Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
torch / include / ATen / TensorMeta.h
Size: Mime:
#pragma once

#include <ATen/DimVector.h>
#include <c10/core/TensorOptions.h>
#include <c10/util/strides.h>
#include <ATen/core/Dimname.h>

C10_CLANG_DIAGNOSTIC_PUSH()
#if C10_CLANG_HAS_WARNING("-Wdeprecated-copy-dtor")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wdeprecated-copy-dtor")
#endif

namespace at {

class Tensor;

namespace impl {

// Use this to define the prototype for a meta function.  There are two
// versions; one that takes one argument (just the operator name), or FUNC2
// variant that takes two arguments (operator name and overload name).
//
// Example usage:
//
//    TORCH_META_FUNC2(add, Tensor) (
//      const Tensor& self, const Tensor& other
//    ) {
//      ... compute sizes and options ...
//      set_output(sizes, options);
//    }
//
#define TORCH_META_FUNC(name) void structured_##name::meta
#define TORCH_META_FUNC2(name, overload) void structured_##name##_##overload::meta

// These are versions of TORCH_META_FUNC(2) that include a precompute_out struct as a return value.
// They should be used when the kernel in question has precomputed values declared in native_functions.yaml and
// the corresponding implementation should return an instance of the aforementioned struct.
#define TORCH_PRECOMPUTE_META_FUNC(name) structured_##name::meta_return_ty structured_##name::meta
#define TORCH_PRECOMPUTE_META_FUNC2(name, overload) structured_##name##_##overload::meta_return_ty structured_##name##_##overload::meta

// Use this to create a precompute struct in a meta function.
#define TORCH_PRECOMPUTE_STRUCT(name) structured_##name::precompute_out<>
#define TORCH_PRECOMPUTE_STRUCT2(name, overload) structured_##name##_##overload::precompute_out<>

// Use this to define the prototype for an implementation.  This takes only
// one argument, which is the name of the dispatch key entry you're
// implementing.
//
// Example usage:
//
//    TORCH_IMPL_FUNC(add_cpu) (
//      Tensor& result, const Tensor& self, const Tensor& other
//    ) {
//      ... do the actual implementation ...
//    }
//
#define TORCH_IMPL_FUNC(name) void structured_##name::impl

// Base class for all structured kernel classes.  The set_output virtual
// method is varied depending whether or not the operator is
// functional/out/inplace, and could also be specialized for CPU/CUDA/etc
// (although presently it isn't).
//
// A notable subclass of this interface is TensorIteratorBase.
struct TORCH_API MetaBase {
  virtual void set_output(int64_t output_idx, IntArrayRef sizes, IntArrayRef strides, TensorOptions options, DimnameList names) {
    set_output_raw_strided(output_idx, sizes, strides, options, names);
  }

  virtual const Tensor& maybe_get_output(int64_t output_idx) = 0;
  void set_output(IntArrayRef sizes, TensorOptions options) {
    set_output(0, sizes, {}, options, {});
  }
  void set_output(int64_t output_idx, IntArrayRef sizes, TensorOptions options) {
    set_output(output_idx, sizes, {}, options, {});
  }

  // See: https://github.com/pytorch/pytorch/issues/69813
  // Whenever defining the output properties in the META function of a structured
  // kernel (what was usually done with `set_output`), use one of these 3 variants,
  // instead. In order to decide which variant to use, check the following
  // decision tree:
  //
  // - Can the kernel you are going to implement support output tensors
  //   with arbitrary strides?
  //     |
  //     -- YES: `set_output_raw_strided`
  //     |
  //     -- NO: Should the output tensor strides be contiguous?
  //         |
  //         -- YES: `set_output_contiguous`
  //         |
  //         -- NO: `set_output_strided`
  //
  // Use this function whenever the kernel requires specific strides for the output.
  // If `strides` does not match the given output strides, proxy outputs will be
  // created and passed to the IMPL function.
  virtual void set_output_strided(
      int64_t output_idx,
      IntArrayRef sizes,
      IntArrayRef strides,
      TensorOptions options,
      DimnameList names = {}) {
    TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
  }

  // Use this function whenever the kernel knows how to handle arbitrary strided outputs.
  // This function has the same behavior as the old `set_output`: it will only
  // re-stride if the given output was resized.
  virtual void set_output_raw_strided(
      int64_t output_idx,
      IntArrayRef sizes,
      IntArrayRef strides_hint,
      TensorOptions options,
      DimnameList names = {}) {
    TORCH_INTERNAL_ASSERT(false, "set_output_strided not implemented.");
  }

  // Use this function if the kernel requires contiguous strides.
  // Alias for `set_output_strided`, but with contiguous strides.
  void set_output_contiguous(
      int64_t output_idx,
      IntArrayRef sizes,
      TensorOptions options,
      DimnameList names = {}) {
    auto strides = c10::contiguous_strides(sizes);
    set_output_strided(output_idx, sizes, strides, options, names);
  }

  // Returns a reference to an undefined tensor if there is no presupplied
  // output
  const Tensor& maybe_get_output() { return maybe_get_output(0); }
  virtual ~MetaBase() {}
};

} // namespace impl

} // namespace at

C10_CLANG_DIAGNOSTIC_POP()