> Tensor: ...
    @overload
    def le_(self, other: Tensor) -> Tensor: ...
    @overload
    def le_(self, other: Number) -> Tensor: ...
    @overload
    def lerp(self, end: Tensor, weight: Tensor) -> Tensor: ...
    @overload
    def lerp(self, end: Tensor, weight: Number) -> Tensor: ...
    @overload
    def lerp_(self, end: Tensor, weight: Tensor) -> Tensor: ...
    @overload
    def lerp_(self, end: Tensor, weight: Number) -> Tensor: ...
    @overload
    def less(self, other: Tensor) -> Tensor: ...
    @overload
    def less(self, other: Number) -> Tensor: ...
    @overload
    def less_(self, other: Tensor) -> Tensor: ...
    @overload
    def less_(self, other: Number) -> Tensor: ...
    @overload
    def less_equal(self, other: Tensor) -> Tensor: ...
    @overload
    def less_equal(self, other: Number) -> Tensor: ...
    @overload
    def less_equal_(self, other: Tensor) -> Tensor: ...
    @overload
    def less_equal_(self, other: Number) -> Tensor: ...
    def lgamma(self) -> Tensor: ...
    def lgamma_(self) -> Tensor: ...
    def log(self) -> Tensor: ...
    def log10(self) -> Tensor: ...
    def log10_(self) -> Tensor: ...
    def log1p(self) -> Tensor: ...
    def log1p_(self) -> Tensor: ...
    def log2(self) -> Tensor: ...
    def log2_(self) -> Tensor: ...
    def log_(self) -> Tensor: ...
    def log_normal_(self, mean: _float=1, std: _float=2, *, generator: Optional[Generator]=None) -> Tensor: ...
    @overload
    def log_softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def log_softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    def logaddexp(self, other: Tensor) -> Tensor: ...
    def logaddexp2(self, other: Tensor) -> Tensor: ...
    @overload
    def logcumsumexp(self, dim: _int) -> Tensor: ...
    @overload
    def logcumsumexp(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
    def logdet(self) -> Tensor: ...
    def logical_and(self, other: Tensor) -> Tensor: ...
    def logical_and_(self, other: Tensor) -> Tensor: ...
    def logical_not(self) -> Tensor: ...
    def logical_not_(self) -> Tensor: ...
    def logical_or(self, other: Tensor) -> Tensor: ...
    def logical_or_(self, other: Tensor) -> Tensor: ...
    def logical_xor(self, other: Tensor) -> Tensor: ...
    def logical_xor_(self, other: Tensor) -> Tensor: ...
    def logit(self, eps: Optional[_float]=None) -> Tensor: ...
    def logit_(self, eps: Optional[_float]=None) -> Tensor: ...
    @overload
    def logsumexp(self, dim: Union[_int, _size], keepdim: _bool=False) -> Tensor: ...
    @overload
    def logsumexp(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False) -> Tensor: ...
    def long(self) -> Tensor: ...
    def lstsq(self, A: Tensor) -> torch.return_types.lstsq: ...
    @overload
    def lt(self, other: Tensor) -> Tensor: ...
    @overload
    def lt(self, other: Number) -> Tensor: ...
    @overload
    def lt_(self, other: Tensor) -> Tensor: ...
    @overload
    def lt_(self, other: Number) -> Tensor: ...
    def lu_solve(self, LU_data: Tensor, LU_pivots: Tensor) -> Tensor: ...
    def map2_(self, x: Tensor, y: Tensor, callable: Callable) -> Tensor: ...
    def map_(self, tensor: Tensor, callable: Callable) -> Tensor: ...
    @overload
    def masked_fill(self, mask: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def masked_fill(self, mask: Tensor, value: Number) -> Tensor: ...
    @overload
    def masked_fill_(self, mask: Tensor, value: Tensor) -> Tensor: ...
    @overload
    def masked_fill_(self, mask: Tensor, value: Number) -> Tensor: ...
    def masked_scatter(self, mask: Tensor, source: Tensor) -> Tensor: ...
    def masked_scatter_(self, mask: Tensor, source: Tensor) -> Tensor: ...
    def masked_select(self, mask: Tensor) -> Tensor: ...
    def matmul(self, other: Tensor) -> Tensor: ...
    def matrix_exp(self) -> Tensor: ...
    def matrix_power(self, n: _int) -> Tensor: ...
    @overload
    def max(self) -> Tensor: ...
    @overload
    def max(self, other: Tensor) -> Tensor: ...
    @overload
    def max(self, dim: _int, keepdim: _bool=False) -> torch.return_types.max: ...
    @overload
    def max(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.max: ...
    def maximum(self, other: Tensor) -> Tensor: ...
    @overload
    def mean(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def mean(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def mean(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def median(self) -> Tensor: ...
    @overload
    def median(self, dim: _int, keepdim: _bool=False) -> torch.return_types.median: ...
    @overload
    def median(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.median: ...
    @overload
    def min(self) -> Tensor: ...
    @overload
    def min(self, other: Tensor) -> Tensor: ...
    @overload
    def min(self, dim: _int, keepdim: _bool=False) -> torch.return_types.min: ...
    @overload
    def min(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.min: ...
    def minimum(self, other: Tensor) -> Tensor: ...
    def mm(self, mat2: Tensor) -> Tensor: ...
    @overload
    def mode(self, dim: _int=-1, keepdim: _bool=False) -> torch.return_types.mode: ...
    @overload
    def mode(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.mode: ...
    @overload
    def moveaxis(self, source: _int, destination: _int) -> Tensor: ...
    @overload
    def moveaxis(self, source: _size, destination: _size) -> Tensor: ...
    @overload
    def movedim(self, source: _int, destination: _int) -> Tensor: ...
    @overload
    def movedim(self, source: _size, destination: _size) -> Tensor: ...
    def msort(self) -> Tensor: ...
    def mul(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    def mul_(self, other: Union[Tensor, Number]) -> Tensor: ...
    def multinomial(self, num_samples: _int, replacement: _bool=False, *, generator: Optional[Generator]=None) -> Tensor: ...
    @overload
    def multiply(self, other: Tensor) -> Tensor: ...
    @overload
    def multiply(self, other: Number) -> Tensor: ...
    @overload
    def multiply_(self, other: Tensor) -> Tensor: ...
    @overload
    def multiply_(self, other: Number) -> Tensor: ...
    def mv(self, vec: Tensor) -> Tensor: ...
    def mvlgamma(self, p: _int) -> Tensor: ...
    def mvlgamma_(self, p: _int) -> Tensor: ...
    def nan_to_num(self, nan: Optional[_float]=None, posinf: Optional[_float]=None, neginf: Optional[_float]=None) -> Tensor: ...
    def nan_to_num_(self, nan: Optional[_float]=None, posinf: Optional[_float]=None, neginf: Optional[_float]=None) -> Tensor: ...
    def nanmean(self, dim: Union[_int, _size]=(), keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def nanmedian(self) -> Tensor: ...
    @overload
    def nanmedian(self, dim: _int, keepdim: _bool=False) -> torch.return_types.nanmedian: ...
    @overload
    def nanmedian(self, dim: Union[str, ellipsis, None], keepdim: _bool=False) -> torch.return_types.nanmedian: ...
    @overload
    def nanquantile(self, q: Tensor, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
    @overload
    def nanquantile(self, q: _float, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
    def nansum(self, dim: Union[_int, _size]=(), keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def narrow(self, dim: _int, start: Tensor, length: _int) -> Tensor: ...
    @overload
    def narrow(self, dim: _int, start: _int, length: _int) -> Tensor: ...
    @overload
    def narrow_copy(self, dim: _int, start: _int, length: SymInt) -> Tensor: ...
    @overload
    def narrow_copy(self, dim: _int, start: _int, length: _int) -> Tensor: ...
    def ndimension(self) -> _int: ...
    @overload
    def ne(self, other: Tensor) -> Tensor: ...
    @overload
    def ne(self, other: Number) -> Tensor: ...
    @overload
    def ne_(self, other: Tensor) -> Tensor: ...
    @overload
    def ne_(self, other: Number) -> Tensor: ...
    def neg(self) -> Tensor: ...
    def neg_(self) -> Tensor: ...
    def negative(self) -> Tensor: ...
    def negative_(self) -> Tensor: ...
    def nelement(self) -> _int: ...
    @overload
    def new(self, *args: Any, device: Union[_device, str, None]=None) ->Tensor: ...
    @overload
    def new(self, storage: Storage) -> Tensor: ...
    @overload
    def new(self, other: Tensor) -> Tensor: ...
    @overload
    def new(self, size: _size, *, device: Union[_device, str, None]=None) -> Tensor: ...
    @overload
    def new_empty(self, size: _size, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
    @overload
    def new_empty(self, *size: _int, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
    def new_empty_strided(self, size: _size, stride: _size, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
    def new_full(self, size: _size, fill_value: Number, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
    @overload
    def new_ones(self, size: _size, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
    @overload
    def new_ones(self, size: _size, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
    @overload
    def new_ones(self, *size: _int, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
    def new_tensor(self, data: Any, dtype: Optional[_dtype]=None, device: Union[_device, str, None]=None, requires_grad: _bool=False) -> Tensor: ...
    @overload
    def new_zeros(self, size: _size, *, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
    @overload
    def new_zeros(self, *size: _int, dtype: _dtype=None, layout: Optional[_layout]=strided, device: Union[_device, str, None]=None, pin_memory: _bool=False, requires_grad: _bool=False) -> Tensor: ...
    def nextafter(self, other: Tensor) -> Tensor: ...
    def nextafter_(self, other: Tensor) -> Tensor: ...
    @overload
    def nonzero(self, *, as_tuple: Literal[False]=False) -> Tensor: ...
    @overload
    def nonzero(self, *, as_tuple: Literal[True]) -> Tuple[Tensor, ...]: ...
    def normal_(self, mean: _float=0, std: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
    @overload
    def not_equal(self, other: Tensor) -> Tensor: ...
    @overload
    def not_equal(self, other: Number) -> Tensor: ...
    @overload
    def not_equal_(self, other: Tensor) -> Tensor: ...
    @overload
    def not_equal_(self, other: Number) -> Tensor: ...
    def numel(self) -> _int: ...
    def numpy(self) -> Any: ...
    def orgqr(self, input2: Tensor) -> Tensor: ...
    def ormqr(self, input2: Tensor, input3: Tensor, left: _bool=True, transpose: _bool=False) -> Tensor: ...
    def outer(self, vec2: Tensor) -> Tensor: ...
    @overload
    def permute(self, dims: _size) -> Tensor: ...
    @overload
    def permute(self, *dims: _int) -> Tensor: ...
    def pin_memory(self, device: Optional[Union[_device, str, None]]=None) -> Tensor: ...
    def pinverse(self, rcond: _float=1e-15) -> Tensor: ...
    def polygamma(self, n: _int) -> Tensor: ...
    def polygamma_(self, n: _int) -> Tensor: ...
    def positive(self) -> Tensor: ...
    @overload
    def pow(self, exponent: Tensor) -> Tensor: ...
    @overload
    def pow(self, exponent: Number) -> Tensor: ...
    @overload
    def pow_(self, exponent: Tensor) -> Tensor: ...
    @overload
    def pow_(self, exponent: Number) -> Tensor: ...
    def prelu(self, weight: Tensor) -> Tensor: ...
    @overload
    def prod(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def prod(self, dim: _int, keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def prod(self, dim: Union[str, ellipsis, None], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    def put(self, index: Tensor, source: Tensor, accumulate: _bool=False) -> Tensor: ...
    def put_(self, index: Tensor, source: Tensor, accumulate: _bool=False) -> Tensor: ...
    def q_per_channel_axis(self) -> _int: ...
    def q_per_channel_scales(self) -> Tensor: ...
    def q_per_channel_zero_points(self) -> Tensor: ...
    def q_scale(self) -> _float: ...
    def q_zero_point(self) -> _int: ...
    def qr(self, some: _bool=True) -> torch.return_types.qr: ...
    def qscheme(self) -> _qscheme: ...
    @overload
    def quantile(self, q: Tensor, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
    @overload
    def quantile(self, q: _float, dim: Optional[_int]=None, keepdim: _bool=False, *, interpolation: str="linear") -> Tensor: ...
    def rad2deg(self) -> Tensor: ...
    def rad2deg_(self) -> Tensor: ...
    @overload
    def random_(self, *, generator: Optional[Generator]=None) -> Tensor: ...
    @overload
    def random_(self, from_: _int, to: Optional[_int], *, generator: Optional[Generator]=None) -> Tensor: ...
    @overload
    def random_(self, to: _int, *, generator: Optional[Generator]=None) -> Tensor: ...
    def ravel(self) -> Tensor: ...
    def reciprocal(self) -> Tensor: ...
    def reciprocal_(self) -> Tensor: ...
    def record_stream(self, s: Stream) -> None: ...
    def refine_names(self, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
    def relu(self) -> Tensor: ...
    def relu_(self) -> Tensor: ...
    @overload
    def remainder(self, other: Tensor) -> Tensor: ...
    @overload
    def remainder(self, other: Number) -> Tensor: ...
    @overload
    def remainder_(self, other: Tensor) -> Tensor: ...
    @overload
    def remainder_(self, other: Number) -> Tensor: ...
    def rename(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ...
    def rename_(self, names: Optional[Sequence[Union[str, ellipsis, None]]]) -> Tensor: ...
    def renorm(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
    def renorm_(self, p: Number, dim: _int, maxnorm: Number) -> Tensor: ...
    @overload
    def repeat(self, repeats: _size) -> Tensor: ...
    @overload
    def repeat(self, *repeats: _int) -> Tensor: ...
    @overload
    def repeat_interleave(self, repeats: Tensor, dim: Optional[_int]=None, *, output_size: Optional[_int]=None) -> Tensor: ...
    @overload
    def repeat_interleave(self, repeats: _int, dim: Optional[_int]=None, *, output_size: Optional[_int]=None) -> Tensor: ...
    def requires_grad_(self, mode: _bool=True) -> Tensor: ...
    @overload
    def reshape(self, shape: _size) -> Tensor: ...
    @overload
    def reshape(self, *shape: _int) -> Tensor: ...
    def reshape_as(self, other: Tensor) -> Tensor: ...
    @overload
    def resize_(self, size: _size, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
    @overload
    def resize_(self, *size: _int, memory_format: Optional[memory_format]=None) -> Tensor: ...
    def resize_as_(self, the_template: Tensor, *, memory_format: Optional[memory_format]=None) -> Tensor: ...
    def resize_as_sparse_(self, the_template: Tensor) -> Tensor: ...
    def resolve_conj(self) -> Tensor: ...
    def resolve_neg(self) -> Tensor: ...
    def retain_grad(self) -> None: ...
    def roll(self, shifts: Union[_int, _size], dims: Union[_int, _size]=()) -> Tensor: ...
    def rot90(self, k: _int=1, dims: _size=(0,1)) -> Tensor: ...
    @overload
    def round(self) -> Tensor: ...
    @overload
    def round(self, *, decimals: _int) -> Tensor: ...
    @overload
    def round_(self) -> Tensor: ...
    @overload
    def round_(self, *, decimals: _int) -> Tensor: ...
    def row_indices(self) -> Tensor: ...
    def rsqrt(self) -> Tensor: ...
    def rsqrt_(self) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, value: Number, *, reduce: str) -> Tensor: ...
    @overload
    def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
    @overload
    def scatter(self, dim: Union[str, ellipsis, None], index: Tensor, value: Number) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, src: Tensor, *, reduce: str) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, value: Number, *, reduce: str) -> Tensor: ...
    @overload
    def scatter_(self, dim: _int, index: Tensor, value: Number) -> Tensor: ...
    @overload
    def scatter_add(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    @overload
    def scatter_add(self, dim: Union[str, ellipsis, None], index: Tensor, src: Tensor) -> Tensor: ...
    def scatter_add_(self, dim: _int, index: Tensor, src: Tensor) -> Tensor: ...
    def scatter_reduce(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
    def scatter_reduce_(self, dim: _int, index: Tensor, src: Tensor, reduce: str, *, include_self: _bool=True) -> Tensor: ...
    @overload
    def select(self, dim: _int, index: _int) -> Tensor: ...
    @overload
    def select(self, dim: Union[str, ellipsis, None], index: _int) -> Tensor: ...
    def select_scatter(self, src: Tensor, dim: _int, index: _int) -> Tensor: ...
    @overload
    def set_(self, storage: Union[Storage, _TypedStorage], offset: _int, size: _size, stride: _size) -> Tensor: ...
    @overload
    def set_(self, storage: Union[Storage, _TypedStorage]) -> Tensor: ...
    def sgn(self) -> Tensor: ...
    def sgn_(self) -> Tensor: ...
    def short(self) -> Tensor: ...
    def sigmoid(self) -> Tensor: ...
    def sigmoid_(self) -> Tensor: ...
    def sign(self) -> Tensor: ...
    def sign_(self) -> Tensor: ...
    def signbit(self) -> Tensor: ...
    def sin(self) -> Tensor: ...
    def sin_(self) -> Tensor: ...
    def sinc(self) -> Tensor: ...
    def sinc_(self) -> Tensor: ...
    def sinh(self) -> Tensor: ...
    def sinh_(self) -> Tensor: ...
    @overload
    def size(self) -> Size: ...
    @overload
    def size(self, dim: _int) -> _int: ...
    def slice_scatter(self, src: Tensor, dim: _int=0, start: Optional[_int]=None, end: Optional[_int]=None, step: _int=1) -> Tensor: ...
    def slogdet(self) -> torch.return_types.slogdet: ...
    def smm(self, mat2: Tensor) -> Tensor: ...
    @overload
    def softmax(self, dim: _int, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def softmax(self, dim: Union[str, ellipsis, None], *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def sort(self, *, stable: Optional[_bool], dim: _int=-1, descending: _bool=False) -> torch.return_types.sort: ...
    @overload
    def sort(self, dim: _int=-1, descending: _bool=False) -> torch.return_types.sort: ...
    @overload
    def sort(self, *, stable: Optional[_bool], dim: Union[str, ellipsis, None], descending: _bool=False) -> torch.return_types.sort: ...
    @overload
    def sort(self, dim: Union[str, ellipsis, None], descending: _bool=False) -> torch.return_types.sort: ...
    def sparse_dim(self) -> _int: ...
    def sparse_mask(self, mask: Tensor) -> Tensor: ...
    def sparse_resize_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
    def sparse_resize_and_clear_(self, size: _size, sparse_dim: _int, dense_dim: _int) -> Tensor: ...
    @overload
    def split(self, split_size: _int, dim: _int=0) -> Sequence[Tensor]: ...
    @overload
    def split(self, split_size: Tuple[_int, ...], dim: _int=0) -> Sequence[Tensor]: ...
    def split_with_sizes(self, split_sizes: _size, dim: _int=0) -> List[Tensor]: ...
    def sqrt(self) -> Tensor: ...
    def sqrt_(self) -> Tensor: ...
    def square(self) -> Tensor: ...
    def square_(self) -> Tensor: ...
    @overload
    def squeeze(self) -> Tensor: ...
    @overload
    def squeeze(self, dim: _int) -> Tensor: ...
    @overload
    def squeeze(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
    @overload
    def squeeze_(self) -> Tensor: ...
    @overload
    def squeeze_(self, dim: _int) -> Tensor: ...
    @overload
    def squeeze_(self, dim: Union[str, ellipsis, None]) -> Tensor: ...
    def sspaddmm(self, mat1: Tensor, mat2: Tensor, *, beta: Number=1, alpha: Number=1) -> Tensor: ...
    @overload
    def std(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
    @overload
    def std(self, dim: Optional[Union[_int, _size]], *, correction: Optional[_int], keepdim: _bool=False) -> Tensor: ...
    @overload
    def std(self, unbiased: _bool=True) -> Tensor: ...
    @overload
    def std(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
    @overload
    def std(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[_int], keepdim: _bool=False) -> Tensor: ...
    def _storage(self) -> Storage: ...
    def storage_offset(self) -> _int: ...
    def storage_type(self) -> Storage: ...
    @overload
    def stride(self) -> Tuple[_int]: ...
    @overload
    def stride(self, _int) -> _int: ...
    def sub(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1, out: Optional[Tensor]=None) -> Tensor: ...
    def sub_(self, other: Union[Tensor, Number], *, alpha: Optional[Number]=1) -> Tensor: ...
    @overload
    def subtract(self, other: Tensor, *, alpha: Number=1) -> Tensor: ...
    @overload
    def subtract(self, other: Number, alpha: Number=1) -> Tensor: ...
    @overload
    def subtract_(self, other: Tensor, *, alpha: Number=1) -> Tensor: ...
    @overload
    def subtract_(self, other: Number, alpha: Number=1) -> Tensor: ...
    @overload
    def sum(self, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def sum(self, dim: Union[_int, _size], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def sum(self, dim: Sequence[Union[str, ellipsis, None]], keepdim: _bool=False, *, dtype: Optional[_dtype]=None) -> Tensor: ...
    @overload
    def sum_to_size(self, size: _size) -> Tensor: ...
    @overload
    def sum_to_size(self, *size: _int) -> Tensor: ...
    def svd(self, some: _bool=True, compute_uv: _bool=True) -> torch.return_types.svd: ...
    def swapaxes(self, axis0: _int, axis1: _int) -> Tensor: ...
    def swapaxes_(self, axis0: _int, axis1: _int) -> Tensor: ...
    def swapdims(self, dim0: _int, dim1: _int) -> Tensor: ...
    def swapdims_(self, dim0: _int, dim1: _int) -> Tensor: ...
    def symeig(self, eigenvectors: _bool=False, upper: _bool=True) -> torch.return_types.symeig: ...
    def t(self) -> Tensor: ...
    def t_(self) -> Tensor: ...
    def take(self, index: Tensor) -> Tensor: ...
    def take_along_dim(self, indices: Tensor, dim: Optional[_int]=None) -> Tensor: ...
    def tan(self) -> Tensor: ...
    def tan_(self) -> Tensor: ...
    def tanh(self) -> Tensor: ...
    def tanh_(self) -> Tensor: ...
    @overload
    def tensor_split(self, tensor_indices_or_sections: Tensor, dim: _int=0) -> List[Tensor]: ...
    @overload
    def tensor_split(self, sections: _int, dim: _int=0) -> List[Tensor]: ...
    @overload
    def tensor_split(self, indices: _size, dim: _int=0) -> List[Tensor]: ...
    @overload
    def tile(self, dims: _size) -> Tensor: ...
    @overload
    def tile(self, *dims: _int) -> Tensor: ...
    @overload
    def to(self, dtype: _dtype, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
    @overload
    def to(self, device: Optional[Union[_device, str]]=None, dtype: Optional[_dtype]=None, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
    @overload
    def to(self, other: Tensor, non_blocking: _bool=False, copy: _bool=False) -> Tensor: ...
    def to_dense(self, dtype: Optional[_dtype]=None) -> Tensor: ...
    def to_mkldnn(self, dtype: Optional[_dtype]=None) -> Tensor: ...
    def to_padded_tensor(self, padding: _float, output_size: Optional[_size]=None) -> Tensor: ...
    @overload
    def to_sparse(self) -> Tensor: ...
    @overload
    def to_sparse(self, sparse_dim: _int) -> Tensor: ...
    @overload
    def to_sparse_bsc(self, blocksize: Union[_int, _size]) -> Tensor: ...
    @overload
    def to_sparse_bsc(self, *blocksize: _int) -> Tensor: ...
    @overload
    def to_sparse_bsr(self, blocksize: Union[_int, _size]) -> Tensor: ...
    @overload
    def to_sparse_bsr(self, *blocksize: _int) -> Tensor: ...
    def to_sparse_csc(self) -> Tensor: ...
    def to_sparse_csr(self) -> Tensor: ...
    def tolist(self) -> List: ...
    def topk(self, k: _int, dim: _int=-1, largest: _bool=True, sorted: _bool=True) -> torch.return_types.topk: ...
    def trace(self) -> Tensor: ...
    @overload
    def transpose(self, dim0: _int, dim1: _int) -> Tensor: ...
    @overload
    def transpose(self, dim0: Union[str, ellipsis, None], dim1: Union[str, ellipsis, None]) -> Tensor: ...
    def transpose_(self, dim0: _int, dim1: _int) -> Tensor: ...
    def triangular_solve(self, A: Tensor, upper: _bool=True, transpose: _bool=False, unitriangular: _bool=False) -> torch.return_types.triangular_solve: ...
    def tril(self, diagonal: _int=0) -> Tensor: ...
    def tril_(self, diagonal: _int=0) -> Tensor: ...
    def triu(self, diagonal: _int=0) -> Tensor: ...
    def triu_(self, diagonal: _int=0) -> Tensor: ...
    def true_divide(self, other: Union[Tensor, Number], *, out: Optional[Tensor]=None) -> Tensor: ...
    def true_divide_(self, other: Union[Tensor, Number]) -> Tensor: ...
    def trunc(self) -> Tensor: ...
    def trunc_(self) -> Tensor: ...
    @overload
    def type(self, dtype: None=None, non_blocking: _bool=False) -> str: ...
    @overload
    def type(self, dtype: Union[str, _dtype], non_blocking: _bool=False) -> Tensor: ...
    def type_as(self, other: Tensor) -> Tensor: ...
    @overload
    def unbind(self, dim: _int=0) -> List[Tensor]: ...
    @overload
    def unbind(self, dim: Union[str, ellipsis, None]) -> List[Tensor]: ...
    @overload
    def unflatten(self, dim: _int, sizes: _size, names: Optional[Sequence[Union[str, ellipsis, None]]]=None) -> Tensor: ...
    @overload
    def unflatten(self, dim: Union[str, ellipsis, None], sizes: _size, names: Sequence[Union[str, ellipsis, None]]) -> Tensor: ...
    def unfold(self, dimension: _int, size: _int, step: _int) -> Tensor: ...
    def uniform_(self, from_: _float=0, to: _float=1, *, generator: Optional[Generator]=None) -> Tensor: ...
    def unsafe_chunk(self, chunks: _int, dim: _int=0) -> List[Tensor]: ...
    def unsafe_split(self, split_size: _int, dim: _int=0) -> List[Tensor]: ...
    def unsafe_split_with_sizes(self, split_sizes: _size, dim: _int=0) -> List[Tensor]: ...
    def unsqueeze(self, dim: _int) -> Tensor: ...
    def unsqueeze_(self, dim: _int) -> Tensor: ...
    def values(self) -> Tensor: ...
    @overload
    def var(self, dim: Union[_int, _size], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
    @overload
    def var(self, dim: Optional[Union[_int, _size]], *, correction: Optional[_int], keepdim: _bool=False) -> Tensor: ...
    @overload
    def var(self, unbiased: _bool=True) -> Tensor: ...
    @overload
    def var(self, dim: Sequence[Union[str, ellipsis, None]], unbiased: _bool=True, keepdim: _bool=False) -> Tensor: ...
    @overload
    def var(self, dim: Sequence[Union[str, ellipsis, None]], *, correction: Optional[_int], keepdim: _bool=False) -> Tensor: ...
    def vdot(self, other: Tensor) -> Tensor: ...
    @overload
    def view(self, dtype: _dtype) -> Tensor: ...
    @overload
    def view(self, size: _size) -> Tensor: ...
    @overload
    def view(self, *size: _int) -> Tensor: ...
    def view_as(self, other: Tensor) -> Tensor: ...
    @overload
    def vsplit(self, sections: _int) -> List[Tensor]: ...
    @overload
    def vsplit(self, indices: _size) -> List[Tensor]: ...
    @overload
    def vsplit(self, *indices: _int) -> List[Tensor]: ...
    def where(self, condition: Tensor, other: Tensor) -> Tensor: ...
    @overload
    def xlogy(self, other: Tensor) -> Tensor: ...
    @overload
    def xlogy(self, other: Number) -> Tensor: ...
    @overload
    def xlogy_(self, other: Tensor) -> Tensor: ...
    @overload
    def xlogy_(self, other: Number) -> Tensor: ...
    def zero_(self) -> Tensor: ...

# Defined in torch/csrc/multiprocessing/init.cpp
def _multiprocessing_init() -> None: ...

# Defined in torch/csrc/cuda/Module.cpp
def _cuda_getCurrentStream(device: _int) -> _int: ...
def _cuda_getDefaultStream(device: _int) -> _int: ...
def _cuda_getCurrentBlasHandle() -> _int: ...
def _cuda_setDevice(device: _int) -> None: ...
def _cuda_getDevice() -> _int: ...
def _cuda_getDeviceCount() -> _int: ...
def _cuda_set_sync_debug_mode(warn_level: Union[_int, str]) -> None: ...
def _cuda_get_sync_debug_mode() -> _int: ...
def _cuda_sleep(cycles: _int) -> None: ...
def _cuda_synchronize() -> None: ...
def _cuda_ipc_collect() -> None: ...
def _cuda_getArchFlags() -> Optional[str]: ...
def _cuda_init() -> None: ...
def _cuda_setStream(cuda_stream: _int) -> None: ...
def _cuda_getCompiledVersion() -> _int: ...
def _cuda_cudaHostAllocator() -> _int: ...
def _cuda_cudaCachingAllocator_raw_alloc(size: _int, cuda_stream: _int) -> _int: ...
def _cuda_cudaCachingAllocator_raw_delete(ptr: _int) -> None: ...
def _cuda_setMemoryFraction(fraction: _float, device: _int) -> None: ...
def _cuda_emptyCache() -> None: ...
def _cuda_memoryStats(device: _int) -> Dict[str, Any]: ...
def _cuda_resetAccumulatedMemoryStats(device: _int) -> None: ...
def _cuda_resetPeakMemoryStats(device: _int) -> None: ...
def _cuda_memorySnapshot() -> List[Dict[str, Any]]: ...
def _cuda_lock_mutex() -> None: ...
def _cuda_unlock_mutex() -> None: ...
def _cuda_canDeviceAccessPeer(device: _int, peer_device: _int) -> _bool: ...
def _cuda_jiterator_compile_and_launch_kernel(code_string: str,
                                              kernel_name: str,
                                              tensors: Tuple,
                                              kwargs: Dict[str, Union[_int, _float, _bool]]) -> Tensor: ...
def _nccl_version() -> _int: ...
def _nccl_unique_id() -> bytes: ...
def _nccl_init_rank(nranks: _int, comm_id: bytes, rank: _int) -> object: ...
def _nccl_reduce(input: Sequence[Tensor],
                 output: Tensor,
                 root: _int,
                 op: _int,
                 streams: Optional[Sequence[_CudaStreamBase]],
                 comms: Optional[Sequence[object]]) -> None: ...
def _nccl_all_reduce(input: Sequence[Tensor],
                     output: Sequence[Tensor],
                     op: _int,
                     streams: Optional[Sequence[_CudaStreamBase]],
                     comms: Optional[Sequence[object]]) -> None: ...
def _nccl_broadcast(input: Sequence[Tensor],
                    root: _int,
                    streams: Optional[Sequence[_CudaStreamBase]],
                    comms: Optional[Sequence[object]]) -> None: ...
def _nccl_all_gather(input: Sequence[Tensor],
                     output: Sequence[Tensor],
                     streams: Optional[Sequence[_CudaStreamBase]],
                     comms: Optional[Sequence[object]]) -> None: ...
def _nccl_reduce_scatter(input: Sequence[Tensor],
                         output: Sequence[Tensor],
                         op: _int,
                         streams: Optional[Sequence[_CudaStreamBase]],
                         comms: Optional[Sequence[object]]) -> None: ...
def _rocm_is_backward_pass() -> _bool: ...


class _CudaDeviceProperties:
    name: str
    major: _int
    minor: _int
    multi_processor_count: _int
    total_memory: _int
    is_integrated: _int
    is_multi_gpu_board: _int

# Defined in torch/csrc/cuda/python_comm.cpp
def _broadcast(tensor: Tensor, devices: List[_int]) -> List[Tensor]: ...
def _broadcast_out(tensor: Tensor, out_tensors: List[Tensor]) -> List[Tensor]: ...
def _broadcast_coalesced(
    tensors: List[Tensor],
    devices: List[_int],
    buffer_size: _int
) -> List[List[Tensor]]: ...

def _scatter(tensor: Tensor, devices: List[_int], chunk_sizes: Optional[List[_int]], dim: _int, streams: Optional[List[Stream]]) -> List[Tensor]: ...
def _scatter_out(tensor: Tensor, out_tensors: List[Tensor], dim: _int, streams: Optional[List[Stream]]) -> List[Tensor]: ...
def _gather(tensors: List[Tensor], dim: _int, destination_index: Optional[_int]) -> Tensor: ...
def _gather_out(tensors: List[Tensor], out_tensor: Tensor, dim: _int) -> Tensor: ...

# Defined in torch/csrc/cuda/Stream.cpp
class _CudaStreamBase:
    _cdata: _int
    device: _device
    cuda_stream: _int
    priority: _int

    def __new__(self, priority: _int = 0, _cdata: _int = 0, stream_ptr: _int = 0) -> _CudaStreamBase: ...
    def query(self) -> _bool: ...
    def synchronize(self) -> None: ...
    def priority_range(self) -> Tuple[_int, _int]: ...

# Defined in torch/csrc/cuda/Event.cpp
class _CudaEventBase:
    device: _device
    cuda_event: _int

    def __new__(cls, enable_timing: _bool = False, blocking: _bool = False, interprocess: _bool = False) -> _CudaEventBase: ...
    @classmethod
    def from_ipc_handle(cls, device: _device, ipc_handle: bytes) -> _CudaEventBase: ...
    def record(self, stream: _CudaStreamBase) -> None: ...
    def wait(self, stream: _CudaStreamBase) -> None: ...
    def query(self) -> _bool: ...
    def elapsed_time(self, other: _CudaEventBase) -> _float: ...
    def synchronize(self) -> None: ...
    def ipc_handle(self) -> bytes: ...

# Defined in torch/csrc/cuda/Graph.cpp
class _CUDAGraph:
    def capture_begin(self,
                      pool: Optional[Tuple[_int, _int]]=...) -> None: ...
    def capture_end(self) -> None: ...
    def replay(self) -> None: ...
    def reset(self) -> None: ...
    def pool(self) -> Tuple[_int, _int]: ...

def _cuda_isCurrentStreamCapturing() -> _bool: ...

def _graph_pool_handle() -> Tuple[_int, _int]: ...

# Defined in torch/csrc/DataLoader.cpp
def _set_worker_signal_handlers(*arg: Any) -> None: ...  # THPModule_setWorkerSignalHandlers
def _set_worker_pids(key: _int, child_pids: Tuple[_int, ...]) -> None: ...  # THPModule_setWorkerPIDs
def _remove_worker_pids(loader_id: _int) -> None: ...  # THPModule_removeWorkerPIDs
def _error_if_any_worker_fails() -> None: ...  # THPModule_errorIfAnyWorkerFails

# Defined in torch/csrc/jit/python/python_tracer.cpp
class TracingState:
    def push_scope(self, scope_name: str) -> None: ...
    def pop_scope(self) -> None: ...
    def current_scope(self) -> str: ...
    def set_graph(self, graph: Graph) -> None: ...
    def graph(self) -> Graph: ...
    ...

def _create_graph_by_tracing(
    func: Callable[..., Any],
    inputs: Any,
    var_name_lookup_fn: Callable[[Tensor], str],
    strict: Any,
    force_outplace: Any,
    self: Any = None,
    argument_names: List[str] = []
) -> Tuple[Graph, Stack]: ...
def _tracer_warn_use_python(): ...
def _get_tracing_state() -> TracingState: ...

# Defined in torch/csrc/jit/python/python_ir.cpp
# Not actually defined in python_ir.cpp, not sure where they are.
class IValue:
    ...
Stack = List[IValue]

class JitType:
    annotation_str : str
    def isSubtypeOf(self, other: JitType) -> _bool: ...
    def with_dtype(self, dtype: _dtype) -> JitType: ...
    def with_sizes(self, sizes: List[Optional[_int]]) -> JitType: ...
    def kind(self) -> str: ...

class InferredType:
    def __init__(self, arg: Union[JitType, str]): ...
    def type(self) -> JitType: ...
    def success(self) -> _bool: ...
    def reason(self) -> str: ...

R = TypeVar('R', bound=JitType)

class AnyType(JitType):
    @staticmethod
    def get() -> AnyType: ...

class NoneType(JitType):
    @staticmethod
    def get() -> NoneType: ...

class BoolType(JitType):
    @staticmethod
    def get() -> BoolType: ...

class FloatType(JitType):
    @staticmethod
    def get() -> FloatType: ...

class ComplexType(JitType):
    @staticmethod
    def get() -> ComplexType: ...

class IntType(JitType):
    @staticmethod
    def get() -> IntType: ...

class NumberType(JitType):
    @staticmethod
    def get() -> NumberType: ...

class StringType(JitType):
    @staticmethod
    def get() -> StringType: ...

class DeviceObjType(JitType):
    @staticmethod
    def get() -> DeviceObjType: ...

class StreamObjType(JitType):
    @staticmethod
    def get() -> StreamObjType: ...

class ListType(JitType):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...

    @staticmethod
    def ofInts() -> ListType: ...
    @staticmethod
    def ofTensors() -> ListType: ...
    @staticmethod
    def ofFloats() -> ListType: ...
    @staticmethod
    def ofComplexDoubles() -> ListType: ...
    @staticmethod
    def ofBools() -> ListType: ...

class DictType(JitType):
    def __init__(self, key: JitType, value: JitType) -> None: ...
    def getKeyType(self) -> JitType: ...
    def getValueType(self) -> JitType: ...

class TupleType(JitType):
    def __init__(self, a: List[Optional[JitType]]) -> None: ...
    def elements(self) -> List[JitType]: ...

class UnionType(JitType):
    def __init__(self, a: List[JitType]) -> None: ...

class ClassType(JitType):
    def __init__(self, qualified_name: str) -> None: ...

class InterfaceType(JitType):
    def __init__(self, qualified_name: str) -> None: ...
    def getMethod(self, name: str) -> Optional[FunctionSchema]: ...
    def getMethodNames(self) -> List[str]: ...

class OptionalType(JitType, Generic[R]):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...

    @staticmethod
    def ofTensor() -> OptionalType: ...

class FutureType(JitType):
    def __init__(self, a: JitType) -> None: ...
    def getElementType(self) -> JitType: ...

class RRefType(JitType):
    def __init__(self, a: JitType) -> None: ...

class EnumType(JitType):
    def __init__(
        self,
        qualified_name: str,
        value_type: JitType,
        enum_names_values: List[Any]
    ) -> None:
        ...

class TensorType(JitType):
    @classmethod
    def get(cls) -> TensorType: ...
    @classmethod
    def getInferred(cls) -> TensorType: ...
    def with_sizes(self, other: Optional[List[Optional[_int]]]) -> TensorType: ...
    def sizes(self) -> Optional[List[_int]]: ...
    def strides(self) -> Optional[List[_int]]: ...
    def device(self) -> Optional[_device]: ...
    def dtype(self) -> Optional[_dtype]: ...
    @staticmethod
    def create_from_tensor(t: Tensor) -> TensorType: ...

# Defined in torch/csrc/jit/python/python_tree_views.cpp
class SourceRange:
    ...

class TreeView:
    ...

class Ident(TreeView):
    @property
    def name(self) -> str: ...

class ClassDef(TreeView):
    ...

class Def(TreeView):
    def name(self) -> Ident: ...

class Decl(TreeView):
    ...

# Defined in torch/csrc/distributed/rpc/init.cpp
def _rpc_init() -> _bool: ...

# Defined in torch/csrc/distributed/autograd/init.cpp
def _dist_autograd_init() -> _bool: ...

# Defined in torch/csrc/distributed/c10d/init.cpp
def _c10d_init() -> _bool: ...

# Defined in torch/csrc/distributed/rpc/testing/init.cpp
def _faulty_agent_init() -> _bool: ...

def _enable_minidumps(directory: str) -> None: ...
def _disable_minidumps() -> None: ...
def _enable_minidumps_on_exceptions() -> None: ...
def _register_py_class_for_device(device: str, cls: Any) -> None: ...