Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
ray / rllib / examples / _old_api_stack / parametric_actions_cartpole.py
Size: Mime:
# @OldAPIStack
"""Example of handling variable length or parametric action spaces.

This toy example demonstrates the action-embedding based approach for handling large
discrete action spaces (potentially infinite in size), similar to this example:

    https://neuro.cs.ut.ee/the-use-of-embeddings-in-openai-five/

This example works with RLlib's policy gradient style algorithms
(e.g., PG, PPO, IMPALA, A2C) and DQN.

Note that since the model outputs now include "-inf" tf.float32.min
values, not all algorithm options are supported. For example,
algorithms might crash if they don't properly ignore the -inf action scores.
Working configurations are given below.
"""

import argparse
import os

import ray
from ray import tune
from ray.rllib.examples._old_api_stack.models.parametric_actions_model import (
    ParametricActionsModel,
    TorchParametricActionsModel,
)
from ray.rllib.examples.envs.classes.parametric_actions_cartpole import (
    ParametricActionsCartPole,
)
from ray.rllib.models import ModelCatalog
from ray.rllib.utils.metrics import (
    ENV_RUNNER_RESULTS,
    EPISODE_RETURN_MEAN,
    NUM_ENV_STEPS_SAMPLED_LIFETIME,
)
from ray.rllib.utils.test_utils import check_learning_achieved
from ray.tune.registry import register_env
from ray.tune.result import TRAINING_ITERATION

parser = argparse.ArgumentParser()
parser.add_argument(
    "--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
)
parser.add_argument(
    "--framework",
    choices=["tf", "tf2", "torch"],
    default="torch",
    help="The DL framework specifier.",
)
parser.add_argument(
    "--as-test",
    action="store_true",
    help="Whether this script should be run as a test: --stop-reward must "
    "be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
    "--stop-iters", type=int, default=200, help="Number of iterations to train."
)
parser.add_argument(
    "--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
)
parser.add_argument(
    "--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
)

if __name__ == "__main__":
    args = parser.parse_args()
    ray.init()

    register_env("pa_cartpole", lambda _: ParametricActionsCartPole(10))
    ModelCatalog.register_custom_model(
        "pa_model",
        TorchParametricActionsModel
        if args.framework == "torch"
        else ParametricActionsModel,
    )

    if args.run == "DQN":
        cfg = {
            # TODO(ekl) we need to set these to prevent the masked values
            # from being further processed in DistributionalQModel, which
            # would mess up the masking. It is possible to support these if we
            # defined a custom DistributionalQModel that is aware of masking.
            "hiddens": [],
            "dueling": False,
            "enable_rl_module_and_learner": False,
            "enable_env_runner_and_connector_v2": False,
        }
    else:
        cfg = {}

    config = dict(
        {
            "env": "pa_cartpole",
            "model": {
                "custom_model": "pa_model",
            },
            # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
            "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
            "num_env_runners": 0,
            "framework": args.framework,
        },
        **cfg,
    )

    stop = {
        TRAINING_ITERATION: args.stop_iters,
        f"{NUM_ENV_STEPS_SAMPLED_LIFETIME}": args.stop_timesteps,
        f"{ENV_RUNNER_RESULTS}/{EPISODE_RETURN_MEAN}": args.stop_reward,
    }

    results = tune.Tuner(
        args.run,
        run_config=tune.RunConfig(stop=stop, verbose=1),
        param_space=config,
    ).fit()

    if args.as_test:
        check_learning_achieved(results, args.stop_reward)

    ray.shutdown()