Repository URL to install this package:
Version:
1.23.0 ▾
|
# -------------------------------------------------------------------------
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
# --------------------------------------------------------------------------
from __future__ import annotations
import copy
import logging
import os
import tempfile
from enum import Enum
from pathlib import Path
import numpy
import onnx
from onnx import ModelProto, TensorProto, external_data_helper
from onnx import onnx_pb as onnx_proto
from onnx.helper import make_graph, make_model, make_node, make_tensor_value_info
from onnx.reference import ReferenceEvaluator
from onnxruntime import GraphOptimizationLevel, InferenceSession, SessionOptions
try:
from onnx.reference.custom_element_types import float8e4m3fn
except ImportError:
float8e4m3fn = None
# INT4 np.dtypes added in ONNX 1.16. These map to np.int8/np.uint8 because numpy
# does not support sub-byte types.
try:
from onnx.reference.custom_element_types import int4, uint4
except ImportError:
int4 = None
uint4 = None
try:
from onnx.reference.op_run import to_array_extended
except ImportError:
# old version of onnx.
to_array_extended = None
__producer__ = "onnx.quantize"
__version__ = "0.1.0"
onnx_domain = "ai.onnx"
ms_domain = "com.microsoft"
QUANT_OP_NAME = "QuantizeLinear"
QUANT_INPUT_SUFFIX = "_QuantizeLinear_Input"
DEQUANT_OP_NAME = "DequantizeLinear"
DEQUANT_OUTPUT_SUFFIX = "_DequantizeLinear_Output"
TENSOR_NAME_QUANT_SUFFIX = "_quantized"
MODEL_SIZE_THRESHOLD = 2147483648 # Quant model should use external data if >= 2GB
FLOAT8_DISTRIBUTIONS = {}
type_to_name = {getattr(TensorProto, k): k for k in dir(TensorProto) if isinstance(getattr(TensorProto, k), int)}
# Quantization mode
# IntegerOps: Use IntegerOps in quantized model. Only ConvInteger and MatMulInteger ops are supported now.
# QLinearOps: Use QLinearOps in quantized model. Only QLinearConv and QLinearMatMul ops are supported now.
class QuantizationMode(Enum):
IntegerOps = 0
QLinearOps = 1
def __str__(self):
return self.name
@staticmethod
def from_string(mode):
try:
return QuantizationMode[mode]
except KeyError:
raise ValueError() # noqa: B904
class QuantizedValueType(Enum):
Input = 0
Initializer = 1
def __str__(self):
return self.name
@staticmethod
def from_string(v):
try:
return QuantizedValueType[v]
except KeyError:
raise ValueError() # noqa: B904
class QuantType(Enum):
QInt8 = 0
QUInt8 = 1
QFLOAT8E4M3FN = 2
QInt16 = 3
QUInt16 = 4
QInt4 = 5
QUInt4 = 6
def __str__(self):
return self.name
@staticmethod
def from_string(t):
try:
return QuantType[t]
except KeyError:
raise ValueError() # noqa: B904
@property
def tensor_type(self):
if self == QuantType.QInt8:
return TensorProto.INT8
if self == QuantType.QUInt8:
return TensorProto.UINT8
if self == QuantType.QUInt16:
return TensorProto.UINT16
if self == QuantType.QInt16:
return TensorProto.INT16
if self == QuantType.QFLOAT8E4M3FN:
return TensorProto.FLOAT8E4M3FN
if self == QuantType.QUInt4:
return TensorProto.UINT4
if self == QuantType.QInt4:
return TensorProto.INT4
raise ValueError(f"Unexpected value qtype={self!r}.")
class QuantFormat(Enum):
QOperator = 0
QDQ = 1
def __str__(self):
return self.name
@staticmethod
def from_string(format):
try:
return QuantFormat[format]
except KeyError:
raise ValueError() # noqa: B904
ONNX_TYPE_TO_NP_TYPE = {
onnx_proto.TensorProto.INT8: numpy.dtype("int8"),
onnx_proto.TensorProto.UINT8: numpy.dtype("uint8"),
onnx_proto.TensorProto.INT16: numpy.dtype("int16"),
onnx_proto.TensorProto.UINT16: numpy.dtype("uint16"),
onnx_proto.TensorProto.FLOAT8E4M3FN: float8e4m3fn,
onnx_proto.TensorProto.INT4: int4, # base_dtype is np.int8
onnx_proto.TensorProto.UINT4: uint4, # base_dtype is np.uint8
}
ONNX_INT_TYPE_RANGE = {
onnx_proto.TensorProto.UINT8: (numpy.array(0, dtype=numpy.uint8), numpy.array(255, dtype=numpy.uint8)),
onnx_proto.TensorProto.INT8: (numpy.array(-128, dtype=numpy.int8), numpy.array(127, dtype=numpy.int8)),
onnx_proto.TensorProto.UINT16: (numpy.array(0, dtype=numpy.uint16), numpy.array(65535, dtype=numpy.uint16)),
onnx_proto.TensorProto.INT16: (numpy.array(-32768, dtype=numpy.int16), numpy.array(32767, dtype=numpy.int16)),
onnx_proto.TensorProto.UINT4: (numpy.array(0, dtype=uint4), numpy.array(15, dtype=uint4)),
onnx_proto.TensorProto.INT4: (numpy.array(-8, dtype=int4), numpy.array(7, dtype=int4)),
}
ONNX_INT_TYPE_SYMMETRIC_RANGE = {
onnx_proto.TensorProto.UINT8: (numpy.array(0, dtype=numpy.uint8), numpy.array(254, dtype=numpy.uint8)),
onnx_proto.TensorProto.INT8: (numpy.array(-127, dtype=numpy.int8), numpy.array(127, dtype=numpy.int8)),
onnx_proto.TensorProto.UINT16: (numpy.array(0, dtype=numpy.uint16), numpy.array(65534, dtype=numpy.uint16)),
onnx_proto.TensorProto.INT16: (numpy.array(-32767, dtype=numpy.int16), numpy.array(32767, dtype=numpy.int16)),
}
ONNX_INT_TYPE_REDUCED_RANGE = {
onnx_proto.TensorProto.UINT8: (numpy.array(0, dtype=numpy.uint8), numpy.array(127, dtype=numpy.uint8)),
onnx_proto.TensorProto.INT8: (numpy.array(-64, dtype=numpy.int8), numpy.array(64, dtype=numpy.int8)),
onnx_proto.TensorProto.UINT16: (numpy.array(0, dtype=numpy.uint16), numpy.array(32767, dtype=numpy.uint16)),
onnx_proto.TensorProto.INT16: (numpy.array(-16384, dtype=numpy.int16), numpy.array(16384, dtype=numpy.int16)),
onnx_proto.TensorProto.UINT4: (numpy.array(0, dtype=int4), numpy.array(7, dtype=int4)),
onnx_proto.TensorProto.INT4: (numpy.array(-4, dtype=int4), numpy.array(3, dtype=int4)),
}
def _check_type(*args, zero_point_index=-1):
new_args = []
for i, a in enumerate(args):
if numpy.issubdtype(type(a), numpy.number):
new_args.append(numpy.array(a))
elif isinstance(a, numpy.ndarray):
new_args.append(a)
else:
raise TypeError(f"arg {i} is not an array: {a}")
if i == zero_point_index:
v = new_args[-1]
if v.dtype == numpy.float32 or v.dtype == numpy.float16:
raise TypeError(f"zero_point cannot be {v.dtype}")
return tuple(new_args) if len(new_args) > 1 else new_args[0]
def quantize_nparray(qType, arr, scale, zero_point, low=None, high=None):
assert qType in ONNX_TYPE_TO_NP_TYPE, (
f"Unexpected data type {qType} requested. Only INT8, UINT8, INT16, and UINT16 are supported."
)
if qType in (
onnx_proto.TensorProto.FLOAT8E4M3FN,
onnx_proto.TensorProto.FLOAT8E4M3FNUZ,
onnx_proto.TensorProto.FLOAT8E5M2,
onnx_proto.TensorProto.FLOAT8E5M2FNUZ,
):
if zero_point != 0:
raise NotImplementedError(f"zero_point is expected to be null for float 8 not {zero_point!r}.")
if arr.dtype == numpy.float32:
onnx_type = TensorProto.FLOAT
elif arr.dtype == numpy.float16:
onnx_type = TensorProto.FLOAT16
else:
raise ValueError(f"Unexpected dtype {arr.dtype}.")
onnx_model = make_model(
make_graph(
[
make_node(
"Constant", [], ["zero_point"], value=onnx.helper.make_tensor("zero_point", qType, [], [0])
),
make_node("QuantizeLinear", ["X", "scale", "zero_point"], ["Y"]),
],
"qu",
[
make_tensor_value_info("X", onnx_type, None),
make_tensor_value_info("scale", onnx_type, None),
],
[make_tensor_value_info("Y", qType, None)],
)
)
ref = ReferenceEvaluator(onnx_model)
return _check_type(ref.run(None, {"X": arr, "scale": scale})[0])
else:
# Quantizes data for all integer types.
#
# For int4 types, the quantized data is returned as either np.int8 or np.uint8,
# which matches the python reference ONNX implementation of QuantizeLinear.
# This data can be packed into 4-bit elements by using pack_bytes_to_4bit().
dtype = ONNX_TYPE_TO_NP_TYPE[qType]
qmin, qmax = get_qmin_qmax_for_qType(qType, reduce_range=False, symmetric=False)
cliplow = max(qmin, low) if low is not None else qmin
cliphigh = min(qmax, high) if high is not None else qmax
arr_fp32 = numpy.asarray((arr.astype(numpy.float32) / scale).round() + zero_point)
numpy.clip(arr_fp32, cliplow, cliphigh, out=arr_fp32)
return _check_type(arr_fp32.astype(dtype))
def compute_scale_zp(rmin, rmax, qmin, qmax, symmetric=False, min_real_range=None):
"""Calculate the scale s and zero point z for the quantization relation
r = s(q-z), where r are the original values and q are the corresponding
quantized values.
r and z are calculated such that every value within [rmin,rmax] has an
approximate representation within [qmin,qmax]. In addition, qmin <= z <=
qmax is enforced. If the symmetric flag is set to True, the interval
[rmin,rmax] is symmetrized to [-absmax, +absmax], where
absmax = max(abs(rmin), abs(rmax)).
:parameter rmin: minimum value of r
:parameter rmax: maximum value of r
:parameter qmin: minimum value representable by the target quantization data type
:parameter qmax: maximum value representable by the target quantization data type
:parameter symmetric: True if the floating-point range should be made symmetric. Defaults to False.
:parameter min_real_range: Minimum floating-point range (i.e., rmax - rmin) to enforce. Defaults to None.
:return: zero and scale [z, s]
"""
if qmin > 0 or qmax < 0:
raise ValueError(f"qmin and qmax must meet requirement: qmin <= 0 <= qmax while qmin:{qmin}, qmmax:{qmax}")
# Adjust rmin and rmax such that 0 is included in the range. This is
# required to make sure zero can be represented by the quantization data
# type (i.e. to make sure qmin <= zero_point <= qmax)
rmin = numpy.minimum(rmin, numpy.array(0, dtype=rmin.dtype))
rmax = numpy.maximum(rmax, numpy.array(0, dtype=rmax.dtype))
# Ensure a minimum float-point range if specified.
if min_real_range is not None:
rmax = max(rmax, rmin + numpy.asarray(min_real_range, dtype=rmin.dtype))
if symmetric:
absmax = numpy.maximum(numpy.abs(rmin), numpy.abs(rmax))
rmin = -absmax
rmax = +absmax
assert qmin <= qmax, f"qmin={rmin} > qmax={rmax}"
dr = numpy.array(rmax - rmin, dtype=numpy.float64)
dq = numpy.array(qmax, dtype=numpy.float64) - numpy.array(qmin, dtype=numpy.float64)
scale = numpy.array(dr / dq)
assert scale >= 0, "scale issue"
if scale < numpy.finfo(rmax.dtype).tiny:
scale = numpy.array(1.0, dtype=rmax.dtype)
zero_point = numpy.array(0, dtype=qmin.dtype)
else:
if symmetric:
# When symmetric (i.e., rmax == -rmin), the zero_point formula reduces to round((qmax + qmin) / 2.0).
# This simpler formula doesn't depend on scale and guarantees that the zero point values
# for int8, uint8, int16, and uint16 are always 0, 128, 0, and 32768, respectively.
# This is important for per-channel/symmetric QLinearConv on CPU EP, which requires all channels to have
# the exact same zero_point values.
zero_point = numpy.array(
numpy.round((qmin + qmax) / numpy.array(2.0, dtype=numpy.float64)), dtype=qmin.dtype
)
else:
zero_point = numpy.array(numpy.round(qmin - rmin / scale), dtype=qmin.dtype)
scale = scale.astype(rmax.dtype)
return [zero_point, scale]
def compute_scale_zp_float8(element_type, std):
"""Calculate the scale s for a float8 type (E4M3FN).
The function assumes the coefficient distribution and the float 8
distribution are similar to two gaussian laws.
:return: zero and scale [z, s]
More details in notebook `quantization_fp8.ipynb
<https://github.com/microsoft/onnxruntime/blob/main/docs/python/notebooks/quantization_fp8.ipynb>`_.
"""
zp_dtype = None
if element_type not in FLOAT8_DISTRIBUTIONS:
if element_type == TensorProto.FLOAT8E4M3FN:
from onnx.numpy_helper import float8e4m3_to_float32 # noqa: PLC0415
from onnx.reference.custom_element_types import float8e4m3fn # noqa: PLC0415
zp_dtype = float8e4m3fn
all_values = [float8e4m3_to_float32(i) for i in range(256)]
values = numpy.array(
[f for f in all_values if not numpy.isnan(f) and not numpy.isinf(f)], dtype=numpy.float32
)
else:
raise ValueError(f"Quantization to element_type={element_type} not implemented.")
FLOAT8_DISTRIBUTIONS[element_type] = values
elif element_type == TensorProto.FLOAT8E4M3FN:
from onnx.reference.custom_element_types import float8e4m3fn # noqa: PLC0415
zp_dtype = float8e4m3fn
if zp_dtype is None:
raise TypeError(f"Unexpected element_type {element_type}.")
std_f8 = numpy.std(FLOAT8_DISTRIBUTIONS[element_type])
zero = numpy.array(0, dtype=zp_dtype)
scale = numpy.array(std / std_f8, dtype=std.dtype)
return [zero, scale]
def compute_data_quant_params(
data: numpy.ndarray,
quant_type: onnx.TensorProto.DataType,
symmetric: bool,
reduce_range: bool = False,
min_real_range: float | None = None,
rmin_override: float | None = None,
rmax_override: float | None = None,
) -> tuple[numpy.ndarray, numpy.ndarray]:
"""
Returns the zero_point and scale for the given data.
:param data: The data for which to compute quantization parameters.
:param quant_type: The quantization data type.
:param symmetric: whether symmetric quantization is used or not.
:parameter reduce_range: True if the quantization range should be reduced. Defaults to False.
:parameter min_real_range: Minimum floating-point range (i.e., rmax - rmin) to enforce. Defaults to None.
:parameter rmin_override: The value of rmin to use if not None. Otherwise, uses min(data).
:parameter rmax_override: The value of rmax to use if not None. Otherwise, uses max(data).
:return: zero point and scale
"""
if not isinstance(data, numpy.ndarray):
raise TypeError(f"Weight must be given as an array not {type(data)}.")
if rmin_override is not None:
rmin = rmin_override
else:
rmin = data.min() if len(data) else 0.0
if rmax_override is not None:
rmax = rmax_override
else:
rmax = data.max() if len(data) else 0.0
rmin = numpy.array(rmin, dtype=data.dtype)
rmax = numpy.array(rmax, dtype=data.dtype)
scale = numpy.array(1.0, dtype=data.dtype)
if quant_type == TensorProto.FLOAT8E4M3FN:
if reduce_range:
raise RuntimeError("Unsupported option reduce_range=True for float 8.")
std = numpy.std(data)
zero_point, scale = compute_scale_zp_float8(quant_type, std)
return _check_type(zero_point, scale, zero_point_index=0)
if quant_type in (
TensorProto.INT8,
TensorProto.UINT8,
TensorProto.INT16,
TensorProto.UINT16,
TensorProto.INT4,
TensorProto.UINT4,
):
qmin, qmax = get_qmin_qmax_for_qType(quant_type, reduce_range, symmetric=symmetric)
if len(data):
zero_point, scale = compute_scale_zp(rmin, rmax, qmin, qmax, symmetric, min_real_range)
else:
zero_point = numpy.array(0, dtype=qmin.dtype)
return _check_type(zero_point, scale, zero_point_index=0)
raise ValueError(f"Unexpected value for quant_type={quant_type}.")
def quantize_data(
data, qType, symmetric, reduce_range=False, min_real_range=None, rmin_override=None, rmax_override=None
) -> tuple[numpy.ndarray, numpy.ndarray, numpy.ndarray]:
"""
:param data: data to quantize
:param qType: data type to quantize to.
:param symmetric: whether symmetric quantization is used or not.
:parameter reduce_range: True if the quantization range should be reduced. Defaults to False.
:parameter min_real_range: Minimum floating-point range (i.e., rmax - rmin) to enforce. Defaults to None.
:parameter rmin_override: The value of rmin to use if not None. Otherwise, uses min(data).
:parameter rmax_override: The value of rmax to use if not None. Otherwise, uses max(data).
:return: minimum, maximum, zero point, scale, and quantized weights
To pack weights, we compute a linear transformation
- when data `type == uint8` mode, from `[rmin, rmax]` -> :math:`[0, 2^{b-1}]` and
- when data `type == int8`, from `[-m , m]` -> :math:`[-(2^{b-1}-1), 2^{b-1}-1]` where
`m = max(abs(rmin), abs(rmax))`
and add necessary intermediate nodes to transform quantized weight to full weight using the equation
:math:`r = S(q-z)`, where
- *r*: real original value
- *q*: quantized value
- *S*: scale
- *z*: zero point
"""
zero_point, scale = compute_data_quant_params(
data,
qType,
symmetric,
reduce_range,
min_real_range,
rmin_override,
rmax_override,
)
if qType == TensorProto.FLOAT8E4M3FN:
quantized_data = quantize_nparray(qType, data, scale, zero_point)
if any((quantized_data.astype(numpy.uint8).ravel() & 127) == 127):
np_data = numpy.asarray(data)
raise RuntimeError(
f"One of the quantized value is NaN data in [{np_data.min()}, {np_data.max()}], "
f"quantized_data in [{quantized_data.min()}, {quantized_data.max()}]."
)
return zero_point, scale, quantized_data
if qType in (
TensorProto.INT8,
TensorProto.UINT8,
TensorProto.INT16,
TensorProto.UINT16,
TensorProto.INT4,
TensorProto.UINT4,
):
quantized_data = quantize_nparray(qType, data, scale, zero_point)
return zero_point, scale, quantized_data
raise ValueError(f"Unexpected value for qType={qType}.")
def quantize_onnx_initializer(
weight: onnx.TensorProto,
quant_type: onnx.TensorProto.DataType,
zero_point: numpy.ndarray,
scale: numpy.ndarray,
axis: int | None = None,
quant_weight_name: str | None = None,
) -> onnx.TensorProto:
"""
Returns a quantized version of the given ONNX initializer.
:param weight: The ONNX initializer to quantize.
:param quant_type: The final quantized data type.
:param zero_point: The zero-point value to use for quantization.
:param scale: The scale value to use for quantization.
:param axis: The quantization axis if quantizing per-channel. Defaults to None.
:param quant_weight_name: The name of the quantized initializer.
If not specified, the quantized name is generated.
:return: The quantized ONNX initializer.
"""
weight_data = tensor_proto_to_array(weight)
q_weight_data: numpy.ndarray | None = None
if axis is None: # Per-tensor quantization
q_weight_data = quantize_nparray(quant_type, weight_data.ravel(), scale, zero_point)
else: # Per-channel quantization
channel_count = weight_data.shape[axis]
channel_dims = list(weight_data.shape) # deep copy
channel_dims[axis] = 1 # only one per channel for reshape
quantized_channel_data_list = []
for i in range(channel_count):
channel_data = weight_data.take(i, axis)
channel_scale = scale[i]
channel_zero_point = zero_point[i]
quantized_channel_data = quantize_nparray(
quant_type, channel_data.ravel(), channel_scale, channel_zero_point
)
quantized_channel_data_list.append(numpy.asarray(quantized_channel_data).reshape(channel_dims))
q_weight_data = numpy.concatenate(quantized_channel_data_list, axis)
q_weight_name = quant_weight_name if quant_weight_name else f"{weight.name}{TENSOR_NAME_QUANT_SUFFIX}"
if quant_type == onnx.TensorProto.FLOAT8E4M3FN:
q_weight_initializer = onnx.TensorProto()
q_weight_initializer.data_type = quant_type
q_weight_initializer.dims.extend(weight.dims)
q_weight_initializer.name = q_weight_name
# Do not remove .flatten().copy() numpy is not clear about data persistence.
q_weight_initializer.raw_data = q_weight_data.flatten().copy().tobytes()
if to_array_extended is not None:
# This test should not be needed but it helped catch some issues
# with data persistence and tobytes.
check = to_array_extended(q_weight_initializer)
if check.shape != weight_data.shape or check.tobytes() != q_weight_data.tobytes():
raise RuntimeError(
f"The initializer of shape {weight_data.shape} could not be created, expecting "
f"{q_weight_data.tobytes()[:10]}, got {check.tobytes()[:10]} and shape={weight.shape}"
f"\nraw={str(q_weight_initializer)[:200]}."
)
elif quant_type in (onnx.TensorProto.INT4, onnx.TensorProto.UINT4):
if q_weight_data.dtype not in (numpy.int8, numpy.uint8):
raise RuntimeError(f"Quantized weights for {q_weight_name} must be 8-bit before packing as 4-bit values.")
# We do not use onnx.helper.pack_float32_to_4bit() due to performance.
# This can be the difference between a large model taking 30 minutes to quantize vs 5 minutes.
packed_data = bytes(pack_bytes_to_4bit(q_weight_data.tobytes()))
# We only use onnx.helper.make_tensor with raw data due to bug: https://github.com/onnx/onnx/pull/6161
q_weight_initializer = onnx.helper.make_tensor(q_weight_name, quant_type, weight.dims, packed_data, raw=True)
else:
quant_np_dtype = onnx.helper.tensor_dtype_to_np_dtype(quant_type)
q_weight_data = numpy.asarray(q_weight_data, dtype=quant_np_dtype).reshape(weight.dims)
q_weight_initializer = onnx.numpy_helper.from_array(q_weight_data, q_weight_name)
return q_weight_initializer
def get_qmin_qmax_for_qType(qType, reduce_range=False, symmetric=False): # noqa: N802
"""
Return qmin and qmax, the minimum and maximum value representable by the given qType
:parameter qType: onnx.onnx_pb.TensorProto.UINT8 or onnx.onnx_pb.TensorProto.UINT8
:return: qmin, qmax
"""
if qType == onnx_proto.TensorProto.FLOAT8E4M3FN:
raise NotImplementedError("This function is not implemented for float 8 as not needed.")
qrange = None
if reduce_range:
qrange = ONNX_INT_TYPE_REDUCED_RANGE.get(qType)
elif symmetric and qType in ONNX_INT_TYPE_SYMMETRIC_RANGE:
qrange = ONNX_INT_TYPE_SYMMETRIC_RANGE[qType]
else:
qrange = ONNX_INT_TYPE_RANGE.get(qType)
if not qrange:
raise ValueError(f"Unexpected data type {qType} requested. Only INT8, UINT8, INT16, and UINT16 are supported.")
qmin, qmax = qrange
if qmin > 0 or qmax < 0:
raise ValueError(
f"qmin and qmax must meet requirement: qmin <= 0 <= qmax while "
f"qmin:{qmin}, qmmax:{qmax}, dtype={qmin.dtype}, reduce_range={reduce_range}, "
f"symmetric={symmetric}, qType={qType}"
)
return qrange
def get_qrange_for_qType(qType, reduce_range=False, symmetric=False): # noqa: N802
"""
Helper function to get the quantization range for a type.
parameter qType: quantization type.
return: quantization range.
"""
qmin, qmax = get_qmin_qmax_for_qType(qType, reduce_range, symmetric=symmetric)
return qmax - qmin
def normalize_axis(axis: int, rank: int) -> tuple[bool, int]:
"""
Helper function that tries to return a normalized axis in the range [0, rank - 1].
:parameter axis: The axis to normalize.
:parameter rank: The tensor rank (number of dimensions).
:return (is_valid, axis_norm)
"""
axis_norm = axis + rank if axis < 0 else axis
is_valid = axis_norm >= 0 and axis_norm < rank
return is_valid, axis_norm
def pack_bytes_to_4bit(src_8bit: bytes) -> bytearray:
"""
Copies a source array of 8-bit values into a destination bytearray of packed 4-bit values.
Assumes that the source values are already in the appropriate int4 range.
:parameter src_8bit: The 8-bit element values to pack.
:return A bytearray with every two 8-bit src elements packed into a single byte.
"""
num_elems = len(src_8bit)
if num_elems == 0:
return bytearray()
dst_size = (num_elems + 1) // 2 # Ex: 5 8-bit elems packed into 3 bytes
dst = bytearray(dst_size)
src_i: int = 0
dst_i: int = 0
# Pack two 8-bit elements into a single byte in each iteration.
while src_i < num_elems - 1:
dst[dst_i] = ((src_8bit[src_i + 1] & 0xF) << 4) | (src_8bit[src_i] & 0xF)
dst_i += 1
src_i += 2
if src_i < num_elems:
# Odd number of elements.
dst[dst_i] = src_8bit[src_i] & 0xF
return dst
class QuantizedInitializer:
"""
Represents a linearly quantized weight input from ONNX operators
"""
def __init__(
self,
name,
initializer,
rmins,
rmaxs,
zero_points,
scales,
data=[], # noqa: B006
quantized_data=[], # noqa: B006
axis=None,
):
self.name = name
self.initializer = initializer # TensorProto initializer in ONNX graph
self.rmins = rmins # List of minimum range for each axis
self.rmaxs = rmaxs # List of maximum range for each axis
# 1D tensor of zero points computed for each axis. scalar if axis is empty
self.zero_points = zero_points
self.scales = scales # 1D tensor of scales computed for each axis. scalar if axis is empty
self.data = data # original data from initializer TensorProto
self.quantized_data = quantized_data # weight-packed data from data
# Scalar to specify which dimension in the initializer to weight pack.
self.axis = axis
# If empty, single zero point and scales computed from a single rmin and rmax
class QuantizedValue:
"""
Represents a linearly quantized value (input\\output\\intializer)
"""
def __init__(
self,
name,
new_quantized_name,
scale_name,
zero_point_name,
quantized_value_type,
axis=None,
node_type=None,
node_qtype=None,
scale_type=None,
):
self.original_name = name
self.q_name = new_quantized_name
self.scale_name = scale_name
self.zp_name = zero_point_name
self.value_type = quantized_value_type
self.axis = axis
self.node_type = node_type
self.node_qtype = node_qtype
self.scale_type = scale_type
class BiasToQuantize:
"""
Represents a bias to be quantized
"""
def __init__(self, bias_name, input_name, weight_name):
self.bias_name = bias_name
self.input_name = input_name
self.weight_name = weight_name
def attribute_to_kwarg(attribute):
"""
Convert attribute to kwarg format for use with onnx.helper.make_node.
:parameter attribute: attribute in AttributeProto format.
:return: attribute in {key: value} format.
"""
if attribute.type == 0:
raise ValueError(f"attribute {attribute.name} does not have type specified.")
# Based on attribute type definitions from AttributeProto
# definition in https://github.com/onnx/onnx/blob/main/onnx/onnx.proto
if attribute.type == 1:
value = attribute.f
elif attribute.type == 2:
value = attribute.i
elif attribute.type == 3:
value = attribute.s
elif attribute.type == 4:
value = attribute.t
elif attribute.type == 5:
value = attribute.g
elif attribute.type == 6:
value = attribute.floats
elif attribute.type == 7:
value = attribute.ints
elif attribute.type == 8:
value = attribute.strings
elif attribute.type == 9:
value = attribute.tensors
elif attribute.type == 10:
value = attribute.graphs
else:
raise ValueError(f"attribute {attribute.name} has unsupported type {attribute.type}.")
return {attribute.name: value}
def find_by_name(item_name, item_list):
"""
Helper function to find item by name in a list.
parameter item_name: name of the item.
parameter item_list: list of items.
return: item if found. None otherwise.
"""
items = [item for item in item_list if item.name == item_name]
return items[0] if len(items) > 0 else None
def get_elem_index(elem_name, elem_list):
"""
Helper function to return index of an item in a node list
"""
elem_idx = -1
for i in range(len(elem_list)):
if elem_list[i] == elem_name:
elem_idx = i
return elem_idx
def get_mul_node(inputs, output, name):
"""
Helper function to create a Mul node.
parameter inputs: list of input names.
parameter output: output name.
parameter name: name of the node.
return: Mul node in NodeProto format.
"""
return onnx.helper.make_node("Mul", inputs, [output], name)
def generate_identified_filename(filename: Path, identifier: str) -> Path:
"""
Helper function to generate a identifiable filepath by concatenating the given identifier as a suffix.
"""
return filename.parent.joinpath(filename.stem + identifier + filename.suffix)
def apply_plot(hist, hist_edges):
import sys # noqa: PLC0415
import matplotlib.pyplot as plt # noqa: PLC0415
import numpy # noqa: PLC0415
numpy.set_printoptions(threshold=sys.maxsize)
print("Histogram:")
print(hist)
print("Histogram Edges:")
print(hist_edges)
plt.stairs(hist, hist_edges, fill=True)
plt.xlabel("Tensor value")
plt.ylabel("Counts")
plt.title("Tensor value V.S. Counts")
plt.show()
def write_calibration_table(calibration_cache, dir="."):
"""
Helper function to write calibration table to files.
"""
import json # noqa: PLC0415
import flatbuffers # noqa: PLC0415
import numpy as np # noqa: PLC0415
import onnxruntime.quantization.CalTableFlatBuffers.KeyValue as KeyValue # noqa: PLC0415
import onnxruntime.quantization.CalTableFlatBuffers.TrtTable as TrtTable # noqa: PLC0415
from onnxruntime.quantization.calibrate import CalibrationMethod, TensorData, TensorsData # noqa: PLC0415
logging.info(f"calibration cache: {calibration_cache}")
class MyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, (TensorData, TensorsData)):
return obj.to_dict()
if isinstance(obj, np.ndarray):
return {"data": obj.tolist(), "dtype": str(obj.dtype), "CLS": "numpy.array"}
if isinstance(obj, CalibrationMethod):
return {"CLS": obj.__class__.__name__, "value": str(obj)}
return json.JSONEncoder.default(self, obj)
json_data = json.dumps(calibration_cache, cls=MyEncoder)
with open(os.path.join(dir, "calibration.json"), "w") as file:
file.write(json_data) # use `json.loads` to do the reverse
# Serialize data using FlatBuffers
zero = np.array(0)
builder = flatbuffers.Builder(1024)
key_value_list = []
for key in sorted(calibration_cache.keys()):
values = calibration_cache[key]
d_values = values.to_dict()
floats = [
float(d_values.get("highest", zero).item()),
float(d_values.get("lowest", zero).item()),
]
value = str(max(floats))
flat_key = builder.CreateString(key)
flat_value = builder.CreateString(value)
KeyValue.KeyValueStart(builder)
KeyValue.KeyValueAddKey(builder, flat_key)
KeyValue.KeyValueAddValue(builder, flat_value)
key_value = KeyValue.KeyValueEnd(builder)
key_value_list.append(key_value)
TrtTable.TrtTableStartDictVector(builder, len(key_value_list))
for key_value in key_value_list:
builder.PrependUOffsetTRelative(key_value)
main_dict = builder.EndVector()
TrtTable.TrtTableStart(builder)
TrtTable.TrtTableAddDict(builder, main_dict)
cal_table = TrtTable.TrtTableEnd(builder)
builder.Finish(cal_table)
buf = builder.Output()
with open(os.path.join(dir, "calibration.flatbuffers"), "wb") as file:
file.write(buf)
# Deserialize data (for validation)
if os.environ.get("QUANTIZATION_DEBUG", "0") in (1, "1"):
cal_table = TrtTable.TrtTable.GetRootAsTrtTable(buf, 0)
dict_len = cal_table.DictLength()
for i in range(dict_len):
key_value = cal_table.Dict(i)
logging.info(key_value.Key())
logging.info(key_value.Value())
# write plain text
with open(os.path.join(dir, "calibration.cache"), "w") as file:
for key in sorted(calibration_cache.keys()):
values = calibration_cache[key]
d_values = values.to_dict()
floats = [
float(d_values.get("highest", zero).item()),
float(d_values.get("lowest", zero).item()),
]
value = key + " " + str(max(floats))
file.write(value)
file.write("\n")
def smooth_distribution(p, eps=0.0001):
"""Given a discrete distribution (may have not been normalized to 1),
smooth it by replacing zeros with eps multiplied by a scaling factor
and taking the corresponding amount off the non-zero values.
Ref: http://web.engr.illinois.edu/~hanj/cs412/bk3/KL-divergence.pdf
https://github.com//apache/incubator-mxnet/blob/master/python/mxnet/contrib/quantization.py
"""
is_zeros = (p == 0).astype(numpy.float32)
is_nonzeros = (p != 0).astype(numpy.float32)
n_zeros = is_zeros.sum()
n_nonzeros = p.size - n_zeros
if not n_nonzeros:
# raise ValueError('The discrete probability distribution is malformed. All entries are 0.')
return None
eps1 = eps * float(n_zeros) / float(n_nonzeros)
assert eps1 < 1.0, f"n_zeros={n_zeros}, n_nonzeros={n_nonzeros}, eps1={eps1}"
hist = p.astype(numpy.float32)
hist += eps * is_zeros + (-eps1) * is_nonzeros
assert (hist <= 0).sum() == 0
return hist
def model_has_external_data(model_path: Path):
model = onnx.load(model_path.as_posix(), load_external_data=False)
return any(external_data_helper.uses_external_data(intializer) for intializer in model.graph.initializer)
def optimize_model(model_path: Path, opt_model_path: Path):
"""
Generate model that applies graph optimization (constant folding, etc.)
parameter model_path: path to the original onnx model
parameter opt_model_path: path to the optimized onnx model
:return: optimized onnx model
"""
sess_option = SessionOptions()
sess_option.optimized_model_filepath = opt_model_path.as_posix()
sess_option.graph_optimization_level = GraphOptimizationLevel.ORT_ENABLE_BASIC
kwargs = {}
# This will rename constant initializer names, disable it to make test pass.
kwargs["disabled_optimizers"] = ["ConstantSharing"]
_ = InferenceSession(model_path.as_posix(), sess_option, providers=["CPUExecutionProvider"], **kwargs)
def add_pre_process_metadata(model: ModelProto):
"""Tag the model that it went through quantization pre-processing"""
metadata_props = {"onnx.quant.pre_process": "onnxruntime.quant"}
if model.metadata_props:
for prop in model.metadata_props:
metadata_props.update({prop.key: prop.value})
onnx.helper.set_model_props(model, metadata_props)
def model_has_pre_process_metadata(model: ModelProto) -> bool:
"""Check the model whether it went through quantization pre-processing"""
if model.metadata_props:
for prop in model.metadata_props:
if prop.key == "onnx.quant.pre_process" and prop.value == "onnxruntime.quant":
return True
return False
def add_infer_metadata(model: ModelProto):
metadata_props = {"onnx.infer": "onnxruntime.quant"}
if model.metadata_props:
for p in model.metadata_props:
metadata_props.update({p.key: p.value})
onnx.helper.set_model_props(model, metadata_props)
def model_has_infer_metadata(model: ModelProto) -> bool:
if model.metadata_props:
for p in model.metadata_props:
if p.key == "onnx.infer" and p.value == "onnxruntime.quant":
return True
return False
def get_opset_version(model: ModelProto) -> int:
ai_onnx_domain = [opset for opset in model.opset_import if not opset.domain or opset.domain == "ai.onnx"]
if len(ai_onnx_domain) != 1:
raise ValueError("Failed to find proper ai.onnx domain")
opset_version = ai_onnx_domain[0].version
return opset_version
def update_opset_version(model: ModelProto, weight_type: QuantType) -> ModelProto:
opset_version = get_opset_version(model)
target_opset_version = opset_version
weight_quant_type = getattr(weight_type, "tensor_type", weight_type)
if opset_version < 19 and weight_quant_type == onnx.TensorProto.FLOAT8E4M3FN:
logging.warning(
f"The original model opset version is {opset_version}, which does not support quantization to float 8. "
"Please update the model to opset >= 19. Automatically update the model to opset 19. "
"Please verify the quantized model."
)
target_opset_version = 19
elif opset_version == 10:
logging.warning(
f"The original model opset version is {opset_version}, which does not support node fusions. "
"Please update the model to opset >= 11 for better performance."
)
elif opset_version < 10:
logging.warning(
f"The original model opset version is {opset_version}, which does not support quantization. "
"Please update the model to opset >= 11. Automatically update the model to opset 11. "
"Please verify the quantized model."
)
target_opset_version = 11
if target_opset_version != opset_version:
model = onnx.version_converter.convert_version(model, target_opset_version)
# Additional nodes may be added to the model during the opset version conversion. Run shape inference
# to ensure all nodes are included in model.graph.value_info.
model = save_and_reload_model_with_shape_infer(model)
return model
def load_model_with_shape_infer(model_path: Path) -> ModelProto:
inferred_model_path = generate_identified_filename(model_path, "-inferred")
onnx.shape_inference.infer_shapes_path(str(model_path), str(inferred_model_path))
model = onnx.load(inferred_model_path.as_posix())
add_infer_metadata(model)
inferred_model_path.unlink()
return model
def save_and_reload_model_with_shape_infer(model: ModelProto) -> ModelProto:
with tempfile.TemporaryDirectory(prefix="ort.quant.") as quant_tmp_dir:
model_copy = copy.deepcopy(model)
model_path = Path(quant_tmp_dir).joinpath("model.onnx")
onnx.save_model(model_copy, model_path.as_posix(), save_as_external_data=True)
return load_model_with_shape_infer(model_path)
def tensor_proto_to_array(initializer: TensorProto) -> numpy.ndarray:
if initializer.data_type in (onnx_proto.TensorProto.FLOAT, onnx_proto.TensorProto.FLOAT16):
return onnx.numpy_helper.to_array(initializer)
raise ValueError(
f"Only float type is supported. Weights {initializer.name} is {type_to_name[initializer.data_type]}"
)
def add_quant_suffix(tensor_name: str) -> str:
return tensor_name + "_QuantizeLinear"
def add_quant_input_suffix(tensor_name: str) -> str:
return tensor_name + QUANT_INPUT_SUFFIX
def add_quant_output_suffix(tensor_name) -> str:
return tensor_name + "_QuantizeLinear_Output"
def add_dequant_suffix(tensor_name) -> str:
return tensor_name + "_DequantizeLinear"
def add_dequant_input_suffix(tensor_name) -> str:
return tensor_name + "_DequantizeLinear_Input"
def add_dequant_output_suffix(tensor_name) -> str:
return tensor_name + DEQUANT_OUTPUT_SUFFIX