Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
flet-libgeos / include / geos / geom / LineSegment.h
Size: Mime:
/**********************************************************************
 *
 * GEOS - Geometry Engine Open Source
 * http://geos.osgeo.org
 *
 * Copyright (C) 2009 2011 Sandro Santilli <strk@kbt.io>
 * Copyright (C) 2005-2006 Refractions Research Inc.
 * Copyright (C) 2001-2002 Vivid Solutions Inc.
 *
 * This is free software; you can redistribute and/or modify it under
 * the terms of the GNU Lesser General Public Licence as published
 * by the Free Software Foundation.
 * See the COPYING file for more information.
 *
 **********************************************************************
 *
 * Last port: geom/LineSegment.java r18 (JTS-1.11)
 *
 **********************************************************************/

#pragma once

#include <geos/export.h>
#include <geos/geom/Coordinate.h> // for composition
#include <geos/geom/LineSegment.h>
#include <geos/algorithm/Distance.h>
#include <geos/algorithm/Orientation.h>

#include <array>
#include <iostream> // for ostream
#include <functional> // for std::hash
#include <memory> // for unique_ptr
#include <cassert>
#include <unordered_set>

// Forward declarations
namespace geos {
namespace geom {
class CoordinateSequence;
class GeometryFactory;
class LineString;
}
}

namespace geos {
namespace geom { // geos::geom

/**
 * Represents a line segment defined by two Coordinate.
 * Provides methods to compute various geometric properties
 * and relationships of line segments.
 *
 * This class is designed to be easily mutable (to the extent of
 * having its contained points public).
 * This supports a common pattern of reusing a single LineSegment
 * object as a way of computing segment properties on the
 * segments defined by arrays or lists of {@link Coordinate}s.
 *
 * TODO: have this class keep pointers rather then real Coordinates ?
 */
class GEOS_DLL LineSegment {
public:


    Coordinate p0; /// Segment start
    Coordinate p1; /// Segment end

    LineSegment(const Coordinate& c0, const Coordinate& c1)
        : p0(c0)
        , p1(c1)
        {};

    LineSegment(double x0, double y0, double x1, double y1)
        : p0(x0, y0)
        , p1(x1, y1)
        {};

    LineSegment() {};


    void setCoordinates(const Coordinate& c0, const Coordinate& c1)
    {
        p0 = c0;
        p1 = c1;
    };

    void setCoordinates(const LineSegment& ls)
    {
        setCoordinates(ls.p0, ls.p1);
    };

    // obsoleted, use operator[] instead
    //const Coordinate& getCoordinate(std::size_t i) const;

    const Coordinate& operator[](std::size_t i) const
    {
        if(i == 0) {
            return p0;
        }
        assert(i == 1);
        return p1;
    };

    Coordinate& operator[](std::size_t i)
    {
        if(i == 0) {
            return p0;
        }
        assert(i == 1);
        return p1;
    };

    /// gets the minimum X ordinate value
    double minX() const
    {
        return std::min(p0.x, p1.x);
    };

    /// gets the maximum X ordinate value
    double maxX() const
    {
        return std::max(p0.x, p1.x);
    };

    /// gets the minimum Y ordinate value
    double minY() const
    {
        return std::min(p0.y, p1.y);
    };

    /// gets the maximum Y ordinate value
    double maxY() const
    {
        return std::max(p0.y, p1.y);
    };

    /// Computes the length of the line segment.
    double getLength() const
    {
        return p0.distance(p1);
    };

    /// Tests whether the segment is horizontal.
    ///
    /// @return <code>true</code> if the segment is horizontal
    ///
    bool isHorizontal() const
    {
        return p0.y == p1.y;
    };

    /// Tests whether the segment is vertical.
    ///
    /// @return <code>true</code> if the segment is vertical
    ///
    bool isVertical() const
    {
        return p0.x == p1.x;
    };

    /**
     * Determines the orientation of a LineSegment relative to this segment.
     * The concept of orientation is specified as follows:
     * Given two line segments A and L,
     * <ul>
     * <li>A is to the left of a segment L if A lies wholly in the
     * closed half-plane lying to the left of L
     * <li>A is to the right of a segment L if A lies wholly in the
     * closed half-plane lying to the right of L
     * <li>otherwise, A has indeterminate orientation relative to L.
     *     This happens if A is collinear with L or if A crosses
     *     the line determined by L.
     * </ul>
     *
     * @param seg the LineSegment to compare
     *
     * @return 1 if seg is to the left of this segment
     * @return -1 if seg is to the right of this segment
     * @return 0 if seg has indeterminate orientation relative
     *         to this segment
     */
    int orientationIndex(const LineSegment& seg) const;

    // TODO deprecate this
    int orientationIndex(const LineSegment* seg) const
    {
        assert(seg);
        return orientationIndex(*seg);
    };

    /**
    * Determines the orientation index of a Coordinate relative to this segment.
    * The orientation index is as defined in Orientation::index(Coordinate, Coordinate, Coordinate).
    *
    * @param p the coordinate to compare
    *
    * @return 1 (LEFT) if "p" is to the left of this segment
    * @return -1 (RIGHT) if "p" is to the right of this segment
    * @return 0 (COLLINEAR) if "p" is collinear with this segment
    *
    */
    int orientationIndex(const CoordinateXY& p) const
    {
        return algorithm::Orientation::index(p0, p1, p);
    }

    /** \brief
     * Determines the orientation index of a Coordinate
     * relative to this segment.
     *
     * The orientation index is as defined in
     * Orientation::index.
     *
     * @param p the Coordinate to compare
     *
     * @return 1 if <code>p</code> is to the left of this segment
     * @return -1 if <code>p</code> is to the right of this segment
     * @return 0 if <code>p</code> is collinear with this segment
     *
     * @see Orientation::index(Coordinate, Coordinate,
     *                                       Coordinate)
     */
    int orientationIndex(const Coordinate& p) const
    {
        return algorithm::Orientation::index(p0, p1, p);
    };

    /// Reverses the direction of the line segment.
    void reverse();

    /// Puts the line segment into a normalized form.
    //
    /// This is useful for using line segments in maps and indexes when
    /// topological equality rather than exact equality is desired.
    ///
    void normalize()
    {
        if(p1.compareTo(p0) < 0) {
            reverse();
        }
    };

    /// @return the angle this segment makes with the x-axis (in radians)
    double angle() const
    {
        return std::atan2(p1.y - p0.y, p1.x - p0.x);
    };

    /** \brief
     * Computes the midpoint of the segment
     *
     *  @return the midpoint of the segment
     */
    CoordinateXY midPoint() const
    {
        return midPoint(p0, p1);
    };

    static CoordinateXY midPoint(const CoordinateXY& pt0, const CoordinateXY& pt1)
    {
        return CoordinateXY(
            (pt0.x + pt1.x) / 2,
            (pt0.y + pt1.y) / 2);        
    }

    /// Computes the distance between this line segment and another one.
    double distance(const LineSegment& ls) const
    {
        return algorithm::Distance::segmentToSegment(p0, p1, ls.p0, ls.p1);
    };

    /// Computes the distance between this line segment and a point.
    double distance(const CoordinateXY& p) const
    {
        return algorithm::Distance::pointToSegment(p, p0, p1);
    };

    /**
     * Computes the perpendicular distance between the (infinite)
     * line defined by this line segment and a point.
     * If the segment has zero length this returns the distance between
     * the segment and the point.
     *
     * @param p the point to compute the distance to
     * @return the perpendicular distance between the line and point
     */
    double distancePerpendicular(const CoordinateXY& p) const
    {
        if (p0.equals2D(p1))
            return p0.distance(p);
        return algorithm::Distance::pointToLinePerpendicular(p, p0, p1);
    };

    /**
     * Computes the oriented perpendicular distance between the (infinite) line
     * defined by this line segment and a point.
     * The oriented distance is positive if the point on the left of the line,
     * and negative if it is on the right.
     * If the segment has zero length this returns the distance between
     * the segment and the point.
     *
     * @param p the point to compute the distance to
     * @return the oriented perpendicular distance between the line and point
     */
    double distancePerpendicularOriented(const CoordinateXY& p) const;

    /** \brief
     * Computes the Coordinate that lies a given
     * fraction along the line defined by this segment.
     *
     * A fraction of <code>0.0</code> returns the start point of
     * the segment; a fraction of <code>1.0</code> returns the end
     * point of the segment.
     * If the fraction is < 0.0 or > 1.0 the point returned
     * will lie before the start or beyond the end of the segment.
     *
     * @param segmentLengthFraction the fraction of the segment length
     *        along the line
     * @param ret will be set to the point at that distance
     */
    void pointAlong(double segmentLengthFraction, Coordinate& ret) const
    {
        ret = Coordinate(
            p0.x + segmentLengthFraction * (p1.x - p0.x),
            p0.y + segmentLengthFraction * (p1.y - p0.y),
            p0.z + segmentLengthFraction * (p1.z - p0.z));
    };

    /** \brief
     * Computes the {@link Coordinate} that lies a given
     * fraction along the line defined by this segment and offset from
     * the segment by a given distance.
     *
     * A fraction of <code>0.0</code> offsets
     * from the start point of the segment;
     * a fraction of <code>1.0</code> offsets
     * from the end point of the segment.
     *
     * The computed point is offset to the left of the line
     * if the offset distance is positive, to the right if negative.
     *
     * @param segmentLengthFraction the fraction of the segment
     *                              length along the line
     *
     * @param offsetDistance the distance the point is offset
     *        from the segment
     *         (positive is to the left, negative is to the right)
     *
     * @param ret will be set to the point at that distance and offset
     *
     * @throws IllegalStateException if the segment has zero length
     */
    void pointAlongOffset(double segmentLengthFraction,
                          double offsetDistance,
                          Coordinate& ret) const;


    /**
    * Computes the {@link LineSegment} that is offset from
    * the segment by a given distance.
    * The computed segment is offset to the left of the line if the offset distance is
    * positive, to the right if negative.
    *
    * @param offsetDistance the distance the point is offset from the segment
    *    (positive is to the left, negative is to the right)
    * @return a line segment offset by the specified distance
    *
    * @throws IllegalStateException if the segment has zero length
    */
    LineSegment offset(double offsetDistance);


    /** \brief
     * Compute the projection factor for the projection of the point p
     * onto this LineSegment.
     *
     * The projection factor is the constant r
     * by which the vector for this segment must be multiplied to
     * equal the vector for the projection of p on the line
     * defined by this segment.
     *
     * The projection factor returned will be in the range
     * (-inf, +inf)
     *
     * @param p the point to compute the factor for
     *
     * @return the projection factor for the point
     *
     */
    double projectionFactor(const CoordinateXY& p) const;

    /** \brief
     * Computes the fraction of distance (in <tt>[0.0, 1.0]</tt>)
     * that the projection of a point occurs along this line segment.
     *
     * If the point is beyond either ends of the line segment,
     * the closest fractional value (<tt>0.0</tt> or <tt>1.0</tt>)
     * is returned.
     *
     * Essentially, this is the {@link #projectionFactor} clamped to
     * the range <tt>[0.0, 1.0]</tt>.
     *
     * @param inputPt the point
     * @return the fraction along the line segment the projection
     *         of the point occurs
     */
    double segmentFraction(const CoordinateXY& inputPt) const;

    /** \brief
     * Compute the projection of a point onto the line determined
     * by this line segment.
     *
     * Note that the projected point
     * may lie outside the line segment.  If this is the case,
     * the projection factor will lie outside the range [0.0, 1.0].
     */
    void project(const Coordinate& p, Coordinate& ret) const;

    CoordinateXY project(const CoordinateXY& p) const;

    /** \brief
     * Project a line segment onto this line segment and return the resulting
     * line segment.
     *
     * The returned line segment will be a subset of
     * the target line line segment.  This subset may be null, if
     * the segments are oriented in such a way that there is no projection.
     *
     * Note that the returned line may have zero length (i.e. the same endpoints).
     * This can happen for instance if the lines are perpendicular to one another.
     *
     * @param seg the line segment to project
     * @param ret the projected line segment
     * @return true if there is an overlap, false otherwise
     */
    bool project(const LineSegment& seg, LineSegment& ret) const;

    /// Computes the closest point on this line segment to another point.
    //
    /// @param p the point to find the closest point to
    /// @param ret the Coordinate to which the closest point on the line segment
    ///            to the point p will be written
    ///
    void closestPoint(const CoordinateXY& p, CoordinateXY& ret) const;

    /** \brief
     *  Returns <code>true</code> if <code>other</code> is
     *  topologically equal to this LineSegment (e.g. irrespective
     *  of orientation).
     *
     * @param  other  a <code>LineSegment</code> with which to do the comparison.
     * @return true if other is a LineSegment
     *      with the same values for the x and y ordinates.
     */
    bool equalsTopo(const LineSegment& other) const;

    /**
     * Computes the closest points on two line segments.
     * @param line the line segment to find the closest points to
     * @return a pair of Coordinates which are the closest points on
     * the line segments.
     */
    std::array<Coordinate, 2> closestPoints(const LineSegment& line);

    std::array<Coordinate, 2> closestPoints(const LineSegment* line)
    {
        assert(line);
        return closestPoints(*line);
    }

    /**
     * Computes an intersection point between two segments,
     * if there is one.
     * There may be 0, 1 or many intersection points between two segments.
     * If there are 0, null is returned. If there is 1 or more, a single
     * one is returned (chosen at the discretion of the algorithm).
     * If more information is required about the details of the
     * intersection, the LineIntersector class should be used.
     *
     * @param line
     * @return intersection if found, setNull() otherwise
     */
    Coordinate intersection(const LineSegment& line) const;

    /** \brief
     * Computes the intersection point of the lines defined
     * by two segments, if there is one.
     *
     * There may be 0, 1 or an infinite number of intersection points
     * between two lines.
     * If there is a unique intersection point, it is returned.
     * Otherwise, <tt>null</tt> is returned.
     * If more information is required about the details of the
     * intersection, the algorithms::LineIntersector class should
     * be used.
     *
     * @param line a line segment defining a straight line
     * @return intersection if found, setNull() otherwise
     *
     */
    Coordinate lineIntersection(const LineSegment& line) const;

    /**
     * Creates a LineString with the same coordinates as this segment
     *
     * @param gf the geometery factory to use
     * @return a LineString with the same geometry as this segment
     */
    std::unique_ptr<LineString> toGeometry(const GeometryFactory& gf) const;


    /** \brief
     * Compares this object with the specified object for order.
     *
     * Uses the standard lexicographic ordering for the points in the LineSegment.
     *
     * @param  other  the LineSegment with which this LineSegment
     *            is being compared
     * @return a negative integer, zero, or a positive integer as this
     *         LineSegment is less than, equal to, or greater than the
     *         specified LineSegment
     */
    inline int compareTo(const LineSegment& other) const
    {
        int comp0 = p0.compareTo(other.p0);
        if (comp0 != 0) {
            return comp0;
        }
        return p1.compareTo(other.p1);
    }

    std::ostream& operator<< (std::ostream& o);

    inline bool operator==(const LineSegment& rhs) const {
        return compareTo(rhs) == 0;
    };

    inline bool operator<(const LineSegment& rhs) const {
        return compareTo(rhs) < 0;
    };

    inline bool operator>(const LineSegment& rhs) const {
        return compareTo(rhs) > 0;
    };

    struct HashCode {
        inline std::size_t operator()(const LineSegment & s) const {
            std::size_t h = std::hash<double>{}(s.p0.x);
            h ^= (std::hash<double>{}(s.p0.y) << 1);
            h ^= (std::hash<double>{}(s.p1.x) << 1);
            return h ^ (std::hash<double>{}(s.p1.y) << 1);
        }

        inline std::size_t operator()(const LineSegment * s) const {
            std::size_t h = std::hash<double>{}(s->p0.x);
            h ^= (std::hash<double>{}(s->p0.y) << 1);
            h ^= (std::hash<double>{}(s->p1.x) << 1);
            return h ^ (std::hash<double>{}(s->p1.y) << 1);
        }

    };

    using UnorderedSet = std::unordered_set<LineSegment, HashCode>;


private:
    void project(double factor, CoordinateXY& ret) const;

};


// std::ostream& operator<< (std::ostream& o, const LineSegment& l);


} // namespace geos::geom
} // namespace geos