Repository URL to install this package:
|
Version:
3.0.0.dev0 ▾
|
# @OldAPIStack
"""Example of handling variable length or parametric action spaces.
This toy example demonstrates the action-embedding based approach for handling large
discrete action spaces (potentially infinite in size), similar to this example:
https://neuro.cs.ut.ee/the-use-of-embeddings-in-openai-five/
This example works with RLlib's policy gradient style algorithms
(e.g., PG, PPO, IMPALA, A2C) and DQN.
Note that since the model outputs now include "-inf" tf.float32.min
values, not all algorithm options are supported. For example,
algorithms might crash if they don't properly ignore the -inf action scores.
Working configurations are given below.
"""
import argparse
import os
import ray
from ray import tune
from ray.rllib.examples._old_api_stack.models.parametric_actions_model import (
ParametricActionsModel,
TorchParametricActionsModel,
)
from ray.rllib.examples.envs.classes.parametric_actions_cartpole import (
ParametricActionsCartPole,
)
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.metrics import (
ENV_RUNNER_RESULTS,
EPISODE_RETURN_MEAN,
NUM_ENV_STEPS_SAMPLED_LIFETIME,
)
from ray.rllib.utils.test_utils import check_learning_achieved
from ray.tune.registry import register_env
from ray.tune.result import TRAINING_ITERATION
parser = argparse.ArgumentParser()
parser.add_argument(
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "torch"],
default="torch",
help="The DL framework specifier.",
)
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
"--stop-iters", type=int, default=200, help="Number of iterations to train."
)
parser.add_argument(
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
)
parser.add_argument(
"--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
)
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
register_env("pa_cartpole", lambda _: ParametricActionsCartPole(10))
ModelCatalog.register_custom_model(
"pa_model",
TorchParametricActionsModel
if args.framework == "torch"
else ParametricActionsModel,
)
if args.run == "DQN":
cfg = {
# TODO(ekl) we need to set these to prevent the masked values
# from being further processed in DistributionalQModel, which
# would mess up the masking. It is possible to support these if we
# defined a custom DistributionalQModel that is aware of masking.
"hiddens": [],
"dueling": False,
"enable_rl_module_and_learner": False,
"enable_env_runner_and_connector_v2": False,
}
else:
cfg = {}
config = dict(
{
"env": "pa_cartpole",
"model": {
"custom_model": "pa_model",
},
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_env_runners": 0,
"framework": args.framework,
},
**cfg,
)
stop = {
TRAINING_ITERATION: args.stop_iters,
f"{NUM_ENV_STEPS_SAMPLED_LIFETIME}": args.stop_timesteps,
f"{ENV_RUNNER_RESULTS}/{EPISODE_RETURN_MEAN}": args.stop_reward,
}
results = tune.Tuner(
args.run,
run_config=tune.RunConfig(stop=stop, verbose=1),
param_space=config,
).fit()
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()