Repository URL to install this package:
|
Version:
1.65.0-1 ▾
|
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands.
// This file was modified by Oracle on 2014, 2017.
// Modifications copyright (c) 2014-2017 Oracle and/or its affiliates.
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_ALGORITHMS_UNION_HPP
#define BOOST_GEOMETRY_ALGORITHMS_UNION_HPP
#include <boost/range/metafunctions.hpp>
#include <boost/geometry/core/is_areal.hpp>
#include <boost/geometry/core/point_order.hpp>
#include <boost/geometry/core/reverse_dispatch.hpp>
#include <boost/geometry/geometries/concepts/check.hpp>
#include <boost/geometry/algorithms/not_implemented.hpp>
#include <boost/geometry/algorithms/detail/overlay/overlay.hpp>
#include <boost/geometry/policies/robustness/get_rescale_policy.hpp>
#include <boost/geometry/strategies/default_strategy.hpp>
#include <boost/geometry/util/range.hpp>
#include <boost/geometry/algorithms/detail/overlay/linear_linear.hpp>
#include <boost/geometry/algorithms/detail/overlay/pointlike_pointlike.hpp>
namespace boost { namespace geometry
{
#ifndef DOXYGEN_NO_DISPATCH
namespace dispatch
{
template
<
typename Geometry1, typename Geometry2, typename GeometryOut,
typename TagIn1 = typename tag<Geometry1>::type,
typename TagIn2 = typename tag<Geometry2>::type,
typename TagOut = typename tag<GeometryOut>::type,
bool Areal1 = geometry::is_areal<Geometry1>::value,
bool Areal2 = geometry::is_areal<Geometry2>::value,
bool ArealOut = geometry::is_areal<GeometryOut>::value,
bool Reverse1 = detail::overlay::do_reverse<geometry::point_order<Geometry1>::value>::value,
bool Reverse2 = detail::overlay::do_reverse<geometry::point_order<Geometry2>::value>::value,
bool ReverseOut = detail::overlay::do_reverse<geometry::point_order<GeometryOut>::value>::value,
bool Reverse = geometry::reverse_dispatch<Geometry1, Geometry2>::type::value
>
struct union_insert: not_implemented<TagIn1, TagIn2, TagOut>
{};
// If reversal is needed, perform it first
template
<
typename Geometry1, typename Geometry2, typename GeometryOut,
typename TagIn1, typename TagIn2, typename TagOut,
bool Areal1, bool Areal2, bool ArealOut,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct union_insert
<
Geometry1, Geometry2, GeometryOut,
TagIn1, TagIn2, TagOut,
Areal1, Areal2, ArealOut,
Reverse1, Reverse2, ReverseOut,
true
>: union_insert<Geometry2, Geometry1, GeometryOut>
{
template <typename RobustPolicy, typename OutputIterator, typename Strategy>
static inline OutputIterator apply(Geometry1 const& g1,
Geometry2 const& g2,
RobustPolicy const& robust_policy,
OutputIterator out,
Strategy const& strategy)
{
return union_insert
<
Geometry2, Geometry1, GeometryOut
>::apply(g2, g1, robust_policy, out, strategy);
}
};
template
<
typename Geometry1, typename Geometry2, typename GeometryOut,
typename TagIn1, typename TagIn2, typename TagOut,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct union_insert
<
Geometry1, Geometry2, GeometryOut,
TagIn1, TagIn2, TagOut,
true, true, true,
Reverse1, Reverse2, ReverseOut,
false
> : detail::overlay::overlay
<Geometry1, Geometry2, Reverse1, Reverse2, ReverseOut, GeometryOut, overlay_union>
{};
// dispatch for union of non-areal geometries
template
<
typename Geometry1, typename Geometry2, typename GeometryOut,
typename TagIn1, typename TagIn2, typename TagOut,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct union_insert
<
Geometry1, Geometry2, GeometryOut,
TagIn1, TagIn2, TagOut,
false, false, false,
Reverse1, Reverse2, ReverseOut,
false
> : union_insert
<
Geometry1, Geometry2, GeometryOut,
typename tag_cast<TagIn1, pointlike_tag, linear_tag>::type,
typename tag_cast<TagIn2, pointlike_tag, linear_tag>::type,
TagOut,
false, false, false,
Reverse1, Reverse2, ReverseOut,
false
>
{};
// dispatch for union of linear geometries
template
<
typename Linear1, typename Linear2, typename LineStringOut,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct union_insert
<
Linear1, Linear2, LineStringOut,
linear_tag, linear_tag, linestring_tag,
false, false, false,
Reverse1, Reverse2, ReverseOut,
false
> : detail::overlay::linear_linear_linestring
<
Linear1, Linear2, LineStringOut, overlay_union
>
{};
// dispatch for point-like geometries
template
<
typename PointLike1, typename PointLike2, typename PointOut,
bool Reverse1, bool Reverse2, bool ReverseOut
>
struct union_insert
<
PointLike1, PointLike2, PointOut,
pointlike_tag, pointlike_tag, point_tag,
false, false, false,
Reverse1, Reverse2, ReverseOut,
false
> : detail::overlay::union_pointlike_pointlike_point
<
PointLike1, PointLike2, PointOut
>
{};
} // namespace dispatch
#endif // DOXYGEN_NO_DISPATCH
#ifndef DOXYGEN_NO_DETAIL
namespace detail { namespace union_
{
/*!
\brief_calc2{union}
\ingroup union
\details \details_calc2{union_insert, spatial set theoretic union}.
\details_insert{union}
\tparam GeometryOut output geometry type, must be specified
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam OutputIterator output iterator
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param out \param_out{union}
\return \return_out
*/
template
<
typename GeometryOut,
typename Geometry1,
typename Geometry2,
typename OutputIterator
>
inline OutputIterator union_insert(Geometry1 const& geometry1,
Geometry2 const& geometry2,
OutputIterator out)
{
concepts::check<Geometry1 const>();
concepts::check<Geometry2 const>();
concepts::check<GeometryOut>();
typedef typename geometry::rescale_overlay_policy_type
<
Geometry1,
Geometry2
>::type rescale_policy_type;
typename strategy::intersection::services::default_strategy
<
typename cs_tag<GeometryOut>::type
>::type strategy;
rescale_policy_type robust_policy
= geometry::get_rescale_policy<rescale_policy_type>(geometry1, geometry2);
return dispatch::union_insert
<
Geometry1, Geometry2, GeometryOut
>::apply(geometry1, geometry2, robust_policy, out, strategy);
}
}} // namespace detail::union_
#endif // DOXYGEN_NO_DETAIL
namespace resolve_strategy {
struct union_
{
template
<
typename Geometry1,
typename Geometry2,
typename RobustPolicy,
typename Collection,
typename Strategy
>
static inline void apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
RobustPolicy const& robust_policy,
Collection & output_collection,
Strategy const& strategy)
{
typedef typename boost::range_value<Collection>::type geometry_out;
dispatch::union_insert
<
Geometry1, Geometry2, geometry_out
>::apply(geometry1, geometry2, robust_policy,
range::back_inserter(output_collection),
strategy);
}
template
<
typename Geometry1,
typename Geometry2,
typename RobustPolicy,
typename Collection
>
static inline void apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
RobustPolicy const& robust_policy,
Collection & output_collection,
default_strategy)
{
typedef typename boost::range_value<Collection>::type geometry_out;
typedef typename strategy::intersection::services::default_strategy
<
typename cs_tag<geometry_out>::type
>::type strategy_type;
dispatch::union_insert
<
Geometry1, Geometry2, geometry_out
>::apply(geometry1, geometry2, robust_policy,
range::back_inserter(output_collection),
strategy_type());
}
};
} // resolve_strategy
namespace resolve_variant
{
template <typename Geometry1, typename Geometry2>
struct union_
{
template <typename Collection, typename Strategy>
static inline void apply(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
concepts::check<Geometry1 const>();
concepts::check<Geometry2 const>();
concepts::check<typename boost::range_value<Collection>::type>();
typedef typename geometry::rescale_overlay_policy_type
<
Geometry1,
Geometry2
>::type rescale_policy_type;
rescale_policy_type robust_policy
= geometry::get_rescale_policy<rescale_policy_type>(geometry1,
geometry2);
resolve_strategy::union_::apply(geometry1, geometry2,
robust_policy,
output_collection,
strategy);
}
};
template <BOOST_VARIANT_ENUM_PARAMS(typename T), typename Geometry2>
struct union_<variant<BOOST_VARIANT_ENUM_PARAMS(T)>, Geometry2>
{
template <typename Collection, typename Strategy>
struct visitor: static_visitor<>
{
Geometry2 const& m_geometry2;
Collection& m_output_collection;
Strategy const& m_strategy;
visitor(Geometry2 const& geometry2,
Collection& output_collection,
Strategy const& strategy)
: m_geometry2(geometry2)
, m_output_collection(output_collection)
, m_strategy(strategy)
{}
template <typename Geometry1>
void operator()(Geometry1 const& geometry1) const
{
union_
<
Geometry1,
Geometry2
>::apply(geometry1, m_geometry2, m_output_collection, m_strategy);
}
};
template <typename Collection, typename Strategy>
static inline void
apply(variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry1,
Geometry2 const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
boost::apply_visitor(visitor<Collection, Strategy>(geometry2,
output_collection,
strategy),
geometry1);
}
};
template <typename Geometry1, BOOST_VARIANT_ENUM_PARAMS(typename T)>
struct union_<Geometry1, variant<BOOST_VARIANT_ENUM_PARAMS(T)> >
{
template <typename Collection, typename Strategy>
struct visitor: static_visitor<>
{
Geometry1 const& m_geometry1;
Collection& m_output_collection;
Strategy const& m_strategy;
visitor(Geometry1 const& geometry1,
Collection& output_collection,
Strategy const& strategy)
: m_geometry1(geometry1)
, m_output_collection(output_collection)
, m_strategy(strategy)
{}
template <typename Geometry2>
void operator()(Geometry2 const& geometry2) const
{
union_
<
Geometry1,
Geometry2
>::apply(m_geometry1, geometry2, m_output_collection, m_strategy);
}
};
template <typename Collection, typename Strategy>
static inline void
apply(Geometry1 const& geometry1,
variant<BOOST_VARIANT_ENUM_PARAMS(T)> const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
boost::apply_visitor(visitor<Collection, Strategy>(geometry1,
output_collection,
strategy),
geometry2);
}
};
template <BOOST_VARIANT_ENUM_PARAMS(typename T1), BOOST_VARIANT_ENUM_PARAMS(typename T2)>
struct union_<variant<BOOST_VARIANT_ENUM_PARAMS(T1)>, variant<BOOST_VARIANT_ENUM_PARAMS(T2)> >
{
template <typename Collection, typename Strategy>
struct visitor: static_visitor<>
{
Collection& m_output_collection;
Strategy const& m_strategy;
visitor(Collection& output_collection, Strategy const& strategy)
: m_output_collection(output_collection)
, m_strategy(strategy)
{}
template <typename Geometry1, typename Geometry2>
void operator()(Geometry1 const& geometry1,
Geometry2 const& geometry2) const
{
union_
<
Geometry1,
Geometry2
>::apply(geometry1, geometry2, m_output_collection, m_strategy);
}
};
template <typename Collection, typename Strategy>
static inline void
apply(variant<BOOST_VARIANT_ENUM_PARAMS(T1)> const& geometry1,
variant<BOOST_VARIANT_ENUM_PARAMS(T2)> const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
boost::apply_visitor(visitor<Collection, Strategy>(output_collection,
strategy),
geometry1, geometry2);
}
};
} // namespace resolve_variant
/*!
\brief Combines two geometries which each other
\ingroup union
\details \details_calc2{union, spatial set theoretic union}.
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam Collection output collection, either a multi-geometry,
or a std::vector<Geometry> / std::deque<Geometry> etc
\tparam Strategy \tparam_strategy{Union_}
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param output_collection the output collection
\param strategy \param_strategy{union_}
\note Called union_ because union is a reserved word.
\qbk{distinguish,with strategy}
\qbk{[include reference/algorithms/union.qbk]}
*/
template
<
typename Geometry1,
typename Geometry2,
typename Collection,
typename Strategy
>
inline void union_(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Collection& output_collection,
Strategy const& strategy)
{
resolve_variant::union_
<
Geometry1,
Geometry2
>::apply(geometry1, geometry2, output_collection, strategy);
}
/*!
\brief Combines two geometries which each other
\ingroup union
\details \details_calc2{union, spatial set theoretic union}.
\tparam Geometry1 \tparam_geometry
\tparam Geometry2 \tparam_geometry
\tparam Collection output collection, either a multi-geometry,
or a std::vector<Geometry> / std::deque<Geometry> etc
\param geometry1 \param_geometry
\param geometry2 \param_geometry
\param output_collection the output collection
\note Called union_ because union is a reserved word.
\qbk{[include reference/algorithms/union.qbk]}
*/
template
<
typename Geometry1,
typename Geometry2,
typename Collection
>
inline void union_(Geometry1 const& geometry1,
Geometry2 const& geometry2,
Collection& output_collection)
{
resolve_variant::union_
<
Geometry1,
Geometry2
>::apply(geometry1, geometry2, output_collection, default_strategy());
}
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_ALGORITHMS_UNION_HPP