Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
open3d-cpu / examples / pipelines / robust_icp.py
Size: Mime:
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2024 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------
"""Outlier rejection using robust kernels for ICP"""

import open3d as o3d
import numpy as np
import copy


def draw_registration_result(source, target, transformation):
    source_temp = copy.deepcopy(source)
    target_temp = copy.deepcopy(target)
    source_temp.paint_uniform_color([1, 0.706, 0])
    target_temp.paint_uniform_color([0, 0.651, 0.929])
    source_temp.transform(transformation)
    o3d.visualization.draw([source_temp, target_temp])


def apply_noise(pcd, mu, sigma):
    noisy_pcd = copy.deepcopy(pcd)
    points = np.asarray(noisy_pcd.points)
    points += np.random.normal(mu, sigma, size=points.shape)
    noisy_pcd.points = o3d.utility.Vector3dVector(points)
    return noisy_pcd


if __name__ == "__main__":
    pcd_data = o3d.data.DemoICPPointClouds()
    source = o3d.io.read_point_cloud(pcd_data.paths[0])
    target = o3d.io.read_point_cloud(pcd_data.paths[1])
    trans_init = np.asarray([[0.862, 0.011, -0.507, 0.5],
                             [-0.139, 0.967, -0.215, 0.7],
                             [0.487, 0.255, 0.835, -1.4], [0.0, 0.0, 0.0, 1.0]])

    # Mean and standard deviation.
    mu, sigma = 0, 0.1
    source_noisy = apply_noise(source, mu, sigma)

    print("Displaying source point cloud + noise:")
    o3d.visualization.draw([source_noisy])

    print(
        "Displaying original source and target point cloud with initial transformation:"
    )
    draw_registration_result(source, target, trans_init)

    threshold = 1.0
    print("Using the noisy source pointcloud to perform robust ICP.\n")
    print("Robust point-to-plane ICP, threshold={}:".format(threshold))
    loss = o3d.pipelines.registration.TukeyLoss(k=sigma)
    print("Using robust loss:", loss)
    p2l = o3d.pipelines.registration.TransformationEstimationPointToPlane(loss)
    reg_p2l = o3d.pipelines.registration.registration_icp(
        source_noisy, target, threshold, trans_init, p2l)
    print(reg_p2l)
    print("Transformation is:")
    print(reg_p2l.transformation)
    draw_registration_result(source, target, reg_p2l.transformation)