Repository URL to install this package:
|
Version:
1.12.1+cpu ▾
|
#pragma once
#ifdef TORCH_ASSERT_NO_OPERATORS
#error This change adds a dependency on native_functions.yaml, \
meaning the file will need to be re-compiled every time an operator \
is changed or added. Consider if your change would be better placed in \
another file, or if a more specific header might achieve the same goal. \
See NOTE: [Tensor vs. TensorBase]
#endif
#include <c10/core/Device.h>
#include <c10/core/Layout.h>
#include <c10/core/MemoryFormat.h>
#include <c10/core/QScheme.h>
#include <c10/core/Stream.h>
#include <c10/core/Scalar.h>
#include <c10/core/ScalarType.h>
#include <c10/core/ScalarTypeToTypeMeta.h>
#include <c10/core/Storage.h>
#include <c10/core/TensorImpl.h>
#include <c10/core/UndefinedTensorImpl.h>
#include <c10/core/WrapDimMinimal.h>
#include <c10/util/Exception.h>
#include <c10/util/Deprecated.h>
#include <c10/util/MaybeOwned.h>
#include <c10/util/Optional.h>
#include <c10/util/OptionalArrayRef.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/macros/Export.h>
#include <ATen/core/CheckMemoryFormat.h>
#include <ATen/core/DeprecatedTypePropertiesRegistry.h>
#include <ATen/core/DeprecatedTypeProperties.h>
#include <ATen/core/NamedTensor.h>
#include <ATen/core/QuantizerBase.h>
#include <c10/core/SymInt.h>
#include <ATen/core/TensorAccessor.h>
#include <ATen/core/TensorBase.h>
#include <ATen/MethodOperators.h>
namespace c10{
template<class T> class List;
}
namespace at {
struct Generator;
struct Type;
class DeprecatedTypeProperties;
class Tensor;
} // namespace at
namespace at {
namespace indexing {
struct TensorIndex;
} // namespace indexing
} // namespace at
namespace torch { namespace autograd {
struct Node;
}} // namespace torch::autograd
namespace at {
class OptionalTensorRef;
class Tensor;
using TensorList = ArrayRef<Tensor>;
using Stream = c10::Stream;
// Tensor is a "generic" object holding a pointer to the underlying TensorImpl object, which
// has an embedded reference count. In this way, Tensor is similar to boost::intrusive_ptr.
//
// For example:
//
// void func(Tensor a) {
// Tensor b = a;
// ...
// }
//
// In this example, when we say Tensor b = a, we are creating a new object that points to the
// same underlying TensorImpl, and bumps its reference count. When b goes out of scope, the
// destructor decrements the reference count by calling release() on the TensorImpl it points to.
// The existing constructors, operator overloads, etc. take care to implement the correct semantics.
//
// Note that Tensor can also be NULL, i.e. it is not associated with any underlying TensorImpl, and
// special care must be taken to handle this.
class TORCH_API Tensor: public TensorBase {
protected:
// Create a Tensor with a +0 reference count. Special care must be
// taken to avoid decrementing this reference count at destruction
// time. Intended to support MaybeOwnedTraits<Tensor>.
explicit Tensor(unsafe_borrow_t, const TensorBase& rhs): TensorBase(unsafe_borrow_t{}, rhs) {}
friend MaybeOwnedTraits<Tensor>;
friend OptionalTensorRef;
public:
Tensor() = default;
// This constructor should not be used by end users and is an implementation
// detail invoked by autogenerated code.
explicit Tensor(
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl)
: TensorBase(std::move(tensor_impl)) {}
Tensor(const Tensor &tensor) = default;
Tensor(Tensor &&tensor) = default;
// Implicitly move-constructible from TensorBase, but must be explicit to increase refcount
explicit Tensor(const TensorBase &base): TensorBase(base) {}
/*implicit*/ Tensor(TensorBase &&base): TensorBase(std::move(base)) {}
// Creates a new wrapper from TensorImpl. Intentionally a free method because
// it should be used with care. Checks necessary invariants
static Tensor wrap_tensor_impl(
c10::intrusive_ptr<TensorImpl, UndefinedTensorImpl> tensor_impl) {
return TensorBase::wrap_tensor_impl(std::move(tensor_impl));
}
Tensor contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const {
return TensorBase::contiguous(memory_format);
}
Tensor conj() const {
if (!this->is_complex()) {
return *this;
} else {
if (this->is_sparse()) {
return this->conj_physical();
}
return this->_conj();
}
}
// Aliased by Dimname overloads, so need explicit using
using TensorBase::size;
using TensorBase::stride;
/// Should be used if *this can reasonably be expected to be contiguous and
/// performance is important.
/// Compared to contiguous, it saves a reference count
/// increment/decrement if *this is already contiguous, at the cost
/// in all cases of an extra pointer of stack usage, an extra branch
/// to access, and an extra branch at destruction time.
c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) const &;
// Use .contiguous() instead. Trying to borrow from a prvalue Tensor
// will only lead to trouble and dangling references.
c10::MaybeOwned<Tensor> expect_contiguous(MemoryFormat memory_format=MemoryFormat::Contiguous) && = delete;
// The following overloads are very intruiging. Consider the following
// program:
//
// x[1] = 3;
//
// We would expect that the first entry of x is written to 3. But how can we
// actually achieve this? x[1] evaluates to a tensor...
//
// The answer is, using a ref-qualifier. x[1] is an rvalue, which cannot be
// (profitably) assigned to in the traditional sense, so we overload
// assignment to mean, "Actually, copy 3 into the tensor data." This is done
// with an rvalue-reference ref-qualified overload (the methods with && at the
// end of their type.)
//
// There's one more fly in the ointment: We also want
//
// Tensor x = y;
//
// to work, and we want it NOT to copy. So we need a traditional operator=
// overload. But we MUST specify a mutable lvalue ref-qualifier, to
// disambiguate the traditional overload from the rvalue-reference
// ref-qualified overload. Otherwise, it will be ambiguous, because
// a non ref-qualified method is eligible for all situations.
// Unfortunately, we have to write these constructors out manually
// to work around an MSVC bug:
// error C2580: 'at::Tensor &at::Tensor::operator =(const at::Tensor &) &':
// multiple versions of a defaulted special member functions are not allowed
// Tensor& operator=(const Tensor&) & = default;
// Tensor& operator=(Tensor&&) & = default;
// Also MSVC will wrongly issue the following warning with the aforementioned fix
// warning C4522: 'at::Tensor': multiple assignment operators specified
// Let's just skip the warning.
//
// TODO: temporarily disabled
Tensor& operator=(const TensorBase& x) & {
impl_ = x.getIntrusivePtr();
return *this;
}
Tensor& operator=(TensorBase&& x) & {
impl_ = x.unsafeReleaseIntrusivePtr();
return *this;
}
Tensor& operator=(const Tensor &x) & {
return operator=(static_cast<const TensorBase&>(x));
}
Tensor& operator=(Tensor &&x) & {
return operator=(static_cast<TensorBase&&>(x));
}
Tensor& operator=(Scalar v) && {
return fill_(v);
}
Tensor& operator=(const Tensor &rhs) && {
return copy_(rhs);
}
Tensor& operator=(Tensor&& rhs) && {
return copy_(rhs);
}
C10_DEPRECATED_MESSAGE("Tensor.type() is deprecated. Instead use Tensor.options(), which in many cases (e.g. in a constructor) is a drop-in replacement. If you were using data from type(), that is now available from Tensor itself, so instead of tensor.type().scalar_type(), use tensor.scalar_type() instead and instead of tensor.type().backend() use tensor.device().")
DeprecatedTypeProperties & type() const {
return globalDeprecatedTypePropertiesRegistry().getDeprecatedTypeProperties(
dispatchKeyToBackend(legacyExtractDispatchKey(key_set())),
scalar_type());
}
Tensor toType(ScalarType t) const {
return to(options().dtype(t), /*non_blocking*/ false, /*copy*/ false);
}
// TODO: Deprecate me
Tensor toBackend(Backend b) const {
return to(options().device(backendToDeviceType(b)).layout(layout_from_backend(b)), /*non_blocking*/ false, /*copy*/ false);
}
C10_DEPRECATED_MESSAGE("Tensor.is_variable() is deprecated; everything is a variable now. (If you want to assert that variable has been appropriately handled already, use at::impl::variable_excluded_from_dispatch())")
bool is_variable() const noexcept {
return !at::impl::variable_excluded_from_dispatch();
}
template<typename T>
C10_DEPRECATED_MESSAGE("Tensor.data<T>() is deprecated. Please use Tensor.data_ptr<T>() instead.")
T * data() const {
return data_ptr<T>();
}
template <typename T>
T item() const;
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() const & {
return generic_packed_accessor<T,N,PtrTraits,index_t>();
}
template<typename T, size_t N, template <typename U> class PtrTraits = DefaultPtrTraits, typename index_t = int64_t>
C10_DEPRECATED_MESSAGE("packed_accessor is deprecated, use packed_accessor32 or packed_accessor64 instead")
GenericPackedTensorAccessor<T,N,PtrTraits,index_t> packed_accessor() && = delete;
Tensor operator~() const {
return bitwise_not();
}
Tensor operator-() const {
return neg();
}
Tensor& operator+=(const Tensor & other) {
return add_(other);
}
Tensor& operator+=(Scalar other) {
return add_(other);
}
Tensor& operator-=(const Tensor & other) {
return sub_(other);
}
Tensor& operator-=(Scalar other) {
return sub_(other);
}
Tensor& operator*=(const Tensor & other) {
return mul_(other);
}
Tensor& operator*=(Scalar other) {
return mul_(other);
}
Tensor& operator/=(const Tensor & other) {
return div_(other);
}
Tensor& operator/=(Scalar other) {
return div_(other);
}
Tensor& operator&=(const Tensor & other) {
return bitwise_and_(other);
}
Tensor& operator|=(const Tensor & other) {
return bitwise_or_(other);
}
Tensor& operator^=(const Tensor & other) {
return bitwise_xor_(other);
}
Tensor operator[](Scalar index) const {
if (!index.isIntegral(false)) {
TORCH_CHECK_INDEX(false, "Can only index tensors with integral scalars");
}
return this->operator[](index.toLong());
}
Tensor operator[](Tensor index) const {
// These properties are checked in the Scalar constructor, but we already
// check them here to provide more useful diagnostics for the user.
if (!index.defined()) {
TORCH_CHECK_INDEX(false, "Can only index with tensors that are defined");
}
if (index.dim() != 0) {
TORCH_CHECK_INDEX(false,
"Can only index with tensors that are scalars (zero-dim)");
}
// The Scalar(Tensor) constructor is explicit, so we need to call it.
return this->operator[](index.item());
}
Tensor operator[](int64_t index) const {
return select(0, index);
}
Tensor index(ArrayRef<at::indexing::TensorIndex> indices) const;
Tensor index(std::initializer_list<at::indexing::TensorIndex> indices) const;
Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, Tensor const & rhs);
Tensor & index_put_(ArrayRef<at::indexing::TensorIndex> indices, const Scalar& v);
Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, Tensor const & rhs);
Tensor & index_put_(std::initializer_list<at::indexing::TensorIndex> indices, const Scalar& v);
Tensor cpu() const {
return to(options().device(DeviceType::CPU), /*non_blocking*/ false, /*copy*/ false);
}
// TODO: The Python version also accepts arguments
Tensor cuda() const {
return to(options().device(DeviceType::CUDA), /*non_blocking*/ false, /*copy*/ false);
}
Tensor hip() const {
return to(options().device(DeviceType::HIP), /*non_blocking*/ false, /*copy*/ false);
}
Tensor ve() const {
return to(options().device(DeviceType::VE), /*non_blocking*/ false, /*copy*/ false);
}
Tensor vulkan() const {
return to(options().device(DeviceType::Vulkan), /*non_blocking*/ false, /*copy*/ false);
}
Tensor metal() const {
return to(options().device(DeviceType::Metal), /*non_blocking*/ false, /*copy*/ false);
}
Tensor meta() const {
return to(options().device(DeviceType::Meta), /*non_blocking*/ false, /*copy*/ false);
}
// ~~~~~ Autograd API ~~~~~
/// \fn bool is_leaf() const;
///
/// All Tensors that have `requires_grad()` which is ``false`` will be leaf Tensors by convention.
///
/// For Tensors that have `requires_grad()` which is ``true``, they will be leaf Tensors if they were
/// created by the user. This means that they are not the result of an operation and so
/// `grad_fn()` is `nullptr`.
///
/// Only leaf Tensors will have their `grad()` populated during a call to `backward()`.
/// To get `grad()` populated for non-leaf Tensors, you can use `retain_grad()`.
///
/// Example:
/// @code
/// auto a = torch::rand(10, torch::requires_grad());
/// std::cout << a.is_leaf() << std::endl; // prints `true`
///
/// auto b = torch::rand(10, torch::requires_grad()).to(torch::kCUDA);
/// std::cout << b.is_leaf() << std::endl; // prints `false`
/// // b was created by the operation that cast a cpu Tensor into a cuda Tensor
///
/// auto c = torch::rand(10, torch::requires_grad()) + 2;
/// std::cout << c.is_leaf() << std::endl; // prints `false`
/// // c was created by the addition operation
///
/// auto d = torch::rand(10).cuda();
/// std::cout << d.is_leaf() << std::endl; // prints `true`
/// // d does not require gradients and so has no operation creating it (that is tracked by the autograd engine)
///
/// auto e = torch::rand(10).cuda().requires_grad_();
/// std::cout << e.is_leaf() << std::endl; // prints `true`
/// // e requires gradients and has no operations creating it
///
/// auto f = torch::rand(10, torch::device(torch::kCUDA).requires_grad(true));
/// std::cout << f.is_leaf() << std::endl; // prints `true`
/// // f requires grad, has no operation creating it
/// @endcode
/// \fn void backward(const Tensor & gradient={}, c10::optional<bool> retain_graph=c10::nullopt, bool create_graph=false, c10::optional<TensorList> inputs=c10::nullopt) const;
///
/// Computes the gradient of current tensor with respect to graph leaves.
///
/// The graph is differentiated using the chain rule. If the tensor is
/// non-scalar (i.e. its data has more than one element) and requires
/// gradient, the function additionally requires specifying ``gradient``.
/// It should be a tensor of matching type and location, that contains
/// the gradient of the differentiated function w.r.t. this Tensor.
///
/// This function accumulates gradients in the leaves - you might need to
/// zero them before calling it.
///
/// \param gradient Gradient w.r.t. the
/// tensor. If it is a tensor, it will be automatically converted
/// to a Tensor that does not require grad unless ``create_graph`` is True.
/// None values can be specified for scalar Tensors or ones that
/// don't require grad. If a None value would be acceptable then
/// this argument is optional.
/// \param retain_graph If ``false``, the graph used to compute
/// the grads will be freed. Note that in nearly all cases setting
/// this option to True is not needed and often can be worked around
/// in a much more efficient way. Defaults to the value of
/// ``create_graph``.
/// \param create_graph If ``true``, graph of the derivative will
/// be constructed, allowing to compute higher order derivative
/// products. Defaults to ``false``.
/// \param inputs Inputs w.r.t. which the gradient will be accumulated into
/// ``at::Tensor::grad``. All other Tensors will be ignored. If not
/// provided, the gradient is accumulated into all the leaf Tensors
/// that were used to compute the current tensor.
/// When inputs are provided and a given input is not a leaf,
/// the current implementation will call its grad_fn (even though it is not strictly needed to get this gradients).
/// It is an implementation detail on which the user should not rely.
/// See https://github.com/pytorch/pytorch/pull/60521#issuecomment-867061780 for more details.
void backward(const Tensor & gradient={}, c10::optional<bool> retain_graph=c10::nullopt, bool create_graph=false, c10::optional<TensorList> inputs=c10::nullopt) const {
// NB: Adding this wrapper to _backward here because we'd like our
// 'backwards' api to accept the 'inputs' argument optionally. Since code gen
// currently does not support optional of TensorList our approach is to replace
// backward in native_functions.yaml with _backward and call it here instead.
if (inputs.has_value()) {
TORCH_CHECK(inputs.value().size() > 0, "'inputs' argument to backward cannot be empty")
this->_backward(inputs.value(), gradient, retain_graph, create_graph);
} else {
this->_backward({}, gradient, retain_graph, create_graph);
}
}
/// \fn Tensor detach() const;
///
/// Returns a new Tensor, detached from the current graph.
/// The result will never require gradient.
/// \fn Tensor & detach_() const;
///
/// Detaches the Tensor from the graph that created it, making it a leaf.
/// Views cannot be detached in-place.
/// \fn void retain_grad() const;
///
/// Enables this Tensor to have their :attr:`grad` populated during
/// :func:`backward`. This is a no-op for leaf tensors.
/// \fn bool retains_grad() const;
///
/// Is ``true`` if this Tensor is non-leaf and its :attr:`grad` is enabled to be
/// populated during :func:`backward`, ``false`` otherwise.
const Tensor& set_requires_grad(bool requires_grad) const {
TensorBase::set_requires_grad(requires_grad);
return *this;
}
/// Return a mutable reference to the gradient. This is conventionally
/// used as `t.grad() = x` to set a gradient to a completely new tensor.
/// Note that this function work with a non-const Tensor and is not
/// thread safe.
Tensor& mutable_grad() const {
return impl_->mutable_grad();
}
/// This function returns an undefined tensor by default and returns a defined tensor
/// the first time a call to `backward()` computes gradients for this Tensor.
/// The attribute will then contain the gradients computed and future calls
/// to `backward()` will accumulate (add) gradients into it.
const Tensor& grad() const {
const Tensor& maybe_grad = impl_->grad();
if (!is_leaf() && !retains_grad() && !maybe_grad.defined()) {
TORCH_WARN(
"The .grad attribute of a Tensor that is not a leaf Tensor is being accessed. Its .grad "
"attribute won't be populated during autograd.backward(). If you indeed want the .grad "
"field to be populated for a non-leaf Tensor, use .retain_grad() on the non-leaf Tensor. "
"If you access the non-leaf Tensor by mistake, make sure you access the leaf Tensor "
"instead. See github.com/pytorch/pytorch/pull/30531 for more informations.");
}
return maybe_grad;
}
// The Forward AD API functions below are low level and are not to be used by end
// users who should use the API provided in torch/csrc/autograd.h
/// This function returns the forward gradient for this Tensor at the given level.
const Tensor& _fw_grad(uint64_t level) const {
return impl_->_fw_grad(level, *this);
}
/// This function can be used to set the value of the forward grad.
/// Note that the given new_grad might not be used directly if it has different
/// metadata (size/stride/storage offset) compared to this Tensor. In that case,
/// new_grad content will be copied into a new Tensor
void _set_fw_grad(const TensorBase& new_grad, uint64_t level, bool is_inplace_op) const {
impl_->_set_fw_grad(new_grad, *this, level, is_inplace_op);
}
// STOP. Thinking of adding a method here, which only makes use
// of other ATen methods? Define it in native_functions.yaml.
//example
//Tensor * add(Tensor & b);
${tensor_method_declarations}
// Special C++ only overloads for std()-like functions (See gh-40287)
// These are needed because int -> bool conversion takes precedence over int -> IntArrayRef
// So, for example std(0) would select the std(unbiased=False) overload
Tensor var(int dim) const {
return var(IntArrayRef{dim});
}
Tensor std(int dim) const {
return std(IntArrayRef{dim});
}
// We changed .dtype() to return a TypeMeta in #12766. Ideally, we want the
// at::kDouble and its friends to be TypeMeta's, but that hasn't happened yet.
// Before that change, we make this method to maintain BC for C++ usage like
// `x.to(y.dtype)`.
// TODO: remove following two after at::kDouble and its friends are TypeMeta's.
inline Tensor to(caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
return this->to(/*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
}
inline Tensor to(Device device, caffe2::TypeMeta type_meta, bool non_blocking=false, bool copy=false) const {
return this->to(device, /*scalar_type=*/typeMetaToScalarType(type_meta), non_blocking, copy);
}
template <typename F, typename... Args>
decltype(auto) m(F func, Args&&... params) const {
return func(*this, std::forward<Args>(params)...);
}
/// NOTE: This is similar to the legacy `.data()` function on `Variable`, and is intended
/// to be used from functions that need to access the `Variable`'s equivalent `Tensor`
/// (i.e. `Tensor` that shares the same storage and tensor metadata with the `Variable`).
///
/// One notable difference with the legacy `.data()` function is that changes to the
/// returned `Tensor`'s tensor metadata (e.g. sizes / strides / storage / storage_offset)
/// will not update the original `Variable`, due to the fact that this function
/// shallow-copies the `Variable`'s underlying TensorImpl.
at::Tensor tensor_data() const {
return TensorBase::tensor_data();
}
/// NOTE: `var.variable_data()` in C++ has the same semantics as `tensor.data`
/// in Python, which create a new `Variable` that shares the same storage and
/// tensor metadata with the original `Variable`, but with a completely new
/// autograd history.
///
/// NOTE: If we change the tensor metadata (e.g. sizes / strides /
/// storage / storage_offset) of a variable created from `var.variable_data()`, those
/// changes will not update the original variable `var`. In `.variable_data()`, we set
/// `allow_tensor_metadata_change_` to false to make such changes explicitly illegal,
/// in order to prevent users from changing metadata of `var.variable_data()`
/// and expecting the original variable `var` to also be updated.
at::Tensor variable_data() const {
return TensorBase::variable_data();
}
// Hooks
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
template <typename T>
using hook_return_void_t = std::enable_if_t<std::is_void<typename std::result_of<T&(Tensor)>::type>::value, unsigned>;
template <typename T>
using hook_return_var_t = std::enable_if_t<std::is_same<typename std::result_of<T&(Tensor)>::type, Tensor>::value, unsigned>;
/// Registers a backward hook.
///
/// The hook will be called every time a gradient with respect to the Tensor is computed.
/// The hook should have one of the following signature:
/// ```
/// hook(Tensor grad) -> Tensor
/// ```
/// ```
/// hook(Tensor grad) -> void
/// ```
/// The hook should not modify its argument, but it can optionally return a new gradient
/// which will be used in place of `grad`.
///
/// This function returns the index of the hook in the list which can be used to remove hook.
///
/// Example:
/// @code
/// auto v = torch::tensor({0., 0., 0.}, torch::requires_grad());
/// auto h = v.register_hook([](torch::Tensor grad){ return grad * 2; }); // double the gradient
/// v.backward(torch::tensor({1., 2., 3.}));
/// // This prints:
/// // ```
/// // 2
/// // 4
/// // 6
/// // [ CPUFloatType{3} ]
/// // ```
/// std::cout << v.grad() << std::endl;
/// v.remove_hook(h); // removes the hook
/// @endcode
template <typename T>
hook_return_void_t<T> register_hook(T&& hook) const;
template <typename T>
hook_return_var_t<T> register_hook(T&& hook) const;
// Variable methods
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tensor data() const {
return TensorBase::data();
}
void _backward(TensorList inputs, const c10::optional<Tensor>& gradient, c10::optional<bool> keep_graph, bool create_graph) const;
const Tensor& requires_grad_(bool _requires_grad=true) const {
TensorBase::requires_grad_(_requires_grad);
return *this;
}
};
namespace detail {
// Helper creator for Tensor class which doesn't requires the users to pass
// in an intrusive_ptr instead it just converts the argument passed to
// requested intrusive_ptr type.
template <typename T, typename... Args>
Tensor make_tensor(Args&&... args) {
return Tensor(c10::make_intrusive<T>(std::forward<Args>(args)...));
}
} // namespace detail
} // namespace at
namespace at {
${tensor_method_definitions}
} // namespace at
namespace c10 {
template <>
struct MaybeOwnedTraits<at::Tensor> {
using owned_type = at::Tensor;
using borrow_type = at::Tensor;
static borrow_type createBorrow(const owned_type& from) {
// NOTE: this can be implemented without the special
// unsafe_borrow_t Tensor constructor as
//
// return borrow_type(c10::intrusive_ptr<at::TensorImpl, at::UndefinedTensorImpl>::reclaim(from.unsafeGetTensorImpl()));
//
// but that hurts inlining due to the nullptr check in the
// Tensor(c10::intrusive_ptr<...>) constructor. We already know
// that from.impl_ isn't null because from is a valid Tensor, so
// we needn't do the check again. (using __builtin_assume can
// avoid this, but wouldn't be portable to MSVC.)
return borrow_type(borrow_type::unsafe_borrow_t{}, from);
}
static void assignBorrow(borrow_type& lhs, const borrow_type& rhs) {
lhs.unsafeReleaseTensorImpl();
// See above note: this can be implemented with public API
// similarly to createBorrow(), but that would hurt inlining.
lhs = borrow_type(borrow_type::unsafe_borrow_t{}, rhs);
}
static void destroyBorrow(borrow_type& toDestroy) {
toDestroy.unsafeReleaseTensorImpl(); // "leak" it, but it was already +0.
}
static const owned_type& referenceFromBorrow(const borrow_type& borrow) {
return borrow;
}
static const owned_type* pointerFromBorrow(const borrow_type& borrow) {
return &borrow;
}
static bool debugBorrowIsValid(const borrow_type& /*borrow*/) {
return true;
}
};
template <>
struct ExclusivelyOwnedTraits<at::Tensor> {
using repr_type = at::Tensor;
using pointer_type = at::Tensor*;
using const_pointer_type = const at::Tensor*;
static repr_type nullRepr() {
return at::Tensor();
}
template <class... Args>
static repr_type createInPlace(Args&&... args) {
return at::Tensor(std::forward<Args>(args)...);
}
static repr_type moveToRepr(at::Tensor&& x) {
return std::move(x);
}
static void destroyOwned(at::Tensor& x) {
return ExclusivelyOwnedTraits<at::TensorBase>::destroyOwned(x);
}
static at::Tensor take(at::Tensor& x) {
return std::move(x);
}
static pointer_type getImpl(repr_type& x) {
return &x;
}
static const_pointer_type getImpl(const repr_type& x) {
return &x;
}
};
} // namespace c10
namespace at {
inline c10::MaybeOwned<Tensor> borrow_from_optional_tensor(
const c10::optional<Tensor>& opt) {
return opt.has_value()
? c10::MaybeOwned<Tensor>::borrowed(*opt)
: c10::MaybeOwned<Tensor>::owned(c10::in_place);
}
inline c10::MaybeOwned<Tensor> Tensor::expect_contiguous(MemoryFormat memory_format) const & {
if (is_contiguous(memory_format)) {
return c10::MaybeOwned<Tensor>::borrowed(*this);
} else {
return c10::MaybeOwned<Tensor>::owned(__dispatch_contiguous(memory_format));
}
}
} // namespace at