Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
open3d-cpu / examples / t_reconstruction_system / integrate_custom.py
Size: Mime:
# ----------------------------------------------------------------------------
# -                        Open3D: www.open3d.org                            -
# ----------------------------------------------------------------------------
# Copyright (c) 2018-2024 www.open3d.org
# SPDX-License-Identifier: MIT
# ----------------------------------------------------------------------------

# examples/python/t_reconstruction_system/integrate_custom.py

# P.S. This example is used in documentation, so, please ensure the changes are
# synchronized.

import os
import time

import open3d as o3d
import open3d.core as o3c
from tqdm import tqdm

from common import get_default_dataset, load_rgbd_file_names, load_depth_file_names, load_intrinsic, load_extrinsics, extract_rgbd_frames
from config import ConfigParser


def integrate(depth_file_names, color_file_names, intrinsic, extrinsics,
              config):
    if os.path.exists(config.path_npz):
        print(
            f'Voxel block grid npz file {config.path_npz} found, trying to load...'
        )
        vbg = o3d.t.geometry.VoxelBlockGrid.load(config.path_npz)
        print('Loading finished.')
        return vbg

    print(
        f'Voxel block grid npz file {config.path_npz} not found, trying to integrate...'
    )

    n_files = len(depth_file_names)
    device = o3d.core.Device(config.device)

    voxel_size = 3.0 / 512
    trunc = voxel_size * 4
    res = 8

    if config.integrate_color:
        vbg = o3d.t.geometry.VoxelBlockGrid(
            ('tsdf', 'weight', 'color'),
            (o3c.float32, o3c.float32, o3c.float32), ((1), (1), (3)), 3.0 / 512,
            8, 100000, device)
    else:
        vbg = o3d.t.geometry.VoxelBlockGrid(
            ('tsdf', 'weight'), (o3c.float32, o3c.float32), ((1), (1)),
            3.0 / 512, 8, 100000, device)

    start = time.time()
    for i in tqdm(range(n_files)):
        depth = o3d.t.io.read_image(depth_file_names[i]).to(device)
        extrinsic = extrinsics[i]

        start = time.time()
        # Get active frustum block coordinates from input
        frustum_block_coords = vbg.compute_unique_block_coordinates(
            depth, intrinsic, extrinsic, config.depth_scale, config.depth_max)
        # Activate them in the underlying hash map (may have been inserted)
        vbg.hashmap().activate(frustum_block_coords)

        # Find buf indices in the underlying engine
        buf_indices, masks = vbg.hashmap().find(frustum_block_coords)
        o3d.core.cuda.synchronize()
        end = time.time()

        start = time.time()
        voxel_coords, voxel_indices = vbg.voxel_coordinates_and_flattened_indices(
            buf_indices)
        o3d.core.cuda.synchronize()
        end = time.time()

        # Now project them to the depth and find association
        # (3, N) -> (2, N)
        start = time.time()
        extrinsic_dev = extrinsic.to(device, o3c.float32)
        xyz = extrinsic_dev[:3, :3] @ voxel_coords.T() + extrinsic_dev[:3, 3:]

        intrinsic_dev = intrinsic.to(device, o3c.float32)
        uvd = intrinsic_dev @ xyz
        d = uvd[2]
        u = (uvd[0] / d).round().to(o3c.int64)
        v = (uvd[1] / d).round().to(o3c.int64)
        o3d.core.cuda.synchronize()
        end = time.time()

        start = time.time()
        mask_proj = (d > 0) & (u >= 0) & (v >= 0) & (u < depth.columns) & (
            v < depth.rows)

        v_proj = v[mask_proj]
        u_proj = u[mask_proj]
        d_proj = d[mask_proj]
        depth_readings = depth.as_tensor()[v_proj, u_proj, 0].to(
            o3c.float32) / config.depth_scale
        sdf = depth_readings - d_proj

        mask_inlier = (depth_readings > 0) \
            & (depth_readings < config.depth_max) \
            & (sdf >= -trunc)

        sdf[sdf >= trunc] = trunc
        sdf = sdf / trunc
        o3d.core.cuda.synchronize()
        end = time.time()

        start = time.time()
        weight = vbg.attribute('weight').reshape((-1, 1))
        tsdf = vbg.attribute('tsdf').reshape((-1, 1))

        valid_voxel_indices = voxel_indices[mask_proj][mask_inlier]
        w = weight[valid_voxel_indices]
        wp = w + 1

        tsdf[valid_voxel_indices] \
            = (tsdf[valid_voxel_indices] * w +
               sdf[mask_inlier].reshape(w.shape)) / (wp)
        if config.integrate_color:
            color = o3d.t.io.read_image(color_file_names[i]).to(device)
            color_readings = color.as_tensor()[v_proj, u_proj].to(o3c.float32)

            color = vbg.attribute('color').reshape((-1, 3))
            color[valid_voxel_indices] \
                = (color[valid_voxel_indices] * w +
                         color_readings[mask_inlier]) / (wp)

        weight[valid_voxel_indices] = wp
        o3d.core.cuda.synchronize()
        end = time.time()

    print(f'Saving to {config.path_npz}...')
    vbg.save(config.path_npz)
    print('Saving finished')

    return vbg


if __name__ == '__main__':

    parser = ConfigParser()
    parser.add(
        '--config',
        is_config_file=True,
        help='YAML config file path. Please refer to default_config.yml as a '
        'reference. It overrides the default config file, but will be '
        'overridden by other command line inputs.')
    parser.add('--default_dataset',
               help='Default dataset is used when config file is not provided. '
               'Default dataset may be selected from the following options: '
               '[lounge, jack_jack]',
               default='lounge')
    parser.add('--integrate_color', action='store_true')
    parser.add('--path_trajectory',
               help='path to the trajectory .log or .json file.')
    parser.add('--path_npz',
               help='path to the npz file that stores voxel block grid.',
               default='vbg.npz')
    config = parser.get_config()

    if config.path_dataset == '':
        config = get_default_dataset(config)

    # Extract RGB-D frames and intrinsic from bag file.
    if config.path_dataset.endswith(".bag"):
        assert os.path.isfile(
            config.path_dataset), f"File {config.path_dataset} not found."
        print("Extracting frames from RGBD video file")
        config.path_dataset, config.path_intrinsic, config.depth_scale = extract_rgbd_frames(
            config.path_dataset)

    if config.integrate_color:
        depth_file_names, color_file_names = load_rgbd_file_names(config)
    else:
        depth_file_names = load_depth_file_names(config)
        color_file_names = None

    intrinsic = load_intrinsic(config)
    extrinsics = load_extrinsics(config.path_trajectory, config)

    vbg = integrate(depth_file_names, color_file_names, intrinsic, extrinsics,
                    config)

    mesh = vbg.extract_triangle_mesh()
    o3d.visualization.draw([mesh.to_legacy()])

    pcd = vbg.extract_point_cloud()
    o3d.visualization.draw([pcd])