Repository URL to install this package:
|
Version:
3.10.0 ▾
|
matplotlib
/
colorbar.py
|
|---|
"""
Colorbars are a visualization of the mapping from scalar values to colors.
In Matplotlib they are drawn into a dedicated `~.axes.Axes`.
.. note::
Colorbars are typically created through `.Figure.colorbar` or its pyplot
wrapper `.pyplot.colorbar`, which internally use `.Colorbar` together with
`.make_axes_gridspec` (for `.GridSpec`-positioned Axes) or `.make_axes` (for
non-`.GridSpec`-positioned Axes).
End-users most likely won't need to directly use this module's API.
"""
import logging
import numpy as np
import matplotlib as mpl
from matplotlib import _api, cbook, collections, cm, colors, contour, ticker
import matplotlib.artist as martist
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.spines as mspines
import matplotlib.transforms as mtransforms
from matplotlib import _docstring
_log = logging.getLogger(__name__)
_docstring.interpd.register(
_make_axes_kw_doc="""
location : None or {'left', 'right', 'top', 'bottom'}
The location, relative to the parent Axes, where the colorbar Axes
is created. It also determines the *orientation* of the colorbar
(colorbars on the left and right are vertical, colorbars at the top
and bottom are horizontal). If None, the location will come from the
*orientation* if it is set (vertical colorbars on the right, horizontal
ones at the bottom), or default to 'right' if *orientation* is unset.
orientation : None or {'vertical', 'horizontal'}
The orientation of the colorbar. It is preferable to set the *location*
of the colorbar, as that also determines the *orientation*; passing
incompatible values for *location* and *orientation* raises an exception.
fraction : float, default: 0.15
Fraction of original Axes to use for colorbar.
shrink : float, default: 1.0
Fraction by which to multiply the size of the colorbar.
aspect : float, default: 20
Ratio of long to short dimensions.
pad : float, default: 0.05 if vertical, 0.15 if horizontal
Fraction of original Axes between colorbar and new image Axes.
anchor : (float, float), optional
The anchor point of the colorbar Axes.
Defaults to (0.0, 0.5) if vertical; (0.5, 1.0) if horizontal.
panchor : (float, float), or *False*, optional
The anchor point of the colorbar parent Axes. If *False*, the parent
axes' anchor will be unchanged.
Defaults to (1.0, 0.5) if vertical; (0.5, 0.0) if horizontal.""",
_colormap_kw_doc="""
extend : {'neither', 'both', 'min', 'max'}
Make pointed end(s) for out-of-range values (unless 'neither'). These are
set for a given colormap using the colormap set_under and set_over methods.
extendfrac : {*None*, 'auto', length, lengths}
If set to *None*, both the minimum and maximum triangular colorbar
extensions will have a length of 5% of the interior colorbar length (this
is the default setting).
If set to 'auto', makes the triangular colorbar extensions the same lengths
as the interior boxes (when *spacing* is set to 'uniform') or the same
lengths as the respective adjacent interior boxes (when *spacing* is set to
'proportional').
If a scalar, indicates the length of both the minimum and maximum
triangular colorbar extensions as a fraction of the interior colorbar
length. A two-element sequence of fractions may also be given, indicating
the lengths of the minimum and maximum colorbar extensions respectively as
a fraction of the interior colorbar length.
extendrect : bool
If *False* the minimum and maximum colorbar extensions will be triangular
(the default). If *True* the extensions will be rectangular.
ticks : None or list of ticks or Locator
If None, ticks are determined automatically from the input.
format : None or str or Formatter
If None, `~.ticker.ScalarFormatter` is used.
Format strings, e.g., ``"%4.2e"`` or ``"{x:.2e}"``, are supported.
An alternative `~.ticker.Formatter` may be given instead.
drawedges : bool
Whether to draw lines at color boundaries.
label : str
The label on the colorbar's long axis.
boundaries, values : None or a sequence
If unset, the colormap will be displayed on a 0-1 scale.
If sequences, *values* must have a length 1 less than *boundaries*. For
each region delimited by adjacent entries in *boundaries*, the color mapped
to the corresponding value in *values* will be used. The size of each
region is determined by the *spacing* parameter.
Normally only useful for indexed colors (i.e. ``norm=NoNorm()``) or other
unusual circumstances.
spacing : {'uniform', 'proportional'}
For discrete colorbars (`.BoundaryNorm` or contours), 'uniform' gives each
color the same space; 'proportional' makes the space proportional to the
data interval.""")
def _set_ticks_on_axis_warn(*args, **kwargs):
# a top level function which gets put in at the axes'
# set_xticks and set_yticks by Colorbar.__init__.
_api.warn_external("Use the colorbar set_ticks() method instead.")
class _ColorbarSpine(mspines.Spine):
def __init__(self, axes):
self._ax = axes
super().__init__(axes, 'colorbar', mpath.Path(np.empty((0, 2))))
mpatches.Patch.set_transform(self, axes.transAxes)
def get_window_extent(self, renderer=None):
# This Spine has no Axis associated with it, and doesn't need to adjust
# its location, so we can directly get the window extent from the
# super-super-class.
return mpatches.Patch.get_window_extent(self, renderer=renderer)
def set_xy(self, xy):
self._path = mpath.Path(xy, closed=True)
self._xy = xy
self.stale = True
def draw(self, renderer):
ret = mpatches.Patch.draw(self, renderer)
self.stale = False
return ret
class _ColorbarAxesLocator:
"""
Shrink the Axes if there are triangular or rectangular extends.
"""
def __init__(self, cbar):
self._cbar = cbar
self._orig_locator = cbar.ax._axes_locator
def __call__(self, ax, renderer):
if self._orig_locator is not None:
pos = self._orig_locator(ax, renderer)
else:
pos = ax.get_position(original=True)
if self._cbar.extend == 'neither':
return pos
y, extendlen = self._cbar._proportional_y()
if not self._cbar._extend_lower():
extendlen[0] = 0
if not self._cbar._extend_upper():
extendlen[1] = 0
len = sum(extendlen) + 1
shrink = 1 / len
offset = extendlen[0] / len
# we need to reset the aspect ratio of the axes to account
# of the extends...
if hasattr(ax, '_colorbar_info'):
aspect = ax._colorbar_info['aspect']
else:
aspect = False
# now shrink and/or offset to take into account the
# extend tri/rectangles.
if self._cbar.orientation == 'vertical':
if aspect:
self._cbar.ax.set_box_aspect(aspect*shrink)
pos = pos.shrunk(1, shrink).translated(0, offset * pos.height)
else:
if aspect:
self._cbar.ax.set_box_aspect(1/(aspect * shrink))
pos = pos.shrunk(shrink, 1).translated(offset * pos.width, 0)
return pos
def get_subplotspec(self):
# make tight_layout happy..
return (
self._cbar.ax.get_subplotspec()
or getattr(self._orig_locator, "get_subplotspec", lambda: None)())
@_docstring.interpd
class Colorbar:
r"""
Draw a colorbar in an existing Axes.
Typically, colorbars are created using `.Figure.colorbar` or
`.pyplot.colorbar` and associated with `.ScalarMappable`\s (such as an
`.AxesImage` generated via `~.axes.Axes.imshow`).
In order to draw a colorbar not associated with other elements in the
figure, e.g. when showing a colormap by itself, one can create an empty
`.ScalarMappable`, or directly pass *cmap* and *norm* instead of *mappable*
to `Colorbar`.
Useful public methods are :meth:`set_label` and :meth:`add_lines`.
Attributes
----------
ax : `~matplotlib.axes.Axes`
The `~.axes.Axes` instance in which the colorbar is drawn.
lines : list
A list of `.LineCollection` (empty if no lines were drawn).
dividers : `.LineCollection`
A LineCollection (empty if *drawedges* is ``False``).
Parameters
----------
ax : `~matplotlib.axes.Axes`
The `~.axes.Axes` instance in which the colorbar is drawn.
mappable : `.ScalarMappable`
The mappable whose colormap and norm will be used.
To show the under- and over- value colors, the mappable's norm should
be specified as ::
norm = colors.Normalize(clip=False)
To show the colors versus index instead of on a 0-1 scale, use::
norm=colors.NoNorm()
cmap : `~matplotlib.colors.Colormap`, default: :rc:`image.cmap`
The colormap to use. This parameter is ignored, unless *mappable* is
None.
norm : `~matplotlib.colors.Normalize`
The normalization to use. This parameter is ignored, unless *mappable*
is None.
alpha : float
The colorbar transparency between 0 (transparent) and 1 (opaque).
orientation : None or {'vertical', 'horizontal'}
If None, use the value determined by *location*. If both
*orientation* and *location* are None then defaults to 'vertical'.
ticklocation : {'auto', 'left', 'right', 'top', 'bottom'}
The location of the colorbar ticks. The *ticklocation* must match
*orientation*. For example, a horizontal colorbar can only have ticks
at the top or the bottom. If 'auto', the ticks will be the same as
*location*, so a colorbar to the left will have ticks to the left. If
*location* is None, the ticks will be at the bottom for a horizontal
colorbar and at the right for a vertical.
%(_colormap_kw_doc)s
location : None or {'left', 'right', 'top', 'bottom'}
Set the *orientation* and *ticklocation* of the colorbar using a
single argument. Colorbars on the left and right are vertical,
colorbars at the top and bottom are horizontal. The *ticklocation* is
the same as *location*, so if *location* is 'top', the ticks are on
the top. *orientation* and/or *ticklocation* can be provided as well
and overrides the value set by *location*, but there will be an error
for incompatible combinations.
.. versionadded:: 3.7
"""
n_rasterize = 50 # rasterize solids if number of colors >= n_rasterize
def __init__(self, ax, mappable=None, *, cmap=None,
norm=None,
alpha=None,
values=None,
boundaries=None,
orientation=None,
ticklocation='auto',
extend=None,
spacing='uniform', # uniform or proportional
ticks=None,
format=None,
drawedges=False,
extendfrac=None,
extendrect=False,
label='',
location=None,
):
if mappable is None:
mappable = cm.ScalarMappable(norm=norm, cmap=cmap)
self.mappable = mappable
cmap = mappable.cmap
norm = mappable.norm
filled = True
if isinstance(mappable, contour.ContourSet):
cs = mappable
alpha = cs.get_alpha()
boundaries = cs._levels
values = cs.cvalues
extend = cs.extend
filled = cs.filled
if ticks is None:
ticks = ticker.FixedLocator(cs.levels, nbins=10)
elif isinstance(mappable, martist.Artist):
alpha = mappable.get_alpha()
mappable.colorbar = self
mappable.colorbar_cid = mappable.callbacks.connect(
'changed', self.update_normal)
location_orientation = _get_orientation_from_location(location)
_api.check_in_list(
[None, 'vertical', 'horizontal'], orientation=orientation)
_api.check_in_list(
['auto', 'left', 'right', 'top', 'bottom'],
ticklocation=ticklocation)
_api.check_in_list(
['uniform', 'proportional'], spacing=spacing)
if location_orientation is not None and orientation is not None:
if location_orientation != orientation:
raise TypeError(
"location and orientation are mutually exclusive")
else:
orientation = orientation or location_orientation or "vertical"
self.ax = ax
self.ax._axes_locator = _ColorbarAxesLocator(self)
if extend is None:
if (not isinstance(mappable, contour.ContourSet)
and getattr(cmap, 'colorbar_extend', False) is not False):
extend = cmap.colorbar_extend
elif hasattr(norm, 'extend'):
extend = norm.extend
else:
extend = 'neither'
self.alpha = None
# Call set_alpha to handle array-like alphas properly
self.set_alpha(alpha)
self.cmap = cmap
self.norm = norm
self.values = values
self.boundaries = boundaries
self.extend = extend
self._inside = _api.check_getitem(
{'neither': slice(0, None), 'both': slice(1, -1),
'min': slice(1, None), 'max': slice(0, -1)},
extend=extend)
self.spacing = spacing
self.orientation = orientation
self.drawedges = drawedges
self._filled = filled
self.extendfrac = extendfrac
self.extendrect = extendrect
self._extend_patches = []
self.solids = None
self.solids_patches = []
self.lines = []
for spine in self.ax.spines.values():
spine.set_visible(False)
self.outline = self.ax.spines['outline'] = _ColorbarSpine(self.ax)
self.dividers = collections.LineCollection(
[],
colors=[mpl.rcParams['axes.edgecolor']],
linewidths=[0.5 * mpl.rcParams['axes.linewidth']],
clip_on=False)
self.ax.add_collection(self.dividers)
self._locator = None
self._minorlocator = None
self._formatter = None
self._minorformatter = None
if ticklocation == 'auto':
ticklocation = _get_ticklocation_from_orientation(
orientation) if location is None else location
self.ticklocation = ticklocation
self.set_label(label)
self._reset_locator_formatter_scale()
if np.iterable(ticks):
self._locator = ticker.FixedLocator(ticks, nbins=len(ticks))
else:
self._locator = ticks
if isinstance(format, str):
# Check format between FormatStrFormatter and StrMethodFormatter
try:
self._formatter = ticker.FormatStrFormatter(format)
_ = self._formatter(0)
except (TypeError, ValueError):
self._formatter = ticker.StrMethodFormatter(format)
else:
self._formatter = format # Assume it is a Formatter or None
self._draw_all()
if isinstance(mappable, contour.ContourSet) and not mappable.filled:
self.add_lines(mappable)
# Link the Axes and Colorbar for interactive use
self.ax._colorbar = self
# Don't navigate on any of these types of mappables
if (isinstance(self.norm, (colors.BoundaryNorm, colors.NoNorm)) or
isinstance(self.mappable, contour.ContourSet)):
self.ax.set_navigate(False)
# These are the functions that set up interactivity on this colorbar
self._interactive_funcs = ["_get_view", "_set_view",
"_set_view_from_bbox", "drag_pan"]
for x in self._interactive_funcs:
setattr(self.ax, x, getattr(self, x))
# Set the cla function to the cbar's method to override it
self.ax.cla = self._cbar_cla
# Callbacks for the extend calculations to handle inverting the axis
self._extend_cid1 = self.ax.callbacks.connect(
"xlim_changed", self._do_extends)
self._extend_cid2 = self.ax.callbacks.connect(
"ylim_changed", self._do_extends)
@property
def long_axis(self):
"""Axis that has decorations (ticks, etc) on it."""
if self.orientation == 'vertical':
return self.ax.yaxis
return self.ax.xaxis
@property
def locator(self):
"""Major tick `.Locator` for the colorbar."""
return self.long_axis.get_major_locator()
@locator.setter
def locator(self, loc):
self.long_axis.set_major_locator(loc)
self._locator = loc
@property
def minorlocator(self):
"""Minor tick `.Locator` for the colorbar."""
return self.long_axis.get_minor_locator()
@minorlocator.setter
def minorlocator(self, loc):
self.long_axis.set_minor_locator(loc)
self._minorlocator = loc
@property
def formatter(self):
"""Major tick label `.Formatter` for the colorbar."""
return self.long_axis.get_major_formatter()
@formatter.setter
def formatter(self, fmt):
self.long_axis.set_major_formatter(fmt)
self._formatter = fmt
@property
def minorformatter(self):
"""Minor tick `.Formatter` for the colorbar."""
return self.long_axis.get_minor_formatter()
@minorformatter.setter
def minorformatter(self, fmt):
self.long_axis.set_minor_formatter(fmt)
self._minorformatter = fmt
def _cbar_cla(self):
"""Function to clear the interactive colorbar state."""
for x in self._interactive_funcs:
delattr(self.ax, x)
# We now restore the old cla() back and can call it directly
del self.ax.cla
self.ax.cla()
def update_normal(self, mappable=None):
"""
Update solid patches, lines, etc.
This is meant to be called when the norm of the image or contour plot
to which this colorbar belongs changes.
If the norm on the mappable is different than before, this resets the
locator and formatter for the axis, so if these have been customized,
they will need to be customized again. However, if the norm only
changes values of *vmin*, *vmax* or *cmap* then the old formatter
and locator will be preserved.
"""
if mappable:
# The mappable keyword argument exists because
# ScalarMappable.changed() emits self.callbacks.process('changed', self)
# in contrast, ColorizingArtist (and Colorizer) does not use this keyword.
# [ColorizingArtist.changed() emits self.callbacks.process('changed')]
# Also, there is no test where self.mappable == mappable is not True
# and possibly no use case.
# Therefore, the mappable keyword can be deprecated if cm.ScalarMappable
# is removed.
self.mappable = mappable
_log.debug('colorbar update normal %r %r', self.mappable.norm, self.norm)
self.set_alpha(self.mappable.get_alpha())
self.cmap = self.mappable.cmap
if self.mappable.norm != self.norm:
self.norm = self.mappable.norm
self._reset_locator_formatter_scale()
self._draw_all()
if isinstance(self.mappable, contour.ContourSet):
CS = self.mappable
if not CS.filled:
self.add_lines(CS)
self.stale = True
def _draw_all(self):
"""
Calculate any free parameters based on the current cmap and norm,
and do all the drawing.
"""
if self.orientation == 'vertical':
if mpl.rcParams['ytick.minor.visible']:
self.minorticks_on()
else:
if mpl.rcParams['xtick.minor.visible']:
self.minorticks_on()
self.long_axis.set(label_position=self.ticklocation,
ticks_position=self.ticklocation)
self._short_axis().set_ticks([])
self._short_axis().set_ticks([], minor=True)
# Set self._boundaries and self._values, including extensions.
# self._boundaries are the edges of each square of color, and
# self._values are the value to map into the norm to get the
# color:
self._process_values()
# Set self.vmin and self.vmax to first and last boundary, excluding
# extensions:
self.vmin, self.vmax = self._boundaries[self._inside][[0, -1]]
# Compute the X/Y mesh.
X, Y = self._mesh()
# draw the extend triangles, and shrink the inner Axes to accommodate.
# also adds the outline path to self.outline spine:
self._do_extends()
lower, upper = self.vmin, self.vmax
if self.long_axis.get_inverted():
# If the axis is inverted, we need to swap the vmin/vmax
lower, upper = upper, lower
if self.orientation == 'vertical':
self.ax.set_xlim(0, 1)
self.ax.set_ylim(lower, upper)
else:
self.ax.set_ylim(0, 1)
self.ax.set_xlim(lower, upper)
# set up the tick locators and formatters. A bit complicated because
# boundary norms + uniform spacing requires a manual locator.
self.update_ticks()
if self._filled:
ind = np.arange(len(self._values))
if self._extend_lower():
ind = ind[1:]
if self._extend_upper():
ind = ind[:-1]
self._add_solids(X, Y, self._values[ind, np.newaxis])
def _add_solids(self, X, Y, C):
"""Draw the colors; optionally add separators."""
# Cleanup previously set artists.
if self.solids is not None:
self.solids.remove()
for solid in self.solids_patches:
solid.remove()
# Add new artist(s), based on mappable type. Use individual patches if
# hatching is needed, pcolormesh otherwise.
mappable = getattr(self, 'mappable', None)
if (isinstance(mappable, contour.ContourSet)
and any(hatch is not None for hatch in mappable.hatches)):
self._add_solids_patches(X, Y, C, mappable)
else:
self.solids = self.ax.pcolormesh(
X, Y, C, cmap=self.cmap, norm=self.norm, alpha=self.alpha,
edgecolors='none', shading='flat')
if not self.drawedges:
if len(self._y) >= self.n_rasterize:
self.solids.set_rasterized(True)
self._update_dividers()
def _update_dividers(self):
if not self.drawedges:
self.dividers.set_segments([])
return
# Place all *internal* dividers.
if self.orientation == 'vertical':
lims = self.ax.get_ylim()
bounds = (lims[0] < self._y) & (self._y < lims[1])
else:
lims = self.ax.get_xlim()
bounds = (lims[0] < self._y) & (self._y < lims[1])
y = self._y[bounds]
# And then add outer dividers if extensions are on.
if self._extend_lower():
y = np.insert(y, 0, lims[0])
if self._extend_upper():
y = np.append(y, lims[1])
X, Y = np.meshgrid([0, 1], y)
if self.orientation == 'vertical':
segments = np.dstack([X, Y])
else:
segments = np.dstack([Y, X])
self.dividers.set_segments(segments)
def _add_solids_patches(self, X, Y, C, mappable):
hatches = mappable.hatches * (len(C) + 1) # Have enough hatches.
if self._extend_lower():
# remove first hatch that goes into the extend patch
hatches = hatches[1:]
patches = []
for i in range(len(X) - 1):
xy = np.array([[X[i, 0], Y[i, 1]],
[X[i, 1], Y[i, 0]],
[X[i + 1, 1], Y[i + 1, 0]],
[X[i + 1, 0], Y[i + 1, 1]]])
patch = mpatches.PathPatch(mpath.Path(xy),
facecolor=self.cmap(self.norm(C[i][0])),
hatch=hatches[i], linewidth=0,
antialiased=False, alpha=self.alpha)
self.ax.add_patch(patch)
patches.append(patch)
self.solids_patches = patches
def _do_extends(self, ax=None):
"""
Add the extend tri/rectangles on the outside of the Axes.
ax is unused, but required due to the callbacks on xlim/ylim changed
"""
# Clean up any previous extend patches
for patch in self._extend_patches:
patch.remove()
self._extend_patches = []
# extend lengths are fraction of the *inner* part of colorbar,
# not the total colorbar:
_, extendlen = self._proportional_y()
bot = 0 - (extendlen[0] if self._extend_lower() else 0)
top = 1 + (extendlen[1] if self._extend_upper() else 0)
# xyout is the outline of the colorbar including the extend patches:
if not self.extendrect:
# triangle:
xyout = np.array([[0, 0], [0.5, bot], [1, 0],
[1, 1], [0.5, top], [0, 1], [0, 0]])
else:
# rectangle:
xyout = np.array([[0, 0], [0, bot], [1, bot], [1, 0],
[1, 1], [1, top], [0, top], [0, 1],
[0, 0]])
if self.orientation == 'horizontal':
xyout = xyout[:, ::-1]
# xyout is the path for the spine:
self.outline.set_xy(xyout)
if not self._filled:
return
# Make extend triangles or rectangles filled patches. These are
# defined in the outer parent axes' coordinates:
mappable = getattr(self, 'mappable', None)
if (isinstance(mappable, contour.ContourSet)
and any(hatch is not None for hatch in mappable.hatches)):
hatches = mappable.hatches * (len(self._y) + 1)
else:
hatches = [None] * (len(self._y) + 1)
if self._extend_lower():
if not self.extendrect:
# triangle
xy = np.array([[0, 0], [0.5, bot], [1, 0]])
else:
# rectangle
xy = np.array([[0, 0], [0, bot], [1., bot], [1, 0]])
if self.orientation == 'horizontal':
xy = xy[:, ::-1]
# add the patch
val = -1 if self.long_axis.get_inverted() else 0
color = self.cmap(self.norm(self._values[val]))
patch = mpatches.PathPatch(
mpath.Path(xy), facecolor=color, alpha=self.alpha,
linewidth=0, antialiased=False,
transform=self.ax.transAxes,
hatch=hatches[0], clip_on=False,
# Place it right behind the standard patches, which is
# needed if we updated the extends
zorder=np.nextafter(self.ax.patch.zorder, -np.inf))
self.ax.add_patch(patch)
self._extend_patches.append(patch)
# remove first hatch that goes into the extend patch
hatches = hatches[1:]
if self._extend_upper():
if not self.extendrect:
# triangle
xy = np.array([[0, 1], [0.5, top], [1, 1]])
else:
# rectangle
xy = np.array([[0, 1], [0, top], [1, top], [1, 1]])
if self.orientation == 'horizontal':
xy = xy[:, ::-1]
# add the patch
val = 0 if self.long_axis.get_inverted() else -1
color = self.cmap(self.norm(self._values[val]))
hatch_idx = len(self._y) - 1
patch = mpatches.PathPatch(
mpath.Path(xy), facecolor=color, alpha=self.alpha,
linewidth=0, antialiased=False,
transform=self.ax.transAxes, hatch=hatches[hatch_idx],
clip_on=False,
# Place it right behind the standard patches, which is
# needed if we updated the extends
zorder=np.nextafter(self.ax.patch.zorder, -np.inf))
self.ax.add_patch(patch)
self._extend_patches.append(patch)
self._update_dividers()
def add_lines(self, *args, **kwargs):
"""
Draw lines on the colorbar.
The lines are appended to the list :attr:`lines`.
Parameters
----------
levels : array-like
The positions of the lines.
colors : :mpltype:`color` or list of :mpltype:`color`
Either a single color applying to all lines or one color value for
each line.
linewidths : float or array-like
Either a single linewidth applying to all lines or one linewidth
for each line.
erase : bool, default: True
Whether to remove any previously added lines.
Notes
-----
Alternatively, this method can also be called with the signature
``colorbar.add_lines(contour_set, erase=True)``, in which case
*levels*, *colors*, and *linewidths* are taken from *contour_set*.
"""
params = _api.select_matching_signature(
[lambda self, CS, erase=True: locals(),
lambda self, levels, colors, linewidths, erase=True: locals()],
self, *args, **kwargs)
if "CS" in params:
self, cs, erase = params.values()
if not isinstance(cs, contour.ContourSet) or cs.filled:
raise ValueError("If a single artist is passed to add_lines, "
"it must be a ContourSet of lines")
# TODO: Make colorbar lines auto-follow changes in contour lines.
return self.add_lines(
cs.levels,
cs.to_rgba(cs.cvalues, cs.alpha),
cs.get_linewidths(),
erase=erase)
else:
self, levels, colors, linewidths, erase = params.values()
y = self._locate(levels)
rtol = (self._y[-1] - self._y[0]) * 1e-10
igood = (y < self._y[-1] + rtol) & (y > self._y[0] - rtol)
y = y[igood]
if np.iterable(colors):
colors = np.asarray(colors)[igood]
if np.iterable(linewidths):
linewidths = np.asarray(linewidths)[igood]
X, Y = np.meshgrid([0, 1], y)
if self.orientation == 'vertical':
xy = np.stack([X, Y], axis=-1)
else:
xy = np.stack([Y, X], axis=-1)
col = collections.LineCollection(xy, linewidths=linewidths,
colors=colors)
if erase and self.lines:
for lc in self.lines:
lc.remove()
self.lines = []
self.lines.append(col)
# make a clip path that is just a linewidth bigger than the Axes...
fac = np.max(linewidths) / 72
xy = np.array([[0, 0], [1, 0], [1, 1], [0, 1], [0, 0]])
inches = self.ax.get_figure().dpi_scale_trans
# do in inches:
xy = inches.inverted().transform(self.ax.transAxes.transform(xy))
xy[[0, 1, 4], 1] -= fac
xy[[2, 3], 1] += fac
# back to axes units...
xy = self.ax.transAxes.inverted().transform(inches.transform(xy))
col.set_clip_path(mpath.Path(xy, closed=True),
self.ax.transAxes)
self.ax.add_collection(col)
self.stale = True
def update_ticks(self):
"""
Set up the ticks and ticklabels. This should not be needed by users.
"""
# Get the locator and formatter; defaults to self._locator if not None.
self._get_ticker_locator_formatter()
self.long_axis.set_major_locator(self._locator)
self.long_axis.set_minor_locator(self._minorlocator)
self.long_axis.set_major_formatter(self._formatter)
def _get_ticker_locator_formatter(self):
"""
Return the ``locator`` and ``formatter`` of the colorbar.
If they have not been defined (i.e. are *None*), the formatter and
locator are retrieved from the axis, or from the value of the
boundaries for a boundary norm.
Called by update_ticks...
"""
locator = self._locator
formatter = self._formatter
minorlocator = self._minorlocator
if isinstance(self.norm, colors.BoundaryNorm):
b = self.norm.boundaries
if locator is None:
locator = ticker.FixedLocator(b, nbins=10)
if minorlocator is None:
minorlocator = ticker.FixedLocator(b)
elif isinstance(self.norm, colors.NoNorm):
if locator is None:
# put ticks on integers between the boundaries of NoNorm
nv = len(self._values)
base = 1 + int(nv / 10)
locator = ticker.IndexLocator(base=base, offset=.5)
elif self.boundaries is not None:
b = self._boundaries[self._inside]
if locator is None:
locator = ticker.FixedLocator(b, nbins=10)
else: # most cases:
if locator is None:
# we haven't set the locator explicitly, so use the default
# for this axis:
locator = self.long_axis.get_major_locator()
if minorlocator is None:
minorlocator = self.long_axis.get_minor_locator()
if minorlocator is None:
minorlocator = ticker.NullLocator()
if formatter is None:
formatter = self.long_axis.get_major_formatter()
self._locator = locator
self._formatter = formatter
self._minorlocator = minorlocator
_log.debug('locator: %r', locator)
def set_ticks(self, ticks, *, labels=None, minor=False, **kwargs):
"""
Set tick locations.
Parameters
----------
ticks : 1D array-like
List of tick locations.
labels : list of str, optional
List of tick labels. If not set, the labels show the data value.
minor : bool, default: False
If ``False``, set the major ticks; if ``True``, the minor ticks.
**kwargs
`.Text` properties for the labels. These take effect only if you
pass *labels*. In other cases, please use `~.Axes.tick_params`.
"""
if np.iterable(ticks):
self.long_axis.set_ticks(ticks, labels=labels, minor=minor,
**kwargs)
self._locator = self.long_axis.get_major_locator()
else:
self._locator = ticks
self.long_axis.set_major_locator(self._locator)
self.stale = True
def get_ticks(self, minor=False):
"""
Return the ticks as a list of locations.
Parameters
----------
minor : boolean, default: False
if True return the minor ticks.
"""
if minor:
return self.long_axis.get_minorticklocs()
else:
return self.long_axis.get_majorticklocs()
def set_ticklabels(self, ticklabels, *, minor=False, **kwargs):
"""
[*Discouraged*] Set tick labels.
.. admonition:: Discouraged
The use of this method is discouraged, because of the dependency
on tick positions. In most cases, you'll want to use
``set_ticks(positions, labels=labels)`` instead.
If you are using this method, you should always fix the tick
positions before, e.g. by using `.Colorbar.set_ticks` or by
explicitly setting a `~.ticker.FixedLocator` on the long axis
of the colorbar. Otherwise, ticks are free to move and the
labels may end up in unexpected positions.
Parameters
----------
ticklabels : sequence of str or of `.Text`
Texts for labeling each tick location in the sequence set by
`.Colorbar.set_ticks`; the number of labels must match the number
of locations.
update_ticks : bool, default: True
This keyword argument is ignored and will be removed.
Deprecated
minor : bool
If True, set minor ticks instead of major ticks.
**kwargs
`.Text` properties for the labels.
"""
self.long_axis.set_ticklabels(ticklabels, minor=minor, **kwargs)
def minorticks_on(self):
"""
Turn on colorbar minor ticks.
"""
self.ax.minorticks_on()
self._short_axis().set_minor_locator(ticker.NullLocator())
def minorticks_off(self):
"""Turn the minor ticks of the colorbar off."""
self._minorlocator = ticker.NullLocator()
self.long_axis.set_minor_locator(self._minorlocator)
def set_label(self, label, *, loc=None, **kwargs):
"""
Add a label to the long axis of the colorbar.
Parameters
----------
label : str
The label text.
loc : str, optional
The location of the label.
- For horizontal orientation one of {'left', 'center', 'right'}
- For vertical orientation one of {'bottom', 'center', 'top'}
Defaults to :rc:`xaxis.labellocation` or :rc:`yaxis.labellocation`
depending on the orientation.
**kwargs
Keyword arguments are passed to `~.Axes.set_xlabel` /
`~.Axes.set_ylabel`.
Supported keywords are *labelpad* and `.Text` properties.
"""
if self.orientation == "vertical":
self.ax.set_ylabel(label, loc=loc, **kwargs)
else:
self.ax.set_xlabel(label, loc=loc, **kwargs)
self.stale = True
def set_alpha(self, alpha):
"""
Set the transparency between 0 (transparent) and 1 (opaque).
If an array is provided, *alpha* will be set to None to use the
transparency values associated with the colormap.
"""
self.alpha = None if isinstance(alpha, np.ndarray) else alpha
def _set_scale(self, scale, **kwargs):
"""
Set the colorbar long axis scale.
Parameters
----------
scale : {"linear", "log", "symlog", "logit", ...} or `.ScaleBase`
The axis scale type to apply.
**kwargs
Different keyword arguments are accepted, depending on the scale.
See the respective class keyword arguments:
- `matplotlib.scale.LinearScale`
- `matplotlib.scale.LogScale`
- `matplotlib.scale.SymmetricalLogScale`
- `matplotlib.scale.LogitScale`
- `matplotlib.scale.FuncScale`
- `matplotlib.scale.AsinhScale`
Notes
-----
By default, Matplotlib supports the above-mentioned scales.
Additionally, custom scales may be registered using
`matplotlib.scale.register_scale`. These scales can then also
be used here.
"""
self.long_axis._set_axes_scale(scale, **kwargs)
def remove(self):
"""
Remove this colorbar from the figure.
If the colorbar was created with ``use_gridspec=True`` the previous
gridspec is restored.
"""
if hasattr(self.ax, '_colorbar_info'):
parents = self.ax._colorbar_info['parents']
for a in parents:
if self.ax in a._colorbars:
a._colorbars.remove(self.ax)
self.ax.remove()
self.mappable.callbacks.disconnect(self.mappable.colorbar_cid)
self.mappable.colorbar = None
self.mappable.colorbar_cid = None
# Remove the extension callbacks
self.ax.callbacks.disconnect(self._extend_cid1)
self.ax.callbacks.disconnect(self._extend_cid2)
try:
ax = self.mappable.axes
except AttributeError:
return
try:
subplotspec = self.ax.get_subplotspec().get_gridspec()._subplot_spec
except AttributeError: # use_gridspec was False
pos = ax.get_position(original=True)
ax._set_position(pos)
else: # use_gridspec was True
ax.set_subplotspec(subplotspec)
def _process_values(self):
"""
Set `_boundaries` and `_values` based on the self.boundaries and
self.values if not None, or based on the size of the colormap and
the vmin/vmax of the norm.
"""
if self.values is not None:
# set self._boundaries from the values...
self._values = np.array(self.values)
if self.boundaries is None:
# bracket values by 1/2 dv:
b = np.zeros(len(self.values) + 1)
b[1:-1] = 0.5 * (self._values[:-1] + self._values[1:])
b[0] = 2.0 * b[1] - b[2]
b[-1] = 2.0 * b[-2] - b[-3]
self._boundaries = b
return
self._boundaries = np.array(self.boundaries)
return
# otherwise values are set from the boundaries
if isinstance(self.norm, colors.BoundaryNorm):
b = self.norm.boundaries
elif isinstance(self.norm, colors.NoNorm):
# NoNorm has N blocks, so N+1 boundaries, centered on integers:
b = np.arange(self.cmap.N + 1) - .5
elif self.boundaries is not None:
b = self.boundaries
else:
# otherwise make the boundaries from the size of the cmap:
N = self.cmap.N + 1
b, _ = self._uniform_y(N)
# add extra boundaries if needed:
if self._extend_lower():
b = np.hstack((b[0] - 1, b))
if self._extend_upper():
b = np.hstack((b, b[-1] + 1))
# transform from 0-1 to vmin-vmax:
if self.mappable.get_array() is not None:
self.mappable.autoscale_None()
if not self.norm.scaled():
# If we still aren't scaled after autoscaling, use 0, 1 as default
self.norm.vmin = 0
self.norm.vmax = 1
self.norm.vmin, self.norm.vmax = mtransforms.nonsingular(
self.norm.vmin, self.norm.vmax, expander=0.1)
if (not isinstance(self.norm, colors.BoundaryNorm) and
(self.boundaries is None)):
b = self.norm.inverse(b)
self._boundaries = np.asarray(b, dtype=float)
self._values = 0.5 * (self._boundaries[:-1] + self._boundaries[1:])
if isinstance(self.norm, colors.NoNorm):
self._values = (self._values + 0.00001).astype(np.int16)
def _mesh(self):
"""
Return the coordinate arrays for the colorbar pcolormesh/patches.
These are scaled between vmin and vmax, and already handle colorbar
orientation.
"""
y, _ = self._proportional_y()
# Use the vmin and vmax of the colorbar, which may not be the same
# as the norm. There are situations where the colormap has a
# narrower range than the colorbar and we want to accommodate the
# extra contours.
if (isinstance(self.norm, (colors.BoundaryNorm, colors.NoNorm))
or self.boundaries is not None):
# not using a norm.
y = y * (self.vmax - self.vmin) + self.vmin
else:
# Update the norm values in a context manager as it is only
# a temporary change and we don't want to propagate any signals
# attached to the norm (callbacks.blocked).
with (self.norm.callbacks.blocked(),
cbook._setattr_cm(self.norm, vmin=self.vmin, vmax=self.vmax)):
y = self.norm.inverse(y)
self._y = y
X, Y = np.meshgrid([0., 1.], y)
if self.orientation == 'vertical':
return (X, Y)
else:
return (Y, X)
def _forward_boundaries(self, x):
# map boundaries equally between 0 and 1...
b = self._boundaries
y = np.interp(x, b, np.linspace(0, 1, len(b)))
# the following avoids ticks in the extends:
eps = (b[-1] - b[0]) * 1e-6
# map these _well_ out of bounds to keep any ticks out
# of the extends region...
y[x < b[0]-eps] = -1
y[x > b[-1]+eps] = 2
return y
def _inverse_boundaries(self, x):
# invert the above...
b = self._boundaries
return np.interp(x, np.linspace(0, 1, len(b)), b)
def _reset_locator_formatter_scale(self):
"""
Reset the locator et al to defaults. Any user-hardcoded changes
need to be re-entered if this gets called (either at init, or when
the mappable normal gets changed: Colorbar.update_normal)
"""
self._process_values()
self._locator = None
self._minorlocator = None
self._formatter = None
self._minorformatter = None
if (isinstance(self.mappable, contour.ContourSet) and
isinstance(self.norm, colors.LogNorm)):
# if contours have lognorm, give them a log scale...
self._set_scale('log')
elif (self.boundaries is not None or
isinstance(self.norm, colors.BoundaryNorm)):
if self.spacing == 'uniform':
funcs = (self._forward_boundaries, self._inverse_boundaries)
self._set_scale('function', functions=funcs)
elif self.spacing == 'proportional':
self._set_scale('linear')
elif getattr(self.norm, '_scale', None):
# use the norm's scale (if it exists and is not None):
self._set_scale(self.norm._scale)
elif type(self.norm) is colors.Normalize:
# plain Normalize:
self._set_scale('linear')
else:
# norm._scale is None or not an attr: derive the scale from
# the Norm:
funcs = (self.norm, self.norm.inverse)
self._set_scale('function', functions=funcs)
def _locate(self, x):
"""
Given a set of color data values, return their
corresponding colorbar data coordinates.
"""
if isinstance(self.norm, (colors.NoNorm, colors.BoundaryNorm)):
b = self._boundaries
xn = x
else:
# Do calculations using normalized coordinates so
# as to make the interpolation more accurate.
b = self.norm(self._boundaries, clip=False).filled()
xn = self.norm(x, clip=False).filled()
bunique = b[self._inside]
yunique = self._y
z = np.interp(xn, bunique, yunique)
return z
# trivial helpers
def _uniform_y(self, N):
"""
Return colorbar data coordinates for *N* uniformly
spaced boundaries, plus extension lengths if required.
"""
automin = automax = 1. / (N - 1.)
extendlength = self._get_extension_lengths(self.extendfrac,
automin, automax,
default=0.05)
y = np.linspace(0, 1, N)
return y, extendlength
def _proportional_y(self):
"""
Return colorbar data coordinates for the boundaries of
a proportional colorbar, plus extension lengths if required:
"""
if (isinstance(self.norm, colors.BoundaryNorm) or
self.boundaries is not None):
y = (self._boundaries - self._boundaries[self._inside][0])
y = y / (self._boundaries[self._inside][-1] -
self._boundaries[self._inside][0])
# need yscaled the same as the axes scale to get
# the extend lengths.
if self.spacing == 'uniform':
yscaled = self._forward_boundaries(self._boundaries)
else:
yscaled = y
else:
y = self.norm(self._boundaries.copy())
y = np.ma.filled(y, np.nan)
# the norm and the scale should be the same...
yscaled = y
y = y[self._inside]
yscaled = yscaled[self._inside]
# normalize from 0..1:
norm = colors.Normalize(y[0], y[-1])
y = np.ma.filled(norm(y), np.nan)
norm = colors.Normalize(yscaled[0], yscaled[-1])
yscaled = np.ma.filled(norm(yscaled), np.nan)
# make the lower and upper extend lengths proportional to the lengths
# of the first and last boundary spacing (if extendfrac='auto'):
automin = yscaled[1] - yscaled[0]
automax = yscaled[-1] - yscaled[-2]
extendlength = [0, 0]
if self._extend_lower() or self._extend_upper():
extendlength = self._get_extension_lengths(
self.extendfrac, automin, automax, default=0.05)
return y, extendlength
def _get_extension_lengths(self, frac, automin, automax, default=0.05):
"""
Return the lengths of colorbar extensions.
This is a helper method for _uniform_y and _proportional_y.
"""
# Set the default value.
extendlength = np.array([default, default])
if isinstance(frac, str):
_api.check_in_list(['auto'], extendfrac=frac.lower())
# Use the provided values when 'auto' is required.
extendlength[:] = [automin, automax]
elif frac is not None:
try:
# Try to set min and max extension fractions directly.
extendlength[:] = frac
# If frac is a sequence containing None then NaN may
# be encountered. This is an error.
if np.isnan(extendlength).any():
raise ValueError()
except (TypeError, ValueError) as err:
# Raise an error on encountering an invalid value for frac.
raise ValueError('invalid value for extendfrac') from err
return extendlength
def _extend_lower(self):
"""Return whether the lower limit is open ended."""
minmax = "max" if self.long_axis.get_inverted() else "min"
return self.extend in ('both', minmax)
def _extend_upper(self):
"""Return whether the upper limit is open ended."""
minmax = "min" if self.long_axis.get_inverted() else "max"
return self.extend in ('both', minmax)
def _short_axis(self):
"""Return the short axis"""
if self.orientation == 'vertical':
return self.ax.xaxis
return self.ax.yaxis
def _get_view(self):
# docstring inherited
# An interactive view for a colorbar is the norm's vmin/vmax
return self.norm.vmin, self.norm.vmax
def _set_view(self, view):
# docstring inherited
# An interactive view for a colorbar is the norm's vmin/vmax
self.norm.vmin, self.norm.vmax = view
def _set_view_from_bbox(self, bbox, direction='in',
mode=None, twinx=False, twiny=False):
# docstring inherited
# For colorbars, we use the zoom bbox to scale the norm's vmin/vmax
new_xbound, new_ybound = self.ax._prepare_view_from_bbox(
bbox, direction=direction, mode=mode, twinx=twinx, twiny=twiny)
if self.orientation == 'horizontal':
self.norm.vmin, self.norm.vmax = new_xbound
elif self.orientation == 'vertical':
self.norm.vmin, self.norm.vmax = new_ybound
def drag_pan(self, button, key, x, y):
# docstring inherited
points = self.ax._get_pan_points(button, key, x, y)
if points is not None:
if self.orientation == 'horizontal':
self.norm.vmin, self.norm.vmax = points[:, 0]
elif self.orientation == 'vertical':
self.norm.vmin, self.norm.vmax = points[:, 1]
ColorbarBase = Colorbar # Backcompat API
def _normalize_location_orientation(location, orientation):
if location is None:
location = _get_ticklocation_from_orientation(orientation)
loc_settings = _api.check_getitem({
"left": {"location": "left", "anchor": (1.0, 0.5),
"panchor": (0.0, 0.5), "pad": 0.10},
"right": {"location": "right", "anchor": (0.0, 0.5),
"panchor": (1.0, 0.5), "pad": 0.05},
"top": {"location": "top", "anchor": (0.5, 0.0),
"panchor": (0.5, 1.0), "pad": 0.05},
"bottom": {"location": "bottom", "anchor": (0.5, 1.0),
"panchor": (0.5, 0.0), "pad": 0.15},
}, location=location)
loc_settings["orientation"] = _get_orientation_from_location(location)
if orientation is not None and orientation != loc_settings["orientation"]:
# Allow the user to pass both if they are consistent.
raise TypeError("location and orientation are mutually exclusive")
return loc_settings
def _get_orientation_from_location(location):
return _api.check_getitem(
{None: None, "left": "vertical", "right": "vertical",
"top": "horizontal", "bottom": "horizontal"}, location=location)
def _get_ticklocation_from_orientation(orientation):
return _api.check_getitem(
{None: "right", "vertical": "right", "horizontal": "bottom"},
orientation=orientation)
@_docstring.interpd
def make_axes(parents, location=None, orientation=None, fraction=0.15,
shrink=1.0, aspect=20, **kwargs):
"""
Create an `~.axes.Axes` suitable for a colorbar.
The Axes is placed in the figure of the *parents* Axes, by resizing and
repositioning *parents*.
Parameters
----------
parents : `~matplotlib.axes.Axes` or iterable or `numpy.ndarray` of `~.axes.Axes`
The Axes to use as parents for placing the colorbar.
%(_make_axes_kw_doc)s
Returns
-------
cax : `~matplotlib.axes.Axes`
The child Axes.
kwargs : dict
The reduced keyword dictionary to be passed when creating the colorbar
instance.
"""
loc_settings = _normalize_location_orientation(location, orientation)
# put appropriate values into the kwargs dict for passing back to
# the Colorbar class
kwargs['orientation'] = loc_settings['orientation']
location = kwargs['ticklocation'] = loc_settings['location']
anchor = kwargs.pop('anchor', loc_settings['anchor'])
panchor = kwargs.pop('panchor', loc_settings['panchor'])
aspect0 = aspect
# turn parents into a list if it is not already. Note we cannot
# use .flatten or .ravel as these copy the references rather than
# reuse them, leading to a memory leak
if isinstance(parents, np.ndarray):
parents = list(parents.flat)
elif np.iterable(parents):
parents = list(parents)
else:
parents = [parents]
fig = parents[0].get_figure()
pad0 = 0.05 if fig.get_constrained_layout() else loc_settings['pad']
pad = kwargs.pop('pad', pad0)
if not all(fig is ax.get_figure() for ax in parents):
raise ValueError('Unable to create a colorbar Axes as not all '
'parents share the same figure.')
# take a bounding box around all of the given Axes
parents_bbox = mtransforms.Bbox.union(
[ax.get_position(original=True).frozen() for ax in parents])
pb = parents_bbox
if location in ('left', 'right'):
if location == 'left':
pbcb, _, pb1 = pb.splitx(fraction, fraction + pad)
else:
pb1, _, pbcb = pb.splitx(1 - fraction - pad, 1 - fraction)
pbcb = pbcb.shrunk(1.0, shrink).anchored(anchor, pbcb)
else:
if location == 'bottom':
pbcb, _, pb1 = pb.splity(fraction, fraction + pad)
else:
pb1, _, pbcb = pb.splity(1 - fraction - pad, 1 - fraction)
pbcb = pbcb.shrunk(shrink, 1.0).anchored(anchor, pbcb)
# define the aspect ratio in terms of y's per x rather than x's per y
aspect = 1.0 / aspect
# define a transform which takes us from old axes coordinates to
# new axes coordinates
shrinking_trans = mtransforms.BboxTransform(parents_bbox, pb1)
# transform each of the Axes in parents using the new transform
for ax in parents:
new_posn = shrinking_trans.transform(ax.get_position(original=True))
new_posn = mtransforms.Bbox(new_posn)
ax._set_position(new_posn)
if panchor is not False:
ax.set_anchor(panchor)
cax = fig.add_axes(pbcb, label="<colorbar>")
for a in parents:
# tell the parent it has a colorbar
a._colorbars += [cax]
cax._colorbar_info = dict(
parents=parents,
location=location,
shrink=shrink,
anchor=anchor,
panchor=panchor,
fraction=fraction,
aspect=aspect0,
pad=pad)
# and we need to set the aspect ratio by hand...
cax.set_anchor(anchor)
cax.set_box_aspect(aspect)
cax.set_aspect('auto')
return cax, kwargs
@_docstring.interpd
def make_axes_gridspec(parent, *, location=None, orientation=None,
fraction=0.15, shrink=1.0, aspect=20, **kwargs):
"""
Create an `~.axes.Axes` suitable for a colorbar.
The Axes is placed in the figure of the *parent* Axes, by resizing and
repositioning *parent*.
This function is similar to `.make_axes` and mostly compatible with it.
Primary differences are
- `.make_axes_gridspec` requires the *parent* to have a subplotspec.
- `.make_axes` positions the Axes in figure coordinates;
`.make_axes_gridspec` positions it using a subplotspec.
- `.make_axes` updates the position of the parent. `.make_axes_gridspec`
replaces the parent gridspec with a new one.
Parameters
----------
parent : `~matplotlib.axes.Axes`
The Axes to use as parent for placing the colorbar.
%(_make_axes_kw_doc)s
Returns
-------
cax : `~matplotlib.axes.Axes`
The child Axes.
kwargs : dict
The reduced keyword dictionary to be passed when creating the colorbar
instance.
"""
loc_settings = _normalize_location_orientation(location, orientation)
kwargs['orientation'] = loc_settings['orientation']
location = kwargs['ticklocation'] = loc_settings['location']
aspect0 = aspect
anchor = kwargs.pop('anchor', loc_settings['anchor'])
panchor = kwargs.pop('panchor', loc_settings['panchor'])
pad = kwargs.pop('pad', loc_settings["pad"])
wh_space = 2 * pad / (1 - pad)
if location in ('left', 'right'):
gs = parent.get_subplotspec().subgridspec(
3, 2, wspace=wh_space, hspace=0,
height_ratios=[(1-anchor[1])*(1-shrink), shrink, anchor[1]*(1-shrink)])
if location == 'left':
gs.set_width_ratios([fraction, 1 - fraction - pad])
ss_main = gs[:, 1]
ss_cb = gs[1, 0]
else:
gs.set_width_ratios([1 - fraction - pad, fraction])
ss_main = gs[:, 0]
ss_cb = gs[1, 1]
else:
gs = parent.get_subplotspec().subgridspec(
2, 3, hspace=wh_space, wspace=0,
width_ratios=[anchor[0]*(1-shrink), shrink, (1-anchor[0])*(1-shrink)])
if location == 'top':
gs.set_height_ratios([fraction, 1 - fraction - pad])
ss_main = gs[1, :]
ss_cb = gs[0, 1]
else:
gs.set_height_ratios([1 - fraction - pad, fraction])
ss_main = gs[0, :]
ss_cb = gs[1, 1]
aspect = 1 / aspect
parent.set_subplotspec(ss_main)
if panchor is not False:
parent.set_anchor(panchor)
fig = parent.get_figure()
cax = fig.add_subplot(ss_cb, label="<colorbar>")
cax.set_anchor(anchor)
cax.set_box_aspect(aspect)
cax.set_aspect('auto')
cax._colorbar_info = dict(
location=location,
parents=[parent],
shrink=shrink,
anchor=anchor,
panchor=panchor,
fraction=fraction,
aspect=aspect0,
pad=pad)
return cax, kwargs