Repository URL to install this package:
|
Version:
1.12.1+cpu ▾
|
#pragma once
#include <ATen/jit_macros.h>
// Jiterator functions are guarded behind this macro
#if AT_USE_JITERATOR()
#include <ATen/OpMathType.h>
#include <ATen/TensorIterator.h>
#include <ATen/core/Array.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/native/cuda/jit_utils.h>
#include <ATen/native/cuda/MemoryAccess.cuh>
#include <ATen/native/cuda/thread_constants.h>
#include <ATen/native/cuda/Loops.cuh>
#include <c10/macros/Macros.h>
#include <c10/core/ScalarType.h>
#include <type_traits>
#include <tuple>
#include <mutex>
namespace at {
namespace native {
namespace {
template <typename Tuple, std::size_t... I>
constexpr auto tuple_to_array_helper(Tuple& t, std::index_sequence<I...> seq) {
constexpr auto size = seq.size();
(void)t; // warning : unused parameter when tuple is empty.
return std::array<void*, size>{static_cast<void*>(&std::get<I>(t))...};
}
// Helper function convert tuple to std::array<void*, N>
// for passing the arguments to CUDA Kernel
// NOTE: We capture tuple by reference,
// so the pointers in returned array are only valid
// till tuple is alive.
template <typename ...Args>
constexpr auto tuple_to_array(std::tuple<Args...>& extra_args) {
constexpr auto tuple_size = sizeof...(Args);
return tuple_to_array_helper(extra_args, std::make_index_sequence<tuple_size>{});
}
// Helper function to return a vector<string>
// corresponding to the type of the arguments in parameter pack.
template <typename... Args>
c10::SmallVector<std::string> get_extra_args_typenames() {
return {at::cuda::jit::typeName<Args>()...};
}
} // namespace
template<char const *name,
typename result_type,
typename f_inputs_type,
at::cuda::jit::BinaryFuncVariant scalar_pos,
typename array_t,
typename inp_calc_t,
typename out_calc_t,
typename loader_t,
typename storer_t,
typename ... Args>
static inline void launch_jitted_unrolled_kernel(
DeviceIndex dev_idx, int64_t N, const std::string& f, array_t data,
inp_calc_t ic, out_calc_t oc, loader_t l, storer_t s, bool contiguous,
at::opmath_type<f_inputs_type> scalar_val,
std::tuple<Args...> extra_args) {
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
//casting result to int is always safe, intermediate is int64 and won't overflow
const uint32_t grid = (N + block_work_size() - 1) / block_work_size();
static std::mutex _jiterator_mutex;
static std::vector<at::cuda::jit::NvrtcFunction> fns(c10::cuda::device_count());
at::cuda::jit::NvrtcFunction* fn_ptr = &fns[dev_idx];
if (!fn_ptr->function) {
const std::lock_guard<std::mutex> lock{_jiterator_mutex};
if (!fn_ptr->function) {
constexpr int nInputs = array_t::size() - 1;
constexpr int nOutputs = 1; // fix me
constexpr bool dynamic_casting = !std::is_same<decltype(l),
memory::LoadWithoutCast>() || !std::is_same<decltype(s),
memory::StoreWithoutCast>();
std::string string_name{name};
std::string f_inputs_type_str = at::cuda::jit::typeName<f_inputs_type>();
std::string compute_type_str = at::cuda::jit::typeName<at::opmath_type<f_inputs_type>>();
std::string result_type_str = at::cuda::jit::typeName<result_type>();
c10::SmallVector<std::string> extra_args_types = get_extra_args_typenames<Args...>();
auto code = at::cuda::jit::generate_code(nInputs, nOutputs, f, string_name,
f_inputs_type_str, compute_type_str, result_type_str,
contiguous, dynamic_casting, scalar_pos, extra_args_types);
*fn_ptr = at::cuda::jit::jit_pwise_function(code, name);
}
}
// pack args for kernel launch
constexpr int kernel_args = 7;
// size of `extra_args` is known at compile-time
constexpr auto extra_args_size = sizeof...(Args);
void* args[kernel_args + extra_args_size];
args[0] = static_cast<void*>(&N);
args[1] = static_cast<void*>(&data);
args[2] = static_cast<void*>(&ic);
args[3] = static_cast<void*>(&oc);
args[4] = static_cast<void*>(&l);
args[5] = static_cast<void*>(&s);
args[6] = static_cast<void*>(&scalar_val);
auto extra_args_array = tuple_to_array(extra_args);
for (const auto i : c10::irange(extra_args_size)) {
// since 7 slots are already filled in `args`
args[i + 7] = extra_args_array[i];
}
at::cuda::jit::launch_jitted_pwise_function(*fn_ptr, args, {grid, 1u, 1u},
{num_threads(), 1u, 1u});
}
template<
char const *name,
typename result_type,
typename f_inputs_type,
int arity,
at::cuda::jit::BinaryFuncVariant scalar_pos,
typename array_t, typename ... Args>
static inline void launch_jitted_vectorized_kernel(DeviceIndex dev_idx, int64_t N, const std::string& f, array_t data,
at::opmath_type<f_inputs_type> scalar_val, std::tuple<Args...> extra_args) {
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
// N is still int64_t for the computation, but it's always safe to cast result to int
const uint32_t grid = (N + block_work_size() - 1) / block_work_size();
const int vec_size = memory::jitted_can_vectorize_up_to<result_type, f_inputs_type, arity>(data);
// Different kernels are compiled depending on what we're vectorizing up to (1, 2 or 4 elements)
// fn_ptr is set to the appropriate function based on the vec size and GPU used
// TODO: Memory use can probably be optimized by re-using kernels across GPUs with
// the same compute capability
static std::mutex _jiterator_mutex;
static std::vector<at::cuda::jit::NvrtcFunction> fns4(c10::cuda::device_count());
static std::vector<at::cuda::jit::NvrtcFunction> fns2(c10::cuda::device_count());
static std::vector<at::cuda::jit::NvrtcFunction> fns1(c10::cuda::device_count());
at::cuda::jit::NvrtcFunction* fn_ptr;
if (vec_size == 4) {
fn_ptr = &fns4[dev_idx];
} else if (vec_size == 2) {
fn_ptr = &fns2[dev_idx];
} else if (vec_size ==1) {
fn_ptr = &fns1[dev_idx];
} else {
TORCH_INTERNAL_ASSERT(false, "unexpected vec_size for jitter vectorized kernel");
}
bool vectorized = vec_size > 1;
if (!fn_ptr->function) {
const std::lock_guard<std::mutex> lock{_jiterator_mutex};
if (!fn_ptr->function) { // cache miss!
// Generates program
constexpr int nInputs = array_t::size() - 1;
constexpr int nOutputs = 1; // fix me
std::string string_name{name};
std::string f_inputs_type_str = at::cuda::jit::typeName<f_inputs_type>();
std::string compute_type_str = at::cuda::jit::typeName<at::opmath_type<f_inputs_type>>();
std::string result_type_str = at::cuda::jit::typeName<result_type>();
c10::SmallVector<std::string> extra_args_types = get_extra_args_typenames<Args...>();
auto code = at::cuda::jit::generate_code(nInputs, nOutputs, f, string_name,
f_inputs_type_str, compute_type_str, result_type_str,
/*contiguous=*/true, /*dynamic_casting=*/false,
scalar_pos,
extra_args_types,
vectorized, vec_size);
std::string kernel_name = vectorized ? string_name + "_vectorized" + std::to_string(vec_size) : string_name;
// Acquires the program
*fn_ptr = at::cuda::jit::jit_pwise_function(code, kernel_name);
}
}
// size of `extra_args` is known at compile-time
constexpr auto extra_args_size = sizeof...(Args);
auto extra_args_array = tuple_to_array(extra_args);
if (vectorized) {
// pack args for kernel launch
constexpr int kernel_args = 3;
void* args[kernel_args + extra_args_size];
args[0] = static_cast<void*>(&N);
args[1] = static_cast<void*>(&data);
args[2] = static_cast<void*>(&scalar_val);
for (const auto i : c10::irange(extra_args_size)) {
// since 3 slots are already filled in `args`
args[i + 3] = extra_args_array[i];
}
at::cuda::jit::launch_jitted_pwise_function(*fn_ptr, args, {grid, 1u, 1u}, {num_threads(), 1u, 1u});
} else {
auto ic = TrivialOffsetCalculator<arity>();
auto oc = TrivialOffsetCalculator<1>();
auto l = memory::LoadWithoutCast();
auto s = memory::StoreWithoutCast();
// pack args for kernel launch
constexpr int kernel_args = 7;
void* args[kernel_args + extra_args_size];
args[0] = static_cast<void*>(&N);
args[1] = static_cast<void*>(&data);
args[2] = static_cast<void*>(&ic);
args[3] = static_cast<void*>(&oc);
args[4] = static_cast<void*>(&l);
args[5] = static_cast<void*>(&s);
args[6] = static_cast<void*>(&scalar_val);
for (const auto i : c10::irange(extra_args_size)) {
// since 7 slots are already filled in `args`
args[i + 7] = extra_args_array[i];
}
at::cuda::jit::launch_jitted_pwise_function(*fn_ptr, args, {grid, 1u, 1u}, {num_threads(), 1u, 1u});
}
}
template <
char const* name,
typename result_type,
typename f_inputs_type,
int arity,
at::cuda::jit::BinaryFuncVariant scalar_pos =
at::cuda::jit::BinaryFuncVariant::NoScalar,
typename... Args>
void jitted_gpu_kernel_impl(
TensorIteratorBase& iter,
const std::string& f,
const bool dynamic_casting,
at::opmath_type<f_inputs_type> scalar_val,
std::tuple<Args...> extra_args) {
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
TORCH_INTERNAL_ASSERT(iter.ninputs() == arity);
TORCH_INTERNAL_ASSERT(iter.noutputs() == 1);
constexpr int ntensors = arity + 1;
at::detail::Array<char*, ntensors> data;
for (auto i = decltype(ntensors){0}; i < ntensors; ++i) {
data[i] = (char*)iter.data_ptr(i);
}
int64_t numel = iter.numel();
bool contiguous = iter.is_contiguous();
// Decides which of 4 kernel types to launch
// Variations are:
// - Case 1: no dynamic casting and contiguous
// - Case 2: no dynamic casting and noncontiguous
// - Case 3: dynamic casting and contiguous
// - Case 4: dynamic casting and noncontiguous
// These cases align with the non-jitted CUDALoops.cuh cases in gpu_kernel_impl
if (!dynamic_casting) {
if (contiguous) {
// Case 1: no dynamic casting and contiguous
launch_jitted_vectorized_kernel<name, result_type, f_inputs_type, arity, scalar_pos>(
iter.device().index(), numel, f, data, scalar_val, extra_args);
return;
}
// Case 2: no dynamic casting and noncontiguous
auto input_offset_calculator = make_input_offset_calculator<arity>(iter);
auto output_offset_calculator = make_output_offset_calculator(iter);
auto loader = memory::LoadWithoutCast();
auto storer = memory::StoreWithoutCast();
launch_jitted_unrolled_kernel<name, result_type, f_inputs_type, scalar_pos>(
iter.device().index(), numel, f, data, input_offset_calculator,
output_offset_calculator, loader, storer, contiguous, scalar_val, extra_args);
return;
}
// Cases 3 and 4 are handled below
// Both require construction of a storer (this asserts 1 output) and one or more loaders
// Creates store cast to output (the zeroth tensor in TensorIterator)
auto storer = memory::StoreWithCast(iter.dtype(0));
// Creates load casts from inputs (note offset indexing into the iterators 1...n tensors)
at::detail::Array<ScalarType, arity> dtypes;
for (auto i = decltype(arity){0}; i < arity; ++i) {
dtypes[i] = iter.dtype(i + 1);
}
auto loader = memory::LoadWithCast<arity>(dtypes);
if (contiguous) {
// Case 3: dynamic casting and contiguous
auto input_offset_calculator = TrivialOffsetCalculator<arity>();
auto output_offset_calculator = TrivialOffsetCalculator<1>();
launch_jitted_unrolled_kernel<name, result_type, f_inputs_type, scalar_pos>(
iter.device().index(), numel, f, data, input_offset_calculator,
output_offset_calculator, loader, storer, contiguous, scalar_val, extra_args);
return;
}
// Case 4: dynamic casting and noncontiguous
auto input_offset_calculator = make_input_offset_calculator<arity>(iter);
auto output_offset_calculator = make_output_offset_calculator(iter);
launch_jitted_unrolled_kernel<name, result_type, f_inputs_type, scalar_pos>(
iter.device().index(), numel, f, data, input_offset_calculator,
output_offset_calculator, loader, storer, contiguous, scalar_val, extra_args);
}
}} // at::native
#endif // AT_USE_JITERATOR()