Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
torch / optim / lr_scheduler.pyi
Size: Mime:
from typing import Any, Callable, Dict, Iterable, List, Optional, Union

from .optimizer import Optimizer

class LRScheduler:
    optimizer: Optimizer = ...
    base_lrs: List[float] = ...
    last_epoch: int = ...
    verbose: bool = ...
    def __init__(
        self,
        optimizer: Optimizer,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...
    def state_dict(self) -> Dict[str, Any]: ...
    def load_state_dict(self, state_dict: Dict[str, Any]) -> None: ...
    def get_last_lr(self) -> List[float]: ...
    def get_lr(self) -> float: ...
    def step(self, epoch: Optional[int] = ...) -> None: ...
    def print_lr(
        self,
        is_verbose: bool,
        group: Dict[str, Any],
        lr: float,
        epoch: Optional[int] = ...,
    ) -> None: ...

class _LRScheduler(LRScheduler): ...

class LambdaLR(LRScheduler):
    lr_lambdas: List[Callable[[int], float]] = ...
    def __init__(
        self,
        optimizer: Optimizer,
        lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]],
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class MultiplicativeLR(LRScheduler):
    lr_lambdas: List[Callable[[int], float]] = ...
    def __init__(
        self,
        optimizer: Optimizer,
        lr_lambda: Union[Callable[[int], float], List[Callable[[int], float]]],
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class StepLR(LRScheduler):
    step_size: int = ...
    gamma: float = ...
    def __init__(
        self,
        optimizer: Optimizer,
        step_size: int,
        gamma: float = ...,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class MultiStepLR(LRScheduler):
    milestones: Iterable[int] = ...
    gamma: float = ...
    def __init__(
        self,
        optimizer: Optimizer,
        milestones: Iterable[int],
        gamma: float = ...,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class ConstantLR(LRScheduler):
    factor: float = ...
    total_iters: int = ...
    def __init__(
        self,
        optimizer: Optimizer,
        factor: float = ...,
        total_iters: int = ...,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class LinearLR(LRScheduler):
    start_factor: float = ...
    end_factor: float = ...
    total_iters: int = ...
    def __init__(
        self,
        optimizer: Optimizer,
        start_factor: float = ...,
        end_factor: float = ...,
        total_iters: int = ...,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class ExponentialLR(LRScheduler):
    gamma: float = ...
    def __init__(
        self,
        optimizer: Optimizer,
        gamma: float,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class ChainedScheduler(LRScheduler):
    def __init__(self, schedulers: List[LRScheduler]) -> None: ...

class SequentialLR(LRScheduler):
    def __init__(
        self,
        optimizer: Optimizer,
        schedulers: List[LRScheduler],
        milestones: List[int],
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class CosineAnnealingLR(LRScheduler):
    T_max: int = ...
    eta_min: float = ...
    def __init__(
        self,
        optimizer: Optimizer,
        T_max: int,
        eta_min: float = ...,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class ReduceLROnPlateau:
    factor: float = ...
    optimizer: Optimizer = ...
    min_lrs: List[float] = ...
    patience: int = ...
    verbose: bool = ...
    cooldown: int = ...
    cooldown_counter: int = ...
    mode: str = ...
    threshold: float = ...
    threshold_mode: str = ...
    best: Optional[float] = ...
    num_bad_epochs: Optional[int] = ...
    mode_worse: Optional[float] = ...
    eps: float = ...
    last_epoch: int = ...
    def __init__(
        self,
        optimizer: Optimizer,
        mode: str = ...,
        factor: float = ...,
        patience: int = ...,
        threshold: float = ...,
        threshold_mode: str = ...,
        cooldown: int = ...,
        min_lr: Union[List[float], float] = ...,
        eps: float = ...,
        verbose: bool = ...,
    ) -> None: ...
    def step(self, metrics: Any, epoch: Optional[int] = ...) -> None: ...
    @property
    def in_cooldown(self) -> bool: ...
    def is_better(self, a: Any, best: Any) -> bool: ...
    def state_dict(self) -> Dict[str, Any]: ...
    def load_state_dict(self, state_dict: Dict[str, Any]) -> None: ...

class CyclicLR(LRScheduler):
    max_lrs: List[float] = ...
    total_size: float = ...
    step_ratio: float = ...
    mode: str = ...
    gamma: float = ...
    scale_mode: str = ...
    cycle_momentum: bool = ...
    base_momentums: List[float] = ...
    max_momentums: List[float] = ...
    def __init__(
        self,
        optimizer: Optimizer,
        base_lr: Union[float, List[float]],
        max_lr: Union[float, List[float]],
        step_size_up: int = ...,
        step_size_down: Optional[int] = ...,
        mode: str = ...,
        gamma: float = ...,
        scale_fn: Optional[Callable[[float], float]] = ...,
        scale_mode: str = ...,
        cycle_momentum: bool = ...,
        base_momentum: float = ...,
        max_momentum: float = ...,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...
    def scale_fn(self, x: Any) -> float: ...

class CosineAnnealingWarmRestarts(LRScheduler):
    T_0: int = ...
    T_i: int = ...
    T_mult: int = ...
    eta_min: float = ...
    T_cur: Any = ...
    def __init__(
        self,
        optimizer: Optimizer,
        T_0: int,
        T_mult: int = ...,
        eta_min: float = ...,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class OneCycleLR(LRScheduler):
    total_steps: int = ...
    anneal_func: Callable[[float, float, float], float] = ...
    cycle_momentum: bool = ...
    use_beta1: bool = ...
    def __init__(
        self,
        optimizer: Optimizer,
        max_lr: Union[float, List[float]],
        total_steps: int = ...,
        epochs: int = ...,
        steps_per_epoch: int = ...,
        pct_start: float = ...,
        anneal_strategy: str = ...,
        cycle_momentum: bool = ...,
        base_momentum: Union[float, List[float]] = ...,
        max_momentum: Union[float, List[float]] = ...,
        div_factor: float = ...,
        final_div_factor: float = ...,
        three_phase: bool = ...,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...

class PolynomialLR(LRScheduler):
    total_iters: int = ...
    power: float = ...
    def __init__(
        self,
        optimizer: Optimizer,
        total_iters: int = ...,
        power: float = ...,
        last_epoch: int = ...,
        verbose: bool = ...,
    ) -> None: ...