Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
ray / rllib / utils / exploration / stochastic_sampling.py
Size: Mime:
import functools
from typing import Optional, Union

import gymnasium as gym
import numpy as np

from ray.rllib.models.action_dist import ActionDistribution
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.utils.annotations import OldAPIStack, override
from ray.rllib.utils.exploration.exploration import Exploration
from ray.rllib.utils.exploration.random import Random
from ray.rllib.utils.framework import (
    TensorType,
    get_variable,
    try_import_tf,
    try_import_torch,
)
from ray.rllib.utils.tf_utils import zero_logps_from_actions

tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()


@OldAPIStack
class StochasticSampling(Exploration):
    """An exploration that simply samples from a distribution.

    The sampling can be made deterministic by passing explore=False into
    the call to `get_exploration_action`.
    Also allows for scheduled parameters for the distributions, such as
    lowering stddev, temperature, etc.. over time.
    """

    def __init__(
        self,
        action_space: gym.spaces.Space,
        *,
        framework: str,
        model: ModelV2,
        random_timesteps: int = 0,
        **kwargs
    ):
        """Initializes a StochasticSampling Exploration object.

        Args:
            action_space: The gym action space used by the environment.
            framework: One of None, "tf", "torch".
            model: The ModelV2 used by the owning Policy.
            random_timesteps: The number of timesteps for which to act
                completely randomly. Only after this number of timesteps,
                actual samples will be drawn to get exploration actions.
        """
        assert framework is not None
        super().__init__(action_space, model=model, framework=framework, **kwargs)

        # Create the Random exploration module (used for the first n
        # timesteps).
        self.random_timesteps = random_timesteps
        self.random_exploration = Random(
            action_space, model=self.model, framework=self.framework, **kwargs
        )

        # The current timestep value (tf-var or python int).
        self.last_timestep = get_variable(
            np.array(0, np.int64),
            framework=self.framework,
            tf_name="timestep",
            dtype=np.int64,
        )

    @override(Exploration)
    def get_exploration_action(
        self,
        *,
        action_distribution: ActionDistribution,
        timestep: Optional[Union[int, TensorType]] = None,
        explore: bool = True
    ):
        if self.framework == "torch":
            return self._get_torch_exploration_action(
                action_distribution, timestep, explore
            )
        else:
            return self._get_tf_exploration_action_op(
                action_distribution, timestep, explore
            )

    def _get_tf_exploration_action_op(self, action_dist, timestep, explore):
        ts = self.last_timestep + 1

        stochastic_actions = tf.cond(
            pred=tf.convert_to_tensor(ts < self.random_timesteps),
            true_fn=lambda: (
                self.random_exploration.get_tf_exploration_action_op(
                    action_dist, explore=True
                )[0]
            ),
            false_fn=lambda: action_dist.sample(),
        )
        deterministic_actions = action_dist.deterministic_sample()

        action = tf.cond(
            tf.constant(explore) if isinstance(explore, bool) else explore,
            true_fn=lambda: stochastic_actions,
            false_fn=lambda: deterministic_actions,
        )

        logp = tf.cond(
            tf.math.logical_and(
                explore, tf.convert_to_tensor(ts >= self.random_timesteps)
            ),
            true_fn=lambda: action_dist.sampled_action_logp(),
            false_fn=functools.partial(zero_logps_from_actions, deterministic_actions),
        )

        # Increment `last_timestep` by 1 (or set to `timestep`).
        if self.framework == "tf2":
            self.last_timestep.assign_add(1)
            return action, logp
        else:
            assign_op = (
                tf1.assign_add(self.last_timestep, 1)
                if timestep is None
                else tf1.assign(self.last_timestep, timestep)
            )
            with tf1.control_dependencies([assign_op]):
                return action, logp

    def _get_torch_exploration_action(
        self,
        action_dist: ActionDistribution,
        timestep: Union[TensorType, int],
        explore: Union[TensorType, bool],
    ):
        # Set last timestep or (if not given) increase by one.
        self.last_timestep = (
            timestep if timestep is not None else self.last_timestep + 1
        )

        # Apply exploration.
        if explore:
            # Random exploration phase.
            if self.last_timestep < self.random_timesteps:
                action, logp = self.random_exploration.get_torch_exploration_action(
                    action_dist, explore=True
                )
            # Take a sample from our distribution.
            else:
                action = action_dist.sample()
                logp = action_dist.sampled_action_logp()

        # No exploration -> Return deterministic actions.
        else:
            action = action_dist.deterministic_sample()
            logp = torch.zeros_like(action_dist.sampled_action_logp())

        return action, logp