Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
flet-libgdal / include / gdal_simplesurf.h
Size: Mime:
/******************************************************************************
 * $Id$
 * Project:  GDAL
 * Purpose:  Correlator
 * Author:   Andrew Migal, migal.drew@gmail.com
 *
 ******************************************************************************
 * Copyright (c) 2012, Andrew Migal
 *
 * SPDX-License-Identifier: MIT
 ****************************************************************************/

/**
 * @file
 * @author Andrew Migal migal.drew@gmail.com
 * @brief Class for searching corresponding points on images.
 */

#ifndef GDALSIMPLESURF_H_
#define GDALSIMPLESURF_H_

#include "gdal_priv.h"
#include "cpl_conv.h"
#include <list>

/**
 * @brief Class of "feature point" in raster. Used by SURF-based algorithm.
 *
 * @details This point presents coordinates of distinctive pixel in image.
 * In computer vision, feature points - the most "strong" and "unique"
 * pixels (or areas) in picture, which can be distinguished from others.
 * For more details, see FAST corner detector, SIFT, SURF and similar
 * algorithms.
 */
class GDALFeaturePoint
{
  public:
    /**
     * Standard constructor. Initializes all parameters with negative numbers
     * and allocates memory for descriptor.
     */
    GDALFeaturePoint();

    /**
     * Copy constructor
     * @param fp Copied instance of GDALFeaturePoint class
     */
    GDALFeaturePoint(const GDALFeaturePoint &fp);

    /**
     * Create instance of GDALFeaturePoint class
     *
     * @param nX X-coordinate (pixel)
     * @param nY Y-coordinate (line)
     * @param nScale Scale which contains this point (2, 4, 8, 16 and so on)
     * @param nRadius Half of the side of descriptor area
     * @param nSign Sign of Hessian determinant for this point
     *
     * @note This constructor normally is invoked by SURF-based algorithm,
     * which provides all necessary parameters.
     */
    GDALFeaturePoint(int nX, int nY, int nScale, int nRadius, int nSign);
    virtual ~GDALFeaturePoint();

    /** Assignment operator */
    GDALFeaturePoint &operator=(const GDALFeaturePoint &point);

    /**
     * Provide access to point's descriptor.
     *
     * @param nIndex Position of descriptor's value.
     * nIndex should be within range from 0 to DESC_SIZE (in current version -
     * 64)
     *
     * @return Reference to value of descriptor in 'nIndex' position.
     * If index is out of range then behavior is undefined.
     */
    double &operator[](int nIndex);

    /**
     * Provide access to point's descriptor.
     *
     * @param nIndex Position of descriptor's value.
     * nIndex should be within range from 0 to DESC_SIZE (in current version -
     * 64)
     *
     * @return Reference to value of descriptor in 'nIndex' position.
     * If index is out of range then behavior is undefined.
     */
    double operator[](int nIndex) const;

    /** Descriptor length */
    static const int DESC_SIZE = 64;

    /**
     * Fetch X-coordinate (pixel) of point
     *
     * @return X-coordinate in pixels
     */
    int GetX() const;

    /**
     * Set X coordinate of point
     *
     * @param nX X coordinate in pixels
     */
    void SetX(int nX);

    /**
     * Fetch Y-coordinate (line) of point.
     *
     * @return Y-coordinate in pixels.
     */
    int GetY() const;

    /**
     * Set Y coordinate of point.
     *
     * @param nY Y coordinate in pixels.
     */
    void SetY(int nY);

    /**
     * Fetch scale of point.
     *
     * @return Scale for this point.
     */
    int GetScale() const;

    /**
     * Set scale of point.
     *
     * @param nScale Scale for this point.
     */
    void SetScale(int nScale);

    /**
     * Fetch radius of point.
     *
     * @return Radius for this point.
     */
    int GetRadius() const;

    /**
     * Set radius of point.
     *
     * @param nRadius Radius for this point.
     */
    void SetRadius(int nRadius);

    /**
     * Fetch sign of Hessian determinant of point.
     *
     * @return Sign for this point.
     */
    int GetSign() const;

    /**
     * Set sign of point.
     *
     * @param nSign Sign of Hessian determinant for this point.
     */
    void SetSign(int nSign);

  private:
    // Coordinates of point in image
    int nX;
    int nY;
    // --------------------
    int nScale;
    int nRadius;
    int nSign;
    // Descriptor array
    double *padfDescriptor;
};

/**
 * @author Andrew Migal migal.drew@gmail.com
 * @brief Integral image class (summed area table).
 * @details Integral image is a table for fast computing the sum of
 * values in rectangular subarea. In more detail, for 2-dimensional array
 * of numbers this class provides capability to get sum of values in
 * rectangular arbitrary area with any size in constant time.
 * Integral image is constructed from grayscale picture.
 */
class GDALIntegralImage
{
    CPL_DISALLOW_COPY_ASSIGN(GDALIntegralImage)

  public:
    GDALIntegralImage();
    virtual ~GDALIntegralImage();

    /**
     * Compute integral image for specified array. Result is stored internally.
     *
     * @param padfImg Pointer to 2-dimensional array of values
     * @param nHeight Number of rows in array
     * @param nWidth Number of columns in array
     */
    void Initialize(const double **padfImg, int nHeight, int nWidth);

    /**
     * Fetch value of specified position in integral image.
     *
     * @param nRow Row of this position
     * @param nCol Column of this position
     *
     * @return Value in specified position or zero if parameters are out of
     * range.
     */
    double GetValue(int nRow, int nCol);

    /**
     * Get sum of values in specified rectangular grid. Rectangle is constructed
     * from left top point.
     *
     * @param nRow Row of left top point of rectangle
     * @param nCol Column of left top point of rectangle
     * @param nWidth Width of rectangular area (number of columns)
     * @param nHeight Height of rectangular area (number of rows)
     *
     * @return Sum of values in specified grid.
     */
    double GetRectangleSum(int nRow, int nCol, int nWidth, int nHeight);

    /**
     * Get value of horizontal Haar wavelet in specified square grid.
     *
     * @param nRow Row of left top point of square
     * @param nCol Column of left top point of square
     * @param nSize Side of the square
     *
     * @return Value of horizontal Haar wavelet in specified square grid.
     */
    double HaarWavelet_X(int nRow, int nCol, int nSize);

    /**
     * Get value of vertical Haar wavelet in specified square grid.
     *
     * @param nRow Row of left top point of square
     * @param nCol Column of left top point of square
     * @param nSize Side of the square
     *
     * @return Value of vertical Haar wavelet in specified square grid.
     */
    double HaarWavelet_Y(int nRow, int nCol, int nSize);

    /**
     * Fetch height of integral image.
     *
     * @return Height of integral image (number of rows).
     */
    int GetHeight();

    /**
     * Fetch width of integral image.
     *
     * @return Width of integral image (number of columns).
     */
    int GetWidth();

  private:
    double **pMatrix = nullptr;
    int nWidth = 0;
    int nHeight = 0;
};

/**
 * @author Andrew Migal migal.drew@gmail.com
 * @brief Class for computation and storage of Hessian values in SURF-based
 * algorithm.
 *
 * @details SURF-based algorithm normally uses this class for searching
 * feature points on raster images. Class also contains traces of Hessian
 * matrices to provide fast computations.
 */
class GDALOctaveLayer
{
    CPL_DISALLOW_COPY_ASSIGN(GDALOctaveLayer)

  public:
    GDALOctaveLayer();

    /**
     * Create instance with provided parameters.
     *
     * @param nOctave Number of octave which contains this layer
     * @param nInterval Number of position in octave
     *
     * @note Normally constructor is invoked only by SURF-based algorithm.
     */
    GDALOctaveLayer(int nOctave, int nInterval);
    virtual ~GDALOctaveLayer();

    /**
     * Perform calculation of Hessian determinants and their signs
     * for specified integral image. Result is stored internally.
     *
     * @param poImg Integral image object, which provides all necessary
     * data for computation
     *
     * @note Normally method is invoked only by SURF-based algorithm.
     */
    void ComputeLayer(GDALIntegralImage *poImg);

    /**
     * Octave which contains this layer (1,2,3...)
     */
    int octaveNum;
    /**
     * Length of the side of filter
     */
    int filterSize;
    /**
     * Length of the border
     */
    int radius;
    /**
     * Scale for this layer
     */
    int scale;
    /**
     * Image width in pixels
     */
    int width;
    /**
     * Image height in pixels
     */
    int height;
    /**
     * Hessian values for image pixels
     */
    double **detHessians;
    /**
     * Hessian signs for speeded matching
     */
    int **signs;
};

/**
 * @author Andrew Migal migal.drew@gmail.com
 * @brief Class for handling octave layers in SURF-based algorithm.
 * @details Class contains OctaveLayers and provides capability to construct
 * octave space and distinguish feature points. Normally this class is used only
 * by SURF-based algorithm.
 */
class GDALOctaveMap
{
    CPL_DISALLOW_COPY_ASSIGN(GDALOctaveMap)

  public:
    /**
     * Create octave space. Octave numbers are start with one. (1, 2, 3, 4, ...
     * )
     *
     * @param nOctaveStart Number of bottom octave
     * @param nOctaveEnd Number of top octave. Should be equal or greater than
     * OctaveStart
     */
    GDALOctaveMap(int nOctaveStart, int nOctaveEnd);
    virtual ~GDALOctaveMap();

    /**
     * Calculate Hessian values for octave space
     * (for all stored octave layers) using specified integral image
     * @param poImg Integral image instance which provides necessary data
     * @see GDALOctaveLayer
     */
    void ComputeMap(GDALIntegralImage *poImg);

    /**
     * Method makes decision that specified point
     * in middle octave layer is maximum among all points
     * from 3x3x3 neighbourhood (surrounding points in
     * bottom, middle and top layers). Provided layers should be from the same
     * octave's interval. Detects feature points.
     *
     * @param row Row of point, which is candidate to be feature point
     * @param col Column of point, which is candidate to be feature point
     * @param bot Bottom octave layer
     * @param mid Middle octave layer
     * @param top Top octave layer
     * @param threshold Threshold for feature point recognition. Detected
     * feature point will have Hessian value greater than this provided
     * threshold.
     *
     * @return TRUE if candidate was evaluated as feature point or FALSE
     * otherwise.
     */
    static bool PointIsExtremum(int row, int col, GDALOctaveLayer *bot,
                                GDALOctaveLayer *mid, GDALOctaveLayer *top,
                                double threshold);

    /**
     * 2-dimensional array of octave layers
     */
    GDALOctaveLayer ***pMap;

    /**
     * Value for constructing internal octave space
     */
    static const int INTERVALS = 4;

    /**
     * Number of bottom octave
     */
    int octaveStart;

    /**
     * Number of top octave. Should be equal or greater than OctaveStart
     */
    int octaveEnd;
};

/**
 * @author Andrew Migal migal.drew@gmail.com
 * @brief Class for searching corresponding points on images.
 * @details Provides capability for detection feature points
 * and finding equal points on different images.
 * Class implements simplified version of SURF algorithm (Speeded Up Robust
 * Features). As original, this realization is scale invariant, but sensitive to
 * rotation. Images should have similar rotation angles (maximum difference is
 * up to 10-15 degrees), otherwise algorithm produces incorrect and very
 * unstable results.
 */

class GDALSimpleSURF
{
  private:
    /**
     * Class stores indexes of pair of point
     * and distance between them.
     */
    class MatchedPointPairInfo
    {
      public:
        MatchedPointPairInfo(int nInd_1, int nInd_2, double dfDist)
            : ind_1(nInd_1), ind_2(nInd_2), euclideanDist(dfDist)
        {
        }

        int ind_1;
        int ind_2;
        double euclideanDist;
    };

    CPL_DISALLOW_COPY_ASSIGN(GDALSimpleSURF)

  public:
    /**
     * Prepare class according to specified parameters. Octave numbers affects
     * to amount of detected points and their robustness.
     * Range between bottom and top octaves also affects to required time of
     * detection points (if range is large, algorithm should perform more
     * operations).
     * @param nOctaveStart Number of bottom octave. Octave numbers starts with
     * one
     * @param nOctaveEnd Number of top octave. Should be equal or greater than
     * OctaveStart
     *
     * @note
     * Every octave finds points with specific size. For small images
     * use small octave numbers, for high resolution - large.
     * For 1024x1024 images it's normal to use any octave numbers from range
     * 1-6. (for example, octave start - 1, octave end - 3, or octave start - 2,
     * octave end - 2.) For larger images, try 1-10 range or even higher. Pay
     * attention that number of detected point decreases quickly per octave for
     * particular image. Algorithm finds more points in case of small octave
     * numbers. If method detects nothing, reduce bottom bound of octave range.
     *
     * NOTICE that every octave requires time to compute. Use a little range
     * or only one octave if execution time is significant.
     */
    GDALSimpleSURF(int nOctaveStart, int nOctaveEnd);
    virtual ~GDALSimpleSURF();

    /**
     * Convert image with RGB channels to grayscale using "luminosity" method.
     * Result is used in SURF-based algorithm, but may be used anywhere where
     * grayscale images with nice contrast are required.
     *
     * @param red Image's red channel
     * @param green Image's green channel
     * @param blue Image's blue channel
     * @param nXSize Width of initial image
     * @param nYSize Height of initial image
     * @param padfImg Array for resulting grayscale image
     * @param nHeight Height of resulting image
     * @param nWidth Width of resulting image
     *
     * @return CE_None or CE_Failure if error occurs.
     */
    static CPLErr ConvertRGBToLuminosity(GDALRasterBand *red,
                                         GDALRasterBand *green,
                                         GDALRasterBand *blue, int nXSize,
                                         int nYSize, double **padfImg,
                                         int nHeight, int nWidth);

    /**
     * Find feature points using specified integral image.
     *
     * @param poImg Integral image to be used
     * @param dfThreshold Threshold for feature point recognition. Detected
     * feature point will have Hessian value greater than this provided
     * threshold.
     *
     * @note Typical threshold's value is 0,001. But this value
     * can be various in each case and depends on image's nature.
     * For example, value can be 0.002 or 0.005.
     * Fill free to experiment with it.
     * If threshold is high, than number of detected feature points is small,
     * and vice versa.
     */
    std::vector<GDALFeaturePoint> *
    ExtractFeaturePoints(GDALIntegralImage *poImg, double dfThreshold);

    /**
     * Find corresponding points (equal points in two collections).
     *
     * @param poMatchPairs Resulting collection for matched points
     * @param poFirstCollect Points on the first image
     * @param poSecondCollect Points on the second image
     * @param dfThreshold Value from 0 to 1. Threshold affects to number of
     * matched points. If threshold is higher, amount of corresponding
     * points is larger, and vice versa
     *
     * @note Typical threshold's value is 0,1. BUT it's a very approximate
     * guide. It can be 0,001 or even 1. This threshold provides direct
     * adjustment of point matching. NOTICE that if threshold is lower, matches
     * are more robust and correct, but number of matched points is smaller.
     * Therefore if algorithm performs many false detections and produces bad
     * results, reduce threshold.  Otherwise, if algorithm finds nothing,
     * increase threshold.
     *
     * @return CE_None or CE_Failure if error occurs.
     */
    static CPLErr
    MatchFeaturePoints(std::vector<GDALFeaturePoint *> *poMatchPairs,
                       std::vector<GDALFeaturePoint> *poFirstCollect,
                       std::vector<GDALFeaturePoint> *poSecondCollect,
                       double dfThreshold);

  private:
    /**
     * Compute euclidean distance between descriptors of two feature points.
     * It's used in comparison and matching of points.
     *
     * @param firstPoint First feature point to be compared
     * @param secondPoint Second feature point to be compared
     *
     * @return Euclidean distance between descriptors.
     */
    static double GetEuclideanDistance(const GDALFeaturePoint &firstPoint,
                                       const GDALFeaturePoint &secondPoint);

    /**
     * Set provided distance values to range from 0 to 1.
     *
     * @param poList List of distances to be normalized
     */
    static void NormalizeDistances(std::list<MatchedPointPairInfo> *poList);

    /**
     * Compute descriptor for specified feature point.
     *
     * @param poPoint Feature point instance
     * @param poImg image where feature point was found
     */
    static void SetDescriptor(GDALFeaturePoint *poPoint,
                              GDALIntegralImage *poImg);

  private:
    int octaveStart;
    int octaveEnd;
    GDALOctaveMap *poOctMap;
};

#endif /* GDALSIMPLESURF_H_ */