Repository URL to install this package:
|
Version:
2.2.0-1 ▾
|
/*
* Copyright 2020 Axel Waggershauser
*/
// SPDX-License-Identifier: Apache-2.0
#pragma once
#include "Point.h"
#include "ZXAlgorithms.h"
#include <array>
#include <cmath>
namespace ZXing {
template <typename T>
class Quadrilateral : public std::array<T, 4>
{
using Base = std::array<T, 4>;
using Base::at;
public:
using Point = T;
Quadrilateral() = default;
Quadrilateral(T tl, T tr, T br, T bl) : Base{tl, tr, br, bl} {}
template <typename U>
Quadrilateral(PointT<U> tl, PointT<U> tr, PointT<U> br, PointT<U> bl)
: Quadrilateral(Point(tl), Point(tr), Point(br), Point(bl))
{}
constexpr Point topLeft() const noexcept { return at(0); }
constexpr Point topRight() const noexcept { return at(1); }
constexpr Point bottomRight() const noexcept { return at(2); }
constexpr Point bottomLeft() const noexcept { return at(3); }
double orientation() const
{
auto centerLine = (topRight() + bottomRight()) - (topLeft() + bottomLeft());
if (centerLine == Point{})
return 0.;
auto centerLineF = normalized(centerLine);
return std::atan2(centerLineF.y, centerLineF.x);
}
};
using QuadrilateralF = Quadrilateral<PointF>;
using QuadrilateralI = Quadrilateral<PointI>;
template <typename PointT = PointF>
Quadrilateral<PointT> Rectangle(int width, int height, typename PointT::value_t margin = 0)
{
return {
PointT{margin, margin}, {width - margin, margin}, {width - margin, height - margin}, {margin, height - margin}};
}
template <typename PointT = PointF>
Quadrilateral<PointT> CenteredSquare(int size)
{
return Scale(Quadrilateral(PointT{-1, -1}, {1, -1}, {1, 1}, {-1, 1}), size / 2);
}
template <typename PointT = PointI>
Quadrilateral<PointT> Line(int y, int xStart, int xStop)
{
return {PointT{xStart, y}, {xStop, y}, {xStop, y}, {xStart, y}};
}
template <typename PointT>
bool IsConvex(const Quadrilateral<PointT>& poly)
{
const int N = Size(poly);
bool sign = false;
typename PointT::value_t m = INFINITY, M = 0;
for(int i = 0; i < N; i++)
{
auto d1 = poly[(i + 2) % N] - poly[(i + 1) % N];
auto d2 = poly[i] - poly[(i + 1) % N];
auto cp = cross(d1, d2);
// TODO: see if the isInside check for all boundary points in GridSampler is still required after fixing the wrong fabs()
// application in the following line
UpdateMinMax(m, M, std::fabs(cp));
if (i == 0)
sign = cp > 0;
else if (sign != (cp > 0))
return false;
}
// It turns out being convex is not enough to prevent a "numerical instability"
// that can cause the corners being projected inside the image boundaries but
// some points near the corners being projected outside. This has been observed
// where one corner is almost in line with two others. The M/m ratio is below 2
// for the complete existing sample set. For very "skewed" QRCodes a value of
// around 3 is realistic. A value of 14 has been observed to trigger the
// instability.
return M / m < 4.0;
}
template <typename PointT>
Quadrilateral<PointT> Scale(const Quadrilateral<PointT>& q, int factor)
{
return {factor * q[0], factor * q[1], factor * q[2], factor * q[3]};
}
template <typename PointT>
PointT Center(const Quadrilateral<PointT>& q)
{
return Reduce(q) / Size(q);
}
template <typename PointT>
Quadrilateral<PointT> RotatedCorners(const Quadrilateral<PointT>& q, int n = 1, bool mirror = false)
{
Quadrilateral<PointT> res;
std::rotate_copy(q.begin(), q.begin() + ((n + 4) % 4), q.end(), res.begin());
if (mirror)
std::swap(res[1], res[3]);
return res;
}
template <typename PointT>
bool IsInside(const PointT& p, const Quadrilateral<PointT>& q)
{
// Test if p is on the same side (right or left) of all polygon segments
int pos = 0, neg = 0;
for (int i = 0; i < Size(q); ++i)
(cross(p - q[i], q[(i + 1) % Size(q)] - q[i]) < 0 ? neg : pos)++;
return pos == 0 || neg == 0;
}
template <typename PointT>
Quadrilateral<PointT> BoundingBox(const Quadrilateral<PointT>& q)
{
auto [minX, maxX] = std::minmax({q[0].x, q[1].x, q[2].x, q[3].x});
auto [minY, maxY] = std::minmax({q[0].y, q[1].y, q[2].y, q[3].y});
return {PointT{minX, minY}, {maxX, minY}, {maxX, maxY}, {minX, maxY}};
}
template <typename PointT>
bool HaveIntersectingBoundingBoxes(const Quadrilateral<PointT>& a, const Quadrilateral<PointT>& b)
{
auto bba = BoundingBox(a), bbb = BoundingBox(b);
bool x = bbb.topRight().x < bba.topLeft().x || bbb.topLeft().x > bba.topRight().x;
bool y = bbb.bottomLeft().y < bba.topLeft().y || bbb.topLeft().y > bba.bottomLeft().y;
return !(x || y);
}
template <typename PointT>
Quadrilateral<PointT> Blend(const Quadrilateral<PointT>& a, const Quadrilateral<PointT>& b)
{
auto dist2First = [c = a[0]](auto a, auto b) { return distance(a, c) < distance(b, c); };
// rotate points such that the the two topLeft points are closest to each other
auto offset = std::min_element(b.begin(), b.end(), dist2First) - b.begin();
Quadrilateral<PointT> res;
for (int i = 0; i < 4; ++i)
res[i] = (a[i] + b[(i + offset) % 4]) / 2;
return res;
}
} // ZXing