Repository URL to install this package:
Version:
1.12.1+cpu ▾
|
from typing import Callable
import torch
from torch.fx import GraphModule
from torch._prims.utils import TensorMeta, getnvFuserDtype
from torch._prims.context import PrimContext
import torch.overrides
if torch.cuda.is_available():
from torch._C._nvfuser import Fusion, FusionDefinition # type: ignore[import]
def execute(ctx: PrimContext, *args, executor: str = "aten", **kwargs):
"""
Prototype ATen executor.
Just executes the context's graph.
"""
if executor == "aten":
gm = GraphModule({}, ctx.graph)
return gm.forward(*args, **kwargs)
elif executor == "nvfuser":
if not torch.cuda.is_available():
raise RuntimeError(
"Attempting to use nvFuser trace executor but CUDA is not available!"
)
# PROTOTYPE nvfuser executor
# Only accepts tensor inputs and single tensor outputs
# Does not handle kwargs
# Does not support reusing the same ctx to execute!
assert len(kwargs) == 0
# TODO: make this a proper trace -> trace transform that
# doesn't mutate the context
graph_fd = ctx.graph.placeholder("fd")
ctx.graph._root.append(graph_fd)
fusion = Fusion()
with FusionDefinition(fusion) as fd:
# Transforms graph to call nvfuser lowerings
nv_args = [fd]
for arg in args:
if isinstance(arg, torch.Tensor):
x = fd.define_tensor(
arg.size(), arg.stride(), getnvFuserDtype(arg.dtype)
)
fd.add_input(x)
nv_args.append(x)
else:
nv_args.append(x)
for x in ctx.graph.nodes:
if x.op == "call_function":
x.target = x.target.impl_nvfuser
x.args = (graph_fd,) + x.args
gm = GraphModule({}, ctx.graph)
out = gm.forward(*nv_args)
fd.add_output(out)
return fusion.execute(
tuple(arg for arg in args if isinstance(arg, torch.Tensor))
)[0]
msg = "Received unexpected value for 'executor': {0}. Allowed values are: aten, nvfuser.".format(
executor
)
raise ValueError(msg)
def make_traced(fn: Callable):
"""
Returns a function that, when called, will
trace its torch operations to prims and then
execute those prims on the requested trace executor
(possibly lowering them to that trace executor first).
Only supports the torch operations defined in _torch_to_reference_map
in context.py and operations with positional args. All args must
be tensors and the function must return a single tensor. In the
near future all these restrictions will be lifted.
Example usage:
def foo(a, b):
return torch.add(a, b)
traced_foo = make_traced(foo)
a = torch.randn((1, 2, 3, 4, 5), device='cuda')
b = torch.randn((1, 2, 3, 4, 5), device='cuda')
result = traced_foo(a, b, executor='nvfuser')
Executor may be either 'aten' or 'nvfuser'.
"""
def _traced(*args, executor="aten"):
ctx: PrimContext
with torch.overrides.push_torch_function_mode(PrimContext) as ctx: # type: ignore[attr-defined, assignment]
placeholders = []
for arg in args:
if isinstance(arg, torch.Tensor):
placeholders.append(ctx.placeholder(TensorMeta(arg)))
else:
placeholders.append(ctx.placeholder(arg))
result = fn(*placeholders)
ctx.output(result)
return execute(ctx, *args, executor=executor)
return _traced