Repository URL to install this package:
Version:
1.23.0 ▾
|
onnxruntime-gpu
/
__init__.py
|
---|
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
# --------------------------------------------------------------------------
"""
ONNX Runtime is a performance-focused scoring engine for Open Neural Network Exchange (ONNX) models.
For more information on ONNX Runtime, please see `aka.ms/onnxruntime <https://aka.ms/onnxruntime/>`_
or the `Github project <https://github.com/microsoft/onnxruntime/>`_.
"""
__version__ = "1.23.0"
__author__ = "Microsoft"
# we need to do device version validation (for example to check Cuda version for an onnxruntime-training package).
# in order to know whether the onnxruntime package is for training it needs
# to do import onnxruntime.training.ortmodule first.
# onnxruntime.capi._pybind_state is required before import onnxruntime.training.ortmodule.
# however, import onnxruntime.capi._pybind_state will already raise an exception if a required Cuda version
# is not found.
# here we need to save the exception and continue with Cuda version validation in order to post
# meaningful messages to the user.
# the saved exception is raised after device version validation.
try:
from onnxruntime.capi._pybind_state import (
ExecutionMode, # noqa: F401
ExecutionOrder, # noqa: F401
GraphOptimizationLevel, # noqa: F401
LoraAdapter, # noqa: F401
ModelMetadata, # noqa: F401
NodeArg, # noqa: F401
OrtAllocatorType, # noqa: F401
OrtArenaCfg, # noqa: F401
OrtCompileApiFlags, # noqa: F401
OrtEpDevice, # noqa: F401
OrtExecutionProviderDevicePolicy, # noqa: F401
OrtHardwareDevice, # noqa: F401
OrtHardwareDeviceType, # noqa: F401
OrtMemoryInfo, # noqa: F401
OrtMemType, # noqa: F401
OrtSparseFormat, # noqa: F401
RunOptions, # noqa: F401
SessionIOBinding, # noqa: F401
SessionOptions, # noqa: F401
create_and_register_allocator, # noqa: F401
create_and_register_allocator_v2, # noqa: F401
disable_telemetry_events, # noqa: F401
enable_telemetry_events, # noqa: F401
get_all_providers, # noqa: F401
get_available_providers, # noqa: F401
get_build_info, # noqa: F401
get_device, # noqa: F401
get_ep_devices, # noqa: F401
get_version_string, # noqa: F401
has_collective_ops, # noqa: F401
register_execution_provider_library, # noqa: F401
set_default_logger_severity, # noqa: F401
set_default_logger_verbosity, # noqa: F401
set_global_thread_pool_sizes, # noqa: F401
set_seed, # noqa: F401
unregister_execution_provider_library, # noqa: F401
)
import_capi_exception = None
except Exception as e:
import_capi_exception = e
from onnxruntime.capi import onnxruntime_validation
if import_capi_exception:
raise import_capi_exception
from onnxruntime.capi.onnxruntime_inference_collection import (
AdapterFormat, # noqa: F401
InferenceSession, # noqa: F401
IOBinding, # noqa: F401
ModelCompiler, # noqa: F401
OrtDevice, # noqa: F401
OrtValue, # noqa: F401
SparseTensor, # noqa: F401
)
# TODO: thiagofc: Temporary experimental namespace for new PyTorch front-end
try: # noqa: SIM105
from . import experimental # noqa: F401
except ImportError:
pass
package_name, version, cuda_version = onnxruntime_validation.get_package_name_and_version_info()
if version:
__version__ = version
onnxruntime_validation.check_distro_info()
def _get_package_version(package_name: str):
from importlib.metadata import PackageNotFoundError, version # noqa: PLC0415
try:
package_version = version(package_name)
except PackageNotFoundError:
package_version = None
return package_version
def _get_package_root(package_name: str, directory_name: str | None = None):
from importlib.metadata import PackageNotFoundError, distribution # noqa: PLC0415
root_directory_name = directory_name or package_name
try:
dist = distribution(package_name)
files = dist.files or []
for file in files:
if file.name.endswith("__init__.py") and root_directory_name in file.parts:
return file.locate().parent
# Fallback to the first __init__.py
if not directory_name:
for file in files:
if file.name.endswith("__init__.py"):
return file.locate().parent
except PackageNotFoundError:
# package not found, do nothing
pass
return None
def _get_nvidia_dll_paths(is_windows: bool, cuda: bool = True, cudnn: bool = True):
if is_windows:
# Path is relative to site-packages directory.
cuda_dll_paths = [
("nvidia", "cublas", "bin", "cublasLt64_12.dll"),
("nvidia", "cublas", "bin", "cublas64_12.dll"),
("nvidia", "cufft", "bin", "cufft64_11.dll"),
("nvidia", "cuda_runtime", "bin", "cudart64_12.dll"),
]
cudnn_dll_paths = [
("nvidia", "cudnn", "bin", "cudnn_engines_runtime_compiled64_9.dll"),
("nvidia", "cudnn", "bin", "cudnn_engines_precompiled64_9.dll"),
("nvidia", "cudnn", "bin", "cudnn_heuristic64_9.dll"),
("nvidia", "cudnn", "bin", "cudnn_ops64_9.dll"),
("nvidia", "cudnn", "bin", "cudnn_adv64_9.dll"),
("nvidia", "cudnn", "bin", "cudnn_graph64_9.dll"),
("nvidia", "cudnn", "bin", "cudnn64_9.dll"),
]
else: # Linux
# cublas64 depends on cublasLt64, so cublasLt64 should be loaded first.
cuda_dll_paths = [
("nvidia", "cublas", "lib", "libcublasLt.so.12"),
("nvidia", "cublas", "lib", "libcublas.so.12"),
("nvidia", "cuda_nvrtc", "lib", "libnvrtc.so.12"),
("nvidia", "curand", "lib", "libcurand.so.10"),
("nvidia", "cufft", "lib", "libcufft.so.11"),
("nvidia", "cuda_runtime", "lib", "libcudart.so.12"),
]
# Do not load cudnn sub DLLs (they will be dynamically loaded later) to be consistent with PyTorch in Linux.
cudnn_dll_paths = [
("nvidia", "cudnn", "lib", "libcudnn.so.9"),
]
return (cuda_dll_paths if cuda else []) + (cudnn_dll_paths if cudnn else [])
def print_debug_info():
"""Print information to help debugging."""
import importlib.util # noqa: PLC0415
import os # noqa: PLC0415
import platform # noqa: PLC0415
from importlib.metadata import distributions # noqa: PLC0415
print(f"{package_name} version: {__version__}")
if cuda_version:
print(f"CUDA version used in build: {cuda_version}")
print("platform:", platform.platform())
print("\nPython package, version and location:")
ort_packages = []
for dist in distributions():
package = dist.metadata["Name"]
if package == "onnxruntime" or package.startswith(("onnxruntime-", "ort-")):
# Exclude packages whose root directory name is not onnxruntime.
location = _get_package_root(package, "onnxruntime")
if location and (package not in ort_packages):
ort_packages.append(package)
print(f"{package}=={dist.version} at {location}")
if len(ort_packages) > 1:
print(
"\033[33mWARNING: multiple onnxruntime packages are installed to the same location. "
"Please 'pip uninstall` all above packages, then `pip install` only one of them.\033[0m"
)
if cuda_version:
# Print version of installed packages that is related to CUDA or cuDNN DLLs.
packages = [
"torch",
"nvidia-cuda-runtime-cu12",
"nvidia-cudnn-cu12",
"nvidia-cublas-cu12",
"nvidia-cufft-cu12",
"nvidia-curand-cu12",
"nvidia-cuda-nvrtc-cu12",
"nvidia-nvjitlink-cu12",
]
for package in packages:
directory_name = "nvidia" if package.startswith("nvidia-") else None
version = _get_package_version(package)
if version:
print(f"{package}=={version} at {_get_package_root(package, directory_name)}")
else:
print(f"{package} not installed")
if platform.system() == "Windows":
print(f"\nEnvironment variable:\nPATH={os.environ['PATH']}")
elif platform.system() == "Linux":
print(f"\nEnvironment variable:\nLD_LIBRARY_PATH={os.environ['LD_LIBRARY_PATH']}")
if importlib.util.find_spec("psutil"):
def is_target_dll(path: str):
target_keywords = ["vcruntime140", "msvcp140"]
if cuda_version:
target_keywords = ["cufft", "cublas", "cudart", "nvrtc", "curand", "cudnn", *target_keywords]
return any(keyword in path for keyword in target_keywords)
import psutil # noqa: PLC0415
p = psutil.Process(os.getpid())
print("\nList of loaded DLLs:")
for lib in p.memory_maps():
if is_target_dll(lib.path.lower()):
print(lib.path)
if cuda_version:
if importlib.util.find_spec("cpuinfo") and importlib.util.find_spec("py3nvml"):
from .transformers.machine_info import get_device_info # noqa: PLC0415
print("\nDevice information:")
print(get_device_info())
else:
print("please `pip install py-cpuinfo py3nvml` to show device information.")
else:
print("please `pip install psutil` to show loaded DLLs.")
def preload_dlls(cuda: bool = True, cudnn: bool = True, msvc: bool = True, directory=None):
"""Preload CUDA 12.x and cuDNN 9.x DLLs in Windows or Linux, and MSVC runtime DLLs in Windows.
When the installed PyTorch is compatible (using same major version of CUDA and cuDNN),
there is no need to call this function if `import torch` is done before `import onnxruntime`.
Args:
cuda (bool, optional): enable loading CUDA DLLs. Defaults to True.
cudnn (bool, optional): enable loading cuDNN DLLs. Defaults to True.
msvc (bool, optional): enable loading MSVC DLLs in Windows. Defaults to True.
directory(str, optional): a directory contains CUDA or cuDNN DLLs. It can be an absolute path,
or a path relative to the directory of this file.
If directory is None (default value), the search order: the lib directory of compatible PyTorch in Windows,
nvidia site packages, default DLL loading paths.
If directory is empty string (""), the search order: nvidia site packages, default DLL loading paths.
If directory is a path, the search order: the directory, default DLL loading paths.
"""
import ctypes # noqa: PLC0415
import os # noqa: PLC0415
import platform # noqa: PLC0415
import sys # noqa: PLC0415
if platform.system() not in ["Windows", "Linux"]:
return
is_windows = platform.system() == "Windows"
if is_windows and msvc:
try:
ctypes.CDLL("vcruntime140.dll")
ctypes.CDLL("msvcp140.dll")
if platform.machine() != "ARM64":
ctypes.CDLL("vcruntime140_1.dll")
except OSError:
print("Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure.")
print("It can be downloaded at https://aka.ms/vs/17/release/vc_redist.x64.exe.")
if not (cuda_version and cuda_version.startswith("12.")) and (cuda or cudnn):
print(
f"\033[33mWARNING: {package_name} is not built with CUDA 12.x support. "
"Please install a version that supports CUDA 12.x, or call preload_dlls with cuda=False and cudnn=False.\033[0m"
)
return
if not (cuda_version and cuda_version.startswith("12.") and (cuda or cudnn)):
return
is_cuda_cudnn_imported_by_torch = False
if is_windows:
torch_version = _get_package_version("torch")
is_torch_for_cuda_12 = torch_version and "+cu12" in torch_version
if "torch" in sys.modules:
is_cuda_cudnn_imported_by_torch = is_torch_for_cuda_12
if (torch_version and "+cu" in torch_version) and not is_torch_for_cuda_12:
print(
f"\033[33mWARNING: The installed PyTorch {torch_version} does not support CUDA 12.x. "
f"Please install PyTorch for CUDA 12.x to be compatible with {package_name}.\033[0m"
)
if is_torch_for_cuda_12 and directory is None:
torch_root = _get_package_root("torch", "torch")
if torch_root:
directory = os.path.join(torch_root, "lib")
base_directory = directory or ".."
if not os.path.isabs(base_directory):
base_directory = os.path.join(os.path.dirname(__file__), base_directory)
base_directory = os.path.normpath(base_directory)
if not os.path.isdir(base_directory):
raise RuntimeError(f"Invalid parameter of directory={directory}. The directory does not exist!")
if is_cuda_cudnn_imported_by_torch:
# In Windows, PyTorch has loaded CUDA and cuDNN DLLs during `import torch`, no need to load them again.
print("Skip loading CUDA and cuDNN DLLs since torch is imported.")
return
# Try load DLLs from nvidia site packages.
dll_paths = _get_nvidia_dll_paths(is_windows, cuda, cudnn)
loaded_dlls = []
for relative_path in dll_paths:
dll_path = (
os.path.join(base_directory, relative_path[-1])
if directory
else os.path.join(base_directory, *relative_path)
)
if os.path.isfile(dll_path):
try:
_ = ctypes.CDLL(dll_path)
loaded_dlls.append(relative_path[-1])
except Exception as e:
print(f"Failed to load {dll_path}: {e}")
# Try load DLLs with default path settings.
has_failure = False
for relative_path in dll_paths:
dll_filename = relative_path[-1]
if dll_filename not in loaded_dlls:
try:
_ = ctypes.CDLL(dll_filename)
except Exception as e:
has_failure = True
print(f"Failed to load {dll_filename}: {e}")
if has_failure:
print("Please follow https://onnxruntime.ai/docs/install/#cuda-and-cudnn to install CUDA and CuDNN.")