Repository URL to install this package:
|
Version:
1.65.0-1 ▾
|
ekyc-libboost-all-dev
/
usr
/
local
/
include
/
boost
/
geometry
/
algorithms
/
detail
/
overlay
/
overlay.hpp
|
|---|
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2015 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2013-2015 Adam Wulkiewicz, Lodz, Poland
// This file was modified by Oracle on 2015, 2017.
// Modifications copyright (c) 2015-2017, Oracle and/or its affiliates.
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_OVERLAY_HPP
#define BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_OVERLAY_HPP
#include <deque>
#include <map>
#include <boost/range.hpp>
#include <boost/mpl/assert.hpp>
#include <boost/geometry/algorithms/detail/overlay/cluster_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/enrich_intersection_points.hpp>
#include <boost/geometry/algorithms/detail/overlay/enrichment_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/get_turns.hpp>
#include <boost/geometry/algorithms/detail/overlay/is_self_turn.hpp>
#include <boost/geometry/algorithms/detail/overlay/overlay_type.hpp>
#include <boost/geometry/algorithms/detail/overlay/traverse.hpp>
#include <boost/geometry/algorithms/detail/overlay/traversal_info.hpp>
#include <boost/geometry/algorithms/detail/overlay/self_turn_points.hpp>
#include <boost/geometry/algorithms/detail/overlay/turn_info.hpp>
#include <boost/geometry/algorithms/detail/recalculate.hpp>
#include <boost/geometry/algorithms/is_empty.hpp>
#include <boost/geometry/algorithms/reverse.hpp>
#include <boost/geometry/algorithms/detail/overlay/add_rings.hpp>
#include <boost/geometry/algorithms/detail/overlay/assign_parents.hpp>
#include <boost/geometry/algorithms/detail/overlay/ring_properties.hpp>
#include <boost/geometry/algorithms/detail/overlay/select_rings.hpp>
#include <boost/geometry/algorithms/detail/overlay/do_reverse.hpp>
#include <boost/geometry/policies/robustness/segment_ratio_type.hpp>
#ifdef BOOST_GEOMETRY_DEBUG_ASSEMBLE
# include <boost/geometry/io/dsv/write.hpp>
#endif
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace overlay
{
//! Default visitor for overlay, doing nothing
struct overlay_null_visitor
{
void print(char const* ) {}
template <typename Turns>
void print(char const* , Turns const& , int) {}
template <typename Turns>
void print(char const* , Turns const& , int , int ) {}
template <typename Turns>
void visit_turns(int , Turns const& ) {}
template <typename Clusters, typename Turns>
void visit_clusters(Clusters const& , Turns const& ) {}
template <typename Turns, typename Turn, typename Operation>
void visit_traverse(Turns const& , Turn const& , Operation const& , char const*)
{}
template <typename Turns, typename Turn, typename Operation>
void visit_traverse_reject(Turns const& , Turn const& , Operation const& , traverse_error_type )
{}
};
template
<
overlay_type OverlayType,
typename TurnInfoMap,
typename Turns,
typename Clusters
>
inline void get_ring_turn_info(TurnInfoMap& turn_info_map, Turns const& turns, Clusters const& clusters)
{
typedef typename boost::range_value<Turns>::type turn_type;
typedef typename turn_type::container_type container_type;
static const operation_type target_operation
= operation_from_overlay<OverlayType>::value;
static const operation_type opposite_operation
= target_operation == operation_union ? operation_intersection : operation_union;
signed_size_type turn_index = 0;
for (typename boost::range_iterator<Turns const>::type
it = boost::begin(turns);
it != boost::end(turns);
++it, turn_index++)
{
typename boost::range_value<Turns>::type const& turn = *it;
bool const colocated_target = target_operation == operation_union
? turn.colocated_uu : turn.colocated_ii;
bool const colocated_opp = target_operation == operation_union
? turn.colocated_ii : turn.colocated_uu;
bool const both_opposite = turn.both(opposite_operation);
bool const traversed
= turn.operations[0].visited.finalized()
|| turn.operations[0].visited.rejected()
|| turn.operations[1].visited.finalized()
|| turn.operations[1].visited.rejected()
|| turn.both(operation_blocked)
|| turn.combination(opposite_operation, operation_blocked);
bool is_closed = false;
if (turn.cluster_id >= 0 && target_operation == operation_union)
{
typename Clusters::const_iterator mit = clusters.find(turn.cluster_id);
BOOST_ASSERT(mit != clusters.end());
cluster_info const& cinfo = mit->second;
is_closed = cinfo.open_count == 0;
}
for (typename boost::range_iterator<container_type const>::type
op_it = boost::begin(turn.operations);
op_it != boost::end(turn.operations);
++op_it)
{
ring_identifier const ring_id
(
op_it->seg_id.source_index,
op_it->seg_id.multi_index,
op_it->seg_id.ring_index
);
if (traversed || is_closed || ! op_it->enriched.startable)
{
turn_info_map[ring_id].has_traversed_turn = true;
}
else if (both_opposite && colocated_target)
{
// For union: ii, colocated with a uu
// For example, two interior rings touch where two exterior rings also touch.
// The interior rings are not yet traversed, and should be taken from the input
// For intersection: uu, colocated with an ii
// unless it is two interior inner rings colocated with a uu
// So don't set has_traversed_turn here
}
else if (both_opposite && ! is_self_turn<OverlayType>(turn))
{
// For union, mark any ring with a ii turn as traversed
// For intersection, any uu - but not if it is a self-turn
turn_info_map[ring_id].has_traversed_turn = true;
}
else if (colocated_opp && ! colocated_target)
{
// For union, a turn colocated with ii and NOT with uu/ux
// For intersection v.v.
turn_info_map[ring_id].has_traversed_turn = true;
}
}
}
}
template
<
typename GeometryOut, overlay_type OverlayType, bool ReverseOut,
typename Geometry1, typename Geometry2,
typename OutputIterator, typename Strategy
>
inline OutputIterator return_if_one_input_is_empty(Geometry1 const& geometry1,
Geometry2 const& geometry2,
OutputIterator out, Strategy const& strategy)
{
typedef std::deque
<
typename geometry::ring_type<GeometryOut>::type
> ring_container_type;
typedef typename geometry::point_type<Geometry1>::type point_type1;
typedef ring_properties
<
point_type1,
typename Strategy::template area_strategy
<
point_type1
>::type::return_type
> properties;
// Silence warning C4127: conditional expression is constant
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4127)
#endif
// Union: return either of them
// Intersection: return nothing
// Difference: return first of them
if (OverlayType == overlay_intersection
|| (OverlayType == overlay_difference && geometry::is_empty(geometry1)))
{
return out;
}
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
std::map<ring_identifier, ring_turn_info> empty;
std::map<ring_identifier, properties> all_of_one_of_them;
select_rings<OverlayType>(geometry1, geometry2, empty, all_of_one_of_them, strategy);
ring_container_type rings;
assign_parents(geometry1, geometry2, rings, all_of_one_of_them, strategy);
return add_rings<GeometryOut>(all_of_one_of_them, geometry1, geometry2, rings, out);
}
template
<
typename Geometry1, typename Geometry2,
bool Reverse1, bool Reverse2, bool ReverseOut,
typename GeometryOut,
overlay_type OverlayType
>
struct overlay
{
template <typename RobustPolicy, typename OutputIterator, typename Strategy, typename Visitor>
static inline OutputIterator apply(
Geometry1 const& geometry1, Geometry2 const& geometry2,
RobustPolicy const& robust_policy,
OutputIterator out,
Strategy const& strategy,
Visitor& visitor)
{
bool const is_empty1 = geometry::is_empty(geometry1);
bool const is_empty2 = geometry::is_empty(geometry2);
if (is_empty1 && is_empty2)
{
return out;
}
if (is_empty1 || is_empty2)
{
return return_if_one_input_is_empty
<
GeometryOut, OverlayType, ReverseOut
>(geometry1, geometry2, out, strategy);
}
typedef typename geometry::point_type<GeometryOut>::type point_type;
typedef detail::overlay::traversal_turn_info
<
point_type,
typename geometry::segment_ratio_type<point_type, RobustPolicy>::type
> turn_info;
typedef std::deque<turn_info> turn_container_type;
typedef std::deque
<
typename geometry::ring_type<GeometryOut>::type
> ring_container_type;
// Define the clusters, mapping cluster_id -> turns
typedef std::map
<
signed_size_type,
cluster_info
> cluster_type;
turn_container_type turns;
#ifdef BOOST_GEOMETRY_DEBUG_ASSEMBLE
std::cout << "get turns" << std::endl;
#endif
detail::get_turns::no_interrupt_policy policy;
geometry::get_turns
<
Reverse1, Reverse2,
detail::overlay::assign_null_policy
>(geometry1, geometry2, strategy, robust_policy, turns, policy);
visitor.visit_turns(1, turns);
#ifdef BOOST_GEOMETRY_INCLUDE_SELF_TURNS
{
self_get_turn_points::self_turns<Reverse1, assign_null_policy>(geometry1,
strategy, robust_policy, turns, policy, 0);
self_get_turn_points::self_turns<Reverse2, assign_null_policy>(geometry2,
strategy, robust_policy, turns, policy, 1);
}
#endif
#ifdef BOOST_GEOMETRY_DEBUG_ASSEMBLE
std::cout << "enrich" << std::endl;
#endif
typename Strategy::side_strategy_type side_strategy = strategy.get_side_strategy();
cluster_type clusters;
geometry::enrich_intersection_points<Reverse1, Reverse2, OverlayType>(turns,
clusters, geometry1, geometry2,
robust_policy,
side_strategy);
visitor.visit_turns(2, turns);
visitor.visit_clusters(clusters, turns);
#ifdef BOOST_GEOMETRY_DEBUG_ASSEMBLE
std::cout << "traverse" << std::endl;
#endif
// Traverse through intersection/turn points and create rings of them.
// Note that these rings are always in clockwise order, even in CCW polygons,
// and are marked as "to be reversed" below
ring_container_type rings;
traverse<Reverse1, Reverse2, Geometry1, Geometry2, OverlayType>::apply
(
geometry1, geometry2,
strategy,
robust_policy,
turns, rings,
clusters,
visitor
);
std::map<ring_identifier, ring_turn_info> turn_info_per_ring;
get_ring_turn_info<OverlayType>(turn_info_per_ring, turns, clusters);
typedef typename Strategy::template area_strategy<point_type>::type area_strategy_type;
typedef ring_properties
<
point_type,
typename area_strategy_type::return_type
> properties;
// Select all rings which are NOT touched by any intersection point
std::map<ring_identifier, properties> selected_ring_properties;
select_rings<OverlayType>(geometry1, geometry2, turn_info_per_ring,
selected_ring_properties, strategy);
// Add rings created during traversal
{
area_strategy_type const area_strategy = strategy.template get_area_strategy<point_type>();
ring_identifier id(2, 0, -1);
for (typename boost::range_iterator<ring_container_type>::type
it = boost::begin(rings);
it != boost::end(rings);
++it)
{
selected_ring_properties[id] = properties(*it, area_strategy);
selected_ring_properties[id].reversed = ReverseOut;
id.multi_index++;
}
}
assign_parents(geometry1, geometry2, rings, selected_ring_properties, strategy);
return add_rings<GeometryOut>(selected_ring_properties, geometry1, geometry2, rings, out);
}
template <typename RobustPolicy, typename OutputIterator, typename Strategy>
static inline OutputIterator apply(
Geometry1 const& geometry1, Geometry2 const& geometry2,
RobustPolicy const& robust_policy,
OutputIterator out,
Strategy const& strategy)
{
overlay_null_visitor visitor;
return apply(geometry1, geometry2, robust_policy, out, strategy, visitor);
}
};
}} // namespace detail::overlay
#endif // DOXYGEN_NO_DETAIL
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_OVERLAY_OVERLAY_HPP