Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
clu / metric_writers / torch_tensorboard_writer_test.py
Size: Mime:
# Copyright 2025 The CLU Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Tests for TorchTensorboardWriter."""

import collections
import os
from typing import Any, Dict

from clu.metric_writers import torch_tensorboard_writer
import numpy as np
import tensorflow as tf


def _load_scalars_data(logdir: str):
  """Loads scalar summaries from events in a logdir."""
  paths = tf.io.gfile.glob(os.path.join(logdir, "events.out.tfevents.*"))
  data = collections.defaultdict(dict)
  for path in paths:
    for event in tf.compat.v1.train.summary_iterator(path):
      for value in event.summary.value:
        data[event.step][value.tag] = value.simple_value

  return data


def _load_histograms_data(logdir: str) -> Dict[int, Dict[str, Any]]:
  """Loads histograms summaries from events in a logdir.

  Args:
    logdir: a directory to find logs

  Returns:
    A generated histograms in a shape step -> tag -> histo.
  """
  paths = tf.io.gfile.glob(os.path.join(logdir, "events.out.tfevents.*"))
  data = {}
  for path in paths:
    for event in tf.compat.v1.train.summary_iterator(path):
      if event.step not in data:
        data[event.step] = {}
      step_data = {}
      for value in event.summary.value:
        print(" value:", value)
        step_data[value.tag] = value.histo
      data[event.step].update(step_data)

  return data


class TorchTensorboardWriterTest(tf.test.TestCase):

  def setUp(self):
    super().setUp()
    self.logdir = self.get_temp_dir()
    self.writer = torch_tensorboard_writer.TorchTensorboardWriter(self.logdir)

  def test_write_scalar(self):
    self.writer.write_scalars(11, {"a": 0.6, "b": 15})
    self.writer.write_scalars(20, {"a": 0.8, "b": 12})
    self.writer.flush()
    data = _load_scalars_data(self.logdir)
    self.assertAllClose(data[11], {"a": 0.6, "b": 15})
    self.assertAllClose(data[20], {"a": 0.8, "b": 12})

  def test_write_histograms(self):
    self.writer.write_histograms(
        0, {
            "a": np.asarray([0.3, 0.1, 0.5, 0.7, 0.1]),
            "b": np.asarray([-0.1, 0.3, 0.2, 0.4, 0.4]),
        }, num_buckets={"a": 2, "b": 2})
    self.writer.write_histograms(
        2, {
            "a": np.asarray([0.2, 0.4, 0.5, 0.1, -0.1]),
            "b": np.asarray([0.7, 0.3, 0.2, 0.1, 0.0]),
        }, num_buckets={"a": 2, "b": 2})
    self.writer.flush()
    data = _load_histograms_data(self.logdir)
    self.assertNear(data[0]["a"].min, 0.1, 0.001)
    self.assertNear(data[0]["a"].max, 0.7, 0.001)
    self.assertNear(data[0]["b"].min, -0.1, 0.001)
    self.assertNear(data[0]["b"].max, 0.4, 0.001)
    self.assertNear(data[2]["a"].min, -0.1, 0.001)
    self.assertNear(data[2]["a"].max, 0.5, 0.001)
    self.assertNear(data[2]["b"].min, 0.0, 0.001)
    self.assertNear(data[2]["b"].max, 0.7, 0.001)


if __name__ == "__main__":
  tf.test.main()