Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
ray / tune / schedulers / pb2_utils.py
Size: Mime:
import GPy
import numpy as np
from GPy.core import Param
from GPy.kern import Kern
from scipy.optimize import minimize
from sklearn.metrics import pairwise_distances
from sklearn.metrics.pairwise import euclidean_distances


class TV_SquaredExp(Kern):
    """Time varying squared exponential kernel.
    For more info see the TV-GP-UCB paper:
    http://proceedings.mlr.press/v51/bogunovic16.pdf
    """

    def __init__(
        self, input_dim, variance=1.0, lengthscale=1.0, epsilon=0.0, active_dims=None
    ):
        super().__init__(input_dim, active_dims, "time_se")
        self.variance = Param("variance", variance)
        self.lengthscale = Param("lengthscale", lengthscale)
        self.epsilon = Param("epsilon", epsilon)
        self.link_parameters(self.variance, self.lengthscale, self.epsilon)

    def K(self, X, X2):
        # time must be in the far left column
        if self.epsilon > 0.5:  # 0.5
            self.epsilon = 0.5
        if X2 is None:
            X2 = np.copy(X)
        T1 = X[:, 0].reshape(-1, 1)
        T2 = X2[:, 0].reshape(-1, 1)
        dists = pairwise_distances(T1, T2, "cityblock")
        timekernel = (1 - self.epsilon) ** (0.5 * dists)

        X = X[:, 1:]
        X2 = X2[:, 1:]

        RBF = self.variance * np.exp(
            -np.square(euclidean_distances(X, X2)) / self.lengthscale
        )

        return RBF * timekernel

    def Kdiag(self, X):
        return self.variance * np.ones(X.shape[0])

    def update_gradients_full(self, dL_dK, X, X2):
        if X2 is None:
            X2 = np.copy(X)
        T1 = X[:, 0].reshape(-1, 1)
        T2 = X2[:, 0].reshape(-1, 1)

        X = X[:, 1:]
        X2 = X2[:, 1:]
        dist2 = np.square(euclidean_distances(X, X2)) / self.lengthscale

        dvar = np.exp(-np.square((euclidean_distances(X, X2)) / self.lengthscale))
        dl = -(
            2 * euclidean_distances(X, X2) ** 2 * self.variance * np.exp(-dist2)
        ) * self.lengthscale ** (-2)
        n = pairwise_distances(T1, T2, "cityblock") / 2
        deps = -n * (1 - self.epsilon) ** (n - 1)

        self.variance.gradient = np.sum(dvar * dL_dK)
        self.lengthscale.gradient = np.sum(dl * dL_dK)
        self.epsilon.gradient = np.sum(deps * dL_dK)


def normalize(data, wrt):
    """Normalize data to be in range (0,1), with respect to (wrt) boundaries,
    which can be specified.
    """
    return (data - np.min(wrt, axis=0)) / (
        np.max(wrt, axis=0) - np.min(wrt, axis=0) + 1e-8
    )


def standardize(data):
    """Standardize to be Gaussian N(0,1). Clip final values."""
    data = (data - np.mean(data, axis=0)) / (np.std(data, axis=0) + 1e-8)
    return np.clip(data, -2, 2)


def UCB(m, m1, x, fixed, kappa=None):
    """UCB acquisition function. Interesting points to note:
    1) We concat with the fixed points, because we are not optimizing wrt
       these. This is the Reward and Time, which we can't change. We want
       to find the best hyperparameters *given* the reward and time.
    2) We use m to get the mean and m1 to get the variance. If we already
       have trials running, then m1 contains this information. This reduces
       the variance at points currently running, even if we don't have
       their label.
       Ref: https://jmlr.org/papers/volume15/desautels14a/desautels14a.pdf

    """

    c1 = 0.2
    c2 = 0.4
    beta_t = c1 + max(0, np.log(c2 * m.X.shape[0]))
    kappa = np.sqrt(beta_t) if kappa is None else kappa

    xtest = np.concatenate((fixed.reshape(-1, 1), np.array(x).reshape(-1, 1))).T

    try:
        preds = m.predict(xtest)
        preds = m.predict(xtest)
        mean = preds[0][0][0]
    except ValueError:
        mean = -9999

    try:
        preds = m1.predict(xtest)
        var = preds[1][0][0]
    except ValueError:
        var = 0
    return mean + kappa * var


def optimize_acq(func, m, m1, fixed, num_f):
    """Optimize acquisition function."""

    opts = {"maxiter": 200, "maxfun": 200, "disp": False}

    T = 10
    best_value = -999
    best_theta = m1.X[0, :]

    bounds = [(0, 1) for _ in range(m.X.shape[1] - num_f)]

    for ii in range(T):
        x0 = np.random.uniform(0, 1, m.X.shape[1] - num_f)

        res = minimize(
            lambda x: -func(m, m1, x, fixed),
            x0,
            bounds=bounds,
            method="L-BFGS-B",
            options=opts,
        )

        val = func(m, m1, res.x, fixed)
        if val > best_value:
            best_value = val
            best_theta = res.x

    return np.clip(best_theta, 0, 1)


def select_length(Xraw, yraw, bounds, num_f):
    """Select the number of datapoints to keep, using cross validation"""
    min_len = 200

    if Xraw.shape[0] < min_len:
        return Xraw.shape[0]
    else:
        length = min_len - 10
        scores = []
        while length + 10 <= Xraw.shape[0]:
            length += 10

            base_vals = np.array(list(bounds.values())).T
            X_len = Xraw[-length:, :]
            y_len = yraw[-length:]
            oldpoints = X_len[:, :num_f]
            old_lims = np.concatenate(
                (np.max(oldpoints, axis=0), np.min(oldpoints, axis=0))
            ).reshape(2, oldpoints.shape[1])
            limits = np.concatenate((old_lims, base_vals), axis=1)

            X = normalize(X_len, limits)
            y = standardize(y_len).reshape(y_len.size, 1)

            kernel = TV_SquaredExp(
                input_dim=X.shape[1], variance=1.0, lengthscale=1.0, epsilon=0.1
            )
            m = GPy.models.GPRegression(X, y, kernel)
            m.optimize(messages=True)

            scores.append(m.log_likelihood())
        idx = np.argmax(scores)
        length = (idx + int((min_len / 10))) * 10
        return length