Repository URL to install this package:
|
Version:
0.0.12 ▾
|
clu
/
parameter_overview_test.py
|
|---|
# Copyright 2025 The CLU Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for parameter overviews."""
from absl.testing import absltest
from clu import parameter_overview
from flax import linen as nn
import jax
import jax.numpy as jnp
import numpy as np
EMPTY_PARAMETER_OVERVIEW = """+------+-------+-------+------+------+-----+
| Name | Shape | Dtype | Size | Mean | Std |
+------+-------+-------+------+------+-----+
+------+-------+-------+------+------+-----+
Total: 0 -- 0 bytes"""
FLAX_CONV2D_PARAMETER_OVERVIEW = """+-------------+--------------+---------+------+
| Name | Shape | Dtype | Size |
+-------------+--------------+---------+------+
| conv/bias | (2,) | float32 | 2 |
| conv/kernel | (3, 3, 3, 2) | float32 | 54 |
+-------------+--------------+---------+------+
Total: 56 -- 224 bytes"""
FLAX_CONV2D_PARAMETER_OVERVIEW_WITH_SHARDING = """+-------------+--------------+---------+------+----------+
| Name | Shape | Dtype | Size | Sharding |
+-------------+--------------+---------+------+----------+
| conv/bias | (2,) | float32 | 2 | () |
| conv/kernel | (3, 3, 3, 2) | float32 | 54 | () |
+-------------+--------------+---------+------+----------+
Total: 56 -- 224 bytes"""
FLAX_CONV2D_PARAMETER_OVERVIEW_WITH_STATS = """+-------------+--------------+---------+------+------+-----+
| Name | Shape | Dtype | Size | Mean | Std |
+-------------+--------------+---------+------+------+-----+
| conv/bias | (2,) | float32 | 2 | 1.0 | 0.0 |
| conv/kernel | (3, 3, 3, 2) | float32 | 54 | 1.0 | 0.0 |
+-------------+--------------+---------+------+------+-----+
Total: 56 -- 224 bytes"""
FLAX_CONV2D_PARAMETER_OVERVIEW_WITH_STATS_AND_SHARDING = """+-------------+--------------+---------+------+------+-----+----------+
| Name | Shape | Dtype | Size | Mean | Std | Sharding |
+-------------+--------------+---------+------+------+-----+----------+
| conv/bias | (2,) | float32 | 2 | 1.0 | 0.0 | () |
| conv/kernel | (3, 3, 3, 2) | float32 | 54 | 1.0 | 0.0 | () |
+-------------+--------------+---------+------+------+-----+----------+
Total: 56 -- 224 bytes"""
FLAX_CONV2D_MAPPING_PARAMETER_OVERVIEW_WITH_STATS = """+--------------------+--------------+---------+------+------+-----+
| Name | Shape | Dtype | Size | Mean | Std |
+--------------------+--------------+---------+------+------+-----+
| params/conv/bias | (2,) | float32 | 2 | 1.0 | 0.0 |
| params/conv/kernel | (3, 3, 3, 2) | float32 | 54 | 1.0 | 0.0 |
+--------------------+--------------+---------+------+------+-----+
Total: 56 -- 224 bytes"""
class CNN(nn.Module):
@nn.compact
def __call__(self, x):
return nn.Conv(features=2, kernel_size=(3, 3), name="conv")(x)
class JaxParameterOverviewTest(absltest.TestCase):
def test_count_parameters_empty(self):
self.assertEqual(0, parameter_overview.count_parameters({}))
def test_count_parameters(self):
rng = jax.random.PRNGKey(42)
# Weights of a 2D convolution with 2 filters.
variables = CNN().init(rng, jnp.zeros((2, 5, 5, 3)))
# 3 * 3*3 * 2 + 2 (bias) = 56 parameters
self.assertEqual(56,
parameter_overview.count_parameters(variables["params"]))
def test_get_parameter_overview_empty(self):
self.assertEqual(EMPTY_PARAMETER_OVERVIEW,
parameter_overview.get_parameter_overview({}))
self.assertEqual(EMPTY_PARAMETER_OVERVIEW,
parameter_overview.get_parameter_overview({"a": {}}))
def test_get_parameter_overview(self):
rng = jax.random.PRNGKey(42)
# Weights of a 2D convolution with 2 filters.
variables = CNN().init(rng, jnp.zeros((2, 5, 5, 3)))
variables = jax.tree_util.tree_map(jnp.ones_like, variables)
self.assertEqual(
FLAX_CONV2D_PARAMETER_OVERVIEW,
parameter_overview.get_parameter_overview(
variables["params"], include_stats=False))
self.assertEqual(
FLAX_CONV2D_PARAMETER_OVERVIEW_WITH_STATS,
parameter_overview.get_parameter_overview(variables["params"]))
self.assertEqual(
FLAX_CONV2D_MAPPING_PARAMETER_OVERVIEW_WITH_STATS,
parameter_overview.get_parameter_overview(variables))
# Add sharding with PartitionSpecs.
mesh = jax.sharding.Mesh(np.asarray(jax.devices()), "d")
sharding = jax.sharding.NamedSharding(mesh, jax.sharding.PartitionSpec())
variables = jax.jit(lambda x: x, out_shardings=sharding)(variables)
self.assertEqual(
FLAX_CONV2D_PARAMETER_OVERVIEW_WITH_SHARDING,
parameter_overview.get_parameter_overview(
variables["params"], include_stats="sharding"))
self.assertEqual(
FLAX_CONV2D_PARAMETER_OVERVIEW_WITH_STATS_AND_SHARDING,
parameter_overview.get_parameter_overview(
variables["params"], include_stats="global"))
def test_get_parameter_overview_shape_dtype_struct(self):
variables_shape_dtype_struct = jax.eval_shape(
lambda: CNN().init(jax.random.PRNGKey(42), jnp.zeros((2, 5, 5, 3))))
self.assertEqual(
FLAX_CONV2D_PARAMETER_OVERVIEW,
parameter_overview.get_parameter_overview(
variables_shape_dtype_struct["params"], include_stats=False))
def test_printing_bool(self):
self.assertEqual(
parameter_overview._default_table_value_formatter(True), "True")
self.assertEqual(
parameter_overview._default_table_value_formatter(False), "False")
if __name__ == "__main__":
absltest.main()