Repository URL to install this package:
|
Version:
3.0.0.dev0 ▾
|
import argparse
import base64
import json
import os
import sys
import time
import ray
import ray._private.node
import ray._private.ray_constants as ray_constants
import ray._private.utils
import ray.actor
from ray._common.ray_constants import (
LOGGING_ROTATE_BACKUP_COUNT,
LOGGING_ROTATE_BYTES,
)
from ray._private.async_compat import try_install_uvloop
from ray._private.parameter import RayParams
from ray._private.ray_logging import get_worker_log_file_name
from ray._private.runtime_env.setup_hook import load_and_execute_setup_hook
parser = argparse.ArgumentParser(
description=("Parse addresses for the worker to connect to.")
)
parser.add_argument(
"--cluster-id",
required=True,
type=str,
help="the auto-generated ID of the cluster",
)
parser.add_argument(
"--node-id",
required=True,
type=str,
help="the auto-generated ID of the node",
)
parser.add_argument(
"--node-ip-address",
required=True,
type=str,
help="the ip address of the worker's node",
)
parser.add_argument(
"--node-manager-port", required=True, type=int, help="the port of the worker's node"
)
parser.add_argument(
"--raylet-ip-address",
required=False,
type=str,
default=None,
help="the ip address of the worker's raylet",
)
parser.add_argument(
"--redis-address", required=True, type=str, help="the address to use for Redis"
)
parser.add_argument(
"--gcs-address", required=True, type=str, help="the address to use for GCS"
)
parser.add_argument(
"--redis-username",
required=False,
type=str,
default=None,
help="the username to use for Redis",
)
parser.add_argument(
"--redis-password",
required=False,
type=str,
default=None,
help="the password to use for Redis",
)
parser.add_argument(
"--object-store-name", required=True, type=str, help="the object store's name"
)
parser.add_argument("--raylet-name", required=False, type=str, help="the raylet's name")
parser.add_argument(
"--logging-level",
required=False,
type=str,
default=ray_constants.LOGGER_LEVEL,
choices=ray_constants.LOGGER_LEVEL_CHOICES,
help=ray_constants.LOGGER_LEVEL_HELP,
)
parser.add_argument(
"--logging-format",
required=False,
type=str,
default=ray_constants.LOGGER_FORMAT,
help=ray_constants.LOGGER_FORMAT_HELP,
)
parser.add_argument(
"--temp-dir",
required=False,
type=str,
default=None,
help="Specify the path of the temporary directory use by Ray process.",
)
parser.add_argument(
"--load-code-from-local",
default=False,
action="store_true",
help="True if code is loaded from local files, as opposed to the GCS.",
)
parser.add_argument(
"--worker-type",
required=False,
type=str,
default="WORKER",
help="Specify the type of the worker process",
)
parser.add_argument(
"--metrics-agent-port",
required=True,
type=int,
help="the port of the node's metric agent.",
)
parser.add_argument(
"--runtime-env-agent-port",
required=True,
type=int,
default=None,
help="The port on which the runtime env agent receives HTTP requests.",
)
parser.add_argument(
"--object-spilling-config",
required=False,
type=str,
default="",
help="The configuration of object spilling. Only used by I/O workers.",
)
parser.add_argument(
"--logging-rotate-bytes",
required=False,
type=int,
default=LOGGING_ROTATE_BYTES,
help="Specify the max bytes for rotating "
"log file, default is "
f"{LOGGING_ROTATE_BYTES} bytes.",
)
parser.add_argument(
"--logging-rotate-backup-count",
required=False,
type=int,
default=LOGGING_ROTATE_BACKUP_COUNT,
help="Specify the backup count of rotated log file, default is "
f"{LOGGING_ROTATE_BACKUP_COUNT}.",
)
parser.add_argument(
"--runtime-env-hash",
required=False,
type=int,
default=0,
help="The computed hash of the runtime env for this worker.",
)
parser.add_argument(
"--startup-token",
required=True,
type=int,
help="The startup token assigned to this worker process by the raylet.",
)
parser.add_argument(
"--ray-debugger-external",
default=False,
action="store_true",
help="True if Ray debugger is made available externally.",
)
parser.add_argument(
"--session-name", required=False, help="The current Ray session name"
)
parser.add_argument(
"--webui",
required=False,
help="The address of web ui",
)
parser.add_argument(
"--worker-launch-time-ms",
required=True,
type=int,
help="The time when raylet starts to launch the worker process.",
)
parser.add_argument(
"--worker-preload-modules",
type=str,
required=False,
help=(
"A comma-separated list of Python module names "
"to import before accepting work."
),
)
parser.add_argument(
"--enable-resource-isolation",
type=bool,
required=False,
default=False,
help=(
"If true, core worker enables resource isolation by adding itself into appropriate cgroup."
),
)
if __name__ == "__main__":
# NOTE(sang): For some reason, if we move the code below
# to a separate function, tensorflow will capture that method
# as a step function. For more details, check out
# https://github.com/ray-project/ray/pull/12225#issue-525059663.
args = parser.parse_args()
ray._private.ray_logging.setup_logger(args.logging_level, args.logging_format)
worker_launched_time_ms = time.time_ns() // 1e6
if args.worker_type == "WORKER":
mode = ray.WORKER_MODE
elif args.worker_type == "SPILL_WORKER":
mode = ray.SPILL_WORKER_MODE
elif args.worker_type == "RESTORE_WORKER":
mode = ray.RESTORE_WORKER_MODE
else:
raise ValueError("Unknown worker type: " + args.worker_type)
# Try installing uvloop as default event-loop implementation
# for asyncio
try_install_uvloop()
ray_params = RayParams(
node_ip_address=args.node_ip_address,
node_manager_port=args.node_manager_port,
redis_address=args.redis_address,
redis_username=args.redis_username,
redis_password=args.redis_password,
plasma_store_socket_name=args.object_store_name,
raylet_socket_name=args.raylet_name,
temp_dir=args.temp_dir,
metrics_agent_port=args.metrics_agent_port,
runtime_env_agent_port=args.runtime_env_agent_port,
gcs_address=args.gcs_address,
session_name=args.session_name,
webui=args.webui,
cluster_id=args.cluster_id,
node_id=args.node_id,
)
node = ray._private.node.Node(
ray_params,
head=False,
shutdown_at_exit=False,
spawn_reaper=False,
connect_only=True,
default_worker=True,
)
# NOTE(suquark): We must initialize the external storage before we
# connect to raylet. Otherwise we may receive requests before the
# external storage is initialized.
if mode == ray.RESTORE_WORKER_MODE or mode == ray.SPILL_WORKER_MODE:
from ray._private import external_storage
if args.object_spilling_config:
object_spilling_config = base64.b64decode(args.object_spilling_config)
object_spilling_config = json.loads(object_spilling_config)
else:
object_spilling_config = {}
external_storage.setup_external_storage(
object_spilling_config, node.node_id, node.session_name
)
ray._private.worker._global_node = node
ray._private.worker.connect(
node,
node.session_name,
mode=mode,
runtime_env_hash=args.runtime_env_hash,
startup_token=args.startup_token,
ray_debugger_external=args.ray_debugger_external,
worker_launch_time_ms=args.worker_launch_time_ms,
worker_launched_time_ms=worker_launched_time_ms,
)
worker = ray._private.worker.global_worker
stdout_fileno = sys.stdout.fileno()
stderr_fileno = sys.stderr.fileno()
# We also manually set sys.stdout and sys.stderr because that seems to
# have an effect on the output buffering. Without doing this, stdout
# and stderr are heavily buffered resulting in seemingly lost logging
# statements. We never want to close the stdout file descriptor, dup2 will
# close it when necessary and we don't want python's GC to close it.
sys.stdout = ray._private.utils.open_log(
stdout_fileno, unbuffered=True, closefd=False
)
sys.stderr = ray._private.utils.open_log(
stderr_fileno, unbuffered=True, closefd=False
)
# Setup log file.
out_filepath, err_filepath = node.get_log_file_names(
get_worker_log_file_name(args.worker_type),
unique=False, # C++ core worker process already creates the file, should use a deterministic function to get the same file path.
create_out=True,
create_err=True,
)
worker.set_out_file(out_filepath)
worker.set_err_file(err_filepath)
rotation_max_bytes = os.getenv("RAY_ROTATION_MAX_BYTES", None)
# Log rotation is disabled on windows platform.
if sys.platform != "win32" and rotation_max_bytes and int(rotation_max_bytes) > 0:
worker.set_file_rotation_enabled(True)
if mode == ray.WORKER_MODE and args.worker_preload_modules:
module_names_to_import = args.worker_preload_modules.split(",")
ray._private.utils.try_import_each_module(module_names_to_import)
# If the worker setup function is configured, run it.
worker_process_setup_hook_key = os.getenv(
ray_constants.WORKER_PROCESS_SETUP_HOOK_ENV_VAR
)
if worker_process_setup_hook_key:
error = load_and_execute_setup_hook(worker_process_setup_hook_key)
if error is not None:
worker.core_worker.drain_and_exit_worker("system", error)
if mode == ray.WORKER_MODE:
worker.main_loop()
elif mode in [ray.RESTORE_WORKER_MODE, ray.SPILL_WORKER_MODE]:
# It is handled by another thread in the C++ core worker.
# We just need to keep the worker alive.
while True:
time.sleep(100000)
else:
raise ValueError(f"Unexcepted worker mode: {mode}")