Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
neuraloperator / layers / tests / test_grid_embeddings.py
Size: Mime:
import random

import torch
from torch.testing import assert_close
import pytest

from ..embeddings import GridEmbedding2D, GridEmbeddingND

# Testing grid-based pos encoding: choose a random grid
# point and assert the proper encoding is applied there


def test_GridEmbedding2D():
    grid_boundaries = [[0, 1], [0, 1]]
    pos_embed = GridEmbedding2D(in_channels=1, grid_boundaries=grid_boundaries)

    input_res = (20, 20)
    x = torch.randn(1, 1, *input_res)
    x = pos_embed(x)

    index = [random.randint(0, res-1) for res in input_res]
    true_coords = x[0,1:,index[0], index[1]].squeeze() # grab pos encoding channels at coord index
    expected_coords = torch.tensor([i/j for i,j in zip(index,input_res)])
    assert_close(true_coords, expected_coords)


@pytest.mark.parametrize("dim", [1, 2, 3, 4])
def test_GridEmbeddingND(dim):
    grid_boundaries = [[0, 1]] * dim
    pos_embed = GridEmbeddingND(in_channels=1, dim=dim, grid_boundaries=grid_boundaries)

    input_res = [20] * dim
    x = torch.randn(1, 1, *input_res)
    x = pos_embed(x)

    index = [random.randint(0, res - 1) for res in input_res]
    # grab pos encoding channels at coord index
    pos_channels = x[0, 1:, ...]
    indices = (slice(None), *index)
    true_coords = pos_channels[indices]
    expected_coords = torch.tensor([i / j for i, j in zip(index, input_res)])
    assert_close(true_coords, expected_coords)