Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / _generator.cpython-312.so
Size: Mime:
ELF(4lY	4 	(444  ÐG	ÐG	@ÐG	Ї	Ї	ø0@ÈL	ÈÌ	ÈÌ	¤
ø@ÜG	܇	܇	ÀÀRåtdÐG	Ї	Ї	ø0QåtdTTT¼¼p˜6˜6˜688„Androidr27c12479018GNU.
ùùÜ
k÷†è\ŒX¡l%ARd}¤·ÃÔé3BUlz‡“­ÉÜìþ"2EP_p‡œ½Ùî%4DQby‰—¢¶ÂÏò)BXn|Ž£½ÊÚï+DQj}ˆ©ºÏàõ"=Nj|‰–¢²¹¾ÍÜëü%2FZr„—¢±ÄËÙæ÷>Rfr„•«ÃÔåó	S	

0
ü"7GYm˜ø
/
@
O
[
m
t
‚
“
¬
À
Ô
é
K[m~ˆ›«½Õíÿ1?]¿Øî*:Tf| ³ÁÎàò
"&+049?CHMÃÊÒì	>'A÷ªY(	X4	™èLÜ
±	fsùþÚá	v´		ØÀ‰	€yaèy	nåá	4‘éèìâ
ï`UUú"I!	6Š
ùø"Í	L5ý	n?!	âZa$	/yòA
ú&4=	RF™	p€	x
W	¦Æ
;ú’)+	8;S÷“ó	Zå&	t}	P«Q	4	Ùé¾A	ü±(	–Ë‘íL™	0ê	)ídÑa-	¨R	2	œn	!ùôÇ	Ýëð
!ü&l
mð,Á	ð­	(¥‘	Gi÷b	qú°dÉý,ç		ê­åêøû÷Æk	vP
Ýî01÷Ó
GüVü*VÉüüum%	x	iè0¢	íì<Î	|_9è(˜
™ð8®
ÑóLiI)	ÞdÉ	H 	4Ù æ c
ác
áÑ €$002@€HTŠ
(¤„@•
€ T@€P  @€	£!‰
D©°D"ÑÔÝáæìñó÷øûþ	ؔÎ"Œ´—ù`c ‘tkøˆ’e$ëŽW~¢¡“D\~”ñHÊÌH)/á«ï\Ñ=§Âß	Ì讋S³Ìî(ç‚`GÆn…s‰TL±Ñ³ÅÆ÷kúäPeߺa«8¯p6ÖÇkΑÒ(²y¾M¡d䞓8±çƒÏt`³×A•tbÞºSNDp3`%Ÿsžޣ{éRÐmL ,,ݪ¼<¬X§†…­+ñ*²ˆO”jüSÆpғšP{Þ`ýµSâàh”“øCYd˜ˆ¥¥÷mÌ#má«ïä9jg#Jݼã2ÙùбêÓ75:
	.Ìڟ“{·K€Øf™|‰’vŠ6ž}ڃ1<ÿ¡·Ø__cxa_finalize__cxa_atexit__register_atforkPyInit__generatorPyModuleDef_InitPyThreadState_GetPyInterpreterState_GetIDPyErr_SetStringPyObject_GetAttrStringPyModule_NewObject_Py_DeallocPyModule_GetDictPyDict_SetItemStringPyErr_ExceptionMatchesPyErr_ClearPyExc_ImportErrorPyExc_AttributeError_Py_NoneStructPyImport_AddModulePyObject_SetAttrStringPyOS_snprintfPyErr_WarnExPyTuple_NewPyBytes_FromStringAndSizePyUnicode_FromStringAndSizePyFloat_FromDoublePyLong_FromLongPyLong_FromStringPyEval_GetBuiltinsPyObject_GetItemPyObject_IsTruePyExc_RuntimeErrorPy_VersionPyErr_OccurredPyObject_SetAttrPyImport_GetModuleDictPyDict_GetItemString_PyObject_GenericGetAttrWithDict_PyThreadState_UncheckedGetPyObject_RichComparePyObject_GenericGetAttr_Py_TrueStruct_Py_FalseStructPyDict_SetItemPyType_ModifiedPyErr_FormatPyObject_GetAttrPyThread_allocate_lockPyExc_NameErrorPyCMethod_NewPyList_New_PyDict_NewPresizedPySlice_NewPyTuple_PackPyUnstable_Code_NewWithPosOnlyArgs_Py_EllipsisObjectPyCapsule_NewPyImport_ImportModulePyException_GetTracebackPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyExc_SystemError_PyObject_GetDictPtr_PyDict_GetItem_KnownHashPyObject_NotPyCode_NewEmptyPyUnicode_FromFormatPyUnicode_AsUTF8PyMem_ReallocPyFrame_NewPyTraceBack_HerePyException_SetTracebackPyMem_MallocPyErr_NormalizeExceptionPyImport_GetModulePyDict_NewPyImport_ImportModuleLevelObjectPyModule_GetNamePyUnicode_FromStringPyUnicode_ConcatPyCapsule_GetPointerPyCapsule_TypePyExc_ExceptionPyObject_HashPyUnicode_InternFromStringPyUnicode_DecodePyErr_GivenExceptionMatchesPyBaseObject_TypePyGC_DisablePyType_ReadyPyGC_EnablePyExc_TypeErrormallocfree_PyType_LookupPyDict_DelItemPyNumber_IndexPyLong_AsSsize_tPyList_TypePyLong_TypePyObject_GetIterPyTuple_TypePyExc_StopIterationPyExc_OverflowErrorPyExc_ZeroDivisionErrorPyGILState_EnsurePyGILState_ReleasePyMem_FreePyErr_NoMemoryPyBytes_FromStringstrlenPyMethod_TypePyNumber_AddPySequence_TuplePyBytes_TypePyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyObject_GC_UnTrackPyNumber_InPlaceAddPyDict_SizePyCapsule_IsValidPyType_IsSubtypePyVectorcall_FunctionPyObject_VectorcallDictPyCFunction_TypePyExc_ValueErrorPyList_AppendPyUnicode_FormatPyNumber_Remainderrandom_standard_uniform_fillrandom_standard_uniform_fill_fPyUnicode_Typerandom_betarandom_exponentialrandom_standard_exponential_fillrandom_standard_exponential_inv_fillrandom_standard_exponential_fill_frandom_standard_exponential_inv_fill_fPyBool_TypePyLong_FromSsize_tPyFloat_AsDoublerandom_uniformrandom_standard_normal_fillrandom_standard_normal_fill_frandom_normalrandom_standard_gammarandom_standard_gamma_frandom_gammarandom_frandom_noncentral_frandom_chisquarerandom_noncentral_chisquarerandom_standard_cauchyrandom_standard_trandom_vonmisesrandom_paretorandom_weibullrandom_powerrandom_laplacerandom_gumbelrandom_logisticrandom_lognormalrandom_rayleighrandom_waldrandom_triangularrandom_binomialPyLong_FromLongLongPyEval_SaveThreadPyEval_RestoreThreadPyErr_SetObjectPyNumber_SubtractPyNumber_TrueDividePyNumber_Multiplyrandom_negative_binomialPyFloat_Typerandom_poissonrandom_zipfrandom_geometricrandom_hypergeometricrandom_logseriesPyObject_Sizerandom_intervalPyNumber_InPlaceMultiplyPyObject_SetItemPyList_AsTuplePyDict_NextPyUnicode_ComparememcmpPyLong_AsLongPyErr_WarnFormatPyExc_DeprecationWarningPyObject_IsSubclassPyObject_CallObjectPyException_SetCausePyNumber_InPlaceTrueDividePyNumber_FloorDividePyLong_FromUnsignedLongLongrandom_bounded_uint64PyObject_FormatPyLong_AsLongLongPyExc_IndexErrorvsnprintf_Py_FatalErrorFuncPySequence_ListPyNumber_NegativePyNumber_MatrixMultiplyPyExc_UnboundLocalErrorPyNumber_AbsolutePyLong_FromSize_t_PyLong_Copyrandom_multinomialPyUnicode_New_PyUnicode_FastCopyCharactersPyNumber_Orrandom_multivariate_hypergeometric_countrandom_multivariate_hypergeometric_marginalsPyObject_RichCompareBoolPyLong_AsUnsignedLongPyObject_IsInstancePyErr_FetchPyObject_FreePyErr_RestorePyObject_MallocPyExc_NotImplementedErrorPyExc_BufferErrorPyUnicode_FromOrdinalPyBuffer_ReleasePyThread_free_lockPyObject_GetBufferPyIndex_CheckPySlice_TypePyObject_GC_TrackPyCapsule_GetNamePySequence_Containscosfloorexpm1log1pfexpflogceilacosexpexp2log1ppowfmodlogfpowflogfactorialrandom_standard_uniform_frandom_standard_uniformrandom_standard_exponentialrandom_standard_exponential_frandom_standard_normalrandom_standard_normal_frandom_positive_int64random_positive_int32random_positive_intrandom_uintrandom_loggamrandom_gamma_frandom_binomial_btperandom_binomial_inversionrandom_geometric_searchrandom_geometric_inversionrandom_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillrandom_bounded_bool_fillmemcpymemmovememsetlibm.soLIBClibc.solibpython3.12.soЇ	ԇ	؇	ÜÌ	èÌ	ìÌ	Í	Í	,Í	8Í	LÍ	dÍ	xÍ	|Í	€Í	”Í	œÍ	´Í	¼Í	üÍ	Î	$Î	(Î	8Î	@Î	dÎ	lÎ	ŒÎ	ÌÎ	ØÎ	ìÎ	Ï	 Ï	4Ï	TÏ	\Ï	œÏ	¨Ï	¼Ï	ÄÏ	ÈÏ	ÔÏ	àÏ	ìÏ	ðÏ	Ð	Ð	,Ð	lÐ	xÐ	¸Ð	¼Ð	ÀÐ	ÔÐ	üÐ	0Ñ	4Ñ	@Ñ	DÑ	PÑ	TÑ	`Ñ	dÑ	pÑ	tÑ	|Ñ	€Ñ	„Ñ	ŒÑ	Ñ	”Ñ	œÑ	 Ñ	¤Ñ	¬Ñ	°Ñ	´Ñ	¼Ñ	ÀÑ	ÄÑ	ÌÑ	ÐÑ	ÔÑ	ÜÑ	àÑ	äÑ	ìÑ	ðÑ	ôÑ	üÑ	Ò	Ò	Ò	Ò	Ò	Ò	 Ò	$Ò	,Ò	0Ò	4Ò	<Ò	@Ò	DÒ	LÒ	PÒ	TÒ	\Ò	`Ò	dÒ	lÒ	pÒ	tÒ	|Ò	€Ò	„Ò	ŒÒ	Ò	”Ò	œÒ	 Ò	¤Ò	¬Ò	°Ò	´Ò	¼Ò	ÀÒ	ÄÒ	ÌÒ	ÐÒ	ÔÒ	ÜÒ	àÒ	äÒ	ìÒ	ðÒ	ôÒ	üÒ	Ó	Ó	Ó	Ó	Ó	Ó	 Ó	$Ó	,Ó	0Ó	4Ó	<Ó	@Ó	DÓ	LÓ	PÓ	TÓ	\Ó	`Ó	dÓ	lÓ	pÓ	tÓ	|Ó	€Ó	„Ó	ŒÓ	Ó	”Ó	œÓ	 Ó	¤Ó	¬Ó	°Ó	´Ó	¼Ó	ÀÓ	ÄÓ	ÌÓ	ÐÓ	ÔÓ	ÜÓ	àÓ	äÓ	ìÓ	ðÓ	ôÓ	üÓ	Ô	Ô	Ô	Ô	Ô	Ô	 Ô	$Ô	,Ô	@Ô	DÔ	LÔ	TÔ	XÔ	\Ô	|Ô	´Ô	ÀÔ	ÜÔ	àÔ	äÔ	èÔ	ðÔ	ôÔ	Õ	Õ	Õ	Õ	0Õ	4Õ	XÕ	\Õ	hÕ	lÕ	xÕ	|Õ	˜Õ	¤Õ	ÀÕ	ÄÕ	ÈÕ	ÌÕ	ÔÕ	ØÕ	äÕ	èÕ	ôÕ	øÕ	Ö	Ö	Ö	Ö	$Ö	(Ö	4Ö	8Ö	TÖ	XÖ	hÖ	lÖ	|Ö	€Ö	Ö	”Ö	¤Ö	¨Ö	¸Ö	¼Ö	ÌÖ	ÐÖ	àÖ	äÖ	ôÖ	øÖ	×	 ×	,×	0×	L×	P×	\×	`×	h×	œˆ	 ˆ	¤ˆ	¨ˆ	¬ˆ	 °ˆ	(´ˆ	)¸ˆ	*¼ˆ	0	7Ĉ	>Ȉ	R̈	SЈ	XԈ	\؈	c܈	dàˆ	fäˆ	gèˆ	hìˆ	iðˆ	pôˆ	søˆ	}üˆ	~‰	‚$‰	ƒŒ‰	¤‰	—¨‰	 ¬‰	¦°‰	´´‰	µ¸‰	»‰	ÔH‰	Õh‰	ք‰	ה‰	ؘ‰	Ù4‰	át‰	â(‰	çX‰	è\‰	él‰	ê@‰	ìp‰	ñ‰	ó|‰	ôˆ‰	÷ ‰	øœ‰	ù‰	û‰	üL‰	ý0‰	þP‰	ÿx‰	‰	‰	d‰	 ‰	,‰		D‰	T‰	`‰	
‰	‰	€‰	8‰	<‰	ˆ»»Œ»ˆ»Œ»¤»	ȉ	̉	Љ	ԉ	؉	܉	à‰	ä‰	è‰		ì‰	
ð‰	ô‰	ø‰	
ü‰	Š	Š	Š	Š	Š	Š	Š	Š	 Š	$Š	(Š	,Š	0Š	4Š	!8Š	"<Š	#@Š	$DŠ	%HŠ	&LŠ	'PŠ	(TŠ	+XŠ	,\Š	-`Š	.dŠ	/hŠ	1lŠ	2pŠ	3tŠ	4xŠ	5|Š	6€Š	8„Š	9ˆŠ	:ŒŠ	;Š	<”Š	=˜Š	?œŠ	@ Š	A¤Š	B¨Š	C¬Š	D°Š	E´Š	F¸Š	G¼Š	H
	IĊ	JȊ	K̊	LЊ	MԊ	N؊	O܊	PàŠ	QäŠ	TèŠ	UìŠ	VðŠ	WôŠ	YøŠ	ZüŠ	[‹	]‹	^‹	_‹	`‹	a‹	b‹	e‹	j ‹	k$‹	l(‹	m,‹	n0‹	o4‹	q8‹	r<‹	t@‹	uD‹	vH‹	wL‹	xP‹	yT‹	zX‹	{\‹	|`‹	d‹	€h‹	l‹	p‹	„t‹	…x‹	|‹	€‹	ÿ„‹	ш‹	†Œ‹	‡‹	ˆ”‹	‰˜‹	Šœ‹	‹ ‹	Œ¤‹	¨‹	ù¬‹	ް‹	봋	¸‹	¼‹	‘	’ċ	“ȋ	”̋	•Ћ	–ԋ	˜؋	™܋	šà‹	›ä‹	œè‹	ì‹	ãð‹	žô‹	Ÿø‹	¡ü‹	¢Œ	£Œ	¤Œ	¥Œ	§Œ	¨Œ	©Œ	õŒ	ª Œ	«$Œ	¬(Œ	,Œ	í0Œ	­4Œ	®8Œ	¯<Œ	°@Œ	±DŒ	²HŒ	³LŒ	¶PŒ	·TŒ	¸XŒ	¹\Œ	º`Œ	¼dŒ	½hŒ	¾lŒ	¿pŒ	ÀtŒ	ÁxŒ	Â|Œ	ÀŒ	ĄŒ	ňŒ	ƌŒ	ǐŒ	ȔŒ	ɘŒ	ʜŒ	Ë Œ	̤Œ	ͨŒ	ú¬Œ	ö°Œ	Þ´Œ	¸Œ	ò¼Œ	Î	ÏČ	Ð4294967296name '%U' is not definedpermutationexactlyMissing type object
        Gets the bit generator instance used by the generator

        Returns
        -------
        bit_generator : BitGenerator
            The bit generator instance used by the generator
        value too large to perform divisioncopy_fortran_rand_int16module compiled against API version 0x%x but this version of numpy is 0x%x . Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem .Expected a dimension of size %zu, got %zumemviewslice is already initialized!numpy.random._generator.Generator.noncentral_ftuple'NoneType' object is not iterableView.MemoryView._unellipsifymemviewsliceobjView.MemoryView.memoryview.copyView.MemoryView.memoryview_copySeedSequence%s() got multiple values for keyword argument '%U'__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)'long''unsigned long'numpy.random._generator.Generator.poissonnumpy.random._generator.Generator.logseriesvh__getattr__Argument '%.200s' must not be None00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899View.MemoryView.__pyx_unpickle_Enum__set_statendarray_rand_bool_rand_int32does not matchpoissontoo many values to unpack (expected %zd)numpy.random._generator.Generator.choice'double''long double'numpy.random._generator.Generator.gumbelView.MemoryView.pybuffer_indexView.MemoryView.memoryview.is_c_contigflexiblevalidate_output_shapePyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)C function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)numpy.core._multiarray_umathnumpy.random._generator.Generator.__str__%.200s() keywords must be stringsBuffer dtype mismatch, expected %s%s%s but got %snumpy.random._generator.Generator.noncentral_chisquareView.MemoryView.memoryview.shape.__get__View.MemoryView.memoryview.suboffsets.__get__View.MemoryView.memoryview.itemsize.__get__View.MemoryView._memoryviewslice.__reduce_cython__complexfloating
    Generator(bit_generator)

    Container for the BitGenerators.

    ``Generator`` exposes a number of methods for generating random
    numbers drawn from a variety of probability distributions. In addition to
    the distribution-specific arguments, each method takes a keyword argument
    `size` that defaults to ``None``. If `size` is ``None``, then a single
    value is generated and returned. If `size` is an integer, then a 1-D
    array filled with generated values is returned. If `size` is a tuple,
    then an array with that shape is filled and returned.

    The function :func:`numpy.random.default_rng` will instantiate
    a `Generator` with numpy's default `BitGenerator`.

    **No Compatibility Guarantee**

    ``Generator`` does not provide a version compatibility guarantee. In
    particular, as better algorithms evolve the bit stream may change.

    Parameters
    ----------
    bit_generator : BitGenerator
        BitGenerator to use as the core generator.

    Notes
    -----
    The Python stdlib module `random` contains pseudo-random number generator
    with a number of methods that are similar to the ones available in
    ``Generator``. It uses Mersenne Twister, and this bit generator can
    be accessed using ``MT19937``. ``Generator``, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    Examples
    --------
    >>> from numpy.random import Generator, PCG64
    >>> rng = Generator(PCG64())
    >>> rng.standard_normal()
    -0.203  # random

    See Also
    --------
    default_rng : Recommended constructor for `Generator`.
    laplacepermutedneed more than %zd value%.1s to unpacknumpy.random._generator.Generator.standard_normalnumpy.random._generator.Generator.multivariate_hypergeometricobject of type 'NoneType' has no len()multiple bases have vtable conflict: '%.200s' and '%.200s'View.MemoryView.Enum.__setstate_cython__View.MemoryView.memoryview.assign_item_from_objectView.MemoryView.memoryview.ndim.__get__View.MemoryView.memoryview.size.__get__integer%.200s does not export expected C function %.200sloader__package__at most%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random._generator.Generator.__reduce__Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)can't convert negative value to size_tView.MemoryView.array.__getattr__PyObject_GetBuffer: view==NULL argument is obsoleteView.MemoryView.memoryview.__reduce_cython__boolfloatingLEGACY_POISSON_LAM_MAXdiscPyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)numpy.random._generator.Generator.__repr__triangularnumpy.random._generator.Generator.__setstate__an integer is requiredexception causes must derive from BaseExceptionnumpy.random._generator.Generator.standard_exponentialassignmentBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'numpy.random._generator.Generator.standard_t'NoneType' object is not subscriptableView.MemoryView.Enum.__init__View.MemoryView.array_cwrapperView.MemoryView.memoryview.base.__get__POISSON_LAM_MAX_rand_uint8_rand_int64_ARRAY_API is NULL pointerrayleighwaldcannot fit '%.200s' into an index-sized integerExpected a dimension of size %zu, got %dBuffer and memoryview are not contiguous in the same dimension.numpy.random._generator.Generator.paretonumpy.random._generator.Generator.shuffleView.MemoryView.array.__reduce_cython__View.MemoryView.memoryview.__getbuffer__View.MemoryView.memoryview.nbytes.__get__%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectgumbelmultivariate_normalsPython objectSeedlessSequencePyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)_ARRAY_APIFATAL: module compiled as unknown endianlogseries'complex double'a structnumpy.random._generator.Generator.laplaceinteger division or modulo by zeroView.MemoryView.memview_sliceView.MemoryView._memoryviewslice.assign_item_from_objectnumpy.random._bounded_integers__file__parentsubmodule_search_locations__pyx_fatalerrornumpy.PyArray_MultiIterNew3numpy.random._generator.Generator.multivariate_normallArgument '%.200s' has incorrect type (expected %.200s, got %.200s)View.MemoryView._allocate_buffernumpy.random._generator.memoryviewView.MemoryView.memoryview_fromslicesuboffsetsnbytes_rand_int8check_array_constraintPyObject *(PyObject *, PyArrayObject *)NULL result without error in PyObject_Callstandard_exponentialnoncentral_fstandard_cauchynumpy.random._generator.Generator.exponentialnumpy.random._generator.Generator.integers'long long'numpy.random._generator.Generator.powerView.MemoryView.array.get_memviewExpected %s, got %.200sView.MemoryView.Enum.__reduce_cython__View.MemoryView.memoryview.convert_item_to_objectis_c_contigcheck_constraintdouble (double *, npy_intp)__loader____repr__gamma'bool''short'View.MemoryView.slice_memviewslicedouble_fillView.MemoryView.__pyx_unpickle_Enumnumpy.random._generator.Generator.__getstate__'unsigned short''unsigned int''unsigned long long'Unexpected format string character: '%c'numpy.random._generator.Generator.gammanumpy.random._generator.Generator.logisticnumpy.random._generator.Generator.waldView.MemoryView._err_extentsView.MemoryView.memoryview.setitem_indexedView.MemoryView.memoryview.copy_fortranView.MemoryView.memoryview.strides.__get__flatiterPyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)'float'a pointerView.MemoryView.transpose_memsliceView.MemoryView.memoryview.__setitem__float_fillstandard_gammapowerlognormalintUnexpected end of format string, expected ')'numpy.random._generator.Generator.permutedView.MemoryView.array.memview.__get__expected bytes, NoneType foundhasattr(): attribute name must be stringis_f_contignumpy.random._generator._memoryviewslicenumberC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)_rand_uint64%s (%s:%d)numpy.random._generator._check_bit_generatorcython_runtimenegative_binomialhypergeometricnumpy.random._generator.Generator.beta'int'Buffer not compatible with direct access in dimension %d.numpy.random._generator.Generator.uniform__init__numpy.random._generator.Enum%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject_rand_uint16PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)numpy/random/_generator.cpython-312.so.p/numpy/random/_generator.pyx.ccannot import name %S__path__betabinomialnumpy.random._generator.Generator.spawnBuffer exposes suboffsets but no stridesnumpy.random._generator.Generator.geometricinvalid vtable found for imported typeView.MemoryView.memoryview_copy_contentscharacterufuncmodule compiled against ABI version 0x%x but this version of numpy is 0x%xfvonmisesView.MemoryView.memoryview_cwrapper'complex float'numpy.random._generator.Generator.binomialBitGeneratorUnable to initialize pickling for %.200sView.MemoryView._err_dimView.MemoryView.memoryview.setitem_slice_assign_scalarbyte string is too long'NoneType' is not iterableView.MemoryView._memoryviewslice.convert_item_to_object_rand_uint32originnumpy/__init__.cython-30.pxdcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%ddeletionView.MemoryView.memoryview_copy_from_sliceModule '_generator' has already been imported. Re-initialisation is not supported.chisquaredirichletExpected %d dimension(s), got %dnumpy.random._generator.Generator.fnumpy.random._generator.Generator.rayleighnumpy.random._generator.Generator.triangularView.MemoryView.memoryview.__cinit__int (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)exponentialinstance exception may not have a separate valueBuffer acquisition: Expected '{' after 'T'Does not understand character buffer dtype format string ('%c')uint64_tView.MemoryView.get_slice_from_memviewView.MemoryView.memoryview.__setstate_cython__View.MemoryView.memoryview.T.__get___ARRAY_API is not PyCapsule objectnumpy.random._generator.default_rngnumpy.random._generator.Generatorcalling %R should have returned an instance of BaseException, not %R'%.200s' object does not support slice %.10s'complex long double'unparsable format stringnumpy.random._generator.Generator.permutationView.MemoryView.array.__setstate_cython__View.MemoryView._memoryviewslice.__setstate_cython__%.200s.%.200s is not a type objectkahan_sumat leastnumpy.random._generator.Generator.bytesa stringExpected a comma in format string, got '%c'numpy.random._generator.Generator.standard_gammanumpy.random._generator.Generator.weibullnumpy.random._generator.Generator.multinomialView.MemoryView.memoryview.get_item_pointerView.MemoryView.memoryview.setitem_slice_assignmentView.MemoryView.assert_direct_dimensionsunsignedintegerMAXSIZEcontnumpy.import_arraybuiltinsnormalstandard_tmultivariate_hypergeometricBuffer not C contiguous.extension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typeSubscript deletion not supported by %.200stypePyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)_generatoruniformnoncentral_chisquare'%.200s' object is unsliceableendnumpy.random._generator.Generator.zipf_bit_generatornumpy.random._generator.arrayView.MemoryView.memoryview.is_f_contigbroadcast%.200s does not export expected C variable %.200sFATAL: module compiled as little endian, but detected different endianness at runtimeinit numpy.random._generatorchoicegeometricBig-endian buffer not supported on little-endian compiler'unsigned char'Buffer dtype mismatch; next field is at offset %zd but %zd expectedAcquisition count is %d (line %d)base class '%.200s' is not a heap typenumpy.random.bit_generatornumpy.random._commoncont_broadcast_3discrete_broadcast_iiiInterpreter change detected - this module can only be loaded into one interpreter per process.__builtins__ while calling a Python objectweibullmultinomial%s() got an unexpected keyword argument '%U'raise: exception class must be a subclass of BaseException'signed char'numpy.random._generator.Generator.normalnumpy.random._generator.Generator.standard_cauchynumpy.random._generator.Generator.vonmisesnumpy.PyArray_MultiIterNew2View.MemoryView.array.__getbuffer__View.MemoryView.copy_data_to_tempCannot copy memoryview slice with indirect dimensions (axis %d)'%.200s' object is not subscriptableCannot convert %.200s to %.200sExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..numpy.random._generator.Generator.chisquarenumpy.random._generator.Generator.lognormalnumpy.random._generator.Generator.negative_binomialnumpy.random._generator.Generator.hypergeometricnumpy.random._generator.Generator.dirichletView.MemoryView.array.__cinit__View.MemoryView._err_no_memoryView.MemoryView._err__debug__buffer dtype'char'uView.MemoryView.array.__getitem____cinit__View.MemoryView.memoryview.__repr__complexsignedintegerinexactbytesparetologisticzipfnumpy.random._generator.Generator.randomBuffer has wrong number of dimensions (expected %d, got %d)Cannot handle repeated arrays in format stringlocal variable '%s' referenced before assignmentjoin() result is too long for a Python stringnumpy.random._generator.Generator.__init__View.MemoryView.array.__setitem__View.MemoryView.memoryview.is_sliceView.MemoryView.memoryview.__getitem__View.MemoryView.memoryview.__str__Internal class for passing memoryview slices to Pythongeneric__pyx_capi__int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)cont_fnamenumpy.random._generatorView.MemoryViewnumpy/random/_generator.pyx<stringsource>: [:-1]) > 1.0[...,:-1]AASCIIAll dimensions preceding dimension %d must be indexed and not slicedAssertionErrorAxis argument is only supported on ndarray objectsBuffer view does not expose stridesCan only create a buffer that is contiguous in memory.Cannot assign to read-only memoryviewCannot create writable memory view from read-only memoryviewCannot index with type 'Cannot take a larger sample than population when replace is FalseCannot transpose memoryview with indirect dimensionsConstruct a new Generator with the default BitGenerator (PCG64).

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then it will be passed to
        `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a `SeedSequence` instance.
        Additionally, when passed a `BitGenerator`, it will be wrapped by
        `Generator`. If passed a `Generator`, it will be returned unaltered.

    Returns
    -------
    Generator
        The initialized generator object.

    Notes
    -----
    If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator`
    is instantiated. This function does not manage a default global instance.

    See :ref:`seeding_and_entropy` for more information about seeding.
    
    Examples
    --------
    ``default_rng`` is the recommended constructor for the random number class
    ``Generator``. Here are several ways we can construct a random 
    number generator using ``default_rng`` and the ``Generator`` class. 
    
    Here we use ``default_rng`` to generate a random float:
 
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> print(rng)
    Generator(PCG64)
    >>> rfloat = rng.random()
    >>> rfloat
    0.22733602246716966
    >>> type(rfloat)
    <class 'float'>
     
    Here we use ``default_rng`` to generate 3 random integers between 0 
    (inclusive) and 10 (exclusive):
        
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> rints = rng.integers(low=0, high=10, size=3)
    >>> rints
    array([6, 2, 7])
    >>> type(rints[0])
    <class 'numpy.int64'>
    
    Here we specify a seed so that we have reproducible results:
    
    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> print(rng)
    Generator(PCG64)
    >>> arr1 = rng.random((3, 3))
    >>> arr1
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    If we exit and restart our Python interpreter, we'll see that we
    generate the same random numbers again:

    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> arr2 = rng.random((3, 3))
    >>> arr2
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    Dimension %d is not directEllipsisEmpty shape tuple for cython.arrayFewer non-zero entries in p than sizeGeneratorGenerator.binomial (line 2894)Generator.bytes (line 653)Generator.chisquare (line 1561)Generator.choice (line 681)Generator.dirichlet (line 4300)Generator.exponential (line 405)Generator.f (line 1395)Generator.gamma (line 1317)Generator.geometric (line 3323)Generator.gumbel (line 2346)Generator.hypergeometric (line 3374)Generator.integers (line 526)Generator.laplace (line 2261)Generator.logistic (line 2465)Generator.lognormal (line 2545)Generator.logseries (line 3517)Generator.multinomial (line 3838)Generator.multivariate_hypergeometric (line 4084)Generator.multivariate_normal (line 3598)Generator.negative_binomial (line 3038)Generator.noncentral_chisquare (line 1629)Generator.noncentral_f (line 1483)Generator.normal (line 1123)Generator.pareto (line 1963)Generator.permutation (line 4797)Generator.permuted (line 4505)Generator.poisson (line 3162)Generator.power (line 2160)Generator.random (line 299)Generator.rayleigh (line 2657)Generator.shuffle (line 4665)Generator.spawn (line 241)Generator.standard_cauchy (line 1709)Generator.standard_exponential (line 473)Generator.standard_gamma (line 1226)Generator.standard_normal (line 1051)Generator.standard_t (line 1774)Generator.triangular (line 2794)Generator.uniform (line 945)Generator.vonmises (line 1880)Generator.wald (line 2726)Generator.weibull (line 2061)Generator.zipf (line 3235)ImportErrorIncompatible checksums (0x%x vs (0x82a3537, 0x6ae9995, 0xb068931) = (name))IndexErrorIndex out of bounds (axis %d)Indirect dimensions not supportedInsufficient memory for multivariate_hypergeometric with method='count' and sum(colors)=%dInvalid bit generator. The bit generator must be instantiated.Invalid mode, expected 'c' or 'fortran', got Invalid shape in axis KMemoryError<MemoryView of %r at 0x%x><MemoryView of %r object>NoneNotImplementedErrorOOut of bounds on buffer access (axis Output size OverflowErrorPCG64PickleErrorProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.Range exceeds valid boundsRuntimeWarningSequenceStep may not be zero (axis %d)TypeErrorUnable to convert item to objectUnsupported dtype %r for integersUnsupported dtype %r for randomUnsupported dtype %r for standard_exponentialUnsupported dtype %r for standard_normalUnsupported dtype %r for standard_gammaUserWarningValueErrorWhen method is 'count', sum(colors) must not exceed %dWhen method is "marginals", sum(colors) must be less than 1000000000.(.*)?aa and p must have same sizea cannot be empty unless no samples are takena must be a positive integer unless no samples are takena must be a sequence or an integer, not abcaddallallcloseallocate_bufferalphaalpha < 0 and anyarangearrayarray is read-onlyasarrayascontiguousarrayastype.astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid. at 0x{:X}atolaxisb
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = rng.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 39%.

        bool_both ngood and nbad must be less than %d
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        Examples
        --------
        >>> np.random.default_rng().bytes(10)
        b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random

        capsulecastingcheck_validcheck_valid must equal 'warn', 'raise', or 'ignore'
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.default_rng().chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a uniform random sample from a 2-D array along the first
        axis (the default), without replacement:

        >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False)
        array([[3, 4, 5], # random
               [0, 1, 2]])

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        cholesky__class____class_getitem__cline_in_tracebackcollectionscollections.abccolorscolors must be a one-dimensional sequence of nonnegative integers not exceeding %d.<contiguous and direct><contiguous and indirect>copytocountcount_nonzerocovcov must be 2 dimensional and squarecovariance is not symmetric positive-semidefinite.cumsumdefault_rng (line 4869)dfdfdendfnum__dict__
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        disabledotdtype_is_objecteighemptyempty_likeenableencodeendpoint__enter__enumerateepsequalerror__exit__
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.default_rng().f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        finfoflagsfloat32float64full
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.default_rng().gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gc__generator_ctor
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.default_rng().geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 # random

         (got got differing extents in dimension greater
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        hasobjecthighhigh - lowhigh - low range exceeds valid bounds
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        idignore__imatmul____import__index_initializingint16int32int64int8
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               http://arxiv.org/abs/1805.10941.

        intp is not compatible with broadcast dimensions of inputs isenabledisfiniteisnanisnativeisscalarissubdtypeitemitemsize <= 0 for cython.arraykappalam
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.default_rng().laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        leftleft > modeleft == rightlengthlessloclocklogical_or
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.default_rng().logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.default_rng().logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a) * count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        low__main__marginals__matmul__maxmay_share_memorymeanmean and cov must have same lengthmean and cov must not be complexmean must be 1 dimensionalmemory allocation failed in permutedmethodmethod must be "count" or "marginals".method must be one of {'eigh', 'svd', 'cholesky'}modemode > rightmu
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : array-like of floats
            Probabilities of each of the ``p`` different outcomes with shape
            ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must
            sum to 1 (however, the last element is always assumed to account
            for the remaining probability, as long as
            ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1
            dimension where pvals.shape[-1] > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn each with ``p`` elements. Default
            is None where the output size is determined by the broadcast shape
            of ``n`` and all by the final dimension of ``pvals``, which is
            denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it
            must be compatible with the broadcast shape ``b``. Specifically,
            size must have ``q`` or more elements and size[-(q-j):] must equal
            ``bj``.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape size, if provided. When size is
            provided, the output shape is size + (p,)  If not specified,
            the shape is determined by the broadcast shape of ``n`` and
            ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of
            the multinomial, ``p``, so that that output shape is
            ``(b0, b1, ..., bq, p)``.

            Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn
            from the distribution.

            .. versionchanged:: 1.22.0
                Added support for broadcasting `pvals` against `n`

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die

        >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6])
        array([[2, 1, 4, 3, 0, 0],
               [3, 3, 3, 6, 1, 4]], dtype=int64)  # random

        Generate categorical random variates from two categories where the
        first has 3 outcomes and the second has 2.

        >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]])
        array([[0, 0, 1],
               [0, 1, 0]], dtype=int64)  # random

        ``argmax(axis=-1)`` is then used to return the categories.

        >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]]
        >>> rvs = rng.multinomial(1, pvals, size=(4,2))
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The same output dimension can be produced using broadcasting.

        >>> rvs = rng.multinomial([[1]] * 4, pvals)
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs
        
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        .. versionadded:: 1.18.0

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])
        
        multivariate_normal(mean, cov, size=None, check_valid='warn',
                            tol=1e-8, *, method='svd')

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (the squared standard deviation,
        or "width") of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

            .. versionadded:: 1.18.0

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        This function internally uses linear algebra routines, and thus results
        may not be identical (even up to precision) across architectures, OSes,
        or even builds. For example, this is likely if ``cov`` has multiple equal
        singular values and ``method`` is ``'svd'`` (default). In this case,
        ``method='cholesky'`` may be more robust.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:

        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = rng.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        nn_childrenn too large or p too small, see Generator.negative_binomial Notes__name__nbad
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        Because this method internally calls ``Generator.poisson`` with an
        intermediate random value, a ValueError is raised when the choice of 
        :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled
        intermediate distribution exceeding the max acceptable value of the 
        ``Generator.poisson`` method. This happens when :math:`p` is too low 
        (a lot of failures happen for every success) and :math:`n` is too big (
        a lot of successes are allowed).
        Therefore, the :math:`n` and :math:`p` values must satisfy the constraint:

        .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1},

        Where the left side of the equation is the derived mean + 10 sigma of
        a sample from the gamma distribution internally used as the :math:`lam`
        parameter of a poisson sample, and the right side of the equation is
        the constraint for maximum value of :math:`lam` in ``Generator.poisson``.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        negative dimensions are not allowed__new__ngoodngood + nbad < nsampleno default __reduce__ due to non-trivial __cinit__nonc
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.default_rng().normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.0  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        normalize_axis_indexnpnsamplensample must be an integernsample must be nonnegative.nsample must not exceed %dnsample > sum(colors)numpy.core.multiarraynumpy.core.multiarray failed to importnumpy.core.umath failed to importnumpy.linalgobj' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.operatororderout must be a numpy arrayout must have the same shape as xpp must be 1-dimensionalpack
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.


        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        _pcg64
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        
        permuted(x, axis=None, out=None)

        Randomly permute `x` along axis `axis`.

        Unlike `shuffle`, each slice along the given axis is shuffled
        independently of the others.

        Parameters
        ----------
        x : array_like, at least one-dimensional
            Array to be shuffled.
        axis : int, optional
            Slices of `x` in this axis are shuffled. Each slice
            is shuffled independently of the others.  If `axis` is
            None, the flattened array is shuffled.
        out : ndarray, optional
            If given, this is the destination of the shuffled array.
            If `out` is None, a shuffled copy of the array is returned.

        Returns
        -------
        ndarray
            If `out` is None, a shuffled copy of `x` is returned.
            Otherwise, the shuffled array is stored in `out`,
            and `out` is returned

        See Also
        --------
        shuffle
        permutation
        
        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        Create a `numpy.random.Generator` instance:

        >>> rng = np.random.default_rng()

        Create a test array:

        >>> x = np.arange(24).reshape(3, 8)
        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        Shuffle the rows of `x`:

        >>> y = rng.permuted(x, axis=1)
        >>> y
        array([[ 4,  3,  6,  7,  1,  2,  5,  0],  # random
               [15, 10, 14,  9, 12, 11,  8, 13],
               [17, 16, 20, 21, 18, 22, 23, 19]])

        `x` has not been modified:

        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        To shuffle the rows of `x` in-place, pass `x` as the `out`
        parameter:

        >>> y = rng.permuted(x, axis=1, out=x)
        >>> x
        array([[ 3,  0,  4,  7,  1,  6,  2,  5],  # random
               [ 8, 14, 13,  9, 12, 11, 15, 10],
               [17, 18, 16, 22, 19, 23, 20, 21]])

        Note that when the ``out`` parameter is given, the return
        value is ``out``:

        >>> y is x
        True
        pickle_pickle
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> rng = np.random.default_rng()
        >>> s = rng.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        _poisson_lam_max
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        probabilities are not non-negativeprobabilities contain NaNprobabilities do not sum to 1prodpvalspvals must have at least 1 dimension and the last dimension of pvals must be greater than 0.__pyx_PickleError__pyx_checksum__pyx_result__pyx_state__pyx_type__pyx_vtable__raise
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` use `uniform`
        or multiply the output of `random` by ``(b - a)`` and add ``a``::

            (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        uniform : Draw samples from the parameterized uniform distribution.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        rangeravel
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        reduce__reduce_ex__registerreplacereshapereturn_indexreversedright__rmatmul__rtolsafescalesearchsortedseed
        shuffle(x, axis=0)

        Modify an array or sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        See Also
        --------
        permuted
        permutation

        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> arr
        array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        >>> rng.shuffle(arr)
        >>> arr
        array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])
        sidesigmasort
        spawn(n_children)

        Create new independent child generators.

        See :ref:`seedsequence-spawn` for additional notes on spawning
        children.

        .. versionadded:: 1.25.0

        Parameters
        ----------
        n_children : int

        Returns
        -------
        child_generators : list of Generators

        Raises
        ------
        TypeError
            When the underlying SeedSequence does not implement spawning.

        See Also
        --------
        random.BitGenerator.spawn, random.SeedSequence.spawn :
            Equivalent method on the bit generator and seed sequence.
        bit_generator :
            The bit generator instance used by the generator.

        Examples
        --------
        Starting from a seeded default generator:

        >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}"
        >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501
        >>> rng = np.random.default_rng(entropy)

        Create two new generators for example for parallel execution:

        >>> child_rng1, child_rng2 = rng.spawn(2)

        Drawn numbers from each are independent but derived from the initial
        seeding entropy:

        >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform()
        (0.19029263503854454, 0.9475673279178444, 0.4702687338396767)

        It is safe to spawn additional children from the original ``rng`` or
        the children:

        >>> more_child_rngs = rng.spawn(20)
        >>> nested_spawn = child_rng1.spawn(20)

        __spec__sqrtstacklevel
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.default_rng().standard_exponential((3, 8000))

        
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.default_rng().standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * rng.standard_normal(size=...)
            rng.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 # random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        startstatestepstop__str__<strided and direct><strided and direct or indirect><strided and indirect>structsubtractsumsum(colors) must not exceed the maximum value of a 64 bit signed integer (%d)sum(pvalssvdswapaxessystake__test__tobytestol
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        <u4uint16uint32uint64uint8unable to allocate array data.unable to allocate shape and strides.
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The high limit may be included in the returned array of 
            floats due to floating-point rounding in the equation 
            ``low + (high-low) * random_sample()``.  high - low must be 
            non-negative.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.

        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.default_rng().uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        uniqueunpackupdateversion_info
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        warnwarnings
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        writeablexyou are shuffling a 'zeroszig
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.default_rng().zipf(a, size=n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        __getstate____setstate____reduce__spawn
        spawn(n_children)

        Create new independent child generators.

        See :ref:`seedsequence-spawn` for additional notes on spawning
        children.

        .. versionadded:: 1.25.0

        Parameters
        ----------
        n_children : int

        Returns
        -------
        child_generators : list of Generators

        Raises
        ------
        TypeError
            When the underlying SeedSequence does not implement spawning.

        See Also
        --------
        random.BitGenerator.spawn, random.SeedSequence.spawn :
            Equivalent method on the bit generator and seed sequence.
        bit_generator :
            The bit generator instance used by the generator.

        Examples
        --------
        Starting from a seeded default generator:

        >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}"
        >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501
        >>> rng = np.random.default_rng(entropy)

        Create two new generators for example for parallel execution:

        >>> child_rng1, child_rng2 = rng.spawn(2)

        Drawn numbers from each are independent but derived from the initial
        seeding entropy:

        >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform()
        (0.19029263503854454, 0.9475673279178444, 0.4702687338396767)

        It is safe to spawn additional children from the original ``rng`` or
        the children:

        >>> more_child_rngs = rng.spawn(20)
        >>> nested_spawn = child_rng1.spawn(20)

        random
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` use `uniform`
        or multiply the output of `random` by ``(b - a)`` and add ``a``::

            (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        uniform : Draw samples from the parameterized uniform distribution.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.default_rng().standard_exponential((3, 8000))

        integers
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               http://arxiv.org/abs/1805.10941.

        
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        Examples
        --------
        >>> np.random.default_rng().bytes(10)
        b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp' # random

        
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a uniform random sample from a 2-D array along the first
        axis (the default), without replacement:

        >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False)
        array([[3, 4, 5], # random
               [0, 1, 2]])

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The high limit may be included in the returned array of 
            floats due to floating-point rounding in the equation 
            ``low + (high-low) * random_sample()``.  high - low must be 
            non-negative.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.

        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.default_rng().uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        standard_normal
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * rng.standard_normal(size=...)
            rng.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 # random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.default_rng().normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.0  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.default_rng().normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.default_rng().standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.default_rng().gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.default_rng().f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.default_rng().chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.default_rng().standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.default_rng().vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.


        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.default_rng().pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(rng.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.default_rng().laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.default_rng().logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.default_rng().triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = rng.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(rng.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 39%.

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        Because this method internally calls ``Generator.poisson`` with an
        intermediate random value, a ValueError is raised when the choice of 
        :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled
        intermediate distribution exceeding the max acceptable value of the 
        ``Generator.poisson`` method. This happens when :math:`p` is too low 
        (a lot of failures happen for every success) and :math:`n` is too big (
        a lot of successes are allowed).
        Therefore, the :math:`n` and :math:`p` values must satisfy the constraint:

        .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1},

        Where the left side of the equation is the derived mean + 10 sigma of
        a sample from the gamma distribution internally used as the :math:`lam`
        parameter of a poisson sample, and the right side of the equation is
        the constraint for maximum value of :math:`lam` in ``Generator.poisson``.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.default_rng().negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> rng = np.random.default_rng()
        >>> s = rng.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.default_rng().zipf(a, size=n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.default_rng().geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 # random

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.default_rng().logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a) * count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        multivariate_normal(mean, cov, size=None, check_valid='warn',
                            tol=1e-8, *, method='svd')

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (the squared standard deviation,
        or "width") of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

            .. versionadded:: 1.18.0

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.default_rng().multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        This function internally uses linear algebra routines, and thus results
        may not be identical (even up to precision) across architectures, OSes,
        or even builds. For example, this is likely if ``cov`` has multiple equal
        singular values and ``method`` is ``'svd'`` (default). In this case,
        ``method='cholesky'`` may be more robust.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:

        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = rng.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : array-like of floats
            Probabilities of each of the ``p`` different outcomes with shape
            ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must
            sum to 1 (however, the last element is always assumed to account
            for the remaining probability, as long as
            ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1
            dimension where pvals.shape[-1] > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn each with ``p`` elements. Default
            is None where the output size is determined by the broadcast shape
            of ``n`` and all by the final dimension of ``pvals``, which is
            denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it
            must be compatible with the broadcast shape ``b``. Specifically,
            size must have ``q`` or more elements and size[-(q-j):] must equal
            ``bj``.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape size, if provided. When size is
            provided, the output shape is size + (p,)  If not specified,
            the shape is determined by the broadcast shape of ``n`` and
            ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of
            the multinomial, ``p``, so that that output shape is
            ``(b0, b1, ..., bq, p)``.

            Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn
            from the distribution.

            .. versionchanged:: 1.22.0
                Added support for broadcasting `pvals` against `n`

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die

        >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6])
        array([[2, 1, 4, 3, 0, 0],
               [3, 3, 3, 6, 1, 4]], dtype=int64)  # random

        Generate categorical random variates from two categories where the
        first has 3 outcomes and the second has 2.

        >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]])
        array([[0, 0, 1],
               [0, 1, 0]], dtype=int64)  # random

        ``argmax(axis=-1)`` is then used to return the categories.

        >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]]
        >>> rvs = rng.multinomial(1, pvals, size=(4,2))
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The same output dimension can be produced using broadcasting.

        >>> rvs = rng.multinomial([[1]] * 4, pvals)
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs
        
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        .. versionadded:: 1.18.0

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])
        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.default_rng().dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        
        permuted(x, axis=None, out=None)

        Randomly permute `x` along axis `axis`.

        Unlike `shuffle`, each slice along the given axis is shuffled
        independently of the others.

        Parameters
        ----------
        x : array_like, at least one-dimensional
            Array to be shuffled.
        axis : int, optional
            Slices of `x` in this axis are shuffled. Each slice
            is shuffled independently of the others.  If `axis` is
            None, the flattened array is shuffled.
        out : ndarray, optional
            If given, this is the destination of the shuffled array.
            If `out` is None, a shuffled copy of the array is returned.

        Returns
        -------
        ndarray
            If `out` is None, a shuffled copy of `x` is returned.
            Otherwise, the shuffled array is stored in `out`,
            and `out` is returned

        See Also
        --------
        shuffle
        permutation
        
        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        Create a `numpy.random.Generator` instance:

        >>> rng = np.random.default_rng()

        Create a test array:

        >>> x = np.arange(24).reshape(3, 8)
        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        Shuffle the rows of `x`:

        >>> y = rng.permuted(x, axis=1)
        >>> y
        array([[ 4,  3,  6,  7,  1,  2,  5,  0],  # random
               [15, 10, 14,  9, 12, 11,  8, 13],
               [17, 16, 20, 21, 18, 22, 23, 19]])

        `x` has not been modified:

        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        To shuffle the rows of `x` in-place, pass `x` as the `out`
        parameter:

        >>> y = rng.permuted(x, axis=1, out=x)
        >>> x
        array([[ 3,  0,  4,  7,  1,  6,  2,  5],  # random
               [ 8, 14, 13,  9, 12, 11, 15, 10],
               [17, 18, 16, 22, 19, 23, 20, 21]])

        Note that when the ``out`` parameter is given, the return
        value is ``out``:

        >>> y is x
        True
        shuffle
        shuffle(x, axis=0)

        Modify an array or sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        See Also
        --------
        permuted
        permutation

        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> arr
        array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        >>> rng.shuffle(arr)
        >>> arr
        array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])
        
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        'outbit_generator__reduce_cython____setstate_cython__memviewshapeformatcopycfortranTbasestridesndimitemsizesizenumpydtypedouble__pyx_unpickle_Enumdefault_rngdefault_rng(seed=None)
Construct a new Generator with the default BitGenerator (PCG64).

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then it will be passed to
        `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a `SeedSequence` instance.
        Additionally, when passed a `BitGenerator`, it will be wrapped by
        `Generator`. If passed a `Generator`, it will be returned unaltered.

    Returns
    -------
    Generator
        The initialized generator object.

    Notes
    -----
    If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator`
    is instantiated. This function does not manage a default global instance.

    See :ref:`seeding_and_entropy` for more information about seeding.
    
    Examples
    --------
    ``default_rng`` is the recommended constructor for the random number class
    ``Generator``. Here are several ways we can construct a random 
    number generator using ``default_rng`` and the ``Generator`` class. 
    
    Here we use ``default_rng`` to generate a random float:
 
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> print(rng)
    Generator(PCG64)
    >>> rfloat = rng.random()
    >>> rfloat
    0.22733602246716966
    >>> type(rfloat)
    <class 'float'>
     
    Here we use ``default_rng`` to generate 3 random integers between 0 
    (inclusive) and 10 (exclusive):
        
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> rints = rng.integers(low=0, high=10, size=3)
    >>> rints
    array([6, 2, 7])
    >>> type(rints[0])
    <class 'numpy.int64'>
    
    Here we specify a seed so that we have reproducible results:
    
    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> print(rng)
    Generator(PCG64)
    >>> arr1 = rng.random((3, 3))
    >>> arr1
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    If we exit and restart our Python interpreter, we'll see that we
    generate the same random numbers again:

    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> arr2 = rng.random((3, 3))
    >>> arr2
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    Á]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛe'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msyÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒx€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9ï9úþB.æ? *ú«ü?ù,’|§l	@ÉyD<d&@ÊÏ:'Q@0Ì-óá!@
·ü‚Ž5%@Ï÷§!‰š)@M•u5.@t:?—€1@CÕºü3@Î2;œZ6@B*ßó09@FÓ?¦6æ;@„ÿ«>@:5/?¦À@@RîÕò2B@…96S«C@¾wízõ*E@©r4d¨°F@O¨«O<H@Ej…‹§ÍI@NrdK@çeÍ"vM@”g|q¡N@ïO~¶®#P@@3ñøP@1r‘SsÐQ@åÐY‹ ªR@@Zžýæ…S@„ ”›µcT@JÎ:c|CU@º–HG,%V@Xá·W@Xg²yîW@–=$Á(ÕX@£WR÷ö½Y@˜–Ân¨Z@¢+p\…”[@¡œ†0‚\@î>fq]@Oºîb^@ñœ¦+NT_@ŸݭC÷#`@©¤~{ž`@kbbç¯a@Y¥SȐ•a@Ãn“b@1ëÝIb@5cèa
c@Û“ø‹‹c@ͦ3š˜
d@¯\>Šd@‡ànz
e@sÚ9J‹e@FGGʪf@yyuð™Žf@IJC g@YÜ&ÿ”g@¹oF¦h@¡® ·›h@aÇçQL i@½¤áãa¥i@	F~xö*j@&—P±j@¯×Ùö”7k@!¶ß+›¾k@÷VÌøFl@‘¥Îl@¶·¸„tVm@pZ ÷Nßm@ïk9išhn@HQñOUòn@ƒaÆ,~|o@b4nʼnp@+e‹ÿ	Ip@còÛ¿Žp@)±V¨Ôp@*“øÅq@6GãÇaq@¬á�§q@>m#FJîq@ÕFKæ.5r@b)ÇÿC|r@WÐr‰Ãr@V…]ý
s@r‰ Rs@GIÑýqšs@÷
>6qâs@j£B±*t@A=ðört@fIw|»t@d¯'Í-u@X¦+{
Mu@ìÄ#
–u@ZGDßu@í;# (v@b”‡´%rv@¶iv{Իv@ŸØ¬w@¾÷ç«Ow@\&Áәw@}6û-#äw@h͙.x@þÄk?7yx@–'ûÃx@_Ã*åy@³ÈÑìôYy@Ì1¸*¥y@^TT„ðy@,{»L<z@:I$®¦‡z@À|*&nÓz@µ
dY{@룴hk{@
aö™·{@Íúf¯î|@&"™ùeP|@
4ŠŠÿœ|@ê0h»é|@¸÷“^˜6}@™—ƒ}@¤Þ)ó¶Ð}@L§¹÷~@Ÿåàhꤕÿ/áýÿÿêPãÿ/ÿ/á áŸå Ÿåà à`êàÿÿÿt•0Ÿå0à_ê`•ÔÔÔÔHxDDð&¼JÚðµ¯-éFDðÀì€hDðÄì‚JzDÒécê5Ðp@Y@CÐ}H~IxDyDhhDð¸ì ½èð½Oðÿ3ÂéX@Y@Cðà€uHxD@hP±hoð@B‘Bð£€1`½èð½nI FyDDð ì(ð™€FDð¢ì)hoð@B‘BÐ9)`ÑF(FDðžì0F(ퟘ�FDðžì(ð­€_IF FyDDð~ì(yÐ\IF(F2FyDDð”ì1hoð@B‘BÐ91`сF0FDðxìHF(ñŽ€RI FyDDð`ì(eÐPIF(F2FyDDðvì1hoð@B‘BÐ91`сF0FDðZìHF(pÔGI FyDDðBì(RÐDIF(F2FyDDðZì1hoð@B‘BÐ91`сF0FDð>ìHF(SÔ;I FyDDð&ì(?ÐF8HxDh„BÐ7I(F"FyDDð8ìÅà%!hoð@B@F‘BÐ9!`Ñ FDðì@F…»½èð½ +à HxDhhDð$ì³Dð(ì’çHxDhhDðìȱDðì¥çHxDhhDðìx±Dðì¸çHxDhhDðì(±Dð
ì@F½èð½@FðÏù ½èð½¿zÚä•ß}ûÿœí¸„ûÿ×[ûÿzgûÿ\”aqûÿðcûÿH”ÑcûÿV[ûÿ4”žcûÿ¢”*nûÿ ”¿¿ðµ¯-éðÇL"Íé"|DÍé
"Íé"ah±BðiÁHÁIxDyDhhDð†ëOðÿ0C°½èð½``oð@Bh‘B¿1`Dð–ë·N(¡F~D0`ðù„hoð@B‘B¿1`±HxDDð¤ë(ðAhoð@B‘B¿1`«Ip`yDFDð”ë(ð:hoð@B‘B¿1`¤IchrhyD°`FDðŠë(ñƒŸHOöÿqxDhh ê±ñCЛI$›JÀóEyDšKzDÍéA¬{DÍé0 FÈ!#•Dðnë !F"%OðDðnë(ññ‚ %Dðpë(ð`𞄊H!xDDðnë(0a𜄆H!xDDðnë(paðš„ð鸟íƒQìDðjë(Æøðp„ŸíQìDð^ë(Æø”ðe„·îQìDðTë(Æø˜ðZ„ŸívQìDðHë(ÆøœðO„ŸísQìDð>ë(Æø ðD„ Dð>ë(Æø¤ð<„ OðDð4ë(Æø¨ð-„ Dð,ë(Æø¬ð%„
 Dð$ë(Æø°ð„ Dðë(Æø´ð„2 Dðë(Æø¸ð
„Iö•Àò®`Dðë(Æø¼ð„Cò7PÀö*Dðþê(ÆøÀð÷ƒHö1Àö0Dðòê(ÆøÄðìƒFH!"xDDððê(ÆøÈðáƒOðÿ0DðÞê(ÆøÌð؃Dðèê(|ÐF:H	!xDDðÀê(tÐF F)FDðàêF(hoð@AˆBÐ8(`¿(FDðTê,aÐ FDðØê!hoð@B‘BÐ9!`ÑF FDðDê(FAOÐMFÉø(Sà C°½èð½!K%OðLò—*{Du`÷áK%µ`Oð{DLò˜*îá¿v늓gpûÿ0â3vûÿÑiûÿP{ûÿî’æûÿ)oûÿ@Mûÿ›ûÿ‰ûÿ¿¿š™™™™™¹?:Œ0âŽyE>q¬‹Ûhð?pEûÿ4}ûÿäûÿÔûÿMFÉø(€Dð|ê(@ðxƒ(hH±Öø¨$ÖøhhDðxê(ñœDðzê(ðmƒîIFyDDðzê@¹ìI FjhyDDðÜé(ñ'„phèIÖø$FBhyD
h!F’lªB@ðXƒ"#Dðhê(ðZƒqhJFÉø,ÖøPFHh‚lF!FªB@ðPƒ"#DðTê(ðaƒqhJFÉø0ÖøBHh‚lF!FªB@ðHƒ"#Dð@ê(ð\ƒqhJFÉø4ÖøDHh‚lF!FªB@ðCƒ"#Dð,ê(ðWƒqhJFÉø8ÖøðAHh‚lF!FªB@ð>ƒ"#Dðê(ðRƒqhJFÉø<ÖøÌAHh‚lF!FªB@ð9ƒ"#Dðê(ðcƒqhJFÉø@ÖøàAHh‚lF!FªB@ðJƒ"#Dððé(ð^ƒqhJFÉøDÖø¬AHh‚lF!FªB@ðEƒ"#DðÜé(ðYƒqhJFÉøHÖøœ@Hh‚lF!FªB@ð@ƒ"#DðÈé(ðBƒqhJFÉøLÖøBHh‚lF!FªB@ðKƒ"#Dð´é(ðMƒÖø¼LFÉøPFð¹ÿ(ÉøTð®€Öøð°ÿ( `ð¦€Öøð¨ÿ( eðž€ÖøÈð ÿ(àeð–€ÖøŒð˜ÿ( fðŽ€Öø„ðÿ(`fð†€ðÄþ(ñðÍùðú(ñ%ƒð<û(ñ&ƒð;ý(ñ'ƒð–ý(ñ(ƒDðhé‚Fl©ª«ðÿÖø¤" hOðð(ÿƒF(THxD
THxD	SHxDðƒÛøÖø\‚lXF*ðƒGF(ðƒÛøoð@AˆBÐ8Ëø¿XFDðxèÖø¨Oð F"Íø4°Dð.é(ðþ‚F hoð@AˆBÐ8 `¿ FDð^è
˜!‘h…B¿	™	hB@ð¤€(°ú€ð@	©à/K%OðLò™*{Dà,K{DLòÕ*%	à*KLòÊ*%{Dà(KLò¤*{D
˜(¿hoð@B‘BoÑ˜(¿hoð@B‘BWј(¿hoð@B‘BWÑHFÙø¨³1h…ð±úñI	CÑHQFBFxDðÒþÙøx³!oð@BÉøh‘B'Ð9`$ÑCðüï!à¿ûÿö~ûÿҏŠˆn|ûÿ|ûÿú{ûÿð{ûÿörûÿDðrè8¹èHèIxDyDhhCðÂïÙø )¿Oðÿ0C°½èð½9`¤ÑFCðÈï#FŸç9`¤ÑFCðÀï#FŸç9`ôŒ¯FCð¸ï#F†çÔKLò×*%{Dxç™	hB?ôW¯(FDð0è(ñ¼)hoð@B‘BÐ9)`ÑF(FCð˜ï FÙø (IFOÐÖø¬F"ðþ(ðƒF@hÖøT‚l F*ퟬ�GF(ðŒƒ hoð@AˆBÐ8 `¿ FCðpïhhÖøä‚l 
(F*🃐G(ð ƒ)hoð@D¡BÐ9)`рF(FCðVï@FÙø%ÉøJF•h BÐ8`¿FCðDï
•4àÖø°F"ðÄý(ð‘F@hÖøä‚l F*ퟸ�G(ð!hoð@E©BÐ9!`рF FCð ï@FÙø$ÉøJF
”h¨BÐ8`¿FCðï”˜MFðõü˜$”ððü˜”ðìü”Cð¶ïFl©ª«ðTýèhÖøBh’l*ퟤ�GF(ð’0oÖøÐø„Cð²ï(ñˆ˜oð@Bh‘BÐ9`¿CðÔî0o!‘Cð¦ïèhÖøBh’l*ðiGF(ðj0oÖøÐø„CðŠï(ñ`˜oð@Bh‘BÐ9`¿Cð¬î0o$”Cð~ï˜ðü˜”ð‹ü˜”ð‡ü”_áGKLòÃ*{D]æEKOðLòÃ*{DVæCK%OðLò•*{DNæ@KOðLò¨*{DGæ=KOðLò©*{D@æ;KOðLòª*{D9æ8KLòÅ*%{D3æ6KLòÎ*%{D-æ*𡂐G(ô¨¬ðoý	ñ,‰à*𜂐G(ô°¬ðcý	ñ0}à*𗂐G(ô¸¬ðWý	ñ4qà	ñ0nà*퟼�G(ô½¬ðHý	ñ8bà	ñ4_à*ퟜ�G(ô¬ð9ý	ñ<Sà	ñ8Pà*ð‚G(ôǬð*ý	ñ@Dà	ñ<Aàö‹”rûÿäzûÿ®xûÿ xûÿxûÿ‚xûÿtxûÿfxûÿZxûÿNxûÿ*ða‚G(ô¶¬ðý	ñDà	ñ@à*ðY‚G(ô»¬ðöü	ñHà	ñD
à*ðQ‚G(ô,ðçü	ñLà	ñHCð\î@¹ñH"FñIxDyDhhCð¢îîK (`{Dxå*ð9‚G(ôµ¬ðÈüCðBî@¹çH"FçIxDyDhhCðˆîäK IFÉøP{D\åâKLòÐ*%{DdåàKLòÜ*%{D^åÞKLòÝ*%{DXåÜKLòÞ*%{DRåÚKLòß*%{DLåd OðLòü ðä¿Cð`îF(ôï¬d Lòþ ðֿd Lò0ðϿCðLîF(ôv®àCðDîF(ô–® %ð>û 
•ð:û˜•ð6ûàkåc•(¿hoð@B‘B@ð« lËð;ÿMFÖø´"poð»û(ðþ€F(i)aoð@Bh‘BÐ9`¿Cð"ípo"Öø¸’ð£û(ðï€Fhiiaoð@Bh‘BÐ9`¿Cð
ípo"Öø¼’ð‹û(ðà€F¨i©aoð@Bh‘BÐ9`¿Cðòìpo"ÖøÀ’ðsû(ðрFèiéaoð@Bh‘BÐ9`¿CðÚìpo"ÖøÄ’ð[û(ð€F(j)boð@Bh‘BÐ9`¿CðÂì Cð®íuL|D `Cðªí``Cð¦í `Cð¤íà`Cð í aCðží`aCðší aCð˜íàañ .Ì.è..ÀCðVíFl©ª«ðôúÙøMFÖøBh’l*ퟠ�GF(ðӀðoÖøÐø„CðPí(ñɀ˜oð@Bh‘BÐ9`¿Cðrìðo!‘CðDíèhÖøBh’l*𪀐GF(ð«€ðoÖøÐø„Cð(í(ñ¡€˜oð@Bh‘BÐ9`¿CðJìðo$”Cðí˜ð-ú˜”ð)ú˜”ð%ú”¡à9`¿Cð2ìñæ0K%@ò5LòÒ:{Dÿ÷ò»,K%Oô›xLòà:{Dÿ÷é»)K%@ò7Lòî:{Dÿ÷à»%K%OôxLòü:{Dÿ÷׻"K%@ò;Lò
J{Dÿ÷λCðêìF(ôw¯Hàe Lò0ð_¾CðÜìF(ôt¬e Lò0ðP¾è‡<ûÿwûÿ´‡Ñ;ûÿÈvûÿ¼vûÿ°vûÿ¤vûÿ˜vûÿŒvûÿvÞôsûÿâsûÿÐsûÿ¾sûÿ¬sûÿCð¬ì(ô`¬e Lò0ð$¾Cð ìF(ôU¯ %ð›ù˜
•ð—ù˜•ð“ùàkåc•(¿hoð@B‘B@ð…Ýé2™ lð—ýMFCðLì€Fl©ª«ðêù
˜hèhˆB¿	šhBÑ@°ú€ð@	àšhBöÐCðì(ñ”…(kÐèhÖø@Bh’l*ðl…G%(ð……ño@òÈòZFÍéQ©ñ
QF
ðú(
ðs…™oð@D
h¢BÐ:
`ÑFFCðFë(F!‘h¡BÐ9`¿Cð<ëHFÖø@ÙøBh’l*ðC…GF%(
ðJ…0oQFZFÍéP F
ðhú(ð4… hoð@E¨BÐ8 `¿ FCðë˜$
”h©BÐ9`¿Cð딘ððø˜$”ðëø˜”ðçø”L!Öø"#|D FCðêë(ð܄àÒÐFÖø0hCð´ë(ñC„˜oð@Bh‘BÐ9`¿CðÖêÖø˜!‘ðVý(ðՄFÖø˜0hCð–ë(ñ.„˜oð@Bh‘BÐ9`¿Cð¸êÖøp!‘ð8ý(ðý„FÖøp0hCðxë(ñ„˜oð@Bh‘BÐ9`¿Cðšê % Cð”ë(ðZ…Öøäoð@C
hšB¿P`˜ÖøäÀh"`Öøü™ðâý(
ðJ…F˜oð@Bh‘BÐ9`¿CðlêÖøä (Fðýý(ð;…F0hÖøäCð,ë(ñ܃˜¢Foð@Dh¡BÐ9`¿CðLê (h BÐ8(`¿(FCðBêÖøtðÃü(
ð%…FÖøX0h*FCðë(ñ¼ƒ(hoð@AˆBÐ8(`¿(FCð$ê %Cð ë(
ð…FÖøToð@Bh‘B¿1`ÖøTáh"`!FÖøxðný(ð
… hoð@AˆBÐ8 `¿ FCðúé˜ÖøTðŒý(
ðþ„FÖøT0h*FCðºê(ñ|ƒ(hoð@D BÐ8(`¿(FCðÜé˜%
•h¡BÐ9`¿CðÐé •%CðÌê(ðæ„ÖøÐoð@C
hšB¿P`˜ÖøÐÀh"`ÖøÀ™ðý(
ðքF˜oð@Bh‘BÐ9`¿Cð¤éÖøÐ  Fð4ý(ðDŽF0hÖøÐCðbê(ñ.ƒ˜oð@HhAEÐ9`¿Cð„é%• h@EÐ8 `¿ FCðzé
•ðtý0ð³„Ùø$íQìCðÌé(
ð°„FðnÖøØ*FÐø„Cð.ê(ñƒ(hoð@AˆBÐ8(`¿(FCðPéðnCð&êÖøXðÿ(
ðð„F@hÖø¸‚l(F*ðð„G(ðñ„(hoð@AˆBÐ8(`¿(FCð,é˜!ÆøÐÖøX
‘‘ðÚþ(ðá„AhŠlÖø¸*ðㄐGF(
ð䄘oð@Bh‘BÐ9`¿CðéÖøX!ÆøÔW‘ð¶þ(
ðքF@hÖø$‚l(F*ðքG(ðׄ(hoð@AˆBÐ8(`¿(FCðâè˜!ÆøØÖøX
‘‘ðþ(ðDŽAhŠlÖø¸*ðɄGF(
ðʄ˜oð@Bh‘BÐ9`¿Cð¼èÖøX!ÆøÜW‘ðkþ(
ð¼„F@hÖø¸‚l(F*𼄐G(ð½„(hoð@AˆBÐ8(`¿(FCð–è˜!Æøà Öøˆ%#

ñCð€é(ð©„FÖø40hCðNé(ñ+‚˜oð@Bh‘BÐ9`¿Cðpè , Cðté(ðž„Öø¨&ÖøTCð2é(ñ‚˜Öø &ÖøHCð(é(ñ‚˜Öø¤#ÖøìCðé(ñ‚˜Öø¼&Öø\Cðé(ñ‚˜Öø0$ÖøCð
é(ñ‚˜ÖøÜÖø¼"Cðé(ñ‚˜ÖøäÖøà"Cðöè(ñ‚˜ÖøL'ÖøpCðìè(ñ^‚˜ÖøÈ&ÖødCðâè(ñς˜ÖøP%Öø0CðØè(ñç‚˜ÖøÀ&Öø`CðÎè(ñï‚˜ÖøÌ#ÖøôCðÄè(ñƒ˜Öø¨#ÖøðCðºè(ñƒ˜ÖøL%Öø,Cð°è(ñ~ƒ˜ÖøàÖøÜ"Cð¦è(ñ„˜ÖøH%Öø(Cðœè(ñN„˜Öø¸&ÖøXCð’è(ñM„˜ÖøÌ&ÖøhCðˆè(ñL„˜Öø`'ÖøtCð~è(ñK„˜Öø¼%Öø4Cðtè(ñJ„˜Öøt'Öø|Cðjè(ñI„˜ÖøÜ%ÖøDCð`è(ñH„˜Öøp$ÖøCðVè(ñG„˜Öøì#ÖøüCðLè(ñF„˜Öø˜$ÖøCðBè(ñE„˜Öøœ$ÖøCð8è(ñD„˜Öø,&ÖøLCð.è(ñC„˜Öød'ÖøxCð$è(ñB„˜Öø,'ÖølCðè(ñA„˜ÖøØÖø¬"Cðè(ñ@„˜Öø$%Öø$Cðè(ñ?„˜ÖøÔ%Öø@Bðüï(ñ>„˜ÖøŒ'Öø€Bðòï(ñ=„˜ÖøØ#ÖøøBðèï(ñ<„˜Öø$ÖøBðÞï(ñ;„˜Öø $ÖøBðÔï(ñ:„˜Öøü$Öø BðÊï(ñ9„˜Öøô$ÖøBðÀï(ñ8„˜Öøø$ÖøBð¶ï(ñ7„˜ÖøX#ÖøèBð¬ï(ñ6„˜ÖøÈ%Öø<Bð¢ï(ñ5„˜ÖøŒ&ÖøPBð˜ï(ñ4„˜ÖøÄ%Öø8BðŽï(ñ3„˜ÖøÀ Öø8Bð„ï(ñ2„šÖø 0hBðzï(ñ2„˜oð@Bh‘B~ôŸ®þ÷ž÷KOðLòãJ%{Dþ÷_¾ôK%OðLòïJ{Dþ÷V¾ðK%OðLòûJ{Dþ÷M¾9`¿Bð~îÿ÷àºéK%OðLòZ{Dþ÷=¾æK%OðLòZ{Dþ÷4¾âK%OðLò0Z{Dþ÷+¾ßKOðLòEZ{Dþ÷#¾ÜK%OðÂLò[Z{Dþ÷¾ØK%Aò8Lò¸Z{Dþ÷¾ÕKOðLòÂZ%{Dþ÷¾ÑKOðLòÃZ%{Dþ÷ÿ½ÎKOðLòÄZ%{Dþ÷ö½ÊKOðLòÅZ%{Dþ÷í½ÇKOðLòÆZ%{Dþ÷ä½ÃKOðLòÇZ%{Dþ÷۽ÀKOðLòáJ%{Dþ÷ҽ¼KOðLòÈZ%{Dþ÷ɽBðæî%(ô“ªàµK%OðLòíJ{Dþ÷¸½BðÔîÿ÷ºº%Fàd «FLò0Jà%(FðÉû˜$
”ðÄû˜”ðÀûØø<Èø<@”(¿hoð@B‘BÑ«Øø@ËðÃÿÿ÷ƺ9`¿Bð¼íñç—KOðLòÉZ%{Dþ÷{½”K%OðLòùJ{Dþ÷r½g Lò-0àBðˆî(~ôq®g Lò/0£FXFðû˜Íø4€ðzûƒH„KÝéxD{DÍø0€ðJü©
ª«PFðÚþ(,Ô˜oð@BKFhhB¿0`ÙøÉøh‘BÐ9`¿Bðfí˜ðOû
˜$”ðJû˜
”ðFû”Ýé!›Úø@ðSÿMFþ÷P¾Ýé2™Úø@ðIÿbK%OðhLòR:{Dþ÷	½_KOðLòÊZ%{Dþ÷½[KOðLòZ{Dþ÷ø¼XKLò
ZOð{Dþ÷ø¼UK%OðLò
Z{Dþ÷ç¼RKOðLòËZ%{Dþ÷޼NKLòZOð%{Dþ÷ݼKKOðLòÌZ%{Dþ÷̼GKLò&ZOð{Dþ÷̼DKOðLò+Z{Dþ÷¼¼AKLò.ZOð{Dþ÷¼¼>KOðLòÍZ%{Dþ÷«¼;KOðLò;Z{Dþ÷£¼8KLò@ZOð{Dþ÷£¼5KOðLòCZ{Dþ÷“¼2KOðLòÎZ%{Dþ÷м.KLòPZOð+%{Dþ÷‰¼+KLòYZOðÂ%{Dþ÷€¼Îhûÿ hûÿŽhûÿnhûÿ\hûÿJhûÿ:hûÿ(hûÿhûÿhûÿògûÿàgûÿÎgûÿ¼gûÿªgûÿ´gûÿ†gûÿdgûÿêfûÿØfûÿ†fûÿ°fûÿ"fûÿôeûÿäeûÿÔeûÿÂeûÿ°eûÿžeûÿŒeûÿ|eûÿleûÿ\eûÿJeûÿ:eûÿ*eûÿeûÿeûÿödûÿädûÿøKOðLòÏZ%{Dþ÷¼õKLòfZ@ò+%{Dþ÷¼Bð2í(ô«îK%@ò+LòhZ{Dþ÷¼ëK%@òÙLòvZ{Dþ÷þ»BðíF(
ô«äKLòxZ@òÙ%{Dþ÷ö»àKLò†Z@ò(%{Dþ÷í»Bðí(ô)«ÚK%@ò(LòˆZ{Dþ÷ֻÖK%@òHLò–Z{Dþ÷ͻBðêìF(
ô6«ÏKLò˜Z@òH%{Dþ÷ŻÌKLò¦Z@òÊH%{Dþ÷¼»BðÐì(ôC«ÅK%@òÊHLò¨Z{Dþ÷¥»ÂK%Aò8Lò¶Z{Dþ��KOðLòÐZ%{Dþ��KOðLòÀZ%{Dþ÷Š»Bð¦ì(~ôªþ÷\½Bð ì(~ôªþ÷a½Bð˜ì(~ô ªþ÷f½Bð’ì(~ô-ªþ÷n½BðŠì(~ô:ªþ÷v½Bð„ì(~ôGªþ÷~½Bð|ì(~ôTªþ÷œ½Bðvì(~ôaªþ÷¤½Bðnì(~ônªþ÷¬½Bðhì(~ô{ªþ÷Ľ”KOðLòÑZ%{Dþ÷;»‘KOðLòÒZ%{Dþ÷2»KOðLòÓZ%{Dþ÷)»ŠKOðLòÔZ%{Dþ÷ »†KOðLòÕZ%{Dþ÷»ƒKOðLòÖZ%{Dþ÷»KOðLò×Z%{Dþ÷»|KOðLòØZ%{Dþ÷üºxKOðLòÙZ%{Dþ÷óºuKOðLòÚZ%{Dþ÷êºqKOðLòÛZ%{Dþ÷áºnKOðLòÜZ%{Dþ÷غjKOðLòÝZ%{Dþ÷ϺgKOðLòÞZ%{Dþ÷ƺcKOðLòßZ%{Dþ÷½º`KOðLòàZ%{Dþ÷´º\KOðLòáZ%{Dþ÷«ºYKOðLòâZ%{Dþ÷¢ºUKOðLòãZ%{Dþ÷™ºRKOðLòäZ%{Dþ÷ºNKOðLòåZ%{Dþ÷‡ºKKOðLòæZ%{Dþ÷~ºGKOðLòçZ%{Dþ÷uºDKOðLòèZ%{Dþ÷lº@KOðLòéZ%{Dþ÷cº=KOðLòêZ%{Dþ÷Zº9KOðLòëZ%{Dþ÷Qº6KOðLòìZ%{Dþ÷Hº2KOðLòíZ%{Dþ÷?º/KOðLòîZ%{Dþ÷6º2dûÿ dûÿdûÿðcûÿÐcûÿ¾cûÿ cûÿŽcûÿncûÿ\cûÿ>cûÿ,cûÿcûÿcûÿjbûÿXbûÿFbûÿ4bûÿ"bûÿbûÿþaûÿìaûÿÚaûÿÈaûÿ¶aûÿ¤aûÿ’aûÿ€aûÿnaûÿ\aûÿJaûÿ8aûÿ&aûÿaûÿaûÿð`ûÿÞ`ûÿÌ`ûÿº`ûÿ¨`ûÿ–`ûÿ„`ûÿr`ûÿ``ûÿ(¿hoð@B‘BÐ9`¿BðD¹pG¿ðµ¯-鏰 BðFêN(~DÆøèðñ‚à¿ÖøÌoð@C
hšB¿P`ÖøÌÖøèJÁ`zDh F!F"FBðîê(Æøäðӂà
pÖø¼' ÖøÀÖøÄ7Bðæê(Æøìð‚Öø| BðÜê(Æøðð¸‚Öø€ BðÒê(Æøôð®‚Öøœ BðÈê(Æøøð¤‚ÖøØ Bð¾ê(Æøüðš‚Öø¤ ÖøÈ'Bð²ê(ÆøðނָL Bð¨ê(Æøð„‚ÖøH Bðžê(Æøðz‚Öø´ Bð”ê(Æøðp‚ÖøD BðŠê(Æøðf‚Öøä Bð€ê(Æøð\‚Öøà Bðvê(ÆøðR‚Öøè Bðlê(ÆøðH‚Öø¸ Bðbê(Æø ð>‚Öø( BðXê(Æø$ð4‚ÖøÐ BðNê(Æø(ð*‚ !F"F#FBðBê(Æø,ð‚ñh Bð:ê(Æø0ð‚Öøü Bð0ê(Æø4ð‚ÖøÜ Bð&ê(Æø8ð‚Öøx Bðê(Æø<ðøÖøè Bðê(Æø@ðîÖø| Bðê(ÆøDðäÖø Bðþé(ÆøHðځÖø8 Bðôé(ÆøLðЁÖøà Bðêé(ÆøPðƁÖøÈ Bðàé(ÆøTð¼ÖøÌ BðÖé(ÆøXð²Öø( BðÌé(Æø\ð¨ÖøÄ BðÂé(Æø`ðžÖøØ Bð¸é(Æødð”ÌHÖø,xDBl Bðªé(Æøhð‡Öø, Bð é(Æølð}Öøø Bð–é(ÆøpðsÖøÜ BðŒé(ÆøtðiÖød Bð‚é(Æøxð_Öøh Bðxé(Æø|ðUÖø Bðné(Æø€ðKÖøp Bðdé(Æø„ðAÖøl BðZé(Æøˆð7Öø¤ BðPé(ÆøŒð-Öø¨ BðFé(Æøð#ÖøÐ Bð<é(Æø”ðÖø€ Bð2é(Æø˜ð‹HÖø¤xDh Bð&é(ÆøœðÖø  Bðé(Æø ðø€Öø Bðé(Æø¤ðî€Öø¬ 
FBðé(Æø¨ðã€Öøü Bðüè(Æø¬ðـÖøø Bðòè(Æø°ðπÖøè Bðèè(Æø´ðŀÖøä BðÞè(Æø¸ð»€Öøì BðÔè(Æø¼ð±€Öø BðÊè(ÆøÀð§€Öø BðÀè(ÆøÄð€ÖøVÖø&Öø6ÖøÖøüÍé Bð¬è(ÆøÈð‰€FÖéJÖø¶!Öøô†EHxDAðÔï(qЁF Íé
° !"#Íé‹Íé©ÍéÍé¤ÍéEÍéDBðŒèÙøoð@B‘BÐ9ÉøÑFHFAð^ï F(ÆøÐQÐÖøt Bðlè(ÆøÌHÐFÖøŒ!ÖéJOðÖø4ƒ$HxDAðFAò0™"Íé!Íé
€ Íé #Íé©Íé¤ÍéEÍéDBðFèÙøoð@B‘BÐ9ÉøÑFHFAðï FÆøÔh± °½èð½õ
`OðàöÔÀø°Oðÿ0°½èð½FÅ€leZûÿßYûÿHoð@LIxDyDhÈ`hbEÑÁéÁébpGSacE`ÑÁéÁépG“HacE`ìÐÓˆacE`òÐÈacE`¿bpGbQ`aE¿‘`pG(jþÁðµ¯-遰…M…H}DxDèfðvÿ(ñú€ênÒø€L(|D¿‘l hBd¿ên|NÕøÔ~DphAð6ï(ñã€xH2FxIxD(gyDBøhR`ðQÿ(ñՀ0F!€Fh0"¡F.oAð¬ïF(ðŀÖø„"FÕøAðHï(ñ»€ hoð@AˆBÐ8 `¿ FAðjî(oðKø(ñ­€(oLFFFð[ù(ñ¥€[HxDhgðÿ(ñ€hoÐø)¿‚l!hŠBd¿hoðCù(ñ€PLQKQI|DQH{D¢FyDxD„FOHxD†FOHDø@?NKxD4gNJƒF©g{DMHzDMNxDÄøÀ~Df`FFñˆè
HFLFðÞþ(bԨo
ñ@Ðø)¿‚l!hŠBdAF¿¨oðÂÿ(PԨoðéÿ(KԨoðüø(FÔ7I8HyDxD7HŠFxDƒF6HxD†F5HqgxD„F˜è]]hošÎø€pFÊéËÊø Åø|àð þ($ÔèoÐø)¿‚lÙøŠBd¿èo%IyDð„ÿ(Ôèoð«ÿ(
Ôèoð¾ø°ñÿ?Ý °½èð½ Fÿ÷£ûOðÿ0°½è𽿎¸,®¤iZÁº®c_¯~ÁÓe¦¯M€ïz¯t%tÝqoÛj쿯€+€ä¯Í’¿ðµ¯Mø½‚°ÎHxDAðªî(ð‚ËIFËJ yDzD FOôæs;ððûÇM(}D¨að\ hoð@AˆBÐ8 `¿ FAðZíÀHxDAð†î(ð^½IF½J yDzD F#;ðÍû(èað; hoð@AˆBÐ8 `¿ FAð8í²HxDAðdî(ð=°IF°J yDzD F#;ð¬û((bð hoð@AˆBÐ8 `¿ FAðí¥HxDAðDî(ð¢I&¢J8#yDFzD–;ðŒû(hbðú€I FJ@ò$SyD–zD;ð~û(¨bð쀘I F˜JOôŒsyD–zD;ðpû(èbðހ“I F“J(#yD–zD;ðcû((cðрI&J FyD#zD–;ðUû(hcðÀŠI FŠJ#yD–zD;ðHû(¨c𶀅I F…J#yD–zD;ð;û(èc𩀁I FJ#yD–zD;ð.û((dðœ€|I F|J#yD–zD;ð!û(hdð€xI FxJ#yD–zD;ðû(¨dð‚€sI FsJ#yD–zD;ðû(èduÐoI FoJ#yD–zD;ðûú((eiÐkI FkJ#yD–zD;ðïú(he]ÐgI FgJ#yD–zD;ðãú(¨eQÐcI cJ|#yDzD F;ðÖú(èeDÐ hoð@AˆBÐ8 `¿ FAðBìYHxDAðní(GÐWI0#WJFyD–zD;ð¹ú(f@³TI FTJ #yD–zD;ð®úhfè±Ðø„5ðÚûNIyD`¨±MI MJ#yDzD F;ðšú¨fH± hoð@AˆBÑ °]ø»ð½ hoð@AˆBÑOðÿ0°]ø»ð½8 `Oðÿ0а]ø»ð½Oðÿ0°]ø»ð½8 `OððÑF FAðæë(F°]ø»ð½/JûÿJûÿ>KûÿìµçIûÿÓIûÿÇ.ûÿ¥Iûÿ‘Iûÿ&Sûÿ]yÿÿIyÿÿKyÿÿ+yÿÿ€:ûÿyÿÿ Lûÿõxÿÿc ûÿÛxÿÿ”Tûÿ¿xÿÿæ;ûÿ¥xÿÿí+ûÿ‹xÿÿ.RûÿqxÿÿCHûÿWxÿÿRûÿ=xÿÿ<-ûÿ%xÿÿ#ûÿ
xÿÿ‰ ûÿõwÿÿz?ûÿÝwÿÿl?ûÿ_LûÿMLûÿë?ûÿ7LûÿQûÿV¼LûÿÑ1ûÿ°µ¯%HxDAð¨숳F#H$I$KxDñ$yD{D F;ðaú(Ô M F I K}DyDñP{D;ðTú(ÔIñTK FyD{D;ðIú(Ô hoð@AˆB	Ñ °½ hoð@AˆBÑOðÿ0°½8 `Oðа½8 `Oðÿ0¿°½F FAð2ë(F°½îJûÿþº3.ûÿvÿÿ^»+ûÿÿuÿÿÅEûÿóAûÿ°µ¯HxDAðHì(ðŽMFŽIŽK}DyDñ{D;ðxú(ñò€ŠIñ‰K FyD{D;ðlú(ñ怆Iñ …K FyD{D;ð`ú(ñڀ‚Iñ$K FyD{D;ðTú(ñ΀~Iñ(}K FyD{D;ðHú(ñ€zIñyK FyD{D;ð<ú(ñ¶€vIñuK FyD{D;ð0ú(ñª€rIñqK FyD{D;ð$ú(ñž€nIñmK FyD{D;ðú(ñ’€ hoð@AˆBÐ8 `¿ FAðœêdHxDAðÈë(ð…€bIñDaKFyD{D;ðúù(tÔ^Iñ<^K FyD{D;ðïù(iÔ[Iñ0ZK FyD{D;ðäù(^ÔWHXIXKxDñxyD{D F;ð×ù(QÔTI FTK*FyD{D;ðÍù(GÔQIñ@PK FyD{D;ðÂù(<ÔMI*MK FyD{D;ð¸ù(2ÔJIñHJK FyD{D;ð­ù('ÔGIñ4FK FyD{D;ð¢ù(ÔCIñ8CK FyD{D;ð—ù(Ô@IñL?K FyD{D;ðŒù(Ô hoð@AˆB	Ñ °½ hoð@AˆBÑOðÿ0°½8 `OðÑà8 `Oðÿ0¿°½F FAðþé(F°½¿51ûÿ¶ºÎ8ûÿÌ/ûÿt>ûÿ´/ûÿ9:ûÿœ/ûÿ7-ûÿ„/ûÿgûÿl/ûÿ-ûÿT/ûÿBûÿ</ûÿ(ûÿ$/ûÿÈ1ûÿ/ûÿ.Iûÿ_3ûÿ!Pûÿ1ûÿT?ûÿyBûÿB3ûÿú¸”3ûÿm5ûÿø5ûÿW5ûÿjûÿ<1ûÿ»Cûÿô8ûÿÚ(ûÿÝ(ûÿ½Oûÿ>ûÿgHûÿ»DûÿbHûÿ¥Dûÿ°µ¯FFHxDhh(¿ BÑ[h+÷Ñ ``(`°½`oð@Bh“B¿3`Ch`h‘B¿1`Að¶ê(`°½¿z_ðµ¯MøF@hF
Fl„±HxDAðª긹0F)FBF GFAðªê F\±]ø‹ð½0F)FBF]ø‹½èð@Að–¸Aðâé± ]ø‹ð½HIxDyDhhAð.é ]ø‹ð½¿{Gûÿö^J/ûÿðµ¯-é…°F’F‰FAðèéÉJ€F¹ñzD’”9Аh(ð€Øø<`$Èø<@~±thoð@A hˆB¿0 `ui-±(hˆB¿0(`à%hAðbêšÒøôµK{D›F¸±ÊhhAð^ê3ÛøˆB>аIyD	hˆB;ÐAðZê(¿Oð	4àOð	Sàhðßÿ³AðLêÝøÀF¤KXF)ÛøÜø {D¿hoð@AŠBÔÐÍø ‚FPÌøÑ`FAðÈèPFÝø ÆçAðâè˜Ûø Ðøô€hAðRéOð	.¿pi¨B@ðցØø<Èø<`(¿hoð@B‘B@ðö€,¿ hoð@AˆB@ðô€-¿(hoð@AˆB@ðó€ÓF¹ñ¿Éñ}I»ñyD‘¿n((Ñ@FØø<€VFOð
¸ñÀø< =ÐØø oð@AÚøˆB¿0ÊøØø@|³ hˆB¿0 `™¹ñ+ј2FAðÐéFFà‰mLñ™€ëÄRhZEÍÛ,ð‘€%àU#FBF€ò‹€bëÒrëbëÂ^hF^EðÜíۀà$™¹ñÓÐÇHKFÇJxDzDAðªé(ðFAð¬é(ðð€F˜2FAð”éF(hoð@AˆBÐ8(`¿(FAðè¹ñð怸ñ¿Øø B@ðN™ÈkÁø<€ˆF(¿hoð@B‘B@ðºñ¿Úøoð@AˆB@ð,¿ hoð@AˆB@ð»ñ²Fð“€(n(ðÕøX<ñJÔëÁdFRhZERÛ)BÐ%àe
F•BF=ÚJëÒrëbëÄSh"F[EñÜîÛ3àFh"^E¸¿2ŠB¿ö2¯ëÂIhYEô,¯Pø2Sà9`¿@ð¬ïç8 `¿ F@ð¤ïç8(`¿(F@ðžïçr­^^@^^®µCh$[E¸¿4dEÚëÄIhYEð̀émŒE
Ññ@éAðé8³™ÑøXÀÁéP¤E
ÝëÌbF+FUø:Søm¢BÅéaFõÜ™@ø4ëÄÀø°ñˆeÙøoð@AˆB¿0Éø˜IF#h@FAðÜèF(¿Äø  FAðÜèÙøoð@AˆB)Ð8Éø%ÑHF!à(hoð@AˆBÐ8(`Ñ(F@ð.ïºñ¿Úøoð@AˆB%Ѹñ¿Øøoð@AˆBÐ8ÈøÑ@F@ðï,¿ hoð@AˆBѰ½èð½8 `øÑ F°½è½èð@@ð:¾8Êø¿PF@ðøîÑç9`¿@ðòîòæ8Êø¿PF@ðêîôæ8 `¿ F@ðâî»ñ²Fô÷®ˆç0F)FAðxè$æOôpAð|耱›@!"Ãé!oð@AfÀé›ÙøˆB¿0Éø²FÝø€iç@F!FAðZè¬æPø4oð@B@ø4hBíÐ8`êÑF@ðªîæç%3ûÿá5ûÿðµ¯Mø„°FÀkF!˜FF‘ácÍéX±Ahoð@C‘
hšB¿2
`@ðÂ©ªAð4èàk(lÑ™q±˜Aðè(eÔ˜(¿hoð@B‘B1¿`˜(¿hoð@B‘B1¿`˜@±hoð@B‘B¿1`˜à š™2`(`Èø!lh`˜(¿hoð@B‘Bј(¿hoð@B‘BÑô± hoð@AˆBÑ °]ø‹ð½8 `Ð °]ø‹ð½9`¿@ð(îÞç9`¿@ð"î,àÑ °]ø‹ð½ F@ðî °]ø‹ð½˜!1`)`Èøþ÷÷û˜þ÷ôû˜þ÷ñûOðÿ0°]ø‹𽰵¯„FhÌø (¿hoð@EªBÑ)¿hoð@BBÑ+¿hoð@AˆBѰ½:`íÑF
F@ðÜí)F#Fæç8`êÑFF@ðÒí#Fäç8`¿°½F½è°@@ð½ðµ¯Mø*F¿Pi˜B6Ñàkâc(¿hoð@F²BÑ)¿hoð@BBÑ+¿hoð@AˆBÑ]ø‹ð½:`ëÑF
F@ðœí)F#Fäç8`èÑFF@ð’í#Fâç8`æÑF]ø‹½èð@@ð¼ˆFFFFF@ð ï*FAF3F½ç¿ðµ¯-é‚°€F@ð*ïfL(|D]ЁF@hdKÔø¬{D‚lHFhªBYÑ"#@ðîF(DÐph¢FÔø‚lªBTÑ0F"#%$@ðþíà±VIyD	hˆBÐTJzDhB
ÐSJzDhBÐF@ðÄíF(FàA±úñI	)xÑ$F0hoð@AˆBÐ80`¿0F@ð&íd¹&(hoð@AˆBÐ8(`¿(F@ðí6»@ð6íHF°½èð½@ðží(¿@ð*í/à*TАGF(¦Ñðüèç0F*QАG(¬Ñðü%$0hoð@AˆBÅÑÊç0hoð@D BÐ80`¿0F@ðæìÙø BTFÐ8ÉøÑHF@ðÚì@ð˜îOð	(½Ð!hF@F*F#Íø@ð’îF(hoð@AˆB®Ð8(`¿(F@ð¾ìHF°½èð½F(hoð@AˆB”љç@ð˜íF(ôP¯§ç@ð’í(ôY¯ªç¿ü¥WèVâVÄVðµ¯Mø‚°FˆFF@ðPîð±FH"FCFxD–h(F@ðNî!hoð@B‘BÐ9!`а]ø‹ð½F F@ðvì(F°]ø‹ð½ °]ø‹ð½¿2¤ðµ¯-éF@hF‚l(F"±G0±½èð½@ð@í(øÑ%HxDhh@ðhì8³@ðlì(F@ðîp³@ðîX³FHxDÐø(HF@ðî8³!FF@ðî8³F@ðìí€F(Fþ÷ú0Fþ÷úHFþ÷ú@F¸ñÉÑH"FIxDyDhh@ðþì ½èð½OðOð	àOð&%ÛçOð%×ç¿äT¢£~T.ûÿðµ¯-é„° Íé@ð°ì‚Fl¾IyD	hh,¿ŒBÑ@h(÷ÑOð	$Oðà!hoð@@B¿1!`ÔøÙøB¿HÉø F@ð
í€F¬HxD@ðüì(sЪIFyD@ð¶ëF0hoð@AˆBÐ80`¿0F@ðºë-`ТHihxDhBРH IxDyDhh@ð’ë(hoð@AˆBMÐ8(`JÑ(F@ðžëFà(F!@ð‚í–Noð@B~Dðb)h‘BÐ9)`Ñ(F@ðŒëðjرh€G	%Àò¨BÑðjÐøL€G(򪀌HñjxDhhÑøL€G‰IF(F
"yDàHIxDyDhh@ðNë
à~HñjxDhhh€G|IF0F*FyD@ð6ìHxDhÚø<	hðÐú˜³|HEò°1{K@òÖ2xD{Dÿ÷	ú©ª«PFÿ÷™ü(&ÔuHuJxDzDÐøðPn"ÿ÷¹ù(ð³€!"Fðþ(hoð@AˆBÐ8(`¿(F@ðëEòÚ5OôvvàEò°5@òÖ6àEòÊ5@ò×6Úø@IF"FCFÿ÷
ý˜(¿hoð@B‘Bј(¿hoð@B‘Bј(¿hoð@B‘BÑRH)FRK2FxD{Dÿ÷¯ùOðÿ0°½èð½9`¿@ðÞêÛç9`¿@ðØêÝç9`¿@ðÒêßçðjÐøH€G(л5H6IxDyD[ç¹ñ¿Ùøoð@AˆB"Ñ,¿ hoð@AˆB#Ѹñ)ÐØøoð@AˆB	Ñ °½èð½&H&IxDyD8ç8ÈøÐ °½èð½8Éø¿HF@ð’êÔç8 `¿ F@ðŒê¸ñÕÑ °½èð½@F@ð€ê °½èð½EòÖ5[ç(TEûÿ“!ûÿÎS¢S'3ûÿ+SOûÿS|-ûÿ6SžûÿÔQœûÿŽQÊ7ûÿS²5ûÿ/ûÿŽ¡ˆªþ4ûÿ\.ûÿе¯FHâh!FxDh@ðžë@±hoð@B‘BÑн1`н@ðÂê(¿ F½èÐ@ðë¸ н¿ Ÿðµ¯-é­õ
]°ýI
ñ	Oô€ROô€|yD)øÀòŒsBò<2Bò(8Iø0õñcBò>Iø0ò„sOôTIø0õðcBòì&Iø0ò|sBòØ Iø0õïcBòœ+Iø0òtsBòÄ Iø0õîcBò° Iø0òlsBòˆ Iø0õícOôUIø0òdsBòt Iø0õìcBò` Iø0ò\sBòL Iø0õëcBò8 Iø0òTsBò$ Iø0õêcBò Iø0òLsBòüIø0õécBòèIø0òDsBòÔIø0õècBò¬Iø0ò<sOôUIø0õçcBò˜Iø0ò4sBò„Iø0õæcBòpIø0ò,sBò\Iø0õåcBòHIø0ò$sBò4Iø0õäcBò Iø0òsBòIø0õãcBòøIø0òsBòäIø0õâcBòÐIø0òsBò¼Iø0õácBò¨Iø0òsBò”Iø0õàcBòlIø0òücOôÿUIø0õßcBòXIø0òôcBòDIø0õÞcBò0Iø0òìcBòIø0õÝcBòIø0òäcAöôpIø0õÜcAöÌpIø0òÜcOôúUIø0õÛcAö¸pIø0òÔcAö¤pIø0õÚcAöpIø0òÌcAö|pIø0õÙcAöhpIø0òÄcAöTpIø0õØcAö,pIø0ò¼cOôõUIø0õ×cAöpIø0ò´cAöpIø0õÖcAöð`Iø0ò¬cAöÜ`Iø0õÕcAöÈ`Iø0ò¤cAö´`Iø0õÔcAöŒ`Iø0òœcOôðUIø0õÓcAöx`Iø0ò”cAöd`Iø0õÒcAöP`Iø0òŒcAö<`Iø0õÑcAö(`Iø0ò„cAö`Iø0õÐcAöìPIø0ò|cOôëUIø0õÏcAöØPIø0òtcAöÄPIø0õÎcAö°PIø0òlcAöœPIø0õÍcAöˆPIø0òdcAötPIø0õÌcAöLPIø0ò\cOôæUIø0õËcAö8PIø0òTcAö$PIø0õÊcAöPIø0òLcAöü@Iø0õÉcAöè@Iø0ð¸¿LŸòDcAöÔ@Iø0õÈcAö¬@Iø0ò<cOôáUIø0õÇcAö˜@Iø0ò4cAö„@Iø0õÆcAöp@Iø0ò,cAö\@Iø0õÅcAöH@Iø0ò$cAö4@Iø0õÄcAö@Iø0òcOôÜUIø0õÃcAöø0Iø0òcAöä0Iø0õÂcAöÐ0Iø0òcAö¼0Iø0õÁcAö¨0Iø0òcAö”0Iø0õÀcAöl0Iø0òüSOô×UIø0õ¿cAöX0Iø0òôSAöD0Iø0õ¾cAö00Iø0òìSAö0Iø0õ½cAö0Iø0òäSAöô Iø0õ¼cAöÌ Iø0òÜSOôÒUIø0õ»cAö¸ Iø0òÔSAö¤ Iø0õºcAö Iø0òÌSAö| Iø0õ¹cAöh Iø0òÄSAöT Iø0õ¸cAö, Iø0ò¼SOôÍUIø0õ·cAö Iø0ò´SAö Iø0õ¶cAöðIø0ò¬SAöÜIø0õµcAöÈIø0ò¤SAö´Iø0õ´cAöŒIø0òœSOôÈUIø0õ³cAöxIø0ò”SAödIø0õ²cAöPIø0òŒSAö<Iø0õ±cAö(Iø0ò„SAöIø0õ°cAöìIø0ò|SOôÃUIø0õ¯cAöØIø0òtSAöÄIø0õ®cAö°Iø0òlSAöœIø0õ­cAöˆIø0òdSAötIø0õ¬cAöLIø0ò\SOô¾UIø0õ«cAö8Iø0òTSAö$Iø0õªcAöIø0òLSAòüpIø0õ©cAòèpIø0òDSAòÔpIø0õ¨cAò¬pIø0ò<SOô¹UIø0õ§cAò˜pIø0ò4SAò„pIø0õ¦cAòppIø0ò,SAò\pIø0õ¥cAòHpIø0ò$SAò4pIø0õ¤cAòpIø0òSOô´UIø0õ£cAòø`Iø0òSAòä`Iø0õ¢cAòÐ`Iø0òSAò¼`Iø0õ¡cAò¨`Iø0òSAò”`Iø0õ cAòl`Iø0òüCOô¯UIø0õŸcAòX`Iø0òôCAòD`Iø0õžcAò0`Iø0òìCAò`Iø0õcAò`Iø0òäCAòôPIø0õœcAòÌPIø0òÜCOôªUIø0õ›cAò¸PIø0òÔCAò¤PIø0õšcAòPIø0òÌCAò|PIø0õ™cAòhPIø0òÄCAòTPIø0õ˜cAò,PIø0ò¼COô¥UIø0õ—cAòPIø0ò´CAòPIø0õ–cAòð@Iø0ò¬CAòÜ@Iø0õ•cAòÈ@Iø0ò¤CAò´@Iø0õ”cAòŒ@Iø0òœCOô UIø0õ“cAòx@Iø0ò”CAòd@Iø0õ’cAòP@Iø0òŒCAò<@Iø0õ‘cAò(@Iø0ò„CAò@Iø0õcAòì0Iø0ò|COô›UIø0õcAòØ0Iø0òtCAòÄ0Iø0õŽcAò°0Iø0òlCAòœ0Iø0õcAòˆ0Iø0òdCAòt0Iø0õŒcAòL0Iø0ò\COô–UIø0õ‹cAò80Iø0òTCAò$0Iø0õŠcAò0Iø0òLCAòü Iø0õ‰cAòè Iø0òDCAòÔ Iø0õˆcAò¬ Iø0ò<COô‘UIø0õ‡cAò˜ Iø0ò4CAò„ Iø0õ†cAòp Iø0ò,CAò\ Iø0õ…cAòH Iø0ò$CAò4 Iø0õ„cAò Iø0òCOôŒUIø0õƒcAòøIø0òCAòäIø0õ‚cAòÐIø0òCAò¼Iø0õcAò¨Iø0òCAò”Iø0õ€cAòlIø0õsOô‡UIø0õ~sAòXIø0õ}sAòDIø0õ|sAò0Iø0õ{sAòIø0õzsAòIø0õysAòôIø0õxsAòÌIø0õwsOô‚UIø0õvsAò¸Iø0õusAò¤Iø0õtsAòIø0õssAò|Iø0õrsAòhIø0õqsAòTIø0õpsAò,Iø0õos	ëIø0AòõnsIø0AòõmsIø0@öÊ*"üL#ªt |DÅéJ+‚	ëê`Oð
öM@öD(£t}DÄéP#‚%â`	ëñH@öÒ£txD¤øÀÄé
â`	õTìH¢txDÄé#‚	ëâ`&èL%ƒt|DÀéF øÀ
&Â`BòØ ãLHD|DÀéFƒt@öôD øÀÂ`BòÄ ÞNHD~DÀéd‚t	&‚Â`Bò° ÙLHD|DÀéFƒt
& øÀÂ`	ëÔLOðƒt|D‚ÀéKÂ`Bòˆ HDƒt øÀÀéKÂ`Bòt ËLHD|DÀéH‚t@ö÷8‚Â`Bò` ÆLHD|DÀéH‚tOð	‚Â`BòL ÁLHD|DÀéFƒt& øÀÂ`Bò8 ¼LHD|Dƒt øÀÀéFÂ`Bò$ ¸LHD|Dƒt øÀÀéFÂ`Bò ³LHD|DÀéFƒt&& øÀÂ`Bòü®LHD|DÀéN‚t@öY‚Â`Bòè©LHD|DÀéF‚t& øÀÂ`BòÔ¤LHD|DÀéF‚t	õT øÀ&Â`ŸH£txDÄé
Bò¬¤øÀâ`HD›LOð
ƒt|D øÀÀéEÂ`Bò˜–LHD|Dƒt øÀÀéEÂ`Bò„‘LHD|DÀéEƒt% øÀÂ`BòpŒLHD|D‚t‚D`ÀéRBò\ˆLHD|DÀéN‚tOðN‚Â`BòHƒLHD|Dƒt øÀÀéEÂ`Bò4	ë~HxDÄéBò £t¤øÀHDâ`	&yLƒt|D øÀD`ÀébBòuLHD|Dƒt øÀÀéKÂ`BòøpLHD|Dƒt øÀÀéEÂ`BòälLHD|DÀéFƒt
& øÀÂ`BòÐgLHD|Dƒt‚ÀéEÂ`Bò¼HDƒt øÀÀéEÂ`Bò¨^LHD|DÀéb‚t&‚D`Bò”ZLHD|DÀéN‚t	õT‚OðÂ`UH£txDÄéBòl¤øÀâ`HDPL	%ƒt|DÀéH øÀOðÂ`BòXKLHD|DÀéJƒtOð
 øÀÂ`BòDELHD|DÀéF‚t& øÀÂ`Bò0@LHD|Dƒt øÀD`ÀéâBò<LHD|DÀéF‚t!& øÀÂ`Bò7LHD|DÀéF‚t& øÀÂ`Aöôp2LHD|DÀéF‚t	õÿT øÀ&Â`-H£txDÄéAöÌpðT¸¥Jýÿ‡JýÿiJýÿ?Jýÿ'JýÿJýÿù<ýÿÚ<ýÿ¹<ýÿQ2ýÿB&ýÿ&ýÿþ%ýÿá%ýÿÄ%ýÿÚýÿœýÿeýÿGýÿ&ýÿýÿîýÿÒýÿeýÿIýÿ)ýÿýÿíýÿÓýÿ´ýÿ˜ýÿhýÿýÿèýÿÇýÿ¨ýÿ²0ûÿTÿÿIýÿýÿãýÿÃýÿ¤øÀâ`HDüLAòOƒt|D øÀÀéKÂ`Aö¸p÷LHD|Dƒt øÀÀéKÂ`Aö¤póLHD|Dƒt øÀD`ÀébAöpîLHD|DÀéFƒt& øÀÂ`Aö|péLHD|DÀéN‚t@ö‚Â`AöhpäLHD|DÀéN‚t@öÂ>‚Â`AöTpßLHD|DÀéFƒt& øÀÂ`	õúPÚL‚t|DÀéN‚@òt^Â`Aö,pÖLHD|DÀéN‚t@öø‚Â`AöpÑLHD|DÀéN‚t@òn‚Â`AöpÌLHD|DÀéFƒt& øÀÂ`Aöð`ÇLHD|Dƒt øÀÀéKÂ`AöÜ`ÂLHD|DÀéEƒt% øÀÂ`AöÈ`½LHD|DÀéN‚t@ò‚n‚Â`Aö´`¸LHD|DÀéJƒt	õõT øÀÂ`´H£txDÄéAöŒ`¤øÀâ`HD¯Lƒt|D øÀÀéKÂ`Aöx`«LHD|Dƒt‚ÀéJÂ`Aöd`HDƒt øÀÀéJÂ`AöP`£LHD|Dƒt øÀÀéKÂ`Aö<`žLHD|DÀéN‚tOð
‚Â`Aö(`™LHD|DÀéHƒtOð øÀÂ`Aö`”LHD|Dƒt‚ÀéJÂ`	õðPƒt øÀÀéJÂ`AöìPŒLHD|DÀéFƒt
& øÀÂ`AöØP‡LHD|Dƒt øÀD`ÀébAöÄP‚LHD|Dƒt øÀÀéKÂ`Aö°P~LHD|DÀéFƒt	& øÀÂ`AöœPyLHD|Dƒt‚ÀéJÂ`AöˆPHDƒt øÀÀéJÂ`AötPpLHD|DÀéKƒt	õëT‚Â`lH£txDÄéAöLP¤øÀâ`HDhLƒt|DÀéE øÀ%Â`Aö8PcLHD|Dƒt‚ÀéJÂ`Aö$PHDƒt øÀÀéJÂ`AöP[LHD|Dƒt øÀD`ÀébAöü@VLHD|DÀéNƒt@ö øÀÂ`Aöè@QLHD|Dƒt øÀD`ÀéRAöÔ@LLHD|DÀéEƒt	õæT øÀ%Â`GH£txDÄéAö¬@¤øÀâ`HDCL&ƒt|DÀéF øÀ&Â`Aö˜@>LHD|Dƒt øÀÀéHÂ`Aö„@9LHD|Dƒt øÀD`ÀéRAöp@5LHD|Dƒt øÀD`ÀébAö\@0LHD|DÀéN‚t@ò«~‚Â`AöH@+LHD|DƒtðT¸ø
ýÿß
ýÿÃ
ýÿ§
ýÿ@ýüÿôüÿg™ýÿ"èüÿ˜âüÿˆÙüÿeÙüÿHÙüÿ)Ùüÿ÷Òüÿ®OýÿÄÒüÿ”Qÿÿ”ÒüÿiÒüÿÑËüÿEÿÿÙPÿÿ™Pÿÿ¬NýÿHËüÿ%ËüÿËüÿÜÊüÿÃÊüÿ¡Êüÿ…ÊüÿVÊüÿ3ÊüÿÊüÿóÉüÿÒÉüÿ¬ÉüÿOÿÿyÉüÿ1MýÿLÀüÿ.Àüÿ øÀÀéJÂ`Aö4@ýLHD|Dƒt øÀÀéJÂ`	õáPøL‚t|DÀéN‚Oð]Â`Aö@ôLHD|DÀéEƒt% øÀÂ`Aöø0ïLHD|Dƒt‚ÀéJÂ`Aöä0ëLHD|Dƒt øÀD`ÀéRAöÐ0æLHD|DD`$ƒt øÀÀéBAö¼0áLHD|DÀéFƒt& øÀÂ`Aö¨0ÜLHD|DÀébƒt
& øÀD`Aö”0×LHD|DD`Àéb	õÜTƒt& øÀÒH£txDÄéAöl0¤øÀâ`HDÎL%ƒt|DÀéH øÀOðÂ`AöX0ÈLHD|DÀéN‚t@öÈN‚Â`AöD0ÃLHD|Dƒt‚ÀéJÂ`Aö00HDƒt øÀÀéJÂ`Aö0»LHD|Dƒt øÀÀéKÂ`Aö0¶LHD|DÀéF‚t#&‚Â`Aöô ²LHD|DÀéH‚t	õ×T‚Â`®H¢txDÄéAöÌ #‚â`HDªL&‚t|DÀéN‚@öâÂ`Aö¸ ¥LHD|DÀéFƒt& øÀÂ`Aö¤  LHD|DÀéN‚t@ö¶‚Â`Aö ›LHD|DÀébƒt& øÀD`Aö| –LHD|Dƒt øÀD`ÀéRAöh ‘LHD|DÀéN‚t@ò"^‚Â`AöT ŒLHD|DÀéN‚t	õÒT‚OôonÂ`‡H£txDÄéAö, ¤øÀâ`HDƒL"%‚t|DÀéN‚OðÂÂ`Aö ~LHD|DÀéKƒtOð øÀÂ`Aö xLHD|DÀéF‚t&‚Â`AöðtLHD|Dƒt‚D`ÀébAöÜHDÀéF&ƒt øÀÂ`AöÈkLHD|D‚t‚ÀéEÂ`Aö´gLHD|DÀéH‚t	õÍT‚OðÂ`bH£txD``AöŒ¤øÀÄébHD]Lƒt|D øÀÀéJÂ`AöxYLHD|DD`	$ƒt øÀÀéBAödTLHD|DÀéN‚tOônn‚Â`AöPOLHD|DÀéFƒt& øÀÂ`Aö<JLHD|DÀéF‚t
& øÀÂ`Aö(ELHD|DÀéKƒtOð øÀÂ`Aö@LHD|DD`Àéb	õÈTƒt'& øÀ;H¢txDÄéAöì#‚â`HD7L%‚t|DÀéF‚&Â`AöØ2LHD|Dƒt øÀD`ÀébAöÄ.LHD|Dƒt øÀðW¸¿f¿üÿ¥·üÿ@Rýÿq·üÿN·üÿNÿÿ·üÿñ¶üÿ̶üÿ¥¶üÿ{¶üÿ¶üÿèµüÿ½µüÿ‰µüÿYµüÿ"µüÿD¨üÿ¨üÿ#ŸüÿŸüÿäžüÿ•üÿޏüÿ¿üÿ·€üÿœ€üÿj€üÿR€üÿ€üÿÚüÿýJÿÿ¦üÿ‰üÿ¯~üÿ“~üÿZ'ûÿ'ûÿ<~üÿ~üÿÅ}üÿ›}üÿJÿÿÀéJÂ`Aö°ýLHD|DÀéF‚t&‚Â`AöœøLHD|DÀéF‚t&‚Â`AöˆôLHD|DÀéF‚t&‚Â`AötïLHD|DÀéE‚t	õÃT‚AöLÂ`êH£txD#‚``Äéb	ë3%ÄéAö8£tHD¤øÀ&â`áLƒt|DÀéF øÀ&Â`Aö$ÝLHD|DÀébƒt& øÀD`AöØLHD|DÀéN‚t@ö=N‚Â`AòüpÓLHD|DÀéN‚t@ö².‚Â`AòèpÎLHD|D‚t‚ÀéNÂ`AòÔpÊLHD|D øÀtD`Àéb	õ¾PÀéF3&ƒt øÀÂ`Aò¬pÁLHD|DÀéF‚t& øÀÂ`Aò˜p¼LHD|DÀéb‚t
õ_f‚D`Aò	ë¶HÍø-xDÎø­øÍõGpø=±LÍø
õHp|DÍø­”Oð
ÍøMÍø -­ø$=ø&=¨LÍø(
 |DÍø0
Íø,MõIpÍø4-­ø8͍ø:=¡LÍø<
õJp|DÍø@MÍøD½%$ÍøH-­øL͍øN=ÍøP
˜HÍøXMxDÍøT
Íø\-õKp­ø`=øb-’LÍød
õLp|DÍøl]ÍøhM
õZeÍøp-­øt=øv-ŠLÍøx
õMp|DÍø|MÍø€­Íø„-­øˆ͍øŠ=ƒLÍøŒ
 |DÍø”
ÍøMõNpÍø˜-­øœ͍øž=|LÍø¬-|D…èõOp­ø°=%ø²-Oð	uLÍø´
õPp|DÍøÈ
Íø¸MõQpÍø¼]ÍøÐ]%ÍøÀ-­øÄ͍øÆ=ÍøÌMÍøÔ-­øØ=øÚ=gLÍøÜ
õRp|D1ÆõSpÍøàM&Íøä]Íøè-­øì͍øî=Íøü-­ø>ø>[LÍøõTp|DÍøÍøNõUpÍø^Íø ^
õieÍø.­ø΍ø>ÍøNÍø$.­ø(>ø*>LLÍø,õVp|DÍø0NÍø4Ž@ö$4Íø8.­ø<΍ø>>Íø@CHÍøHNxDÍøDÍøL.õWp­øP>øR.=LÍøT |DÍø\ÍøXNõXpÍø`.­ød>øf.5LÍøhõYp|DÍølNÍøp¾Íøt.­øx΍øz>.LÍø|õZp|DÍø„®Íø€NOð
Íøˆ.­øŒ΍øŽ>&LÍøœ.|DQÅõ[p­ø Î%ø¢>!LÍø¤ðA¸¿§|üÿv|üÿC|üÿ|üÿò{üÿÇ{üÿœ{üÿ¤lüÿO`üÿ…UüÿlUüÿUüÿâTüÿdˆûÿ‹eûÿmeûÿWeûÿ9eûÿ>eûÿMeûÿ¤GÿÿeûÿeûÿÑdûÿ£dûÿidûÿNdûÿToûÿ8oûÿFÿÿéEÿÿ\nûÿ |DÍø¬Íø¨Nõ\pÍø°.­ø´΍ø¶>üLÍø¸õ]p|DÍøÌÍø¼Nõ^pÍøÀ^ÍøÔ^
õneÍøÄ.­øÈ΍øÊ>ÍøÐNÍøØ.­øÜ>øÞ>íLÍøì.|DQÅõ_p­øðÎ%øò>	&èLÍøô |DÍøüÍøøNõ`pÍø/­øύø?àLÍøõap|DÍøOÍø_Íø/­ø?ø/ÙLÍøõbp|DÍø$_Íø O
õseÍø(/­ø,ύø.?ÑLÍø</|D…è
%­ø@ÏõcpøB?ÌLÍøDõdp|DÍøHOÍøL_ÍøP/­øTύøV?ÅLÍøXõep|DÍø`_Íø\O%Íød/­øhύøj?½LÍølõfp|DÍøt¿ÍøpO	õ‚[Íøx/­ø|ύø~?µLÍø€õgp|DÍø„OÍøˆ_ÍøŒ/­øύø’?®LÍø”õhp|DÍø˜OÍøœ_Íø /­ø¤ύø¦?§LÍø¨õip|DÍø¬OÍø°o@öRÍø´/&­ø¸ύøº?Íø¼žHÍøÄO@öTxDÍøÀõjpÍøÈ/­øÌ?øÎ/ÍøÐ–HÍøØOxDÍøÔÍøÜ/õkp­øà?øâ/LÍøäõlp|DÍøèOÍøì_Íøð/­øôύøö?‰LÍøø
õ€P|DÍøüO`	õ€P
õ€T%ƒpAòb`HDŽø0®øÀÎø ÎøP|Lƒt|D øÀÀéEÂ`Aò,	ëAò„pvMHDvL}DÀéb|Dƒt‚AòhE` Îø@Aò|ÎéLD®ø(FŽø0@ö	>kHÄøà	ëxDËé
Ëø AòT«øø0	ëcM&Ëé
Oð
Ëø }D«ø0‹ø0OðÎøPAòpuŽø0MD®øÀÎé²Oð$VH¢txD``Aò#‚â`HDRLÅéb&|DÅø€ÀébAòÌ«tND¥øÀAò¤D`MD‚Oð‚tHHHLxDh` |DÅé@òK`t`¥ø+tAò¸BLMD³t|DÅé@
 ªt°`	õ‡Pê`+‚$%¦øÀò`&:L†`Aòô|D‚t‚NDD`Â`Aò\p5LHD|Dƒt øÀD`Àé‚1Hò`xDÆéAò3‚²tAò0-HND-LMDxDÅé|Dt`Aò) ê`Oð¥ø+tAò%LMD³t|DÅé@
 ªt°`AòDê`ð@¸HnûÿnûÿûmûÿâmûÿÉmûÿ°mûÿ›mûÿ…mûÿmmûÿMmûÿ3mûÿmûÿølûÿ*vûÿ(ƒûÿƒûÿì‚ûÿ Oüÿ‰BÿÿcBÿÿr‚ûÿK‚ûÿ>ûÿûÿµ?ýÿûÿ+“ûÿìMüÿ“ûÿ“ûÿA¥ûÿú’ûÿHD+‚¦øÀò`AòHvüLNDƒt|D øÀÀéKÂ`AòX÷LHD÷M|DÆéN}DE`Aò4u²t3‚	ëò`AòlÀé‚MD‚Aò'‚tAòŸ.ìHAò”Ëø`Aò¨xDh`& +‚ÅéNDæHLDªt	õŒUxDp`äHê`xDÅé+‚âHÆé¢Oð
xD`` ªtÄéAò¼£tHD¤ø3t3‚&ÙLÙM|DÀéb}DAòøE`AòЋø ND«ø0MDËø Ëø@	õ–[ øtÎHÎLxDÅé|Dt`ê`Aò䥸ÀLDÉHOð«t%xD`` £t°`Aò ÄéRHD¤ø3t¦øÀò`	õ¹V¿Lƒt|DÀéE øÀ	õ‘UÂ`»H»LxD³t|DÅéJAò4$¦øÀp`LDÆé‚@öÔFê`¥ø+tAòp%±H	ëAò\%â`xDÎø`	ëAòH%Äé
MD¤ø#t©H©LxDÅéOð	|Dê`¥ø+t³t¦øÀt`Æé‚Aòv¡HNDŽø xDÎøAò„ ®ø0Îø HD›LOðšM|D³t}D3‚t`ÆéâAò˜&Àé^Oð8Â` øMƒt}DËøP‘H	ëAò¬&xDÅéê`ND+‚Oð	ŒHËé‚OðxDp`
 ªtÆéAòÔ ²tHD3‚Aòøf‹ø0ND«øÀOð	€Mƒt}D øÀÀéZÂ`Aòè |MHD³t}DE`Aò$5¦øÀt`Æé‚	ëAòü%Àéâ øÀMDƒtrHsLxDÅé|Dt`ê`Aò4¥øÀLDnHOðÆé‚OðBxD`` «tÄéAò80£tHD¤ø3t¦øÀAòäfcLNDƒt|D øÀÀéKÂ`AòL0^LHD^M|DÆéK$}DE`	õ›U³tOð¦øÀò`Aòt6ÀéBND øtTHê`xDÅé
Æé
Aòœ0¥øÀHD«t%³tOð
3‚ò`Aòˆ6JLNDƒt|D³t¦øÀt`ÆéRAò°6ÀéEND‚@ö¥EÂ`AòÐ`ALHD|Dƒt øÀÀéNÂ`=Hò`xDÆéAòÄ53‚²tAòì69HND9LMDxD|Dt`ÅéAòØ4ê`LD¥øÀ3H«txD`` ¢tÄé °`	õ P#‚²t3‚ò`Aò¼f+LNDƒt|DD`$ øÀðP¸ƒ¤ûÿ¸Lüÿl¤ûÿA¤ûÿñ¶ûÿG¤ûÿԶûÿ<üÿ¶¶ûÿ”¶ûÿŸ¶ûÿ¶ûÿk¶ûÿX?ÿÿY¶ûÿ-¶ûÿ¶ûÿÎ^ýÿîµûÿÐ:üÿ¢ÂûÿÉÂûÿwÂûÿ•Âûÿ|ÂûÿlÂûÿKÂûÿYÂûÿ0Âûÿ»=ÿÿ«9üÿúÁûÿñÁûÿËÁûÿRûÿ•Áûÿ Îûÿ/ÎûÿÎûÿÿÍûÿÀéBAò@üLHDüM|DÆéH}DÀé^²tAò(E3‚MDò`AòPFÂ`ND øÀOðƒtòHóLxDÅé|Dt`Aò<Dê`LD¥ø+t%ÄéAòd@£tHDâ`#‚³t¦øÀÆéâAòxFåLNDƒt|D øÀD`ÀéRAò¨`áLHD|DÀéEƒt@öd5 øÀAòæÂ`ÛHò`xDÆéAò´E3‚ØHMD²tAòŒFxDh`ÖHNDxDÆéò`Oô/`3‚²t	õ¥VÑL²t|DÆé@AòÈ@ò`3‚HD«t	&¥øÀÅé²ÊLÀébAò”f|Dƒt øÀNDD`AòÜ@ÄLHDÄM|D³t3‚}Dt`Æé¢
&ÀébAòV	ëAòðFE`ND‚ƒt»H»MxDÆé}DÎøPò`AòU¦øÀMD¶HOð³t	õ´VxDÅé «tÎøAò,Pê`HD¥øø0®øÀÎø Oð©Mƒt}D øÀE`Àéâ	õªPÆéJAòTTÀé^Aòle³t	ë¦øÀ	ëò`AöIÂ`AòT‚Oð
ƒt™HÎø`	ëxDh`# +‚ÅéAòhTªtLD’H“MxD``! }Du`Aò|UÄéMD#‚ŽH¢txDh` ªtÅé% °`Aò¤P+‚HD²t3‚ò`&†L†M|DÎø@}DE`ÀébAòXeŽø 	ë®ø0Aò¸UÎø MD øÀAò6ƒtAòôTyH@òËø`xDh` ¥øÀÅé«t	ësHAòÌT	ë¥øàxD	õ¯Tp`' ÆéOð23‚kH²tkNxDÅéAò`~DÄénâ`HD#‚Oð
¢tAòf*tNDê`bLcM|D‹ø }DE`«ø0AòDeËø MDËø@Àé‚‚‚tZH[LxDp`|Dl`Aò0dÆé¢LD¦ø3t&Äé
AòP¨`@öö`Íøð4 ÍøÈ@ö`Íøì
 ÍøTÍø
 ÍøôÍøÍøL
Íøè	 ÍøÔ	Íø\	ÍøH	Íø4	9 Íø	 Íø|Íø„	) Íø(Íø 	Íø¤ ÍøÍøŒ Íø< ÍøàÍøØ
Íøœ
Íøˆ
Íø( ÍøÌÍø. ÍøøÍøÍø°? Íøœ Íøt
ÍøàL Íø8 ÍøhÍø´ÍøÌÍø´Íøìð>¸½7üÿDÍûÿ!ÍûÿÍûÿìÌûÿ27üÿÉÌûÿíóûÿØûÿÝèûÿ«óûÿ¤6üÿ˜óûÿ|óûÿ…óûÿcóûÿJóûÿóûÿóûÿDóûÿóûÿ;üÿ9ÿÿñòûÿÖòûÿóûÿÙòûÿüÿêòûÿÕòûÿÔòûÿÍø$+ ֐* Íø\̐" ÍøhÍøtꐐ Íø`ÍøüÍø ��©% Íøp¤ ÍøÀåП Íø¸! ÍøTÍø¬Íø˜‹ Íøäþù•  Íø|½¸š†| ÍøÍøÔÍør# ېc	 ¤øÀâ`#tT$ÍøÍøÍøp	Íø^ Íø¤L@öÍøÜÍøÍøÍøèÍø4wY@öQ ÍøÜKOôÀtTB Íø<KÊ$J Íø`J$E& Íø@LÍø8JF$ÍødÍø„ÍøHh7 ÍøH$Íø6$ ÍøôGŒ$13 ÍøÈF$–5&,E ÍøÄE[$O–=&" ÍøˆE$@–&&ÍødÍøPÍøÄ
Íø°
ÍøÐÍø¼Íø¨Íø”Íø€ÍølÍøXÍø0Íø,ÍøPÍøØ
 ÍøLE($;–&Íø,Íø¬	Íø@m ªt+‚ê`Íøx†Íø¸GєÍøãÍøðf'–­øṷ̈øḙ̀øÔ̭øÀ̭ø˜̭ø„̭øp̭ø\̭øH̭ø4̭ø̭ø¼˭ø¨˭ø€˭øX˭ø˭ø˭øàʭø¸ʭø¤ʭøʭøTʭø@ʭø,ʭøʭøðɭøÜɭø ɭøŒɭøxɭødɭøPɭø<ɭøÄȭø°ȭøtȭøüǭøèǭøÔǭø\ǭøHǭø4ǭø ǭøǭøøƭø¼ƭø¨ƭø”ƭøDƭøƭøƭøôŭø|ŭøhŭøTŭø@ŭø,ŭø¼mø”mø€mølmøDmømøô-øà-øÌ-ø¤-ø-ø|ÀÍø ÍøŒÍøxÍø$
 ýNÍø
Íø~DÍøü	ÍøÀ	Íø˜	Íø 	öLøþ<øê<|D­ø¬<øš<ør<ø^<øJ<ø6<ø"<­ø <ø<­øø;­øä;­øÐ;ø¾;øª;ø–;­ø”;ø‚;øn;­øl;øZ;­øD;­ø0;ø;ø
;­øô:øâ:øÎ:­øÌ:øº:ø¦:ø’:­ø|:­øh:øV:øB:ø.:­ø:ø:øò9øÞ9­øÈ9­ø´9ø¢9øŽ9øz9øf9øR9ø>9­ø(9­ø9­ø9­øì8øÚ8­øØ8øÆ8ø²8­øœ8­øˆ8øv8­ø`8­øL8ÍøD8­ø88­ø$8­ø8øþ7øê7øÖ7­øÀ7­ø¬7­ø˜7­ø„7­øp7øJ7ø67ø7øú6­øä6­øÐ6ø¾6øª6ø–6­ø€6­øl6øZ6øF6­ø06øö5øâ5­øà5­øÌ5­ø¸5­ø¤5­ø5øV5ø.5­ø5­ø5­øð4­øÜ4­øÈ4­ø´4­ø 4­øŒ4­øx4­ød4­øP4­ø<4­ø(4­ø4­ø4­øì3­øØ3­øÄ3­ø°3­øœ3­øˆ3­øt3­ø`3­øL3­ø83­ø$3­ø3­øü2­øè2­øÔ2­øÀ2­ø¬2­ø˜2­ø„2­øp2­ø\2­øH2­ø42­ø 2­ø2­øø1­øä1­øÐ1ø¾1­ø¨1ø‚1­øX1­ø01­ø1­ø¸0ø¦0ø~0øj0­øh0­øT0­ø@0­ø,0­ø0ZHÍø YKxDÍø]{DWMÍøðlWN}DÍøÜLVL~DÍøÈUH|DÍø´<TKxDÍø \SM{DÍøŒlRN}DÍøxLQL~DÍødPH|DÍøP<OKxDÍø<\NM{DÍø(lMN}DÍøLÍøL~DJLÍøìJH|DÍøØ;IKxDÍøÄ[HM{DÍø°kGN}DÍøœKFL~DÍøˆÍøt|DCHÍø`;ÍøL;xDAKÍø8[AM{DÍø$k@N}DÍøK?L~DÍøü
>H|DÍøè:=KxDÍøÔZ<M{DÍøÀjÍø¬j}D9NÍø˜J9L~DÍø„
8H|DÍøp:7KxDÍø\Z6M{DÍøHj5N}DÍø4J4L~DÍø 
3H|DÍø:2KxDÍøøY1M{DÍøäi0N}DÍøÐI/L~DÍø¼	.H|DÍø¨9-KxDðY¸¿àQûÿT4ÿÿ4OûÿOûÿ¶Nûÿ§NûÿNûÿ{Nûÿ`NûÿFNûÿ4Nûÿ#Nûÿ%?ûÿ7ûÿÛ6ûÿÅ6ûÿ³6ûÿ£6ûÿa1ÿÿ5ûÿâ4ûÿÒ4ûÿí0ÿÿµ&ûÿ51ÿÿ£&ûÿ–&ûÿ‰&ûÿv&ûÿ¢%ûÿ‘%ûÿw%ûÿg%ûÿL%ûÿ>%ûÿ/%ûÿ#%ûÿ%ûÿ%ûÿõ$ûÿÝ$ûÿÌ$ûÿÀ$ûÿþ#ûÿÍø”YüM{DÍø€iûN}DÍølIúL~DÍøX	ùH|DÍøD9øKxDÍø0Y÷M{DÍøiöN}DÍøIõL~DÍøôôH|DÍøà8óKxDÍøÌXÍø¸X{DñMÍø¤hðN}DÍøHïL~DÍø|îH|DÍøh8íKxDÍøTXìM{DÍø@hëN}DÍø,HêL~DÍøéH|DÍø8èKxDÍøðWçM{DÍøÜgæN}DÍøÈGåL~DÍø´äH|DÍø 7ãKxDÍøŒWâM{DÍøxgáN}DÍødGàL~DÍøPßH|DÍø<7ÞKxDÍø(WÝM{DÍøgÜN}DÍøGÛL~DÍøìÚH|DÍøØ6ÙKxDÍøÄVØM{DÍø°f×N}DÍøœFÖL~DÍøˆÕH|DÍøt6ÔKxDÍø`VÓM{DÍøLfÒN}DÍø8FÑL~DÍø$ÐH|DÍø6ÏKxDÍøüUÎM{DÍøèeÍN}DÍøÔEÌL~DÍøÀËH|DÍø¬5ÊKxDÍø˜UÉM{DÍø„eÈN}DÍøpEÇL~DÍø\ÆH|DÍøH5ÅKxDÍø4UÄM{DÍø eÃN}DÍøEÂL~DÍøøÁH|DÍøä4ÀKxDÍøÐT¿M{DÍø¼d¾N}DÍø¨D½L~DÍø”¼H|DÍø€4»KxDÍølTºM{DÍøXd¹N}DÍøDD¸L~DÍø0·H|DÍø4¶KxDÍøTµM{Dý–µN}Dø”´L~Dó´H|DKxD镳M{D䖲N}Dߔ²L~Dڐ±H|DՓ±KxDЕ°M{D˖°N}DƔ¯L~DP¯H|D¼“®KxD·•®M{D²–­N}D­”­L~D¨¬H|D£“¬KxDž•«M{D™–«N}D””ªL~DªH|DŠ“©KxD…•©M{D€–¨N}D{”¨L~Dv§H|Dq“§KxDl•¦M{Dg–¦N}Db”¥L~D]¥H|DX“¤KxDS•¤M{DN–£N}DI”£L~DD¢H|D?“¢KxD:•¡M{D5–¡N}D0” L~D+|D¤FŸL&“ŸH|D!•žMxD–žK}D
õFp{DÍø
õEp“õDsÍøìõCpÍøØ<õBsÍøÄõApÍø°<õ@sÍøœõ?pÍøˆ<õ>sÍøtõ=pÍø`<õ<sÍøLõ;pÍø8<õ:sÍø$õ9pÍø<õ8sÍøüõ7pÍøè;õ6sÍøÔõ5pÍøÀ;õ4sÍø¬õ3pÍø˜;ðê¸ò#ûÿÁ#ûÿ€#ûÿJ#ûÿ&#ûÿ#ûÿ#ûÿ#ûÿ;/ÿÿô"ûÿè"ûÿÇûÿÖ"ûÿˆ"ûÿI"ûÿÀûÿ."ûÿ"ûÿê!ûÿ¹!ûÿƒ!ûÿ[!ûÿ1!ûÿ!ûÿö ûÿ
/ÿÿÇ ûÿ¶ ûÿŸ ûÿ| ûÿèûÿÔûÿÆûÿ°ûÿ›ûÿmûÿcûÿGûÿ:ûÿûÿõûÿáûÿ×ûÿ¸ûÿ‚ûÿ;ûÿØûÿ®ûÿˆûÿuûÿ!ûÿ
ûÿêûÿÄûÿ¡ûÿzûÿUûÿ,ûÿûÿÕûÿ¨ûÿvûÿHûÿ%ûÿÿûÿØûÿ´ûÿûÿjûÿCûÿûÿøûÿÕûÿ¬ûÿ{ûÿMûÿûÿåûÿ½ûÿ—ûÿqûÿLûÿ(ûÿûÿÙûÿ¶ûÿûÿnûÿPûÿ)ûÿûÿáûÿ»ûÿšûÿuûÿeûÿ9ûÿûÿûÿàûÿ‰ûÿNûÿûÿç
ûÿ¤
ûÿx
ûÿ;
ûÿ
ûÿØ	ûÿÃ	ûÿx	ûÿl	ûÿf	ûÿR	ûÿD	ûÿ8	ûÿ-	ûÿõ2sÍø„õ1pÍøp;õ0sÍø\õ/pÍøH;õ.sÍø4õ-pÍø ;õ,sÍøõ+pÍøø:õ*sÍøä
õ)pÍøÐ:õ(sÍø¼
õ'pÍø¨:õ&sÍø”
õ%pÍø€:õ$sÍøl
õ#pÍøX:õ"sÍøD
õ!pÍø0:õ sÍø
õpÍø:õsÍøô	õpÍøà9õsÍøÌ	õpÍø¸9õsÍø¤	õpÍø9õsÍø|	õpÍøh9õsÍøT	õpÍø@9õsÍø,	õpÍø9õsÍø	õpÍøð8õsÍøÜõpÍøÈ8õsÍø´õ
pÍø 8õsÍøŒõpÍøx8õ
sÍødõ	pÍøP8õsÍø<õpÍø(8õsÍøõpÍø8õsÍøìõpÍøØ7õsÍøÄõpÍø°7õsÍøœõþpÍøˆ7õüsÍøtõúpÍø`7õøsÍøLõöpÍø87õôsÍø$õòpÍø7õðsÍøüõîpÍøè6õìsÍøÔõêpÍøÀ6õèsÍø¬õæpÍø˜6õäsÍø„õâpÍøp6õàsÍø\õÞpÍøH6õÜsÍø4õÚpÍø 6õØsÍøõÖpÍøø5õÔsÍøäõÒpÍøÐ5õÐsÍø¼õÎpÍø¨5õÌsÍø”õÊpÍø€5õÈsÍølõÆpÍøX5õÄsÍøDõÂpÍø05õÀsÍøõ¾pÍø5õ¼sÍøôõºpÍøà4õ¸sÍøÌõ¶pÍø¸4õ´sÍø¤õ²pÍø4õ°sÍø|õ®pÍøh4õ¬sÍøTõªpÍø@4õ¨sÍø,õ¦pÍø4õ¤sÍøõ¢pü“õ s÷õžpò“õœsíõšpè“õ˜sãõ–pޓõ”sِõ’pԓõsϐõŽpʓõŒsŐõŠpõˆs»õ†p¶“õ„s±õ‚p¬“õ€s§ñü¢“ñøñô˜“ñð“ñ쎓ñ艐ñ䄓ñàñÜz“ñØuñÔp“ñÐkñÌf“ñÈañÄ\“ñÀWñ¼R“ñ¸Mñ´H“ñ°Cñ¬>“ñ¨9ñ¤4“ñ /ñœ*“ñ˜%ñ” “ññŒ“ñˆñ„€1‘•BòP0Iø HDÍøø,Íøä,øÖ,ÍøÐ,øÂ,Íø¼,ø®,Íø¨,Íø”,ø†,Íø€,Íøl,ÍøX,ÍøD,Íø0,Íø,Íø,øú+Íøô+øæ+Íøà+øÒ+ÍøÌ+Íø¸+Íø¤+Íø+Íø|+Íøh+ÍøT+øF+Íø@+ø2+Íø,+Íø+Íø+øö*Íøð*ÍøÜ*ÍøÈ*Íø´*Íø *ÍøŒ*ø~*Íøx*øj*Íød*ÍøP*Íø<*Íø(*ø*Íø*Íø*Íøì)ÍøØ)øÊ)ÍøÄ)ø¶)Íø°)Íøœ)Íøˆ)Íøt)Íø`)ÍøL)Íø8)ø*)Íø$)ø)Íø)ø)Íøü(øî(Íøè(ÍøÔ(ÍøÀ(Íø¬(øž(Íø˜(øŠ(Íø„(Íøp(øb(Íø\(øN(ÍøH(ø:(Íø4(ø&(Íø (ø(Íø(Íøø'Íøä'ÍøÐ'øÂ'Íø¼'ø®'Íø¨'øš'Íø”'ø†'Íø€'ør'Íøl'ø^'ÍøX'ÍøD'Íø0'ø"'Íø'Íø'Íøô&øæ&Íøà&øÒ&ÍøÌ&Íø¸&Íø¤&Íø&ø‚&Íø|&øn&Íøh&­øX&ÍøT&Íø@&ø2&Íø,&ø&Íø&ø
&Íø&Íøð%ÍøÜ%øÎ%ÍøÈ%øº%Íø´%ø¦%Íø %ø’%ÍøŒ%ø~%Íøx%øj%Íød%ÍøP%øB%Íø<%Íø(%ø%Íø%ø%Íø%øò$Íøì$øÞ$ÍøØ$øÊ$ÍøÄ$ø¶$Íø°$ø¢$Íøœ$øŽ$Íøˆ$øz$Íøt$øf$Íø`$øR$ÍøL$ø>$Íø8$ø*$Íø$$ø$Íø$ø$ÿ’øî#ú’øÚ#õ’øÆ#ð’ø²#뒍øž#撍øŠ#ᒍøv#ܒøb#גøN#Ғø:#͒ø&#Ȓø#ҍøþ"¾’øê"¹’øÖ"´’øÂ"¯’ø®"ª’øš"¥’ø†" ’ør"›’ø^"–’øJ"‘’ø6"Œ’ø""‡’ø"‚’øú!}’øæ!x’øÒ!s’n’øª!i’ø–!d’_’øn!Z’øZ!U’øF!P’ø2!K’ø!F’ø
!A’øö <’øâ 7’øÎ 2’øº -’(’ø’ #’’’øV ’øB ’ø. 
’ø ’Íø\À”“Àé"Àé"%³	ñ
à9<ð¶é((`¿<ðRë¥h4µ±bhTéBê#íÐôÐ<ðJëêç"h9±#<ðLëãç<ð éàç
õ
]
°½èð½¿е¯FHxD@hIBhyD	h’lŠBÑ!F"#<ðÞé(¿н<ðºé@¹
H"F
IxDyDhh<ðê н!F*±G(ùÑð*øéç<ðüé(òÑ÷ç”]¼¢¿ÂúÿKBh{D’lhšB¿"#<ðE¸€µoF:±G(¿€½ðø €½<ðØéõç¿Xе¯<ð éÐø<<ñIÐ0IÜø0yD	h	h‹BÐJhRmTNÔ\hdm´ñÿ?ؿ²ñÿ? ÝFF<ðÔêF Fq³Ðø<À!¼ñÁcÑ&à!ÁcÜøoð@AˆB¿н8ÌøÑ`F½èÐ@;ðê¿Zmð€BÚБøW RÖÕÓø¬ r±“h+Û2hŒBÕÐ2;ùÑнÓø€0‹BÍÐ+ùÑJzDh‰±úñI	)ÀÑîçFFð)ø·ç¿ü
Ž
(¿ pG@hˆB¿ pGJhRmSH¿àCh[m³ñÿ?ؿ²ñÿ?
ÜBmð€B¿;𰿑øW RH¿fà;ð©¿ðµ¯Mø½Œh,:Ûñ"F)FhƒB.Ð1:ùÑ,.Û)hB&ÐBhRm²ñÿ?ܐøW RÕJhRm²ñÿ?ܑøW0[
ÕFð:ø€¹5<Oð0FàÑ
àRÕFðYøñçF<ð(êíç!F]ø»ð½!F]ø»ð½ˆB¿ pGBhRm²ñÿ?ܐøW RX¿;ðS¿JhRm²ñÿ?ܑøW0[H¿àRH¿-à;ðD¿ˆBÐÐø¬ бh(¼¿ pG2h‹BÐ8ñ¿ pGõç pGF 2±Òø€0‹BF¿pG÷çHxDh°ú€ð@	pG¿‹h+¼¿ pGðµ¯Mø½ñ%Rø%`†B>Ð5«BøÑ+@Û$JOðzDÒøààñ"œE.ÐëŒÔhbhRm²ñÿ?òܔøW RîՄBÐÐø¬`F†±²h*åÛñ.h¦BÐ5:ùÑÜçÕø€P"¥BÐ-øÑtEÓÑ"]ø»½èð@FpG"]ø»½èð@FpG"]ø»½èð@FpG¿ÐˆBÐÐø¬ бh(¼¿ pG2h‹BÐ8ñ¿ pGõç pGF 2±Òø€0‹BF¿pG÷çHxDh°ú€ð@	pG¿ü
°µ¯FÐø¨³ƒh+ÛÔøY±ñZhøU0›&Õ1:÷Ñàâhñ;høUP­ÕÐøP»1;ôÑ<ð&éF`m@ô@p`e F<ð&éam!ôqae±F<ð&é F°½IyDhIÂhhyD;ðÚïOðÿ0°½IyD
hIÃh(hyD;ðÎïOðÿ0°½¿t
°ñúÿ\
iíúÿðµ¯-éF ;ðBï(@ЁF¨k±@HxDà?HxDhoð@A0hˆB¿00` ;ðF(hoð@AˆB¿0(`5HÄéYxDfa…ohhl.³2HxD;ðð(F!F"°GF;ððï-³!hoð@B‘BÐ9!`¿ F;ðœî(F½èð½AöpxOð	&àAötx$à(F!F"Oð	;ðÖïF(ÜÑAöxà;ðïбAöxOð	&HFù÷aü0Fù÷^ü Fù÷[üHAFKâ"xD{Dú÷-ý%(F½èð½
HIxDyDhh;ðBîÛç¿vÚúÿrøúÿø	ö	ŽXòúÿ 	tÙúÿ°µ¯FF!";ðhïFȱI"FÕø„yDÑø;ðï(Ô hoð@AˆBÐ8 `Ð °½ F;ð&î °½ Fù÷
üOðÿ0°½Wðµ¯-釰Pø€&„j!±Ñø€6)úÑ ë†<ð0è¢hOðÿ1*`Àò߀.@ó£€uHOðxDtHxDhsH”xDàœñ h€E€òǀëˆQø‘™Ðø„Ñø;ð\îœ(éÐ!F;ð¼ïƒF¹;ð`î(RÐ(hoð@AˆBÐ8(`¿(F;ðÄí»ñÑИOð
Tø*PÐøh%Ñ™Ùø„Ñø;ð0!F;ð”ïF¹;ð8îð± hoð@AˆBÐ8 `¿ F;ðœíà%œOðÿ1ëŠDø*PA`]E Ðí±
ñ
	ñ€VEÊјç>I˜yDh;ðjí hoð@AˆBÚÑá瘙h;ð^í(hoð@AˆB§Ѭç3H™xD
h™hh1IÓhòhyDh;ðBî F;ðïOðÿ0°½èð½!I oð@IyDŠFIyDÑø€IyD‹Fà¡hªhŠB%ÚFTø ÚøÐø„;ð¾í(ïÐ!F;ð ï¹;ðÄíH±0hHEäÐ80`¿0F;ð*íÝçØøYF;ðí0hHEÕÐïç;ð>í˜;ðLï °½èð½ÆUèáúÿW0LâúÿtáúÿLbÌúÿðµ¯-郰ÐNF~DÖøÜ;ð0ïÍM}Dp±FÖøÜ(h;ð(ï BÐOð@F°½èð½,hÖø< F;ðï(𐀃FÙøÖø<‚lHF*ퟄ�G(ð‚€XEÐ%ƒFOð
$OðœàÖø0 F;ðøî(ðڀFÙøÖø0‚lHF*ðʀGF(ðˀ¥BÐÖø8(F/ð“ü(EÐ•Ùø£KÖø8{D‚lHFhªB@ð·€"#;ðDíF(ð¸€Ùø„Öø0’;ðZí(ñÙø„Öø8;ðÀî(ñø€€FÙøÖøx•‚lHFªB@ð©€"#;ðí‚F(ðª€Öø|PF/ðQü$(ðǀ%£à.FOð$Oð
%0hoð@AˆB!Ñ&à;ð8í(ô~¯&Oð%Oð
$;ðÔìH¹uHuIxDÙø yDhh;ðíOðÿ8V±0hoð@AˆBÐ80`¿0F;ð,ì»ñÐÛøoð@AˆBÐ8Ëø¿XF;ðì-¿(hoð@AˆBѺñ¿Úøoð@AˆBÑ,¿ hoð@AˆB?ô¯8 `¿ F;ðþë@F°½èð½8(`¿(F;ðòëÜç8Êø¿PF;ðêëÝç;ðÐìF(ô5¯&–ç*kАGF(ôJ¯ÿ÷ìú˜ B[Ð;ðdì!(‘XОOð
$%‚ç*ZАG‚F(ôX¯ÿ÷Ôú;ðÞëOð
%ÙøÖø|‚l˜‚B$ÑHF"#;ð^ìF(³Ùø„"FÖøx;ðvì( ÔÙø„Öø|;ðÞí€F(ÔHF;ðpìÝéV0hoð@AˆBô^¯bçHF2³GF(ÛÑÿ÷šú-±Oð
$ÝéV8ç;ðì$(÷ÑÞç%&F,çOðöæ;ðZìF(ôݮ‘ç;ðRì‚F(ôü®¢ç;ðLìF(³ÑÖç¿UZŠÆàúÿðµ¯-é…°ˆFèIƒFØøyDÛø `	h‘ˆB@ðʁØøoð@AOð	ˆB¿0Èø Oð
 Íø€™)KÑØé!›šBOщE€òՁØøQø)P	ñ	)hoð@B‘B¿1)`(¿hoð@B‘B)ÑËHihxD–hB8Ѩh(ò”€ðéhÀñûöpCÐÛø4(JÐÛéÛøDRø*@Pø*)¿Qø*Oðÿ1¶ñÿ?eÜ[à9`¿;ðâêÏç™F@FˆGF F-ÀÑtá‰E€ò…ë‰Íh¯ç(F•;ð흈±F;ðíF hoð@AˆBН8 `¾Ñ F;ð¼ê¹ç;ðHë(@ð«€Oðÿ6Ûø4(´ÑÛø,@,ð¥€`9ÐÛø(€!F@F:ðÆíûñû‚¸ëÝø€¿!b@OðH¿"@@Oðÿ1¶ñÿ?ÜÛø< Rø* D¶ñÿ?@󌀆B!Ú˜û)\¿0hF
ñ
.(FôC¯á(F;ðÀìFmçÛø(°ñOðW@BOðÿ4Oðÿ1¶ñÿ?ÜÜÒç ©F;ð¢ê(ð,ÉNFoð@B~DÖøÄh‘B¿1`ÖøÄà`PF/ð‰ù(ðhoð@C aÖø4hšB¿2`Öø4ñ&`a F!#(ð)ú(ðF hoð@F°BÐ8 `¿ F;ðê­H)F"xDnðý(h°BÐ8(`Ñ(F;ðêCöq@ò•2fàOôÉrOô Qlà£H©F£IxDyDhh;ðäéCöSa@ò‡2Sà ©F;ð:ê(ð܀“NFoð@B~DÖøÄh‘B¿1`ÖøÄà`PF/ð!ù(ðրhoð@C aÖø4hšB¿2`Öø4ñ&`a F!#(ðÁù(ð@F hoð@F°BÐ8 `¿ F;ð¶éwH)F"xDnðŸü(h°BÐ8(`Ñ(F;ð¦éCöÚa@ò’2jHkKxD{Dú÷bøOôÉrBöMFØøoð@C˜B
Ð8ÈøÑ@FFF;ðˆé1F"FbHcKxD{Dú÷Fø&(F;à¿–QIyD	hˆB?ô0®@F;ðÈë(~ЀF@ho‘)F}ÐOðÿ9-æ;ðòéF Fj±EHxDhhFÿ÷Cù(wÐ;ðtéÝø€ FØøoð@B‘BÐ9ÈøÑF@F;ðBé F(¿hoð@B‘BÑ0F°½èð½9`¿;ð0é0F°½èð½Cöÿa@ò•2ƒçCöuàCöu hoð@AˆBÐ8 `¿ F;ðé@ò•2 àCöÃakçH©FIxDyDhh;ððèCöWa
çCöËeàCöÕe hoð@AˆBÐ8 `Ñ F;ðôè@ò’2)FÝø€Kç@ò‘BòÅq%aç@ò‘BòÇq%JçOôÉrBöEç@ò‘Bòîq%FÝø€=ç¿jÿ:ÿžþ›³úÿ«ºúÿÜîúÿòN~WÂONX†áúÿ¤îúÿŠ…Îúÿðµ¯-鉰ŠFFÚø!Íé‘oð@AˆB¿0ÊøæLÚø|D oBðހÑø¬ *ðр‘h)Û2hƒBðр29øÑ;ðBéFlÙHxDh
h-¿…BÑIh)÷Ñ %à*hoð@AŠB¿2*`jhhˆB¿0`(F’;ð éÙøL@ð˜ ð;ðÆè(–𻀀FÙøP±ÒHxDàÒHxDÐøoð@AÙøˆB¿0Éø ;ðŒè(𦀃FÚøoð@AˆB¿0ÊøËé¨Ëø¤o`hl .𖀿HxD;ðfé(@𠀠FYF"°GF;ðdé,ðŸ€”Ûøoð@H@EÐ8Ëø¿XF;ðèÚø&–@EÐ8Êø¿PF:ðþ(¿hoð@AŠBÑ-¿(hoð@AˆBј(¿hoð@AŠBÐQ`¿:ðâï hoð@AˆB#Ñ F	°½èð½Q`¿:ðÒïÛç8(`¿(F:ðÌïÛçÑø€BÐ)ùшIyD	hˆBô2¯TF hoð@AˆBÛÐA!` F¢Foð@B‘BÐ9ÊøÐ	°½èð½FPF:ð¤ï F	°½èð½Bö OðàBö Oðà FYF"Oð	;ðÞèF(ôq¯Bö& OðàBö& Oð	Oð$
à;ðè(Oðð¸€Bö& Oð	Oð@Fø÷UýHF”ø÷QýXF”ø÷MýZHžxD”Ákðkþ÷Ûþ(DÐYHOôÛrXK™xD{Dù÷þ©ª«0Fú÷¤øÝø€(;Ô™oð@BhB¿0`˜h“BÐZ`ÑF:ð2ï!F˜oð@IhJEÐ:`ÑF:ð&ï!F˜FhIEÐ9`¿:ðï0lAF›*Fú÷ù F3à0l*F™›ú÷
ùOôÛrà0lAF›*Fœú÷ù,¿ hoð@AˆB7ÑOôÜrBöG%˜(¿hoð@C™Bј(¿hoð@C™BÑ"H)F"KxD{Dù÷¥ý Úøoð@B‘Bô'¯)ç^LNý9`àÑF:ðÌî"FÛç9`àÑF:ðÄî"FÛç8 `¿ F:ð¼îÀç	H	IxDyDhh:ðœî>çòûúüøüÖRóäúÿÒù&Êúÿíèúÿ@êúÿèúÿbéúÿðµ¯-é­õ}ƒFžHFFxD3Ðø ›HRExDF7ÐHFÙøxð±jh‚B0ÐÒø¬0³™h)Û3h„B&Ð39ùѓK“I{DÒhyDhÃh0h:ðLïBö½$OôàvBàˆH‰IxDyDhh:ðFîñçF!±Ñø€BúÑà‚IyD	hˆBÛÑh©(F/ð¹üà³FN¨h":ðìêVEMÐHFÙøx ³rh‚BFÐÒø¬0»³™h)Û3h„B<Ð39ùÑvKvI{DÒhyDhÃh0h:ðïBöÈ$@òÁ%(Fø÷üoH!FoK2FxD{Dù÷ÝüOð
PF
õ}½èð½Bö¾$¢ç`HaIxDyDhh:ðìíÛçF!±Ñø€BúÑàZIyD	hˆBÅт©0F/ð_ü(wÐ
ñÐFh"@F:ðŽêhhIFÙø ‚l(F*kАGF(lÐ(F\Fð*øƒF0Ñ:ðfî(qÑ(hoð@AˆBÐ8(`¿(F:ðÈíphÙø ‚l0F*RАGF(SÐ(Fð
øF0Ñ:ðFî(TÑ(hoð@AˆBÐ8(`¿(F:ð¨íN«%mlFËÍé0¶N®ñ2•X%\øk=DøkùÑ®h%XøK=FøKùÑ/ðËü0$ÐÚøoð@AˆB¿3™Ñø 0ÊøPF
õ}½èð½BöÉ$Pç:ð\îF(’ÑBöÓ$	à:ðTîF(«ÑBö×$àBöÛ$@òÃ=çBöÕ$àBöÙ$@òÃ6ç¿dù4H(ùj­úÿùVùyãúÿtø¶¬úÿbøÎøñâúÿàÚúÿÒçúÿðµ¯-é­õ#}ˆF	©F@F’F/ð›û(ðԀFàj°õÙ:ðÎîƒF(ð΀ mH±Ëø à
ñŒ  m(õѠhYFRFƒi F˜G(ð¿€hoð@B‘BÐ9`¿:ðí`l(¿ak끁BÙh*JÕ0ˆBùÓ%mæjØø4€±Ùø@:ðJï‚F 	ñ	ñ( FCF.ðoøPF:ðDïÙø	ñ(Íék	ñ"FCF1F0ð û}±ÙøP:ð*ï‚F (F1F"FCF.ðQøPF:ð&ï˜:ð,ïIIoð@CyDhhšB¿hQ`
õ#}½èð½BHBJxDzDÐø”Pk"ð‘ÿ?HCö‘>K@ò¿"xD{Dù÷]ûBö¸8@òß:ðJí$F ÍéDÍéDÍéDø÷rú(l©ª«ð:ü©ª«(Fù÷Öý(0ÔÝéKž˜:ðâî(lÝé2™ù÷mþ(F1FZF#Fù÷Ÿþ#HAF#KRFxD{Dù÷$û 
õ#}½èð½Bö#8Oôæzìç:ðÊîBöJ8@òÑåçBö¡8Oôíz³çÕø<°ìc»ñÐÛø`oð@A0hˆB¿00`Ûø@L± hˆB¿0 `¹çOð&µç$³ç¿°õnDhMØúÿÒäúÿ’Ðúÿ`äúÿ°µ¯F€hFh(FGбF¨h"Fƒi(F˜G1hoð@D¡BÐ9`¿:ðìIyDhh¢B¿hQ`°½Bö+DOôóuàBö5D@òç ø÷ÖùH!FK*FxD{Dù÷¨ú °½ØÇúÿhãúÿ>ôðµ¯-鍰àL€F&
F|D–
–Ôøøù÷PþF(ðSØø,(F:ðì(ðOƒF–:ðpìlÑIyD	hh.¿ŽBÑ@h(÷ÑOð
& à1hoð@@B¿11`Öø ÚøB¿HÊø0F:ðÌìÙøÔøT”‚lHF*ð"GF(Íé›ðØø8Íø :ðúí(
ð‚F²HahxDhB@ðø€Ôø¹ñðò€Ùøoð@@¥hB¿1Éø)hB¿H(` hoð@A•ˆBÐ8 `¿ F:ðNë ,F©‚è©1¡ë€ Fð†ú¹ñƒF¿Ùøoð@AˆB@ðš€Úøoð@AˆBÐ8Êø¿PF:ð(ëÝø »ñ
ðĀ hoð@AÝø ˆBÐ8 `¿ F:ðëØø8!‘‘:ð”í°ñÿ?@óå€(
ÑXF!"#$ð†ü(ðvF”
àÛø]Foð@AˆB¿0Ëø]F˜lh`(¿hoð@B‘BUѺñœ¿Úøoð@AˆBQÑ,¿ hoð@AˆBRÑžÙøoð@AˆBÐ8Éø¿HF:ðÂê.¿0hoð@AˆB
ѻñ¿Ûøoð@AˆBÑ(F
°½èð½80`¿0F:ð¨êêç8Ëø¿XF:ð ê(F
°½èð½8Éø¿HF:ð”êÚøoð@AˆBô^¯cç9`¿:ð†ê£ç8Êø¿PF:ð~ê¥ç8 `¿ F:ðxê¥ç Oð	&çOôöxBösEà@òïBöEOð
á:ðLëÛæBö›@œàBöCàBö²C˜Ýø (œ“¿hoð@B‘B@ð6˜OðÍø0€ÅkÀø<€Íé
…ݱÕø°oð@AÍø0°ÛøˆB¿0ËøÕø€Íø(€¸ñÐØøˆB¿0ÈøàOðà«H¬IxDyDhh:ðêBöÊE@òõ”࿾BªóróOðÙøÔøœ‚lHF*ðó€G(ðô€TFƒE@ð÷€Oð
hoð@B‘BÐ9`¿:ððé-¿hi@E@ð	™ÈkÍc(¿hoð@B‘B?ѻñ¿Ûøoð@AˆB;Ѹñ¿Øøoð@AˆB:ÑOðºñÍø0°Íé
»Ð~H)F~K@òñxD{Dù÷€ø˜
©ª«ù÷û(¢F'ÔwH"™xDÑøô@kð˜üBöU@òó"à@òñ¢Fà9`¿:ðšé¹ç8Ëø¿XF:ð’é»ç8Èø¿@F:ðŠé¼çBöUOôùxàBöÖEOôûx˜lh`(¿hoð@B‘BCѺñœ¿Úøoð@AˆB?Ñ,¿ hoð@AˆB@Ñ˜(¿hoð@B‘B?Ñž˜(¿hoð@B‘BÑ
˜(¿hoð@B‘BÑ>H)F>KBFxD{Dù÷	ø%¹ñôo®zæ9`¿:ð8éãç9`¿:ð2éåç9`¿:ð,éµç8Êø¿PF:ð$é·ç8 `¿ F:ðé·ç9`¿:ðé¹ç9`¿:ðéÃæ:ðöé(ô¯BöÿEOôùxOðƒçFÛø@m°ñÿ?(ܛøW@$ÕÙø@m°ñÿ?ܙøWIÕXFIFþ÷õø‚FHFÝøhoð@B‘Bôí®ðæ(FAF:ð|êñæ@ÕXFIFþ÷ùèçXFIF:ðØêã翏Àúÿ*ÞúÿÄðCÌúÿ}ÁúÿßúÿtGðµ¯-é…°ñLFFF|DÔøøù÷8û‚F(ðˆØøÚøøWŠlÔø¸@ñ‰€PF*ퟀ�GƒF(ퟄ�k:ðë(ퟬ�FÝHÛøxDhB@ðiÛøP-ðd)hoð@@Ûø@B¿1)`!hB¿H `Ûøoð@AˆBÐ8Ëø¿XF:ðjè £F©‚1Íø€¡ë€XFÍéYð¢ÿ-F¿(hoð@AˆB@ðÙøoð@AˆB@ð,ð Ûøoð@AˆBÐ8Ëø¿XF:ð<è³I`hyD	hˆB𠀱IyD	hŒBð~Íø ®IyDh­I®JÃhyD0hzD:ðéOðOôrBöÇQOð
’áPF*ðGF(ð¨kÍø :ðŒê(ðF :ðLè(ð‚FæHÊøPxDØøhB@ðþ€Øøoð@AˆB¿0ÈøPFAF:ðzê(ðú€ƒFÚøoð@D BÐ8Êø¿PF9ðØïØø BÐ8Èø¿@F9ðÎïÙøÝø l,ð߀ÊHxD:ðé(@ð!HFYF" GF:ðé,ðÙøoð@E¨BÐ8Éø¿HF9ð¨ïÛø¨BÐ8Ëø¿XF9ðœï¸I`hyD	hˆB@ðˀºHxDh¬Bðހ!h€Foð@@ñB¿H `¡hSšBÒ "|2T0BùÑ hoð@F°BÐ8 `¿ F9ðpï(h°B¿ØøP0(`ºñ¿Úøoð@AˆBÑ,¿ hoð@AˆBÑ(F°½èð½8Êø¿PF9ðLïëç8 `¿ F9ðFï(F°½èð½8(`¿(F9ð:ïÙøoð@AˆB?ôç®8Éø¿HF9ð,ï,ôà®BöÃQàBömQOôþrÉà% µæ:ðèƒF(ô®Bö¬QOôr»à9ðúïF(ôý®BöƒQ@ò"°àBö®QOôršàBö…Q%Oð

àBö‡QOð
à@F:ðŽé(@ð½€BöŒQ%OðSàBöŽQOðEFMàHFYF"%:ð0èF(ô(¯Bö’Q>࿊<ªíí¨ìÈì¾úÿ8ÙúÿPIyD	hŒBÐOIyDhNIOJÃhyD0hzD9ðšïBö–Q@ò"Oð
Oð+àIHIIxDyDhh9ð’îGHBö×Q@ò"xDhNà9ð0ï(^ÐBö’Q%Oð
Ùøoð@BBÐ8ÉøÑHFF9ðŠî!F@ò",Ft± hoð@C˜B	Ð8 `Ñ FFF9ðxî*F!Fºñ¿Úøoð@C˜B"ѻñÐÝø Ûøoð@C˜B
Ð8ËøÑXFFF9ðZî*F!F$à$Ýø HKxD{Dø÷ý%áæ8ÊøØÑPFFF9ðBî*F!FÐçHIxDyDhh9ðî—ç€FEæ¿vì)ÔúÿØè,¹úÿÄëÒéøé@»úÿhÖúÿhëÎéyÅúÿˆéš®úÿ<ØúÿFÀhoð@ChšB¿2`ÈhpG¿°µ¯ÐøÄ ±FG°±°½ÿ÷#ú(¿°½Dòy@òÊ5 ÷÷ßûH!FK*FxD{Dø÷±ü °½DòaOôruíçÄúÿz×úÿ°µ¯ÐøÈ0C±FF˜Gˆ¹Dò·@òÎ5àÿ÷ý¨±hoð@B‘BÐ9`¿9ðÆíIoð@CyDhhšB¿hQ`°½DòËOôtu ÷÷žûH!FK*FxD{Dø÷pü °½"¶úÿøÖúÿÄçFÐøÀoð@ChšB¿2`ÑøÀpG¿е¯F@hÐøÄx± F:ð*èX¹`hI€iyDˆBÑ F:ð(è(¿н F:ð*è hX±!oð@B¡`h‘BÐ9`¿9ðlíÔø¨`±!oð@BÄø¨h‘BÐ9`¿9ð\í`hÐø  F½èÐ@G¿áÿÿÿðµ¯-郰¾NF@h~D‚lHFÖøà*ðG€F(ð·HOð
ØøxDÐø°YE@ðØø@,ðû€!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@F9ðí"¨F¨ÍéJñ
@Fªë‚ðLü,F¿ hoð@AˆB@ð•€-ð›€Øøoð@AˆBÐ8Èø¿@F9ðîìÖø”Öø¼•Bh’l*𽀐GF$(𾀊H"ÈòQFxDÍéI€kðü(𵀁FhhXE@ð·€ìh,ðµ€!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F9ð®ì 5Fªë€B(FÍéIðêû,€F¿ hoð@AˆB@ÑÙøoð@AˆBFѸñMÐ(hoð@AˆBÐ8(`¿(F9ðˆìAF(F9ðï(rÐ)hoð@D¡BÐ9)`8ÐØø¡B>Ð9Èø:ÑF@F9ðnì F°½èð½8 `¿ F9ðbì-ôe¯Eöâ$_à8 `¿ F9ðVìÙøoð@AˆB¸Ð8Éø¿HF9ðHì¸ñ±ÑOðEöý)à)FFF9ð<ì(FØø¡BÀѰ½èð½$"ç9ðí€F(ôì®EöÎ@à9ðíF$(ôB¯EöæOðàOðEöè,Fà dç $açEö$(hoð@BBÐ8(`Ñ(F
F9ðì)F¸ñÐØøoð@BBÐ8ÈøÑ@F
F9ðîë)F,¿ hoð@BBÑHÐ"KxD{Dø÷¤ú °½èð½8 `ðÑ FF9ðÒë!Fêç°5üæ5­úÿDÓúÿÈ=ðµ¯-é•LF@h|D‚l0FÔøì*𼀐GF(ð½€hhÔø‚l(F*𻀐G‚F(ð¼€(hoð@AˆBÐ8(`¿(F9ðšëphÔø°‚l0F*𱀐GF(ð²€phÔøì‚l0F*𰀐GF(ð±€0hoð@AˆBÐ80`¿0F9ðvëhhÔø‚l(F*𡀐GF(ð¢€(hoð@AˆBÐ8(`¿(F9ð^ëÔø 1F9ðèí(ð’€F0hoð@AˆBÐ80`¿0F9ðJëÔø4(F9ðÔí(ð€F(hoð@AˆBÐ8(`¿(F9ð6ëPF1F9ðêí(tÐ1hoð@D¡BÐ91`
ÐÚø¡BÐ9ÊøÑFPF9ðë FàF0F9ðë(FÚø¡BìÑhoð@B‘BÐ1`Foð@B‘BÐ9`¿9ðë F½èð½9ðâëF(ôC¯EöIOðÓ	%	à9ðÖë‚F(ôD¯EöKOðÓ	&Oð
+à9ðÈëF(ôN¯EöXOðÔ	%à9ð¼ëF(ôO¯EöZà9ð²ëF(ô^¯Eö]àEö`àEöcOðÔ	&àEöfOðÔ	%(F÷÷žø0F÷÷›ø
HAF
KJFxD{Dø÷mùºñÐÚø$PFoð@B‘B—ћç ½è𽿚2žúÿÖÐúÿðµ¯Mø½F€hFF(±)F G±]ø»ð½Öø¨8±)F G(¿ ]ø»ð½ ]ø»𽰵¯Ioð@CyDhh„`"hšB¿2"`)¿
hšBÑ"hÐø¨Àø¨@oð@@‚B¿P `)¿hoð@BB
Ñ °½:
`èÑFF9ðDê(Fâç8`¿F9ð<ê °½áðµ¯-釰’N€Fh ~Dõ,pb±±-@ðí€Ñø FÍø ’9ðÞìà-@ðá€Ñø Íø àFF9ðÐìÖø°F F³F”Êh9ðhë(ðȀ‚F©ñ^F(€ò €Úøoð@AˆB¿0ÊøØøhŠBÐQ`¿9ðêéÈø ÚøÖøÈ‚lPF*OАGF(PÐoIHFyD9ðžì(QÐoIHFyD9ð¸ëF¹9ð\ê({ѴF”ènñnÀÚøÜø‚lPF*VАG(WÐØø¨oð@C
hšBÐ:
`ÑFF9ðªé FÈø¨ Ùøoð@B‘BÐ9ÉøÐ°½èð½FHF9ð”é F°½èð½9ðvêF(®ÑKHEöEKKÇ"xD{DbàCH"ÖøøxD@kø÷ø(cÐ!"Fðcü hoð@AˆBÐ8 `Ñ F9ðhéEöhÊ"à9ðJê(§ÑEö„Í"à'Hª«!xDÍéP˜ð`ø(8ÔÝø PçEözÌ"(H)KxD{Dø÷
øOðÿ0Ùøoð@B‘B›ўç9ðÊé0»H&IxDJKyDhzD{DhL•|DÍéd9ðêEö	HÄ"KxD{D÷÷ãÿOðÿ0°½èð½EòþqïçEödªçEòùqéçz/d¶úÿÚÞ6¥úÿ¶úÿú’úÿ¯Íúÿ>ÌúÿÂÍúÿ1»úÿ7ŒÌúÿÎúÿ#»úÿÍúÿŠÎúÿ€µoFøVÉÔÐø˜ !G˜±Ioð@LyD	h`
hbE¿Àø¨€½SÀø¨`cE¿2
`€½IJyDzDhÑh"Óøœ0˜G(ÞÑñç¿Þ²,Þðµ¯Mø½2ðF
FFÐ.>ÑDI`hyD	hˆBÐ9ðx먳 hh
1ՉT¿äh$Fh-h;HxD9ðØé(QÑ F)F°Gà3I`hyD	hˆBÐ9ðZë1 hhJՉT¿äh$Eh+HxD9ð¼鰻 F!¨GF9ð¾é F\³]ø»ð½ F9ðFëH±„F F)F2F#]ø»½èð@`GN± F)F2F#]ø»½èð@8ð«¿HahxDlÅh†±HxD9ðŽé8¹ F)F"°GÎç9ðÖè`± ]ø»ð½ F)F"]ø»½èð@8ðy¿HIxDyDhh9ðè ]ø»ð½¿´ÝŸÅúÿîÝ×ÅúÿÆ+AÅúÿÊÜ­úÿÿ÷ƺðµ¯Mø½„°*,Ú+BÑ=MAh}DŠlÕø°*HАGF(IÐ`hÕøÔ‚l F*EАG(FÐ!hoð@B‘BÐ9!`а]ø»ð½F F8ðêï(F°]ø»ð½!H$!IxD!N"KyDh~D{Dh M’2F}DÍéE9ð²è °]ø»ð½™h)¹ÐIFFyDðƒþF F)¯Ñà9ð¤èF(µÑEöÏà9ðœè(¸ÑEöÑ Fö÷™ý
H)F
KÙ"xD{D÷÷kþ °]ø»ð½2ÜŽ¢úÿ­ìüÿRúÿ=©úÿìüÿ6+:®úÿÒÊúÿðµ¯-鉰kN%•~DòÔe•S±ë‚â³*bÑ
h™h•)ۄà*ZÑ
h•AhŠlÖø°*ퟬ�GF(ðŒ€`h*FÖøÔÃl F+ퟘ�G!h(ñ‡€oð@E©BÐH `¿ F8ðNïVIyDhhªB¿hQ`	°½èð½œhÍé,ÛÖøÔV™F	ñOð
FXø*¨B2Ð
ñ
TE÷ÑOð
Xø*(F"ðtÿ(#Ñ
ñ
TEóÑ8ð¬ïš(_Ñ5H&5IxD5L5KyDh|D{Dh3M’"F}DÍée8ðæïEö8!/HÛ"/KxD{D=àÞÔ[ø*P•-ÙÐÝéaKF)ÿö¯FH­YFxDÍé ªF+Fðóý(,ԝ Fmç8ðÆïF(ôt¯Eöc!à8ðnï!h(õy¯oð@@BÐH `¿ F8ðÈîEöe!HÜ"KxD{D÷÷„ý 	°½èð½Eö(!±çEö-!®ç¿(*ÜêüÿœÚø úÿ$ëüÿ¼ŽúÿoÉúÿ©£úÿ‚ÉúÿÚÚ+£úÿÉúÿðµ¯-釰*€òŁ+@ð၀hìLBh|DÔø0’l*ð끐GƒF(ðìæH¢FÛø$xDhB@ð¦Ûø`.ð¡1hoð@@ÛøPB¿11`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF8ðVî"«F¨Íéd0 ë‚XFÿ÷‘ý.F¿0hoð@AˆB@ð-ðÛøoð@AˆBÐ8Ëø¿XF8ð2îÀIVFhhyD	hˆB@𤁪h*@ð+‚ñññÑø°Òø€Ðøoð@@ÛøB¿1ËøØøB¿HÈøÙøoð@@B¿1Éø)hBÐH(`Ñ(F8ðøí 8ðöî(ð«FÖøÔÍøoð@BÁFh‘B¿1`ÖøÔéh`ÖøЅ8ðžï(ð™1hF "F@F+F8ðšïF hoð@AˆBÐ8 `¿ F8ðÆí.ð(hoð@AÈFˆBÐ8(`¿(F8ð¶íÚøÔ0Fø÷IùÝø(ðt‚Fhoð@D BÐAÊø¡BÐ(Êø¿PF8ðší0h BÐ80`¿0F8ð’í@F!"#ðÿ(ðVF 8ðÌí(ðZÆ`FÛøoð@AˆB¿0Ëø Åø°8ðºí(ð\Úø oð@AŠB¿2Êø Àé¥Ùø ŠB¿QÉøÀøÛøoð@B‘BÐ9ËøÑFXF8ðLí F¸ñ¿Øøoð@B‘BPѹñ¿Ùøoð@B‘BQѺñ¿Úøoð@B‘BRѰ½èð½80`¿0F8ð&í-ôä®EöÛ!Oð&Ûøoð@BBÐ8ËøÑXF
F8ðí)F%F¸ñ¿Øøoð@BB@ðLß"Oð
.OðOðOðOð	OðOð@ðҀÛà9ÈøªÑF@F8ðêì F¤ç9Éø©ÑFHF8ðàì F£ç9Êø¨ÑFPF8ðÖì F°½èð½&"xæ­H&­IxD­L­KyDh|D{Dh«M’"F}DÍée8ðší °½èð½¿4(‚ÙÚØ™h)?ô® IFFyDðdûF F)ô® °½èð½8ð€íƒF(ô®–HEöÇ!–Kß"xD{D÷÷Qû °½èð½‘IyD	hˆB}Ð(F8ðÖî(ðҀF(hoð@AˆBÐ8(`¿(F8ðpì`ho F¨GƒF(ð€ F¨G(ðÀ€F F¨G(ðÀF F¨G!ðjý(ñ¦€ hoð@AˆB?ôU®8%F `ôP®KæOð
á"Eö"1àÈFÝøOð
á"Eö'1dàEö*1á"Oð

àã"Eö91rHrKxD{D÷÷ïú ÌæEö;1ã"%ÌFÆF\F0hoð@C˜BÐ80`	ÐáFðF£F-?ÑMàã"EöC1:à0FˆFFóFáF8ðìAF2FØFìçªh*Ñéhñ
Úå*	ÛLH"LIxDyDhh8ðÐìà*ÔHH*HLxDHKHI|Dh{DyDh¿#F8ð¾ìß"Eöå!OðOðOð	Oð
(hoð@C˜B	Ð8(`Ñ(FFF8ðÆë*F!F>H?KxD{D÷÷„ú »ñô_®læ8Èøô¯®@FF8ð°ë!F¨æEö	1NFŠæß"Eöÿ!Éç(MOð&}Dà(M&Oð}Dà&M&}D hoð@AˆBÐ8 `¿ F8ðŒëðåüH¹H2FI+FxDyDhh8ð^ìEö1&»ñOðOðôU®cæÖ`œúÿ™æüÿ$Šúÿ£úÿ]æüÿ,œúÿžÄúÿ~Õ„ÔÎúÿlÔ_¡úÿ#Ãúÿ ˜úÿӠúÿ ÓޗúÿÂúÿ¿ úÿh›úÿÚÃúÿ’šúÿÃúÿðµ¯-鍰 ßN~Dõ¡`k±ë‚
*ð¢€*@ðɀh™h
)ÛBâ*@ðh
ðoýF0ð†€ 8ðì(ðD‚Ýø ƒFÖø¤ÚøBh’l*ð;‚G€F(ð<‚ F8ðjë(ð=‚FÁHØøxDhB@ð ‚Øø`.ð‚1hoð@@Øø@B¿11`!hB¿H `Øøoð@AˆBÐ8Èø¿@F8ðÔê  F©B1‘¡ë€@FÍéeÿ÷
ú.F¿0hoð@AˆB@ðV(hoð@AˆB@ð\,ðbØøoð@A%FˆBÐ8Èø¿@F8ð¨ê—IhhyD	h‘ˆB@ðã(hoð@AˆBYÑ Oð		fà8ð$ë(?ôu¯Eöí1>àÓø°	’»ñ۰F™FØøU	ñ0F&FTø&¨Bðˆ6³E÷Ñ&Tø&(F"ð¿ú(@ðy6³EóÑ8ðøê	š(@ðvH&vIxDvLvKyDh|D{DhtM’"F}DÍée8ð0ëEöñ1pHñ"pKxD{D÷÷
ùOðXF
°½èð½!0(`Oð		‘¨Foð@AˆBÐ8(`¿(F8ð0êEF!oð@H•	˜(rÑÕé ›šBvсE€ò“èhPø)`0h	ñ	@E¿00`)¿h@EIÑÚøP(h@E¿0(`ÚøPhh™ˆB^Ð $™BÍéF¡ë€(Fÿ÷>ù,¿!hAE3Ñ(ð¢€)hAEÐ9)`ÑF(F8ðæé FÛøÛø ŠBQÝhBE¿2`Ûø Bø!1Ëøh1FBE£ÐQ`1FŸÑ8ðÈé1F›ç8`¿F8ðÀé®ç9!`ÈтF F8ð¸éPFÝø ÀçF	™(FˆGF!F(–ÑáE€òë‰Æh‡çìh,Ð h©h@E¿0 `h@E¿0`(h@EÐ8(`Ð 
F‹çFXF!F8ðpìF Fɻ°ç(F
F8ð€é {翎!€Ò¾Ñ0ÑŒ—úÿÐáüÿP…úÿÀúÿƒªúÿÀúÿ80`¿0F8ðbé(hoð@AˆB?ô¤®8(`¿(F8ðVé,ôž®%Eö?I$àEöI àEö‘I%1hoð@B‘BÐ91`DÐÝø€FÛøoð@AˆBÐ8Ëø¿XF8ð0é,¿ hoð@AˆBѸñ¿Øøoð@AˆBÑ-¿(hoð@AˆBÑdHIFdK@ò)xD{DÆæ8 `¿ F8ð
éàç8Èø¿@F8ðéáç8(`¿(F8ðüèáçF0F8ðöèÝø€¶ç?õˆ®Zø&
(?ô‚®	š«ñKFFF)ÿö­GH
­QFxDÍé ªF+Fðæÿ(7Ô
˜²å &þåEö&Iµç8ð´é€F(ôĭ%Eö(IOð$„ç%Eö*I$ç4IyD	hˆB?ô®(F8ðë(EЀF@ho	‘)FDÐ(hOðÿ9oð@AˆBôm®qæEöá1OæEöæ1Læ8ð*é!FP±#IyD	h	hü÷}øp³8ð®è!F(hoð@BBÐ8(`Ñ(FF8ð€è!F)¿hoð@BB?ô2®8`ô.®F8ðpèXF
°½èð½%EöHIOð(ç%EöJI$ç EörI&F,Oðô¯Ýø€$çÚÞüÿòͬͨúÿ¦½úÿðµ¯-é“°™FÑKÒNF{D ~D
“h¹ñÖøзõ´`õZp
òœ`“Íé;–1Ð*GØë‚•ßèð‚mwIF“Qø¯ºñÀòƒ€Öøœf	ñOð’‘Tø(°Bð}€ñÂEöÑOðTø(0F"ðNø(mÑñÂEóÑrà*Ø
˜•Ðø Íø$ ßèðé
Ñø ÍøH Ñø°ÍøD°h	Úà¡HOð M*xD K I}Dh{DyDhžNH¿OðL~D’|DÍéÆX¿+F"F8ð¤èEö$Q˜H@ò+—KxD{Dö÷þ °½èð½ÑéIFQø¯“	ÍéfàÑé;‰hÙø ‘F	“Íé;•àhIFQø¯“	ºñÚsà
˜Ðø Íø$ ‰àÔ˜Pø( ±ªñ
	à8ðè(@ð¶‚
˜h	š™ºñVÛÑø€’¸ñ‘%Û˜	ñ%ÐøhcTø%°BÐ5¨EøÑ%Tø%0F"ð¬ÿ(Ñ5¨EôÑà
Ô˜Pø%0±ªñ
ƒFš™à7ðØïš(™@ðw‚ºñÛÑø€’¸ñ'Û˜	ñ%Ðø eTø%°BÐ5¨EøÑ%Tø%0F"ðvÿ(Ñ5¨EôÑ
àžÝø àÔ˜Pø%!±ªñ
F‘à7ð ï(@ð>‚
˜hšžºñ‚F€ò‘!pj‘©
"ÈòÍø4°)Fþ÷=þ(ðXÖøXE€F0hâh!F8ðLè(ðVFhoð@AˆB¿00`ph•‚l˜*Ðø¸0FðSGF(ðT0hoð@AˆBÐ80`¿0F7ðÈî@FIF"7ð‚ï(ðFFÙøoð@AˆBÐ8Éø¿HF7ð²îHLxD|DÐø°^E¿ h†BѦë°ú€ð@	!àÂÌš$Ìx’úÿ9­úÿz’úÿ+™úÿÐâüÿƒ¸úÿúºúÿ®É°É
˜h†BÝÐ0F7ð
ï(ñ1hoð@B‘BÐ91`"ÐP³›oð@AÓø¨@ hˆB¿0 `ßHñÞJ#FxDÍø zD†oh	š°G(@ð€Eös[Oô²zOð	&F\á¡FF0F7ðNî FLF(ÔÑžEFÐF¢FÖøXE0hâh!F7ð ï(ðFhoð@AˆB¿0ÉøÙøTFÖø´ÂF‚lHF*ðހGF¨F(ð߀Ùøoð@AˆBÐ8Éø¿HF7ðî@F1F"7ðÐî(ð̀F0hoð@AˆBÐ80`¿0F7ðîÙE¿ hEѩëž°ú€ð@	
à
˜hEôÐHF7ðvîž(ñÙøoð@B‘BÐ9ÉøÑFHF7ðÜí F(𝀛oð@AÓø¨@ hˆB¿0 `’Hñ’J#FxDÍø zDhh	š°G(ð߀!hoð@B‘BÐ9!`ÑF F7ð²í(FØøoð@B‘B?ôò­9Èøôí­F@F7ð¢í F°½èð½uHEöRQuKOô±rxD{D×å7ð"î(¹ Fû÷Mü(@ðӀEö^[@òc&‹à7ðjîF(ô¬®Eö`[@òc€àEöc[@òc&|à`H«™xDÍé ªHFðwü(ñŽ€˜	Ýéº\æEöe[@òccà7ðêí(¹ Fû÷ü(@ðž€EöŠ[@òe&Oð	¨FSà7ð0îF¨F(ô!¯EöŒ[làEö[@òeBà
™Öøü	hˆBnÐØøGJzDh‘B¿Imð€QcÑAF8ðè™"FÈò&(\Ð>HÍéexDÀkþ÷^ü(VÐF(hoð@IHEÐ8(`¿(F7ð
í F!"ðõÿ hHEÐ8 `¿ F7ðüìEö¾[Oô´zOð	0Fõ÷ßúHFõ÷Üú'HYF'KRFxD{Dö÷®û Øøoð@B‘B?ô(­4çEöŸ[Oô³z&¡FáçEöQåEö‘[@òe&ØçEöQ
åEöQåEöýAåAF7ð¼ïšçEö·[ÄçEö¹[Oô´zOð	.FÀçFÓåFæ¿Þüÿ5´úÿ¬¶úÿä bÉ& ,ÈÇPá²úÿXµúÿðµ¯-é›°ÛNFÛM"~D’}DÍé"òœb’õ(r’2h›F»ñõs“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$Ðø<bUø$°Bð‘€4¢E÷Ñ$Uø$0F"ð§ü(@ð‚€4¢EóÑ7ðàìœH±Eöa½à,nÐ,ъh’jà½H&½I,xD¼KyDh{DŒF»IhyDºM¸¿&ºJ}D”zDÍée¨¿cF7ð
íEöBa™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøœfTø%°Bð€5¨E÷Ñ%Tø%0F"ðLü(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%Ðø bTø%°B6Ð5©EøÑ%Tø%0F"ðûû()Ñ5©EôÑ7ð4ì(@ðº€gH&gI%xDfJgKyDhzD{DheL–|DÍéT7ðnìEö$agHOôµrgKxD{Dö÷Jú °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà7ðìë(uÑ­ž™1Í2h)TÚÐø¨@oð@C±F!h™B¿1!`7I7KyDÕø@²{DÕø$bÑøàÙøOð	Óø€Õø7
‘ñ˜Íéi&Íé¨Õø¤€è@@FÍéc#F–ðG!hx±oð@B‘B™Ð9!`–ÑF F7ðë(F°½èð½oð@@BÐH `¿ F7ðëHEöyaKOôÈrxD{DwçFHª«xDIFÍé@XFðú(Ô˜(FÝ额–çEö0aZçEö"aWçEö+aTç¿fÅ>ӛúÿ"0Ã%™úÿ‚±úÿªÃŠúÿúÿ½¤úÿ·úÿîÄD‹úÿ¦úÿ@‹úÿõ‘úÿ?žúÿ3šúÿ²úÿðµ¯-é—°±M–F±L"}D’|Dòœb’Õø˜—õÍf"h–”Íé’“±ë޾ñSоñFоñÑÑé’Óø€”Íé’Æà"h¾ñðŀ¾ñоñÑJh’ÑøÍøT·à›H"›M"êž|xDšK›I}Dh{DyD¾ñh˜N˜J~DÍøàzDÍéÆX¿+F7ð@ëEöòa“H@ò•’KxD{Dö÷ù °½èð½šFÑøZø”•ÍøTCàšFZø¸ñ}Û)FñÑøhfOð‘Íé2ÍéNUø+±BÐñØE÷ÑFOðUø+0F"ðsú(ÑñØEóÑàF˜Pø+P±F¨ñ FÝø<àÝé2
àðÕ7ðšêÝø<à(Ýé2 F@𯀸ñ#ÛÚø ›FÍø<àºñ
%Û˜ñ&ÐøœFXFUø& BÐ6²EøÑ&Uø& F"ð1ú(Ñ6²EôÑ
ààÔ˜Pø& ±¨ñ’à7ð^ê(uјh
˜[FÝø<à¸ñTÚÐø¨@oð@COðOð
!h™B¿1!`5I5KyDÍé©{DÑøÀ)FÑøgÓøàÑø$2™ÕølVÍé8	h
‘ñÍécpF#FÍéZÍé†àG!hˆ±oð@B‘B?ô9¯9!`ô5¯F F7ð†é(F°½èð½oð@@BÐH `¿ F7ðvéHEö)qK@òÓxD{Dç.FFH¬™ªxDÍéàF#Fðnø(Ô(FÝé’5F–çEöáaøæEöÜaõæEöÕaòæzšÁmúÿúÀóúÿ`®úÿZÁ®‡úÿo¢úÿ°‡úÿcŽúÿkŸúÿőúÿ2°úÿðµ¯-é•°‘FÇJÈM‚FzD }Dõ´`hÕøԷ+õ›`ÕøˆgõZp
òœ`
’ÍéK	–Íéd7йñNØë‰“ßè	𕀉sFQø¸ñÀò•€Õøœf(F”ñÍø Oð
•Tø*°Bð‰€
ñ
ÐEöÑ
FOð
Tø*0F"ð,ù(@ðƒ€
ñ
ÐEòÑ~à¹ñØ
˜h”ßèðQ
Ìh”ˆh	Ñø°ÍøH°h>áH"L"êYvxDKI|Dh{DyD¹ñhMJ}DÍøzDÍéeX¿#F7ð€éEö¾qˆH@òÙ‡KxD{Dõ÷[ÿ °½èð½ÑéÓø€Ñé+ÍéÍé Íé+áSøÑ镐ÍéoàˆhSøÑé+•Íé Íé+¡àSøh•¸ñڼà
˜h”äà
F˜Pø*(±¨ñàõÕ7ðäè(@ðZƒ
˜hÝø +Fœ¸ñÀòž€Íø Óø ”ºñ“(Û˜$Ðøhc˜ñUø$°BÐ4¢EøÑ$Uø$0F"ðwø(Ñ4¢EôÑ
àÔ˜Pø$@±¨ñƒFÝø œ›à7ð¢èÝø (œ›@ðƒ¸ñ_ÛÍø Óø ”ºñ“(Û˜$ÐøØd˜ñUø$°BÐ4¢EøÑ$Uø$0F"ð9ø(Ñ4¢EôÑ
àÔ˜Pø$@±¨ñ	Ýø œ›à7ðdèÝø (œ›@ð΂¸ñ!ÛÍø Óø ºñ9Û˜$Ðø e˜ñUø$°BÐ4¢EøÑ$Uø$0F"ðýÿ(Ñ4¢EôÑà)àÔ˜Pø$@¼±¨ñ”Ҿj
ڽ.„úÿïžúÿ0„úÿãŠúÿ-ŽúÿO‡úÿ²¬úÿ7ðè(@ð{‚
˜hÝ饸ñ€ò½!hj‘©"1ÈòÍø4°‘ý÷´þ(ð„ÕøXeF(h”òh1F7ðÂè(ðFhoð@AˆB¿0 ``hÕø¸‚l F*ퟀ�GƒF(ð hoð@AˆBÐ8 `¿ F6ð@ïHFYF"6ðúï(ðsFÛøoð@AˆBÐ8Ëø¿XF6ð*ïÔHÔNxD~DÐø€DE¿0h„BѤë°ú€ð@		à
˜h„BõÐ F6ðšï(ñj!hoð@B‘BÐ9!`BÐ(KÐÕøˆ"	˜ðNÿ(ñQÚø¨`oð@A0hЈB›š¿00`¹H
ñ¸LxD“|D3F…o h¨G(@ðπFò@ò%±àˆB›š¿00`®H
ñ®LxD“|D3F…o h¨G(@ð¶€Fò2OôuÁá³F.FF F6ð¾î(F5F^F(³ѳFÕøXe(hòh1F7ðè(ðFhoð@AˆB¿0 ``h^FÕø´‚l F*ðGƒF(ð
 hoð@AˆBÐ8 `¿ F6ðŒîHFYF"6ðHï(ðý€FÛøoð@AˆBÐ8Ëø¿XF6ðvîDE¿0h„BѤë°ú€ð@		à
˜h„BõÐ F6ðìî(ñ<!hoð@B‘B	Ð9!`Ñ.FF F6ðTî(F5F(ðۀÕøˆ"	˜ð™þ(ñÚø¨`oð@A0hЈB›š¿00`²H
ñ²LxD“|D3Fh h¨GعFòi@ò%Oð4FáˆB›š¿00`§H
ñ§LxD“|D3Fh h¨G(ð
1hoð@B‘BÐ91`ÐÙøoð@B‘BÐ9ÉøÐ°½èð½FHF6ðøí F°½èð½F0F6ððí FÙøoð@B‘BçÐâç‡HEöìq†K@òÿxD{DFå6ðlî(¹0Fú÷˜ü(@ð÷€EöøxOôu$­à6ð¶îƒF(ô®EöúxOôu¢àEöýxOôu$žàqHª«xDÍéÝéðÂü(ñ‰€˜Ýé°œ	.æFò
@ò%$‚àEöÿxOôu}à6ð.î(¹0Fú÷Yü(@ðº€FòJ@ò%$nà6ðvîƒF(ôó®FòLcàFòO@ò%$a࿞º ºî‚º¼Tº
™Õø	hˆB{ÐÙøOJzDh‘B¿Imð€QpÑIF7ðPè‚F$(pÐHH"™ÈòxDÍéJÀký÷—ü(hÐFÚøoð@E¨BÐ8Êø¿PF6ðBí0F!"ð,ø0h¨BÐ80`¿0F6ð4íFò´@ò%àFò\@ò%$àEö§q‡äFòQ@ò%Oð Fô÷ûXFô÷û(HAF(K*FxD{Dõ÷×û Ùøoð@B‘B?ô	¯çEö¢qgäFò„@ò	%$³FÞçEö›qÿ÷]¼Eö”qÿ÷Y¼Eöqÿ÷U¼IF6ðèï‚F$(ŽÑFò¥OôuÄçFò¯@ò%OðTF¾çF„åF4æWˆúÿ߁úÿB§úÿ ¹Ìð¸z·ÆG€úÿª¥úÿðµ¯-é™°šFØKFØL ØJ{D|DÍézD“õbpõZphÒøؗºñ%hòœ`õ}pò¤@
’ÍéU“Íé“6иñRØëˆ”ßè𤌗ÑPFÍøPøŸ•¹ñÛ
˜
ñ%Ðø¤dTø%°Bðʀ5©E÷Ñ%Tø%0F"ð»ü(@ð»€5©EóÑ6ðôì³FòBà¨ñ(Øš%hh’+Fßèð
iÑøÍø\h•Kh“Ñø°
“ÍøP°™áœH¸ñœJOðxD›MzD›Lh}DšK|DšIh¨¿F¸ñ¸¿&—JyD{DÍéezDÍø€¨¿#F6ðþìFòS‘H@ò"‘KxD{Dõ÷Úú$ F°½èð½RFÑé°ÑéYRøÍéY
Íé°áRFÑé°Rø
Íé°)~ÚOáRFÑ鰍hRøÍø•
Íé°§àÑø°QFQøÍøP°(FÛÍøÑøÍéP¹ñ‘MÛ
˜
ñ%ÐøôCVø% B6Ð5©EøÑ%Vø% F"ðü()Ñ5©EôÑ3àÑé°ÑéYÚø 	i‘‘ÍéY
Íé°á?õF¯˜Pø%°ÍøP°»ñ?ô=¯©ñÝøœ™(¸Ú%h
•ïàÔ˜Pø%@±	™
9Ýøœà6ðì(Aðj‚œÝøÝéQ h
š)ÀòҀÍøÒø	‘¹ñ’$Û
˜
ñ%ÐøœFVø% BÐ5©EøÑ%Vø% F"ð«û(Ñ5©EôÑ
à	Ô˜Pø%P-±	™•9œšà6ðØë(Að‚œ	™š%h)!ÛÒøÍéQ¹ñ’BÛ
˜
ñ%ÐøhCVø% BÐ5©EøÑ%Vø% F"ðsû(Ñ5©EôÑ(àÝøsà$Ô˜Pø%³	™F9œš#à¿ĵ®µ„ä´‚úÿãúÿ0{úÿߕúÿ${úÿ<çüÿq…úÿ°£úÿ6ð‚ëÝø(œÝéQšAð½)@ÛÍøÒøÍéQ¹ñ'Û
˜
ñ%ÐøˆCVø% BÐ5©EøÑ%Vø% F"ðû(Ñ5©EôÑ
àÔ˜Pø%@±	š:Ýøœà6ðDë(Að˜ÝøœhÝéR*€ò+†Ûøoð@@Ôø B¿1ËøÝø(€
žØøB¿HÈøÐE+ÑÛøoð@@B¿1ËøÚøBÐHÊø¿PF6ð|êÖø¤Goð@@!hB¿1!`Öø¤GÛøBÐHËø¿XF6ðfêØF£F!pj‘©"1ÈòÍø<‘ý÷œù(ð…1FFÑøXEhÍøâh!F6ð¨ë(Íø(€ðü„Fhoð@AˆB¿0ÉøÙøÍé[‚l
˜*Ðø HFðø„GƒF(–ðù„Ùøoð@AˆBÐ8Éø¿HF6ðê0FYF"6ðÖê(ðꄁFÛøoð@AÍø, ˆBÐ8Ëø¿XF6ðêàHxDÐø ÑE¿˜hEѩë
Ýé[°ú€ð@	
à˜EôÐHF6ðtêÝé[(ñT…Ùøoð@B‘BÐ9ÉøCÐ(HЙQE¿˜hB)ѡë
°ú€ð@	›Óø¨oð@B$Ùø‘B¿1ÉøÀI*FyDŽhñèXFAF#°G(@ðׅ@òn"FòÚOðžðš¹˜BÒÐF6ð,ê›AÒÑ6ð.ê(Að†€Oðÿ0ÉçFHF6ð”é F(¶Ñ
˜ÐøXEhâh!F6ðêê(ð!…ƒFhoð@AˆB¿0ËøÛø‚l
˜*Ðø$XF𠅐GF(ð!…Ûøoð@AˆBÐ8Ëø¿XF6ðbé0FIF"6ðê(ð…ƒFÙøoð@AˆBÐ8Éø¿HF6ðLéÓE¿˜hƒEѫë
°ú€ð@	à˜ƒEöÐXF6ðÂé(ñž‡Ûøoð@B‘BÐ9ËøDÐ(IЙÝé[QE¿˜hB(ѡë
°ú€ð@	›Óø¨oð@BÙø‘B¿1ÉøhI*FyDÎhñèXFAF#°G(@ð&…Fò!OôrËFOððû¾˜BÓÐF6ðzé›AÓÑ6ð~é(Að€Oðÿ0ÊçFXF6ðäè F(µÑ
˜ÐøXEhâh!F6ð8ê(ð~‡Fhoð@AˆB¿0ÉøÙø‚l
˜*ÐøHFðy‡GƒF(ðz‡Ùøoð@AˆBÐ8Éø¿HF6ð°è0FYF"6ðlé(ðq‡FÛøoð@AˆBÐ8Ëø¿XF6ðšèÑE¿˜hEѩë
Ýé[°ú€ð@	
à˜EôÐHF6ðéÝé[(ñc‡Ùøoð@B‘BÐ9ÉøÑFHF6ðtè F°³™QE¿˜hB@ퟄ�ë
°ú€ð@	›Óø¨oð@B$Ùø‘B¿1Éø
I*FyDiñèXFAF#°G(@ðm„@òr"Fò2!”æ¿T°°>
˜ÐøXEhâh!F6ð’é(𠇃Fhoð@AˆB¿0ËøÛø‚l
˜*Ðø(XFð'‡GF(ð(‡Ûøoð@AˆBÐ8Ëø¿XF6ð
è0FIF"6ðÆè(ð‡ƒFÙøoð@AˆBÐ8Éø¿HF5ðôïÓE¿˜hƒEѫë
°ú€ð@	à˜B?ô{¯F6ðjè›Aôz¯6ðlè(@ð‡Oðÿ0p瘃EãÐXF6ðXè(ñé†Ûøoð@B‘BÐ9ËøÑFXF5ð¾ï Fh³™Ýé[QE¿˜hBkѡë
°ú€ð@	›Óø¨oð@BÙø‘B¿1ÉøÔI*FyDNiñèXFAF#°G(@ð¸ƒFò^!Oôræ
œÔøXõ÷Aý(𮆁F@hÔø<‚lHF*𪆐GƒF(ð«†Ùøoð@AˆBÐ8Éø¿HF5ðlï0FYF"6ð&è(𛆁FÛøoð@AˆBÐ8Ëø¿XF5ðVïÑE¿˜hEѩë
Ýé[°ú€ð@	à˜BÐF5ðÊï›AÑ5ðÌï(@ðŸ†Oðÿ0‡ç˜EãÐHF5ð¸ïÝé[(ñj†Ùøoð@B‘BÐ9ÉøÑFHF5ðï F`³™QE¿˜hBjѡë
°ú€ð@	›Óø¨oð@B$Ùø‘B¿1Éø…I*FyDŽiñèXFAF#°G(@ðƒ@òv"FòŠ!?å
œÔøXõ÷¡ü(ð0†ƒF@hÔø8‚lXF*ð,†GF(ð-†Ûøoð@AˆBÐ8Ëø¿XF5ðÌî0FIF"5ð†ï(ð†ƒFÙøoð@AˆBÐ8Éø¿HF5ð¶îÓE¿˜hƒEѫë
°ú€ð@	à˜B‘ÐF5ð,ï›A‘Ñ5ð.ï(@ð$†Oðÿ0ˆç˜ƒEåÐXF5ðï(ñð…Ûøoð@B‘BÐ9ËøÑFXF5ð‚î Fh³™Ýé[QE¿˜hBkѡë
°ú€ð@	›Óø¨oð@BÙø‘B¿1Éø8I*FyDÎiñèXFAF#°G(@ð{‚Fò¶!OôrSå
œÔøXõ÷ü(𵅁F@hÔø4‚lHF*𲅐GƒF(ð³…Ùøoð@AˆBÐ8Éø¿HF5ð.î0FYF"5ðêî(𣅁FÛøoð@AˆBÐ8Ëø¿XF5ðîÑE¿˜hEѩë
Ýé[°ú€ð@	"à˜BÐF5ðŒî›AÑ5ðî(@ð¨…Oðÿ0‡ç¿Ô”Z˜EÜÐHF5ðtîÝé[(ñk…Ùøoð@B‘BÐ9ÉøÑFHF5ðÚí Fh³™QE¿˜hBkѡë
°ú€ð@	›Óø¨oð@B$Ùø‘B¿1ÉøÔI*FyDjñèXFAF#°G(@ðԁ@òz"Fòâ!ÿ÷û»
œÔøXõ÷\û(ð0…ƒF@hÔø@‚lXF*ð-…GF(ð.…Ûøoð@AˆBÐ8Ëø¿XF5ð†í0FIF"5ðBî(𠅃FÙøoð@AˆBÐ8Éø¿HF5ðpíÓE¿˜hƒEHѫë
°ú€ð@	Kà˜BÐF5ðæí›AÑ5ðêí(@ðw…Oðÿ0‡ç HFò°ŸK@òf"xD{Dô÷ü$Ÿá5ðÖí(¹ Fù÷ü(@ð+†@òm"FòÅOðð9¼5ðîƒF(–ô«@òm"FòÇð½OðFòÊ@òm"ð(½˜ƒE³ÐXF5ð¤í(ñ¿„Ûøoð@B‘BÐ9ËøÑFXF5ð
í Fp³™Ýé[QE¿˜hBrѡë
°ú€ð@	›Óø¨oð@BÙø‘B¿1ÉøoI*FyDNjñèXFAF#°G(@ðFò1Oôrÿ÷ܻ
œÔøXõ÷Œú(ퟌ�F@hÔø´‚lHF*ퟀ�GƒF(ð„Ùøoð@AˆBÐ8Éø¿HF5ð¶ì0FYF"5ðrí(ðq„FÛøoð@AˆBÐ8Ëø¿XF5ð ìÑE¿˜hEZѩë
Ýé[°ú€ð@	]à@òm"FòÌðz¼˜B‰ÐF5ðí›A‰Ñ5ðí(@ð…Oðÿ0€ç7Hª™«xDÍé€PFðû(ñæ‚Ýé°ÝéY
˜ÿ÷¿¹5ðôì(¹ Fù÷û(@ðN…@òo"FòñOðÝø$°Uã5ð:íF(ôߪOðFòó@òo"ðL¼@òo"Fòöð-¼˜E¡ÐHF5ðÂìÝé[(ñ„Ùøoð@B‘BÐ9ÉøÑFHF5ð&ì F(ð샙QE¿˜hBѡë
°ú€ð@	à¿Ûwúÿ–úÿlþà×üÿ˜BëÐF5ðŒìA
Ñ5ðì(@ðŽ„Ýø(€Oðÿ0Ýé[›oð@B$Óø¨Ùø‘B¿1ÉøêI*FyDŽjñèXFAF#°G(𿃀FÙøžoð@AˆBÐ8Éø¿HF5ðÌ똅B5ÐØøoð@ADFˆB¿0ÈøÝø$°0hoð@AˆBÐ80`¿0F5ð²ë¸ñ¿Øøoð@AˆBPÑÝø(€»ñ¿Ûøoð@AˆB,ÑØøoð@AˆB3Ñ F°½èð½Ýøoð@A"ÙøˆB¿0ÉøºHxDhHF5ðBì(ð’PEƒF¿˜hƒE&ѫë
°ú€ðD	*à8Ëø¿XF5ðjëØøoð@AˆBËÐ8Èø¿@F5ð^ë F°½èð½8Èø¿@F5ðRë¦ç˜ƒEÕÐXF5ðÒëF(ñ¹Ûøoð@AˆBÐ8Ëø¿XF5ð:ël»“H"xDhHF5ðòë(ððPEƒF¿˜hƒEѫë
°ú€ðD		à˜ƒEöÐXF5ð¤ëF(ñóÛøoð@AˆBÐ8Ëø¿XF5ð
ëÙøoð@AˆBÐ8Éø¿HF5ðþê,?ô1¯
˜ÐøXEhâh!F5ðRì(ð
ƒFhoð@AˆB¿0ËøÛø‚l
˜*Ðø|XFðGF(ðÛøoð@AˆBÐ8Ëø¿XF5ðÊê]HahxDh©Bð÷€& ™BÍéh¡ë€ Fü÷þù.F¿0hoð@AˆB@𣀹ñ𩀠hoð@AžˆBÐ8 `¿ F5ð êÙø‚l
˜*Ðø€HFð뀐GƒF(ðì€Ùøoð@AˆBÐ8Éø¿HF5ð„ê
˜"ÁhXF5ð>ë(ð݀FÛøoð@AˆBÐ8Ëø¿XF5ðlêÑE¿˜hEѩë
°ú€ð@	à˜EöÐHF5ðâê(ñù€Ùøoð@B‘BÐ9ÉøÑFHF5ðJê F(?ô|®šoð@AhˆB¿0`Ph¨Bðµ€% Ýø$°™BÍéX¡ë€˜ü÷rù-F¿(hoð@AˆB(Ñ|³˜oð@AhŠB?ô_®Q`ô[®5ðêWæ¿dụ̈䢢80`¿0F5ðê¹ñôW¯@ò‰"FòÁ1£Fžâ8(`¿(F5ðöé,ÏÑ@òŠ"Fòé1Ýø°òáOðOô"rFò1Äà5ðtê(¹ Fù÷Ÿø(@ðӂ@ò‰"Fòª1Öà5ð¾êF(ôú®Fò¬1@ò‰"Òáæh.?ô¯1hoð@@ÔøB¿11`ÙøB¿HÉø hoð@AˆBÐ8 `¿ F5ð®é LFèæ5ðêƒF(ô¯Oð@ò‰"FòÅ1|à@ò‰"FòÈ1žá@òo"FòøOð»ñ@𕁤áOô"rFò‘1gàFò:þ÷h½˜Åh-ð
‚˜)h„hoð@@B¿1)`!hB¿H `˜oð@AhˆBЙ8`¿˜5ðdé ”Ýø$°ž(çOð@ò‰"FòÊ16à5ðæé(¹ Fù÷ø(@ðN‚@òq"Fò!Fà5ð0êƒF(ô†¨@òq"Fò!+áOðOô"rFò˜1àOðFò"!@òq"6áFò5þ÷½Fò.þ÷½Fò'þ÷½Oô"rFò™1DFá@òq"Fò$!áFò þ÷ù¼@òn"Fò×ÿ÷ջ5ðžé(¹ Fø÷Éÿ(@ð‚@òs"FòI!OðÝø$°žÖHÖKxD{Dó÷½ÿ$7å5ðÜéF(ôبOðFòK!@òs"îà@òs"FòN!Ðà@òs"FòP!IçOôrFò!ÿ÷ž»@òu"Fòu!zä5ðºéƒF(ôU©@òu"Fòw!µàOðFòz!@òu"Çà@òu"Fò|!©à@òr"Fò/!ÿ÷|»@òw"Fò¡!Xä5ð˜éF(ôөOðFò£!@òw"ªà@òw"Fò¦!Œà@òw"Fò¨!çOôrFò[!ÿ÷Z»@òy"FòÍ!ÿ÷6¼5ðtéƒF(ôMª@òy"FòÏ!pàOðFòÒ!@òy"‚à@òy"FòÔ!dà@òv"Fò‡!ÿ÷7»@ò{"Fòù!ÿ÷¼5ðRéF(ôҪOðFòû!@ò{"dà@ò{"Fòþ!Fà@ò{"OôÆA¿æOôrFò³!ÿ÷»@ò}"Fò%1ÿ÷ð»5ð.éƒF(ô«@ò}"Fò'1*àOðFò*1@ò}"<àph‚l
˜*ÐøHðр˜GƒF(ðҀÓE¿˜hƒEHѫë
°ú€ðD	Là@ò~"Fò:1þ÷h¾@ò}"Fò,1$OðÙøoð@C˜BÐ8ÉøÑHFFF5ðè1Fž*F F»ñÐÛøoð@C˜B
Ð8ËøÑXFF
F4ðêï)F"F|H}KxD{Dó÷¨þ$ÿ÷ ¼@òz"Fòß!ÿ÷Ÿº˜ƒE³ÐXF5ð\èF(ñ°€Ûøoð@AˆBÐ8Ëø¿XF4ðÂï,sÐ
˜™ÐøøˆBOЙIhbJzDh‘B¿Imð€QDÑ™5ðœêƒFOð(DÐ[H"™ÈòxDÍé‹Àkû÷âþ(uÐFÛøoð@E¨BÐ8Ëø¿XF4ðŒï F!"ðwú h¨BÐ8@ò…%Fò}6 `RÐ@ò…"Fò}1wæOôrFò1ÿ÷8º% æ@ò~"Fò71gæ™5ð`êƒFOð(ºÑ@ò…"Fòv1\æ˜5ðBèƒF(ô.¯@ò"FòQ1Næ¿7oúÿvúÿ+H"
™OðxDÑøü@kó÷Éýг!"Fð+ú hoð@AˆBÐ8Oô uFòc6 `ÐOô rFòc1)æ F4ð(ï*F1F#æFòx1@ò…"!å@ò"FòS1Oðž»ñô¯*çÝø(€Fþ÷ԼÝø(€ƒFþ÷Œ½žƒFÿ÷¼Oô rFò_1ÿåÝø(€Fžþ÷.¾Ýø(€ƒFžþ÷ξ¦òœ\ó
múÿL‹úÿðµ¯-鉰ÜLƒF |Dõ`k±ë‚
*ðµ*@ðځh™h)ÛÓâ*@ðсhð›ú€F0ðÛøÔø,‚lXF*ðςG‚F(ðЂ5ðtèF(ðς¨ñÁë‘p!ë 5ð®é(ðłÔøœFHF*F4ðlï(ñº(hoð@AˆBÐ8(`¿(F4ðŽîÔøXe h”òh1F4ðæï(ð®‚Fhoð@AˆB¿0(`žhhÖø8‚l(F*𫂐GƒF(ð¬‚(hoð@AˆBÐ8(`¿(F4ðbîÖøhHFZF4ð,ï(ñ²Ûøoð@AˆBÐ8Ëø¿XF4ðLîÚøÖøXl,ퟠ�HxD4ð€ï(@ð ‚PF)FJF GƒF4ð~ï»ñð’‚Úøoð@D BÐ8Êø¿PF4ð$îÙø BÐ8Éø¿HF4ðîÛøÖøŒ‚lXF*ð_‚GF(ð`‚Ûøoð@AˆBÐ8Ëø¿XF4ðþíjHÙøxDh¡B@ð‚ÙøP-ð‚)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HF4ðÖí±Fž Öø0B‘©ñ
•ªë€HFû÷ý-ƒF¿(hoð@AˆB@ퟸ�ñð”Ùøoð@AˆBÐ8Éø¿HF4ð¬íÛøÖø$‚lXF*ð
‚GFÛøoð@A¹ñð‚ˆBÐ8Ëø¿XF4ðíÙø& B@ð³ÙøP-ð®)hoð@@Ùø@B¿1)`!hB¿H `Ùøoð@AˆBÐ8Éø¿HF4ðjí"¡Fªë‚HFÍéVû÷§ü-ƒF¿(hoð@AˆB@ð6»ñð<Ùøoð@AˆBÐ8Éø¿HF4ðHíÛø†k.¿qh)@ð¤€IyDhIÂhhyD4ðî×à4ðÂí(?ôl®FòqAFààè%úÿ‚˜ê–|úÿhÍé$-Û˜™F	ñ$Ðø€dFXø$°Bð	4¥B÷Ñ$Xø$0F"ðVý(@ðú€4¥BóÑ4ðŽíš(@ðnÅH&ÅIxDÅLÆKyDh|D{DhÄM’"F}DÍée4ðÈíFòuAÀH@ò"¿KxD{D§àFòÇH@ò¦$OðÚøoð@AˆBÐ8Êø¿PF4ðÌì¹ñÐÙøoð@AˆBÐ8Éø¿HF4ð¼ì-¿(hoð@AˆBbѻñtÐÛøoð@AˆBnÐ8ËøjÑfàFòÖH@ò¦$%Úøoð@AˆBÈÑÎç@F4ð ïȳFžH)FxDhF4ðžíF(hoð@AˆBÐ8(`¿(F4ð‚ì$³rhXF!FG!hoð@B‘BÐ9!`ÑF F4ðrì(F±Ûøoð@B‘B5Ð9Ëø1ÑFXF4ðbì F	°½èð½Ûøoð@AˆBÑFòX@ò§$à8(`¿(F4ðLì»ñ–Ñ
à8FòXËø@ò§$ÑXF4ð<ìmHAFmK"FxD{Dó÷úú 	°½èð½8(`¿(F4ð*ì»ñôl®FòXà8(`¿(F4ðì»ñôĮFòX@ò§$%OðÙøoð@AˆBôH¯Mç?õ¯Zø$(?ô¯šiœKF)ÿö1­DH®QFxDÍé ªF3Fðýú(cÔ˜!å4ðÒì‚F(ô0­Fò¹H@ò¦$£çFòÃHBàFòÅH?à% æ"%kæ4ðbì ¹0Fø÷Žú(XÑFòÑH@ò§$%ëæ4ð¬ìƒF(ôT­FòÓH@ò§$àæPF)FJF4ðíƒF(ô­à4ð˜ìF(ô ­FòìH@ò§$Ûøoð@AˆBôõ®bç4ð.ìø±FòàH@ò¦$%»æ4ð|ìðåˆB
ÑFòX@ò§$OçFòeA£æFòjA æ8ËøFòX@ò§$ôA¯<çHIxDyDhh4ð\ëÖçFöä¿܀úÿ^–º\úÿ҂úÿ~Júÿ1…úÿZwúÿB…úÿvúÿðƒúÿT“¨cúÿf•ðµ¯-靰ÇNFÇKFÇJƒF ~DzD{D-ÍéÍéÍéõÑ`õ'pò¬PÒø¤GÓø ÖøòD`òœ`õpÍé©Íé¤>иñ_Øëˆ	’Íé
S–ßè𨖝ˆÓâ(F”Pø_Íø°-Û	˜OðÐø<b
˜ñTø+°Bð؀ñ]EöÑOðTø+0F"ð@û(@ðǀñ]EòÑ4ðxë0³Fò•QGà¨ñ-ØÓø  “ÖøRFßèðHii”Ñø Íød ÑøÍø`Jh’h“(@ðëâH¸ñ€JOðxDMzDLh}DK|DIh¨¿F¸ñ¸¿&|JyD{DÍéezDÍø€¨¿#F4ð~ëFòÝQ@ò©"uHuKxD{Dó÷Yù °½èð½Ñé2ÑéšUø”Íø°ÍéšÍé2%áÑé2UøÍé2~àÑé2ÑøUøÍø`Íé2ÏàFhUø“(PÛÍéµ
©Õø°{ñXÛ	˜%Ðøœf
˜ñTø%°BAÐ5«EøÑ%Tø%0F"ð™ú(4Ñ5«EôÑ=àÑé2ÑéšiUøÍø°”ÍéšÍé2áÑé2ÑéšÑé@©hÍé@ÍéšÍé2Má?õ;¯˜Pø+0“+?ô4¯hœšÝéµ(®Úh ’FpáÔ˜Pø% :±
˜’8Ýé4Ýéµ
à4ð”ê(@ð˜
¬ÝéµhÌ(ÀòUÕø
©yñÍéRCÛ	˜&ÐøDV
˜ñTø&¨BÐ6±EøÑ&Tø&(F"ð)ú(Ñ6±EôÑ(à'Ô˜Pø&¹ñ!Ð
˜Íø`8Ýé4ÝéR$à¿ä’В®áâ‘ÿ^úÿ@úÿ.XúÿÝrúÿ"Xúÿ=xúÿ0Lúÿ®€úÿ4ð8ê(@ð
¬žÝéRÌÖø(Àòù€Õø 
©zñÍéRÍø°)Û	˜%Ðø¬e
˜ñTø%°BÐ5ªEøÑ%Tø%0F"ðËù(Ñ5ªEôÑà
Ô˜Pø% ºñÐ
˜Íød 8›ÝéRà4ðôé(@ðՀ˜ÝéRÐø Ýé
(#ÛÕø°Íé
»ñÍéR,Û	˜%Ðøœb
˜ñTø%°BÐ5«EøÑ%Tø%0F"ðŠù(Ñ5«EôÑà Ýø°œàÔ˜Pø%8±
™F9›ÝéRà4ð°é
¬ÝéR(Ì@ðŠ€)"ÛÕø°
¨’»ñÀ,Û	˜$Ðøˆf
˜ñUø$°BÐ4£EøÑ$Uø$0F"ðJù(Ñ4£EôÑà Ýø°NàÔ˜Pø$@±­
™8Í9Ýékš	à4ðpé(KÑ
­Ýékš :Í)ڐ³1hˆBÐ*M}D.h°B¿ž6h°B
ÐFF4ðNéAÑ4ðRéȻOðÿ0+F2Fà@°ú€ð@	àHª™«xDÍé€(Fðºÿ(ÔÝé2ÝéšÝé@(ÌÑ FXFKFÍé¤ð9ý°½èð½Fò½QöåFò¸QóåFò±QðåFòªQíåFò£QêåFòÖQ@òª"çåFòœQâåYtúÿöðµ¯-遰-틞°›FœKœMF{D }DÓø€òœ`Õø—»ñÕø˜gõ}pò¤@“Íøt€Íé–•3Ð*HØë‚”ßèð€muYFQø¯ºñÀò+XFÍ醘ñOð’‘Ðø¤dUø(°BoÐñÂE÷ÑOðUø(0F"ðuø(`ÑñÂEóÑià*ؘ”Ðø€ßèð
Ñø€Íøt€Nh–ÑøÍølðàiHOðhM*xDhKhI}Dh{DyDhfNH¿OðeL~D’|DÍéÆX¿+F"F4ðÌèGòè`H@ò±2_KxD{Dò÷§þOððD¼XFÑé–Pø¯Íé–kàÑé–Ñø€Ûø Íøt€Íé–¯àXFÑøPø¯ÍølàÔ˜Pø(@±Fªñ
šÝ醘à4ðBè(šÝ醘@ð‡ºñÀò‘€hÍé†-’Íé+Û˜ñ	OðÐøôcYø(°BÐñEE÷ÑOðYø(0F"ðØÿ(ÑñEEóÑ
àÔ˜Pø(`F±–ªñ
šÝøH€Ýé	à4ðè(šÝé†Ýé@ðņºñOÛÐø€Íéb¸ñ:Û˜ñ%ÐøœfTø%°BÐ5¨EøÑ%Tø%0F"ð›ÿ(Ñ5¨EôÑ àÔ˜Pø%€¸ñЪñ
Íøt€à¿ôÛtŒÈRúÿ‰múÿÊRúÿ{YúÿqqúÿTcúÿJ{úÿ3ð²ï(@ðw†˜Ðø€Ýébºñ€ò!„ÝM}DèjÐø´ÐøA ˆGF Oô€r#Íé HF" G(ðøƒ‚Fhoð@AËFˆBÍøH€ÐBÊø ŠBÐ(Êø¿PF3ðìîèjÐø´ÐøA ˆGF"Oô€p#Íé0F±F G€F(ð؃Øøoð@AˆBÐBÈø ŠBÐ(Èø¿@F3ðÄîØøÚøžC•Íø@ ÍøL€ðeÖøXE0hâh!F4ðè(ð˃€Fhoð@AˆB¿0ÈøØøÖøü‚l@F*ðɃGF(ðʃØøoð@AˆBÐ8Èø¿@F3ðŠî˜HÙøxDhB𹃠%ÝøL€©‚è ©1
‘¡ë€HFú÷¶ý-F¿(hoð@AˆB@ðí‚,ðó‚Ùøoð@E¨BÐ8Éø¿HF3ðXî h¨B¿0 `˜ÀjÐø FˆG(”𨃁Fhoð@AˆBÐBÉø ŠBÐ(Éø¿HF3ð6îÖøXU0hêh)F3ðï(ð“ƒFhoð@AˆB¿0 ``hÖø\‚l F*𐃐G€F hoð@A¸ñퟨ�BÐ8 `¿ F3ð
îÖøXE0hâh!F3ðdï(Íø8ퟬ�Fhoð@AˆB¿0ÊøœÚøÖø@‚lPF*ퟰ�GF(ðƒÚøoð@AˆBÐ8ÊøÑPFF3ðØí#FXh¨Bðƒ $Ýø@°
™BÍéIšF¡ë€Fú÷ý,F¿ hoð@AˆB@ðS‚.ðY‚Úø oð@AŠBÐQÊø¿PF3ð¬íØøÚFœ¨Bðuƒ %
™BÍéV¡ë€@Fú÷àü-F¿(hoð@AˆB@ð;‚0hoð@AˆB@ðA‚¹ñðG‚Øøoð@AˆBÐ8Èø¿@F3ðzíHžxDhEðЀIyD	h‰E¿™	h‰EðƀHF3ðîí(ñWƒÙøoð@B‘B@ðĀÌà¾â˜‰>‡6‡XF4ð`è¿î«ƒF
FAì´îJ‹ñîúÑ3ðÒí(@ðm„HF4ðLèAì´îJ›ñîúÑ3ðÄí(@ðg„ÖøXE0hâh!F3ðŠî(ðFƒ€Fhoð@AˆB¿0ÈøØøœÖø@‚l@F*ðPƒGF(ðQƒ9îH‹Øøoð@AÍé[ˆBÐ8Èø¿@F3ðþìXì»XFAF3ðXí(ðBƒFðHÙøxDhBðDƒ& ©B1Íée¡ë€HFú÷%ü.‚F¿0hoð@AˆB@ðŸ(hoð@AˆB@𥁞ºñð«Ùøoð@AˆBÐ8Éø¿HF3ð¾ìÖHxDh‚EqÐÔIyD	hŠE¿™	hŠEhÐPF3ð4í(ñ'ƒÚøoð@B‘BgÑrà©ë°ú€ð@	Ùøoð@B‘B	Ð9ÉøÑFHF3ðì(FÝøL€(ð„‚Ôø¨oð@AOðÙøˆB¿0Éø·H™ÕøàxDÖøW	hÖø$"Öøø3&
‘ñ$Íé&Íé&šÍéJ¬„èKFhš•ðG(ðq‚ƒFÙøœoð@AˆBÐ8Éø¿HF3ðJìÝø8†àªë°ú€ð@	Úøoð@B‘BÐ9ÊøÑ%FFPF3ð2ì F,F(ð¯‚Ôø¨ oð@AÚøˆB¿0ÊøÝé3ð~ì(ðBFXFAF3ðvìOð(ð€F‚H™OðxDÖø$"Öøø3ÕøàÖøW&	hhÍé+Íé+š
‘ñÍéƒSFÍéiÍéÅðG(𴂃FÚøoð@E¨BÐ8Êø¿PF3ðÞëÙø¨BÐ8Éø¿HF3ðÔëØøoð@AÝø@ ˆBÐ8ÈøÑ@F3ðÄëOð	$ÝøL€Úøoð@AˆBÐ8Êø¿PF3ð²ë¸ñ¿Øøoð@AˆBѹñ¿Ùøoð@AˆBÑ,¿ hoð@AˆBÑXF°½ì‹°½èð½8Èø¿@F3ðŠëßç8Éø¿HF3ð‚ëàç8 `¿ F3ð|ëàç8(`¿(F3ðtë,ô
­ @òKGò6$†á8 `¿ F3ðdë.ô§­RFÚFOð	œ@òKGòG67â8(`¿(F3ðPë0hoð@AˆB?ô¿­80`¿0F3ðD띹ñô¹­Gò^6@òKOð	"Õà80`¿0F3ð2ë(hoð@AˆB?ô[®8(`¿(F3ð&랺ñôU® @òKGò&$"Ýø@ ÝøL€â¿l†ȅ…²…ڄâHGò-!âKOôrxD{Dÿ÷» Gò<!@òý2Oð	'áÛH«™xDÍé ªXFðùù(ñ‚Ýé–Ýøt€ÿ÷̻3ðpë(¹ F÷÷œù(@ðX‚ Gòî!@òBá3ð¸ëF(ô6¬Gòð&@òK
áÙøPÝøL€-ð$‚)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HF3ð¦ê ±Fžÿ÷$¼Oð	Gò1@òBËà3ð(ë(¹(F÷÷Sù(@ð‚Gò+1@òB½à3ðrëmäˆBÐ8 `¿ F3ð€ê¡HGò-1¡K@òBxD{Dò÷<ùÝøL€«à3ðë(¹ F÷÷-ù(@ðïGò06@òKOð	"Ýø@ œ@á3ðFëF(ôs¬Oð	@òKGò26 áÜhÝø@°,ð³!hoð@@hB¿1!`)hB¿H(`hoð@AˆBÐ8`¿F3ð4ê +F`䨸P¡F-ð”)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@F3ðê  FLFgäGòb6@òK"œôàËH"Öø8xDlò÷„ø(ðf!"Fðäü hoð@AÝø8ˆB@ðGòr1@òBà@òKGò6œ"Õà3ðnê(¹ F÷÷šø(@ða Gòv!@òBOð	ÝøL€±H±KxD{Dò÷øOðœæ3ðªêF(ô¯¬Gòx&@òK Oð	"$“à @òKGò{&$"ÝøL€œàÙø`.?ô·¬1hoð@@Ùø B¿11`ÚøB¿HÊøÙøoð@AˆBÐ8Éø¿HF3ð†é ÑF˜ä@òKGò”&'à…H"Öø4xDlñ÷ýÿ(ðæ€F  F!"ðZü hoð@AÝø@ ÝøL€ˆB@ð €Gò¤!@òBOð	‹ç@òKGòÁ& $OðOð	à OôkGòË&$Oð࿎Yúÿ„qúÿogúÿ~Xúÿtpúÿ @òKGòÕ&$Úøoð@AˆBÐ8Êø¿PF3ð$éÝø@ "¸ñÐØøoð@AˆBÐ8ÈøÑ@FF3ðé*FÝøL€¹ñÐÙøoð@AˆBÐ8ÉøÑHFF3ðüè*F*¿hoð@AˆBÑAH1FAKZFxD{Dñ÷²ÿOðÝø8'å8`¿F3ðâèëç8Gòr1@òBMF `ô
¯$àGòÔÿ÷é¸ GòY!Oô€bOð	ûæ Gòc!@òBOð	òæ8 `OðGò¤!@òBOðOð	ôä® FFF3ð¬è2F!F©FÚæGòÏÿ÷»¸GòÈÿ÷·¸GòÁÿ÷³¸ %õå $cæ %…æGòn1@òBÝø8¾æ Gò !@òBOð	Ýø@ ±æ€Fÿ÷ڹFÿ÷WºÝ锂Fÿ��Fÿ÷V»¿
×jUúÿ`múÿØ Wúÿoúÿðµ¯-é“°™FÑKÒNF{D ~D
“h¹ñÖøܷõ´`õZp
òœ`“Íé;–1Ð*GØë‚•ßèð‚mwIF“Qø¯ºñÀòƒ€Öøœf	ñOð’‘Tø(°Bð}€ñÂEöÑOðTø(0F"ðjø(mÑñÂEóÑrà*Ø
˜•Ðø Íø$ ßèðé
Ñø ÍøH Ñø°ÍøD°h	Úà¡HOð M*xD K I}Dh{DyDhžNH¿OðL~D’|DÍéÆX¿+F"F3ðÀèGòA˜H@òB—KxD{Dñ÷›þ °½èð½ÑéIFQø¯“	ÍéfàÑé;‰hÙø ‘F	“Íé;•àhIFQø¯“	ºñÚsà
˜Ðø Íø$ ‰àÔ˜Pø( ±ªñ
	à3ð.è(@ð¶‚
˜h	š™ºñVÛÑø€’¸ñ‘%Û˜	ñ%ÐøhcTø%°BÐ5¨EøÑ%Tø%0F"ðÈÿ(Ñ5¨EôÑà
Ô˜Pø%0±ªñ
ƒFš™à2ðôïš(™@ðw‚ºñÛÑø€’¸ñ'Û˜	ñ%Ðø eTø%°BÐ5¨EøÑ%Tø%0F"ð’ÿ(Ñ5¨EôÑ
àžÝø àÔ˜Pø%!±ªñ
F‘à2ð¼ï(@ð>‚
˜hšžºñ‚F€ò‘!pj‘©
"ÈòÍø4°)Fù÷Yþ(ðXÖøXE€F0hâh!F3ðhè(ðVFhoð@AˆB¿00`ph•‚l˜*Ðø¸0FðSGF(ðT0hoð@AˆBÐ80`¿0F2ðäî@FIF"2ðžï(ðFFÙøoð@AˆBÐ8Éø¿HF2ðÎîHLxD|DÐø°^E¿ h†BѦë°ú€ð@	!àú|ÒË\|°Búÿq]úÿ²BúÿcIúÿåÕüÿ±@úÿ2kúÿæyèy
˜h†BÝÐ0F2ð&ï(ñ1hoð@B‘BÐ91`"ÐP³›oð@AÓø¨@ hˆB¿0 `ßHñÞJ#FxDÍø zD†oh	š°G(@ð€GòlK@ò]JOð	&F\á¡FF0F2ðjî FLF(ÔÑžEFÐF¢FÖøXE0hâh!F2ð¼ï(ðFhoð@AˆB¿0ÉøÙøTFÖø´ÂF‚lHF*ðހGF¨F(ð߀Ùøoð@AˆBÐ8Éø¿HF2ð2î@F1F"2ðìî(ð̀F0hoð@AˆBÐ80`¿0F2ðîÙE¿ hEѩëž°ú€ð@	
à
˜hEôÐHF2ð’îž(ñÙøoð@B‘BÐ9ÉøÑFHF2ðøí F(𝀛oð@AÓø¨@ hˆB¿0 `’Hñ’J#FxDÍø zDhh	š°G(ð߀!hoð@B‘BÐ9!`ÑF F2ðÎí(FØøoð@B‘B?ôò­9Èøôí­F@F2ð¾í F°½èð½uHGòKAuK@ò[BxD{D×å2ð>î(¹ Fö÷iü(@ðӀGòWK@ò\J&‹à2ð†îF(ô¬®GòYK@ò\J€àGò\K@ò\J&|à`H«™xDÍé ªHFð“ü(ñŽ€˜	Ýéº\æGò^K@ò\Jcà2ðî(¹ Fö÷2ü(@ðž€GòƒK@ò^J&Oð	¨FSà2ðLîF¨F(ô!¯Gò…KlàGòˆK@ò^JBà
™Öø	hˆBnÐØøGJzDh‘B¿Imð€QcÑAF3ð4è™"FÈò&(\Ð>HÍéexDÀkù÷zü(VÐF(hoð@IHEÐ8(`¿(F2ð&í F!"ðø hHEÐ8 `¿ F2ðíGò·K@òaJOð	0Fð÷ûúHFð÷øú'HYF'KRFxD{Dñ÷Êû Øøoð@B‘B?ô(­4çGò˜K@ò_J&¡FáçGò	AåGòŠK@ò^J&ØçGòA
åGòý1åGòö1åAF2ðØïšçGò°KÄçGò²K@òaJOð	.FÀçFÓåFæ¿/Ñüÿc<úÿäfúÿÑÆy^Аx@wˆÎ;úÿeúÿðµ¯-é›°ÛL–FÛN"|D’~D+òœb’õÍb’"hõ‘eÖø§Öø˜·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖøˆdÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"ð¹ü(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà°HOð°L¾ñxD¯K¯I|Dh{DyDh­NH¿Oð¬J~DÍøàzDÍéÆX¿#F2ðíGò;Q§H@òcB¦KxD{Dñ÷ëú °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ2ð„ìÝøDà(Ýé
+(F#F@ðó€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðøhf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðü(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à2ðBì(˜ÝøDàÝé2@𫀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðøœf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðÚû(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à2ðì(rјh˜Ýéæ¹ñUÚÐø¨@oð@COðOð	!h™B¿1!`6I7KyDÖølV{DÖøçÑøÀ™Öø$bh	h
‘ñ ÍéhÍé
¨€è@	¨€è BF#FàG!h˜±oð@B‘BÐ9!`а½èð½F F2ð0ë(F°½èð½oð@@BÐH `¿ F2ð ëHGòrQK@òÄBxD{DïæFHª«xDÍéàÝéðú(ÔÝé« Fš—çGò'QÔæGò"QÑæGòQÎæžuvÄGòQÇæ¿fUúÿPˆs~[úÿ´aúÿütP;úÿVúÿR;úÿBúÿ¬Wúÿœ]úÿÒcúÿðµ¯-靰FÀJ ÀN+zD’~DÍéõ´`hÖøà·õZpòœ`õÐ`’Íé+9иñOØëˆÍé
6ßè𡌖zF’UøŸ¹ñÛ˜Oð
Ðø€f
˜ñTø*°Bð·€
ñ
ÑEöÑOð
Tø*0F"ðÚú(@ð¦€
ñ
ÑEòÑ2ðëرGòÖQ<à¨ñ(Øšh“ßèð	ÈhÑø°Íøl°Kh“h“5áŠH¸ñŠJOðxD‰MzD‰Lh}DˆK|DˆIh¨¿F¸ñ¸¿&…JyD{DÍéezDÍø€¨¿#F2ð"ëGòaH@òÊBKxD{Dñ÷þø °½èð½5FFÖø Ñé;
hÈh1F.F“Íé;’’îàÑéSø¯’ÍéÍé_à’‘è©Sø¯Íé è‰àFhUø¯ºñ1ÛÕø’¹ñ•;Û˜$Ðøœf
˜ñUø$°B&Ð4¡EøÑ$Uø$0F"ð7ú(Ñ4¡EôÑ à?õ\¯˜Pø*(?ôT¯©ñ
šºñÍÚ˜žhœà	Ô˜Pø$(±ªñ
›à2ðNê(@ð傘›hºñTÛÓø“¹ñ%Û˜$Ðøhc
˜ñUø$°BÐ4¡EøÑ$Uø$0F"ðéù(Ñ4¡EôÑ
à	Ô˜Pø$(±ªñ
ƒF›à2ðê›(@𩂺ñÛÓø¹ñ=Û˜$Ðø e
˜ñUø$°BÐ4¡EøÑ$Uø$0F"ðµù(Ñ4¡EôÑ"àž.àÔ˜Pø$رªñ
à¿Þq¶À,qI>úÿ`úÿx7úÿ'Rúÿl7úÿÏEúÿmRúÿø_úÿ2ðÊé(@ð[‚˜hÝé
ºñ€ò©!pj‘©
"ÈòÍøT°)Fù÷gø(ðkÖøXE€F0h²Fâh!F2ðvê(ðhFhoð@AˆB¿00`phÚø¸•‚lPF0F*ðeGF(ðf0hoð@AˆBÐ80`¿0F2ððè@FIF"2ð¬é(ðXFÙøoð@AˆBÐ8Éø¿HF2ðÚèÄHÅLxD|DÐø°^E¿ h†BѦë°ú€ð@		à˜h†BõÐ0F2ðJé(ñ51hoð@B‘BÐ91`8Ð(AОoð@AOðOð	Öø¨@ hˆB¿0 `­H­IxDÚø„&yDÚø7ÐøÀh™
‘ñžÍébšÚø$RÍéã“#FÍéYÍøàÍéYàG(@ð¦€Gò]k@òZ&FzáEF FF0F2ðxè FDF¨F(½ÑEF FÚøXEVFÚøâh!F2ðÈé(ðõ€Fhoð@AˆB¿0ÉøÙøDFÖø´¨F‚lHF*ðó€GF(ðô€Ùøoð@AˆBÐ8Éø¿HF2ð@è@F1F"2ðúè(ð F0hoð@AˆBÐ80`¿0F2ð,èÙE¿ hEѩëÝøD°°ú€ðVF@	à˜hEòÐHF2ðžèÝøD°(VFñ+Ùøoð@B‘BÐ9ÉøÑFHF2ðè F(ð¶€Ûø¨@oð@A# hˆB¿0 `œHIÚø„&xDyDFkÍéRšhñ’š“#F°G(ðò€!hoð@B‘BÐ9!`ÐØøoð@B‘BÐ9ÈøÐ°½èð½F@F1ðÄï F°½èð½F F1ð¼ï(FØøoð@B‘BçÐâçzHGò4ayK@òRxD{Doå2ð8è(¹ Fõ÷dþ(@ð݀Gò@kOô£j&•à2ð‚èF(ôš®GòBkOô£jŠàGòEkOô£j&†àGòGkOô£jàbHª«xDÍé€F™ð‰þ(ñ™€˜˜Ý鰐Aæ1ðþï(¹ Fõ÷*þ(@ð¥€Gòtk@òZ&Oð	¨FZà2ðDèF(ô¯GòvkqàGòyk@òZJànnÞÅn™Öø	hˆBnÐØøDJzDh‘B¿Imð€QcÑAF2ð$ê™"FÈò&(\Ð;HÍéexDÀkø÷kþ(VÐF(hoð@IHEÐ8(`¿(F1ðï F!"ðú hHEÐ8 `¿ F1ð
ïGò°k@ò#ZOð	0Fï÷ìüHFï÷éü%HYF%KRFxD{Dð÷»ý Øøoð@B‘B?ô!¯çGò‘k@òZ&¡FáçGò{k@òZ&ÛçGòðQ›äGòëQ˜äGòäQ•äGòÝQ’äAF2ðÈéšçGò©kÄçGò«k@ò#ZOð	.FÀçF·åFcæA@úÿOMúÿÚZúÿtÄ´l"kjÂçKúÿrYúÿðµ¯-é›°ØNFØM"~DÍé"}D˜Fòœb’õÍb’Õø˜—¸ñ2hõÐc“Íé’4Ð,DØë„“•ßèðnvÍé`@FPø¿
’»ñ”Û˜ñ%Ðø€fTø%°BrÐ5«EøÑ%Tø%0F"ð¶þ(eÑ5«EôÑ1ðð±Gò
q3à2h,	Ð,Ð,
ъh’ÑøÍødÑø Íø` Ùà®H,®JOðxD­M®IzDh}DyD¬KŒF¬Ih¨¿F,¸¿&ªJyD{DÍéezD”¨¿cF1ðïGò3q¤H@ò%R¤KxD{Dð÷äü °½èð½CFÑé©SøÍé©càÑ驊hØø’Íé©—àCFÑø SøÍø` )Úuà›Ô˜Pø% Íø` ºñ“ЫñœÝé`Ýé2)cÛÓø°‘»ñ”Íé`Íé2(Û˜ñ%ÐøhfTø%°BÐ5«EøÑ%Tø%0F"ðþ(Ñ5«EôÑà
Ô˜Pø%H±™F9œÝé`Ýé2
à1ðFî(œÝé`™Ýé2@ð²€)"ÛÓø°‘»ñ”Íé`(Û˜ñ%ÐøœfTø%°BÐ5«EøÑ%Tø%0F"ðÞý(Ñ5«EôÑààÔ˜Pø% :±™’9Ýé`ÝéEà1ðî(vÑ­ž™1Í2h)YÚÐø¨@oð@C³F!h™B¿1!`8I9KyD{DÑøÀ)FÓø€ÑøçÑølfÛø0OðÑø$Íéñ
“#Õø„V Íé
@FÍéSÍé>#FÍé–àG!h˜±oð@B‘BÐ9!`а½èð½F F1ð,í(F°½èð½oð@@BÐH `¿ F1ðíHGòjqK@ònRxD{DóæFH™ªxD«Íé@@Fðü(Ô(FÝ驚’çGò q׿GòqÔæGòqÑæŠi`¸ 8úÿX¿žg£9úÿ®Uúÿöh6úÿÕWúÿD/úÿñIúÿ6/úÿÜ:úÿ¹;úÿÄWúÿðµ¯-é›°ÛNFÛM"~D’}DÍé"òœb’õQr’2h›F»ñõSs“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$ÐøLcUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðãü(@ð‚€4¢EóÑ1ðíœH±GòÉq½à,nÐ,ъh’jà½H&½I,xD¼KyDh{DŒF»IhyDºM¸¿&ºJ}D”zDÍée¨¿cF1ðFíGòñq™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøœfTø%°Bð€5¨E÷Ñ%Tø%0F"ðˆü(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%ÐøDcTø%°B6Ð5©EøÑ%Tø%0F"ð7ü()Ñ5©EôÑ1ðpì(@ðº€gH&gI%xDfJgKyDhzD{DheL–|DÍéT1ðªìGòÓqgH@òsRgKxD{Dð÷†ú °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà1ð(ì(uÑ­ž™1Í2h)TÚÐø¨@oð@C±F!h™B¿1!`7I7KyDÕøP³{DÕø$bÑøàÙøOð	Óø€Õø7
‘ñ˜Íéi&Íé¨ÕøHÀè@@FÍéc#F–ðG!hx±oð@B‘B™Ð9!`–ÑF F1ðRë(F°½èð½oð@@BÐH `¿ F1ðDëHGö(K@òÆRxD{DwçFHª«xDIFÍé@XFð=ú(Ô˜(FÝ额–çGòßqZçGòÑqWçGòÚqTç¿Þe¶´=úÿš»àc%@úÿúQúÿ"d~*úÿ½>úÿ5Eúÿ/1úÿfe¼+úÿ}Fúÿ¸+úÿm2úÿí?úÿ3AúÿSúÿðµ¯-靰ËNFËM"Íé"~D}DÍé"òœb’õ¨b’õQr’2h›F»ñõSs“’6Ð,;Øë„“•ßèð³j~^ÙFÍé&YøÍé¸ñÛ˜ñ$ÐøLcUø$°Bð¯€4 E÷Ñ$Uø$0F"ðùú(@ð €4 EóÑ1ð2ëœH±GöŠá,!Ð,ÑÊh’ààH&àI,xDßKyDh{DŒFèIhyDçM¸¿&çJ}D”zDÍée¨¿cF1ð\ëGö¾ïà2hÑø€Ñé:Íøh€“Íé:$áÑé:Ñé‚ÛøÍé‚“Íé:áÙFÍéYøÑé
Íé&Íé
@FÍø,€¸ñ€򑀨àÙFÑé:Ñø€YøÍøh€“Íé:)ÀòրÙøÍé¹ñÍéÀòà€˜ñ$ÐøœfUø$°BðĀ4¡E÷Ñ$Uø$0F"ðoú(@ð¶€4¡EóÑÃàÙFÑø€Yø¯ÍéÍé&Íø`€PFÍø, ºñÚ+à?õa¯˜Pø$‘)?ôZ¯F¨ñÙø €F‘ºñÛ˜ñ%ÐøDcTø%°BÐ5ªEøÑ%Tø%0F"ð/ú(Ñ5ªEôÑ1ðhê(@ðû€Gö”Oð4àôÔ˜Pø% Íød ºñìÐ˜ÍøH€8Ùø€¸ñÛ˜ñ$Ðø@eUø$°B9Ð4 EøÑ$Uø$0F"ðùù(,Ñ4 EôÑ1ð2ê(@ð€GöžOðkH&kIxDkJkKyDhzD{DhiMÍøÀ}DÍée1ðhêiH!FiK@òËRxD{Dð÷Eø °½èð½ÔÔ˜Pø$€Íøh€¸ñÌИÝé&AÝé)¿ö*¯àÔ˜Pø$ b±™’9œÝé
`à¿bì°1ðâé(xÑ
žÝé2h™)RÚÐø¨@oð@C±F!h™B¿1!`8I9KyDÕøP³{DÕøDeÑøàÙøOð	
‘ñ h˜Íéi&Íé¨ÕøHÀè@F#FÍéhðG!hx±oð@B‘B•Ð9!`’ÑF F1ðé(F°½èð½oð@@BÐH `¿ F1ðþèHGöõK@òbxD{DsçFH™ªxD«Íé@XFðøÿ(Ô˜(FÝ騚—çGöªTçGöœQçGö’NçGö¥Kç’aè'úÿ©BúÿØ.úÿ·V_'úÿpMúÿ _ü%úÿ0úÿ³@úÿ«,úÿä'úÿ™.úÿú1úÿ=úÿ†Núÿðµ¯-é—°°NF°M"~D’}DÍé"òœb’2h›F»ñõOs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøœfUø$°Bð†€4 E÷Ñ$Uø$0F"ðŸø(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø<cTø%°BJÐ5ªEøÑ%Tø%0F"ðyø(=Ñ5ªEôÑ1ð²èœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF1ðÞèGömfH@òbfKxD{Dï÷ºþ °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à1ðVè(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕø$b{DÕø@³ÑøÀÓøàÕø7ØøOð
‘ñ Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF F0ð€ï(F°½èð½oð@@BÐH `¿ F0ðpïHGö¤KOôËbxD{Dpç¨FFHª«aFxDÍé@XFðiþ(Ô(FÝé’EF™çGö]TçGöQQçGöXN翎]f¬88úÿì³:\÷EúÿTJúÿ¢\½)úÿKúÿð"úÿ=úÿâ"úÿ~9úÿGúÿpKúÿðµ¯-é›°ÜNFÜM"~D’}DÍé"òœb’õ¨b’2h›F»ñõOs“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$Ðø<cUø$°Bð‘€4¢E÷Ñ$Uø$0F"ð5ÿ(@ð‚€4¢EóÑ0ðnïœH±Gö!½à,nÐ,ъh’jà¾H&¾I,xD½KyDh{DŒF¼IhyD»M¸¿&»J}D”zDÍée¨¿cF0ð˜ïGö+!™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøœfTø%°Bð€5¨E÷Ñ%Tø%0F"ðÚþ(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%Ðø@eTø%°B6Ð5©EøÑ%Tø%0F"ð‰þ()Ñ5©EôÑ0ðÂî(@ð¼€hH&hI%xDgJhKyDhzD{DhfL–|DÍéT0ðüîGö
!hH@ò]bhKxD{Dï÷Øü °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà0ðzî(wÑ­ž™1Í2h)VÚÐø¨@oð@C±F!h™B¿1!`8I8KyDÕø@³{DÕø$bÑøÀÙøOð	Óø€Õø7
‘ñ˜ÍéiOð	&Íé¨ÕøDå€è@D@FÍé“#F–àG!hx±oð@B‘B—Ð9!`”ÑF F0ð¢í(F°½èð½oð@@BÐH `¿ F0ð”íHGöb!KOôÕbxD{DuçFHª«xDIFÍé@XFðü(Ô˜(FÝ额”çGö!XçGö!UçGö!R翂ZZ©Ÿ<úÿ>°X\úÿšFúÿÆX"úÿß=úÿÙ9úÿÓ%úÿ
Z` úÿ!;úÿ\ úÿ'úÿ?úÿnúÿ¬Gúÿðµ¯-é‘°€L%€N|D•~DÔøàòœe•Íø@àk±ë‚*BÐ*ÑÑøàhÍø@à-{ÛÈà*xÐ*ÑÑøàÍø@àqàtH²ñÿ?tLxDtN|DtMh~DsK}DsIhؿ&FÔCyDOêÔ|pL{D’|D²ñÿ?ÍéÆؿ+F"F0ðÚíGöÍ!jH@ò­biKxD{Dï÷µû °½èð½h->Û1F&FÑøœFñ
Oð	‘Íé#Zø)¡BÐ	ñ	ME÷уFOð	Zø) F"ðý(Ñ	ñ	MEóÑàƒFXø)à¾ñÐÍø@à=XFÝé#4F
àñÕ0ðDí(oÑÖøà4FÝé#XFž-MÚÐø¨Poð@B)h‘B¿1)`3I3JyDÖø7zDÖø$bÑøÀh!h$
‘ñFÍéCÍé6rFÍéC+FÍédÍédàG)hˆ±oð@B‘B?ôŒ¯9)`ôˆ¯F(F0ðrì F°½èð½oð@@BÐH(`¿(F0ðdìHGö1K@òëbxD{DhçFH±F&FxD¬AFÍé ªF#FðZû(Ô4FÝø@à(FNF›çGö¿!IçGöº!Fç¸V¥¯%úÿέ$V->úÿ:DúÿœV¹#úÿ{Eúÿ­7úÿÔúÿäúÿ	'úÿY?úÿfEúÿðµ¯-é—°°NF°M"~D’}DÍé"òœb’2h›F»ñõOs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøœfUø$°Bð†€4 E÷Ñ$Uø$0F"ð
ü(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø<cTø%°BJÐ5ªEøÑ%Tø%0F"ðçû(=Ñ5ªEôÑ0ð ìœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF0ðLìGö|1fH@òîbfKxD{Dï÷(ú °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à0ðÄë(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕø$b{DÕø@³ÑøÀÓøàÕø¤7ØøOð
‘ñ Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF F0ðîê(F°½èð½oð@@BÐH `¿ F0ðÞêHGö³1K@òRrxD{Dpç¨FFHª«aFxDÍé@XFð×ù(Ô(FÝé’EF™çGöl1TçGö`1QçGög1Nç¿jTB£å4úÿȪ"SJúÿ0Aúÿ~S™ úÿ]BúÿÌúÿy4úÿ¾úÿ+6úÿfúÿLBúÿðµ¯-é›°ÜNFÜM"~D’}DÍé"òœb’õŒb’2h›F»ñòìC“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$ÐøìdUø$°Bð‘€4¢E÷Ñ$Uø$0F"ð£ú(@ð‚€4¢EóÑ0ðÜêœH±GöA½à,nÐ,ъh’jà¾H&¾I,xD½KyDh{DŒF¼IhyD»M¸¿&»J}D”zDÍée¨¿cF0ðëGö:A™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøœfTø%°Bð€5¨E÷Ñ%Tø%0F"ðHú(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%Ðø`dTø%°B6Ð5©EøÑ%Tø%0F"ð÷ù()Ñ5©EôÑ0ð0ê(@ð½€hH&hI%xDgJhKyDhzD{DhfL–|DÍéT0ðjêGöAhHOôëbhKxD{Dï÷Fø °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà0ðèé(xÑ­ž™1Í2h)WÚÐø¨@oð@C±F
ñ!h™B¿1!`7I7KyD{DÑøÀ)FÑøçÑøddÓø€Ùø0Oð	Ñø$Íéñ 
“#˜ÕøðT‹è!@FÍéc#FÍøààG!hx±oð@B‘B–Ð9!`“ÑF F0ðé(F°½èð½oð@@BÐH `¿ F0ðéHGöqAK@ò¦rxD{DtçFHª«xDIFÍé@XF
ðúÿ(Ô˜(FÝ额“çGö(AWçGöATçGö#AQç^Q6 ý(úÿ§xO™7úÿt=úÿ¢Oþúÿ?*úÿµ0úÿ¯úÿæP<úÿý1úÿ8úÿíúÿo+úÿ­8úÿˆ>úÿðµ¯-é—°°NF°M"~D’}DÍé"òœb’2h›F»ñõs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøœfUø$°Bð†€4 E÷Ñ$Uø$0F"ð¡ø(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø<bTø%°BJÐ5ªEøÑ%Tø%0F"ð{ø(=Ñ5ªEôÑ0ð´èœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF0ðàèGöéAfH@ò«rfKxD{Dî÷¼þ °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à0ðXè(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕø$b{DÕø@²ÑøÀÓøàÕø7ØøOð
‘ñ Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF F/ð‚ï(F°½èð½oð@@BÐH `¿ F/ðrïHGö QK@öxD{Dpç¨FFHª«aFxDÍé@XF
ðkþ(Ô(FÝé’EF™çGöÙATçGöÍAQçGöÔAN習Mjœº7úÿð£RLúÿX:úÿ¦LÁúÿ…;úÿôúÿ¡-úÿæúÿ9úÿ1úÿt;úÿðµ¯-é—°°NF°M"~D’}DÍé"òœb’2h›F»ñõs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøœfUø$°Bð†€4 E÷Ñ$Uø$0F"
ðÿ(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø<bTø%°BJÐ5ªEøÑ%Tø%0F"
ðõþ(=Ñ5ªEôÑ/ð.ïœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF/ðZïGö˜QfH@ö
fKxD{Dî÷6ý °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à/ðÒî(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕø@²{DÕø$bÑøÀÓøàØøOðÕø7
‘ñ¨“€èHpF#FÍéhÍé©ÍéºàG!hx±oð@B‘B’Ð9!`ÑF F/ðüí(F°½èð½oð@@BÐH `¿ F/ðìíHGöÏQK@ökxD{Dpç¨FFHª«aFxDÍé@XF
ðåü(Ô(FÝé’EF™çGöˆQTçGö|QQçGöƒQN翆J^™z0úÿä JIò)úÿL7úÿšIµúÿy8úÿèúÿ•*úÿÚúÿÀ1úÿ+úÿh8úÿðµ¯-é—°°NF°M"~D’}DÍé"òœb’2h›F»ñõs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøœfUø$°Bð†€4 E÷Ñ$Uø$0F"
ð•ý(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø<bTø%°BJÐ5ªEøÑ%Tø%0F"
ðoý(=Ñ5ªEôÑ/ð¨íœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF/ðÔíGöGafHOôbfKxD{Dî÷°û °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à/ðLí(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕø$b{DÕø@²ÑøÀÓøàÕø7ØøOð
‘ñ Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF F/ðvì(F°½èð½oð@@BÐH `¿ F/ðfìHGö~aKOô
bxD{Dpç¨FFHª«aFxDÍé@XF
ð_û(Ô(FÝé’EF™çGö7aTçGö+aQçGö2aNç¿zGR–úúÿ؝BF8úÿ@4úÿŽF©úÿm5úÿÜúÿ‰'úÿÎúÿ@úÿTúÿ\5úÿðµ¯-é›°ÜL–FÜN"|D’~D+òœb’õÍb’"hõ‘eÖø§Öø˜·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖøˆdÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"
ð!ü(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#F/ðxìGöq©H@öÕ¨KxD{Dî÷Sú °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ/ðìëÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðøhf˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ðû(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à/ðªë(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðøœf˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ðBû(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à/ðpë(vјh˜Ýéæ¹ñYÚÐø¨@oð@COð	!h™B¿1!`9I:KyDÖøŒT{DÑøÀ1FÓø€›ÑøçÑø$hÍéñ 
“Íé
¨Öølf#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F F/ð”ê(F°½èð½oð@@BÐH `¿ F/ð„êHGö<qK@ö%xD{DëæFHª«xDÍéàÝé
ð~ù(ÔÝé« Fš“çGöñaÐæGöìaÍæ¿nDF“GöåaÅæGöÞaÂæµúÿ$š’BWúÿ|0úÿÌC 
úÿá$úÿ"
úÿÓúÿúÿ}úÿ¢2úÿðµ¯-é›°ÜL–FÜN"|D’~D+òœb’õÍb’"hõ‘eÖø§Öø˜·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖøˆdÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"
ð?ú(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#F/ð–êGöÃq©H@ö*¨KxD{Dî÷qø °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ/ð
êÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðøhf˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ðŸù(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à/ðÈé(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðøœf˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ð`ù(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à/ðŽé(vјh˜Ýéæ¹ñYÚÐø¨@oð@COð	!h™B¿1!`9I:KyDÖøŒT{DÑøÀ1FÓø€›ÑøçÑø$hÍéñ 
“Íé
¨Öølf#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F F/ð²è(F°½èð½oð@@BÐH `¿ F/ð¢èHGöúqK@öœxD{DëæFHª«xDÍéàÝéðœÿ(ÔÝé« Fš“çGö¯qÐæGöªqÍæ¿ª@‚Gö£qÅæGöœqÂæ 
úÿ`–Ò>zøùÿ¸,úÿ@\úÿ!úÿ^úÿ
úÿîúÿ úùÿÞ.úÿðµ¯-é›°ÜL–FÜN"|D’~D+òœb’õÍb’"hõ‘eÖø§Öø˜·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖøˆdÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"
ð]ø(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#F/ð´èHò©H@ö¡¨KxD{Dí÷þ °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ/ð(èÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðøhf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð½ÿ(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à.ðæï(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðøœf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð~ÿ(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à.ð¬ï(vјh˜Ýéæ¹ñYÚÐø¨@oð@COð	!h™B¿1!`9I:KyDÖøŒT{DÑøÀ1FÓø€›ÑøçÑø$hÍéñ 
“Íé
¨Öølf#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F F.ðÐî(F°½èð½oð@@BÐH `¿ F.ðÀîHHò¸K@öìxD{DëæFHª«xDÍéàÝéðºý(ÔÝé« Fš“çHòmÐæHòhÍæ¿æ<¾‹HòaÅæHòZÂæa&úÿœ’;
úÿô(úÿD<˜úÿYúÿšúÿK	úÿ¯(úÿ7úÿ+úÿðµ¯-é›°ÜL–FÜN"|D’~D+òœb’ò”b’"hò¼EÖø§Öø˜·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖø¼dÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"ð{þ(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#F.ðÒîHò?©H@öñ¨KxD{Dí÷­ü °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ.ðFîÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðø”f˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðÛý(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à.ðî(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðøœf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðœý(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à.ðÊí(vјh˜Ýéæ¹ñYÚÐø¨@oð@COð	!h™B¿1!`9I:KyDÖøÀT{DÑøÀ1FÓø€›ÑøçÑø$hÍéñ 
“Íé
¨Öø˜f#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F F.ðîì(F°½èð½oð@@BÐH `¿ F.ðÞìHHòvK@ö\"xD{DëæFHª«xDÍéàÝéðØû(ÔÝé« Fš“çHò+ÐæHò&Íæ¿"9ú‡HòÅæHòÂæô
úÿ؎R7ÿ úÿ0%úÿ€8Ôþùÿ•úÿÖþùÿ‡úÿB
úÿ%#úÿV'úÿðµ¯-é—°±M–F±L"}D’|Dòœb’Õø˜—õÍf"h–”Íé’“±ë޾ñSоñFоñÑÑé’Óø€”Íé’Æà"h¾ñðŀ¾ñоñÑJh’ÑøÍøT·à›H"›M"êž|xDšK›I}Dh{DyD¾ñh˜N˜J~DÍøàzDÍéÆX¿+F.ð íHòï“H@öa"’KxD{Dí÷ûú °½èð½šFÑøZø”•ÍøTCàšFZø¸ñ}Û)FñÑøhfOð‘Íé2ÍéNUø+±BÐñØE÷ÑFOðUø+0F"ðSü(ÑñØEóÑàF˜Pø+P±F¨ñ FÝø<àÝé2
àðÕ.ðzìÝø<à(Ýé2 F@𯀸ñ#ÛÚø ›FÍø<àºñ
%Û˜ñ&ÐøœFXFUø& BÐ6²EøÑ&Uø& F"ðü(Ñ6²EôÑ
ààÔ˜Pø& ±¨ñ’à.ð>ì(uјh
˜[FÝø<à¸ñTÚÐø¨@oð@COðOð
!h™B¿1!`5I5KyDÍé©{DÑøÀ)FÑøgÓøàÑø$2™ÕølVÍé8	h
‘ñÍécpF#FÍéZÍé†àG!hˆ±oð@B‘B?ô9¯9!`ô5¯F F.ðfë(F°½èð½oð@@BÐH `¿ F.ðVëHHò&!K@ö¡"xD{Dç.FFH¬™ªxDÍéàF#FðNú(Ô(FÝé’5F–çHòÞøæHòÙõæHòÒòæ:„Z5$þùÿº‹84oúÿ "úÿ5nûùÿ/úÿpûùÿ#úÿ"úÿAúÿò#úÿðµ¯-é›°ÜNFÜM"~D’}DÍé"òœb’õÍb’2h›F»ñò¼C“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$Ðø¼dUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðû(@ð‚€4¢EóÑ.ðVëœH±Hò…!½à,nÐ,ъh’jà¾H&¾I,xD½KyDh{DŒF¼IhyD»M¸¿&»J}D”zDÍée¨¿cF.ð€ëHò­!™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøœfTø%°Bð€5¨E÷Ñ%Tø%0F"ðÂú(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%ÐøhfTø%°B6Ð5©EøÑ%Tø%0F"ðqú()Ñ5©EôÑ.ðªê(@ð¼€hH&hI%xDgJhKyDhzD{DhfL–|DÍéT.ðäêHò!hH@ö¦"hKxD{Dí÷Àø °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà.ðbê(wÑ­ž™1Í2h)VÚÐø¨@oð@C±F!h™B¿1!`8I8KyD{DÑøÀ)FÓø€ÕøÀTÙø0Oð	ÑøçÑølfÑø$Íéñ
“#˜Íé@F“Íé:Íéc#FÍøààG!hx±oð@B‘B—Ð9!`”ÑF F.ðŠé(F°½èð½oð@@BÐH `¿ F.ð|éHHòä!K@öå"xD{DuçFHª«xDIFÍé@XFðuø(Ô˜(FÝ额”çHò›!XçHò!UçHò–!Rç¿R2*{úùÿˆ”0²úÿjúÿ–0òöùÿ»ûùÿ©úÿ£ýùÿÚ10øùÿñúÿ,øùÿáþùÿëüùÿÄúÿ|úÿðµ¯-遰-í‹ °ÇL˜FÇKƒF|D {DÍéÍéòœ`%h¸ñòT`òä@òt@“”•3Ð*:Øë‚ßèð·q„cÁF•Yø¯’ºñÛ˜ñ%ÐøtDVø% Bð²€5ªE÷Ñ%Vø% F"ð/ù(@ð£€5ªEóÑ.ðhéšX±HòF4á*%Ð*ÑÍhÍø4°•"àœHOð›M*xD›K›I}Dh{DyDh™N¸¿Oð˜L~D’|DÍéƨ¿+F"F.ðŽéHòz4êà˜Íø4°hÑéÑø°Íøx°Íé3áÑéÍø4°Ñ鵨ø Í鵐Íé!áÁFÍø4°Yø¿Ñé•ÚF’‘Íé»ñ€򈀟àÁFÍø4°‘è	©Yø¯“è	ºñÀòʀÙø’¹ñÀòñ&ÐøœVTø&¨Bð¼€6±E÷Ñ&Tø&(F"ðŸø(@ð®€6±EóÑÑàÁFÍø4°Yø¿h•ÚF’»ñÚ+à?õ^¯˜Pø%(?ôV¯Íø4°ªñ
Ùø°»ñÛ˜ñ&ÐøäDUø& BÐ6³EøÑ&Uø& F"ðbø(Ñ6³EôÑ.ðœè(Að€HòP4Oð0àôÔ˜Pø&(íÐÙø°ªñ
»ñÛ˜ñ&ÐøTFUø& B8Ð6³EøÑ&Uø& F"ð0ø(+Ñ6³EôÑ.ðjè(@ð·HòZ4Oð&H&&IxD&J'KyDhzD{Dh%MÍøÀ}DÍée.ð è"H!F"K@öê"xD{Dì÷|þOð
ð¸ÕÔ˜Pø&°Íøx°»ñÍЪñ
šºñ¿ö6¯Ýø85à&Ô˜Pø&P³ªñ
•%࿀.X}ø-Lôùÿ
úÿNôùÿÿúùÿ÷ùÿ,jòùÿ0õùÿ!
úÿùùÿn	úÿôúÿ.ðè(@ðᇘhšÝø8ºñ€ò‡«N~DðjÐø´ÐøA ˆGF Oô€r#Íé HF"Íø8 G(𩄁Fhoð@AˆBÐBÉø ŠBÐ(Éø¿HF-ð>ïðj–Ðø´ÐøA ˆGFOðOô€p"Íé#˜ Gž(ퟤ�Fhoð@AˆBÐBÊø ŠBÐ(Êø¿PF-ðï˜ÀjÐø´ÐøA ˆGF Oô€r#Íé XF" G(ðg„€Fhoð@AˆBÐBÈø ŠBÐ(Èø¿@F-ðîîÚøÙøÍøDBÍøT€•¿ØøPêðdƒÖøXE0hâh!F.ð6è(ð?„Fhoð@AˆB¿0(`hhÖøt‚l(F*ð=„GƒF(ð>„(hoð@AˆBÐ8(`¿(F-ð²îÖøXE0hâh!F.ðè(ð.„Fhoð@AˆB¿0ÉøÙøÖøè‚lHF*ð*„G€F(ð+„Ùøoð@AˆBÐ8Éø¿HF-ð„î:HØøxDhBð„ %ÝøD©‚è ©ñ
ªë€@Fô÷±ý-F¿(hoð@AˆB@ðr‚.ðx‚Øøoð@AˆBÐ8Èø¿@F-ðRîÛø™ˆBð„ $ÝøT€ªë€BXFÍéFô÷†ý,F¿ hoð@AˆB@ð]‚0hoð@AˆB@ðc‚-ði‚Ûøoð@AˆBÐ8Ëø¿XF-ð"î
HxDh	Hž¥BxD¿h…BÑ(°ú€ð@	àbƒŽ)(Š(˜h…BîÐ(F-ðŠî(ñ¾…)hoð@B‘BÐ9)`уF(F-ðòíXF(@ðâƒ”ÖøXE0hâh!F-ðFï(ðòƒƒFhoð@AˆB¿0ËøÛøÖøt‚lXF*ðGF(ðïƒÛøoð@AˆBÐ8Ëø¿XF-ðÀíÖøXE0hâh!F-ðï(ð݃€Fhoð@AÝø8°ˆB¿0ÈøØøÖøè‚l@F*ðۃGF(ð܃Øøoð@AˆBÐ8Èø¿@F-ðíÙø™ˆBðك &œ™‚”Íéaªë€HFô÷Âü.€F¿0hoð@AˆB@𳁸ñð¹Ùøoð@AˆBÐ8Éø¿HF-ðbíhh™ˆBðԃ $ÝøDªë€B(FÍéHô÷—ü,F¿ hoð@AˆB@ð™Øøoð@AˆB@ðŸ.ð¦(hoð@AÝøT€ˆBÐ8(`¿(F-ð2í^E¿˜h†BѦë°ú€ð@		à˜h†BõÐ0F-ð¦í(ñé„1hoð@B‘BÐ91`ÑF0F-ðí F(@ð¤ƒžÖøXE0hâh!F-ðdî(ðµƒFhoð@AˆB¿0(`hhÖøt‚l(F*𳃐GƒF(ð´ƒ(hoð@AˆBÐ8(`¿(F-ðàìÖøXE0hâh!F-ð:î(𤃁Fhoð@AˆB¿0ÉøÙøÖø˜‚lHF*𩃐G€F(ðªƒÙøoð@AˆBÐ8Éø¿HF-ð²ìØø™ˆBð⃠%ÝøD™‚‘ªë€@FÍéYô÷äû-F¿(hoð@AˆB@ð.ðØøoð@AˆBÐ8Èø¿@F-ð†ìÛø™ˆBðۃ $ÝøT€ªë€BXFÍéFô÷¹û,F¿ hoð@AˆB@ðë€0hoð@AÝøH ˆBÐ80`¿0F-ð^ì-ð܃Ûøoð@AˆBÐ8Ëø¿XF-ðN왞B¿˜h…BÑh
œ°ú€ð@	
à˜h…BõÐ(F-ðÀì
œ(ñ„)hoð@B‘BÐ9)`ÑF(F-ð(ì0Fž(@ð±ƒÔø¨Poð@A"(hˆB¿0(`ïH™xD’Íé*Žk™hÑø$2ñÍé2šÍé“Íéƒ+F°G(𨃂F(hoð@AˆBðª„8(`@ð¦„(F-ðòëð¡¼8(`¿(F-ðêë.ôˆ­%HòÚD@öA6Øøoð@AˆB@ðå‚êâ8 `¿ F-ðÔë0hoð@AˆB?ô­80`¿0F-ðÈë-ô—­@öA6HòñDEã80`¿0F-ðºë¸ñôG®OðHò2T@öC6žâ8 `¿ F-ðªëØøoð@AˆB?ôa®8Èø¿@F-ðœë.ôZ®HòITÉá8(`¿(F-ðë.ôú®%HòŠT@öE6Øøoð@AˆB@ퟨ�â8 `¿ F-ðzë
ç˜-ð†î¿î«F‰FAì´îJ‹ñîúÑ-ðøë(@ðكXF”-ðrîAìƒF´îJ›FñîúÑ-ðæë(@ð΃˜-ð`îAìÝø4 ´îJ»FFñîúÑ-ðÔë(@ðƒ´îK‹ñîúó:ƒ´îI»ñîúóOƒ´îI‹ñîúðdƒÚø¨€oð@AØøˆB¿0Èø˜IF–^F-ð~ë(ðoƒF(F!F-ðvë(ðoƒ™ƒF0F-ðnë%(ðnƒFgH™#xDÍé9«Lh™hÑø$"™ƒè$«	hdÃCFÍé%š
‘
ñ G(ðUƒ‚FØøoð@D BÑÙø BÑÛøÝøT€ BÑ0hÝøD B%фã8Èø¿@F-ðÎêÙø BèÐ8Éø¿HF-ðÂêÛøÝøT€ BáÐ8Ëø¿XF-ð¶ê0hÝøD Bð`ƒ80`@ð\ƒ0F-ð¨êWã8HHò¾17K@ö-2xD{Dÿ÷åº@ö.2HòÍ1@ã@ö/2HòÜ1;ã-ð"ë(¹ Fñ÷Mù(@ð¥ƒ@öA2Hò¾A-ã-ðlëƒF(ô«HòÀD@öA6á-ðë(¹ Fñ÷4ù(@ð‘ƒ@öA6HòÃDFá-ðRë€F(ôի%HòÅD@öA6OáØøPÝøD-ð>ƒ)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@F-ð>ê  Fÿ÷ûN%*#<ÿùÿÂúÿÛø@ÝøT€,ðƒ!hoð@@ÛøPB¿1!`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF-ðê «Fÿ÷ĻèH"Öø<xD@kì÷Œø(ðî‚!"Fðìü hoð@AˆB@ðρ@öB2HòQ™â-ð€ê(¹ Fñ÷«ø(@ðƒ@öC2HòQ‹â-ðÊêF(ô¬@öC6HòT]á-ðfêÝø8°(¹ Fñ÷ø(@ðó‚HòT@öC6ÝøT€éà-ð¬êF(ô$¬OðHòT@öC6ÝøDØøoð@AˆB@ð»€ÀàÙø`œ.ðœ‚1hoð@@Ùø€B¿11`ØøB¿HÈøÙøoð@AˆBÐ8Éø¿HF-ðŽé ÁFÿ÷¼ìhÝøD,ðy‚!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F-ðlé 5Fÿ÷¼—H"™xDÑø@@kë÷æÿ(ðU‚!"FðFü hoð@AˆB@ð2@öD2Hò\Qóá-ðÚé(¹ Fñ÷ø(@ðk‚@öE2HònQåá-ð$êƒF(ôL¬HòpT@öE6Uà-ðÀé(¹ Fð÷ìÿ(@ðU‚@öE6HòsT%ÝøDÛøoð@AˆB7Ñ=à-ðê€F(ôV¬%HòuT@öE6OðÙøoð@AˆBÐ8Éø¿HF-ðéÝøD¸ñÐØøoð@AˆBÐ8Èø¿@F-ððèÝøT€»ñÐÛøoð@AˆBÐ8Ëø¿XF-ðÞèU±(hoð@AˆBÐ8(`¿(F-ðÒèMH!FMK2FxD{DváØøPÝøD-ð)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@F-ð¨è  Fÿ÷ü»Ûø@ÝøT€,ð !hoð@@ÛøPB¿1!`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF-ð‚è «Fÿ÷¼@öE6Hò¡T%Ûøoð@AˆBŽєçÖH"ÖøDxD@kë÷òþ(ðn!"FðRû hoð@AˆBGÑ@öF2Hò´QáHòÑT@öH6vçÁH«™xDÍé ª@F
ðWÿ(:ÔÝéÝ鵐ÿ÷ظHòõD@öA6^ç¿(xàv”ûùÿ
úÿ5FHòMT@öC6OçHò¥T@öE6Jç8@öB2HòQ `@ðȀ¿à8@öD2Hò\Q `@𿀶à8@öF2Hò´Q `@𶀭àHòf4ÿ÷I¸HòX4ÿ÷E¸HòN4ÿ÷A¸˜H"™xDÑø<@kë÷þ(ð!"Fðßú hoð@AˆBrÑ@ö72Hò)A4àŒH"™xDÑø@@kë÷dþ(ðê€!"FðÄú hoð@AˆB^Ñ@ö92HòIAàH"™xDÑøD@kë÷Iþ(ðԀ!"Fð©ú hoð@AˆBJÑ@ö;2HòiAÝøDÝøT€Sà%Hò†D@ö=6Oðèå%HòD@ö>6OðŒæHòšD@ö?6‡æ5FHò¤D@ö<6æHòa4þ÷Ϳ@ö22Hòý1ÝøD-à@ö32HòAÝøD&à@ö42HòAÝøDà8@ö72Hò)A `à8 `@ö92HòIAà8 `@ö;2HòiAÝøDÝøT€Ñ FF
F,ðZï)F"FGHGKxD{Dë÷þOð
Ùøoð@AˆBÐ8Éø¿HF,ðBï˜(¿hoð@AŠBѸñ¿Øøoð@AˆB
ÑPF °½ì‹°½èð½Q`¿,ð$ïèç8Èø¿@F,ðïéç %ÿ÷ ¸ $ÿ÷˸@öB2OôA¶ç &ÿ÷„¹ $ÿ÷­¹@öD2HòXQ©ç %ÿ÷Uº $ÿ÷~º@öF2Hò°Qœç@ö72Hò%A>ç@ö92HòEA9ç@ö;2HòeA4çÝøH Fÿ÷¸Fÿ÷>¸ƒFÿ÷¹€Fÿ÷-¹Fÿ÷ܹFÿ÷º¿<æùÿtÜs¦s¤øùÿ*
úÿôtðµ¯-韰›F–L –K»ñ|D{DÍé&hòœ`ò¬Põ `“–0Ð*6Øë‚	”ßèðlQ`ÚF–Zø’¸ñÛ˜ñ%ÐøEVø% BnÐ5¨EøÑ%Vø% F"
ðÏþ(aÑ5¨EôÑ,ðïšP±Hò6ašà*MÐ*юh”–IàpHOðoM*xDoKoI}Dh{DyDhmN¸¿OðlL~D’|DÍéƨ¿+F"F,ð0ïHò^asàÚFÍø8ZøÑé	
Íé	¸ñ€ò…€ØàŽhÛø€Íø8Ñé	–
Íé	ÈàÚFÍé’ZøŸh–ÈF
¹ñÚ0à”&hÑé	
Íé	¶àŸÔYø%(
™ÐÍø8¨ñÚø¹ñÛ˜ñ%Ðø¬eTø%°B8Ð5©EøÑ%Tø%0F"
ðGþ(+Ñ5©EôÑ,ð€î(@ð+†7H&7I%xD6J7KyDhzD{Dh5L–|DÍéT,ðºîHò@a1H@öN21KxD{Dë÷–üOðXF°½èð½ÕÔ˜Pø%Íød¹ñÍШñšž¸ñTÛÚø ’ºñBÛ˜ñ%ÐøœFVø% BÐ5ªEøÑ%Vø% F"
ðïý(Ñ5ªEôÑ(à'Ô˜Pø%`³–¨ñš&࿬„h<ßùÿQúùÿ’ßùÿCæùÿ’òùÿBžÞùÿ¬ñùÿUùùÿOåùÿüòùÿ(úÿ,ðþí(@ð»…˜šh¸ñ€ò…–Oð°NÍøx€~DÍøt€Íøp€ðjÐø´ÐøA ˆGFOô€pÍéHF"# G‚F(ð„Úøoð@AˆBÐBÊø ŠBÐ(Êø¿PF,ð4íðjÚø@Ðø´ÐøQ	 ˆGF"Oô€p#Íé
˜¨GÝøL°(𠄀Fhoð@AˆBÐBÈø ŠBÐ(Èø¿@F,ð
í,Íéh¿Øø(ðÕø°PFók"˜Gœ0ð‰„Õø@Fók"˜G0ð‡„˜ÐøuHLExDð¤€ÕøXE(hâh!F,ð>î(ðŽ„Fhoð@AˆB¿00`phÕøx‚l0F*퟼�GF(ð„0hoð@AˆBÐ80`¿0F,ðºì(FÕøXUhêh)F,ðî(ð„Fhoð@AˆB¿00`™phÑø$‚l0F*ð„GF(ð€„0hoð@AˆBÐ80`¿0F,ðŒì™`h	hˆBðv„ &™‚•Íéa©1¡ë€ Fó÷¾û.F¿0hoð@AˆB@ð‰(hoð@AˆBÐ8(`Ñ(FF,ðdì+Fž +ðu„ hoð@E¨BÐ8 `ðwh¨Bð|Aoð@B‘B`ðu!`
‘(@ð^†ðW¾ðjQFBFÐøŒ1 ˜G(ð]„HEð…ìj,ðp„Bh¢Bðw…Òø¬0+ퟤ�h)Û3h¦Bðj…39øÑKI{DÒhyDhãh0h,ððìOðHòaq@ö¹2 ˜Íø<€(@ðj†ðp¾Po\ ÃþùÿHF,ðï¿îF‘Aì´î@ñîúÑ,ðxì(@ðU„
˜ð”ü
@0‘Ñ,ðlì(Aðî4FÕø°%vlHF™#°G0ð!„
˜™,ð.èÕø%#fl°G0ð„˜h˜ˆBðì€(FÕøXUhêh)F,ðí(ð(„Fhoð@AˆB¿0 `”™`hÑøx‚l F*ð*„GF(ð+„ hoð@AˆBÐ8 `¿ F,ðŽë˜ÐøXehòh1F,ðæì(ð„Fhoð@AˆB¿0 `”`h‚l˜*Ðø$ F𠄐GF(ð!„ hoð@AˆBÐ8 `¿ F,ð`ëáH$ihxD”hBð„ ™‚–ÍéA©1	‘¡ë€(Fó÷Žú,F¿ hoð@AˆB@ð’€0h!‘oð@AˆBÐ80`Ñ0F,ð0ë›+ð$„(hoð@Dž BÐ8(`Ñ(F,ð ë›hÍø4  BÐAoð@B‘B`Ð`¹F,ðë›òjFÓé#“Òøx"“GFÛø¨@˜Õø€ehÐø ³(FYF,ð0í(ðôƒAhÑøˆ0ӳ!F*FÊF˜G™(@ðSìã80`ôs®0FF,ðÞê3Flæ FF,ðØê#Fh¨Bô„® 
ðë¼Ûø¨@Õø S	‘fh)F0F,ðþì(ðà€AhÍø Ñøˆ0˱!F2F˜Gà¹ðڸhoð@AŠB™@ðÊFá8 `ôj¯ F,ð¤ê›dçhoð@AŠB¿Q`Ûø¨@˜ehÐøŒ“(FIF,ðÈì(ðº€F@hÐøˆ0S±0F!F*F˜G(ð¶€F@hà1hoð@B‘B¿11`–mIOðÍøp€yD	hˆB@ð؂ôh”,ðӂ!hoð@@µhB¿1!`)hB¿H(`0hoð@A•ˆBÐ80`¿0F,ðNê".F¨ÍéH0 ë‚0Fó÷ˆù,ÝøH€¿!hoð@B‘B@𔁝!(‘ðj€1hoð@D¡B	Ð91`рF0F,ð&ê@FÝøH€!‘h¡BÐ9`¿,ðê,ðÎêl™Ýé	$h.¿–BÑ@h(÷Ñ &Oð	à1hoð@@B¿11`ÖøÙøB¿HÉø0F,ð*ë™ñ šñ+FÍéA,ðí,ðí!(‘ð.€ƒF˜lh`(¿hoð@B‘B@ð9¹ñ¿Ùøoð@AˆB@ð5˜(¿hoð@AŠB@ð4œ"Øø, Fë÷>ø€F hoð@AˆBÐ8 `¿ F,ðªé¸ñ@ð%‡ OðHöOô=bðþ»FlFÊFP`Ñø¨P˜Õø°ÐøŒ“XFIF,ðÂë(ð’‚F@hÐøˆ0S± F)FZF˜G(ðŽ‚F@hà!hoð@B‘B¿1!`”™Oð	ˆB@ð´Ôø°»ñð®Ûøoð@@¥hB¿1Ëø)hB¿H(` hoð@A•ˆBÐ8 `¿ F,ðHé",F	˜Íé¹ ë‚ Fó÷ƒø»ñ¿Ûøoð@B‘B@ð„€(ðG‚!hoð@E©BÐ9!`сF F,ð$éHFh$”©BÐ9`¿,ðé”,ðVìÑFÝé
«œ.	Û˜ññ “˜JF(F[FÍé¤,ð0ìèè>òÑ	˜,ð@ìž™phÑø,Hl-ð‚íHxD,ð,ê(@ð%‚0F!F"¨GF,ð*ê,ð‚0hoð@AšˆBÐ80`Ñ0F,ðÒèš,ð‚ hoð@EÝø4 ¨BÐ8 `Ñ F,ðÂèšh¨BѓFðF¾0`Oð“Foð@AˆB@ð&†ð*¾9Ëøôw¯FXF,ð¦è(Fpç9!`ôh®F F,ðœèÝøH€(F_æ9`¿,ð’èÀæ8Éø¿HF,ðŠèÂæQ`¿,ð„èÅæHòÀa@ö®2Oðqä HòàaOô;bOð˜Íø<€(@ðւÜâOðHò
q@ö´2[äOðHòq@öµ2Tä¦H«™xDÍé ªXF	ðcÿ(ñŒ€˜
Ýé–ÿ÷èº,ðÚè(¹ Fï÷ÿ(@ðw‡OðHò&q@ö·2ÿ÷1¼,ð"éF(ôp«OðHò(qà,ð¾è(¹(Fï÷éþ(@ð]‡OðHò+q@ö·2ÿ÷¼,ðéF(ô€«OðHò-q@ö·2MãæhÃF.ð
‡1hoð@@Ôø€B¿11`ØøB¿HÈø hoð@AÍøx€ˆBÐ8 `¿ F+ðîï DFØFÝøL°ÿ÷c»OðHòCq@ö·2˜Íø<€(@ðB‚HâdHEò!cK@ò	2xD{Dê÷•þ! ‘@ö¹2Hò_q^àHòLaÿ÷ê¹Hò>aÿ÷æ¹XHYIxDyDhh+ðžïÿ÷¤»"OðjæHòGaÿ÷ԹOðHöw@öÌ2ÿ÷š»OðHö€@öÍ2ÿ÷’»F)ð߀Ñø€¡BøÑßà$"DåOðHöc@öÊ2ÿ÷~»,ðè(@ðŒ†(Fï÷@þ(@ð¼†OðHö8@öÓ2ÿ÷j»,ðZèF(ôի @öÓ2Hö:OðÔá+ðòï(@ðn†0Fï÷þ(@ð†OðHö=@öÓ2ÿ÷F»,ð6èF(ô߫OðHö?@öÓ2ÿ÷8»ìhÍø ÁF,”ðO†!hoð@@Õø€B¿1!`ØøB¿HÈø(hoð@AÍøx€ˆBÐ8(`¿(F+ðï EFÈFÝøL°Ýø ÿ÷¿»}öùÿœæùÿvõùÿ(èùÿØÀùÿOðHöU@öÓ2ÿ÷öºæHYFxDhh,ðJêOðHöy+àáHIFxDhh,ð>ê Hö{àHö˜oð@AhˆBЙ8`ј+ðÚîOð@ö×2!Fà0F!F",ðèFíåOðHöÒ@ö×2Ýø4 $á$âå+ðPï(ðՅž$ÚåÅIyD	hŒBô™ª
(FÕøXU!h‘êh)F,ðè(ð—Fhoð@AˆB¿0 ``hÕøx‚l F*𔁐GÝø4F(ð hoð@AˆBÐ8 `Ñ F+ð‚îÝø4ÀÜøÕø€‚l`F*ð}GF(ð~(FÕøXUhêh)F+ðÊï(ðxFhoð@AˆB¿00`™phÑø$‚l0F*ðtGF(ðu0hoð@AˆBÐ80`¿0F+ðDî™Ûø	hˆB𐁠&©‚1•¡ë€XFÍédò÷vý.F¿0hoð@AˆB@ðπ hoð@F°BÐ8 `Ñ FF+ðî#F(h°BÐ8(`Ñ(FF+ðî#Fž +ð†Ûøoð@D BÐ8ËøÑXFF+ðúí+Fh BÑÝøL°àÝøL°Aoð@B‘B`Ð` ¹FF+ðæí#Fòj%ÓéF•Òøx"G!FðjRFCF”ÐøŒa °G(ퟤ�FHEœ
˜ðYåj-ð£€Øø ªBðPÒø¬0+𢀙h)Û3h®BðC39øÑ@KAI{DÒhyDhëh0h+ð„îÝø4ÀHòªq@ö¾2Ýø<€˜Íø<€8±hoð@F³BÐ;`BÐàF˜(¿hoð@F³Bј(¿hoð@F³BÑ+H+KxD{Dê÷?üšB±hOðoð@AˆB@ðå‚éâOðæâ;`àÑ
FF+ðdí2F)FÙç;`ÞÑ
FF+ðZí2F)F×ç80`ô-¯0FF+ðPí3F&çFFàF+ðHí*F!FµçHEò:!KOôCrxD{Dê÷üÝø<€Hò¨q@ö¾2•µà¿8
 
Ü	ÈëñùÿNâùÿzöùÿØÕùÿãùÿåHæIxDyDhh+ðírçF)ðŸ€Ñø€©Bøџà+ðœí(¹(Fï÷Èû(@ð?„ Hòlq€à+ðæíiæ&Hònq"à+ðàíF(ô‚® Hòqqnà+ð|í(¹(Fï÷¨û(@ð"„&Hòsqà+ðÈíF(ô‹®HòuqÝø4À hoð@BB	Ð8 `Ñ FF+ðÊìÝø4À!F@öº2.?ô¸¨0hoð@C˜B?ô²¨80`ô®¨0FFFfF+ð²ì´F*F!Fÿ÷£¸Ûø`ÐF.ð­ƒ1hoð@@Ûø B¿11`ÚøB¿HÊøÛøoð@AÍøt ˆBÐ8Ëø¿XF+ðˆì ÓFÂFÝø<€FæHòŒq@öº2Ýø4À˜Íø<€(ôݮãæ‘IyD	hBô.(¿hoð@AŠB@ð½ØøÔø€œ‚l@F*ð‚G™F(ð‚"l(FG(ð‚)hoð@F±BÐ9)`ÑF(F+ðBì FhOð	Íøt±BÐ9`¿+ð6ìÛø¨P˜ÍøxnhÐø C0F!F+ðbî(ðëAhÑøˆ0K±)F2F˜G(˜ÑHòÄq(âhoð@AŠB¿Q`˜Ûø¨`ÐøŒ“thIF F+ð>î(ðҁF@hÐøˆ0S±(F1F"F˜G(ð΁F@hà)hoð@B‘B¿1)`•™$”	hˆB@ð˜ÕøÍøp¹ñðÙøoð@@®hB¿1Éø1hB¿H0`(hoð@A–ˆBÐ8(`¿(F+ðÂë"5F¨Íé”0 ë‚(Fò÷üú¹ñ¿Ùøoð@B‘B@ð!(‘ð)hoð@F±BÐ9)`ÑF(F+ðšë Fh%Íø4 ±B•Ð9`¿+ðŽë•+ðÊ(Àò¦€ñ 	ñ&Oð
à˜
ñ
‚Eð˜€Øé'Ðø˜íÑø˜Sì+ÐéèXF+ð–îØø˜ Òø˜"ÂéØøØø(ñÈøØÛ àœ޺ùÿRÓø!Óø˜R*DÃø˜"	hJi2JaØø0ˆBÀÚë€Qø˜/Óh3Ó`hšh*äГøœR=±Óé¥ÉiIiDÃø˜äç*њiÓø˜PªB#Ú2ša	hÑø!Ñø˜25à*ÓÔhë‚]iÓø”@¥B"Û^a*hë‚Óø˜RÔø”A¥ëÃø˜R¢ñFæܹçža
hSi3Sa	hÑø!Ñø˜1Ñø˜RÒ*DÁø˜"¨ç5]a	hë‚Ñø˜2Òø!DÁø˜"›ç˜+ð$`hÑø,Xl.ð¾€éHxD+ðìÝø4 (@ðɀ F)F"°GF+ðì-𺀠hoð@AˆB@ð-ðƀ(hoð@Fš°BÐ8(`Ðh°BѓF'àQ`¿+ð¤ê<æ9Éøôó®FHF+ðšê0Fìæ(F+ð–êšh°BåÐ0`“Foð@AˆBÐ8`¿F+ð„ê¸ñÐØøoð@AˆBÐ8Èø¿@F+ðtêºñ¿Úøoð@AˆBј(¿hoð@AŠBÑXF°½èð½8Êø¿PF+ðXêêçQ`¿+ðRêXF°½èð½Oð	"ˆæ+ð.ëéåHòµq@ö¿2Rà@ö¿2Hò·q«äÂH!FxDhh+ð„íHòÄqAàÀHIFxDhh+ðzí HòÆqàHòÚq˜oð@Bh“B-ÐZ`*Ñ
F+ðê)F%à F)F"+ð`ëFÝø4  hoð@AˆB?ôM¯à+ð”ê(ð÷€% hoð@AˆB?ô@¯8 `¿ F+ðôé-ô:¯Hö8Oô<bÄFÿ÷L¼OðHöm@öË2þ÷ؽ™H)FxDhh+ð,íOðHö”Oô=bþ÷ɽ—HIFxDhh+ðí Hö–àHöª˜oð@AhˆBЙ8`ј+ð¸é OðOô=b!Fÿ÷¼Íø4 @öÑ2HKxDÍé{DHöÁê÷gø˜©ª«ê÷÷ú(1ÔÝøx  Ýé2QFÍé#+ð¨ê(𯀜F)F" Fê÷
øƒF hoð@H@EÑ(h@E!ѻñ'ÐhHxDhƒE%ÐfIyD	h‹E¿	™‹EÐXF+ðòéFàHö×Ià™8`¿˜+ð^é(h@EÝÐ8(`¿(F+ðTé»ñ×ÑHöà3à«ë°ú€ðE	Ûøoð@AˆBÐ8Ëø¿XF+ð<é-Ô^ÐPFè÷"ÿ˜$”è÷ÿ˜è÷ÿ˜IF›2F”lê÷'ûÝø4 Ýø<€Ýé[Ýø þ÷a½Höä˜IF›2Flê÷û OðOô=b!Fÿ÷Dº*H+IxDyDhh+ðêèÿæ¿Eêùÿ &ÿ÷¹ &päOðÍøtÀÿ÷w¹OðÍøtÀÿ÷•¹$ ÿ÷̹"H"IxDyDhh+ðÈèÿ÷!ºHöÛ¿ç+ð°èÝé#QFê÷û HöìÍé±çFþ÷÷»Fþ÷ ¼Fÿ÷&ºFÿ÷bºÝéFþ÷½ÝøL°Fþ÷=½®pþÄÎùÿšüÿ¦ÚùÿÎîùÿ@ÿ:ÿÞÿ*þ~Îùÿðµ¯-靰¡LšF¡KƒF|D {DÔøºñÍéòœ`ò¬Põ `“Íøp3Ð*;Øë‚”ßèðUˆÍé²ÓF[ø¸ñÛ˜
ñ$ÐøUVø$¨Bð–€4 E÷Ñ$Vø$(F"	ð§ø(@ð‡€4 EóÑ+ðàèš`±HöL!Ãà*rÐ*ÑÑø”ÍøpmàvHOðvM*xDuKvI}Dh{DyDhtN¸¿OðsL~D’|DÍéƨ¿+F"F+ðéHöt!šàÍøH°ÓFÑéh[øÍéh(Àò®€ÛøÝøH°¹ñÍé’ÀòҀ˜
ñ$ÐøœVVø$¨Bðœ€4¡E÷Ñ$Vø$(F"	ðEø(@ðŽ€4¡Eóѵà‘è@©Úøè@¸àÍé²ÓFÍø<[øŸhHFÍø@¹ñÚ4à”ÔøÑéhÍéh¢à?õz¯˜Pø$(?ôs¯¨ñÍø<Ûø¹ñÛ˜
ñ$Ðø¬eUø$°B6Ð4¡EøÑ$Uø$0F"ðõÿ()Ñ4¡EôÑ+ð.è(@ð½…*H&*I%xD)J*KyDhzD{Dh(L–|DÍéT+ðhèHöV!$H@öÞ2$KxD{Dé÷Dþ °½èð½×Ô˜Pø$€Íøl€¸ñÏИš8Ýø<ž(¿öR¯ÝøH°9à*Ô˜Pø$¹ñ$Ð˜Íøp8šž(àjýBLæü:ÃùÿûÝùÿ<ÃùÿíÉùÿZÓùÿžûúÁùÿ&Òùÿ±Üùÿ«Èùÿæùÿ„êùÿ*ðÆï(@ðY…˜šÐøÝé(€ò…M}DèjÐø´ÐøA ˆGF Oô€r#Íé @F" G(ð<ƒà¿æR‚Fhoð@AˆBÐBÊø ŠBÐ(Êø¿PF*ðþîèj•Úø@Ðø´ÐøQ ˆGF"Oô€p#Íé0F¨GF(ðƒ0hoð@AˆB	ÐB2`ŠBÐ(0`¿0F*ðØî,–Íø<¿ðh(𳂜0Fëk"Ôø˜G0ðƒÔø°PFëk"˜G0ðÿ‚Ôø¨QF+ðê(ðþ‚QFFÍøH°+ðê(ðü‚ƒF(hoð@AˆBÐ8(`¿(F*ðžî FÔøXEhâh!F*ðöï(ðî‚Fhoð@AˆB¿0(`™hhÑø°‚l(F*ð삐GF(ðí‚(hoð@AˆBÐ8(`¿(F*ðrîãHÙøxDhBðà‚$ ©B1‘¡ë€HFÍéFñ÷¢ý,F¿ hoð@AˆB@ðú-ð‚Ùøoð@AˆBÐ8Éø¿HF*ðDîÍI˜yDjh	hÐø°ŠB@ðӂªhÓ@ðê‚*òö‚ðèhÁñHC
!€û+ð`éF(ðǂ(hoð@AˆBÐ8(`¿(F*ðî0FIF+ð¤è(ð¼‚FÙøoð@AˆBÐ8Éø¿HF*ðîXF)F+ðhé(𹂁FÛøoð@D BÐ8Ëø¿XF*ðîí(h BÐ8(`¿(F*ðæí˜ÐøXEhâh!F*ð>ï(ð£‚Fhoð@AˆB¿0(`œhhÔøt‚l(F*𠂐GƒF(ð¡‚(hoð@AˆBÐ8(`¿(F*ðºí FÔøXEhâh!F*ðï(Íø4ð¦‚Fhoð@AˆB¿0(`™hhÑøè‚l(F*𨂐G€F(ð©‚(hoð@AˆBÐ8(`¿(F*ðŒírM}DhjíQì*ðâí(ð—‚FØø™•ˆBðê‚ &™‚”¡ë€@FÍéiñ÷±ü.F¿0hoð@AˆB@ð hoð@AˆB@ð-ð!Øøoð@AˆBÐ8Èø¿@F*ðLíÛø™ˆBð܂ $ž™BÍéE¡ë€XFñ÷€ü,F¿ hoð@AˆB@ðü€(hoð@AˆB@ðœ¹ñðÛøoð@AˆBÐ8Ëø¿XF*ðí:HxDhEÐ8IyD	h‰E¿™	h‰EÐHF*ðíÝøH°(ñ¾‚Ùøoð@B‘B
Ñà©ëÝøH°°ú€ð@	Ùøoð@B‘B	Ð9ÉøÑFHF*ðæì Fœ(@ð­‚Ûø¨oð@A
ñ OðÙøˆB¿0ÉøHÔø®lxDÔø$RÔø%Œè"%ñÍéXÍéRhšÔø°5Íé8KFÍéаG(ðê€Ùøoð@B‘B
Ñžàjùúø,O~öxöÀöž9ÉøÑFHF*ð–ì FÝø4Úøoð@B‘BÐ9ÊøÑFPF*ð„ì F.¿1hoð@B‘Bѹñ¿Ùøoð@B‘BѰ½èð½91`ïÑF0F*ðhì Féç9ÉøîÑFHF*ð^ì F°½èð½8 `¿ F*ðTì-ô®Hö01ùà80`¿0F*ðHì hoð@AˆB?ôå®8 `¿ F*ð<ì-ô߮Hög1Ná8 `¿ F*ð0ì(hoð@AˆB?ôþ®8(`¿(F*ð$윹ñôø®Hö~1áÖø€#ÍøH Úø˜íÝøT QìllÚø% G0ð1‚™í#Úø°%Qìll G0ð*‚˜í+·î±îÂ;™íÛHÝøH 0îAxDAj€î²îî+‘í î´îAñîúó‚œ 
öæÎHHö¸!ÎK@ö;BxD{DNä@ö=BHöØ!Oð	âHöA@öUBüà@öABHö1Oð	
â@öBBHö1Oð	â@öEBHö1Oð	üáHö1@öEBOðOð	‡à*ð4ì(¹ Fî÷_ú(@ð‚Hö1@öEB%	à*ð|ìF(ô­Hö1@öEBOð	8àÙø@,?ô­!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HF*ðjë ©Fþä—IyD	hŠBðr)F*ðÆî4åOð	Hö41@öEB7àHö71@öEB% Oð
ià(hoð@AˆB@ð>©F*åOð	Hö:1@öEBà	kŠh)FGå*ðÆë(¹ Fî÷ñù(@ð­@öFBHöH1wá*ðìƒF(ô_­HöJ1@öFBOð(hoð@C˜B	Ð8(`Ñ(FF
F*ðë)F"F»ñÐÍø4àžTá*ð”ë(¹ Fî÷Àù(@ðHöM1@öFB%Oð	Oðà*ðÚë€F(ôW­HöO1@öFBïçHöR1@öFB%Oð	Ûøoð@C˜B
Ð8ËøÑXFFF*ðÒê1F"F-¿(hoð@C˜B0ѹñÐÙøoð@C˜B
Ð8ÉøÑHFF
F*ð¸ê)F"F¸ñ¿Øøoð@C˜BњH›KxD{Dé÷lù ÷å8ÈøóÑ@FF
F*ðœê)F"Fëç8(`ËÑ(FF
F*ðê)F"FÃçØø`.?ô­1hoð@@ØøPB¿11`)hB¿H(`Øøoð@AˆBÐ8Èø¿@F*ðnê ¨FôäÛø@ž,ðπ!hoð@@Ûø€B¿1!`ØøB¿HÈøÛøoð@AˆBÐ8Ëø¿XF*ðHê ÃFåOð@öFBHö‚1sç¿ôKßùÿ$ãùÿòó˜"ÔøH@ké÷µø(ð™€!"Fðý hoð@AÝø4ˆB Ñ@öGBHö‘1gàPH«™xDÍé ªPFðù(*Ô
ñh	™è@ÿ÷ݺ0(`©Foð@AˆBôá«ÿ÷å»8@öGBHö‘1 `DÑ FF
F*ðòé)F"F<à²î•í!îQì*ðDêÿ÷»»Höb!ÿ÷XºHöT!ÿ÷TºHö]!ÿ÷Pº@öMBHöÀ1à@öNBHöÉ1à™"@kÑøHé÷Møȳ!"Fð¯ü hoð@AˆBÑ@öSBHöé1žOð	ÝøH HKxD{Dé÷qø Úøoð@B‘Bô­åž8ÝøH @öSBHöé1Oð	 `äўç $ÿ÷N¼@öGBHö1Ýø4Øç@öSBHöå1ÎçžFÿ÷öºFÿ÷¬»™FÝø4ÿ÷ջ.ÇùÿÏÜùÿÔàùÿÙÚùÿÞÞùÿðµ¯-é—°°M–F°L"}D’|Dòœb’Õø˜—õf"h–Íé’“±ë޾ñ”RоñEоñÑÑé’Óø€Íé’Æà"h¾ñðŀ¾ñоñÑJh’ÑøÍøT·à›H"›M"êž|xDšKšI}Dh{DyD¾ñh—N˜J~DÍøàzDÍéÆX¿+F*ðöéHöˆA’H@öZB’KxD{Dè÷Òÿ °½èð½šFÑøZøÍéeÍøTDàšFZø¸ñ}Û)F–ÑøhdñOð‘Íø8àÍé2Uø+±BÐñØE÷ÑFOðUø+0F"ð)ù(ÑñØEóÑàF˜Pø+P±F¨ñ FÝø8àÝé2
àðÕ*ðPéÝø8à(Ýé2 F@𬀸ñ"ÛÚø ›FÍé
ºñ%Û˜ñ&ÐøœFXFUø& BÐ6²EøÑ&Uø& F"ðèø(Ñ6²EôÑ
ààÔ˜Pø& ±¨ñ’à*ðé(sјhÝé
[FÝée¸ñRÚÐø¨@oð@COðOð	
!h™B¿1!`4I5KyDÕøl„{DÕøgÕø$RhÑøHÀñ ÍéeÍéF#FÍø(àÍé˜Íé¦Íé^àG!hˆ±oð@B‘B?ô;¯9!`ô7¯F F*ð>è(F°½èð½oð@@BÐH `¿ F*ð0èHHö¿AK@öžBxD{Dç¨FFH¬ª1FxDÍéàF#Fð'ÿ(Ô(FÝé’EF˜çHöwAúæHörA÷æHökAôæ¿æ=ï§ùÿhEúíu¥ùÿÒÛùÿÈîµùÿÝÏùÿµùÿѻùÿ©ùÿC§ùÿ Ýùÿðµ¯-é—°«NF«M"~D’}DÍé"òœb’2h›F»ñõs“’Жë„,FÐ,Ð,lÑÑé’Ûø Íé’ºñÀò€á,ðŽ€,\ÑJh’‰àØFÑøXø¯
–•ÍøPºñÀò”€Øø€”¸ñÀò—€˜ñ$ÐøœfUø$°Bð„€4 E÷Ñ$Uø$0F"ðÚÿ(vÑ4 EôÑ{àØF•Xø¯Íé
dºñÍé Û˜ñ%Ðø<bTø%°BJÐ5ªEøÑ%Tø%0F"ðµÿ(=Ñ5ªEôÑ)ðîïœ(@ðŀlH,lJOðxDkMlIzDh}DyDjKŒFjIh¨¿F,¸¿&hJyD{DÍéezD”¨¿cF*ðèHö7QbH@ö£BbKxD{Dè÷öý °½èð½2hÑøÍøP)àÃÔ
˜Pø%ÍøP¹ñ»Ъñ
œÝé ºñ¿öl¯àÔ
˜Pø$ ±ªñ
’à)ð–ï(qјhÝéEÝéºñOÚÐø¨@oð@COðOð
!h™B¿1!`2I3KyDÕø$b{DÕø@‚ÕøWhÑøHÀ©è`@ñ ÍéF#FÍé˜Íé¥ÍénàG!hx±oð@B‘BšÐ9!`—ÑF F)ðÄî(F°½èð½oð@@BÐH `¿ F)ð´îHHönQK@ööBxD{Dxç¨FFHª«1FxDÍé@XFð­ý(Ô(FÝé’EFœçHö'Q\çHöQYçHö"QVç¿ìÚ:NÖùÿlBë'ÏùÿÜØùÿë5¸ùÿùÙùÿh±ùÿÌùÿZ±ùÿ„×ùÿ3ÐùÿèÙùÿðµ¯-é—°«NF«M"~D’}DÍé"òœb’2h›F»ñò¬S“’Жë„,FÐ,Ð,lÑÑé’Ûø Íé’ºñÀò€á,ðŽ€,\ÑJh’‰àØFÑøXø¯
–•ÍøPºñÀò”€Øø€”¸ñÀò—€˜ñ$ÐøœfUø$°Bð„€4 E÷Ñ$Uø$0F"ð^þ(vÑ4 EôÑ{àØF•Xø¯Íé
dºñÍé Û˜ñ%Ðø¬eTø%°BJÐ5ªEøÑ%Tø%0F"ð9þ(=Ñ5ªEôÑ)ðrîœ(@ðƀlH,lJOðxDkMlIzDh}DyDjKŒFjIh¨¿F,¸¿&hJyD{DÍéezD”¨¿cF)ðžîHöæQbH@öûBbKxD{Dè÷zü °½èð½2hÑøÍøP)àÃÔ
˜Pø%ÍøP¹ñ»Ъñ
œÝé ºñ¿öl¯àÔ
˜Pø$ ±ªñ
’à)ðî(rјhÝéEÝéºñPÚÐø¨@oð@COðOð
!h™B¿1!`2I3KyDÕø°…{DÕøgÕø$RhÑøHÀñ ÍéeÍéF#FÍø(àÍé˜Íé¦Íé^àG!hx±oð@B‘B™Ð9!`–ÑF F)ðFí(F°½èð½oð@@BÐH `¿ F)ð8íHHöaK@ö)RxD{Dwç¨FFHª«1FxDÍé@XFð0ü(Ô(FÝé’EF›çHöÖQ[çHöÊQXçHöÑQUç
éâ7LÍùÿt?è ÀùÿâÕùÿ"è=µùÿ×ùÿp®ùÿÉùÿb®ùÿ„Îùÿ®ÁùÿðÖùÿ¿¿ðµ¯-飰ÇL™FÇKƒF|D {DÍéÍéòœ`&h¹ñò\Põ£`õ¦`”“!–3Ð*:Øë‚ßèð¶qƒcÊF–Zø’¸ñÛ˜	ñ%Ðø0EVø% Bð°€5¨E÷Ñ%Vø% F"ðöü(@ð¡€5¨EóÑ)ð.íšX±Hödá*%Ð*ÑÎhÍø@°!–"à›HOð›M*xDšK›I}Dh{DyDh™N¸¿Oð˜L~D’|DÍéƨ¿+F"F)ðTíHö³dèà˜Íø@°hÑé€Ñø°Íø€°Íé€2áÍø@°‘è	Îh©Ùø€!–“è	áÊFÍé¶Zø¿Ñé’ØF‘Íé»ñ€򇀞àÊFÍø@°‘è	©Zø“è	¸ñÀòʀÚø ’ºñÀò	ñ%ÐøœFVø% Bð¼€5ªE÷Ñ%Vø% F"ðgü(@ð®€5ªEóÑÑàÊFÍé¶Zø¿h’ØF»ñÚ+à?õ`¯˜Pø%(?ôX¯Íø@°¨ñÚø°»ñÛ˜	ñ&ÐøEUø& BÐ6³EøÑ&Uø& F"ð+ü(Ñ6³EôÑ)ðdì(Að€Hö‰dOð0àôÔ˜Pø&(íÐÚø°¨ñ»ñÛ˜	ñ&Ðø\EUø& B9Ð6³EøÑ&Uø& F"ðùû(,Ñ6³EôÑ)ð2ì(@ð¿‡Hö“dOð'H&'IxD'J'KyDhzD{Dh%MÍøÀ}DÍée)ðhì"H!F"K@ö.RxD{Dè÷Eú #°½èð½ÔÔ˜Pø&°Íø€°»ñÌШñšž¸ñ¿ö6¯ÝøX€5à&Ô˜Pø%`³!–¨ñš%àææ4†åګùÿ›Æùÿܫùÿ²ùÿ¼ùÿ ãü©ùÿ:ºùÿ³Äùÿ«°ùÿµÎùÿ†Òùÿ)ðÌë(AðŽ€˜šh¸ñÝøX€€òØM}DèjÐø´ÐøA	 ˆGF Oô€r#Íé @F" G(ð?…‚Fhoð@AˆBÐBÊø ŠBÐ(Êø¿PF)ðëèj•Ðø´ÐøA	 ˆGF%Oô€p"Íé#˜ GF(ð!…Ùøoð@AˆBÐBÉø ŠBÐ(Éø¿HF)ðàê˜ÀjÐø´ÐøA	 ˆGF Oô€r#Íé XF" G(ð…Fhoð@AˆB	ÐB"`ŠBÐ( `¿ F)ð¼êÙøÚøÍ锁BÍéj¿áhPêð@˜ÐøXUhêh)F)ðì(ð܄Fhoð@AˆB¿0 ``h‚l˜*Ðøt FðۄG€F(ð܄ hoð@AˆBÐ8 `¿ F)ð€êŸíYì»XFIF)ðØê(ðτFPF!F")ð0ë(ð̈́F hoð@AˆBÐ8 `¿ F)ð`êsHØøxDhBðÄ$ ©B1‘¡ë€@FÍéFð÷ù,F¿ hoð@AˆB@ð¥€0hoð@AˆB@ð«€-ð±€Øøoð@AˆBÐ8Èø¿@F)ð,êZHZIxDyD‘hµB¿h…BѨ°ú€ð@		à˜h…BöÐ(F)ðœê(ñDŽ)hoð@B‘BÐ9)`ðh(ðmXFIF)ðbê(ð¢„F˜)FÐø¸)ðèìÝøT(𛄂F(hoð@AˆBÐ8(`¿(F)ðæé9H"™OðxDÈòÍøh @kÍød€ð÷ù(ð„„FÚøoð@E¨BÐ8Êø¿PF)ðÆé F!"ð±ü h¨BÑ@ö²RIò`ÝøH àÝøH 8@ö²RIò` `Ñ FF
F)ð¨é)F"FHKxD{Dè÷dø 8ã8 `¿ F)ð–é0hoð@AˆB?ôU¯80`¿0F)ðŠé-ôO¯Oð
@ö±VIòðR¼¿ò:eÍÍAFá¢à¤àÚ7óÊùÿÄÎùÿ@Fðú‚F@ˆF0Ñ)ðòé(@ðΆ˜Oðÿ6ðúF
Fê„êCÑ)ðàé(@ð†XFðüùƒF‰Fê‹êCÑ)ðÐé(@ð·†Löÿ Ãöš1±ë
pëÀò|…	¨AÀòx…ë
Eë°ëqë	Àò¾…˜oð@AÐø¨ hˆB¿0`PFAF
’)ðNì(ðȅ‚F F)F)ðFì(ðԅ€FXFIF)ð>ì$(ðӅFzH™&xD
–ÍéhOðÑø%Ñø45Ñø`Íé&
žÍé‘™­lh1šÍé£3FÍéL¨G(ð¹…1hoð@D¡BÐ92F1`ÑFF)ðÐè0FÚø¡BÐ9ÊøÑFPF)ðÂè FØøoð@D¡BÐ9ÈøÑF@F)ð´è0FÙøÝøH ¡BÐ9ÉøÑFHF)ð¤è FÝøT<âF(F)ðœè F(ô“®˜ÐøXEhâh!F)ððé(–ðEƒ€Fhoð@AˆB¿0ÈøØø‚l˜*Ðøt@Fð@ƒG‚F(ðAƒØøoð@AˆBÐ8Èø¿@F)ðhèXFIF)ðÄè(ð9ƒ€F˜AF")ðé(ð8ƒFØøoð@AˆBÐ8Èø¿@F)ðJèÚø™ˆBð.ƒ& ™BÍéd¡ë€PFï÷~ÿ.F¿0hoð@AˆB@ð‚ hoð@AˆB@ð‚œ-ð‚Úøoð@AˆBÐ8Êø¿PF)ðè¥B¿˜h…B	Ñ(ÝøH °ú€ð@	à¿0ߘh…BñÐ(F)ðŠèÝøH (ñ „)hoð@B‘BÐ9)`ÑF(F(ððï F(ôç­˜ÐøXEhâh!F)ðDé(ðFhoð@AÝøTˆB¿0ÊøÚø‚l˜*ÐøtPFð肐GF(ðé‚Úøoð@AˆBÐ8Êø¿PF(ðºï˜ÐøXUhêh)F)ðé(ðۂ€Fhoð@AÝøH ˆB¿0ÈøØø‚l˜*Ðø„@FðₐG(
ðã‚Øøoð@AˆBÐ8Èø¿@F(ðˆï˜ÐøXehòh1F)ðàè(ðԂFhoð@AˆB¿0(`hh‚l˜*ÐøX(FðԂGƒF(ðՂ(hoð@AˆBÐ8(`¿(F(ð\ïÛø™ˆBð΂ &™‚Íøl¡ë€XFÍéjï÷þ.F¿0hoð@AˆB@ð/-ð5Ûøoð@AÝø4€ˆBÐ8ËøÑXF(ð.ïÝø4€Øø™ˆBðł &™‚‘ÃF™Ýø@¡ë€@FÍéeï÷\þ.€F¿0hoð@AˆB@ð(hoð@AZFˆBÐ8(`Ñ(F(ðïZF¸ñðBhoð@AËFˆBÐ8`¿F(ððî`h™ÝøTˆBðB &™BÍéh¡ë€ Fï÷$þ.F¿0hoð@AˆB@ð݀Øøoð@AˆB@ðã€ž-ðê€ hoð@AˆBÐ8 `¿ F(ðÀîµB¿˜h…BѨ°ú€ð@		à˜h…BöÐ(F(ð6ï(ñՂ)hoð@B‘BÐ9)`ÑF(F(ðžî F(@ð•‚Ûø¨Poð@A$(hˆB¿0(`çH™xD”ÍéIÑø%Ñø45Ñø`e™Íé$šÑøLÀñÍé&hšÍé£+FàG(ðˆ‚)hoð@B‘BÐ9)`ÑF(F(ðfî FÚøoð@B‘BÐ9ÊøÑFPF(ðVî F¹ñ¿Ùøoð@B‘B
Ñ-¿)hoð@B‘B
Ñ#°½èð½9ÉøðÑFHF(ð8î Fêç9)`îÑF(F(ð0î F#°½èð½80`¿0F(ð$î hoð@AˆB?ôõ­8 `¿ F(ðîœ-ôï­Iò=ëà80`¿0F(ðî-ôˮIò“@öµVOð%Áâ80`¿0F(ðúíêæ80`¿0F(ðòíØøoð@AˆB?ô¯8Èø¿@F(ðäíž-ô¯IòÁ@öµV/àŽHHöqK@öRxD{Dÿ÷Pº@öžRHöqÿ÷'¼@öŸRHö"qÿ÷!¼(ðTî(¹(Fì÷ü(@ðlƒ@ö±RHöúqÿ÷¼(ðœî€F(ô$«Höüp@ö±V%Oð
½âOð
@ö±VHöÿpqàIòOð
@ö±V%ÝøTâØø@,?ô8«!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@F(ðtí ¨Fÿ÷»ZH«™xDÍé ªHFðtü(ñÝé€Ýé ¶ÿ÷,º@ö³RIòNÖâÝøH IòX@ö²R~áIò[@ö²PràIòlá(ðÖí(¹ Fì÷ü(@ðñ‚@ö±RIò!¶â(ð î‚F(ô¿¬Oð
@ö±VIò#%$ÝøT0âIò&@ö±POðàIò(@ö±P$"ÝøTùáÚø`.?ôͬ1hoð@@ÚøPB¿11`)hB¿H(`Úøoð@AˆBÐ8Êø¿PF(ðöì ªF°ä(ð€í(¹ Fì÷¬û(@ðŸ‚@öµRIòraâ(ðÊíF(ô­IòtOð@öµP$"¸á(ðbí(¹(Fì÷Žû(@ð†‚Iòw@öµV%Oð
ÝøT×áTÚYÃùÿ*Çùÿî­ùÿ(ðží(
ô­IòyOð
@öµV%²á(ð8í(¹0Fì÷cû(@ðb‚Iò|@öµVOðUá(ð~íƒF(ô+­Iò~@öµVOðOðJáÛø`.ð‚1hoð@@ÛøPB¿11`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF(ðhì «FÝøH ÝøT娸`.ðã1hoð@@Øø€B¿11`ØøB¿HÈø
˜oð@AhˆBÐ
™8`¿
˜(ð@ì ÝøH åÝøTIòª@öµVOð%Oðhoð@AˆB@ð)-áæh.ð®1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ F(ðì ,FÝøH ÝøTåçH"™xDÑøL@kç÷„ú(ð†!"Fðäþ hoð@AˆB@ð<@ö¶RIòÔfáIòñ@ö¸RàHöŸdÿ÷X¸Hö‘dÿ÷T¸IòA@ö±RÝøTàIòÅ@öµR(hoð@C˜B	Ð8(`Ñ(FFF(ðÄë*F!FÌHÍKxD{Dç÷‚ú UåHö‡dÿ÷.¸ŸíÀQì(ðì(
ð>˜
™Ðø¸(ð–î(ð?‚F
˜oð@AhˆBÐ
™8`¿
˜(ð–ë²H©"1xDOðÈòÍøh @kÍød€ï÷Ëú(ð,FÚøoð@E¨BÐ8Êø¿PF(ðtë F!"ð_þ h¨B@ðˀ@ö¨RHö…qãà›H"™xDÑøL@kç÷åù(ðñ€!"FðEþ hoð@AˆB@ð¨€@ö«RHö¥qÇàHöÂp@ö­VOð$%OðÝøT
šhoð@AˆB6Ñ;àHöÌpOð@ö®P$àHöÖp@ö¯PÝøT
šàLFÝøTHöàq@ö¬P2F‘FÚøoð@AˆBÐ8ÊøÑPFF(ðë*F%OðOð
Z±hoð@AˆBÐ8`¿F(ðúêÚF¸ñÐØøoð@AˆBÐ8Èø¿@F(ðêêT± hoð@AˆBÐ8 `¿ F(ðÞê-¿(hoð@AˆBѺñ¿Úøoð@AˆBÑPH2FPK™xD{Dç÷‹ù ÝøH \ä8(`¿(F(ð¼êãç8Êø¿PF(ð´êäç8 `@ö¶RIòÔàHöšdþ÷¿8 `@ö«RHö¥qà8@ö¨RHö…q `ÝøH ÝøTôï¨ÿ÷å¸@ö£RHöCqÿ÷Ѹ@ö¤RHöMqà@ö¥RHöWqÝøH Ýé•ÿ÷ظ &æ &7æ &hæ@ö¶RIòÐëç@ö©RHösqæç@ö«RHö¡qáçHö}p@ö¨VOð$%OðÝøT
š%æHö€p@ö¨P5åFþ��Fÿ÷ǹÝøT‚Fÿ÷oºÝøH €FÝøTÿ÷šºÝøH FÝøTÿ÷º¿,eÍÍA:+Þ*A½ùÿÁùÿ/¿ùÿÃùÿðµ¯-é—°«NF«M"~D’}DÍé"òœb’2h›F»ñò¬S“’Жë„,FÐ,Ð,lÑÑé’Ûø Íé’ºñÀò€á,ðŽ€,\ÑJh’‰àØFÑøXø¯
–•ÍøPºñÀò”€Øø€”¸ñÀò—€˜ñ$ÐøœfUø$°Bð„€4 E÷Ñ$Uø$0F"ðú(vÑ4 EôÑ{àØF•Xø¯Íé
dºñÍé Û˜ñ%Ðø¬eTø%°BJÐ5ªEøÑ%Tø%0F"ðïù(=Ñ5ªEôÑ(ð(êœ(@ðƀlH,lJOðxDkMlIzDh}DyDjKŒFjIh¨¿F,¸¿&hJyD{DÍéezD”¨¿cF(ðTêIòqbH@ö½RbKxD{Dç÷0ø °½èð½2hÑøÍøP)àÃÔ
˜Pø%ÍøP¹ñ»Ъñ
œÝé ºñ¿öl¯àÔ
˜Pø$ ±ªñ
’à(ðÐé(rјhÝéEÝéºñPÚÐø¨@oð@COðOð
!h™B¿1!`2I3KyDÕø°…{DÕøgÕø$RhÑøHÀñ ÍéeÍéF#FÍø(àÍé˜Íé¦Íé^àG!hx±oð@B‘B™Ð9!`–ÑF F(ðüè(F°½èð½oð@@BÐH `¿ F(ðîèHIò¨K@öbxD{Dwç¨FFHª«1FxDÍé@XFðæÿ(Ô(FÝé’EF›çIòa[çIòUXçIò\UçvÐNó›ùÿà&‚χùÿN½ùÿŽÏ©œùÿm¾ùÿܕùÿ‰°ùÿΕùÿ+ùÿ)ˆùÿ\¾ùÿðµ¯-靰ÜL“FÜJF |DzDÍéõ›`õå`Fõ5pÒøgÒøœ7-Òøl‡Ôø òœ`õIpò¼@Íé¨Íé68лñNØë‹
’	•–ßèð‰tešÍéIUøŸ“¹ñ•Û
˜$Ðø¼d˜ñUø$°Bð“€4¡E÷Ñ$Uø$0F"ð›ø(@ð„€4¡EóÑ(ðÔèرIò!â«ñ(ØÔø ßèði“Ñø€Íød€Ñø Íø` ÑéÍéèáŸH&ŸL»ñxDžKŸI|Dh{DyDhM¸¿&œJ}DÍø°zDÍée¨¿#F(ðìèIòT!×á‘è
ñXÑø€“FUø?Íød€Œè)áÑéUø”Íé(€򈀰á‘è
ñXFUøŒèÂàÍø(€Uøh”“•@FÍø€¸ñ&Ú?à‘è
ñXÑéƒF(FPøOÍ郌è:á?õ}¯	˜Pø$(?ôv¯˜Íø(€Ðø€©ñÝø¸ñÛ
˜$Ðø$c˜ñUø$°B*Ð4 EøÑ$Uø$0F"ðèÿ(Ñ4 EôÑ(ð"è(@ðt½H&½I%xD½J½KyDhzD{Dh»L–|DÍéT(ð\èIò!GáãÔ	˜Pø$ ’*ÝИÝé
†8™ÝéS(Àò*Íø(€Õø€‘©¸ñ“%Á,Û
˜&ÐøœF˜ñUø& BÐ6°EøÑ&Uø& F"ð—ÿ(Ñ6°EôÑàÔ	˜Pø& ºñ
Ð˜Íø` 8›Ýé
†™Ýé%
à'ð¾ï(@ð˜­›Ýé
†Ðø %Í™(Àòá€Íø(€Õø€‘©¸ñ“%Á8Û
˜$ÐøÔb˜ñUø$°BÐ4 EøÑ$Uø$0F"ðNÿ(Ñ4 EôÑàÔ	˜Pø$1›€F;ÝéaÝé%à|ÍV²Ì“ùÿǭùÿ“ùÿ»™ùÿ¡™ùÿ'ðhïÝé
†(™Ýé2@ð¯€+%ÛÍø(€Õø€Íé2¸ñ‘•,Û
˜$Ðø(g˜ñUø$°BÐ4 EøÑ$Uø$0F"ðýþ(Ñ4 EôÑà›gàÔ	˜Pø$P±œF<Ýé
†™Ýé à'ð$ï(Ýé
†™ÝéÝéBeÑ,$ÑÍø(€Ðø€’¸ñ‘“(Û
˜$ÐøØd˜ñUø$°BÐ4 EøÑ$Uø$0F"ð¸þ(Ñ4 EôÑ
àÚ"à
Ô	˜Pø$`6±–›Ýø(€™šà'ðâ»Hª	™«xDÍé°(FðTý(Ô
ñX
žÝ郚èÍéƒHFSF–ð
ú°½èð½Iò;!H@öbKxD{Dæ÷îü °½èð½Iò0!ïçIò)!ìçIò7!éçIò!æçIò"!ãç–ùÿ„Ëà‘ùÿ‡˜ùÿ—¬ùÿ‘˜ùÿΗùÿطùÿðµ¯-é‘°®LšF®M#|D“}DÍé
3òœc“õ¾c“#hºñõ f
–“2Ð*7Øë‚ßèðmSb©”%ÁPFPø¿“»ñÛ	˜
ñ&ÐøUTø&¨BnÐ6³EøÑ&Tø&(F"ðþ(aÑ6³EôÑ'ðJîšH±Iödœà*OÐ*ыh“KàHOðM*xDŒKI}Dh{DyDh‹N¸¿OðŠL~D’|DÍéƨ¿+F"F'ðrîIöŒvà	•Ñé•QFÍéHQøÍ镸ñ€򆀺àÑé•Íø€‹hÚø€“Íé•¬à“«%ÃPFÍéHPøÑøÃFÍø8¸ñÚ0à#hÑé•Íé•—àŸÔXø&Íø8¹ñ˜Ð˜«ñÍø€Ðø€¸ñÛ	˜
ñ&ÐøðUTø&¨B6Ð6°EøÑ&Tø&(F"ð‡ý()Ñ6°EôÑ'ðÀí(@ð…€HH&HI%xDGJHKyDhzD{DhFL–|DÍéT'ðúíIönHH@öþbHKxD{Dæ÷Öû °½èð½×Ô˜Pø&P•-ÑЫñÝéÝé1¸ñ5ÛÑø°•»ñÍé"Û	˜
ñ&ÐøœVTø&¨BÐ6³EøÑ&Tø&(F"ð/ý(Ñ6³EôÑàÔ˜Pø&0±¨ñ“à'ð^í8»˜hÝ靸ñÚIF*Fðéü°½èð½FH™«xDÍé 
ªPFðÀû(ÔÝé• F›åçIözçIölŒçIöu‰ç6È:®ùÿÂÆùÿ¯ùÿէùÿϓùÿÂÇŽùÿרùÿŽùÿɔùÿü¯ùÿx¨ùÿ¨µùÿðµ¯-é—°ÙM“FÙL"}D’|DÍé"õ›bÕø€Ôø¬¤+’òœb’ò\R’õ@r
’ÍéŠ6лñEØë‹
’”ßèð‚iu^ÍéZ™FSø¯ºñ“Û˜	ñ$ÐøSHFVø$¨Bð‚€4¢E÷Ñ$Vø$(F"ð„ü(sÑ4¢EôÑ'ð¾젱Iö^q´à»ñ`лñлñÑÑø ÍøT Ñø€ÍøP€Sà¾H&¾L»ñxD½K½I|Dh{DyDh»M¸¿&»J}DÍø°zDÍée¨¿#F'ðÜìIöq„àÑéb
ñHÑéŠ1FžhŒèáFÑé•Vø_Íé-€òŒ€áÑéb
ñHÑø€1FFVø_ŒèÁà“SøŸh•“	HFÍø¹ñÚ6àÕø€ÑéÍéêà?õ¯
˜Pø$(?ô†¯Íé˜ÐøªñÝø ¹ñÛ˜$Ðø\U˜ñVø$¨B6Ð4¡EøÑ$Vø$(F"ðãû()Ñ4¡EôÑ'ðì(@ð܀rH&rI%xDqJrKyDhzD{DhpL–|DÍéT'ðVìIöhqrH@öôrrKxD{Dæ÷2ú °½èð½×Ô
˜Pø$ ’*ÑИ	™E˜Ýéc-Àò„€Öø€™F•¸ñ	‘Íé&+Û˜	ñ$ÐøœVHFVø$¨BÐ4 EøÑ$Vø$(F"ð‡û(Ñ4 EôÑàÔ
˜Pø$€¸ñ	НKFÍøP€=˜š	™žà'ð®ë(qјKFš	™Ðø€˜ž-=ÛÖøÍé1¹ñÍéR(Û˜$ÐøØT˜ñVø$¨BÐ4¡EøÑ$Vø$(F"ðBû(Ñ4¡EôÑ
àÔ
˜Pø$@±ž‚F>˜šÝé1à'ðlë(˜Ýé1Ýéb$Ñ.ÚCFÍø ðVû°½èð½2Å
FH
™
ªxDÍé°F«ðÉù(Ô
ñH
 FšèßçIö{q;çIövq8çIöfq5çIöoq2ç¿֤ùÿzÃ։ùÿR¦ùÿ¤ùÿ‡ùÿ”ÄèŠùÿ©¥ùÿêŠùÿ‘ùÿX§ùÿˆùÿ`²ùÿ¿¿ðµ¯-遰-틜°›FiL iK»ñ|DÍé{Dòœ`&hõp“Íé`Ð낳*Ð*FÑÑé¦ÛøÍ馹ñÀòҀð¸*fÐ*6ÑNh–bàØFÑø XøŸ•ÍøP ¹ñmڼàØF¨XøŸp9ñ’Û˜ñ%ÐøhBVø% BIÐ5©EøÑ%Vø% F"ðwú(<Ñ5©EôÑ'ð°êš(Að"‚:H*:LOðxD9N|D9Mh~D9K}D9Ih¨¿&F*¸¿Oð6LyD{D’|DÍéƨ¿+F"F'ðÜêJòÊQ0HAòÌ/KxD{Dæ÷·ø ð£»&hÑø ÍøP `àÄÔ˜Pø% ÍøP ºñ¼Щñ	Ýébœ¹ñOÛØø€”¸ñ’;Û˜ñ%ÐøœfTø%°BÐ5¨EøÑ%Tø%0F"ðú(Ñ5¨EôÑ!à Ô˜Pø%`æ±–©ñ	šœà¿2ÁžÀ»ùÿ}¯ùÿê†ùÿ™¡ùÿކùÿ†ùÿʫùÿj¯ùÿ'ð"ê(A𙁜š&h¹ñ€ò7‡–&PF–Íéf'ðíF0ð†«H£FxD€FÀjÐø´ÐøA ˆGF@òÍéPF"# G(ðò…‚Fhoð@A•ˆBÐBÊø ŠBÐ(Êø¿PF'ðPé˜!‘ÐøXUhêh)F'ð¦ê(ðá…Fhoð@AˆB¿0 `”`h‚l˜*Ðøt Fð߅G(ðà… hoð@AˆBÐ8 `¿ F'ð"é˜!‘ÐøXEhâh!F'ðxê(ð̅Fhoð@AˆB¿0ÉøÙøÍø8€‚l˜*Ðø„HFðąGF(ðŅÙøoð@AˆBÐ8Éø¿HF'ðîèeHqhxDhB𷅠$™‚ÍéJÑø¤‘©1
‘¡ë€0Fî÷ø,¿!hoð@B‘B@ðjƒ(ðº…0hoð@AˆBÐ80`¿0F'ð¾èÝød€™ØøˆB𳅠&
™Bœ¡ë€@FÍédí÷ïÿ.F¿0hoð@AˆB@ðHƒ hoð@AˆB@ðNƒ -ðTƒØøoð@AˆBÐ8Èø¿@F'ðˆè3H\FxDh 1IµByD‘¿h…BѨ°ú€ð@	à h…B÷Ð(F'ðöè(ñu‡)hoð@B‘BÐ9)`ÑF(F'ð`è F\F(@ð}…™$hÚø¥B‘	”–Ð'ðé
lÐø€¸ñ¿ E'Ñ@h(õÑOð	OðOð3àF'ð è(ð
€F 'ðxèF .ð
€ô`Íéªà¿†b¾Z½R½Øøoð@@B¿1ÈøØøÙøB¿HÉø@F'ð@éƒF˜Ðø˜Ehâh!F'ð^é(ð¼…Fhoð@AˆB¿00`–ph‚l˜*Ðø0F𷅐GF(ð¸…0hoð@AˆBÐ80`¿0F&ðØï`h&™–ˆB𱅠
™BÍée¡ë€ Fí÷
ÿ.F¿0hoð@AˆB@𔂠-ðš‚"hoð@A˜ŠBÐQ!`Ñ F&ð¬ï˜'ðè(ð©…F &ðêï(ð·…F ÆéT¹ñÍé¿Ùøoð@AˆB@ðx‚¸ñ¿Øøoð@AˆB@ðv‚»ñ¿Ûøoð@AˆB@ðH‚˜ÐøXUhêh)F'ðÒè(
–ð·„Fhoð@AˆB¿0 `”`h‚l˜*Ðø„ F𵄐GF(ð¶„ hoð@AˆBÐ8 `¿ F&ðLï˜ÐøXUhêh)F'ð¤è(ð¤„Fhoð@AˆB¿0 `”`h‚l˜*Ðø¸ F𡄐GF(𢄠hoð@AˆBÐ8 `¿ F&ðïÙø$™”ˆB𓄠
™‚–ÍéA
™¡ë€HFí÷Oþ,€F¿ hoð@AˆB@ðƁ0h!‘oð@AˆBÐ80`¿0F&ðòî¸ñð“„Ùøoð@D BÐ8Éø¿HF&ðâîØø"™’ B¿0Èø’ËjØøØéÓøx2˜G-Íø €Àò܁Úø‚l˜*Ðø´PF𶅐GF(ð·…`hOð™ˆB@ð3ƒæh.ð/ƒ1hoð@@¥hB¿11`)hB¿H(` hoð@A•ˆBÐ8 `¿ F&ð”î",F
˜Íéh ë‚ Fí÷Ïý.F¿0hoð@AˆB@ðzÝø €-ð€ hoð@AˆBÐ8 `¿ F&ðpî˜"Ðø”(F&ð(ïž(ði…F(hoð@AˆBÐ8(`¿(F&ðXî ´B¿˜h„BѠ°ú€ð@	à	˜„B÷Ð F&ðÌî(ñ†!hoð@B‘BÐ9!`ðC!(‘ðH˜ÐøXUhêh)F&ðŒï(ð©…Fhoð@AˆB¿0 `”`h‚l˜*Ðø| F𭅐GF(𮅠hoð@AˆBÐ8 `¿ F&ðîÙø$™”ˆB𠅠
™BÍéJ¡ë€HFí÷9ý™)¿
hoð@CšB@ð:‚!(‘ð¯…Ùøoð@A	œˆBÐ8Éø¿HF&ðÖíÝøh¡Eðû…˜k(ðȅÙø ‚Bðñ…Òø¬0+ðЅ™h)Û3h†Bðä…39øÑÝKÝI{DÒhyDhÃh0h&ðŽî$Jòä{Aòp&Oð	 ˜(¿hoð@B‘B@ðõ˜(¿hoð@B‘B@ðò˜(¿hoð@B‘B@ðñ¿Ùøoð@AˆB@ðë.¿0hoð@AˆB@ðë,Ýø¿"hoð@AŠB@ð聹HYF¹K*FxD{Då÷*ü ðê¾9!`ô’¬F F&ðZí(F‹ä80`¿0F&ðRí hoð@AˆB?ô²¬8 `¿ F&ðFí -ô¬¬$JòckAò9ð½8 `¿ F&ð4í2æ8Ëøô³­XF&ð*í®å80`¿0F&ð$í -ôf­œJòÞa,@ð2ƒ=ã8Éø¿HF&ðíå8Èøô…­@F&ðí€å80`¿0F&ðíÝø €-ô€®$Jò¶{ð˼F F&ðòì(F!(‘ô¸®˜Ðø¨P˜nhÐø C0F!F&ðï(ðF@hÐøˆ03±XF)F2F˜GƒFH¹èãÛøoð@AˆB¿0Ëø˜Ðø¨P˜nhÐøŒC0F!F&ðöî(ðكF@hÐøˆ0K±HF)F2F˜G(ퟄ�F@hàÙøoð@B‘B¿1Éø™$”ˆB@ð"ÙøP•-ð)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HF&ð|ì"±F
˜ÍéT ë‚HFí÷·û™)¿
hoð@CšBaѝ!(‘ðŽƒÙøoð@D BÐ8Éø¿HF&ðVì˜Íø4°Íø h¡BÐ9`¿&ðHì &ð„ï˜Ýø<°(RÛ-Kݘ·î›Ýø8 OêÅ	ñ$Ÿí‹°îH«ÐFµì0FSì+&ð>ïAì»ñ:ìïщî
Ýø<°@FYFí9 î ì÷јë	
D˜„BÖÛà:
`šÑFF&ðì F”ç¿ڷý¡ùÿ°¢ùÿP¦ùÿ™ (DˆBüÛ˜&ð0ï
ž™phÑø,Xl,ðƒÜHxD&ðíÝé¨(@ð(ƒ0F)F" GF&ðí,ðƒ0hoð@AˆB@ðƒ,ð%ƒ hoð@AˆBÑOð	ð9½8Oð	 `@ð3… F&ð²ëð.½:
`ô­FF&ð¨ë F»å9`¿&ð ëæ9`¿&ðšëæ9`¿&ð”ë
æ8Éø¿HF&ðŒëæ80`¿0F&ð†ë
æQ!`¿ F&ð~ëæ"&èä%"ýæ$JòkAò5à$Jò!kAò6 Oð	Oð
Oð
¾å&ððë(@ðæ…(Fê÷ú(@ð+†$Jò0kFà&ð8ì(ô ª$Jò2k<à&ðÖë(¹ Fê÷ú(@ð†$Jò5k/à&ð"ìF(ô;ª$Jò7kAò9&&àôh,?ôEª!hoð@@µhB¿1!`)hB¿H(`0hoð@AˆBÐ80`¿0F&ðë .Fÿ÷+º$JòLkAò9Oð	Oð 
]娸`.?ôHª1hoð@@Øø@B¿11`!hB¿H `Øøoð@A”ˆBÐ8Èø¿@F&ðâê  Fÿ÷*º\H"™xDÑøˆ@kå÷\ù(ða…!"F%ðºý hoð@AˆBÐ8 `¿ F&ðÀê$•JòvkAò:&­ç&ðFë(@ðH…(Fê÷où(@ð†…$JòJ{Nà&ðŽëF(ôJ«$JòL{Cà&ð*ë(@ð3…(Fê÷Tù(@ðn…$JòO{3à&ðrëF(ô^«$JòQ{)àÙø@”,ð&…!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@A•ˆBÐ8Éø¿HF&ð`ê ©Fÿ÷G»$Jòg{AòF&Oð	OðªäH«)FxDÍé ªXFðTù(ñ;‚Ýé¦ÿ÷¸¸&ðÎê0¹ Fê÷ùø(@ð…JòÇaYà&ðëF(ôHª JòÉa/à]œùÿÌ	Žùÿæh–.ðɄ1hoð@@¥hB¿11`)hB¿H(` hoð@A•ˆBÐ8 `¿ F&ðê ,Fÿ÷-ºž Jòâaþ±0hoð@BBÐ80`Ñ0FF&ðêé!FàJòäa hoð@BBÐ8 `Ñ FF&ðÚé!F ˜&–(¿hoð@CšB@ð»€ðHAòBïKxD–{Då÷ˆø
˜©ª«å÷û(Íø vÔèHihxDhB@ð„*hoð@A˜ŠB¿Q)`&ðê(𖄁F &ðèé(ð„FÀø(F!F&ð&ì(ð„F(hoð@IHEÐ8(`¿(F&ðˆé hHEÐ8 `¿ F&ð~阝(¿hoð@B‘B@ð݀˜$”(¿hoð@B‘B@ð؀˜”(¿hoð@B‘B@ðԀ
˜lhÁø€!‘(¿hoð@B‘B@ðˀ-¿(hoð@AˆB?ôĩ8(`ô)(Fÿ÷9¼^F$Jò{AòC Oð	
˜lhÁø€(¿hoð@B‘B@ð˜(¿hoð@AŠB@ð.¿2hoð@AŠBÐQ1`Ñ0F&ðéOðž
æ:`ôA¯F&ð
é!F;ç&ðîéF(ôIª$Jò¢{Aòh‹à$Jòº{Ëà$JògkAò9&åå…H!FxDhh&ð8ì$JöAò‹ÿ÷9»H!F]FxDhh&ð*ìOð	Jöà]FJö*hoð@AŠBÐQ(F)`Ñ&ðÆè$Aò‹‘à0F)F"&ðêFÝé¨0hoð@AˆB?ôî¬à&ðBé(ð`ƒ$0hoð@AˆB?ôá¬80`¿0F&ð¢è,ô۬$Jö¢Aò‹ÿ÷ïº9`¿&ð’èç9`¿&ðŒè!ç9`¿&ð†è%ç9`¿&ð€è.ç&ðé(@ð5ƒ(Fé÷7ÿ(@ðWƒ$JòÉ{Aòp &Oð	â&ðNéF(ôRª$JòË{ÿ÷³ºÙø@”,ðƒ!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HF&ð<è ©FÝø €ÿ÷9º$Jòà{Aòp&ÿ÷ˆº$Jò¼{Aòhÿ÷~º$Jò›kAò?&å$JòkAò?&Oð	Oðå9`¿&ðèãæQ`¿&ð
èææJòºQþ÷¾HIxDyDhh%ðäïÿ÷MºJò®Qþ÷ý½JòµQþ÷ù½F™±Ñø€BúÑà¿n›ùÿŸùÿ诮ø­d¬¦`ùÿêIyD	hˆBôª Ùø°oðëŘškDŸíâYDí8:0îí¡ñôѵî@ñîú@ó5˜“Ðø¨P˜nhÐø C0F!F&ðâé(Íøð¥AhÑøˆ0#±)F2F˜G8¹¢áhoð@AŠB¿Q`˜Ðø¨P˜nhÐøŒC0F!F&ðÂé(𑁁F@hÐøˆ0k±HF)F2F˜G(ퟰ�F@h™$ˆBÐiáÙøoð@B‘B¿1Éø™$ˆB@ð\ÙøP-ðW)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HF%ðFï"±F
˜ÍéT ë‚HFì÷þ-¿)hoð@B‘B@ð!(‘ðDÙøoð@D¡B	Ð9ÉøÑFHF%ðï(FhÍø ¡BÐ9`¿%ðï &ðNê˜Ýø8(S۩ñ
ñè·î‹	!˜ñ˜ êàp0à˜™Ýø8D
˜ëÁ€í›	˜D˜B0ڰîH›˜Ýéµ‘Íø8»ñåАíñ0Fñ
Sì+•í	ñí&ðÊéAì@F8î@)î)í¡F•íUFµî@ñîú×ѿç˜&ðúéž™phÑø,Xl,ðՀÓHxD%ðäïÝø €(Ýéš@ðí€0F)F" GF%ðÞï,ðë€0hoð@AˆB@ðʀ,ðЀ hoð@AˆBÐ8 `?ôͪØøoð@AˆB¿0Èø@F
ºñ¿Úøoð@B‘B(Ѹñ¿Øøoð@B‘B)ѹñ¿Ùøoð@B‘B*Ñ-¿)hoð@B‘B-Ѹñ¿Øøoð@B‘B-Ѱ½ì‹°½èð½9ÊøÒÑFPF%ð<î FÌç9ÈøÑÑF@F%ð2î FËç9ÉøÐÑFHF%ð(î FÊç9)`ÎÑF(F%ð î FÈç9ÈøÍÑF@F%ðî FÇç9)`ôݮF(F%ðî FÖæ%"Âæ"¬}H!FxDhh&ðJé$Jö)=àyH!FxDhh&ð>éOð	Jö+àJö?šoð@AhˆBÐ8`ј%ðÜí$Aòz&Ýø €ÿ÷0¸0F)F"%ðïFÝø €Ýéš0hoð@AˆB?ô6¯80`¿0F%ð¾í,ô0¯$JöØAòz&Oð	ÿ÷
¸$0hoð@AˆB?ô¯äç%ð6î(mÐ
ñ
Ýø €$šè@0hoð@AˆB?ô
¯Òç(F^F&ð*è(yÑ$Jò{AòDNä^F•$Jò{AòDÿ÷J¼^F•Oð	Jò {AòDÿ÷@¼ $Jò0kAò9Uå$Jòrkÿ÷¯º $JòJ{à $JòO{AòF&Oð	Oðþ÷²¿$ ÿ÷ôº& ÿ÷N»)H*IxDyDhh%ð.í–ä $JòÉ{Aòp&Oð	aç$ ûäHIxDyDhh%ðíˆç]FQäFþ÷Fþ÷¼Fþ÷½½Fþ÷è½Fþ÷*½FÝø €þ÷ø¾F˜³F%ðzí(ôj«^F•$Jò{AòDÿ÷̻¿8¨"¨ï‘ùÿȦwùÿø¦Lwùÿðµ¯-é™°rLƒFrM |DÍé}D&hõ´`õ'pò|p0F”–––•Íø °ƒ±ë‚’±*9јFhXø¯ªñ»ñòԀ`à*+ÑhÒà˜F‘FXø¯”ºñÛ˜›Fñ$Ðø|WFVø$¨B7Ð4¢EøÑ$Vø$(F"ðòü(*Ñ4¢EôÑ%ð,í(JFAði€GH&GIxDGLGKyDh|D{DhEM’"F}DÍée%ðdíJö7!AHAò™AKxD{Dä÷@û °½èð½ÖÔ˜Pø$(ÐМªñ
JF[Fªñ»ñqØØø`ñ	Íé
$.“Û˜$hYø$¨BÐ4¦BøÑ$Yø$(F"ðšü(Ñ4¦BôÑàÔ˜Pø$±ÚFà%ðÊì(Að<€ºñ"ÛØø`.5Û˜$hYø$¨BÐ4¦BøÑ$Yø$(F"ðoü(Ñ4¦BôÑàÔ˜Pø$ȱªñ
›Ýé
$࿦ðô˜¥ôkùÿíiùÿ¸Yùÿk”ùÿŠzùÿ|”ùÿ%ðˆì›(Ýé
$@ð÷‡ºñ€òj†œoð@@Ýø\!hB¿1!`ÙøB¿HÉøÕøXe˜
(h1Fòh%ð4í(ð=…Fhoð@AˆB¿0(`hh‚l˜*Ðø„(Fð>…G€F(ð?…(hoð@AˆBÐ8(`¿(F%ð°ëãHØøxDhBð>… %©Bñ
ÍéTªë€@Fì÷ßú-F¿(hoð@AˆB@ð‹.ð‘Øøoð@E¨BÐ8Èø¿@F%ð€ë h¨BÐ8 `¿ F%ðxë˜ÇLE|D
–”eÐÙø)kˆB@ð5…àjÁIÐøx$yDHFG0ðN…ÙøÕø€‚lHF*ðJ…GF(ðK…ph‚l˜*Ðø€0FðG…G€F(ðH…(FAF"%ðþë(ðI…F(hoð@F°BÐ8(`¿(F%ð0ëØø°BÐ8Èø¿@F%ð$ë H
žxDh„BnОIyD	hŒB¿™ŒBfÐ F%ðšë(ñ)…!hoð@B‘BdÑlàphÕø‚l0F*ðW†GF(ðX†˜h%ð¸ì(ðZ†Õø¨!€FÕøœ%ð¾ë(ñ`h)FÓFÑø l-ð[†HxD%ðì(@ð]† FQFBF¨GF%ðìªF-ðX† hoð@E¨BÐ8 `¿ F%ðÆêØø
ž¨BÐ8Èø¿@F%ðºê˜oð@Ah(hˆB@ðú€ÐFÚFþà °ú€ð@	!hoð@B‘BÐ9!`ÑF F%ðžê(F(@ð¸„(FÕøXUhêh)F%ðòë(ðЄFhoð@AˆB¿0 ``hÕø‚l F*ðЄG€F(ðф hoð@AˆBÐ8 `¿ F%ðnê %ð²ê(ð̄ÙøFoð@@ÓFB¿1ÉøÄø1hB¿H0`&a%ðì(ð„Õød&‚FÕøÐ%ðë(QÔØøl-ðó„1HxD%ð|ë(@ðõ„@F!FRF¨GF%ðzë-ð'…Øøoð@F°BÐ8Èø¿@F%ð"ê h°BÐ8 `¿ F%ðêÚøoð@D
ž BÐ8Êø¿PF%ðê(h BÑÈFÚFUà8(`¿(F%ðê.ôo®AòõJö,&
”ð^¼AòÿJö&<%ËF à8ÈF(`3àä£zû}µýÿ”¢Œ¢cŠùÿ‰ùÿAòøJö¬,%Oð
 ³F hoð@AˆB	Ð8 `Ñ FdFF%ðÄé2F¤F(FUF&Íø°‚F-@𪁷á8(`ÐFÚF¿(F%ð°é˜
™Ýø BÍø€ðñÕøTE(hâh!F%ðþê(ð+„ƒFhoð@AˆB¿0ËøÕøXE(hâh!F%ðìê(ð&„€Fhoð@AˆB¿0ÈøØøÕø Íø<°‚l@F*ð6„GF(ð7„Øøoð@AˆBÐ8Èø¿@F%ðbéÙø™ˆBð.„ %Ýø€ªë€BHFÍéXÓFì÷•ø-‚F¿(hoð@AˆB@ð'‚ºñð-‚Ùøoð@AˆBÐ8Éø¿HF%ð6éž™phˆBð2„$ 
™‚ÍøL ÍéA«ë€0Fì÷hø,F¿ hoð@AˆB@ð
‚Úøoð@AˆB@ð‚-ð‚0hoð@AˆBÐ80`¿0F%ðé(FðQûF0ÚFÑ%ðŒé(@ðل(hoð@AˆBÐ8(`¿(F%ðîè”™ØøÑøX‚l@F*ð„GF(ð„(Fð®ü0Ñ%ðfé(@ðº„(hoð@AˆBÐ8(`¿(F%ðÈèØø‚l˜*Ðø€@Fð냐GF(ð샙(F"#ð:ú(ðèƒF(hoð@AˆBÐ8(`¿(F%ð¤è FðtüF0Ñ%ð,é(@ð‡„ hoð@AˆBÐ8 `¿ F%ðŒèØøÕøð‚l@F*ðÐGœ(ðă™"#ƒFOð	ðþù(ð¾ƒFÛøoð@AˆBÐ8Ëø¿XF%ðfè(Fð6üF0Ñ%ðîè(@ðR„(hoð@AˆBÐ8(`¿(F%ðPèàj©Ðø¬!@FG(ð—ƒF˜œB	–‘ða„ j(𪃙Jh‚BðX„Òø¬0+ð	„™h)Û3h†BðK„39øÑÝKÛI{DÒhyDhÃh0h%ðüèAò"Jö±L&Oð
Oð u±(hoð@AˆB	Ð8(`Ñ(FdFF%ðè*F¤FOð	¸ñÐØøoð@AˆB
Ð8ÈøÑ@FdFF$ðìï*F¤FÝø<°Ýø€»ñÐÛøoð@AˆB
Ð8ËøÑXFdFF$ðÔï*F¤F¹ñ¿Ùøoð@AˆBQÑÁHaFÁKxD{Dã÷‡þ .ð®1hoð@B‘Bð¨ð„¸phœ‚l0FÔø *ðbƒGƒF(ðcƒÔø¨XF"%ðbè(ð_ƒFÛøoð@AˆBÐ8Ëø¿XF$ðï§HxDh…B ЦIyD	hB¿™BÐ(F%ðè(LFñEƒ)hoð@B‘BÑà8Éø©ÑHFdFF$ðnï*F¤F¡ç(LF°ú€ð@	)hoð@B‘BÐ9)`ÑF(F$ðZï0F(iИ€Eðs€(k(ðVƒØø ‚Bðj€Òø¬0+ðK€™h)Û3h†Bð]€39øÑ}K~I{DÒhyDhÃh0h%ðèAò"JöP1Oð
wHxKxD{Dã÷èý ð¹8(`¿(F$ðïºñôӭOð
Jö\LAò"&ðJº8 `¿ F$ðïÚøoð@AˆB?ôí­8Êø¿PF$ðøî-ô歳FOð	JösLAò"ðCº`h‚l˜*Ðøˆ Fðõ‚GƒF(ðö‚Ûø™ˆB@ð®‚Ûø@,ð©‚!hoð@@ÛøPB¿1!`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF$ð¸î «Fªë€BXFÍéHë÷ôý,¿!hoð@B‘B
Ñ(Aðr€Oð	JöLAò"ðó¹9!`ñÑF F$ð–î(Fëç$ð"ï(¹0Fè÷Mý(AðŠ‚AòõJöy!Oð

”ÈFXç$ðhï€F(ôj Jö{,AòõOðOð
&Íø
”]æنùÿ¶œØøP-?ô½ª)hoð@@Øø`B¿1)`1hB¿H0`Øøoð@AˆBÐ8Èø¿@F$ðHî °Fÿ÷ ºqùÿ
‹ùÿn›h›ܚÿ„ùÿÚoùÿ̉ùÿíH"ÕøŒOð
xDÀkã÷²ü(ðá!"Fðù hoð@AˆBÐ8 `Ñ F$ðîAòûJöÔ!ÈFèæAòüJöæ!Zà$ðòîF(ôµªAòýJöï!Oà$ðèî€F(ô¸ª Jöñ,AòýOðà Jöó,AòýOð
&Íø×åAòýJöö,=àÅH"ÕøOð
xD@kã÷_ü(ð•!"Fð¿ø hoð@AˆBÐ8 `Ñ F$ðÄíAòþJö1ÈF•æ$ðLî(¹(Fè÷xü(Að¸AòÿJö1Oð
ÈF„æ$ð”î€F(ô/«AòÿJö<%ËFOð
Oðÿ÷­»AòÿJö<& ÍøOð
Oð	’åAòÿJö$<%ËFOð
ÿ��H®!FxDÍé ªF3Fð†ü°ñÿ??÷‡©Jö*!ÿ÷î¸$ðþí(¹ Fè÷*ü(AðnAò"JöCA7æ$ððí(¹ Fè÷ü(AðcOð	JöELAò"Oð
&Ýø€jå@F!FRF$ð˜îF(ô«AòÿJö'<ÿ÷N»$ð$îF(ôɫAò"JöGL&Oð
Oð	3åÙøPÝø€-ðï€)hoð@@Ùø@B¿1)`!hB¿H `Ùøoð@AˆBÐ8Éø¿HF$ðí ¡Fÿ÷°»$ð–íAòÿJö'<(ô«UF•àôh,?ôʫ!hoð@@µhB¿1!`)hB¿H(`0hoð@AˆBÐ80`¿˜$ðâì .Fÿ÷°»$ðÄíF(ôú«Aò"Jö‚A§å$ð¸íF(ô¬Aò"JöAœå Jö‘LAò"½à$ð¦íœ(ô<¬Aò"JöŸAŠåJö¡LAò"ð¸Aò"Jö¯Aå$ðíF(ô¨©AòøJö¨!Oð
Ýø@€råAòøJöª,%Oð
Oðÿ÷½ºHIxDyDhh$ðpìkä FQFBF$ðÒí‚F(ô®©AòøJö­,ÿ÷¢º$ðí(OðAòøJö­,OðOð
³Fô—ªHªFIeFxDFyDhh$ðDì2F¬Fÿ÷hºtðÎïÏ[ùÿ|•¾Iùÿ&•xeùÿ$ð0íƒF(ô¬Aò"JöA1åOð	JöC<Aò"ðŽ¿Aò"JöE<&Oð
ÿ÷¼Jö!þ÷¨¿ $påF)@ÐÑø€BùÑAà JöwLAò"à Jö„LAò"àOð	Jö”LAò"£Fð_¿ Jö¤LAò"OðOð
&ÿ÷í»Jö%!þ÷u¿éHéIxDyDhh$ðØë¿ä$ðÔìƒF(ô
­Aò"JöA¸äáIyD	hˆBô¸«˜$ð‚í(ðyƒ€F˜AhŠlÔøh*𒃐GF(ð“ƒhhÍø4‚l˜*Ðøð(F𔃐GƒF(ð•ƒ(hoð@AˆBÐ8(`¿(F$ð®ëÇHxDhƒE=ÐÆIyD	h‹E¿™‹E5ÐXF$ð&ìF(ñƒƒÛøoð@AˆBÐ8Ëø¿XF$ðŽë˜Ðø¨PƒF˜lhÐø ‘ F$ðºíFÍø@€ñðzƒÙøÐøˆ0K³HF)F"F˜GF(˜+Ñrã«ë°ú€ðF	Ûøoð@AˆBËÑÑç¹ñð¸ƒÙøÐøˆ0+ðHF)F"F˜GF(˜@ퟀ�ãÙøoð@AˆB¿0Éø˜Ûø¨@ÐøŒfh‹F0F$ðpí(ðAƒF@hÍøÐøˆ0s±(F!F2F˜G(ð:ƒF@h™Oð	ˆB
мâ)hoð@B‘B¿1)`™Oð	ˆB@ð°‚ìh,ð¬‚!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F$ðöê"5Fªë‚(FÍéIë÷2ú,¿!hoð@B‘B@ðž(ðø‚)hoð@D¡BÐ9)`сF(F$ðÔêHFh¡BÐ9`¿$ðÌêÖéˆB€òÀ	˜A
˜‘EBAC˜ñ		‘àpiÖøÖø˜"0paDÆø˜ÖéˆB€ò©€˜Öø˜¢(Ñ˜Ýø4°(?Ô	˜œ
ëHF"F#$ð"îûð<ZøÈø1hJøØø0`.D`êÑ%à˜("Ô	˜ž
ëHF2F#$ðî
™û«@FÝø<€BFYF#ðïXF!FBF#ðï™BF FÝø@€#ð
ï>,DpàÑžÖé1ñ`(ŸЖøœ9±Öé¥Ài@iDÆø˜žç(ѰiÖø˜ˆB.ÚÖø0Öø˜"°aPÆø˜ç(?õ‹¯ë€JiÑø”0šB*Û"(JaÖø˜"Ñø”¢ëÆø˜ ñFéÜsç¿J”ŒHùÿ0”ª“¤“pi$ÖøÖø˜!0Öø˜2ÆéˆDÆø˜Xç2JaÑøÖø˜®çœ`hl˜-Ðø,˜ð&‚äHxD$ð6ë(@ð8‚ FIF"¨GF$ð4ë-ð6‚ hoð@AˆB@ð‚-@ð‚â9!`ô÷®F F$ðØé0FðæÙøoð@AˆB¿0Éø˜Ûø¨@ÐøŒfh‹F0F$ðúë(Íøð,‚F@hÐøˆ0K±(F!F2F˜G(ð'‚F@hà)hoð@B‘B¿1)`™Oð	ˆB@ðŸìh,ð›!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F$ð†é"5Fªë‚(FÍéIë÷Âø,¿!hoð@B‘B@ð	ž(ðê)hoð@D¡BÐ9)`сF(F$ðdéHFh¡BÐ9`¿$ð\é$ðšìÖéœˆB€ò¾€	˜Ýø4A
˜	‘AC@B˜ñ‘ãFàpiÖøÖø˜"0paDÆø˜œÖéˆB€òŸ€˜Öø˜¢(Ñ	˜
ž(@Ô˜	œ
ë`F"F#$ðªìpC<ÜFZøÈø)hJøØø(`˜D`éÑ%à	˜("Ô˜	ž
ë`F2F#$ðŒì	û¨˜*FAF#ð í@F!F*FÝø@€#ð˜í FAF*F#ð”í˜>ÜFDpàÑžÖé1ñ`(žЖøœœ9±Öé¥Ài@iDÆø˜ç(ѰiÖø˜ˆB#ÚÖø0Öø˜"°aPÆø˜Œç(?õНë€JiÑø”0šBÛ"(JaÖø˜"Ñø”¢ëÆø˜ ñFéÜrçpi%ÖøÖø˜!0Öø˜2ÆéˆDÆø˜bç2JaÑøÖø˜¹ç˜$ðÚëÝøÔø,HÙøl-ð,HxD$ðÄé(@ðnHF!F"¨GF$ðÂé-ðmÙøoð@AˆB@ð-@ðCá9!`ôó®F F$ðdè0Fìæ"$jåH"Ôø”xD€lâ÷Þþ(ð„!"FOð
ð<û hoð@AˆBÐ8 `Ñ F$ðBèAò!"JöÓL¥à$ð"éF(ôm¬Aò#"JöåL˜à¿“xùÿ­uùÿÌä$ðéƒF(ôk¬ JöçLAò#"OðOð
žÿ÷	¸Íø<°Aò#"JöêLOð
žOð	Ýø<°Ýø€»ñô"¨ÿ÷1¸"${æ‡H™xDhh$ðHëAò%"JööLZà‚HYFxDhh$ð<ë%JöøDàÝøJöTÙøoð@AˆBÐAÉøÑHF#ðØïAò%"^à FIF"$ð éF hoð@AˆB?ôå­8 `¿ F#ðÂï-lÑAò%"JöCQ—à% hoð@AˆB?ôѭêç$ðBè(ð…ƒž%Ýø@€ hoð@AˆB?ômÚç[H™xDhh$ðìêAò."Jöe\Oð
Ýø€žþ÷ɿSHYFxDhh$ðÚê%JögTàJö{T˜oð@AhˆBЙ8`ј#ðxïAò." Oð
žOð¤F-~ô\¯þ÷i¿HF!F"$ð´èFÙøoð@AˆB?ôì®8Éø¿HF#ðTï]³(hoð@AˆBÐ8(`¿(F#ðHï@F$ð¶éÝø€oð@AOð
ØøˆB¿0Èø@F1hoð@B‘Bð"91`@ðF0F#ð*ï FáAò."JöÆQHKxD{Dâ÷ãýÝø€Oð
 1hoð@B‘BáÑá%Ùøoð@AˆB?��ç#ð˜ï(ð䂞%Ýø@€Ùøoð@AˆB?􊮜çF‰±Ñø€BúÑà¿6ŒŒ~‹Z‹Ð_ùÿÂyùÿîIyD	hˆB~��ø €ð`hÕøˆ‚l F*ð쁐G(ðíØøÕø(‚l@F*ð遐GF(ðê$ð|è(ðîÕø €FÕøœ#ð‚ï(ñ­Ùø,Fähl-ðéÑHxD#ðäï(@ð‚HF!FBF¨GF#ðâï-ðòÙøoð@D BÐ8Éø¿HF#ðŠîØø BÐ8Èø¿@F#ð~îÝø<°™ÛøˆB@ðÛø@Ýø€,ðՁ!hoð@@Ûø`B¿1!`1hB¿H0`Ûøoð@AˆBÐ8Ëø¿XF#ðTî ³Fªë€BXFÍéEê÷ý,¿!hoð@B‘B@ðS)hoð@B‘BÐ9)`ÑF(F#ð6î F(ðƒÛøoð@D¡BÐ9ËøÑFXF#ð$î(Fh¡BÐ9`¿#ðîOð
Øøoð@AˆB¿0Èø@Fºñ¿Úøoð@B‘BÑ
›+¿hoð@B‘BÑØøoð@B‘BÐ9ÈøÐ°½èð½9ÊøåÑFPF#ðèí Fßç9`äÑFF#ðàí FÞçF@F#ðÚí F°½èð½˜!BòÀjÐø´1@F˜G(ð1F˜ž…BÐ1k(FðÙý(ðS`hÖøˆ‚l F*ð#GƒF(ð$hh‚l˜*Ðø((Fð"GF(ð##ð`ï(Íø<°ð%ž€FÖø¨!Öøœ#ðbî(ñ–€ñh FBFâ÷ü(ð$F hoð@F°BÐ8 `¿ F#ð|íØø°BÐ8Èø¿@F#ðpíž™phˆB@ðôhÝø€,ð!hoð@@¶hB¿1!`1hB¿H0`Ýø<°oð@AÛøˆBÐ8Ëø¿XF#ðHí ªë€B0FÍéI³Fê÷„üF Fá÷&ûÙøoð@AˆBÐ8Éø¿HF#ð.í.ðрÛøoð@D¡BÐ9XFËø¿#ðí0h BÐ80`¿0F#ðí˜ÀjÐø¸(FˆGIyDŠj*@𼀪Fìæ2ŠíqùÿAò"JöÙ<&Oð
þ÷ÿ¼Aò	"Jö‡<Oð
Ýø°þ÷»9!`ô©®F F#ðèì0F¢æ#ðÌí(ô®Aò"JöÓ1þ÷°½#ðÀíF(ô®Oð	JöÕ<Aò"Oð
àOð
Jö×<Aò"&Ýø€Ýø<°þ÷ܼHF!FBF#ð
îF(ô®à $Ýø€\æOð	Jöñ<Aò"Oð
&þ÷¼#ð2í(ðˆ€Aò"JöÚ<›ç $DæAò"Jöt1þ÷g½#ðxíƒF(ôܮAò	"Jö1ªFþ÷\½#ðjíF(ôݮOð	Jöƒ<Aò	"ªFþ÷$¿Ýø°Aò	"Jö…<Oð
Oðþ÷™ºAò"Jöv<ÿ÷0¸Aò	"Jöˆ<hç $Ýø€çOð	JöŸ<Aò	"ªF&þ÷m¼ $ç(;ѪFÝø€,æAòûJöÐ!ÈFþ÷½AòþJö1ÈFþ÷½ %þ÷ܺAò!"JöÏLÝø€Oð
žþ÷a¼HIxDyDhh#ð
ìqäHIxDyDhh#ðìåHIxDyDhh#ðøënçÈl!"ðùþÝø€Aò"Jöº1ªFþ÷ؼFþ÷5¸
žFþ÷s¹ƒFþ÷dº€Fþ÷tº¿2ÞŠ„ÞTùÿ®„Uùÿœ„ðTùÿðµ¯-鏰}LšF#ºñ|D
“Íé3õ's
“ò|vÔø¤7	–
“
Ðë‚ò±*Ð*DÑÑéÚøÍé´à*Ð*9ÑKh
“	h‘®àÓF	h[øŸ F–‘¹ñiڣàÓFÍéb[øŸÍé0¹ñ۠F FØø|g
ñ%Tø%°BEÐ5©EøÑ%Tø%0F"ðÛû(8Ñ5©EôÑ#ðìš(@ð•€OH*OLOðxDNN|DNMh~DNK}DNIh¨¿&F*¸¿OðKLyD{D’|DÍéƨ¿+F"F#ð@ìJödaEHAò9"DKxD{Dâ÷ú °½èð½ÈÔ˜Pø%‘)ÂЩñ	šÝé0¹ñ:ÛÛø°Íé»ñ’%ÛØøœb
ñ%Tø%°BÐ5«EøÑ%Tø%0F"ðuû(Ñ5«EôÑàÔ˜Pø%0;±š©ñ	™Ýé
“à#ð ë(šÝéÝé ѹñÚFðø°½èð½F
H«1FxDÍé 	ªPFðú(ÔÝé FççJöTaçJöHaŠçJöOa‡ç¿ÐÒûˆýÿfƒƒPùÿErùÿ²Iùÿadùÿ¦IùÿӉýÿOùÿ2rùÿðµ¯-鍰lMF }DÍéõ'pÕø¤—ò|p•Íé	{±ë‚˜F*DÐ*Ð*hÑÑ鹨ø Íé¹Ôà*Ð*]ÑÑøÍø$Ñø°Íø °ËàÃFh[ø¯–ºñÀòŒ€Ûø°”»ñ’Àò«€˜ñ%ÐøœbTø%°B~Ð5«EøÑ%Tø%0F"ðÃú(qÑ5«EôѐàÃF”[ø¯ÍébºñÛ˜ñ$Ðø|gUø$°BGÐ4¢EøÑ$Uø$0F"ð ú(:Ñ4¢EôÑ#ðÚêš(@ð‡+H*+LOðxD*N|D*Mh~D)K}D)Ih¨¿&F*¸¿Oð&LyD{D’|DÍéƨ¿+F"F#ðëKòŸ1 HAò½" KxD{Dâ÷àøOð
PF
°½èð½ÆÔ˜Pø$(¿Ъñ
šœºñ¿öt¯Ýø°0à!Ô˜Pø%豝ªñ
Ý鴁FÝéb	à¨Ðð€
NùÿÏoùÿ<Gùÿëaùÿ0Gùÿè4ùÿaùÿ¼oùÿ#ðjê(Ýé´Ýéb@ð‡ºñ€òK†Ùøoð@AˆB¿0ÉøÛø‘øWÀ@ð̄èkBðȄÑø¬ *𻄑h)Û2hƒBð»„29øÑ”ÕøXE(hâh!F#ðë(ð3†Fhoð@AˆB¿0(`hh‚l˜*Ðø„(FðF†GF(ðG†(hoð@AˆBÐ8(`¿(F#ð~éŸHahxDhBðD† &
©Íø°Íé
kñ«ë€B Fê÷¬ø.€F¿0hoð@AˆB@ðƒ¸ñðƒ hoð@AˆBÐ8 `¿ F#ðNéÕøTe(hòh1F#ð¨ê(ð2†Fhoð@AˆB¿0 `ØøÕø ‚l@F*ð2†G‚F(ð3†`h™ˆBð:†& 
©‚è@«ë€ Fê÷dø.F¿0hoð@AˆB@ð߂Úøoð@AˆB@ðå‚-•ðì‚ hoð@E¨BÐ8 `¿ F#ðéÙø¨BÐ8Éø¿HF#ðôèØø‚l@FÕø *ð†G‚F(ð†Õø¨ŠEÐRJÚøzDhB@ð†Úø ð(@ð‚Úø8°ú€ðD	Úøoð@AˆBÑ
à$Úøoð@AˆBÐ8Êø¿PF#ð¸è(FÕøXU,}Ðêh)Fh#ðê(ð†Fhoð@AˆB¿0 `™`hÑø¸‚l F*ðÿ…GF(ð† hoð@AˆBÐ8 `¿ F#ðŠèhh™ˆBð÷… $™‚‘«ë€(FÍé
Hé÷¾ÿ,‚F¿ hoð@AˆB@ðʂºñðЂ(hoð@AˆBÐ8(`¿(F#ð`èHxDh‚Eð¤IyD	hŠEðžIyD	hŠEð˜PF#ðÔè(ñڅÚøoð@B‘B@𖁝ῄ4~}}æ|(Fâ÷éý(ð†‚F@h‚l˜*ÐøxPFð#†GF(ð$†Úøoð@AˆBÐ8Êø¿PF#ðèØø‚l˜*Ðø€@Fð†G‚F(ð†PF)Fðø(ð†FÚøoð@AˆBÐ8Êø¿PF"ðîï #ð2è(ð†‚FÅ`#ð¤é(ð†žFÖøXâ÷’ý(ð
†AhŠlÖø4F*ð†GF(ð†2hoð@AŠBÐQ0F1`¿"ðÀï˜JFÐøh(F#ðˆè(ñ(‚Ùøoð@AÍø°ˆBÐ8Éø¿HF"ð¦ï FQF*Fá÷)þ(ðú…ƒF hoð@IHEÐ8 `¿ F"ð’ïÚøHEÐ8Êø¿PF"ðˆï(hoð@AœˆBÐ8(`¿(F"ð|ï`h‚l˜*Ðøˆ FðӅGF(ðԅhh™ˆB@ð…ìh,ð…!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F"ðLï 5F™BÍé
K¡ë€(Fé÷‡þF Fà÷)ý.ð¦…(hoð@D BÐ8(`¿(F"ð0ï0h BÐ80`¿0F"ð&ïØø‚l˜*Ðø @Fퟴ�GF(ðŽ… #ðè(ð…›Foð@BÓøäh‘B¿1`Óøäéh`(FIF#ðŽê(ð†…F(hoð@F°BÐ8(`¿(F"ððîÙø°BÐ8Éø¿HF"ðäî™ FZF#ðxê(ñp… F#ðzê(ðo…F@F)FðÛþ(ðl…‚F(hoð@AˆBÐ8(`¿(F"ðÂîÝø á$Úøoð@AˆB?ô®÷åªë°ú€ð@	Úøoð@B‘BÐ9ÊøÑFPF"ð¢î F(ð…€ÕøXE(hâh!F"ðøï(ðI„Fhoð@AˆB¿0(`hh‚l˜*Ðø|(FðF„GF(ðG„(hoð@AˆBÐ8(`¿(F"ðtî`h™ˆBð<„ %«ë€B FÍé
Xé÷ªý-‚F¿(hoð@AˆB@ð@ºñðF hoð@E¨BÐ8 `¿ F"ðLîØø¨B1ÑÝéE7à80`¿0F"ð@î¸ñôâ¬Aòñ"KòYAxâ80`¿0F"ð0îÚøoð@AˆB?ô­8Êø¿PF"ð"î-•ô­Aòó"Kò~A!ãÂFœà8ÈøÝéE¿@F"ðî`hÕøˆ‚l F*𝃐GF(ðžƒ`h™ˆB@ðˆ‚åh-ð„‚)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ F"ðàí 4F«ë€B FÍé
Zé÷ý-¿)hoð@B‘B7Ñ(ðqƒ!hoð@E©BÐ9!`ÑF F"ðÀí0Fh©BÐ9`¿"ð¶íÚøoð@AÝøˆBð˜0ÊøOðÐF$qá8 `¿ F"ð íºñô0­Kò°AAòø"[â9)`ÄÑF(F"ðí0F¾çKò9QAòþ"OðÚøoð@C˜BÐ8Êø
ÑPFÊF‰FFãF"ðvíIFÜF2FÑF„± hoð@C˜BÐ8 `Ñ FFFâF"ðdíÔF2F!FOðOðOð±(hoð@C˜BÐ8(`Ñ(FFFâF"ðLíÔF*F!F4F¼ñ¿Üøoð@C˜B3ѹñHFÝø
Ðhoð@CžBÐs`Ñ
FF"ð,í2F)FéHêKxD{Dá÷êûOð
¸ñðö€Øøçà8(`¿(F"ðíºñôº®Oð	Aòù"KòÖA!ã8ÌøÇÑ`F
FF"ðí2F)F¿çÑø€BÐ)ùÑÒIyD	hˆBôH«ÕøXe F(hòh1F"ðJî(ðFhoð@AˆB¿0 ``hÕøx‚l F*ðGF(ð hoð@AˆBÐ8 `¿ F"ðÈì»HihxDÐø QEð $
©Íé
KñB«ë€(Fé÷øû,F¿ hoð@AˆB@ð«€.ð±€(hoð@AˆBÐ8(`¿(F"ðœìØø‚l˜*Ðøˆ@Fðù€GF°F(ðú€hhPE@ð¯€ìh,ð«€!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F"ðlì 5F«ë€B(FÍé
Hé÷§û,¿!hoð@B‘BiÑ(ðˀ)hoð@D¡BÐ9)`ÑF(F"ðLì0Fh¡BÐ9`¿"ðBìØøoð@AˆBÑÂF!à0ÈøOð$ÂFoð@AˆBÐ8Èø¿@F"ð(ì»ñ¿Ûøoð@AˆB7Ñ,¿ hoð@AˆB8ѹñÐÙøoð@AˆBÑPF
°½èð½8Éø¿HF"ðìPF
°½èð½8 `¿ F"ðøë.ôO¯Kòþ1Aòí"±à9!`’ÑF F"ðêë0FŒç8Ëø¿XF"ðàë¿ç8 `¿ F"ðÚë¿ç $kç"ðdì(¹0Fæ÷ú(@ðu‚Kòç1Aòí"gà"ð®ìF(ôï®Aòí"Kòé1Oð%OðÂàìh,?ôô®!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F"ðœë 5FÚæ"ð~ìF°F(ô¯KòAAòî"†àKò AAòî"OðÍøJàH«1FxDÍé 
ª@Fð‡ú(ÔÝé¹ÿ÷¥¹ %’åKò1ÿ÷J¹"ðúë(¹ Fæ÷&ú(@ð‚KòBAAòñ"	H	KxD{Dá÷úOð
=ç%WùÿÐeùÿZvv'ùÿSùÿ:bùÿ"ð.ìF(ô¹©KòDAAòñ"OðÍøOð&OðOð	Øåæh.?ô¸©1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ F"ðë ,Fÿ÷ž¹"ð ë(¹0Fæ÷Ìù(@ð·KògAAòó"Oð$÷à"ðèë‚F(ôͩAòó"KòiAOð%ÍøOð	}åæh.?ô©1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ F"ðÔê ,Fÿ÷¨¹"ð¶ë‚F(ôä©KòŒAAòö"µàKòƒ1ÿ÷ž¸KòŠ1ÿ��JzDhBðý€PF""ðrëð8ý(@ñbKòŽAAòö"±à"ð6ë(¹(Fæ÷bù(@ðQKò™AAòø"‹à"ð€ëF(ôªOð	Aòø"Kò›A¤àìh,?ôª!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F"ðrê 5Fÿ÷ë¹Kò´AAòø"qà"ðNëF(ôb¬KòíAAòú"OðÐFMàOð	Aòú"KòQOð%ÐFÝä $ÿ÷»"ðÚê(¹ Fæ÷ù(@ðù€Kò¿AAòù".à"ð$ëF(ô¹«KòÁAAòù"÷æåh-?ô+)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ F"ðê 4Fÿ÷¦»Kò#QAòþ"Oð$ÝøbHbKxD{Dá÷ÉøOð
áä"ðæêF(ôܩKò%QAòþ"$à"ðÚê‚F(ôì©Oð	Aòþ"Kò(QOð%räKò*Q
àOð	Aòþ"Kò-QOðfäKò2QAòþ"%OðOð	ÿ÷F¼Kò4QAòþ"ôç"ð®êF(ôø©Kò6QAòþ"Oð	´Fÿ÷2¼·î$ší´î@ñîú¿$Úøoð@AˆBôè¨ÿ÷í¸Kò;QAòþ"Ëç"ð†êF(ô,ªKòJQAòÿ"‡çKò^QAòÿ"Væ"ðvêF(ôrªKòkQOô˜RwçHFKòmQOô˜R$Ýøhoð@CžBôC¬JäKòrQOô˜R&Oðÿ÷¼Kò‚QAò2[çKòŒQAò2VçKòŽQAò2Oð&FOð	ÿ÷þ»FuäFþ÷»¿Fÿ÷¸Fÿ÷©¸FšçFÿ��rãPùÿŽ_ùÿðµ¯Mø‚°BhF!‘‘’øWIՁhy³Ãh“H"FIxDyDhh"ðê °]ø‹ð½®èFAF2F#F"ðÀ웘±XhøWÀ(FñÔ
H"F
IxDyDhh"ðèé °]ø‹ð½+ÑÑ °]ø‹ð½¿Šn+ùÿÆn(Wùÿðµ¯-é…°F FÍéoð@F`h‘¹h@më	ëñ@˜Oð
(¿h±BÑ˜Íø (¿h±BÑ˜Íø (Ô©ª« F"ðfìð¹Ëà9`¿"ð¸èäç9`¿"ð²è˜Íø (çÕ˜¡hˆB€ò·€™ë€«ÒhQø 0øhUø 0˜ƒ±BFIFhƒBÐRø;1+÷Ñà˜` Íé±çh±B¿1`˜h±B¿1`˜@høWÀ@񯀸hUø ³ÊFÃFà"ðþè(DÑ[ø
ñ
 ±™hŠhƒh“BôÑ"ðì°ñÿ?ëÝ(íÑ˜Êø[ø(ôx¯¸h„ÑHHIIxD›yDà"ðÖèð¹<ñòÐ(h™h‹BЈhšh‚BòÑF"ðæë°ñÿ?éÝ(êÑ›;H;IxDyDhhúh"ðé˜(¿hoð@B‘Bјè±hoð@B‘BÑOðÿ4 F°½èð½9Oðÿ4`Ð F°½èð½9`¿"ðè˜(áÑOðÿ4 F°½èð½!ðöï F°½èð½˜(¿hoð@B‘Bј1hoð@B‘BÐ9`Oð¿!ðÚï F°½èð½9`¿!ðÐï˜(æÑ$ F°½èð½	H	IxDúhyDhh"ðžè–ç¿mhUùÿÊl`$ùÿúkt(ùÿðµ¯MøˆBð“€ZLKh|DFh$h¦B¿£B,ÐVMf@}DÕø€ê.Cð‡€c@€ê3C³úƒó[	~Ñ"ðLèx³FLHxDh„B.ÐKIyD	hŒB¿DE'Ð F"ðè!hoð@B‘B(Ñ]ø‹ð½„h‹hœB_ÑËh^¿Æhñ%Ñi
iÃó‚Åó‚°EPўÔÐøÀ!àOðÿ0]ø‹ð½ °ú€ð@	!hoð@B‘BÖÐ9!`ÓÑF F!ðFï(F]ø‹ð½žB0ÑÖçñ[X¿ñ¨ÔÑøààñhX¿ñ¸ñиñ	ўøœøà¾ø¼øàÞøÜøBÑ,
ѐ°ú€ð@	]ø‹ð½Ð°ú€ð@	]ø‹ð½ûôF`FqF"F"ð¸ê(°ú€ñ¿ -¿H	]ø‹ð½¿òk|kbk\kе¯H¹!ð ïÁk)¿Jh*Ñ нFhoð@B‘BÐ9`¿!ðÔîH"FIxDyDhh!ð¬ïOðÿ0нFHxDhhFå÷¬þ€±ák àc)ÙÐhoð@BBÓÐ8`¿F!ð°îÌçOðÿ0н¿:jy$ùÿjе¯!ðXïÁk)¿Jh*Ñ нFHxDhhFå÷|þ€±ák àc)ðÐhoð@BBêÐ8`¿F!ð€îãçOðÿ0н¿¬iðµ¯Mø½RLFh|D%h®B$ÐPL|D%h®B5ÐÖé
V.¿sh+RÑ-¿ëh+CÑFF"ðbé(ðƒ€F(F!F!ðÒî!hoð@B‘BKÑ]ø»ð½±ñÿ?FÜF*¿‚hV±‚h–BÞÒÀhPø&hoð@B‘BçÐà±ñÿ?FÜF*¿‚hV±‚h–BÈÒë†Àhhoð@B‘BÑÐ1`]ø»ð½±ñÿ?Üú¹êh]ø»½èð@GFF"ð鰳rhF(F!FG!hoð@B‘B³Ð9!`°ÑF F!ðúí(F]ø»ð½F)hF©± FˆG(Ô1F Fêh]ø»½èð@GHxDhh!ðöíH±!ðüí F1Fêh]ø»½èð@G ]ø»ð½¿XiViJh)¿ pG°µ¯F!ð@î!hoð@B‘BÐ9!`¿°½F F!ð²í(F°½°µ¯Ah‘øWÉ
Ёh)ٽè°@!ðü¼ðÀhÁñHC°½ðøˆ±Fÿ÷åÿ!hoð@B‘BóÐ9!`¿°½F F!ðˆí(F°½Oðÿ0°½¿€µoFAh‘øW ÒÐhoð@B‘Bр½1`€½	k)¿	l)Ñ!ðúí8¹HIxDyDhh!ðJí €½ˆG(ïÐIBhyD	hŠB¿€½IyD½è€@à,g<ùÿ>g¢0ùÿе¯‚°F@h
FøWÃhÈ
ÑHxDhhI“FyD!ðî	àH!JxDzDhh"ðòèX± hoð@AˆBÐ8 `¿ F!ðí$ F°н¿žg—ùÿèfOùÿðµ¯-遰fKEh{DÓø°km±ë¿F^Գñÿ?ܐøW0[-ÔaHbIxDyDàd±ZH[IxDyDhh°½è½èð@!ðE¼$F*ð€€ZE0ÐPh@m°ñÿ?ܒøW0[fÔ@'ÔQHQIxDyDhh!ð´ìlà€F$³ehkm^ՅByЊFF(F‘F"ðŒè(tÑ`hJFQFCm@F‘FZÔ !F!ðÆí
à"Dàhoð@C˜B¿0`<à ‘F!ðèìF(@FÑEà"hoð@CšB¿2"`"F!ðàí!FFhoð@BBÐ8`¿F!ð‚ìd³ch“øW@	Ô!HBF!IxDyDhh!ðTíà!FEFJFŠçFF!"ðBè1FF@±FFF"ðBè1F(F!ð®ï<± hoð@AˆBÐ8 `а½èð½ F°½è½èð@!ð„»$Faç0îÐQF$JF[ç¿RfPf‰Dùÿbe$Eùÿ\fëNùÿf/ùÿ°µ¯Ah‘øWÉ
Ёh)ٽè°@!ðx»ðÀhÁñHC°½ÿ÷“þˆ±Fÿ÷åÿ!hoð@B‘BóÐ9!`¿°½F F!ðì(F°½Oðÿ0°½¿ðµ¯-éFh´k,¿Ôø<ñÑFHFIxDòhyDhh!ðÈì ½èð½¾h.±1h½è½èð@`G×ø 9N~D*±hOð	€F‹¹àúh’±€F ‰FF!ðÒî+FFIF@F-©FÙЀFK±hOð
à5hOð	€F+õѺñEÐF!ð¸îF(‚F@Ð2h(F!ð¸ì¹ñF¿Ùøoð@AˆBѺñ¿Úøoð@AˆBÑ.ªÐbh@F1FG1hoð@B‘B¢Ð91`ŸÑF0F!ð„ë F½èð½8Éø¿HF!ðxëØç8Êø¿PF!ðpë.Úфç1h«çHFß÷Tù~ç¿òcNd‚Iùÿðµ¯-遰-í‹°“F"‘	h“Íé@"Íé>"Íé<";’oð@B‘B¿1›`Ûø¾h‘B¿1Ëø1h‘B¿11`˜h‘B¿H™`íHxD ÐøXUhêh)F!ð†ìF(èHÍøh°xD–ð<‡ hoð@AˆB¿0 `@” `hÕø|‚l F*ð<‡GF(ð=‡ hoð@AˆBÐ8 `¿ F!ðüê !ð@ë(@ð9‡™oð@B	h‘B¿1š`™Á`!ð¨ì(?ð.‡FÈHÕøxDh F’!ð¨ë(lÔÙø@žl-ð)‡ÀHxD!ðì(CðI‡HF1F"F¨GF!ð
ì,ð:‡>”Ùøoð@D BÐ8Éø¿HF!ð°ê@˜h¡BÐ9`¿!ð¨ê?˜$@”oð@Eh©BÐ9`¿!ðšê˜Ýøø€?”h¨BЙ8`¿˜!ðŒê  >ØøÕø ‚l@F*ð톐G(>Íø@€ðî†Õø¤•KˆB{D“&ÐBhhšBD𓀁hðà@ò0Fòfe 
Oð OðÍéÍéÍéÍ鐐Í阐ðc½$hoð@B‘BÐ9`¿!ð@ê þh>yHxDxHxD¤±!ðìꙃFlÑøh.¿NE5Ñ@h(÷Ñ &Oð
>àØøÕø€‚l@F*ðꅐGF(?ðë…`hÐé
)¿Jh*@ð‚(¿Àh(@ðW„ F1Fð-ýž(>@ðþ@ò!0Fòªuðѽ1hoð@@B¿11`rhhB¿H`0F’!ðë‚F(FÕø˜Uhêh)F!ð:ë(Íøl ÍøP°ð€Fhoð@AˆB¿0 `?” `hÕø‚l F*ð€G(@ð€ hoð@AˆBÐ8 `¿ F!ð²é ÕøT?Øø‚l@F*ðþ‡G‚F(ðÿ‡™%Úø	h‘ˆBCðé…Úø€¸ñðã…Øøoð@@Úø@B¿1Èø!hB¿H `Úøoð@AˆBÐ8Êø¿PF!ðvé"¢F!¨Íé!…ñPF«ë‚è÷¯ø¸ñ?ÐØøoð@B ‘BÐHÈø¿@F!ðXé?˜à¿z±‚bb=JùÿbaaÂ` (ð¥‡Úøoð@AˆBÐ8Êø¿PF!ð6é@˜šAh‘Bð•‡"$Ýøl Ýé?Íé!A«ë‚2è÷hø>,¿ hoð@AˆB@ð0ƒ?˜oð@Bh‘BÐ9`¿!ðé>˜!?‘(ð‡@˜oð@Bh‘BÐ9`¿!ðþè>˜ @>˜(¿hoð@AŠB@ð
ƒ.¿0hoð@AˆB@ðƒºñ¿Úøoð@AˆB@ðƒÕø¤"˜!ð˜éž(?ð³€™	hˆB¿šBÑA±úñL	àHEøÐ!ðJé(ñ;„F?˜hoð@BÝøl‘BÐ9`¿!ð²è ,?ð£€ÕøXE(hâh!F!ðê(ð¯ƒhoð@B‘B¿1`@AhŠlÕøì*𱃐G(>ð²ƒ@˜oð@Bh‘BÐ9`¿!ð„è>˜"@’›Ah™B𤃛@™>˜Íé!«ë‚2ç÷·ÿF@˜?‘P±hoð@B‘BÐ9`¿!ðdè?™Ýøh° )@ð©ƒ>˜oð@Bh‘BÐ9`¿!ðPè?˜$Õø¤>”ˆBÐBh3hšBDðþ†h""êhoð@B‘BÐ9`¿!ð6è ,?ðԀH"ÕøOðxD@kß÷¯þ(?ð%†!"$ÿ÷û?˜oð@Bh‘BÐ9`¿!ðè Fò‹u
@ò0?”ð,¾Ýøh°¨àn´ F1FGž(>?ô® hoð@AˆBÐ8 `¿ F ðòïÝøø Õø¤Íé>‰EÐÙø2hBDð¿†Ùøð(~Ð(FÕøXUhêh)F!ð4é(ðó„Fhoð@AˆB¿0 `?” `hÕøì‚l F*ðô„G(@ðõ„ hoð@AˆBÐ8 `¿ F ð°ï›"@˜?’hAh™Bðô„Ýé?Íé!!©1¡ë‚2ç÷áþF?˜>‘P±hoð@B‘BÐ9`¿ ðŽï>™ )?ðú„@˜oð@Bh‘BÐ9`¿ ð|ï>˜$Õø¤@”ˆBÐBh3hšBDð|‡h""êhoð@B‘BÐ9`¿ ðbï ,>CðX…˜¹hÍølhHF¡Bð2F!ðÒê€F0ð4‡”ÕøXE(hâh!F!ð¦è(ð/‡hoð@B‘B¿1`@AhŠlÕø°*ð2‡G(?ð3‡@˜oð@Bh‘BÐ9`¿ ð$ïÕøXE!(h@‘âh!F!ðzè(ð"‡Fhoð@AˆB¿0ÉøÙøÕø¬‚lHF*ð‡GF(ð‡Ùøoð@AˆBÐ8Éø¿HF ðôîÕøXE(hâh!F!ðLè(ð‡Fhoð@AˆB¿0ÉøÙøÕø¸‚lHF*ð‡GF(ð‡Ùøoð@AˆBÐ8Éø¿HF ðÆî™phÑø°XEð‡ %!©B1‘¡ë€0FÍé!Tç÷÷ý@-×ø¿(hoð@AˆB@ðـ hoð@AˆB@ð߀@˜ (ðå€0hoð@AˆBÐ80`¿0F ðî@˜Õø”Bh’l*ð‡GF(ð‡@˜oð@Bh‘BÐ9`¿ ðxî?˜"@’AhYEðõ†Ýé?Íé!™¡ë‚2ç÷­ýF@˜>‘(¿hoð@B‘B@𪀠oð@A@ hˆBÐ8 `¿ F ðPî>˜(ðð†?˜oð@Bh‘BÐ9`¿ ð@îÝøø "Ùø(k?’B>’ð €Ñø¬ *𓀑h)Û2hƒBð“€29øÑÍøD ƒâ ”£E@ð넘h‘F	hoð@@B¿1š`êh!?‘hBÑ’àH`èhÕø¨'oð@AhˆBÑ’à0`Õø¨˜hhŠBð«…Q`¿ ðìíð¤½8 `¿ F ðäíÈäQ`¿ ðÞíìä80`¿0F ðÖííä8Êø¿PF ðÎíïä8(`¿(F ðÈí hoð@AˆB?ô!¯8 `¿ F ð¼í@˜ (ô¯Fö3ðé½9`¿ ð®íOç F1Fðjøž(>ô§­ÿ÷§»Ñø€BÐ)ùÑÞIyD	hˆBôp¯ÕøXE(hâh!F ðîî(ðˆhoð@B‘B¿1`?AhŠlÕøP*ퟨ�GF(ð‹?˜oð@Bh‘BÐ9`¿ ðlíÙøÕøh‚l ?HF*ðzGOð	(?ð{Íø‘`hXEð{ Ýé?Íé!!‚él#‘™¡ë€ Fç÷ŒüF@˜>‘(¿hoð@B‘B@ðV?˜%@•oð@Bh‘BÐ9`¿ ð.í>˜?•(ðp hoð@A ˆBÐ8 `¿ F ðí™>˜ÑøHE¿™ˆB@ðù€ ë	±úñL	hoð@B‘BÐ9`¿ ðí ,>ðø€ÕøXà÷³ú(ðëƒF@hÕø°‚l F*ð烐G(?ðèƒ hoð@AˆBÐ8 `¿ F ðàìÕøXà÷“ú(@ð߃AhŠlÕø¬*ð݃GF(ðރ@˜oð@Bh‘BÐ9`¿ ðÀì¸h#@“AhŠlÕøh*ð΃G(@ðσ`hXEðЃ &@™BÍé!a™¡ë€ Fç÷çûF0FÞ÷‰ú@˜oð@Bh‘BÐ9`¿ ð’ì -@ðЃ hoð@AˆBÐ8 `¿ F ð‚ìhh‚l ˜*Ðø”(FðƃGF(ðǃ(hoð@AˆBÐ8(`¿(F ðjì?˜AhYEðʃ"%™?˜¡ë‚2Íé!Tç÷Ÿû>(FÞ÷Aú hoð@AˆBÐ8 `¿ F ðJì>˜(ð̃?˜oð@Dh¡BÐ9`¿ ð<ì QF?"Úø B¿0Êø>˜Íøü  ðìì(ð³ƒHEF¿˜„BѤë	×ø°ú€ð@	#à™	hˆB?ô¯ ðœì(ñ©ƒF>˜hoð@B‘Bôÿ®çÍøD ×øcà˜h„BÛÐ F ð„ì×ø(ñg…!hoð@B‘BÐ9!`ÑF F ðêë(FX±>˜>©
à9`¿ ðàë£æ¿ W?˜?©hoð@CšB¿2`oð@E?˜hh©BÐ9`¿ ðÈë>˜!?‘h©BÐ9`¿ ð¼ë>” h¨B	ÐA!`©BÐ( `¿ F ð®ë>˜Úø¨BÐ8Êø¿PF ð¢ë  >3N~DðjÐø´ÐøA ˆGF"@ò#ÍéHF G(>ð;„‚Fhoð@D BÐ0Êø>˜h¡BÐ9`¿ ðvëÙø!>‘ BÐ8Éø¿HF ðjë˜h‚EFÐ)kPFðzû(ð°†)FÚéÑø ‚lPF*ð#„G(ð$„ ™ÍøT°Ñø¨ˆBЛBhhšBC𤆁h!ð)ÑÁhL¿$à$àΫ$hoð@B‘BÐ9`¿ ð*ë,Cð„Úø‚l ˜*ÐøœPFð„GF(ð„™ F" ðÒë(>ð„ hoð@AˆBÐ8 `¿ F ðë™>˜Ñø°XE¿™ˆB@ðw ë±úñL	hoð@B‘BÐ9`¿ ðêê ,>Cðùƒ2k(FAFG€F ˜
FÐøXEhâh!F ð8ì(ð„Fhoð@AˆB¿00`ph‚l ˜*ÐøD0Fð!„G(?ð"„0hEì‹oð@AˆBÐ80`¿0F ð²ê@F)F ðë(ð&„F?˜šAh‘Bð-„"%™?˜¡ë‚2Íé!Tç÷Þù>-¿(hoð@AˆB@ðT… hoð@AˆB@ðZ…>˜ (ð`…?˜oð@Bh‘BÐ9`¿ ðzê>˜!?‘XE¿™ˆB@ðÿ€ ë±úñL	hoð@B‘BÐ9`¿ ðbê ,>Cð„ÕøXà÷ø(?ðM„AhŠlÕø”*ðf„GF(ðg„?˜oð@Bh‘BÐ9`¿ ð>ê Õø4?`h‚l F*ðW„G(?ðX„ hoð@AˆBÐ8 `¿ F ð$êÕø¤PF" ðÞê(ðN„F?˜šAh‘BBði†Åh-ðe†hoð@@*h‚B¿2*`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ ðöé"™?˜¡ë‚2Íé!Tç÷2ù>(FÝ÷Ôÿ hoð@AˆBÐ8 `¿ F ðÞé>˜ (ð„?˜oð@Bh‘BÐ9`¿ ðÎé>˜!?‘XE¿™ˆBdѠë±úñL	hoð@B‘BÐ9`¿ ð¶é ,>Cðóƒ¿î8î°îÀQì ðê(>ð
„™" ð`ê(?ð„>˜oð@Bh‘BÐ9`¿ ðé?˜!>‘XE¿™ˆB6Ѡë±úñL	9àHE?ô†® ðê(ñ-…F>˜hoð@B‘B􃮆æHE?ôþ® ðôé(ñ!…F>˜hoð@B‘Bôû®þæHE˜Ð ðäé(ñ…F>˜hoð@B‘B–њçHEÆÐ ðÖé(ñ…F?˜hoð@BÝ鹑BÐ9`¿ ð<é ,?Cð¨ƒÍø` œ£E?ô«˜hoð@@B¿1š`Ûø"?’B¿HËøÕøXE(hâh!F ðxê(ð]‚hoð@B‘B¿1`?AhŠlÕøì*ðw‚G(>ðx‚?˜oð@Bh‘BÐ9`¿ ðöè ?  ð:é(?ðn‚Ûøoð@B‘B¿1ËøÀø° ð ê(ퟜ�F(FÕøXUhêh)F ð4ê(Íød ð®‚Fhoð@AˆB¿0 ` `hÕø4‚l F*𼂐G(@𽂠hoð@AˆBÐ8 `¿ F ð®è@šPFÕøh ðxé(ñ‚@˜oð@Bh‘BÐ9`¿ ðšè>œ @?`hl.ð„.HxD ðÎé(Cð„ F)FRF°GF ðÌé,ð„Ýøh°@”>˜oð@Dh¡BÐ9`¿ ðrè?˜%>•h¡BÐ9`¿ ðhè?•Úø BÐ8Êø¿PF ð\è@˜Ûø  BÐ8Ëø¿XF ðNè˜ÍøP°h @XF˜™hB¿˜hBј›°ú€ð@	àÁ5ùÿ˜hBòÐF ð´è›(ñ*ƒ(ð‚˜h˜°Bð2‚AhŠlÕø0*🄐G›F"(𜄙?’`hÑø “PEÑàh?¸±hoð@A¥hŠB¿2`(hˆB¿0(` hˆBÐ8 `¿ Fððï",F?˜%Íé!!¨ F¦ë‚æ÷(ÿF?˜@‘P±hoð@B‘BÐ9`¿ðÔï@™)?•ðx„ hoð@A ˆBÐ8 `¿ FðÄï@œ @Oðÿ1"# Fþ÷Aù(@”ðp„F F ð˜ë(ðr„ƒF@˜›oð@Dh¡BÐ9`Ñð ï› @˜h¡BÐ9`Ñð”ï›XhÕø‚lF*ði„G!(@ðj„?‘AhQECð-‚Âh?’*ð(‚hoð@@hƒB¿3`
h‚B¿P`@˜oð@B@‘h‘BÐ9`¿ðbï#šÝé?Íé!¦ëƒZæ÷þ€F?˜Ý÷?ý ¸ñ?ð;„@˜oð@Bh‘BÐ9`¿ðBï Õøp@Ûø‚lXF*ð4„GF(ð5„ ðxï(@ð9„Øøoð@B‘B¿HÈø@˜Àø€ ðÞè(?ð1„ ™ÑøX&Ñøðâï(ññÝé?!(FÞ÷’ý(>ðè†(hoð@F°BÐ8(`¿(Fðüî@˜h±BÐ9`¿ðòî?˜!@‘oð@B h‘BÐ9`¿ðäî>˜!ÕøXÍé>ß÷“ü(>ðÆAhŠlÕø|*ðG(?ðF>˜oð@Bh‘BÐ9`¿ðÀî > ðï(>ð³†›oð@Bh‘B¿H`>˜Ã` ðlè(@ð­†šÕøhðrï(ñ^€ÕøXß÷Rü(ð€F@hÕø$‚l0F*ð€GF(ð€0hoð@AˆBÐ80`¿0Fð~î ™*F@˜ÑøhðHï(ñ€(hoð@AˆBÐ8(`¿(Fðjî@šÝé>Þ÷ìü(ðí€F?˜oð@Eh©BÐ9`ÑFðTî#F>˜&?–h©BÐ9`ÑFðHî#F@˜>–h©BÐ9`ÑFð<î#F @˜h©BAð׀ Íøp°Íé!"
Ýøh° ðt¿žIF"0FðÞî(ð–ƒF˜–„B¿˜h„B@ð˜ž ÝøP°ú€ð@	á@òC0FöC% Oð	
 ÍéÍé
XFOð!‘Oð‘ð¹XhÕø,‚lF*ð†GF(ð† ð$î(@ð!†Õø¤'oð@Ah‹B¿X`@˜Õø¤'Â`ÙøˆB¿0Éø@˜Àøð€ï(>ð†Õøœšð†î(ñ‡ÕøXß÷gû(?ð@‡AhŠlÕø$*ð=‡GF(ð>‡?˜oð@Bh‘BÐ9`¿ð”í ™">˜?’*FÑøhð\î(ñª‡(hoð@AˆBÐ8(`¿(Fð~í>š F@™Þ÷ü(ð€F hoð@E¨BÐ8 `Ñ FFðhí#F@˜h©BÐ9`ÑFð^í#F>˜&@–oð@B h‘BÐ9`ÑFðNí#F˜!>–"Oðh Í鐐
ð‹¾8(`¿(Fð6í hoð@AˆB?ô¦ª8 `¿ Fð*í>˜ (ô ª@ò70Fö|ðŒ¹@òN0• Föå%
Oð	 ÍéÍé
Íéð۾˜h„B?ôó® FðŠíž(ÝøPñ,†!hoð@B‘BÐ9!`ÑF Fððì(F (Cð€‚Õø¤"˜ð¤í(ð–‚F˜„B¿˜h„Bј °ú€ð@		à˜h„BõÐ FðTí(ñÿ…!hoð@B‘BÐ9!`ÑF Fð¾ì(F (Cðv‚˜h†BðH†ÕøXß÷fú(>ðû„AhŠlÕø *ðù„G(@ðú„>˜oð@Bh‘BÐ9`¿ð”ìÕø¤ >0F"ðLí(>ð脚@˜hAh’‘Bðç„"%>™@˜Íé!Q!©1‘¡ë‚2æ÷·ûF(FÝ÷Yú>˜oð@Bh‘BÐ9`¿ðbì  ,>ðç„@˜oð@Bh‘BÐ9`¿ðRì™ @ F"ð
í(@ðք hoð@AˆBÐ8 `¿ Fð<ì@˜™ˆB¿™	hˆB@ð	†™A±úñL	hoð@B‘BÐ9`¿ð$ì ,@Cð·„Õø¤oð@Bh‘B¿1`Õø¤AphÕø‚l0F*ðӄGF"(ðԄ>’`h™ˆBÑàh>¸±hoð@A¥hŠB¿2`(hˆB¿0(` hˆBÐ8 `¿ Fðæë",F>˜%Íé!˜ ë‚ Fæ÷ û>™@FÝ÷Áù@˜>•(𩄠hoð@E¨BÐ8 `¿ FðÆë@˜0h¨BÐ80`¿0Fðºë !@‘ÕøXß÷kù(@ð’„AhŠlÕø„*𔄐GF(ð•„@˜oð@Bh‘BÐ9`¿ð˜ë @ ðÜë(@ð‹„Ùøoð@B‘B¿HÉø@˜ÀøðBí(>ð‚„ÕøXß÷1ù(𐄃F@h)FÕø$‚lXF*ퟰ�G(?ð„Ûøoð@AˆBÐ8Ëø¿XFðZë ™Ýé>Ñøhð$ì(ñB…?˜oð@Bh‘BÐ9`¿ðFë@™ >š? FÞ÷Æù(?ð݄ hoð@E¨BÐ8 `¿ Fð0ë@˜h©BÐ9`¿ð&ë>˜$@”oð@BÝø€°h‘BÐ9`¿ðë?žÍé>DÛø(ph‚l0F*𹄐G"(>
–ð¶„@’Ah›œ™BÑÂh@’*ðׄhoð@@hƒB¿3`
h‚B¿P`>˜oð@B>‘h‘BÐ9`¿ðâê"@™%Íé!™>˜¡ë‚æ÷ú@™?FÝ÷½ø?˜@•(ð“„>˜oð@Bh‘BÐ9`¿ðÂê?˜!"A˜‘!F>’?’ðvë(?ð¼†!oð@I"‘	‘‘àA˜!F"	–Oððbëš(?ð{€™ÚF‘&FÝ鱈B•’¿™	hˆB	Ñ™A±úñL	h›IEÑà™ˆBòÐðë(ñ-…F?˜h›IEÐ9`Ñðrê› ,?ð&…XhÚø‚lF*ðOƒG4F(>ðü†A™ Fð²í(@ð÷† ðœêOð(ð	‡F@˜è`>˜ÍøšAh‘BÑÂh@’²±hhKE¿X`hHE¿0`>˜>‘hIEÐ9`¿ð,êOð@™ñÍé!™>˜¡ëˆæ÷eù@™?FÝ÷ø @(hHEÐ8(`¿(Fðê?˜(ðۆ>˜\FOðhIEÐ9`¿ðê?˜Oð FÍøø€Ü÷âÿ "A˜Íøü€Õø¤ð®ê(?ðІ™Ýøp ˆB¿™	hˆB@ð´‚™A±úñL	hIEÐ9`¿ðÒéÍøü°³ A«Íé!˜"Íø€ý÷Æý(?ð„FÕø¤'˜ðRí(ñš„?˜hIEÐ9`¿ð®éÍøü°ÕøXÞ÷`ÿ(>ð‘†AhŠlÕø0*𑂐GF(ð‹†>˜hIEÐ9`¿ðé š>ah‘Bð„‚š>™Íé!B™¡ë€ Fæ÷Ãø>™?FÜ÷dÿ?˜Íøø°(ðk† hHEÐ8 `¿ FðjéPF?žÜ÷Qÿ0FOðÿ1"#Íøü€ý÷äú(?ð\†F0F,Fð<íÝø`€(ðd†F?˜hIEÐ9`¿ðDé ?0hHEÐ80`¿0Fð:éhhÔøp‚l(F*ðJ‚GF(•ðY† ðpé(?ð_†ØøIE¿HÈø?˜Àø€ðØê(>ðS†ÔøX&%FÔøðÞé(ñ݃Ýé>!0FÝ÷ÿ(@ðD†0hHEÐ80`¿0Fðøè?˜hIEÐ9`¿ððè>˜Íøü°hIEÐ9`¿ðäè	˜OðÝø¡Íøø€Ü÷ÇþÕøXÍøÞ÷þ(@ð†AhŠlÕøP*ð쁐G(>ð†@˜hIEÐ9`¿ð¼è Íøðé(@ð†ÚøIE¿HÊø@˜Àø ðhê(?ðÿ…ÕøLšðné(ñƒƒ@™Ýé>Ý÷ÿ(ðó…F>˜hIEÐ9`¿ðŠè@˜Íøø°hIEÐ9`¿ð~è?˜Íø±hIEÐ9`¿ðtèïIÍøü°yD`h	hˆB@𔁢h*Aðʅàhñ?	h@‘hJE¿Q`@™hHE¿0` hHEÐ8 `Ñ FðLè?˜˜Ü÷3þ˜$@ž?”Ü÷-þ@”phÕø ‚l0F*𛁐G(@ð¥…Íøü€Ahš–‘B@ðÂh?’*ðhhKE¿X`hHE¿0`@˜@‘hIEÐ9`ð÷€«FOðÝé?%Íé!BF™¡ëˆå÷JÿF?˜Ü÷ìý&,?•ð|…@˜hIEÐ9`¿ðòï@– hHEÐ8 `¿ FðèïÚøÛø‚lPF*ðOGOð(@ðl…Íøü€Ahš‘BÑÂh?’²±hhKE¿X`hHE¿0`@˜@‘hIEÐ9`¿ðºïOðšÝé?Íé!ñ™¡ëˆå÷òþF?˜Ü÷”ý$.?”ðM…@˜hIEÐ9`¿ðšï@”ÚøHEÐ8Êø¿PFðŽïphÛøœ‚l0F*ðGF(ðA…A˜!Fðê(@ð?… hHEÐ8 `¿ Fðpï˜Aª@«1FðÅÿ(ñb‚@˜hIEÐ9`¿ð^ï$Ûøœ@”ph‚l0F*ðրGF(@ð…A˜ðê(ð…@™
hJEÐ:
`ÑFFð<ï F$A™Íé@@œhHE?ôˆ¬8`¿Fð,ï€ä™ˆB?ôH­ð®ï(ñ‚F?˜hIEôE­Hå«Fðïç«Fçðüï4F(>ô°¬ðª»ðòïF(ôn­ð÷»àh>(ð“€h¥hIE¿1`(hHE¿0(` hHEÐ8 `¿ Fðìî ,F ^åðÎïF(•ôµ­ð¼ðÄï(>ô®ð ¼!IyD	hˆB\Ð Fð&é(>ð\… hHEÐ8 `¿ FðÂî>˜Ah
o¨GF(?ðP…>˜¨G(@ðH…>˜¨G!ü÷Áÿ(ñ„>˜$ hIEÐ9`¿ð î>”Pæð„ï(@ôd®ð¼¿\=:ðvïOð(@ô°®ð¼ðlïF(ôÿ®ð>¼ðdïF(@ô)¯ðF¼¢h*AðԃáhQøæ €çž0Fðÿ‚F@‰F0Ñððî(Cðm‚˜Oðÿ4ð	ÿ‘ê€êQêÑðÜî(Cð_‚8i(ð€€Õø¸õ÷`~àOôTpFö5 
Oð	 ÍéÍé
Íøp°Oð>ᙈB?ôó©ð¬î(ñ€F@˜hoð@B‘Bôð©ÿ÷ó¹Fö/5 £F
6à@ò_0FöE Oð
”Oð	 Íé
OðáOôTp)F Íøp°Fö5Oð	
‹F ÍéÍéÍéóà •Fö55
£F Oð	ÍéOðÍéÍé@òR0–ÚàÕø´ò´p
hoð@CšB¿2
`™Ðø°Bòp˜pñÀò'„PFIFðäè(ðd€F˜™ðÜè(@ðe€YFðŒé(?ðc€@˜oð@Bh‘BÐ9`¿ðŽí?™ @ F"ðFî(@ðU€ hoð@E¨BÐ8 `¿ Fðxí?˜h©BÐ9`¿ðní!@˜?‘™ ˆB¿™	hˆB@ðR‚™A±úñL	X⠝9`ÑFðVí#F Íøp°!Íé"
Ýøh°ð–¾
›oð@AOð&ZFhˆB¿0` ™˜	˜˜Ýé¹ð|¾FöæE –Oð	
@òg0  ˜	˜Íø\€)àFöU 
 Oð	˜OôZpÍøH ˜à@òk0FöŠU 
 Oð	Oð˜˜–˜O𘐘@˜(¿hoð@B‘B3ѹñ¿Ùøoð@AˆB0Ñ?˜(¿hoð@B‘B0Ñ>˜Ýøl(¿hoð@B‘B,ѻñ¿Ûøoð@AˆB)јˆ³˜oð@AhˆB+Й8`¿˜ð®ì#à9`¿ð¨ìÅç8Éø¿HFð ìÆç9`¿ðšìÈç9`¿ð”ìÌç8Ëø¿XFðŒì˜(ÍѷH)F·KšxD{DÝ÷Fû
žOð.¿˜h†BÐñ¿ó[Pè/Q@è+øÑ*¿ó[Aóô€˜oð@AhˆBЙ8`¿˜ðZì¹ñ¿Ùøoð@AˆB@𴀘œ(ÝøH ¿hoð@AŠB@ð°€˜Ýø`(ž¿hoð@AŠB@ð©€.¿0hoð@AˆB@ð§€,¿ hoð@AˆB@𦀸ñ
ž¿Øøoð@AˆB@𢀘(¿hoð@AŠB@ð¡€A˜Ýø@€(¿hoð@B‘B@ðœ€.œ¿0hoð@AˆB@ð™€-¿(hoð@AˆB@𘀘Ýée(¿hoð@AŠB@𔀺ñ¿Úøoð@AˆB@ð€˜(¿hoð@AŠB@ð€.¿0hoð@AˆB@ð€-¿(hoð@AˆB@ðŒ€ ˜(¿hoð@AŠB@ퟨ�ñ¿Øøoð@AˆB@ð†€,¿ hoð@AˆB@ퟘ�ñ¿Ùøoð@AˆB@ðƒ€XFB°½ì‹°½èð½8Éø¿HFð–ëCçQ`¿ðëIçQ`¿ðŠëPç80`¿0Fð‚ëQç8 `¿ Fð|ëRç8Èø¿@FðtëUçQ`¿ðnëXç9`¿ðhë]ç80`¿0Fð`ë_ç8(`¿(FðZë`çQ`¿ðTëeç8Êø¿PFðLëgçQ`¿ðFëjç80`¿0Fð>ëkç8(`¿(Fð8ëlçQ`¿ð2ëoç8Èø¿@Fð*ëqç8 `¿ Fð"ërç8Éø¿HFðëtç¿
ðøÿˆ$ùÿ™	h‘ˆB?ô¨­ðë(ñׇF@˜hoð@B‘BÐ9`¿ðúê ,@ðl˜™Íé
«ðRïíFF­LQì	%|D·îæjÖøèb•í°G!(@ð‡@‘FÐø° œš»ñÑð\ëš(Cð?€Òø¨FÔø ð¾û(ð‡‚FÖø¨ÔøŒð´û(?ðü†šOðAhh±BBð^…Äh,ðZ…hoð@@"h‚B¿2"`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ðŽê"!©?˜
Íé!H¥ë‚å÷Éù@ FÜ÷kø@˜(ðʆ?˜oð@D•–h¡BÐ9`¿ðnê@˜]FÍøü€h¡BÐ9`¿ðbêÝøX°
˜Íø»ë˜`ë	Ôñx먿$ðíF˜YF"F0+Fðvû0FðŽí ˜"Ðø,PFÝ÷ÆøÚøoð@B‘BÐ9ÊøÑFPFð0ê FÝøl(Ýø8€ð·†hoð@B œ‘BÐ9`¿ðê™HFðpí!(?ðµ†?ª F#Íé‘ü÷
þ(ð®†F?˜oð@Bh‘BÐ9`¿ðüé Õø?`h‚l F*𡆐G(?𢆠hoð@AˆBÐ8 `¿ Fðâé?˜%šAh‘BBð“„Äh,퟼�hoð@@"h‚B¿2"`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ð¾é"™?˜¡ë‚Íé!Eå÷ûø@ FÛ÷ÿ@˜(ðl†?˜oð@D h¡BÐ9`¿ð¢é˜&?–@šh¡BÐ9`ÑFð”é"FÝøh°@–¿â¿`Š333333ó?ÕøXÝ÷<ÿ(@ð˃AhŠlÕøx*ðɃG(?ðʃ@˜oð@Bh‘BÐ9`¿ðjé @ ð¬é(@ð»ƒ1hoð@B‘B¿H0`@˜Æ`ðë(𶃠œFÔøXÝ÷ÿ(>ðºƒAhŠlÔø$*𽃐GF(ð¾ƒ>˜oð@Bh‘BÐ9`¿ð2é ˜"FÐøh >(Fðøé(ñà„ hoð@AˆBÐ8 `¿ FðéÝé?*FÜ÷ÿ(ðS„F?˜oð@D’h¡BÐ9`¿ðé@˜&?–h¡BÐ9`¿ðúè@–oð@A(hOðÿ4ˆBÐ8(`¿(FðìèPFIFÍø4 ðJííTAì!îQìðíš’h’_êQOê0CC‚BêrAê‘C	BêrAêC
BêbAê!CAêJBêBŠêCJêˆêCÑðBé(Bð† ñ	JñÕøXÝ÷]þ(ðíƒF@hÕøÈ‚l F*ð郐G(@ðêƒ hoð@AˆBÐ8 `¿ FðŠèHF1Fð~ì(ð⃁FOðÿ0Oðÿ1ðtì(?ð܃ÕøXÝ÷+þ(>ðكAhŠlÕø<*ð׃GF(ð؃>˜oð@BÍø8°h‘BÐ9`¿ðVèš%@˜>•hAh“F‘BOððʃÝé>1@˜Íé#!©1Íé!9¡ë‚2ä÷‚ÿF>˜Û÷$þ>•oð@EÙø¨BÐ8Éø¿HFð*è?˜h©BÐ9`¿ð"è  ?oð@A0hˆBÐ80`¿0Fðè,ð±ƒ@˜oð@Bh‘BÐ9`¿ðè!® @!F0Fð\ù!˜(ð¥ƒÝøˆoð@A hšˆBÐ8 `Ñ FðìïšÒø¨FÕø ðáø(
ðœƒÔø¨ÕøŒð×ø(@ðœƒAh%YEBðœƒÄhÝø8°,𾃁hoð@@"h‚B¿2"`
h‚B¿P`@˜oð@B@‘h‘BÐ9`¿ð²ï"1@˜¡ë‚Íé!Eä÷îþF FÛ÷ý.ðsƒ@˜oð@Dh¡BÐ9`¿ð–ï @0h BÐ80`¿0FðŒï
˜œ¤ëOêëuðÄê	»ë˜Ýø€Àuë˜ñrÚ
˜*F™@àÆé
FÝø€À™šYDñBø1ëÁOêërE`˜»ë˜rëTÚ ’Íé#˜Íé²"ðLë†FFêOðÿ2ñê
Yø6P	ëÆCñth…êb@\ê¿…êL@RêäѼñ»ÐêÝø€ÀOðÿ4	ëÀYø0 Khb@c@CНê
0êBñê
	ëÀYø00Nhc@f@3C+îÑàXFÁ鵗ç8iâF(±˜"
™›ð(ø	˜ð@ê
œ"Úø, FÜ÷xý!hoð@BÝé¹ž‘BÐ9!`рF Fðâî@F(ðՂhoð@BUF‘BšÐ9`ÑðÒîUFšPhªFÕø€FÃlF+ð쀚˜GOð(ñ퀘! "#F
˜UF˜’‘Ðø ÓE=Ð“ÝøT°˜AhŠlÕø *ðU†GF(ðV† ˜"Ðø¤(Fðþ(ñT†)hoð@B‘BÐ9)`Ñ\F³FF(Fð‚î0F^F£F(}ÐÝøL°oð@AÛøˆB¿0Ëø  ˜ÿ÷î¹
–.F]hF1k(Fá÷ùþÝøT°(ð‚ªlÖøT*”ð>˜G
ž(@ð?šAhh‘BBðH€Åh-ðD€hoð@@*h‚B¿2*`
h‚B¿P`@˜oð@B@‘h‘BÐ9`¿ð.î" ™@˜!•Ñø¤"‘!©1¡ë‚2ä÷eýƒF(FÛ÷ü»ñð@˜oð@Ešh©BÐ9`Ñðîš @h¨B@ð߁ÍøL°ÝøT° Wç˜
–PE𻀛Xh‚l ˜*Ðø Fð퀐GF(ðî€ ˜"Ðø¤(Fðcý(ñé€)hoð@B‘BÐ9)`ÑF(F\FðÔí0F(𑀠žÖøXÝ÷‚û(ð±‚F@hÖøx‚l(F*𭂐G(@ð®‚(hoð@AˆBÐ8(`¿(Fð®íðlï(𨂛FXh‚l ˜*ÐøhF𫂐GF(𬂠˜2FÐøh(Fðbî(ñ}0hoð@AˆBÐ80`¿0Fð„í ™*F@˜Ñø0Ü÷ü(𫂃F@˜
žoð@Dh¡BÐ9`¿ðní @(h BÐ8(`¿(Fðb혙ðhý(ð™‚F ˜*FÁhXFðìè(ñ™‚(h BÐ8(`¿(FðHíÛø B¿0ËøÍø€°Îæ˜ AhŠlÕø*ðH€GF(ðI€ÕøXÝ÷äú(ðG€F@hÕø„‚l0F*ðA€G(@ðB€0hoð@AˆBÐ80`¿0Fðí ðVí(ð5€šFoð@AhˆB¿0`ò`ð¾î(?ð(€ÕøXÝ÷®ú(ð%€)FF@hÑø4‚l(F*ð€G(>ð €(hoð@AˆBÐ8(`¿(FðÚì ™Ýé> Ñøhð¢í(ñ´€>˜oð@Bh‘BÐ9`¿ðÄìÝé? !>‘1FÜ÷Eû(>ðց@˜oð@Eh©BÐ9`¿ð®ì @0h¨BÐ80`¿0Fð¤ì?˜oð@Bh‘BÐ9`¿ð˜ì% ?•ðÜì
ž(?ð¯>™Á`>•ðJî(>𲁠™úhÑøœðPí(zÔÝé>!HFÜ÷û(ðˁƒFÙøoð@E¨BÐ8Éø¿HFðhì?˜h©BÐ9`¿ð^ì>˜"!?’ ‘oð@BhÝøl‘BÐ9`¿ðNì >Úå5F F”
žžå •
@ò0 ZF
Föée£F F Oð	’ÍéO𐘐–þ÷=¿8` ¿FðìÍøL°råGò5 YF³F@ò¯0à YF«FGòð±F@ò©0  F‘þ÷¿GòC@ò¯0O𐠐 þ÷¿@òa0FöRE 
OðOð	 ÍéOðÕáðnì(Bðn(Fá÷˜ú(@Bðø‚@ò0FòZe	àð¶ìF(|ôè@ò0Fò\e 
OðOð	ü÷\¹@ò0Fò_eü÷P¹@ò0Fòdeü÷J¹"Oðü÷7º"%ý÷±¹HF1F"Fðòì(>|ôà¨@ò0Fòge 
ü÷2¹ðzì(>Íø@€|ô©@ò0Fòveð÷¹ðì(ðj !
@ò0Fòge>‘ ü÷¹)Bð†0hoð@AˆB>ô¯80`¿0Fðdëþ÷û¾Fö^EàFö`E @òb1Oð	
O𐠐˜	˜‘™Íø\°Oð‘<á Íø\°
FöbEOð	 O𐘐	˜@òb0#á Íø\°FözE
Oð	O𠐐˜	˜@òb0þ÷+¾@òc0FöˆEðä½@òe0Fö©Eð¾@òe0Fö«Eðû½@òe0FöÀE 
”ðõ½ FöÎE
Oð	 ˜	˜˜ à Íø\€FöÐE
Oð	O𠐐˜	˜@òf0–þ÷æ½@òg0FöÝE Oð	
þ÷¤½FößEþ÷–½FöäEþ÷’½FöçEþ÷޽FööEàFöøEþ÷œ½FöûE Oð	
 ˜OôZpHàOôÚEþ÷нFöUþ÷†½*Àò}†ßH"ßIxDyDhhðpëðƒ¾ FöBU
Oð	 Íé`˜@òi0#à FöVUOð	
O𐠐˜˜@òi0'à FöcU
Oð	O𠐐˜˜@òj0ÍøH ð3½ FöwUOð	
O𐠐˜˜@òj0ÍøH þ÷O½@òk0Fö…Uþ÷9½@òk0Fö‡U 
”þ÷3½Oô[pFö”Uþ÷(½Oô[pFö–Uþ÷"½ FöRE
@òa0 Oð	 Oð˜	˜˜’ ˜”þ÷½—H"ÕøOðxD@kÜ÷ƒø(>Íølð€!"$û÷àü>˜oð@Bh‘BÐ9`¿ðæé >”
@ò#0Fòéu ðÿ¹‚K{DhšBð§€"FðêðVü(Bñ@ò0Fòxeð7¸ðRê(Aðà‡(Fá÷|ø(?Bðá€Oð
Fò“e@àðšê(@{ôñ¯ Fò•e@LàðŽê‚F(|ô¨Oð
Fò˜e*àFò¬e%àÄhÝøl ,𽇁hoð@@"h‚B¿2"`
h‚B¿P`@˜oð@B@‘h‘BÐ9`¿ð|é"ü÷M¸Oð
FòÃeÝøP°@˜(¿hoð@B‘B@ð„ ºñ@¿Úøoð@AˆB@ð„Ýøl ?˜(¿hoð@B‘BfÑ>˜$?”(¿hoð@B‘BbÑ>”Ûø<(IÐ8L@h|DákˆBÐJhRmSñȆCh[m³ñÿ?ؿ²ñÿ?Ýð8ëÝøl ÝøP°x³,H)F,K@ò2xD{DÛ÷çÿ>©@ª?«XFÜ÷wú($Ô@šoð@AhˆBFÑ’HàBmð€BÛБøW R×ÕÐø¬ *ðù†h(Û2h‹BÒÐ28ùÑ@ò0šð?¿@ò0Fòçešð7¿9`¿ðèè’ç9`¿ðâè>”Ûø<(—Ñàç¿Ä!ÜøÿxÚ œvLÙøÿÊ
ùÿ0`@˜ëI˜yDEh	hhhˆBAð^†(hoð@AˆBÐ0(`˜Eh-ð`† ˜)FÐøPðŽê(ퟔ�F(hoð@AˆBÐ8(`¿(Fðžè!©`k"1%ÈòÍøˆ€!•ã÷Øÿ(ðs†FØøoð@E¨BÐ8Èø¿@Fð‚èš F!Oðû÷jû h¨BÐ8 `¿ Fðrè@ò0Fòp% ð é„F =-Íé;¿(hoð@AˆB@𨄸ñ¿Øøoð@AˆB@ð©„Üø@!h`,¿LEÑ,¿ hoð@AˆBAð€$OðOðð¾Ôø°oð@AÛøˆB¿0ËøÔø€¸ñð†ØøˆB¿0Èøðþ½@ò0FòWuðå¾@ò'0Föð3¸ð¢è(Að;† Fà÷Ëþ(@|ôͨ@ò)0Föð!¸ðèè(?|ôͨ@ò)0Föð¸ð„è(¹ Fà÷¯þ(Að‡@ò)0FöàðÎèF(|ôá¨@ò)0Fö  Oð
ðý¿ðbè(¹ Fà÷Žþ(Aðý†Fö Oð	
³F@ò)0 ðå¿ð¤èF(|ôå¨ Fö ³F
@ò)0 ðӿõh-<ôè¨)hoð@@ÖøB¿1)`ÙøB¿HÉø0hoð@AˆBÐ80`¿0FðŒï NFü÷˸ðnèF(|ôþ¨@ò)0Fö7$àÂh@’*𯅁hoð@@hƒB¿3`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ð^ï"ü÷ê¸@ò)0FöM Oð	
Oððu¿ Föø @ò.0 
OðOð	ÍéOðÍéÍéÍ鐐þ÷Hºðè(|ôܫ@ò20Fö|âH" ™xDÑø@kÛ÷¥ý(ðU…F  F!"û÷ú hoð@AˆB@ðpƒ@ò30Fö" uãðìïF(|ôè«OôMpFö4gãOôMpFö6 
”bã0^réH" ™xDÑø@kÛ÷ký(>ð$…!"$û÷Êù>˜oð@Bh‘BÐ9`¿ðÐî FöG
@ò50>”ZáðTï(¹ Fà÷€ý(Aðò…@ò70Föb%ãðFï(Að… Fà÷pý(?Aðä…@òC0Fö2% 
“àðˆï(?|ôޫ FödOð
@ò70 –ãðvï(>|ôˆ­@òC0Fö4%1à@ò70Fögìâ Fö7%@òC0 &àÅh-<ôϫhoð@@*h‚B¿2*`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ðZî"ü÷µ»@òC0Fö<% 
Oð	 ý÷K¸—H"ÕøxD@kÛ÷Æü(>ð¡„!"$û÷%ù>˜oð@Bh‘BÐ9`¿ð*î >”
OôNpFöµàð°î(Að‹„(Fà÷Ùü(AðR…@òC0Fö>% 
OðOð	 ¬á@ò90Fö¡oâðèî(@|ôC­@òC0Fö@% Oð	
 ÍéÍé
XF£Fü÷ó¿ðÎîF(|ô™«@ò90Fö£¡áðÂî(?|ô¨«@ò90Fö¦ 
”–á Fö©@ò90 ‹á@ò90Fö½ƒáTH"ÕøxD@kÛ÷>ü(>ð+„!"$û÷ø>˜oð@Bh‘BÐ9`¿ð¢í >”
@ò:0FöÐ-à@ò;0FöâYá@ò;0FöäTá>H"ÕøxD@kÛ÷ü(?ð„!"$û÷nø?˜oð@Bh‘BÐ9`¿ðtí ?”
OôOpFöõ OðOð	 Âà9`¿ð^íÿ÷ó»8Êø¿PFðVíÿ÷ö»#ü÷ï½ @òa1FöSE
Oð	O𠐐˜	˜‘™0FÍø\°Oð‘–þ÷K¸OôYpFö”E Oð	
 ˜	˜˜ þ÷1¸OôYpFö–EàêqœpŒo.o@òc0Fö‰E 
 Oð	˜	˜ý÷ö¿@òI0Föu% 
¤áð‚í(A𞃠Fà÷«û(@Að1„@ò0Fò_u­ãðÈí(>{ôN¬@ò0Fòau¢ãÂh@’*ퟸ�hoð@@hƒB¿3`
h‚B¿P`>˜oð@B>‘h‘BÐ9`¿ðºì"Ýøl žû÷7¼@ò0FòvuxãOôLpFö  
OðOð	áðK{DhšBð؅"ƒFðTíðÿ(Añëƒ@ò20Fö  
Íød°ßç@ò0FòXuJã F)FRFðÊí(@|ôù«@òC0FöE%ü÷l¾ðþì(ð*ƒ !
@òC0 @‘FöE%OðOð	 ÍéÍéOðÍéÍ鐘ý÷e¿OôMpFö8µà@ò70OôÓE°à@ò90FöÁà@ò;0Föæ 
OðOð	 ¦àðíF(?{ôª@ò!0Fò¨u Oð
“â*ԯH*¯MxD¯K°I}Dh{DyDh¿+FðììFöU ”
ý÷ñ¾ð’ì(Aðǂ Fà÷»ú(?AðGƒ@ò+0FöeŽãðØìF({ôu®@ò+0FögƒãðÎìOð	(?{ô…®@ò+0FöjÝâàh@(ð¨‚hoð@A¥hŠB¿2`(hˆB¿0(` hˆBÐ8 `¿ Fð¾ë ,F û÷f¾@ò+0Fö·â8(`ôT«(FdFð¬ë¤Fÿ÷M»8ÈøôR«@FdFð ë¤Fÿ÷K»8 `Ñ Fð–ë@ò30Fö" 
OðOð	 ÍéOðÍéÍ鐐Íø` ý÷¾ð^ìü÷^» Fö‰%@òK0 
OðOð	 OðÍéÍé
ÍéF“ý÷o¾@òK0Fö% 
”OðOð	 Íéð¨¼ Fö«%OôSp àOôSpFö­% 
OðOð	 OðÍéÍé
Íéý÷8¾ðì!(@|ô–« Föº%@òM0 à@òM0FöÎ% 
Oð	Oðü÷ð½ðêëF(|ô˫@òN0FöÜ% 
ü÷ݽ@òN0• FöÞ%ü÷ҽ@òN0• Föã%ü÷ȽÍølðjë(Að(Fà÷”ù(?Að%‚@ò"0Fò½uêâð²ë(@{ô«@ò"0ÍølFò¿uÝâ¿bƹáøÿ}ùÿúØøÿÂh?’*𣁁hoð@@hƒB¿3`
h‚B¿P`@˜oð@B@‘h‘BÐ9`¿ð”ê"Ýøh° žû÷çº@ò"0ÍølFòÔu¥âOôUpFöS5 OðOð	
 ÍéÍé
O𐐖ý÷‚½ãH"Õø xD’@kÛ÷éø(ðWF  F!"ú÷Fý hoð@AˆB@ðƒ@òU0Föc5à Föu5@òW0 ›ãÐH"Õø$xD’@kÛ÷Áø(ð5F  F!"ú÷ý hoð@AˆB@ðŽƒOôVpFö…5øâOð=©<ª;«`FáFÛ÷uû°ñÿ?@óˇ(hoð@AšˆBÐ8(`Ñ(Fð
êšÙø@KFh``±hoð@B‘BšÐ9`ÑðøéšKF»ñ¿ÛøPoð@AB~Ѹñ¿Øøoð@AˆB@ð€€Ýé;…-=œ¿hi@E@ðâ‡ØkÝcX±hoð@B‘BšÐ9`ÑðÌéš, ¿ hoð@AˆBjѸñ¿Øøoð@AˆBiÑ =Íé;˜lh`X±hoð@B‘BšÐ9`Ñð¦éš*¿hoð@AˆB(Ѻñ¿Úøoð@AˆBÐ8ÊøÑPFðŽé Oð
Oð	 ÍéOðÍéÍéÍ鐐Íéý÷Œ¼8`¿FðnéÏçiËøô|¯XFðféšKFuç8Èøô{¯@FðZéšKFtç8 `‘Ñ FðR隌ç8Èø‘Ñ@FðH隌çSK{DhšBðBƒ"ðþéðÃû(Añ˜€@ò0Fòzu 
OðRáíµî@ñîú¿$ú÷پCJzDhBð2ƒHF"ÍølðØéðû(Añv€@ò"0Fò·u,áOôKpFöޤàðîé(?{ô¬OôKpFöOð	 £FšàOôKpFö“àðÚéF({ô"¬OôKpFö•vàðÎé(@{ô1¬OôKpFö˜#àæh.;ô,¬1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ FðÂè ,Fû÷¼OôKpFö­ ” 
FàðšéF({ô9¬OôKp«F  Fö±
7àäh”h²lÅh-;ô2¬hoð@@*h‚B¿2*`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ð~è"û÷¼OôKpFöÇàOôKpFö͐  
OðOð	à@ò+0FöƒOð	 Oð
 ÍéOðÍéÍéÍ鐐ÍøD ý÷a»ð0éF(~ôª©Oôhp
–Gò¯ð?½OôhpYF «F
–Gò±ð8½8áF `Ñ Fð(è$OðOðÝøl ÌFýå@òN0• Föæ%ü÷þº Föõ%àðöè(?|ô?©OôTpFö÷%ý÷ȹ Föú%OôTp ý÷yOôTpFöÿ%ý÷¸¹ÍølèK{DhšBð‚"ðªèðoú(@ñL‡@ò"0FòØuOð 
Oð	 ÍéOðÍéÍéÍ鐐ý÷ߺð®èF(|ôâ© Fö#5Oð
ý÷à¹Fö%5ý÷Ÿ¹Fö-5ý÷›¹@ò[0Fö¡5‘áðè(@|ô«@ò[0Fö£5†á Fö¦5@ò[0màÅh-𙆁hoð@@*h‚B¿2*`
h‚B¿P`@˜oð@B@‘h‘BÐ9`¿ð|ï"žÝøPü÷øº@ò[0Föº5Wá Fö¾5@ò[0 Fà¤H"Õø(xD’@kÚ÷æý(@ðc†!"
‘ú÷Eú@˜oð@Bh‘BÐ9`¿ðJï FöÏ5@OôWp OðOð	 Íéÿ÷ð»ðèF"(|ô,« Föë5@ò^0 á@ò^0Föÿ5 
”	á Fö
E@ò_0 àðúïF(|ôk«@ò_0FöE 
à FöE@ò_0 à@ò_0FöE 
”OðOð	 Íéý÷ë¸@ò_0FöEý÷ָðÆï(?|ôs«@ò_0” FöE
ý÷̸OôUpFöT5à@òW0Föv5 ”
à·î$í´î@ñîú¿$û÷€»8 `Ñ Fð®î@òU0Föc5 
OðOð	 Íéà8 `Ñ Fð”îOôVpFö…5vàOôKpFöΐ  £F
æOôTpFö5ý÷B¸ðdïF({ôï¯ Fö5Oð	
OôTp –áFö05ý÷S¸ðNïF(|ô¨Fö25ý÷I¸ Fö E@ò_0 ý÷L¸ð:ïü÷D» Fö/EOôXp 
OðOð	 Íéý÷?¸OôXpFöCE OðOð	
 ÍéÍéþ÷?º"ü÷@»

Þb@ò[0FöÀ5 
OðOð	 ÍéOð
ý÷¹"%ý÷ҿíµî@ñîú¿$Ýé¹ hoð@B‘Bzô²­ú��í µî@ñîú¿ Ýøh° ž(zôÿ­ú÷|¾šðnîOð(}õ¯@ò™0!  Gòe˜Oð 
–Oð	ÍéÍé‘”˜ý÷ʸ@ò0FöØeàð–î(?}ô6¬@ò0FöÚeà FöÝe
@ò0 à@ò0Föâe 

ZFOðþ÷U¹@ò0• 
Föäe
ðçðjîF(}ôB¬@ò0• 
Föæe
àçOôTpFö	5 Oð	
 Íéü÷2¿Fö75ü÷K¿íµî@ñîú¿$Ýé¹ hoð@B‘Bzôç­ú÷ê½$"ý÷¼º$"ý÷‡»@òv0FöýU 
à@òv0FöÿUà@òv0Föe à Föe@òv0 
”ZF FOðOð	 ’=á˜ðþí
ž(@}ôn@ò0Gò„â@ò0Gò˜ Oð:âðèíF(}ô¯@ò£0GòØùá@ò£0YF «FGòÚõáðÔíF(}ô·¯Gò"@ò¯0äáGò$âðÆí(@}ô¾¯Gò&þ÷¼¸Gò)ôáGò.þ÷µ¸Gò0þ÷±¸ð°í(>}ô௕Gò2þ÷¨¸@ò0• 
Föëe
!ç@ò‡0Föu
âð–í(@}ô¬@ò‡0Fö!u 

”â@ò‡0Fö$uøá@ò‡0Fö&uà@ò‡0Fö(u	àðxíF(}ô(¬@ò‡0Fö*u Íød

âáÂh>’*ퟨ�hoð@@hƒB¿3`
h‚B¿P`@˜oð@B@‘h‘BÐ9`¿ðbì"ý÷¼@ò‡0FöBu Oð

	à FöFu
@ò‡0 
£F Oð	˜­áOôbpOðFöTu˜
8àÝø8 FöVuà"$Ýø8°ý÷~¼ÚFFöju
˜oð@AhˆBÐ
™8`Ñ
˜ðìOôbpOðOð˜Oð	
  PFÍø< à"$ý÷X¼OôbpOðGòM
– OðOð	 ˜ ÍéÍé5æ@òo0Fö¹UàOô\pFöÃU OðOð	
 Íéý÷¦¿ FöeOô^p 
OðOð	 ˜ ÍéÍé+á@òz0Fö+e1áÝø8€Fö-eàÝø8€FöAeÚøoð@AˆBÑ@òz0Oð	 
 @F Íø<€Íéà8ÊøÑPFðŒë@òz0Oð	 

 @F Íø<€ÍéOð˜Oðü÷†¾@òz0Föe AF
OðOð	 @FÍø<€åà Fö¥eà Fö§e
@ò~0 àð8ì(?}ô^©@ò~0Föªe 

”à@ò~0Fö¿e 

OðOð	 AF@FÍø<€˜à@òv0ZF Föe
OðOð	 F ’ÿ÷¤¸@ò©0Gòçàðøë(@}ôR­@ò©0YF «FGòé	àGòì@ò©0 YFOðOð	ý÷ì¾ðÚëF(}ôT­@ò©0YF «FGòîëçGò7ý÷ƾGò<@ò¯0YF Oðý÷̾GòAý÷Ͼ@ò©0«F GòòOð	 ü÷ؽ@òª0OôâE Oð	à@òª0©F GòÍø€°Oðü÷=GòDý÷¦¾@ò…0Föu 

YF OðOð	F‘ ÍéOðÒäFö+Uü÷r½@òy0Fö e OðOð	
 ˜ Íéáçß÷úþ÷>¹ !
@ò0FòZe@‘ ý÷Ÿ¾™	hˆB@ðnÉj(FˆGÝøl F-~ô ©OôGpOðFòö`þ÷޹Ùø<!JFÉø<(=‘Íé;?ô)¨Ahoð@C=‘
hšB¿2
`@iÝøl (;¿hoð@B‘B1¿`ÿ÷¸@ò0OðOôÎ@þ÷±¹@ò0Fòpþ÷ª¹ÀHÀIxDyDhhðöéý÷Œ¾Ýøl ÝøP°(ð€Ðø€ˆBøÑþ÷Ը@ò0Fò‡uÿ÷º(FAFð”ëšKFØkÝc(ô¨ÿ÷ ¸Gòaðžý@ò#0Fòåuÿ÷ºOð
Fò“eÍøü þ÷e¸"$ú÷¨¸Oð@ò)0Íø±Föÿ÷ë¹"ú÷T» Fö @ò30 þ÷½ FöC@ò50þ÷«º !@òC0 ?‘Fö2%
Oð	 ÍéÍéXFOðû÷¦» Fö‹OôNpþ÷‰º@òC0Fö>% 
þ÷:» Fö̐@ò:0þ÷¹» FöñOôOpþ÷±»sHxDh°ú€ð@	þ÷?¸Fö#Uþ÷a½%à%>˜oð@Bh‘BÐ9`¿ð\é! >‘ù÷²úX³Fö3U ü÷<¼ !@ò0Fò_u@‘ ÿ÷¸"þ÷‰¼ZHZIxDyDhhð"éþ÷̼Oð	@ò+0ÍøüFöeÿ÷̸ þ÷m½PH,PJxDPKPIzDh{DyDh¿F*FðúéFö3Uü÷ÿ»Oð@ò"0Íøü°Fò½uÿ÷-¹"þ÷t¾@òU0Fö_5þ÷¼¾OôVpFö5ÿ÷ѹ"%ÿ÷}¹OôWpFöË5ÿ÷ǹ"ý÷¤¸/IyD	hˆB?ôŒ® ˜Ai(FðììÝøl F-~ô*¨ˆæÝøh°Fù÷ý FÝøl ù÷¿Fú÷9Fú÷ë¹Fú÷ü½Ýé¹ú÷·¿Ýé¹Fú÷ø¿F(FÝøh° Ýø@€ù÷l¾Ýøl žú÷¸×ø ú÷(»Ýé¹F žú÷ݸFXFú÷m½F?˜ÿ÷¦ºÝølÿ÷¶ºF>˜ÿ÷=»†ÚÐøÿXÿÿÞþ2ÏøÿäþŸíøÿÓËøÿÃøÿе¯ˆBÐLCh|D$h£BсhZ±!ð)
ÑÀh8°ú€ð@	н нðн н
L|D$h£BÐ"ðé½èÐ@ßâî*í ¸îÀ´î@ñîú¿ нlýìýðµ¯Mø½„FhhÌø`ø±!L|D&h°BÐÐøÀoð@DÜøà¦E¿ñÌø`Ðøà¾ñ#ÐÞø@oð@E¬B¿4Îø@à(¿ÐøÀoð@F´Eмñ`ÑFF
Fðè)F2F#F OðOðàOðÁøÀ`Ãøà]ø»ð½¶üBhÒé
#+¿[h+ÐG*¿Òh*©âã¿е¯á±BhŠB/ÐÒø¬0û±˜h(Û3hŒB%Ð38ùÑHLxDËh|DÒhh!Fhð¨è нHIxDyDhhð¦ïôçF #±Óø€0‹BúÑíçHxDhBÜÑ нèû*°øÿÔûü5æøÿðµ¯MøF@hˆF„k,¿¡h)Ñ I¸ñLyD|DhIKÂhyD0h{D¿#FðfèàHF.xDhFF¿0h+¿hðˆ耱£hF(F1FBF˜G1hoð@B‘BÐ91`Ð]ø‹ð½Oðÿ0]ø‹ð½F0Fð\ï F]ø‹ð½Dû–ûxÅøÿ“ÛøÿØøÿ°µ¯Ah‘øWÉ'Ёh)ÙðÉÂñQC)Ð1ÑÐé"@êp@Bbë‘°½ðÀhÁñHCÁ°½Ðé‘@ê‚p°½½è°@ð…¾ù÷›ù˜±Fÿ÷Ëÿ"hoð@CšBïÐ:"`¿°½F FFðï!F(F°½Oðÿ0Oðÿ1°½¿ðµ¯Mø½DhFF Fð0鸱AhÑøˆ03±)F"F]ø»½èð@Ghoð@B‘BÑ]ø»ð½1`]ø»ð½H1FxDhhð(ê ]ø»ð½öùðµ¯-é…°N–B#ۀFëÁ ñ›F‘FOð
ð"Íé`@F#ÍéªÍø ð¶êëÀ[ø0ÀÕé#ah>Kø0 NEc`eèÁäÚ°½èð½ðµ¯-鐰
Fh!FðHëyHxDh…BÐxHihxD€oˆBÐÑø¬ ¢±‘h)%Û2hƒBÐ29ùÑàÉø°½èð½Ñø€BÐ)ùÑiIyD	hˆBÑgHimxDðûù0±lk#Oð,CЍàbN(F=!"~DOð3Fðyú(ð¦€DkF,{Ѩ\I	¨Dò–ø0 yDÀò@# S*
Íé0Íé
ÍéaÑPIyD	šñ	“Kh“`	šP`Ih	h‘ø0 S*ñЩk¨ðòú(XÐ#¨FEHêjxD†h²B*Ѩj(Ûèkh(Û)l9±	h‘BÐAHBIxDyDTàil)MÑil±	h)9Õ)l!±(Ûh‚B<Ñ(F!JFð3ý0Bа½èð½.I..KyD.LÐøÀ{D
h|D,I(hyDFˆ¿%FÍ鯕*ȿ#Fð¶î%à+FH˜FI"xD#FyDhhð¨îà¨Fà"H""IxDyDhhðœîàHIxDyDàHIxDyDhhð–í@FØ÷—û Éé°½èð½nù>HPùðDÒD6øÌäøÿøäøÿ‚DPDlø%çøÿYÅøÿý¾øÿ¬øÄøÿø{ÑøÿøÒÎøÿ
øÞÚøÿ(¿Oðÿ0pG°µ¯FHxDh„BÐIyD	hŒB
ÐIyD	hŒBÐ Fðæí!hoð@B‘B	Ѱ½ °ú€ð@	!hoð@B‘BõÐ9!`¿°½F FðHí(F°½¿.÷(÷
÷ðµ¯Mø/JKhzDh“Bъh*MØðËhÂñûôbÑFFð´í8»Oðÿ4(F!F"#]ø‹½èð@ø��FFFðZïF1F@F-äÐ(FðZïF(hoð@AˆBÐ8(`¿(Fðþì1F@FÐçIyD	h	hðþî`±`hÄhðíH"FIxDyDhhðÈí ]ø‹ð½FFFð.ï!FF(F¯çèöxö÷|Áøÿðµ¯Mø½‚°F@h
FAm±ñÿ?;Ü'I(KyD‚l{DÑøðh‚B&Ñ F"#ðhíF8³ "hFÈò0F•á÷ðû1hoð@B‘BÐ91`а]ø»ð½F0Fðšì F°]ø»ð½ F²±GF(ÙÑÞ÷¡ûð¬ì`hIyDhIÂhhyDðbí °]ø»ð½ðbíF(ÁÑæç¤DÐõ‚õzßøÿ(Oð¿)ÑFpGˆBÐðµ¯MøŠh†hø06¿‘ø0 ”Eжú†ð¼ñHOêPБø0H(¿"]ø‹½èð@FpG"FpG‘ø1 ø1P•BäÑÂjÍjªBàÑ*ÛññVøKUø;£B0Ñ:÷ѼñS2ÑJkCk“B'ÑÑø€AhAê)°ú€ð¿¸ñOêPÉÐh(³ññ%Vøy±2h#h“BÑÿ÷–ÿ@±`hñ65(FíÑà"]ø‹½èð@FpG"]ø‹½èð@FpG%ëEXø °ú€ðB	]ø‹½èð@FpGðµ¯-éFF˜FFð<ì(RЁF±IHxDàIHxDhoð@A(hˆB¿0(` ðì(DÐF0hoð@AˆB¿00`>HÄéixDea…ohhl¾³;HxDðêì(AÑ(F!F"°GFðè쵳 hoð@F°BÐ8 `¿ Fð”ë(hÅøT€°BÐAoð@B‘B)`Ð((`¿(Fð„ë(F½èð½CòhOð	%àCòƒh$à(F!F"Oð	ð¾ìF(ËÑCòŽhàðöëرCòŽhOð	%HFØ÷Iù(FØ÷Fù FØ÷CùHAFK@ò—"xD{DÙ÷ú%(F½èð½
H
IxDyDhhð*ëÚçÄÍøÿ@âøÿîóìó‚BùÛøÿîòBÃøÿðµ¯-遰
F‚FOð=&Oð	*x}*ò̀$ßèðüÉÉÉÉÉÉÉÉÉ~ÉÉ~ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ~»ÉÉÉÉÉÉíÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉZÉl°»€°É€ÉÉÉÉɀ€ÉɀÉɀɀÉÉpÉÉÉÉÉ`ÉÉɰÉÉɀ€€É€€€€ÉɀÉÉɀ€ÉˆÉÉÉÉ´ÉÉÉÉÜ5xçšø$B¿Úø „BÐPFðœú0ð"Úøšø%ÊøŠø&øŠø$Êø @Êø€Yçšø%šø&B¿šø'(ÞÑÚé5DÊé€HçŠø% 5DçPFðpú0ðbÚé5šø% D
ñŠø$Šø& è/ç¢ñ:ñ
Àðñ€)F¢ñ0ø?£ñ0	*򼀩ë€ø+ë@¢ñ008
+FóÓCð׀MÊøçÚø(@ðPFð2ú0ð$Úøh#	hÑøàÞø, x).Øßè𜩩©©©©œ¦ñ:ñ
Àð•€F¦ñ0ø_¥ñ0	.Ø0ë„økëA¡ñ0¦ñ0
)5FòÓa{ÐA“BÛ	à.F“BÚëƒÐøÀdE@ð‰€).Ð,.zÑH3x).ö²¯ÇçF3x).ö«¯Àç5ø:(ûјæø/¢ñd(ò»€(ð¸€$çŠø%`5ˆæÚøÊø€hxÚø°{(@ðš€PFðªù0𜀬 ¹ñÊéŠø$ÐPF!Fÿ÷`þ(ퟰ�ñ	FôÑà
FÊø_æ%F»ñOð	¿Êø°Væ“B@ð…€.ð‡€Êø€EŠø'€=&Iæþç%(F°½èð½GHGIxDyDà<H=IxDyDWàLHLIxDyDhhà@HAIxDyDhh2Fð.êJà7HbF7I#FxDyDhhð"ê?àPFÚø@ðFù0Oð6Ð5,Šø$ÆÐÚø€!F@Fðäí)¿ë@Êø(F°½èð½šø$±Úø@±PFð"ù0ÐÚø(¥ÐPFðÃøàHIxDyDàHIxDyDhhðêè%(F°½èð½HZ"IxDyDhh£çHIxDyD§çHIxDyDãç¿XïÄÕøÿ¦îèÌøÿ°î„Ûøÿ(ïbºøÿbïÏÍøÿ@ïoÐøÿzîjËøÿpî6Ãøÿˆî:ÁøÿNï»Íøÿ°µ¯h-¿Uh-Ð3HF3IxDyDhhð˜è ÄéOðÿ0°½lm±)6Ûñ($lUø$PLø$P4¡B÷Ñà±ñ'ÔëÐø,à$4DøéÅkUø,P¬ñûþñóÑ)ÛOðÅkUø,@댬`Dl,¿Tø,àOðÿ>ñÅøHàaEìÑ`jQ`ñ¿ó[Qè/UAèT,øÑRê¿ó[Ð °½hoð@B‘B¿1` °½îz¤øÿðµ¯Mø‚°Áh³h†B"Ð#J3hzDQøLjhø$Óø€hðôúF hrhhIÍé(FyDBFðé°]ø‹ð½LM|D}DàhMh}DIyD
hjø$hðÒú
I*FÍéP0FyD#Fðêè°]ø‹ð½¿Òøÿ›ÛøÿéþüÿÌì*©øÿí·¶øÿø$ *¿ pGðµ¯-郰Ãhhhñh³p*¿s*)Ññj9±úñI	€ø'hhƒiôh£BÑ#ù±ój!+#Û6Oð	Vø[;û	ùùÑàOð	¢ñ?4)ÙLàH"FIxDyD	àø'#)ßэHIxDòjyDhhKâOð	a!€ø'¢ñ?4)ò/€OðHßèð+++++++++++))++++++++++++++++8!+!!++++++OðIàOðUàjOðC)¿OðRà“FànIFyDhmIhyDFðHè FOð©ñ‘hIyDÑøàgIyD‘	ài")Â`@ð聁i)ðہÁhø&0h^+Ôø ¿@+@ðH€ø$ ¢ñ?4-ò›€j!ßèðÀ——À—————5€——€——€€‹————————————————ÀÀ“—•“5€——€———À‹—À!ø&0ˆF@+@ð)ˆàø$ ¢ñ?4-òø€Ðø À!Oðßèð=ññ=ñññññu5ññ5ññ55@ññññññññññññññññ==oñbûu5ññ5ñññ=@ñ=!ø&0ˆF@+@ðހ=à@+;ÐÙà!ø&0ˆF@+@ðӀ2à+&à+àÞøFF™¤àì\¢øÿúëÖøÿvë"¾øÿXë¾øÿ¼ñOð¿!ø&0ˆF@+@ð¬€à¼ñOð¿!ø&0ˆF@+@🀐ø$ ¢ñ?4)ò#ßèð::955557::757955:7:#à#à#i^.@¿+D›aÃi+@ðP€4)ò@€#ßèðI==I=========================II======I=I#+à#)à#'àZIFÞø0yDFvFðÔîàTIFÞø vFyDFðÒí¶F(F!ø&0ˆF@+
ÑmçMIFÞø0vFyDFð¸î¶F(F#ÃaÚøšø0 AE¿ZEÐC*
ÑÚø0S±Áh¢hñKhÆ`Úø`Ž`ÑDà»ñH¿#H:¿"AE¿êDÑÐé£hIhDšBEсi¹ñš¡ña¿ûˆ„Bëa
Ñ@æÁh¡ñÂ`QøBF?ô6®Âhñ`âh*îВø00S+ô0®Rhh+ëÐÁhciñNhÅ`Š`™ÂhQ` æ!b€ø$ °½èð½ÿ÷ýOðÿ0°½èð½IÞøyDð>îOðÿ0°½èð½
IÞøyDð2îOðÿ0°½èð½¿²Òøÿ>»øÿ»øÿÎøÿô¹øÿs(ò|€FaHxDßèð–wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwywwwwwwwª­wwww™œ³ww°wwwwwwwwwwwww‚“…wzŸ§¹ww¶wwwt¼wt:HxDpG;HxDpG.J/HzDxD)¿FpG HxDpG+J+HzDxD)¿FpGHxDpG HxDpGHxDpG*HxDpG&HxDpG%HxDpG J HzDxD)¿FpGHxDpGHxDpGHxDpGHxDpGHxDpGHxDpG	HxDpGHxDpG¿ü¸øÿ¿Ñøÿ¦Îøÿ”Ìøÿ­·øÿ1¸øÿF¼øÿ<¸øÿžøÿažøÿb¶øÿ?¸øÿ¼ÀøÿLºøÿ£³øÿ‹ øÿÔÅøÿ` øÿ`³øÿϲøÿºøÿFÇøÿ	Ëøÿ<Æøÿƒ°€µoF³°	LñÀñ|DmFÈ!(F"F2“ðNèH)FxDðRè¿Ìøÿ±³øÿðµ¯-é›°ŠF	hFFoð@@B¿1Êø>iØø"FB¿HÈø0hoð@AˆB¿00`õHxDÐøt0F÷÷Sü(–ñ2‡•ð}˜"Ðø0F÷÷Eü(ñE€ðq˜"Ðøè0F÷÷9üF(ñ[€0hoð@AˆBÐ80`¿0FðÚë-Að
‡Ýø\°”ÛøXUÛøêh)Fð,í(ð"‡Fhoð@AˆB¿0ÉøÙøFFÛø|‚lHF*ð‡G€F(ð‡Ùøoð@AˆBÐ8Éø¿HFð¤ëÂHØøxDhBð"‡ %©B1‘¡ë€@FÍéZà÷Ôú-F¿(hoð@AˆB@ðP¹ñðVØøoð@E¨BÐ8Èø¿@FðtëÚø¨BÐ8Êø¿PFðjëÛøXEÛøâh!FðÂì(ð‡€Fhoð@AˆB¿0ÈøØøÛø|ÍøL‚l@F*ð	‡GF(ð
‡Øøoð@AˆBÐ8Èø¿@Fð8ëÙø™ˆBðÿ† $™BÍéF¡ë€HFà÷mú,F¿ hoð@AˆB@ð
-ðÙøoð@D BÐ8Éø¿HFðë0h BÐ80`¿0FðëÛøXEÛøâh!Fð^ì(•ðꆁFhoð@AˆB¿0ÉøÙøÛøP‚lHF*ð놐G€F(ðì†Ùøoð@AˆBÐ8Éø¿HFðÖêÝøLÛøhÙø‚lHF*ðۆGF(ð܆Øø™ˆBðì†% ÛøP‚‘™ÍéT¡ë€@Fà÷÷ù-F¿(hoð@AˆB@𷀠hoð@AˆB@ð½€.ðÀØøoð@AˆBÐ8Èø¿@Fð’ê:HxD
:MÐø }DVE¿(h†BÑ
˜h0°ú€ð@	à%0hoð@AˆB��æ/HxDh†BëÐ0Fðøê(ñʆ1hoð@B‘BÐ91`ð‹€(ð€$H"™xDÑøTÀkØ÷ßø(ðª†F  F!"÷÷<ý hoð@AˆBÑIòw1@ö¬b^ã8 `Ñ Fð<êIòw1@ö¬b Rã8(`¿(Fð0ê¹ñôª®Iòà!@ö§bOðÑF–ð>¾¿03Îãrálá,áÒ88 `¿ Fðê-ôð® –@ö¨bIò1OðOð%ÍéOð&Íé

Íéð²¼8(`¿(Fðìé hoð@AˆB?ôC¯8 `¿ Fðàé.ô=¯Iò-1ðñ½F0FðÔé F(ôp¯ž•ÖøXE0hâh!Fð(ë(ðN†€Fhoð@AˆB¿0ÈøØøÖøP‚l@F*ðK†GF(ðL†Øøoð@AˆBÐ8Èø¿@Fð éhhÖøh‚l(F*ðO†GF(ðP†Ùø™ˆBðb†% 1m‚‘™ÍéT¡ë€HFà÷Åø-F¿(hoð@AˆBvÑ hoð@AˆB}Ñœ.ð„€Ùøoð@AˆBÐ8Éø¿HFðbéVE¿ h†BÑ
˜ÝøLh0°ú€ð@	à¦HxDh†BñÐ0FðÔéÝøL(ñ¦†1hoð@B‘BÐ91`ÑF0Fð:é F(ô֮˜HœxDÝøP°h„BÐah‘øWÀPјÀkBLÐÑø¬ *AБh)Û2hƒBAÐ29ùÑ hoð@AˆB¿0 ` FFà ð
ê(AÑ Iò“1@ö¯bâ8(`¿(Fðúè hoð@AˆB?ô‚¯8 `¿ Fðîèœ.ô|¯ @ö«bIòZ1ð¦½Ñø€BÐ)ùÑlIyD	hˆBÀÑ ðÔé(ð‡F hoð@AˆB¿0 `Ðh`FÙø‚l˜*Ðø€HF𶅐GF(𷅠Fð4ìAð·…!hoð@B‘BÐ9!`ÑF Fð¤è(F(Að®…Ûø‚l˜*Ðø€XFðŐGF(ðą FðìAðE!hoð@B‘BÐ9!`ðl(@ðqÛø‚l˜*Ðø€XFðõ…GF(ðö… F!"#÷÷òù(ðó…F hoð@AˆBÐ8 `¿ Fð\èÛø‚l˜*Ðø€XFð䅐GF(ðå… F!"#÷÷Îù(ð煀F hoð@AˆBÐ8 `¿ Fð8èHFAF"ðòè(ðå…FÙøoð@E¨BÐ8Éø¿HFð"èØø¨BÐ8Èø¿@FðèÝøLVE˜¿h†B
Ñ
˜h0°ú€ð@	à¿äÞ¨Þ"Þ˜†BîÐ0Fð‚è(ñ]‡1hoð@B‘BÐ91`ÑF0Fðìï(F(@ðـÙø‚l˜*Ðø€HF𚅐GF(𛅠F!"#÷÷Zù(𘅀F hoð@AˆBÐ8 `¿ FðÄïÛø‚l˜*Ðø€XFퟤ�GF(ðŠ… F!"#÷÷6ù(ퟨ�F hoð@AˆBÐ8 `¿ Fð ï@FIF"ðZè(ð‹…FØøoð@E¨BÐ8Èø¿@FðŠïÙø¨BÐ8Éø¿HFð~ïVE˜¿h†B	Ñ
˜ÝøL›h0°ú€ð@	à˜†BòÐ0FððïÝøL(›ñφ1hoð@B‘BÐ91`ÑF0FðVï›(F(Að[…Xhk)¿Jh*ð’„˜ÐøäFG(ð‡F­HihxDÍø Ðø€AE¿(h(Ð(FðZë(@ðB #IòoAOôlb
$Oð

	“Íé5Oð	ðµ¹ (`CáF Fðï(F(?􏮕H"™xDÑø\@k×÷ý(ðz„F  F!"÷÷êù hoð@AˆBÑIò-A@ö¸bOð 
à8 `Ñ FðèîIò-A@ö¸b OðOð
&Íé
ÍézHzKxD{D×÷•ýšOð4F*¿hoð@AˆB ј(¿hoð@AŠBѸñ¿Øøoð@AˆBј ³˜oð@AhˆBЙ8`¿˜ð¤îà8`¿Fðžî×çQ`¿ð˜îÙç8Èø¿@Fðî˜(ÚÑ
˜ž(¿hoð@AŠBј(¿hoð@AŠBјر˜oð@AhˆBЙ8`¿˜ðlî
àQ`¿ðfîáçQ`¿ð`î˜(ãј(¿hoð@AŠB4Ñ.¿0hoð@AˆB3ј(¿hoð@AŠB2Ѻñ¿Úøoð@AˆB/Ñ,¿ hoð@AˆB0ѹñ¿Ùøoð@AˆB.ј(¿hoð@AŠB.ÑXF°½èð½Q`¿ðîÄç80`¿0FðîÄçQ`¿ðîÆç8Êø¿PFðîÇç8 `¿ FðîÇç8Éø¿HFðøíÈçQ`¿ðòíXF°½èð½)hoð@B‘B
ÑFà¿ðÚ.2©øÿ&Éøÿ9F)`¿(FðÖíÝé›%FÙø‚l˜*Ðø€HFð„GF(ð„HF!"#ö÷Eÿ(ð„FÙøoð@AˆBÐ8Éø¿HFð¬í¨h)iBĿIˆBó;ƒ(F!Fðˆèž0ð˃ hoð@AˆBÐ8 `¿ Fð’íphÍø@€‚l˜*ÐøÄ0FðՃG€F(ðփØø™•ˆBAð҂Øø@,ð͂!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@FðZí¨F ™BÍéE¡ë€@Fß÷”ü,F¿ hoð@AˆB@ðð‚¹ñðö‚Øøoð@AˆBÐ8Èø¿@Fð4íÙø‚l˜*ÐøHHF𕃐G€F(ð–ƒÙøoð@AˆBÐ8Éø¿HFðí˜AhŠl™*Ñø€ퟬ�GF(ðŒƒHF!"#ö÷Œþ(ðŒƒFÙøoð@AˆBÐ8Éø¿HFðôìØø™ˆBAðƒØøPÝøL-ðƒ)hoð@@Øø`B¿1)`1hB¿H0`Øøoð@AˆBÐ8Èø¿@FðÌìÝøP° °F™‚•”ÑøÌ‘™¡ë€@Fß÷ü
-¿(hoð@AˆB@ðj‚ hoð@AˆB@ðp‚
˜(ðv‚Øøoð@AˆBÐ8Èø¿@FðšìÛø‚l˜*ÐøŒXFð=ƒG€F(ð>ƒ˜ÐøXEhâh!Fðäí(ð;ƒhoð@AŠB¿Q`Ah‚FŠl™*ÑødðVƒGF(ðWƒÚø oð@AŠBÐQÊø¿PFð^ìØø™Ýø ˆBAð²ØøP-ð­)hoð@@Øø`B¿1)`1hB¿H0`Øøoð@AˆBÐ8Èø¿@Fð6ìÝøP° °F™BÍéT¡ë€@Fß÷oû-	¿*hoð@AŠB@ðú"hoð@AŠBÐQ!`Ñ Fðì	˜(ðƒØøoð@D BÐ8Èø¿@FðìÛø BÐ8Ëø¿XFðúë˜">iÐø0Fö÷Aü(ñ÷‚ð¼€ ðêì(ðƒ›Foð@BÓøh‘B¿1`Óøáh"`!FÓø„×÷7ÿ(ðoƒ€F hoð@AˆBÐ8 `¿ FðÂë˜Ðø@F×÷Tÿ(ðvƒFh	šoð@D B	ÐA)`¡BÐ(`¹(Fðªë	𨸕 BÐ8ÈøÑ@Fðœë	šœoð@A hˆB¿0 ``h™ˆBðeƒ %™ÍéRB¡ë€ Fß÷Éú€F(FÖ÷kù¸ñðyƒ hoð@AˆBÐ8 `¿ Fðpë©IØøyD	hˆBAðrƒØø *Aðï…ñññh
hh!h F”oð@@B¿1œ!`hB¿H`)hoð@@’B¿1)`Øø•BÐHÈøÑ@Fð8ë Ýø(€Íé£á˜"Ðøt0Fö÷yû(ñãƒF ð"ì€F,ð¸ñð…›oð@BÓøph‘B¿1`ÓøpØø"`AFÓø„×÷kþ(ð…FØøoð@AˆBÐ8ÈøÑ@FFðôê"F˜’ÐøpF×÷ƒþ(ð…Fh	šoð@D B	ÐA)`¡BÐ(`¹(FðØê	š˜•h¡BÐ9`ÑðÎê	šÝø8€oð@AØøˆB¿0ÈøØø™ˆBðé„ $™ÍéBB¡ë€@Fß÷öùF FÖ÷˜ø-ð…Øøoð@AˆBÐ8Èø¿@Fðœê@IhhyD	hˆBAðK…ªhÝø(€*Bðññhhoð@@hB¿1`™	hB¿H™`(hoð@A“ˆBÐ8(`Ñ(Fðnê ÍéÛà!hoð@Bž‘B¿1!`éhAø @0¨` hoð@AˆBô¿¬Ãä8 `¿ FðPê¹ñô
­IòŸAð˸8(`¿(FðBê hoð@AˆB?ô­8 `¿ Fð6ê
˜(ôŠ­ Iò¾A
@öÂb˜ ð¸Q)`ô®(Fð ê	˜üå¿VӰѸñ𬆛oð@BÓøäh‘B¿1`Ӹ䨸"`AFÓø„×÷eý(𬆁FØøoð@AˆBÐ8Èø¿@Fðîé˜ÐøäHF×÷€ý(ð¯†FhÝø(€oð@D B	ÐA)`¡BÐ((`¿(FðÔéÙø• BÐ8Éø¿HFðÈéšoð@AhˆB¿0`Ph™ÝøLˆBð†#“FOð
	™ZXFÍé¡™¡ëƒß÷ðøFPFÕ÷’ÿ-(F•ð³†Ûø oð@AÝø ŠBÐQËø¿XFð’é Í鐐˜"×ø°ÐøXFö÷Óù(ñ€ð/˜"Ðøè0Fö÷Çù(ñЁð#˜"ÐølXFö÷»ù(ñèÐ˜"ÐøXFö÷°ù(ñ$‚Aðà0F"Õøö÷¤ù(ñ	‚FÕøX×÷ÿ,F,F𢁹ñð‚ÙøÔø`‚lHF*ð‚G(ð‚Ùøoð@AˆBÐ8Éø¿HFð(éÔøX×÷Üþ(ð	‚€F@hÔø`‚l@F*ð‚G›F(ð‚Øøoð@AˆBÐ8ÈøÑ@Fðé›+ð‚XhÔøì×ø€‚lF*ð+‚G™F(ð,‚)ð@‚0FðTì(ðU‚F0hšoð@AˆBÐ80`Ñ0FðÜèšhh™ˆBð`‚ &™’‚¡ë€(FÍédß÷øF0FÕ÷±þ hoð@AˆBÐ8 `¿ Fðºèž¹ñðg‚(hoð@AˆBÐ8(`¿(Fðªè ððè(ðn‚	šFÀøoð@AhˆB¿0`"aðVê(ðv‚Öø`BFFð\é(ñсÖø˜HFBFðTé(ñˁž!FJF0FÖ÷ÿ(ðH†F0hoð@H@EÐ80`¿0Fðlè h@EÝø(€Ð8 `¿ Fð`èÙøoð@A>iˆBÐ8ÉøÑHFðRèÝøLæáOð
˜"Ðøè0Fö÷–ø(ñU‡
О.ð­€2h0Foð@AŠB¿P0`0F;â˜"Ðøt0Fö÷}ø(ñì€ð˜ž(ð#ƒÕøX×÷Öý(ð+ƒF@hÕø°‚l F*ð'ƒG›F(ð(ƒ hoð@AˆBÐ8 `Ñ F,Fðè›+ð,ƒÐHYhxDhBAð<ƒz€ñ<ƒh›Foð@AˆB¿0`›Fhh™ˆBðOƒ"$™(FÍéK¡ë‚2•Þ÷ÿF FÕ÷¿ýÛøoð@AˆBÐ8Ëø¿XFðÆï-ðUƒ˜oð@AhŠBÐQ`¿ð¸ï˜)Fðë(ðYƒF(hoð@AˆBÐ8(`𫁠F¬á¹ñðiƒÙøÔøt‚lHF*ðrƒG›ƒF(ðsƒÙøoð@AˆBÐ8ÉøÑHFð†ï›+ðtƒøhð®ë(𐃁F˜IF"ð6è(ðŠƒFÙøoð@AˆBÐ8Éø¿HFðdïÛø™ˆB𓃠&ÝøL™BÍéd¡ë€XFÞ÷—þF0FÕ÷9ý hoð@AˆBÐ8 `¿ FðBï>i-ðŸƒÛøoð@AˆBÐ8Ëø¿XFð2ïœUE¿ h…B@ð‘€
˜×ø°h(°ú€ð@	“à˜œž(ð<„ÔøX×÷Ïü(ðK„F@hÔø°‚l(F*ðH„G›F(ðI„(hoð@AˆBÐ8(`Ñ(Fðúî›+ðF„`h™Íø ˆBð_„%"˜ÍéS ë‚2 FÞ÷*þƒF(FÕ÷Ìü»ñðq„ hoð@BÝø BÐ8 `¿ FðÐî˜YFð4ê(ðt„Ûø oð@AFŠBÐQËø¿XFðºî(F¿àIò¤aàIò¥a	˜@öæb•Oð
ÝéSž˜
˜	“#“+F”4F˜OðÝøà8ᘅB?ôk¯(Fðï×ø°(ñۄ)hoð@B‘B	Ð9)`уF(Fð‚îXF×ø°H±%Foð@A%h(hˆBÑ ªF$àÚøoð@AUFˆBÑ à0(`µë
°ú€ð¿™	hBOêPѪFà¿lÌ™B÷Ð(FðÚîªF(ñ„(ôþ­˜"ÐølXFõ÷”þ(ñ0„ð4„œÔøp×÷òû(ðJ„F@hÔøh‚l(F*ðG„GF(ðH„(hoð@AˆBÐ8(`¿(Fðî˜"Ðøh FÖ÷Ÿü(ðJ„!hoð@E©BÐ9!`ÑF Fðî0F>ih©B?ôµ­9`¿ðþí®å(Fðúí FAhŠl™*Ñøìð…GF(ð…@F!Fðê(ð	…F hoð@AˆBÐ8 `Ñ FFðÖí"FHFFFð`è(ð…1hoð@EƒF©BÐ90F1`¿ðÂíØø¨BÐ8Èø¿@Fð¶í(FðRé(ðþ„ÛøÃl˜+Ðø€XFð…š˜GÝø@€(šÝéc"Ô˜oð@Eh©BÐ9`ÑðíÝécšÛøÍø@€ØF¨B¿0Ëø˜
˜	˜–“œþ÷­¾	˜Iòìq@öûb˜Oð	
0FžDF“›	“3F•Íø(°OðOð%•ƒF˜UFšFoð@ChžBÐs`mИàF	˜Íø\°óFÍø8 ”ž˜ÝøD9ñÐÙøoð@C˜BÐ8ÉøÑHFáFF’ð0íš!FÌFÝøL¸ñÐØøoð@C˜BÐ8ÈøÑ@FàFF’ðíš!FÄFÝø(€»ñÍøDÀÐÛøoð@C˜B
Ð8ËøÑXF‘Fðþì™"FªF->ô"®(hoð@C˜B>ô®8(`~ô®(F‘Fðèì™"Fþ÷¾ FFFÍéìðÞì2FÍø\°Íø@€!FžÝ鸘	˜Íø8 †çIò™!AáêH"™xDÑøP@kÖ÷Iû(ð™ƒF (F!"õ÷¦ÿ(hoð@AˆB@ðIò·!@ö£bÑFÍøP€þ÷Ľð6í(¹(FÛ÷aû(Að„„IòÉ!@ö§báð€í€F(~ô⨠–@ö§bIòË!OðOð%ÍéOðÍé
&
ÍéÍé
9çØøP-ðWƒ)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@FðZì  FÝø\°þ÷º¸ðâì(¹ FÛ÷
û(Að3„ Iòî!@ö¨b–þ÷_½ð(íF(~ôö¨Iòð!@ö¨bOð–ØàÙø@,>ôü¨!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HFðì ©Fþ÷߸ðžì(¹ FÛ÷Éú(Aðòƒ Iò1@öªbOðXâðâì€F(~ô© @öªbIò1²àðÖìF(~ô$©Iò1@öªbOð %
&OðÍéÍé
Íé«æØøP-ðµ‚)hoð@@Øø`B¿1)`1hB¿H0`Øøoð@AˆBÐ8Èø¿@Fð´ë °FÝø\°þ÷ð¸IòŸ!!à Iòs1@ö¬bþ÷<Oð	@öªbIò11á8(`Ñ(Fð–ëIò·!@ö£b ÑFÍøP€þ÷¨¼Iò¥! #Íé¨@ö¢b$
Oð
Íé
	““þ÷X¼ðì(¹ FÛ÷/ú(Að[ƒIò@1@ö«bþ÷.¹ðLìF(~ô´©IòB1@ö«bOð %
&OðÍéÍé
ÍéÝøL æð.ìF(~ô°© @ö«bIòE1OðOð&%ÍéOðÍé

ÍéêåÙøP-ð‚)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HFð
ë ±Fžþ÷{¹ðìëF(~ôIªIòá1@öµbþ÷¼Iòã1@öµb-à¦çH"™xDÑøX@kÖ÷qù(ðՁF  F!"õ÷Îý hoð@AˆBDÑIòó1@ö¶bþ÷â»ðºëF(~ô<ªIòAQàIòA@ö·b 

#Oð
Íé4$	“þ÷š»ËIyDhÊIÂhhyDðŽëIòmAOôlbþ÷Ż$ þ÷M½% þ÷n¾Oð	@ö«bIò^1 
Íé
â8 `Ñ FðŽêIòó1@ö¶bþ÷¥» Iò)A@ö¸bþ÷Ÿ»ðfëF(~ô
ªIòA@ö·bþ÷‘» IòA@ö·b¨çðTëF(~ôª @ö·bIòAOðOðWà #Íé4IòA@ö·b
Oð
$
	“åä @ö·bIòA<àð*ëF(~ôeªIò?A@ö¹bþ÷T» IòAA@ö¹bkçðëF(~ôvª IòDA@ö¹b
èá #Íé4IòFA
@ö¹bOð
$
Oð	ÄF	“©ä @ö¹bIòIAOð&%ÍéÍé

ÍéÝøD6älH"™xDÑø`@kÖ÷uø(ðá€!"FOðõ÷Óü hoð@AˆBÐ8 `Ñ FðØé Iò[A@öºb-à IòA@öÁb
•çIò»1@ö±bý÷‹¿ðªêF(~ôú«Iò|A@öÁbà @öÁbIò~A'àð˜ê€F(~ô*¬Iò‹A@öÂbOð •Oð
Íé
Íé&ÝøLþ÷:ð|ê€F(~ôj¬ @öÂbIò£AOðOðàðjêF(~ôt¬Iò¦A @öÂb
•Aà @öÂbIò¨AOð+F&%ÍéÍé

ÍéÝøDÀÿ÷¼ %ÝøLþ÷¼ %þ÷Œ¼ð:ê€F(~ô¬ IòÌA@öÓbðå½ðÔé(¹ FÚ÷ÿÿ(Að/ IòÎA@öÓb˜ 
%&OðÍéÝøLÝøDÀÿ÷û»öÜÁ
§øÿþðêF(~ô©¬˜IòÐA @öÓbÍé
%ÍéÓF&ÝøDÀÿ÷׻ IòæA@öÓb»àIòôA@öÔbð½Iò-aKáIòKqOôobJáðÐéF(ôùª	˜IòØq@öúb˜1à	˜IòÚq@öúb˜Oð	˜
˜”˜›œ	–ÿ÷a» ³F@öúb˜IòÝqUF˜˜
˜	˜žÿ÷£»	˜Iòêq@öûbØF•˜
˜˜žþ÷ʹšð4éÿ÷øºOð	@ö·bIòAàOð	@ö¹bIòLA 
 .Íé`OðOðOð
OðOðOðOðOðOð	Íéô	«ÿ÷!»IòþA@öÕbðû¼	˜IòQ@öÕb˜# ÍéOð

$Oð		OðOðÿ÷åº IòQ@öÕb	˜˜ Íé
Íé%&OðÝøDÀÿ÷»åh-ð2‡˜)h„hoð@@B¿1)`!hB¿H `˜oð@AhˆBЙ8`¿˜ð
è ÝøL	šÝø þ÷v¼ Iò'Q
@öÖb	˜˜ 4噈Bðo‚@FðHê(Fðü†Øøoð@AˆBÐ8Èø¿@FðÞï˜Ah
o¨G(Fðø†˜¨G(ðù†F˜¨G(Fð÷†˜¨G!õ÷Öø(ñlƒ˜oð@AhˆBЙ8`јð²ï ÍøÍéÝøLÝø(€Ýø þ÷¾Iò3a@öábOð
	˜˜˜
˜&˜þ÷¼¸õHõIxDõJyDhzDhðhè IòUq@öñbáçIò?a@öâbÚçíH"™Oð
xDÑød@kÕ÷øý(ðņ!"Fõ÷Xú hoð@AˆBÐ8 `Ñ Fð^ïIòUa	˜@öãb&˜˜
˜˜ÝøLÝø(€þ÷s¸Iòga@öåbãIòxQ@ö×bÙãIòjq@öòbšçIòEa@öâb“çIòqa@öæbúâðè(~ôô­ @öæbIòsa˜OðOð˜&%ã @öæbIòva˜&%˜˜
ð©½ðîï›F(~ôï­	˜Iòxa@öæb˜%&˜
˜ “ÝøLÝøDÀÝø°ÿ÷y¤H¥IxD¥JyDhzDhð¾ï	˜Iò{a@öæb˜Oð
˜Ýéc
˜ Žàð²ï™F(~ôԭ	˜FÝéÆIò|a@öæb˜Oð
˜“#
“cF˜œ	–uàŠH‹IxD‹JyDhzDhð„ï ÝéÐIò~a	˜@öæbOð
˜˜
à	˜Iòa@öæb˜Oð
˜
˜ÝéØœ	“#•“cFOð	´FÝøàÿ÷¹îh.ðͅ1hoð@@Õø€B¿11`ØøB¿HÈø(hoð@AˆBÐ8(`¿(FðVîEFÝé¢×ø€ þ÷{½	˜Iò–a@öæb˜Oð
˜
˜Ýéc˜œ	“#“3F•0à @öæbIòša˜Oð&˜%˜
˜	˜ÝøDÀÝø°ÿ÷ݸ	˜Iò¢a•@öæbÝéSOð
ž˜
˜	“#“+F”4F˜Oð	þ÷c¿Iò‚Q@öØb—â	˜Iò‡Q@öØb˜% &OðÍé
ÍéÝøDÀÿ÷¼¸ @öØbIòŠQÍé&%Íé
ðu¼Øø@,ð/…˜!hÐø€oð@@B¿1!`ØøB¿HÈø˜oð@AhˆBЙ8`¿˜ð°í ÝøL	šÝø þ÷f¼·¨øÿŠøÿ»e§øÿ=søÿ ºñ¦øÿá†øÿ Iò«Q@öÚb	˜˜ 
N娸 ÝøLÝø *ÑØø ñþ÷º*	ÛõH"õIxDyDhhðJîà*ÔñH*ñLxDñKòI|Dh{DyDh¿#Fð8îIò1Q @öÖb
	˜˜ ÿ÷¼™«FˆBð«ƒXFðšï(ð±„FÛøoð@AˆBÐ8Ëø¿XFð2ípho0F¨G(Fð¥„0F¨G(𢄁F0F¨G!ô÷1þ(ñǃ0hoð@AˆBÐ80`Ñ0Fðí ÍøÍéÝøLÝø(€>iÝø þ÷s»ÂHÂIxDÂJyDhzDhðÖíIòtq@ööbâIòuq@ööbLåðÒí›F(~ôج ”Iòwq	˜@ööb˜˜
“˜›œ	–ý��H«F­IxD­JyDhzDhð¦í @ööbIòzq˜UF& oâFðöèàFðÈüƒF(ÝøLÝø(€ž˜~ô,!˜«F
@ööb˜&›UF	˜‘Iò{q“þ÷‡¿ìh(F)F,ðöƒ!hoð@B†h‘B¿1!`1h‘B¿11`hoð@AŠBÐQ`¿ðxì5FÝøLÝø(€"žþ÷¼ @ööbIòq˜UF&˜˜
˜	˜Ýø°þ÷K¿Iò”q@ööbuâ IòUQ
@öÖb	˜#$˜Oð
 Oð	˜ Ýøàþ÷ھIòÀa@öèb	˜Oð
˜˜
˜˜ÿ÷Œºð훃F(~ô¬ @öèbIòÂa˜OðOð&%“˜
éàOHOIxDOJyDhzDhðäì	˜IòÅa@öèb˜Oð
˜
Ýé0ž	 œÍé0Fý÷μIòÆaJà	˜%IòÈa˜@öèbÝé6OðOð˜Oð

˜	–&˜œÍékþ÷l¾Ûø`.ð_ƒ1hoð@@Ûø€B¿11`ØøB¿HÈøÛøoð@AˆBÐ8Ëø¿XFðªë ÃFÝøLÝø(€Ýø þ÷E¼IòÝa	˜@öèbOð
˜Ýé6˜
˜	–&˜œÍéký÷j¼¿v·µqøÿ^·Q„øÿ¦øÿ’{øÿB·“£øÿp¢øÿâ¶3£øÿ#ƒøÿ^µ¯¡øÿŸøÿIòôQ@öÜb 	˜˜Oð
 &Íé
ÍéÝø(€ý÷{¼ @öÜbIòùQÃF&%Í鐐
˜	˜ÝøLÝø(€þ÷)¾ @öÜbIòüQOðOð&%Í鐐Íé
˜	˜ÝøDÀþ÷ܽÒø ºñð±‚˜ÚøÐø°oð@@B¿1ÊøÛøB¿HËø˜oð@AhˆBЙ8`¿˜ðöê#ÝøLÝø(€þ÷:¹ @öÝbIòa&%Íé
˜àúHúIxDúJyDhzDhð¶ëIò¬q@öøb 
	˜˜ÿ÷1»Iò­q@öøbÿ÷%»ðªë›F(~ô·«	˜Iò¯q@öøb˜˜
“Úà”åHåIxDåJyDhzDhð†ë #	˜Iò²q@öøb˜˜
“+F˜œ	–ý÷s»åh F-ð-‚)hoð@B„h‘B¿1)`!h‘B¿1!`hoð@AŠBÐQ`¿ðtêÝøL"Ýø(€ž›þ÷~» ”IòÅq	˜@öøb˜˜
˜˜›œ	–Ýø ý÷7» @öøbIòÉq˜UF&˜˜
˜	˜þ÷3½	˜Iòña@öéb˜&˜
˜˜ý÷Z»	˜Iò¦a@öæb˜Oð
ÝéS¶FÝø@À˜
˜	“#“+F”dF˜Oðþ÷±¼Iòüa@öêbÿ÷mº–H"™xDÑøl@kÕ÷Šø(ð؁!"Fô÷êü hoð@AˆB@ð¿€Iò.q	˜@öîbÿ÷•ºIòq@öëbÿ÷IºðÎêF(~ô¸«Iòq@öëb	˜˜˜
˜˜&(hoð@C˜B=ô÷ªþ÷ټ žIòq	˜@öëb˜ÝéS˜
˜	“+F”4F˜ý÷•º˜&@öèb˜Iòáa˜
˜	˜•%ªF-~ô¥¬ý÷źÛø ]FÝøLÝø(€*Ýø Ñéhý÷¿*•	ÛÄH"ÄIxDyDhhð`êà*ÔÀH*ÀLxDÀKÁI|Dh{DyDh¿#FðNê @öÚbIòµQ&%Í鐐
ÝøL˜	˜Ýø(€Ýø°þ÷F¼ #	˜IòÒQ@öÚb˜$ –&
Oð
Oð	““+F–ÝøÀþ÷׻8 `Ñ Fð0é	˜Iò.q@öîb˜&ÿ÷й Iò³!@ö£bþ÷޽ %þ÷¼% þ÷d½% þ÷	¾ Iòï1@ö¶bý÷(º IòWA@öºbÍéOð
&Íé
OðÍéÝøLý÷º %œÿ÷å¸IòKQÿ÷•»³SŸøÿ0žøÿ¢²óžøÿã~øÿ(iMOð	&}DàgM&Oð	}DàeM&}D˜oð@AhˆBЙ8`¿˜ðÀèô÷úH¹]H2F]I+FxDyDhhð”éž@öÖb˜Iò]Q	˜ÿ÷¸IòQaÿ÷I¹ &Ýé¢ý÷˿ Ýø8€$ÿ÷êº"$ÝøLFÝø(€žþ÷­¸ @öÚbIòÊQ&%Íé>å%à%0hoð@AˆBÐ80`¿0Fðvèô÷ÏùȱÝø€ @öÚbIòÚQOð)à &¼ä#Ýø@°Oð
iå%"ÝøLFæå2H3JxD3K3IzDh{DÝø€yDh¸ñ¿F*Fð&é @öÚbIòÚQOðÍé&%
˜	˜ÝøDÀÝøL¸ñ~ô«þ÷»Iò*q1æ IòmAOôlbOðý÷;¹Fü÷W¼€Fü��Fü÷!½€Fü÷S¾Ýé›Fý÷»A{øÿýœøÿ-{øÿ
®Hrøÿ¢¯áiøÿН}|øÿAžøÿ¾søÿD­ÿ›øÿ3zøÿtqøÿh)œ¿ÀhðP¿€µoFð0ì(¿ h!ð`€½ðµ¯-遰-틜°ƒFh%‰Foð@AF•ˆBÍéUF•¿00`èHxDÀjÐø´ÐøA	 ˆGF@òÍéHF"# G(–ð+‡oð@BhÍø8‘BÐK`“BÐ)`¿ð˜ï˜Oð
™Íøl Àj‘Ðø´ÐøA ˆGF@òÍé
@F"# G(ð	‡Fhoð@AˆB
Ð0(`˜hŠBÐQ`¿ðlï •Õøñퟔ�ñÀò†,i$¹ðìï(Aðÿ†ë‰Pøl.ðx²L(FÝøL "|DÔøôÚø<0˜G0ð܆Úø, ¨hÕéÒøx"Íø(°–”G(ۃF˜$Ÿ�EžOêÀ
˜)Fk0FGAì´îHñîúó̂˜VDD\EíÛ˜¹ñ¿Áh)ð¡‚žšÖøÓk"˜G0ð´†ÖøXE0hâh!Fð`è(ð²†Fhoð@AˆB¿0(`hhÖøx‚l(F*ðƐGÝéd(ðņ(hoð@AˆBÐ8(`¿(FðÜîòj˜ÐéÒøx"Gð:ï(ð¿†F Fð4ï(ðĆF ðï(ðƆ›Foð@BÓø¤h‘B¿1`Óø¤ñaÁðnè(ðƀF˜ÐøXehòh1Fðè(ðІFhoð@AˆB¿0(`™hhÑø4‚l(F*ðΆGF(ðφ(hoð@AˆBÐ8(`¿(Fð|î˜2FÐøh@FðDï(ñ`‚0hoð@AˆBÐ80`¿0Fðfîžphl-ð0€=HxDðœï(Bðg€0F!FBF¨GFðšï-ðX€•0hoð@JPEÐ80`¿0FðDî&– hPEÐ8 `¿ Fð8îØøoð@A–ˆBÐ8Èø¿@Fð*îhhœ‚l(FÔøH*ð€GƒF(ð€(hoð@AˆBÐ8(`¿(Fðî˜AhŠlÔø€*ð0€G‚F(ð1€Úø†k.¿qh)@ðǃIyDh
IÂhhyDðÐîðz½´ù¿¿˜ð?_‘øÿ`¨Žøÿðlî(Aðw…èHèJxDzDÐøpPk"Ô÷Wü(ð_…!"Fô÷·ø hoð@AˆBÐ8 `Ñ Fð¼í@ö—rIö& OðOðOð	Íé%˜(¿hoð@C™B@ðï€-œ¿(hoð@AˆB@ð(¿hoð@C™B@ðð€˜(¿hoð@C™B@ð(¿hoð@C™B@ðù€¼H1F¼KxD{DÔ÷=ü&-¿(hoð@AˆBcѺñ¿Úøoð@AˆBaÑ,¿ hoð@AˆBaÑ-¿(hoð@AˆBaѻñ¿Ûøoð@AˆB_ј
œ(¿hoð@AŠB^Ѹñ¿Øøoð@AˆB[ѹñ¿Ùøoð@AˆBZÑ˜(¿hoð@AŠBYÑ,¿ hoð@AˆBXѺñ¿Úøoð@AˆBVÑ-¿(hoð@AˆBWÑ0F°½ì‹°½èð½8(`¿(Fðí”ç8Êø¿PFðþì•ç8 `¿ Fðöì–ç8(`¿(Fððì–ç8Ëø¿XFðèì—çQ`¿ðâìšç8Èø¿@FðÚì›ç8Éø¿HFðÒìœçQ`¿ðÌìŸç8 `¿ FðÄìŸç8Êø¿PFð¼ì ç8(`¿(Fð¶ì ç9`ô
¯Fð®ì"Fç8(`ô
¯(FFð¤ì*Fç9`ô¯Fðšì*Fç9`ô
¯ÍøL€ØFÓFÊF‘FðŒìJFÑFÚFÃFÝøL€ýæ9`ô¯ÍøL€ØFÓFÊF±FFðxì2FNFÑFÚFÃFÝøL€ñæ7HžxDh6H®BxD?ÐðíƒFlÐø€¸ñ¿¨E_Ñ@h(õÑOð
OðOð	kàž¹ñoð@B0F¿PøŒ?Pø„?h‘B¿1`hØø0k“Bð!Ñø¬ *ð‘h)Áòƒ2hƒBð29øÑð÷º˜ðŒì(ð‡F ðdìž!(ð‡Ä`‘‘ºà@ö»rIö»& Oð
QæÊöÄÿF‰øÿv–øÿ¥`¥Øøoð@@B¿1ÈøØø ÚøB¿HÊø@Fð íF˜Ðø˜Ehâh!Fð>í(ðT„Fhoð@AˆB¿0(`•hh‚l˜*Ðø(FðR„GF(ðS„(hoð@AˆBÐ8(`¿(Fð¸ë™%`h•	hˆBðC„ ©B1ÍéV¡ë€ FÜ÷ëú-¿)hoð@B‘B@ð„!(‘ð$„ hoð@AˆBÐ8 `¿ FðŒë˜ðòë(ðI„F ðÊë(ðD„F˜Åé ºñÍé¿Úøoð@AˆB@ðüƒ¸ñž¿Øøoð@AˆB@ðúƒ¹ñ¿Ùøoð@AˆB@ðùƒÖøXE0hâh!Fð°ì(
•ðƒhoð@B‘B¿1`AhŠlÖø„*𠃐G€F(ð!ƒ˜oð@Bh‘BÐ9`¿ð,ë  ðnë(ðƒ)hoð@B‘B¿H(`˜Å`ðØì(ðƒƒF˜ÐøXUhêh)Fðjì(ðƒFhoð@AˆB¿0 ``h‚l˜*Ðø$ FðƒGF(ðƒ hoð@AˆBÐ8 `¿ Fðæê˜*FÐøhXFð°ë(ñ–€(hoð@AˆBÐ8(`¿(FðÒêØøœl-ð„JHxDðì(Að¨„@F!FZF¨GFðì.ð™„Øøoð@D BÐ8Èø¿@Fð¬ê˜%•h¡BÐ9`¿ð¢ê•Ûø BÐ8Ëø¿XFð”ê0h!‘ B¿00`êj0iÖé¡Òøx"GF˜ú÷4ûÝø(°F@0шFð
ëAF(AðŽ… FÍø –”	‘ðÒîœ#mlÔø%¨G0ð[„Ûø¨PÔø “Õø€IF@Fð’ì(ðo„F@hÐøˆ0+ðæ0F)FBF˜GF(@ðåðe¼ @öærIö!fOð
OðOðOð	ˆä¿3Šøÿ©ñð6í(ð·FñH!FxD
Ðø€@FBFð0ëF hoð@AˆBÐ8 `¿ Fðê-ðrhPF)FGF(hoð@AˆBÐ8(`¿(Fðê¹ñÍødðrÚøoð@AˆBÐ8Êø¿PFðîéÔH&ÛøxD–hBAð…Ûø`–.ð…1hoð@@Ûø@B¿11`!hB¿H `Ûøoð@A”ˆBÐ8Ëø¿XFðÂé £F©Bñ
Íéiªë€XFÜ÷úø.¿0hoð@AˆB@ðŠ‚Ùø$oð@A”ˆBÐ8Éø¿HFðœé˜”(ðф˜oð@Džh¡BÐ9`¿ðŒé˜h£B
ÐYoð@B‘B`Ð+`¿ð|éFEð5‚˜ÐøXEhâh!FðÒê(ð…Fhoð@AˆB¿0(`•hh‚l˜*Ðøx(Fð…GF(ð…(hoð@AˆBÐ8(`¿(FðLé ð’é(ð…ƒF0hoð@AˆB¿00`Ëø`ðúê(ð…F˜ÐøXUhêh)FðŒê(ðÿ„Fhoð@AˆB¿00`–ph‚l˜*Ðø(0Fðþ„G(ðÿ„0hoð@AˆBÐ80`¿0Fðé˜šÐøh HFðÎé(ñၘoð@Bh‘BÐ9`¿ððè ž`hl-ðL…RHxDð$ê(Aði… FYFJF¨GFð"ê-ðZ…• hoð@E¨BÐ8 `¿ FðÌèÛø¨BÐ8Ëø¿XFðÀèÙø$”¨BÐ8Éø¿HFð´è™Oð”h¨B
F¿0`Íøl°ðj+F‘™ÐøŒa š°GÝø@(•ð	…™@EÃFÐÉjú÷©ø(ð@†Ýøl° ð>é	lÍø h.¿FE@ðƒ@h(öÑOð
& áOð
@ö¼rÍød Iö×&ÿ÷²º0hoð@AˆB¿00`Ûø¨€˜ØøÐøŒSHF)Fðê(ðŠ‚F@hÐøˆ0{± FAFJF˜GF€¹ð…º¿ ` o†øÿ hoð@AˆB¿0 `”™OðÍøl€`h	hˆB@ð҇àh(ð͇hoð@A¥hŠB¿2`(hˆB¿0(` h•ˆBÐ8 `¿ Fðè",F˜Íé¨0 ë‚ FÛ÷LÿF˜(¿hoð@B‘B@𩀠¹ñð®€ hoð@E¨BÐ8 `¿ Fðìï –Ùø¨BÐ8Éø¿HFðÞðþêFðëÝø,°,ž	Û˜À
˜ñ 	ñ˜2FÍé	@F+FÍé«ðì˜<‚Dñјðþê˜"Ðø,(FÓ÷6þ)hoð@B‘BÐ9)`ÑF(Fð¢ï F(žðùhoð@HAEÐ9`¿ð’ï0h²FOð	Oð@E¿00` Oðœÿ÷	ºH(`¿(Fðzï˜!(‘ôܫIö£Tð8¸8Êø¿PFðhïÿ÷û»8Èø¿@Fð`ïÿ÷ý»8Éøô¬HFðVïÿ÷ý»9`¿ðNï ¹ñôR¯Iöƒdð„¹˜™šÀjÐøŒ1 ˜G(ð҄ƒF
˜žÍøh°h£EÐñjXFù÷Gÿ(ðç„
˜!$‘Ðø€ á80`¿0Fðïnå Oô|bIö96OðÍé%Ýø hoð@AˆBÐ8 `Ñ FFðï"FOðOð
ÿ÷M¹1hoð@@B¿11`Öø ÚøB¿HÊø0Fðè˜Ðø˜Ehâh!Fð>è(ðlƒ€Fhoð@AˆB¿0ÈøÍød€Øø‚l˜*Ðø@FðhƒGF(ðiƒØøoð@AˆBÐ8Èø¿@Fð²îhh$™”ˆBðcƒ ™BÍéI¡ë€(FÛ÷çý,¿!hoð@B‘B@ðcƒ!(‘ðjƒ˜oð@Bh‘BÐ9`¿ðˆî ðÎîOð(ðdƒF˜à`oð@AÙøÍøl€ˆBÐ8Éø¿HFðnî PFÒ÷Tü0FÒ÷Qü˜Ò÷NüÛøžÝø ‚lXFÖø€*ðƒG(ðƒ!F"ðï(ð)ƒ˜oð@Bh‘BÐ9`¿ð>îÚI"˜yD’	hˆBÐ×JzDhB¿
šhBÐð´î(ñ{ƒF˜àA±úñM	hoð@B‘BÐ9`¿ðî -Aðsƒ FœÛøÖø€‚lXF*ðOG™(”Íø@€ðJFðdî(ðHF ð<î(ðEÅ`F˜!Fðzè(F
ð>˜oð@Eh©BÐ9`¿ðØí&– h¨BÐ8 `¿ FðÎí˜–ÐøXUhêh)Fð$ï(ð"Fhoð@AˆB¿0 `”™`h
Ñø„‚l F*ð!GF(ð" hoð@AˆBÐ8 `¿ Fðží ðâí(ðF(hoð@AˆB¿0(`õ`ðLï(ð
˜ÐøXUhêh)Fðàî(ðFhoð@AˆB¿0 ``h‚l˜*Ðø$ FðGF(ð hoð@AˆBÐ8 `¿ FðZí™*F˜Ñøhð$î(ñ—€(hoð@AˆBÐ8(`¿(FðFíÙøœl-ð3\HxDðzî(AðMHF1F"F¨GFðxî-ð>•Ùøoð@D BÐ8Éø¿HFð í0hOðÍød€ BÐ80`¿0Fðí˜Íøh€h¡BÐ9`¿ðí ž)h¡B¿1)`Ûø©h	‘‚lXFÖøœ*ðø€GF(ðù€ Fó÷¾øF0Ñðtí(Aðxƒ hoð@A•ˆBÐ8 `¿ FðÖì
˜Öø ƒÐø¨@ AFfh0Fðï(ðè€F@hÐøˆ0³±(F!F2F˜GF¸¹ðâ¸Oô}bIöqF Oð
Oð%Ýøþ÷þ¾(hoð@AˆB¿0(`
˜Ðø¨@˜fhÐøŒƒ0FAFðÐî(•ðǀAhÑøˆ0k±!F2F˜G€¹ðŸ¿Ƙ¾˜øÿhoð@B‘B¿1`Ah$š‘B@ð¸‡Æh–.𳇁hoð@@2h‚B¿22`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðVì"˜ªë‚ÍédÛ÷”û.F¿0hoð@AˆB@ð ,ð˜oð@Eh©BÐ9`¿ð4ì&– h¨BÐ8 `¿ Fð*ì–ðfžœ(Àò¦€
˜%OðOð	ñ
ñ ‘àž	ñ	˜œ°DEð‘€Ûé&Ñø˜Ðø˜Ðé#h	™–ëÀëÈÍ阐PFðLèÛøÛø(ñËøÖÛ àÓø!Óø˜b2DÃø˜"	hJi2JaÛø0ˆBÄÚë€Qø˜/Óh3Ó`hšh*äГøœb>±Óé¥ÉiIiDÃø˜äç*њiÓø˜`²B#Ú2ša	hÑø!Ñø˜25à*ÓÔhë‚^iÓø”@¦B"Û]a*hë‚Óø˜bÔø”A¦ëÃø˜b¢ñFæܹça
hSi3Sa	hÑø!Ñø˜1Ñø˜bÒ2DÁø˜"¨ç6^a	hë‚Ñø˜2Òø!DÁø˜"›ç˜ð¾î˜"Ðø,(FÓ÷öù)hoð@B‘BÐ9)`ÑF(Fðbë F(Ýéið´‡hoð@HAEÐ9`¿ðRë0h²F@E¿00` Oðœþ÷ν80`¿0Fð>ë ,ôú®IöÄDðs¿H `¿ Fð0ë˜!(‘ô–¬IöŠ4ðſÑø€BÐ)ùÑìIyD	hˆB@ðéÖøXU0hêh)Fðrì(ðt…Fhoð@AˆB¿0 `”`hÖøP‚l F*ðt…GF(ðu… hoð@AˆBÐ8 `¿ FðîêØøÖøh‚l@F*ðf…GOð
(ðg…ÌHihxDÍøh hBðb… ™‚Íé¡ñl‘©ñ«ë€(FÛ÷úF˜(¿hoð@B‘B@ð&˜&oð@B–h‘BÐ9`¿ð®ê,–ð\…(hoð@AžˆBÐ8(`¿(Fðžê­HxDÐøLEЫHxDh„BЪHxDh„BÐ Fðë(ÕIö¯@ö©v%ð¼¤ë	°ú€ð@	!hoð@B‘BÐ9!`ÑF Fðpê(F(ð<ØøÖøh‚l@F*ð[…GF(ð\…H"xDh Fðë(ð^…F hoð@AˆBÐ8 `¿ FðHêMEЅHxDh…BЄHxDh…B
Ð(FðÂê(
Õ@öªrIöÂð缥ë	°ú€ð@	)hoð@B‘BÐ9)`ÑF(Fð ê F(ðì€ØøÖø‚l@F*ð4…GFOð
(ð5…Íøl `h™ˆBÑàh1hoð@A¥hŠB¿2`(hˆB¿0(` hˆBÐ8 `¿ FðîéOð
,F˜Oð«ëŠÍé FRFÛ÷%ùF˜(¿hoð@B‘B@ðH-Íøl€ðM hoð@AžˆBÐ8 `¿ FðÄéÖø (F"Oð
ð|ê(ðç„F(hoð@AˆBÐ8(`¿(Fð®éLEÐ:HxDh„BÐ8HxDh„BÐ Fð&ê(ÕIöë@ö«v%0ã9`¿ðéÓæ¤ë	°ú€ð@	!hoð@B‘BÐ9!`ÑF Fð~é(F(JÐ ðÀé(ð…FÖøoð@Bh‘Bš¿1`ÖøIà`FyD	hŠB¿Öø¸hoð@B‘B¿1`iJñª€OöÿsÁó‚Àò)¿Oöÿs)¿ÿ#œ਒D’Š‘‚‘d‘à‘ސ¨Š
 ðvé(ð‹FÖøoð@Bh‘Bš¿1`ÖøîIà`FyD	hŠB¿Öø¸hoð@B‘B¿1`iJ
ÔOöÿsÁó‚Àò)¿Oöÿs)¿ÿ#à#h5F aÖøˆoð@Fh²B¿2`Õøˆñ`a F!ðâø(ðI€F hoð@AˆBÐ8 `¿ FðØèÌH©"1xDOð
ÈòÍøX€@kÍøT Û÷
ø(ð !"Fò÷¯û hoð@AˆBÐ8 `Ñ Fð´è@ö³rIöQ& Oðþ÷ùº#h5F aÖøoð@Fh²B¿2`ÕøñÒ`a F!ðø(®Ñ@ö¬rIö&šã9`¿ðˆè-Íøl€ô³®@ö«rIöå‹ã @öŒrIöàOð
Ãà OôybIöà@ö—rIö"þ÷¯º@öœrIö8à@ö”rIöþþ÷¤º"ÿ÷I¸@ö•rIö
þ÷›º@ö·rIö&Oð
þ÷“ºðÚè(@ðü† F×÷ÿ(@ðà‡@öºrIöˆ&þ÷-¼ðÈè(@ðñ† F×÷òþ(@ð҇@öærIöfâðéÝéd(~ô;©@öºrIöŠ&hàðé€F(~ô߬@öærIöføá@ö»rIö•&þ÷ý» @öærIöfíá@ö»rIö—&Jà@öærIöfáá@öºrIö¡&@àð‚è(¹(F×÷®þ(@ð“‡@öærIöfÎá@ö»rIö´&þ÷ӻðÆèF(~ôé¬ @öærIöfOðOð	ââð\è(¹0F×÷‡þ(@ðo‡@ö»rIö¶&þ÷±»ð¤èF(~ô1©@ö»rIö¸& Oð
OðOðOð	Íéþ÷ø¹@ö³rIöM&îæ@ö²rIö+&›â @ö²rIö>&Oð
OðOðOð	Íé%Fþ÷۹ðè(@ðH† F×÷?þ(@ð)‡IöŒTž?àð^èF(~ô­«IöŽT5àåhÍø$°ËF-•ð/†)hoð@@ÔøB¿1)`ÙøB¿HÉø hoð@AÍøhˆBÐ8 `¿ FðHï LFÙFžÝø$°þ÷‘»t޾åIö§TàIö©T˜(¿hoð@B‘B@ð܀˜%•(¿hoð@B‘B@ð׀˜•(¿hoð@B‘B@ðӀ˜•(¿hoð@B‘B@ðπòH!FòK@öârxD•{DÒ÷Ëý©ª«XFÓ÷[ø(ñ‰€Íø$°éHqhxDhB@ð“…0hoð@AˆB¿00`–˜ðPï(ð´†F ð*ï(ðˆ…FÄ`0F)Fðhé(
ð‡…0hoð@D BÐ80`¿0FðÊî(h!‘ BÐ8(`¿(Fð¾î˜(¿hoð@B‘B@ðr˜$”(¿hoð@B‘B@ðm˜”(¿hoð@B‘B@ði 	˜lhÁø€(¿hoð@B‘B@ð`ºñ¿Úøoð@AˆB@ðg¹ñ¿Ùø oð@AŠBÐQHFÉøÑðxîž
þ÷»IöÑP@öãv$Ûø@QFBFKFÓ÷gø 2Fž ,OðOð	Íé~ôK¯Oð
Oð©æ9`¿ðNîç9`¿ðHî"ç9`¿ðBî&ç9`¿ð<î*ç@F!FZFð†ïF(~ôx«à0F!FBFð|ïF(}ôد@öºrIöÅ&þ÷ºð®î(ðé„@öærIö#f Oð
OðOðOð	þ÷\¸@öërIöZf&àðêîƒF(}ôâ¯@ö¼rIöÒ&þ÷ê¹ð†î(ðʄOð
@öºrÍø` IöÅ&þ÷0¸aHIFxDhhð2é@öírIömf Ýø Äçð¾î‚F(}ôϯ@ö¼rIöÕ&þ÷¾¹TH)FxDhhðé Iöod0hoð@AˆBÐA1`Ñ0Fð¶í @öírOðÝø OðOð	%&Fý÷÷¿ ²F@öírIöÏf‡çð*î(@ðx„(F×÷Sü(@ðA…@ö©rIö‘‹àðpîF(ô‹ª@ö©rIö“€àðfîOð
(ô™ª@ö©rIö–)àèh(ðY„h‚F¬hoð@@B¿1Êø!hB¿H `(hoð@AˆBÐ8(`¿(FðTí %Fžÿ÷{º@ö©rIö«Oð
 Oð–å9`¿ð>í‡æ9`¿ð8íŒæ9`¿ð2íæ9`¿ð,í™æ¿dløÿ’yøÿlŠˆ·8Êø¿PFðíæ @ößrIö`Và @ößrIöbV•þ÷ý¸ðîíF(ô¤ª@öªrIö¾Oð
 Oðý÷C¿@öªrIöÀ OðOð	Íé%þ÷۽ ²F@öêrIöPfËæðÆíFOð
(ô˪@ö«rIöÑÕç @ö«rIöéOðå þ÷»@ö¼rIöí&þ÷³¸& þ÷ýº&"ÿ÷c¸ðžíþ÷®¾@öÏrIöIF
à@öÏrIöKFà@öÏrIöMFà@öÏrIöRF ÷áð.í(@ð”ƒ(F×÷Wû(@ðI„Oô}bIö`Fþ÷ؿðtíF(~ôޮOô}bIöbFþ÷˿Oô}bIöeFþ÷ſOô}bIöjFþ÷¿¿ðí(¹(F×÷.û(@ð$„Oô}bIölFþ÷°¿ðLíF(~ôù® Oô}bIönFþ÷G½@ö¬rOôFÿ÷ »ðÞì(@ðOƒ F×÷û(@ð„Oô|bIö(6âð&íF(~ôâªOô|bIö*6õáOô|bIö-6àOô|bIö26àð¸ì(@ð2ƒ(F×÷âú(@ðރOô|bIö46	àðí(~ô«Oô|bIö66 þ÷÷¼HF1F"FðVíF(~ôծOô}bIösFþ÷F¿ðâìF(~ô¯@öÔrIö F‰âð~ì(ðƒOð
 Íø` Oô}bIösFþ÷-¿ÖHAFxDhhð(ï @öÕrIö®FÝø þ÷¿ÏHAFxDhhðï Iö°D˜oð@AhˆBЙ8`јð¶ë @öÕrOðÝø %Ýø&Fý÷û½ ²F@öÕrIö+VOðý÷ï½ FYFJFðèì(~ô½ªOô|bIö;6~ç°HEò:!°KOôCrxD{DÒ÷JúÍøl°@öÂrIöV66áðì(ð˜‚! Oô|b‘Iö;6þ÷Z¼ðüë(@𒂠F×÷&ú(@ð%ƒIös4OðCàðDìF(~ô—¬Iöu49àð:ì(~ôü¬@öÊrIöå6žàìh”,ðs‚!hoð@@Õø€B¿1!`ØøB¿HÈø(hoð@AÍøh€ˆBÐ8(`¿(Fð&ë EFÝø@þ÷v¼@öÊrIöç6qàIöŽ4@FÑ÷ù˜%•Ñ÷ýø˜•Ñ÷ùø˜•Ñ÷õøpH!FpK@öÅrxD•{DÒ÷Åù	˜©ª«Ò÷Uü(ÔiH™xDIhhB@ðށ˜oð@AhˆBÑœ%àIö³8@öÆt	˜QF›2FlÒ÷ÝüÝø FFOð
"FOð
ý÷#½œ0 `oð@AˆBЙ8`¿˜ðÂê˜Ñ÷ªø˜•Ñ÷¦ø˜•Ñ÷¢ø	˜QF›2FlÒ÷°üþ÷K¼@öÊrIöé6 ”Oð
Oð
þ÷ð½ ðäê(ðˁ™oð@CÑøÈ
hšBÐP`™˜ÑøÈ3JÁ`zD`hh°B@𺁠hoð@AˆB¿0 ` F”iJYÔOöÿyÁó‚Àò	)¿Oöÿy)¿Oðÿ	Là#HEò!"K@ò	2xD{DÒ÷#ù !@ö¾r
˜Iö6‘Oð
Oðh à@öÂrIöX6OðOð
Öà”@ö¾rIö6 Oð
OðOðÍéþ÷‚½¿ôƒ҃jRøÿ’_øÿXdøÿ†qøÿf‚´’jøÿD]øÿOð	™oð@BÐø€a˜Ðø8h‘B¿1`˜Ðø8™Ha™ÛøÑø€‚lXF*ðFGF(ðGhh°B@ðH)hoð@@.FB¿H(`•oð@AˆBÐ8(`¿(Fðàé 0iAÔOöÿsÀó‚Àò(¿Oöÿs(¿ÿ#KE˜¿KFàKF™°hŽaoð@F™@DÑø(
h²B¿2
`™Ñø(šÑañD˜!ð¬ù(ðF˜oð@Bh‘BÐ9`¿ð éÈH"!’xDÍé"QF@kÈò•Ú÷×ø(ð÷€(h°BÐ8(`¿(Fð„é˜!"‘ñ÷nü˜h±BÐ9`¿ðvéOð
@öËrÍøl Iö5F” Äæ@öÔrIö¢F ªFþ÷±¼0Fðöë(@ð!IöÝP&áIöáP@öävÝø$°ÿ÷àºIöæPá@öºrIöˆ&ÿ÷õ¸! @öær‘Iöfÿ÷%» ÿ÷»¹% ÿ÷칔H•IxDyDhhðéÿ÷
»„H…IxDyDhhðéÿ÷,»Oð
@ö©rÍøl Iö‘ÿ÷¼ ÿ÷;˜ð¦ë(@ðä€Iö¿8@öÇt"æ! Oô}b‘Iö`Fþ÷I¼! Oô|b‘Iö(6¶æ! Oô|b‘Iö46þ÷չnHnIxDyDhhðÊèõäbHcIxDyDhhðÀè^åOðIös4Íød€¶å$ ¨å@öÌrIöô6æXIyD	hˆB?ÑÉj FˆG(ôC®@öÌrIöü6
æðžéF(ô¹®@öÍrIöFæLIyD	hˆB0ÑÉj(FˆGF;@öÍrIöFñå@öÌrIö%Fìå @öËrIö0F”Oð
Oð
þ÷ڻ@ö¼rIö×&ý÷v¼7IyD	hˆBºÐ˜Ai Fð‚ì(¹Ðûå2IyD	hˆBÉИAi(FðtìF(ÆÐ(hoð@AˆBô{®æžFý÷g¹ž
ý÷½Fý÷V½Fý÷½¹žFý÷|¼žFþ÷D½Fþ÷ºFþ÷кžFý÷۾Fý÷¿Ýø@€Fþ÷i¹F˜ðœè(ôL©IößP@öäv$Ýø$°ÿ÷º¹F˜hoð@AˆBôW­\å¬~Oøÿ~pNøÿ~,~Ì}~P×.~‚NøÿÀ~Oøÿðµ¯-郰
FFFFFðXì(tÐ$¶õ€?8¿$i¶õ€8¿$¤ñ
,¿Oð
‘ÔÁi‘-Ú°½èð½ñQX¿ñ“-òېoð@	ñ	 ú
ø&Ùø Òø°»ñ&Шë°B+ÛiÔÑiÀó‚ BИ1F#Íø°ðìàñCX¿ñÀó‚ BíÑšú
ðDú
òðBì^D	ñ	=Íј°½èð½HIxDyDhhðtï˜oð@AhŠBÐQ`¿ð‚ï °½èð½¨{ðhøÿðµ¯-é›°‹F¾h	hF “Íé’Foð@@B¿1Ëø1h"B¿H0`ÃM0F–}DÕøð÷¤ÿ(ñ…ÐÕø¬0F"ð÷šÿ(ñ<€1hoð@B‘BÑ
à 1hoð@B‘BÐ91`ÑF0Fð4ï F!(‘@𪅕ðäïl«IyD	h‘h.¿ŽBÑ@h(÷Ñ &Oðà1hoð@@B¿11`rhhB¿H`0F’ð>è€F˜Ðø˜Uhêh)Fð^è(ð›…Fhoð@AˆB¿0 `”`h‚l˜*Ðø Fð†GF(ð† hoð@AÍø ÙFˆBÐ8 `¿ FðÔîHOðihxDÍød°hBðÿ… ©B1‘¡ë€(FÍéºÙ÷þ»ñ¿Ûøoð@B‘B@ð́!(‘ðՁ(hoð@DËF BÐ8(`¿(Fð î˜%•h¡BÐ9`¿ð–(¿hoð@AŠB@ð¸.¿0hoð@AˆB@𶁸ñ¿Øøoð@AˆB@ð³ÝøL€PF"Oð	Øø¤ð0ï(ðɅFMHxDhMH´BxD¿˜h„BѠ°ú€ð@	à˜„B÷Ð FðÜî(ñ‹‡!hoð@B‘BÐ9!`ÑF FðDî(F(@ð´…Oðÿ0oðAðré(ð΅FPF)F"ððî(ðʅF(hoð@AˆBÐ8(`¿(Fð î ´B¿˜h„BѠ°ú€ð@	à˜„B÷Ð Fð–î(ñJ‡!hoð@B‘BÐ9!`ÑF Fðþí(F!(‘@ðœ…PF÷÷§þÍé	@0Ñð~î(@ðJ‡
–ð îl™Ðø¹ñ¿‰EÑ@h(õÑ Oð	Oð
 àÎɐz,z"yyÙøoð@@B¿1ÉøÙø ’FhB¿H™`HFðìî‚FØøXUØøêh)Fðï(ðŸ…Fhoð@AˆB¿0 `”`hØø„‚l F*𝅐G(ðž…!hoð@B‘BÐ9!`ÑF Fð†í(FAh$š”‘Bð‘…"™ÍéK¡ë‚2Ù÷»üF˜–(¿hoð@B‘B@𬀠.ð±€˜oð@Dh¡BÐ9`¿ðZí Ûø BÐ8Ëø¿XFðNíphØø ‚l0F*ðy…GÝø0°(ðz…Øø¨ˆBЕKBh{DhšB@ð/†h!ð)ÑÁhL¿$à$à$hoð@B‘BÐ9`¿ðí –±$ýáphØøœ‚l0F*ðr†GF(ðs†Øø¤ F"ðÂí(ðq†F hoð@AˆBÐ8 `¿ Fðôì 
˜†B¿˜h†B=Ñ
˜0°ú€ð@	@àHËø¿XFðÞì˜!(‘ô+®Jò1ËF~ãQ`¿ðÎìAæ80`¿0FðÈìBæ8Èø¿@FðÀìDæ9`¿ðºì .ôO¯žAò‚Jòð+¿˜†B¾Ð0Fð.í(ñ‡1hoð@B‘BÐ91`ðù‚!(‘ð¤€žÖøXU0hêh)Fðîí(ðކFhoð@AˆB¿0 `”`hÖøP‚l F*𓆐GF(ð”† hoð@AˆBÐ8 `¿ Fðhì›Xh‚l˜*ÐøhF퟈�GF(ðƒ†ph%™•ˆBð† ™‚ÍéTÉk‘™¡ë€0FÙ÷Šû-¿(hoð@AˆB@𥂠h%oð@A•ˆBÐ8 `¿ Fð.ìž•.ð†˜oð@Bh‘BÐ9`¿ðì 
˜†B¿˜h†BÑ
˜0°ú€ð@	à¿èv˜†BóÐ0FðŽì(ñ{†1hoð@B‘BÐ91`ÑF0Fðøë F!(‘ðՀÝøL€ØøXÒ÷£ù(ð\…F@hØøtž‚l F*ðZ…GƒF(ð[… hoð@AÍø ˆBÐ8 `¿ FðÊëØø¤0F"ð„ì(ðK…‚FOðÿ0oðAðòî(ðJ…F0F!F"ðpì(ðF…F hoð@AˆBÐ8 `¿ Fð¢ëPF)Fðè(ð?…FÚøoð@F°BÐ8Êø¿PFðŒë(h!‘°BÐ8(`¿(Fð€ëÛø™Ýø ˆBð2…% ™BÍéT¡ë€XFÙ÷³úF(FÐ÷Tù hoð@AˆBÐ8 `¿ Fð^ë .ð7…Ûøoð@AˆBÐ8Ëø¿XFðLë ž
˜†B¿˜h†BÑ
˜Ýø0°0°ú€ðD	à˜†BôÐ0Fð¼ëÝø0°F(ñ›…0hoð@AˆBÐ80`¿0Fð"ë ,¿$à$ÝøL€ž»ñ¿Ûøoð@AˆB@ðQ¹ñ¿Ùøoð@AˆB@ðOºñ¿Úøoð@AˆB@ðM,@ð†ØøXUØøêh)FðPì(ð+ƒFhoð@AˆB¿0 `”`hØøˆ‚l F*ð-ƒG‚F(ð.ƒ hoð@AˆBÐ8 `¿ FðÊê ðë(ð#ƒF0hoð@AˆB¿00`æ`ðxì(ð ƒØøXeFØøòh1Fðì(𠃁Fhoð@AˆB¿0Éø™ÙøÑø$‚lHF*ðƒGF(ðƒÙøoð@AˆBÐ8Éø¿HFð‚ê˜2FÐøh(FðLë(ñ®€0hoð@AˆBÐ80`¿0FðnêÚøl.ðyƒåHxDð¤ë(@ð’ƒPF!F*F°GƒFð¢ë»ñð‚ƒÍød°Úøoð@IHEÐ8Êø¿PFðFê h&–HEÐ8 `¿ Fð<ê(hoð@DÝø, B–Ð8(`¿(Fð.ê˜!‘h¢BœÐQ`¿ð"êÛøÔøœ‚lXF*ð7ƒGF(ð8ƒ Fð;ÿ€F0Ñðšê(@ði„ hoð@AˆBÐ8 `¿ Fðüé ˜ƒEð†˜k(ðGƒÛø ‚Bð†Òø¬0+ðՃ™h)Û3h†Bð†39øѠK¡I{DÒhyDhÃh0hð²êOð	Aò”
Jòy$ðt¾Oð	Aò‘
Jò[$%OðÝø<°ðü¹8Ëø¿XFð¶é¦æ8Éø¿HFð®é¨æ8Êø¿PFð¦é,?ô¬®ðȼF0Fðžé F!(‘ô­¤å8(`¿(FðéSåIöàtAòq
Oð%Oð	ðŹvH"ÕøtOðxD@kÑ÷ø(ðŅ!"Fð÷aü hoð@AˆBÐ8 `¿ FðféÍøh€IöøtAòr
Ñáðîé(¹(FÖ÷ø(AðP†Jò Ýø<˜%•(¿hoð@B‘B@ð!‚Ùø<•(ðîUM@h}DékˆBÐJhRmSñ]…Ch[m³ñÿ?ؿ²ñÿ?@óð2ëÝø<(ðӁHH!FHKAòuxD{DÐ÷áÿ©ª«HFÑ÷qú(ñālkÁF™`hÑøxˆl-ð>…<HxDðDê(AðG… FAF"¨GFðBê,ð8… F!"%ð÷áû hoð@AÈFˆBÐ8 `¿ FðæèAòw
Jòb•Ýø<’áðÄéF(ôô© oð@A hˆB@ð‚JòÝø<xçÕø°Íød°»ñð…Ûøoð@@¬hB¿1Ëø!hB¿H `(hoð@A”ˆBÐ8(`¿(Fð¦è %Fÿ÷۹Aòy
Jò}ðG½mYøÿ$pGZøÿÇ’Æo3øÿ¾]øÿ¯VøÿíH"Øø|xD@kÐ÷ÿ(ðׄ!"Fð÷kû hoð@AˆBÐ8 `¿ FðpèÍødAòz
Jòð½Aò{
JòŸð½Aò{
Jò¡ð½Oðÿ0oðAðŽë(ð¯„FØøl)Fð<ë(ð«„F(hoð@AˆBÐ8(`¿(Fð<èÆH"™ÈòxDÍé”@kØ÷wÿ(ðš„F hoð@F°BÐ8 `¿ Fð"è(F!"Íødð÷
û(h°BÐ8(`¿(FðèÍø`Aò|
Jò¸ð³¼ð˜è(Aðm„(FÕ÷Áþ(Aðú„Jòíàðàè(ôbªJòïAò‚vâÄh”,ð[„"hoð@A…hŠB¿2"`*hŠB¿Q)`hoð@B•‘BÐ9`¿ðÐï"(Fÿ÷Oºð²èÝø0°(ô†ªJòÍàðPè(Að2„(FÕ÷yþ(Aðµ„Oð	Aò‘
JòJ$àð”è‚F(ôҬOð	Aò‘
JòL$àOð	Aò‘
JòO$%Oð³FðӿJòT$Aò‘
Oð³F%Oð	ðԿðè(¹0FÕ÷Bþ(Að‚„Oð	Aò‘
JòV$³åð^èF(ôâ¬%Aò‘
JòX$§åBmð€B?ô;®‘øW Rõ6®Ðø¬ *ð؃h(Û2h‹B?ô0®28øÑAòu
àAòv
JòRÙø@h`(¿hoð@B‘B%Ñ-¿(hoð@AˆB$Ѹñ¿Øøoð@AˆBÐ8ÈøÑ@Fð(ïOð	Íã9`¿ð ïÙø<•(ôڭÆç9`¿ðïÓç8(`¿(FðïÓçOð	Aòq
Iöæt­ã+K{DhšBðõ€"Fðºï÷÷€ù(AñûƒJòAòƒzáPF!F*Fð:èƒF(ô‘¬Oð	àðÈïF(ôȬOð	Aò’
Jòl$|ãðbï(ðSƒOð	ÍødAò‘
Jò]$åAòy
Jò~jãAò{
Jò£dã8 `Ýø<¿ Fð´îJò_å(ņÄ.kŽHIxDyDhhðŠîÎäAò}
JòÊEãð‚ïF(ô©Jò2Aò…áJò4äàJòŒžAòˆáðjïƒF(ô¥ªJòސAòˆÿàJò‘Ýø AòˆöàJò’Ýø Jà Ýø AòˆJò”Ýø0°êà oð@A(hˆBÐ8(`¿(FðLîÝø Jò–-àÛøP-?ôɪ)hoð@@Ûø`B¿1)`1hB¿H0`Ûøoð@A–ˆBÐ8Ëø¿XFð&î ³Fÿ÷«ºÝøL€Jò­ž AòˆÝø0°¯àF)ð.‚Ñø€BøÑ.â·î$í´î@ñîú¿$ÿ÷ָðŠî(Að¼‚(FÕ÷´ü(AðƒJò=ÝøL€Aò…žpàðÌîF(ôl©Jò?5àðÂîF(ô}©JòB+àõhÐF•-ð•‚)hoð@@Öø B¿1)`ÚøB¿HÊø0hoð@AÍød ˆBÐ80`¿0Fð°í VFÝø0°ÂFÿ÷X¹Jò_Aò…ÝøL€ž*àOð	Aò’
Jòn$@âAò…Jò6
àAòˆJò±à¿°iòøÿAò…JòkÝø<°.’¿0hoð@AˆB@ðˆÝøL€^FÝø0°œ T± hoð@AˆBÐ8 `¿ Fðdí ˜(¿hoð@B‘B@ð&˜$”(¿hoð@B‘B@ð!²I˜yD”ÀkIk(ðã€@hˆBÐJhRmSñACh[m³ñÿ?ؿ²ñÿ?@ó±€ð:ïÝøL€(Ýø0°ðɀ¢H¢KÝé!xD{DÐ÷éû˜©ª«Ð÷yþ(ñ²€˜(¿hoð@B‘B@ðø€˜$”(¿hoð@B‘B@ð󀘔(¿hoð@B‘B@ðlhÁø!‘(¿hoð@B‘B@ð总ñ¿Ûøoð@AˆB@ð›ñ¿Úøoð@AˆB@ðà€Oðÿ0oðA³Fð
è(ðրFØø)Fð¸ï(ðԀF(hoð@AˆBÐ8(`¿(Fð¸ìjH"™Oð	xDÈò”@kÍøPØ÷ðû(ð¾€F hoð@F°BÐ8 `¿ Fðšì(F!"Íø`ï÷ƒÿ(h°BÐ8(`¿(FðŠìÍø\Aò
Jò8$,áBmð€B?ôJ¯‘øW RõE¯Ðø¬ *𒀐h(Û2h‹B?ôA¯28øÑàAòАJò吘lhÁø(¿hoð@B‘B.ѻñ¿Ûøoð@AˆB+Ѻñ¿Úøoð@AˆBÐ8ÊøÑPFð>ìOð	%Oð³FÝé¤ðr¼9`¿ð.ìÓæ9`¿ð(ìØæ9`¿ð"ìÊç8Ëø¿XFðìËç9`¿ðìç9`¿ðìç9`¿ðì
ç9`¿ðìç8Ëø¿XFðúëç8Êøô¯PFðòëç80`¿0Fðêëpæ¿°¾+øÿÎUøÿ~½¾IyD	hˆBôþ©Ûø8ñÍø<°Oð~Ðoð@aFBFOð
ÑécoêŠê¤AÛëñJë
:îÑOðÿ1‹êê
CaÑð@ì(@ðO†Oðÿ0oðAðàîF(Ýø<°˜ðI†Ðø)FðŠî(ðH†F(hoð@AˆBÐ8(`¿(FðŠë”H"™Oð	xDÈò”@kÍøPØ÷Âú(ð2†F hoð@F°BÐ8 `¿ Fðlë(F!"Íøhï÷Uþ(h°BÐ8(`¿(Fð\ëÍødAò˜
Jò©$%OðãOð
œ"½hÍøÀÔø¬(Fï÷–û(ñքLö!Ãöš1»ëzñÛ(@ð҄Ôø(F"ï÷û(ññ„»ñ€AzñÛ(@ðñ„	˜»ë
˜zëÀò?…˜Íø0€EhÐÔøXU hêh)Fðrì(ðυFhoð@AˆB¿00`–ph‚l˜*ÐøL0FðхGF(ð҅0hoð@AˆBÐ80`¿0Fðìêhh&™–ˆBðȅ ™BÍéi¡ë€(FØ÷!ú™)¿
hoð@CšB@ðƒ!(‘ðׅ(hoð@AœˆBÐ8(`¿(FðÀê 
˜…B¿˜h…BÑ
˜(°ú€ð@	à@Fðöî(ð†F ðîêOð(ð†Íød€€FÅ`‰à˜…BàÐ(Fðë(ñð…)hoð@B‘BÐ9)`ÑF(Fð†êœ0F!‘³@FðÆî(ðª…F ð¾ê(𧅀FÙøoð@AˆB¿0Éø È镐Qà*d"»HÙøxDhB@ðü…à¿2aÙøoð@AˆB¿0Éø¹ñÍø\ðó…@Fðˆî(ðô…F ð€ê(ðï…FÆ`HF)Fð¾ì(ðí…Ùø€FHFoð@IIEÐ9`¿ðê(h&–HEÐ8(`¿(Fðêœ–ÔøXe hòh1Fðjë(ðZ„Fhoð@AˆB¿0(`•žhhÖø„‚l(F*ðY„GF(ðZ„(hoð@AˆBÐ8(`¿(Fðäé ð(ê(ðR„FØøoð@AˆB¿0ÈøÍøD€Äø€ðŒë(ðC„ÖøXU€F0hêh)Fð ë(ð?„Fhoð@AˆB¿00`–ph”LF‚l˜*Ðø$0Fð>„GF(ð?„0hoð@AˆBÐ80`¿0Fðšé˜JFÐøh @Fð`ê(ñÁÙøoð@AˆBÐ8Éø¿HFð€é`hl-ðŽ„ÖHxDð¸êž(@𖄠F1FBF¨GFð´ê-
•ð†„ hoð@E¨BÐ8 `¿ Fð^é0h$”¨BÐ80`¿0FðR騸oð@A”ˆBÐ8Èø¿@FðDé ™˜(ðã
˜ÑøœÝøD€Bh’l*ðq„GF(ðr„˜ðtí(ðr„FHF1Fðí(ðn„FÙøoð@D BÐ8Éø¿HFðé0h BÐ80`¿0Fðé (Fð.þžF0ÑðŒé(@ðȄ(hoð@AœˆBÐ8(`¿(Fðîè 
˜…BÐ!k(Fö÷ýø(ðX„¨h"Ôø¸hï÷(ù(ñ-„FÖø¨Ôø ö÷Ìù€F-ퟐ�ñðG„Öø¨ÔøŒö÷¾ù(ðD„F@h™&Íø,ˆB@ðàƒÕø¹ñðڃÙøoð@@¬hB¿1Éø!hB¿H `(hoð@A”ˆBÐ8(`¿(Fð’è"%F˜Íé– ë‚(F×÷ÎÿFHFÎ÷oþ.ð„(hoð@IHEÐ8(`¿(Fðvè0h%•HEÐ80`¿0Fðjè•ð¨ëF˜ZF˜SF	˜
˜˜˜˜0ðÌìF0Fð˜ë˜"Ðø,@FÏ÷ÑþØøoð@B‘BÐ9ÈøÑF@Fð<è0F(ðփhoð@BÝøD€‘BÐ9`¿ð,èh@ðXFQFð\ë(ðþ„F˜)FÐø˜ð
ë(ðû„F(hoð@AˆBÐ8(`¿(Fð
èH"™Oð	xDÈò”€lÍøP×÷Aÿ(ðä„F hoð@F°BÐ8 `¿ Fðìï(F!"Íø\ï÷Ôú(h°BÐ8(`¿(FðÜïÍøhJòÌDAòÂ
Ýø<°ÝøD€
࿕Gøÿ ´Aò³
Jòö4Ýø<°%ÝøD€žV±0hoð@AˆBÐ80`¿0Fð´ï˜(¿hoð@B‘B7ј(¿hoð@B‘B5ј(¿hoð@B‘B3ѹñ¿Ùøoð@AˆB0ÑîH!FîKRFxD{DÏ÷Qþ ¸ñðï€Øøoð@B‘Bðè€9Èø@ðã€F@Fðvï FÜà9`¿ðpïÁç9`¿ðjïÃç9`¿ðdïÅç8Éø¿HFð\ïÆç
oð@AÝøD€(hˆB@𮀮à:
`ô{¬FFðHï0Ftä¸ñðƒÖø¨ÔøŒö÷:ø(ðƒF@h™LF#ˆB@ð¤‚Õø¹ñðž‚Ùøoð@@®hB¿1Éø1hB¿H0`(hoð@A–ˆBÐ8(`Ñ(Fðï#"5F˜Íé“ ë‚(F×÷JþFHFÎ÷ëü.ð߂(hoð@IHEÐ8(`¿(Fðòî0h%•HEÐ80`¿0Fðæî•ð$êF˜ZF˜SF	˜
˜Í阐˜0ðRë(Fðê˜"Ðø,@FÏ÷OýØøoð@B‘BÐ9ÈøÑF@Fðºî F(ð¬‚hoð@BÝøD€‘BÐ9`¿ðªî
oð@A(hˆBÐ0(`(FÝø<°Øøoð@B‘Bô¯-¿)hoð@B‘Bѻñ¿Ûøoð@B‘BѰ½èð½9)`ïÑF(Fð|î Féç9ËøîÑFXFðrî F°½èð½Oð	Aò›
Jò»$þ÷¡¼YH"Ôø€Oð	xD@kÏ÷ãü(ðï‚!"Fï÷Bù hoð@AÝø<°ˆBÐ8 `¿ FðFîÍødAòœ
JòÑ$ÿ÷çºOð	Aò¦
Jò4þ÷q¼oð@@!Oð	ðfé(ðȂFÔø)FðéÝø<°(ð‚F(hoð@AˆBÐ8(`¿(Fðî0H"™ÈòxDÍé”@k×÷Mý(ð¶‚F hoð@F°BÐ8 `¿ Fðøí(F!"Íøhï÷àø(h°BÐ8(`¿(FðèíÍødAò§
Jò04ÿ÷‰ºH"Ôø„Oð	xD@kÏ÷]ü(ð~‚!"Fï÷¼ø hoð@AÝø<°ˆBÐ8 `¿ FðÀíÍødAòª
JòP4ÿ÷aº¿O øÿžJøÿְ2°ʯð:î(@ð`‚0FÔ÷dü(@ðª‚Jòå4Aò³
cáð‚îF(ô¦«Oð	Aò³
Jòç4%Ýø<°ÈåJòê4Aò³
MáOð	Aò³
Jòï4¦àðî(@ð9‚(FÔ÷6ü(@ð‚Oð	Aò³
Jòñ4“àðRîF(ôkOð	Aò³
Jòó4†àOð	Aò–
Jòƒ$þ÷’»Oð	Aò™
Jò—$ÿ÷ø¹Jò™$Aò™
Oðþ÷¹½Aò˜
Jò¤$ÿ÷ê¹ðÎí(@ð‚(FÔ÷øû(@ðJ‚Oð	Aò¯
Jò‡4þ÷h»ðîF(ô.ªOð	Aò¯
Jò‰4þ÷Y»îh–.ðê1hoð@@ÕøB¿11`ÙøB¿HÉø(hoð@AÍø\ˆBÐ8(`¿(Fðüì MFÝø,ÿ÷ºOð	Aò¯
Jòž4þ÷)»ž FBF1Fð8î(
ô{«àðpí(ð²Oð	Aò³
Jòø4%Ýø<°åOð	">äJò­4Aò°
àOð	Aò°
Jò¯4þ÷þºð¨íF(ôŽ«Oð	Aò¹
Jò&D‰àAò¹
Jò(D„àJò*DAò¹
Ýø<°
óäOð	Aò¼
JòCDàOð	Aò¯
Jò¢4þ÷պOð	Aò®
Jòl4þ÷ͺJòn4Aò®
TàOð	"{åOð	Aòº
Jò9DÝø<°½äOð	Aò½
JòNDtàJòPDàJòdDØøoð@AˆBÐ8ÈøÑ@FðfìOð	Aò½
]àOð	Aò½
JòšDVàHFððîF¹ñÍø\ô
ªOð	Aò²
JòÌ4þ÷„ºJòÎ4	àOð	Aò²
JòÐ4þ÷yºJòÕ4Aò²
Oð%Oð	Ýø<°|äOð	Aò¹
Jò.DÝø<°
eäOð	AòÆ
JòêDàJòìDàOô%DØøoð@AˆBÐ8ÈøÑ@FðìOð	AòÆ
àOð	AòÆ
Jò6TÝø<°ÝøD€
ÿ÷;¼Ô÷Ÿûþ÷ƾOð	Aò
Jò$ÿ÷š¸Oð	AòŽ
Jò($ÿ÷’¸Aò
Jò3$ÿ÷Œ¸ÝøL€Ýø0°H±Ðø€ˆBúÑþ÷¬¾Ô÷zûþ÷ªºzHxDh°ú€ð@	þ÷˜¾ FAF"ðíF(~ôɪàðNì(𫀠Aòw
Jò^ÈFþ÷ѺIöôtþ÷KºOðý÷á¼Aòz
Jò‰ÿ÷M¸Aò|
Jò®ÿ÷G¸Aò|
Jò°ÿ÷A¸ þ÷–»Aò|
Jò³ÿ÷7¸$ý÷¾Oð	Íø\þ÷ѻÝø<x±Ðø€ˆBúÑþ÷WºOHOIxDyDhhð\ëþ÷£¼FHxDh°ú€ð@	þ÷?ºAòœ
JòÍ$þ÷ž¹Aò¨
Jò4þ÷˜¹Jò 4Aò¨
Oð%ÿ÷Ÿ»Aòª
JòL4þ÷‰¹Aò§
Jò+4þ÷ñ¿%Jòå4•Aò³
	çOð	Íø`Êå þ÷G½% þ÷†½Oð	Íødûå& 1æ)H)IxDyDhhðëDæJòºDAòÄ
Oð	ÿ÷E»Oð	AòÄ
Jò¼DçJòÇDÿ÷8»HIxDyDhhððêKçFý÷¼Fý÷a½Fþ÷¸Fþ÷[¸F(Fý÷нFÿ÷ö¸Fÿ÷<¹žFÝø0°ý÷i¾Ýø,Fþ÷߿¿LSzRÎ"øÿTRS¦#øÿ²R#øÿ°µ¯F@høWÀ*РhÔ(ÙH"xDh FðHïA(±úñOêQOêAH¿!)Ðq¹ F½è°@ð ºàh°½HIxDyDhhðŒêOðÿ0°½ Fî÷ý(÷ÐFÿ÷Åÿ!hoð@B‘BñÐ9!`¿°½F FðŒê(F°½ÞQØQ×øÿðµ¯-é™°ŠF	hƒF ‘FÍéÍéÍéoð@@B¿1ÊøÙøB¿HÉøPFðâí
0ÐãIÚøyD‘	kˆB'ÐÐø¬0ñšh*Û3hŽBÐ3:ùÑžˆB@ð‚%áOðAòy%Jö¨fOððŸ¿F"±Òø€ ŠBúÑàÎJzDh‘BäÑž‚lPFÖø°*ð†GF(ð†hhÖøx‚l(F*ð†GF(ð†(hoð@AˆBÐ8(`¿(Fðê¹H!‘xDh„BзIyD	hŒBеIyD	hŒBÐ Fð|ê(ñÿ…!hoð@B‘B	Ñà °ú€ð@	!hoð@B‘BÐ9!`ÑF FðÜé(F!(‘ðí…ÖøTE0hâh!Fð.ë(ð†hoð@B‘B¿1`ÖøXE0hâh!Fðë(ð†Fhoð@AˆB¿0(`•hhÖø ‚l(F*ð†G€F(ð†(hoð@AˆBÐ8(`¿(Fð˜é„I yDØø 
hªBð
†™BÍ驦ë€@F×÷Éø™)¿
hoð@CšB~Ñ!(‘ð†Øøoð@AˆBÐ8Èø¿@FðhéÝø`€Øø¨Bð† %¦ë€‚œ@FÍéY”×÷›ø-F¿(hoð@AˆBZÑ hoð@AˆB`Ñ .fÐØøoð@E¨BÐ8Èø¿@Fð6éÙø$”¨BÐ8Éø¿HFð*éš±FÚø”kFˆB@ð倊lPFÖø *ð텐G(ðî…Öø¨ˆBÐAKBh{DhšBAð傁h!ð)0ÑÁh9±úñL	+à$)à:
`ô}¯FFðôè Fvç8(`¿(Fðìè hoð@AˆBžÐ8 `¿ Fðàè .˜ÑOðAò%JövOðð6¾$hoð@B‘BÐ9`¿ðÈèÚø!,‘ퟘ�lPFÖøœ*𮂐GF(ð¯‚HxDh¬B)ÐHxDh„B$ÐHxDh„BÐ Fð*é(ñ£‚!hoð@B‘BÑ$àԟÒPZPTP6P¶O’N´M®MM`°ú€ð@	!hoð@B‘BÐ9!`рF Fðtè@F!‘˜³ÜHxDh‚Eð…ƒ0k(ðèƒÚø ‚Bð$„Òø¬0+ð
„™h)Û3h†Bð„39øÑÍKÎI{DÒhyDhÃh0hð&éOðAò‡%JöHvOðð ½Úø1kˆBð­…Ðø¬0+ðý„šh*Û3hŽBð …3:øÑžÖøäA0hâh!Fð~é(ð…Fhoð@BB¿0`‘PFð¨ìAð3ƒ™oð@C
hšBÐ:
`Ð!‘p±Öø¤‰E@ð-áFFðöï F!(‘ðÑÖøpG0hâh!FðJé(ðƒhoð@B‘B¿1`Ah\FŠlÖøh*ðƒGƒF(ðƒ˜oð@B”h‘BÐ9`¿ðÆïOð ÍøT€ðè(ðù‚Öø€oð@C
hšB¿P`˜Öø€Á`ÚøÖøBh’l*ðꂐG(ðë‚wJAhzDh‘BAðë‚hoð@AFŠB¿Q`oð@B‘BÐ9`¿ð†ï  iA
ÔOöÿsÀó‚Àò(¿Oöÿs(¿ÿ#à#˜5F¡haÖø”oð@Fh²B¿2`Õø”š.FPañÖ˜!ü÷Vÿ(ðº‚F˜oð@Bh‘BÐ9`¿ðJï ÍøT€ðŽï(ð¬‚IIoð@BÅ`yDmh‘B¿1`™aðòèÝø€(ðž‚Öø´FÖø¨'ðöï(ñB‚™XF"FÍø4 ÊFÎ÷¢ý(ð°‚FÛøoð@IHEÐ8Ëø¿XFðï˜&–hIEÐ9`¿ðþî–oð@F hÑFÃF°BÐ8 `¿ Fððî(h$Ýø4 °B”Ð8(`¿(Fðâîž”Öø¤‰EÐJÙøzDhBAðâ€Ùø!!ê(@ðǃÛø¨@Öø ceh1F(Fðüè(ðãƒAhÑøˆ0‹±!F*F˜G ¹ßãMM/7øÿÞK’¢*Jhoð@AŠB¿Q`Ûø¨P˜nhÐøŒƒ0FAFðÐè(ð׃F@hÐøˆ0[± F)F2F˜GÝø €F`¹Kò‹&ÕãÝø €oð@A hˆB¿0 `”×H%•xDahhB@ð`‚àh(ð[‚hoð@A¦hŠB¿2`0hˆB¿00` h–ˆBÐ8 `¿ FðVî"4F˜Íé¨0 ë‚ FÖ÷ý™)¿
hoð@CšB@ð=!(‘ðŠƒ!hoð@E©BÐ9!`ÑF Fð.î0F!‘h©BÐ9`¿ð$îðÚîl«IÍø$yD	h‘h-¿BÑ@h(÷Ñ% ÍéUà)hoð@@•B¿1)`jh’hB¿H`(F’ð0
˜F.YÛñ2F#Oð	ðré€FPFAF"#í÷jÿ(ð€ƒFPF1F"#$í÷_ÿ(ð€FPF1FZF#ÍéDð5ù(ñû‡Ûøoð@AˆBÐ8Ëø¿XFð¼íOðPFAFJF#Íé»ðù(ñä‡Ùøoð@AˆBÑ
˜°ñZÑ
à8Éø¿HFðœí
˜°ñNј$””(¿hoð@AŠB@ð”€
ñ	”-Ýø0€™èP¿(hoð@AˆB@ð‹€ ,¿ hoð@AˆB@ðˆ€Øø,0F"Î÷õû1hoð@B‘BÐ91`ÑF0Fð`í F(ðÂhoð@B‘BÐ9`¿ðRíOðÍøP°ðн¸ñ°Ý˜BF#$ðÌèFPFIF"#í÷Äþ(cЃFPFAF"#í÷»þ(_ÐF ÍéPFAFZF#ð‘ø(VÔÛøoð@D BÐ8Ëø¿XFðíOðPFIF2F#Íé»ðxø(EÔ0h B¼Ð80`¿0Fðíµç:
`ô¿®FFðúì(F¸æQ`¿ðôìeç8(`¿(Fðììmç8 `¿ FðæìpçÚøð¤¸OðAò³%KòH&Oðð:ºKòÈ%Oð
àKòÊ%
àKòÌ%à¿zIxHKòÎ%4FOð	 FÍøX°Í÷¨ú˜Íø`Í÷£úXFÍø\Í÷žú˜ÍøXÍ÷™úðH)FðKAò»"xDÍøT{DÎ÷hû˜©ª«Î÷øý(0ÔÝø` Ýé8BFIFðªí(ð‡F!F"(FÎ÷ûF(hoð@KXEÑ hXEÑ 6³ØHxDh†B$Ð×IyD	hŽB¿™ŽBÐ0FðòìàKòæ&Dà8(`¿(Fð`ì hXEßÐ8 `¿ FðXì .ØÑKòï&.à0°ú€ð@	1hoð@B‘BÐ91`ÑF0Fð@ì F(Ôð†HFÍ÷$úOð@FÍø`°Í÷ú˜ÍøX°Í÷ú˜ÍøT°™šl›ðĽKòó&˜«ËlÎ÷þOðAò¸%OðÝø$ðu¹"»åðöìF(ôç©Jö¼fAò~%RàðêìF(ôé©OðAò~%Jö¾fOððV¹OðAò~%JöÁfOððL¹‘H"Öø˜OðxD@kÎ÷fú(ðp†!"Fí÷Åþ(hoð@AˆBÐ8(`¿(FðÊëÍø\€Aò%JöÑfOðð$¹ðNì(AðY† FÓ÷xú(ôñ©JöãfAò%OðOðð¹ð8ì(AðO† FÓ÷bú(Að»†OðAò%JöåfOððø¸ðzì€F(ôë©OðAò%JöçfOððè¸Øø(ð.†hoð@AØø`ŠB¿2`0hˆB¿00`ØøˆBÐ8Èø¿@Fðfë °Fÿ÷ӹOðAò%Jöüfð½¸ØøP-?ôó©)hoð@@Øø@B¿1)`!hB¿H `Øøoð@A”ˆBÐ8Èø¿@Fð8ë  Fÿ÷չF*ð¡€Òø€ ŠBøѡàðì(ôªOðAòƒ%Jö0vOðð¸ðªë(AðɅ FÓ÷Óù(Að/†OðAò«%KòúOðði¸!H"Öø OðxD@mÎ÷ƒù(ð°…!"Fí÷âý(hoð@AˆBÐ8(`¿(FðèêÍøX€Aò¶%Kòv&OððA¸H1FxDhhð&îOðAò¸%Kò‰&Oðð0¸¶øÿÌ4øÿBE<EܛšòAóHAFxDhhðîÝø € Kò‹&àKòŸ&Øøoð@AˆBÐ8ÈøÑ@Fð¢êOðAò¸%Oððý¿OðAò¸%Kò6Oððó¿ÝJzDh‘Bôcª‚lPFÕøœ*ð7„G(ð8„Õø¤ˆB
ÐÒKBh{DhšB@ð6„hðà$hoð@B‘BÐ9`¿ðbê d±ÇHoð@BxDh!h‘B¿hH `ðò¿ÕøXE(hâh!Fð¬ë(ðƒ„hoð@B‘B¿1`AhŠlÕø*ퟤ�GF(ðŠ„˜oð@Bh‘BÐ9`¿ð(ê¬I yDbh	h
‘ŠBð~„™ÂÍéÕø¤‘©Íø$ÍøDñ	©ë€ FÖ÷QùF˜•(¿hoð@B‘B@𑂠-ð–‚ hoð@F°BÐ8 `¿ FððéÚø°BÐ8Êø¿PFðæéžªF!‘ÖøXU0hêh)Fð:ë(Íø4 ðV„Fhoð@AˆB¿0 `”`hÖø|‚l F*ðX„G(ðY„ hoð@AˆBÐ8 `¿ Fð´éÚøÖøœÐé
*¿Rh*Ñ(¿Àh(ÑPFô÷ÏüàPFGàPFô÷\üFOð(ð5„˜
šÍø`€Ah‘Bð3„"˜©ë‚2Íé…Ö÷Èø¸ñF¿Øøoð@AˆB@ð‚(h$oð@A”ˆBÐ8(`¿(Fðh阔(ð3„˜oð@Bh‘BÐ9`¿ðXéÛø¨OðÖø ÍøT€Íø\€ô÷Jú(ð „Ûø¨ÖøŒô÷@ú(ð„ØFAh
š%Ýø,°‘B@ð„Äh,ð;„hoð@@"h‚B¿2"`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðé"˜©ë‚ÍéEÖ÷VøF FÌ÷÷þ.•ðûƒ˜oð@Dh¡BÐ9`¿ðüè•0h BÐ80`¿0Fðòè•ð¨é©lª«Í÷FÿPFðfìF0ðïƒp(Àò*ñoð@I
”
à¿´AˆAdAø@Ö@.@ó> F#2FðLì†BôЀFð&é(ðfF ðé(ðeØIÅ`yDÑø°ÛøHE¿0Ëø˜Àø°
˜™BhÒé
2*¿Rh*	Ñ+¿Úh*Ñô÷ÁûFP¹HáGF0¹Dáô÷LûF(ð?˜hIEÐ9`¿ð~è˜Oð
YF*FÍøT ðì(ñ/(hHEÐ8(`¿(Fðhè0FðÎè
œ(ð&F ð¦è(ð#Å`ÛøHE¿0Ëø˜Àø°`h™Ðé
*¿Rh*
Ñ(¿Àh(
Ñ Fô÷kûF`¹
á FGF8¹á Fô÷ôúF(ðÿ€˜hIEÐ9`¿ð&è@FÍøT ðˆè(ðò€ ðbè(ðó€‚F˜ÊøQFÛø*FHE¿0Ëø Êø°
˜ðšë(ñã€ÚøHEÑ(hHEÑ0Fð^谹Ýà8Êø¿PFðìï(hHEðÐ8(`¿(Fðäï0FðHè(ðȀF ð"è(ðˀÅ`‚FÛøQFHE¿0ËøÊø°Ýø,°
˜ZFð\ë
œ(ñ€ÚøHE?ôï®8Êø¿PFð´ïææ˜$ÍéDÌ÷™ý˜”Ì÷•ý˜”Ì÷‘ý˜"Ðø,(FÍ÷%þ)hoð@B‘BÐ9)`ÑF(Fðï FÝø$(Ýø4 ð›‚hoð@B‘BÐ9`¿ð~ï =Hoð@BxDh!h‘B¿hH `ð½9`¿ðjï -ôj­OðAòž%Kò»ÿ÷F»8Èø¿@FðVïßåAò¦(KòNOð
SàAò¦(KòPOð
MàAò¦(KòX0àAò¦(Kò[Ýø,°AàAò§(Kòe&àAò§(KògÝø,°5àAò§(KòoàAò§(KòrÝø,°)àAò§(KòtÝø,°"àAò§(Kò|Ýø,°àAò¨(Kò‡Oð
%Ýø,°àAò¨(Kò‰Oð
Ýø,°à¾=2;Aò¨(Kò‘%Íé¥Ýø4  $Ì÷Ýü(F”Ì÷Ùü˜”Ì÷Õü˜”Ì÷ÑüäH1FäKBFxD”{DÍ÷¢ý˜©ª«Î÷2ø(3Ôš Ýé9IF
’ðäï(ð8Ýø €F!F"@FÍ÷HýFØøoð@E¨BÑ h¨B"Ñ N³ÍHxDh†B'ÐËIyD	hŽB"ÐÊIyD	hŽBÐ0Fð*ïàKòªDà8Èø¿@Fð–î h¨BÜÐ8 `¿ FðŽî .ÕÑKò³-à0°ú€ð@	1hoð@B‘BÐ91`ÑF0Fðvî F(Ôðé€HFÌ÷Zü
˜$”Ì÷Uü˜”Ì÷Qü˜”Ýé!›lÎ÷^øÝø$ÝæKò·˜Ýé2™lÎ÷RøOðOô•UÝø$­ãð0ï(ôȫOðAòš%KòƒOðžã”K{DhšBð­"Fðòîô÷·ø(Añ]OðAòš%Kò…Oð†ã‰K{DhšBðª"FðÚîô÷Ÿø(AñTOðAòƒ%Jö2vOðnãðòîF(~ôQ­OðAòƒ%Jö9vOð^ãOðAòƒ%Jö;vOðUãqJzDhBðHF"LFð¨îô÷mø(Añ*OðAòµ%Kòh&Oð¡F;ãKòÈ%$Oðÿ÷¹KòÊ%ÿ÷¹KòÌ%àKòÎ%LFÿ÷¹ðTî(Að€ FÒ÷}ü(Aðï€OðAòž%Kò¤Oðãð–îF(ôv«OðAòž%Kò¦Oðãàh(ðb€hoð@A¥hŠB¿2`(hˆB¿0(` h•ˆBÐ8 `¿ Fð„í ,Fÿ÷a»ðî(AðD€(FÒ÷7ü(Að¬€OðAòŸ%KòÉÉâðRî(ô§«OðAòŸ%KòËÿ÷G¹AòŸ%KòÎÿ÷A¹Ðø€Íø`€¸ñ𠀁hoð@@Øø ‚B¿2Èø 
h‚B¿P`˜oð@B‘h‘BÐ9`¿ð6íÝéj"ÿ÷¦»OðAòŸ%Kòãÿ÷¹Oô•UKòò'àKòôà"ÿ÷¼¿(øÿ@)øÿ´9®99œ9l9
9Kò˜oð@AhŠBÐQ`ÑðíOðOô•UÝø$Ýø,°Yâ$"ÿ÷ۻAò¡(Kò÷åOðOô•UKòÙIâðtí(@𸇠FÒ÷žû(Að€OðAò­%Kò&Oð4âð¸íƒF(~ôù¬OðAò­%Kò
&Oð$âAò®%Kò&Oðâð í(~ô­Aò®%Kò&Oðâ1JzDh‘B@ð„‡ÑjFˆGF(@ð²‡Kò&àKò+&Aò®%OðâAò­%Kò6&OðñáKòF&Aò³%ÿ÷ظí$µî@ñîú¿$ÿ÷ºHIxDyDhhð^ìþ÷-¼·î$í´î@ñîú¿$þ÷•»ÑFOðAò­%KòQ&Oð½á™í µî@ñîú¿ þ÷‚½FQ±Ñø€BúÑàÐ5V5˜é÷ÿÉIyD	hˆB~ôî«Fž‚lÖøðÚø*PF•ð&‚GF(ð'‚(F!"#ØFOðì÷ªý(ð#‚F(hoð@AˆBÐ8(`¿(Fðì  Fì÷áÿF0ÃFÑð˜ì(@𬂠hoð@AˆBÐ8 `¿ FðúëÚøÖøh•‚lPF*ðûGF(ðühhÖøX‚l(F*ðúGF(ðû(hoð@AˆBÐ8(`¿(FðÐë  Fì÷Ÿÿ0ÑðVì(@ðt‚ hoð@AˆBÐ8 `¿ Fð¸ëÖøXU0hêh)Fðí(ðׁFhoð@AˆB¿0 `”`hÖøxÍø4 ‚l F*ðځG‚F(ðہ hoð@AˆBÐ8 `¿ FðŠë˜ððë(ðԁF Íø$ðÆë(ðӁFÄ`ð6í(ðҁF0FÖøXehòh1FðÈì(ð́€Fhoð@AˆB¿0ÈøœØøÔø(‚l@F*ðʁG(ðˁØøoð@AˆBÐ8Èø¿@Fð@ëšHFÔøhð
ì(ñ€˜oð@Bh‘BÐ9`¿ð,ë Ýø€ÚøÍø°l,ð¥8HxDð\ì(@ð¯PF)FJF GFðZì,ð ”Úøoð@D BÐ8Êø¿PFðë(h&– BÐ8(`¿(FðöêÙøoð@AÝø4 ˆB–Ð8Éø¿HFðæê ÝøT°˜Ýø$ƒEð¢˜k(ðuÛø ‚Bð˜Òø¬0+ퟘ�h)Û3h†Bð‹39øÑ
K
I{DÒhyDhÃh0hð˜ëOðAò%Jö–vàò4ßøÿî1øÿOðAòŽ%Jö…vOðÝø$Ýø4 ˜(¿hoð@B‘B@ð‚€˜(¿hoð@B‘B_ј(¿hoð@B‘B]ј(¿hoð@B‘B[Ѹñ¿Øøoð@AˆBXÑãH1FãK*FxD{DÍ÷0ù$»ñ¿Ûøoð@AˆB,Ѻñ¿Úøoð@AˆB
ÑÙøoð@AˆBÑ F°½èð½8Êø¿PFðFêÙøoð@AˆBíÐ8Éø¿HFð8ê F°½èð½8Ëø¿XFð,êÊç9`¿ð&ê™ç9`¿ð ê›ç9`¿ðêç8Èø¿@Fðêžç9`¿ðêwçðòêF(ô٭OðAòˆ%JöRvOð^çJöTvAòˆ%Oð`çðÚêF(ô®JöbvAò‰%þ÷7¾ðÎêF(ô®OðAò‰%JödvOð:çØFðdê(@ð¸„(FÒ÷Žø(@ð…OðAòŽ%JörvOð$çð¨ê‚F(ô%®JötvAòŽ%OðOðÝø4 çOðAòŽ%JöwvOðçOðAòŽ%JöyvüæOðAòŽ%Jö~võæð&ê(¹0FÒ÷Rø(@ðà„OðAòŽ%Jö€våæðnê(ô5®OðAòŽ%Jö‚vÚæPF)FJFðÆê(ôd®Oðàðþé(ðW„OðÍøT€AòŽ%Jö‡v¾æ]H]IxDyDhhðBé æOðAòˆ%JöWvOð²æOðAò‰%JögvOð©æF!±Ñø€BúÑàNIyD	hˆBôx®ÚøœÛøP‚lPFÔøh*ðƂGÝø(ðǂAh•ŠlÔøð*ðɂGF(ðʂ˜oð@Bh‘BÐ9`¿ðé EEÐ4HxDh…B¿˜…BÐ(Fð†éF(
ÕOðAò%Jö¥vÝø$Uæ¥ë°ú€ðF	(hoð@AˆBÐ8(`¿(FðâèÙø¨@˜ehÐø £ (FQFðë€FÍø,°†±¸ñðŠ‚ØøžÐøˆ0K³@F!F*F˜G€F`»ƒâ¸ñðӂØøžÐøˆ0+ð-@F!F*F˜GÝø  €F(@ð.ÆâBý÷ÿ\ øÿ/`ã÷ÿè.d.Øøoð@AˆB¿0ÈøÙø¨@ÖøŒceh1F(FðÄê(ðT‚AhÑøˆ0+±!F*F˜G@¹Râhoð@B‘B¿1`ÍI%BhyD•	hŠB@ðE‚Åh•-ðW‚hoð@@*h‚B¿2*`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðPè"˜©$1ÍéT¡ë‚Ô÷‹ÿ-¿)hoð@B‘B@ðª€(”ð‚™oð@D
h¢BÐ:
`ÑFFð,è(F%•h¡BÐ9`¿ð è
˜	ñ
Ýø•E¹ñÍø€ÑÝø-Ýé¶=Û	ûdÉñPF*F#ðŽë	ûð=1XËø!h1PÛø `DDíÑ&àÝø€-Ýø° Û˜ûÈñ
PF*F#ðnë™ûXFJF1F
ð‚ì0F!FJF
ð~ì FYFJF
ðxì
˜=DäÑžphl˜-Ðø,Hð¸vHxDðéÝø$(Ýø4 Ýø,°@ð0F!F"¨GFðüè,ð¸0hoð@A”ˆBÐ80`¿0F
ð¤ï,🁠hoð@AˆB?ô¨8 `ô¨ F
ð”ïÿ÷¸9)`ôR¯F(F
ðŠï0FKçÝø  oð@AØøˆB¿0ÈøÙø¨@ÖøŒceh1F(Fð¬é(ð–AhÑøˆ0+±!F*F˜G@¹”áhoð@B‘B¿1`CI%BhyD•	hŠB@ð‡Åh•-𙁁hoð@@*h‚B¿2*`
h‚B¿P`˜oð@B‘h‘BÐ9`¿
ð8ï"˜©$1ÍéT¡ë‚Ô÷sþ-¿)hoð@B‘B@ð³€(”ðS™oð@D
h¢BÐ:
`ÑFF
ðï(F%Íø€•h¡BÐ9`¿
ðï
˜	ñ•Eð@êÝø°»ñ"ÑÝø°-žAÛû¤Ëñ	@F*F#ðtêûð=Zø1`!hJø0h `LDíÑ*à¿t--øÿD+ž-ÝøÛû¤pB
@F*F#ðPê™ûHFZFQF
ðdëPF!FZF
ð`ë FIFZF
ðZë
˜=Däјðøéž™phÑø,Hl-ðñ€ñHxD
ðâïÝø$(Ýø4 Ýø,°@ðù€0F!F"¨GF
ðÚï,ðñ€0hoð@A”ˆBÐ80`¿0F
ð„î,ð؀ hoð@AˆBÐ8 `¿ F
ðvî þ÷õ¾9)`ôI¯F(F
ðjî0FBç
ðNïÝø(ô9­OðAò%Jö vÝø$ÿ÷¹»
ð<ïF(ô6­OðAò%Jö¢vÝø$ÿ÷¨»ÍHQFxDhhðŽéOðAò‘%Jö±vÿ÷•»ÉH1FxDhhð~é Jö³và"×åJöÇvØøoð@AˆBÐ8ÈøÑ@F
ðîOðAò‘%ÿ÷r»%"Àå0F!F"
ðZïFÝø$Ýø4 Ýø,°QæOðAò‘%Jöévÿ÷^»$Gæ
ð†î(ðê€Ýø$$Ýø4 Ýø,°ž9æ¤HQFxDhhð4éOðAò–%Kòÿ÷;» H1FxDhhð$é Kò
à"•æKò!Øøoð@AˆBÐ8ÈøÑ@F
ð¾íOðAò–%ÿ÷»%"~æ0F!F"
ðïFÝø$Ýø4 Ýø,°çOðAò–%KòWÿ÷»$ç
ð,î(ð™€Ýø$$Ýø4 Ýø,°žçKò®þ÷4¿Kòê&þ÷g¹
ð^í›IF
šÌ÷ºÿ Kò¿Íéþ÷!¿
ðPí›IFBFÌ÷«ÿ Kòû&Íéþ÷I¹Aò%JöÍfOðÿ÷ƺOðJöãfÍø`°Aò%Oðÿ÷úOðÍøT€þ÷´¹ ý÷¿»OðÍøT€þ÷:ºAò¶%Kòr&Oðÿ÷£ºOðÍøT€þ÷‚¿ þ÷´¿OðÍøX€þ÷¿¿Oð"Ýéjþ÷ »OðÍøT€ÿ÷K¸FDHxDhB%ÑÁj(Fÿ÷t¸OðÍø\€ÿ÷K»3H3IxDyDhh
ðôìÿ÷Ÿ»1H1IxDyDhh
ðêìç0H1IxDyDhh
ðàì]ç˜Ai(FðúèF(?ôN¨)h(Fžoð@B‘B}ôZ­ý÷]½Fý÷0»FPFðtéA}ôͬOðAò«%KòüOðÿ÷3ºF(Fþ÷^ºþ÷‡ºÝéjFþ÷öºëøÿžF(Fý÷ê»žý÷ټž¡Fý÷å½žFÃFÿ÷
¹€Fÿ÷P¹‚&Öö÷ÿÀ(n&Âö÷ÿ¢((\&°ö÷ÿî'j'ðµ¯Mø×ée3³±ñÿ?FÜF.¿ƒhD±†h³B+ÒÅhoð@FhUø#´B¿e`ÅhEø# h°BÐ8`¿F
ðlì ]ø‹ð½;LCh|D$h£BÒÐÓé
E-¿«h+#Ñ,¿ci+ÑFFF
ðZï(XÐF0F!F*F
ðâï!hoð@B‘BÑ]ø‹ð½±ñÿ?Ü»ci]ø‹½èð@GFFF
ð:ïг«hF0F!FBF˜G!hoð@B‘BáÐ9!`ÞÑF F
ð ì(F]ø‹ð½F!hFF±±(FˆG(	Ô1FBF(Fci]ø‹½èð@GHxDhh
ðìP±
ð ìBF(F1Fci]ø‹½èð@GOðÿ0]ø‹ð½¿@%’$F€hoð@ChšB¿2`ˆhpGF€hoð@ChšB¿2`ˆhpG°µ¯±
hoð@CšB¿2
`‚hhœBÐc`Ё` °½Ioð@ByDh!h‘B¿1!`hh“BÐZ
`Є` °½FF
F
ðªë)F F` °½FF
ð ë(F„` °½¾#°µ¯„°F@hÐøÄ)TѨ©ªð,è(hoð@AˆB¿0(`)k±èhˆGàhk(¿èh(Щk9±Õé1$*j”ðÿèh
ðžíèiðè(hoð@AˆB¿8(`Ýé!˜ðè¨jX±!oð@B©bh‘BÐ9`¿
ðRëèjX±!oð@Bébh‘BÐ9`¿
ðDëhhÐø (FˆG°°½øUIÕ(F
ðÖí(¡ÑhhI€iyDˆB›Ñ(F
ðÒí(éѕç¿)ÿÿÿ°µ¯FF
ðæë(¿°½HxDhh
ð.ë8±
ð2ë(F!F½è°@ð°¿ °½p"ðµ¯-é—°
FøV‘FɝIyD
‘ñ]„Ðø˜ !GF(𹅘I˜NyD~DÑø òn¢`oð@BÚøÄø( BÑh!FAø,	‘àA#FCø,¯‘BÊø	“¿0Êø
™ Íé¹ñÍéÍéõpòä@Õø€õopõ‹`
ÑøÀõÐa‘”иñòC…–ßèðR;D+HF
ðbíF
˜Ðø€HFÊh
ðúë(ð)…F<Bà¸ñ
иñиñ@ð!…èi¨i–ÕékhiÍékwàÕéÕékÍéHFÍék
ð2íFœ-XÚgàÕékHFÍék
ð&íF àhiÕékHFÍék
ðíF-"ÚœPàîhHF–
ðíF
˜ÐøXHFÊh
ðªë(𽄃F<
˜Ðø¼HFÊh
ðœë(ð£„e-ÜÛ
˜ÐøäHFÊh
ðŽ됱=œ-Ú!àñ«ÕékÊÍékÃHF
ðÜìà
ð¨ê(@ð
…
˜ÐødHFÊh
ðnë(𴂐hœ(€ò³‚$HÛøxDÐø€AE@ðnƒÛø(òŽƒðÛøÀñûõhÑ
ð|ê(@ð„œOðÿ5Ý鰐˜JIzD’yD‘€±hÝø(ˆB¿šhBÑ@°ú€ð@	VEÑ%à Ýø(VEÑàq"ôy|   PEâÐ
ð:êœF0ðj‚VEÐph½IyD
hB@ð,ƒÓEð=ƒÛøoð@AˆB¿0ËøVEð<ƒ°hAðDƒ(eb aðCƒ-@óKƒÛøÍø øW	tԂlXFÙø„*ퟜ�GF(ퟠ�HahxDhB@ð;ƒÔø¹ñð5ƒÙøoð@@Ôø B¿1ÉøÚøB¿HÊø hoð@AˆBÐ8 `¿ F
ðJé TF
™BÍø0Ñø”
‘©1¡ë€ FÔ÷€ø¹ñ‚F¿Ùøoð@AˆB@ðɁºñðЁ hoð@IHEÐ8 `¿ F
ð éÛøHEÑÓFÝé
”
àÝé
”8ËøÑXF
ðéœÓFÝø pIÛøyD	hˆB¿ÓE@ðó‚Ûøoð@AˆB¿0Ëø	˜hhŠBÐQ`Ñ
ðîèœ	˜ÓEÀø°𹂠iñaaÀ
ð˜íš(‘iëÂéð¶‚1hoð@@B¿H0`±h)`ÛÍø$°Oð
oð@KëŠÄh hXE¿0 ``h@EѠh(AØðáhÀñûùñÐ hXEÑ%à F
ððêx±F
ðôêIFFhXEÐ8`¿F
ðšèšäç
ð&é(@ð́šOðÿ9 hXEÐ8 `Ñ F
ð†èš¹ñ@óOÑi
ñAø*‚F±hˆB°Ûà F
ðÄꚁF¾ç0hÝé	¹Ýø oð@AˆBÐ80`¿0F
ðbèœ"ÙøÀ Fë÷«ø(ñB‚.ÐÙøÄoð@AhŠB¿2`žÝø€°jhŠBÐQ`Ñ
ðBèžÖé1jÙøÄ2³bCAÔ9:Aø PRø 08ûõ÷Ñ6àÌp ÙøÀ F"ë÷rø(ñP‚žðQ‚ÙøÄoð@AhŠB¿2`°jÝø€hŠBÐQ`Ñ
ðèžñÙøÄ3³bÊ(ÛBø[8Qø;ûõ÷ÑÆø4€XF5a"ÙøÀ
ð®è(ðفF˜h„B¿™	hŒBPÑ °ú€ðE	› hoð@AˆBÐ8 `TиñcXÐi Xc0F
ðôé›(Ø`ðǁ-KÐ]j-ð؁Fh¿¶ñOðƂ0F)FðÚêûñûbq¿!j@OðOðH¿"@@(Àò…‚Úø›oð@B‘BÄø ¿JÊø 48FòÑàTE¬Ð F
ðè›F0ªÑ
ðè(@ðQ‚Oðÿ5¡ç Fð~ñc¦Ñ%Ûøoð@AˆBð[‚8Ëø@ðV‚XFðhï›Pâ8Éø¿HFð`ïºñô0®Aö¢1“"¨àðæï(@ðD‚âHª«!xDÍé€HFê÷Vþ(ÔÝékœ<åðÐï(@ð5‚œOðÿ0VE􌭑åAöÆ!æá ðxï(ð(‚
›Foð@BÝø$°Óø¤h‘B¿1`Óø¤à`PFðéý(ð‚
›oð@BÐø€ aÓø€h‘B¿1`Óø€`aHFðGþ(ð‚
oð@Ch aÕø(hšB¿2`Õø(àaëñ F!#ù÷äþ(ðîF hoð@H@EÐ8 `¿ FðÚî˜)F"$@kë÷Âù(h@EÐ8(`Ñ(FðÊî¡"AöOAàŸ"AöAÝø$°0hoð@C˜B	Ð80`Ñ0FFFð´î1F*F,ðŠ hoð@C˜Bð„8 `@ð€ FF
Fð î)F"FwáˆIyD
h
™Òøœ0"Éh˜GF(ôž«UáXF
ðÔè(?ô›¬F
ðÖèF hoð@AˆBÐ8 `¿ FðzäßIÆhyD	hhÝIÓhÝJyD–zDðJï$áXF
ð¶èœFsäåHåIxDåJyDhzDhð:ïáâHãIxDyDhhð8î‰"Aö41'á‰"Aö61#á˜"ÙøÌ@kë÷1ù"AöT1á˜"Ùø\@kë÷&ù"Aöq1
áOð	 åäÒHÓIxDyDhhðî•"AöË1ÓFüà˜"ÙøH€lë÷
ùœ"Aöô1ñà¥"AötAíà±"AöíAéà¿IyDh¿I¿JÃhyD0hzDðäî”"Aö¹1Úà
˜"ÐøD˜€lë÷çøBò¤@òàðØîF(ôx¬“"AöŽ1ÃàµH¶IxDyDhhðÈíBòÊ@ò±H²KxD{DË÷œü´"AöQ­àAöÖ!ƒà¨"AöžA¦à£I`hyD	hˆB@ð܀ hoð@AˆB¿0 `Ùø !Fð˜ï&F(ð܀F0hoð@E¨BÐ80`¿0Fð¨í˜!F"@kë÷’ø h¨BÐ8 `Ñ Fðší¬"AöÐApàð$î(@ð½€Aö³(&à>øÿ¢ðî(@ð³€Aö©(&fH$fIxDfJgKyDhzD{DheM}DèpðPîAF!àðüí(@ð›€_H&_L¸ñxD^K_I|Dh{DyDh]M¸¿&\J}DÍø€zDÍée¨¿#Fð.îAöé!ƒ"VHWKxD{DË÷
ü›hoð@AˆBÐ8`¿Fð8í#F°½èð½ hoð@AˆBÐ8 `¿ Fð(í±"AöîAWHXKxD{DË÷äû%›Ûøoð@AˆBô¥­-ÏÑF°½èð½AöÁ!¿çAöº!¼çAöÚ!„"¹ç$¡"Aö.A<æ¡"Aö6A:æ¡"OôâQ6æ¡"AöJA2æ9H9IxDyDhhðÔìBòÎ	ç@EÑØø,˜ˆGÝø(F(ô¯¬"AöÉA³ç$¬"AöËAæAö±!„çAö§!çAöŸ!~ç#IyD	hˆBÑÉjÞç
˜Ai˜
ðÆèÝø(F(ÜÐúæZŒè÷ÿÍ+üÿjÆÝ÷ÿ’øÿ}ø÷ÿyä÷ÿ6ŠÝ÷ÿKø÷ÿŒÝ÷ÿ?ä÷ÿJøÿœøÿ,øÿ2FÒ÷ÿ³+üÿÞ÷ÿŠÒé÷ÿúøÿÈ5î÷ÿ6ºfcË÷ÿTOæ÷ÿ¥ç÷ÿPøÿPøÿàøÿðµ¯-遰h.$Û×ø°³ñÒø FÐñ	
 F)FJFCFÍø°ÿ÷åÿTD>ôÑ
à»ñÐoð@@!hTD
h‚B¿2
`>öѰ½èð½oð@EàTD>õÐ hh©BøÐ9`¿ð0ìòçÀihpG°µ¯FFð.僧Fhh!F€kBh(FG!hoð@B‘BÐ9!`¿°½F Fðì(F°½ °½¿°µ¯
F&IBhyD’lÑøÔгGF˜³`hÐé
)¿Jh*
Ñ(¿Àh(Ñ F)Fñ÷ÿ ¹à F)FG ±!hoð@B‘BÐ9!`¿°½F FðÜë(F°½ F)Fñ÷—þ(êÑBò=àð¶ìF(ËÑBò; FÊ÷²ùH)FKë"xD{DË÷„ú °½*cøÿ øÿðµ¯Mø½
³F$IFBhyD’lÑøÔ:³GFH³ F1F*Fð8ï(%Ô hoð@AˆBÐ8 `¿ Fð”ë ]ø»ð½I@hyDhIÂhhyDðfìOðÿ0]ø»ð½ðfìF(ÕÑBòàBò FÊ÷_ùH)FKî"xD{DË÷1úOðÿ0]ø»ð½vbøÿzøÿfC÷÷ÿ°µ¯
F!IBhyD’lÑøÔ2³GF@³hhøWÀÕ`h‚l’± F)FG ±!hoð@B‘BÐ9!`¿°½F Fð6ë(F°½ F)Fðì(êÑAö÷uàðìF(ÖÑAöõu FÊ÷
ùH)FKè"xD{DË÷ßù °½¿ÊaæÙ÷ÿÖøÿðµ¯-é)ðƒ€FYHFFxDÐø€Áø€oð@AØøˆB¿0ÈøðøÐPI"°jyD‰FÑøÄê÷;û(oÔFи (BRÐðhð `0i `аi`aðiàa1jà! áa`a ÄéqjÄéiH¿pi a0hoð@AˆB¿00``hhŠBÐQ`¿ðºêFEf`Ð ½èð½Øøoð@AˆBÐ8Èø¿@Fð¦ê ``½èð½°j"ÙøÄê÷ëú(#ÔOðØ¿Oðÿ0(B¬Ñ H"Ùø¨xD@kê÷zýAö®Q¿"àHIxDyDhhðfêOðÿ0½èð½AöiQº"àAö†Q¼"HKxD{DË÷2ù`hX±hoð@B‘BÐ9`¿ð`ê ``Oðÿ0½èð½¿XÔØ÷ÿJþ`4iÌú÷ÿ|øÿðµ¯Mø½„°*Ú{»#H$JxDzDÐø<Ðk"ê÷(ý HBòÕ K"xD{DË÷õø °]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEðøê °]ø»ð½˜h(ÌÐ	IFyDê÷Êø(ÅÑ×翾×÷ÿ	#üÿÞÄ÷ÿÉÝ÷ÿß"üÿœ_–höÜ÷ÿøÿðµ¯-釰EL |DõÁ`C±ë‚
º±*;јh(Ûdà*5Ñ=H"Ôø<xDÀkê÷Âü:HBòZ:K"xD{D?àÓø°’»ñ۠F FØøV™F	ñ&FTø&¨B4Ð6³EøÑ&Tø&(F"ê÷ýù('Ñ6³EôÑð6êšè»%H&%IxD%L&KyDh|D{Dh$M’"F}DÍéeðrêBò1 H" KxD{DË÷Nø °½èð½ÙÔZø&(ÕК«ñKFDF(œÛH­QFxDÍé ªF+Fê÷zø°ñÿ?ŽÜBò&ÖçBò!Óç¿ð^¿!üÿÄgð÷ÿ6ÿ÷ÿ²Ö÷ÿ"üÿÒÃ÷ÿ…þ÷ÿð÷ÿ´þ÷ÿе¯h	hˆG(¿нIFKÝ"yD{DFAö2qÊ÷ýÿ Fн¿5ä÷ÿþ÷ÿðµ¯-é„°6JHò\§ñ&!zDÅòëOðdF‘FUûóJFë9^ëÓvûS+H¿[B9ø ¢ñcÆ*5FéØ"
+8¿"Dë°ñÿ?
ÝLB6,
Ñ0xð¸í°½èð½- Áñø
,ñÐ$êäx!@FðFí³i¨ë“ÔÅi)Ú
àñRX¿ñ)ہF(F "ðxíHF,ÔÛëbBø;‹T2úÓËç °½èð½õÇ÷ÿðµ¯-é„°6JHò\§ñ&!zDÅòëOðdF‘FUûóJFë9^ëÓvûS+H¿[B9ø ¢ñcÆ*5FéØ"
+8¿"Dë°ñÿ?
ÝLB6,
Ñ0xðDí°½èð½- Áñø
,ñÐ$êäx!@FðÒì³i¨ë“ÔÅi)Ú
àñRX¿ñ)ہF(F "ðíHF,ÔÛëbBø;‹T2úÓËç °½èð½
Ç÷ÿ°µ¯IyDÑøðÀè³!Fð$êp¹FðÈèF(FA¹
HIxDyDhhðè(F!hoð@B‘BÐ9!`¿°½F Fðè(F°½ °½¦[¨Ìæ÷ÿ°µ¯F!IBh!KyD{D’lÑøhšBÑ"#ð²èF ±(F!F"ð„ì°ñÿ?Ý)hoð@B‘BѰ½J±GF(ìÑÏ÷ÿþð
è °½ðÎèF(áÑóçðè )hoð@B‘BåÐ9)`¿°½F(FðÒï F°½¿8[fе¯F@hÐøÄx± Fð`êX¹`hI€iyDˆBÑ Fð^ê(¿н Fð`ê hX±!oð@B¡`h‘BÐ9`¿ð¢ï`hÐø  F½èÐ@G¿áÿÿÿF€hoð@ChšB¿2`ˆhpG€hP±€µoFFF˜G(½è€@¿ pG pGFHxDhˆhŠ`oð@Ah‹B¿Y`(¿hoð@B‘BÑ pG9`úрµoFðbï½è€@ pG¿8ðµ¯-醰>L‚FŽh |Dõ¢`J±n±.GÑÍhF•Fðêà.>ÑÍh•àFFðøéÔøF(F¨FÊhðèP³F©ñ(Ú(hoð@AˆB¿0(`ÚøhŠBÐQ`¿ðïÊøP °½èð½Hª«!xDÍé`@Fé÷þ(&ԝÙçð’ï »H%IxDJKyDhzD{DhL–|DÍéTðÎïBòô!HOô˜rKxD{DÊ÷ªýOðÿ0°½èð½Bòé!îçBòä!ëç¾YÎá÷ÿj
ÆÐ÷ÿ¤á÷ÿо÷ÿ?ù÷ÿ¾Ô÷ÿlù÷ÿ€µoFøVÉÔÐø˜ !GP±Ioð@CyD	h`
hšB¿2
`€½IJyDzDhÑh"Óøœ0˜G(çÑñçÆ	tX°	F€hoð@ChšB¿2`ˆhpG¿ðµ¯-郰*qÚF+@ð†€ ðÊî(𑀁F°hoð@Bh‘B¿1`°hÜIÉøyD‹FÑøTHhøWÀ@ñ†€éHrhxD’lh‚B@ðŒ€0F"#ðï€F(ðŽ€êHxDh€Eð—€ ð–î(ð`FØøoð@AˆB¿0ÈøHF)FÅø€ðôè(ðR)hoð@D¡BÐ9)`
ÐÙø¡BÐ9ÉøÑFHFð$î¡Fnà‚F(FðîPFÙø¡BìсFcàÂH&ÂIxDÂLÂKyDh|D{DhÀM’"F}DÍéeðäî °½èð½˜h(?ôv¯¹IFyDé÷¶ü(ôn¯ °½èð½Bòª;&Oð%$Oð
Oð	4á0FðÈî€F(ô„¯ðCú(ð
€F|ç0F*ð
G€F(ôt¯Ï÷ÝüðXî(@ðû€žHoð@BxDhh‘B¿1`šM°h}DÕø€@EtÐÛøVÛøêh)Fðï(ð®€Fhoð@AˆB¿0 ` ðæí(ðç€qhFoð@@
h‚B¿2
`qhé`ÛøÀ
h‚B¿P`ÛøÀ‚Hoð@B)axDhh‘B¿1`ha ðÀí(ð…€ÀéEoð@BÙø‘B¿1ÉøÀøÙøoð@B‘BÐ9ÉøÑFHFðZí F¸ñ¿Øøoð@B‘BѰ½èð½9Èø÷ÑF@FðDí F°½èð½ÛøFÛøâh!Fð–î(RЂFhoð@AˆB¿0Êø ,FðpíÕø€(OÐqhFoð@@
h‚B¿2
`qhé`ÛøÀ
h‚B¿P`ÛøÀ)aoð@AÙøˆB¿0Éø ÅøðH퀳Ôø€À饒çðˆí¹(FÏ÷´û;BòK
&àBòK
&;àBòÏ;&%àBòÔ;&$1àÕø€ðní ¹ FÏ÷™û(@ÑBò9K&êçBò;K&%àBòFK&$àBò¹;&OðÚçðªí€F(ôf®ðæXF ðþì(ô¯Bò
K
&%Oð
(FÉ÷–ú FÉ÷“úPFÉ÷úHYFK2FxD{DÊ÷bû ¹ñô0¯=ç‚Fhç	˜ôÎ÷ÿãüÿ¸¼÷ÿ£Õ÷ÿ·üÿ°ìD×÷ÿÜô÷ÿðµ¯-釰^L&–|DõÁf–S±ë‚j³*OÑ	hžh‘.Ûvà*GÑ	h‘TJKhzDh“B}Ñð<ù(ð€hoð@D¡BÐ9`¿ðJìXIyDhh¢B¿hQ`°½èð½žhF.ÛÔøVšF
ñ	$FYø$¨B5Ð4¦BøÑ$Yø$(F"é÷rü((Ñ4¦BôÑð¬ì(BFYÑ8H&8IxD8L9KyDh|D{Dh7M’"F}DÍéeðæìBò³A3H"3KxD{DÊ÷Âú °½èð½ØÔ[ø$‘)ÓИ>BFSF.ŒÛFH­YFxDÍé ªF+Fé÷íú(!Ô™ F{çJzDh‘B?ô|¯HIxDJÛhyDhzDhðªìBòÜAàBòÝAH"KxD{D¿çBò£A·çBò¨A´çT¥üÿ4ò`Õ÷ÿ»÷ÿSÉ÷ÿó÷ÿšöÊ÷ÿ÷üÿº¸÷ÿmó÷ÿÑÉ÷ÿœó÷ÿÐе¯ðJì„FÀk(RÐ6IChyD	h	h‹B-ÐJhRmTYÔ\hdm´ñÿ?ؿ²ñÿ?*ÝFdFð€í¤FȳÜø<!Ìø<H±hoð@B‘BÐ9`¿ðfë$Ioð@CyDhhšB¿hQ`н!Ìø<hoð@B‘BæÑêçZmð€BÐБøW RÌÕÓø¬ z±“h+Û2hŒBÊÐ2;ùÑ нÓø€0‹BÁÐ+ùÑ
HxDh°ú€ð@	(´ÑíçFdFÏ÷Êú¤F(¬Ñåç¿TÐðµ¯-é‚°·K{DÓøIEðâ€FˆhF(ðè€ôhoð@A hˆB¿0 `¨hoð@Bh‘BÐ9`јFðôêCF¬`°hAð܀(Àòô€¥L|DÔøTHhøWÀ@ñրhhšF‚l(F*ðۀG(ð܀hoð@B‘BÐ9`¿ðÌêhh FÔøT‚l(F*ð܀GF(ð݀`hØøX‚l F*ð؀GF hoð@A-ðӀˆBÐ8 `¿ Fð¦ê°h(ÀðҀÖø€oð@AØøˆB¿0Èø~HihxDhB@ð‚€îh.~Ð1hoð@@¬hB¿11`!hB¿H `(hoð@AˆBÐ8(`¿(Fðvê %FiFB1Íéh¡ë€(FÒ÷¯ù.F¿0hoð@AˆBÑØøoð@AˆB"ÑT³(hoð@F°BÐ8(`¿(FðPê hSF°BSÐ8 `PÑ FðFêKà80`¿0Fð>êØøoð@AˆBÜÐ8Èø¿@Fð2ê,ÔÑDö|qeàCHDIxDyDhhðêDö9q"gà ˜Fð$íF0Fé÷Pü(jÑDö;q"YàDöMq
"Uà& —ç6H6IxDyDhhðìéDöTq
"Fàðæê(ô$¯ðêSFÙøoð@AˆB¿Óø0ÉøHF°½èð½ðÎêF(ô#¯Dö^q$àðÄê%çˆBÐ8 `Ñ FðÔéDö`qà ðÖìF0Fé÷üø¹Dögq(hoð@BBÐ8(`Ñ(FFðºé!F"HKxD{DÊ÷xøOð	HF°½èð½FCF§æ€FçhÄË÷ÿðP‚Ö÷ÿ¶à¹÷ÿï÷ÿðµ¯MøˆF[IÐøÀyDËoœEBÐÜø¬ ʳ‘h)Û2hœB8Ð29ùÑñ<ËÈøjÈø@@k(ۓ±$Qø$P넵`Rø$PµbSø$P4 BµdñÑ@F]ø‹ð½#Oðÿ<Qø#@냬`Rø#@3˜BÅøH,bòÑêçaFá³Ñø€™BúÑ7IyD	hˆBKÐK³œEHÐÜø¬ ʳ‘h)Û2hB>Ð29ùÑ1H2IxDÛhÜø yDhhðê.HDòˆ1-KOô„bxD{DÉ÷áÿOð@F]ø‹ð½ H IxDyDhhðöèæç#IyD	h‹Bô‹¯IyD	hˆBÁÑàaF!±Ñø€™BúÑàIyD	h‹BÃÑhoð@B‘BÑñX@F]ø‹ð½€FKHøX;“B?ô‚¯)`¿ðÞè@F]ø‹ð½¿4NÈþ†þȲ÷ÿJþ\þÌþëè÷ÿŽÝ÷ÿÚí÷ÿ‚þ„°ðµ¯-éðñ×é6êŒèñpñÃjqFH
ÔëIh)F÷Ûë€Ðø(>ñÚàOð¾ñ
Ûñ(qFPø ,*Ú9ñ÷ÑOðàÐø°»ñH¿Ëñ¼ñH¿ÌñC ÜE
“ȿF ÖE+ڪë¾ñÔëŠ	ëŽÎñ!ë	ë9uhŒBE`ujEbulEdòÑñp*<Ûñ(#Oðÿ1@ø <:Øø(@b@øKöÑ-àòE+ڮë
ºñÔñpÊñëŽ	ëŠ!ë	ë9nhŒBF`njFbmlEdòÑñp*Ûñ(#Oðÿ1@ø <:¬jb@øK÷ÑÖEȿòFºñ8Ûñ#%&ë…Rø%„hLEÐ,@ð•€&ƒb€l(ZÕ5ªEíÑØøºñ
–‘Àòò€Ýø4ñ(UF
FFPø )ðë€PøK9,̿û3û"=ïÑñpàØø  
’FÝø4ë	mhºñ•,FÛœñp(0SF%FPø i³Pøk9.̿ûDûU;ñÑë	‚B8¿uE!Ó ×øà°	ñpÝé
(@ðفëáÖH*FÖIxDyDhÑøÄhðüDö¦$@òUð>¼(F‚B8¿uEÝÒØøñpºñÙø,@Àò¦€ÜEaÝñ(QF"Fj³ñÿ?jÜh“BgÑPø <09ûòñѐàðÔé‚F 
ð¸ï(ð,„¹Noð@BOðdOð~D
–Öøä3h‘B¿1`Öøä3Ã`&°IyD‘HòQñÅòëUûñJëÑ~ûQ)H¿IBš2ø0(ª2D>“ñcÆ*uFãØ%
)8¿%ëèC°B@ð€
ñ ë€{ðèëvâPF!Fë€Sl³ñÿ?ÜSj‹BÑRh8ûññÑ0àPFAÔë€@h(F÷Û끀j	àF
Fñp(ç–Fñp(ç ñ(RFQø <+Ú:ñ÷Ñ!à	h)H¿IB(OðCH¿@BˆBȿF"’ñ%F늃EÒYF%FQø+BûõùÓ(F”ðú耳FºñÍé	PÛ¨¤FñHOðÿ2[FTFSøk<
`Aø@lñöÑñ(	ñ˜F(]ÑšHFQFdFPø <9@ø+ûóFöÑ&ºñbڛàðþèFðéRHDö—RL@òíBxD|D#FÉ÷Uý(FðôèðêèFLHDòùq@òÅBxD#FÉ÷Fý(FðæèDöß$Oô£eã˜F(qШñ(	ñºñÕhàËñ
! êàpðÄê(ð7ƒ¨ëi!êá|ë“1DñƒÐø€…ádFºñKÔš¨ÌFQFë9^hZbûö2FöÑ&áFºñ9Û¨!(0RFPø <+¿`:ñöÑÍéž
ñ 	AFh"HF
ðÌê(˜Àjޱ	ñ(RFj³ñÿ?.ÜhƒB+ÑQø <1:ûðñÑàQF	ëSl³ñÿ?ÜSjƒBÑRh9ûðñÑ™ F*F
ð¢êà¿æûhJæIY´÷ÿTå÷ÿÄè÷ÿã÷ÿ˜ñ(Íé
˜š˜›Íø°ðÔû©@Fh"
ð€ê×øà°ñpÝø4Ýé
˜±˜F(@ð¼€QFH3ÔëIh)F÷Û뀀jºñ+Ú5àºñXÛØøQFÀjFë^l.*Õ^j–B'Ñ[h9ûòòÑ(hQFÀjëSl³ñÿ?ÍÜSjƒBÊÑRh9ûðñÑ4à ºñ
Ûñ(RFQø <+cÚ:ñ÷Ñ!^àñ(RFj³ñÿ?¬ÜhƒB©ÑQø <1:ûðñÑ(FRFPø(Éjj³ñÿ?™Üh‹B–ÑPø <0:ûññѻñÐ
ð¾ïF ñpññ( FSFþ÷àø(F
ð¶ïØé!ñëŠÒj˜BÒPøkrC˜BúÓ F
ðàé»ñ`Ð
ð˜ïF ñpññ( FSFþ÷ºø(FMà	h)H¿IB(H¿@BˆBÝ@Fð”ú0ðâ(FðŽú0ðálh»ñÐ
ðnïF ñpññ( FSFþ÷ø(Fñp
ðdï*Fñ(Øøñ5è"ñ("F3FÍøðÝú»ñ
Ð
ðDïF  F)F2FSFþ÷køHF
ð@ï	˜
ðï ‡áñRX¿ñ)	ÛÍé
@F "âF
ðléÔFÝé

™)Àò€ë
ñ ëJ3D5ñ›{“UõÓÝø,°(
›ð|hoð@BËøOðdÓøà
‘h‘B¿1`ÓøàËø JFHòQÅòëRûó^ëÓvû#+H¿[B™1øPë8ñcÆ)2FåØ!
+8¿!D€D¹ñÿ?ÝEBñ
ž-јøð(é(@Ñ3à-!Àñø

ž-ðÐ%êåy!HFð¶è ³i©ë“ÔÆiàñRX¿ñ)ÛÓF‚F0F "
ðèèPFÚF-ÛÝø,°ë	jBø;‹T2úÓ
žX¹DöááÝø,°
ñ 
›}çÝø,°
žÐø€oð@BËøOðdÖøph‘B¿1`ÖøpËø "FHòQÅòëRûó^ëÓvû#+H¿[B™1øP(©D8ñcÆ)2FåØ!
+8¿!D(©´ñÿ?ëÝEB6-
Ñ0xð¤è2à-!Àñø
-ôÐ%êåy!HFð6è(ð•€i©ë“ÔÄiàñRX¿ñ)ÛÓF‚F F "
ðfèPFÚF-tÛÝø,°ë	jBø;‹T2úÓ
ž(nЁhoð@CËø Öø4hšB¿2`Öø4
š#Ëø$ëD!ñ/XF÷÷û(TÐFÛøoð@D BÐ8Ëø¿XF
ð‚ë3H)F"xD@kè÷jþ(h BÑDöú	à8Döú(`Ñ(FF
ðlë!F(H@òáB(KxD{DÉ÷(úPF
ðÈíDöˆ$@òU
ðºíF!H"K!FxD*F{DÉ÷ú0F
ð¶íOðÿ0C°½è½èð@°pGÝø,°
ž“çDöÏÒçDöëàDöõàDö•4@ò.UÖçDöž4@ò/UÑçDö×àÝø,°Dö×Ûøoð@BBµÐ8]FËø°ѪçK»Æ÷ÿhâ÷ÿ;Í÷ÿDâ÷ÿðµ¯-éFFF
ðhí€F hoð@AˆB¿0 `(F
ðdë(_ÐF4HxDh„BJÐhh2IyD	hˆB¿@mð€P@Ñ F)F
ðÖíF(h.@Ðoð@JPEÐ8(`¿(F
ðØêHF1F"è÷Ãý0hPEÑDö5	à8Dö50`Ñ0F
F
ðÄê)FH@òåBKxD{DÉ÷ù hoð@AˆBÐ8 `¿ F
ð°ê@F½è½èð@
ð!º F)F
ðžíF(h.¾Ñoð@AˆBÑDö0ÖçDö.Óç8Dö0.F(`ÍÑÇç0òˆò3Í÷ÿá÷ÿðµ¯MøhIkëÑr"ðËÛëb¼ñÛ#ëƒë¬jrjªbtbrh¬hª`t`ªl²ñÿ?
Ürl*Õ39œEèÑ ]ø‹ð½!H!IxDyDhÑø¼@h
ð²ìF hoð@H!F@E¿0 `0F"è÷4ýHDöiK@òéBxD{DÉ÷ù h@EÐ8 `¿ F
ð2ê(F
ð–ì
ðŒìF
H
KCöæqxD@ò¯2{DÉ÷çø F
ð†ìOðÿ0]ø‹ð½¿JñÌ?ÇÜ÷ÿà÷ÿ6Å÷ÿæß÷ÿðµ¯-鉰×éžFziFÓø>ñÑø€Ùø`ÍéÂѸñ¨¿¼ñݐE¿”E3Ð.-Û F)F	ðŒîÝéED>DõÑ"à.Íø€Û×øÀ	ñ
ñ	ññ®ñÍéŠYF˜KFÍé(F"Fÿ÷¸ÿÝé>D˜DíÑ	°½èð½rC F)F	°½è½èð@
ð-¹ðµ¯-郰×é\Fh+Òø€Ñ.Û FaF*F	ð@î×øÀDD>õÑà.ۣñ
ññ	 FIFZFSFÍé\ÿ÷Öÿ×øÀDD>òѰ½èð½е¯„°F@hÐøÄ(jÑ F
ð 쨩ª
ðî hoð@AˆB¿0 `7HáhxDhBÐñ 
ð"îàajBÑh"bboð@B‘BÐ9`¿
ðJé i(¿
ðî hoð@AˆB¿8 `Ýé!˜
ðêíàhX±!oð@Bá`h‘BÐ9`¿
ð,é iX±!oð@B!ah‘BÐ9`¿
ðé`iX±!oð@Baah‘BÐ9`¿
ðé`hÐø  FˆG°н F
ð¦ë(Ñ`hI€iyDˆBô‰¯ F
ð¢ë(ìтçÿÿÿïðµ¯-é‚°_MF@h}D‚l0FÕø¨*gАG‚F(hÐÚøÕøì‚lPF*hАGF(iÐÚøoð@AˆBÐ8Êø¿PF
ðÆè`hÕø‚l F*[АG‚F(\Ð hoð@A¨FˆBÐ8 `¿ F
ð°èCHiF"1xD$Èò–€k”Ð÷èÿ(HÐF 
ðäè(]ÐFÆé¥1FØø°
ð‚ë(ZÐ1hoð@B‘BÐ91`а½èð½F0F
ð€è F°½èð½
ðbé‚F(–ÑOôMX@òi)Oð
$à
ðTéF(•ÑCòB8@òi)$à
ðJé‚F(¢ÑCòE8@òi)Oð
àCòP8@òj)&PFÇ÷;þ FÇ÷8þ0FÇ÷5þHAFKJFxD{DÈ÷ÿ °½èð½CòZ8@òi)&,FâçCòb8@òi)Oð
Ûçð<6Ù÷ÿ&Ü÷ÿnEðµ¯Mø½DNAh~DŠlÖø¨*NАGF(OÐhhÖøì‚l(F*LАGF(MÐ(hoð@AˆBÐ8(`¿(F
ðè`hÖø‚l F*>АGF(?Ð hoð@AˆBÐ8 `¿ F	ðêï 
ð0蘳Å`FÖø´!F
ðÐêx³!hoð@B‘BÐ9!`Ð]ø»ð½F F	ðÐï(F]ø»ð½
ð²èF(¯ÑCò§6%à
ð¨èF(±ÑCò©6	à
ð èF(¿ÑCò¬6àCò¯6$àCò´6%(FÇ÷”ý FÇ÷‘ýH1FK@òm"xD{DÈ÷bþ ]ø»ð½\;ÔÙ÷ÿÜÚ÷ÿðµ¯Mø½FÀhFF(±)F G±]ø»ð½0i±)F G(öÑpi±)F G(ðÑpj8±)F G(¿ ]ø»ð½ ]ø»ð½¿°µ¯,Ioð@CyDhÁhÄ`"hšB¿2"`)¿
hšB,Ñ"hoð@CišBa¿2"`)¿
hšB'Ñ"hoð@CAišBDa¿2"`)¿
hšB"ÑAja±"Bboð@BhBÐ8`¿F	ð*ï °½:
`ÏÑFF	ð"ï(FÉç:
`ÔÑFF	ðï(FÎç:
`ÙÑFF	ðï FÓç¿ëðµ¯-鍰
FøVßNF~DÉñCÐø˜ !G€F(ð¤ÚHÙIxDyD‘Ðø 	oÚøÈéoð@AˆBÑÈéªàBÈø ŠBÊø ÑÈø àoð@BÈø ‘BÊø¿0Êø Èø$Õø°ÍéÍé	õ[põlpõ²`̱»ñò4–ßèð7"- F
ðléÖøF FÊh
ðè(
ðF=+à»ñлñ@ðhi–Õé–Íé
–9àÕé– FÍé
–
ðHéF- Ú.àhiÕé– FÍé
–
ð<é!àÕø FÍø(
ð4éFÖø° FÊh	ðÌï(ðȀF=-Û˜Ðøl FÊh	ð¾ï(ðŠ€h(€òŠ€0Fè÷¢øF0Ñ	ðÞî(@ð§€˜1IyD	hˆBЎJzDhB¿PEÐ	ðÂîF0
Ñ	ðÆî(@ðì€Oðÿ6à&à@°ú€ðF	Ùøoð@AˆB¿0ÉøØøhŠBÐQ`¿	ðîØøÑEÈøLPÈøÑ™‰oˆB
Ññ HF*F
ðÜê0UÐØø$h±hÕØø8xO)Ñ@x°ú€ðF	à&àÚøoð@AÈø$ ˆB¿0ÊøhæÔ™ÈøP`ˆj(¿ñ_ê€p@ðœ€ ÈøT@F
°½èð½	ð^î(@ð‚€PHª
«!xDÍé° Fç÷Ïü(ÔÝé
–fçBò=QSàFIyD
hñhÒøœ0"˜G€F(ô¹®[àBòªQ@òaNHOKxD{DCàBòJQ:à	ð.î(iÑ;HOð;I&xD:J;KyDhzD{Dh9MÍøÀ}DÍée	ðhîBò1Qà	ðî(PÑ2H$2M»ñxD1K2I}Dh{DyDh0N¸¿$/J~DèPzD¨¿+F	ðHîBòSQ+H@ò]*KxD{DÈ÷#üØøoð@AˆBÐ8Èø¿@F	ðPíOð@F
°½èð½Bò8QàçBòLQÝç¿9úA$êÈl!"è÷'øBòŽa@òu‰çBò/QÉçBò'QÆçÜç0Ô÷ÿÞèØèžçú­÷ÿÆÓ÷ÿ±È÷ÿ©´÷ÿf纭÷ÿ{È÷ÿ¼­÷ÿo´÷ÿzÓ÷ÿéÄ÷ÿ^Ö÷ÿsÅ÷ÿèÖ÷ÿAk)²¿ ÀkhpG°µ¯FF
ð許Fhh!F€kBh(FG!hoð@B‘BÐ9!`¿°½F F	ðäì(F°½ °½ðµ¯-éã°æL€F|DàmˆBðŠ€Øø4 FFð>ú(ð¾€ßM}D.h°B𽀂h*@ðŀÐéšoð@AÙø ŠB¿2Éø Úø ŠB¿QÊøhoð@B‘BÐ9`¿	ð¦ìÍHxDÐø°ÙEbÐËHxDhE¿±E[ÐHF	ðí(ñ£€(ZÐ.¨h!!–	ð<é j(@ð€ÀIØøyD-‘#•ÊoBð܀Ðø¬0+ðр™h)Û3h–Bðπ39øÑØø `Øø4ØéâØøDÀ(Íø”
õyÍéH†Lۼñ9Ð&Rø&P	ë†\ø&@^ø&06°B‹`bŒdñÑ9àØøoð@AˆB¿0Èø@Fc°½èð½©ë°ú€ð@	(¤ÑØøQFh@FG(ð²€FØøBi@FG(𮀀Fð¾#Oðÿ<	ëƒRø#P^ø#@3˜B´`ÆøH5bòÑ &Éà@ò›BöyRàFHIxDyDhh	ðèëBö7àF*!Û|H"|IxDyDhh	ðÐì(àOôÏrBöž8àØø4(?÷^¯àl!"$ç÷ÏþCö@òÓ"Oðð®½*ÔlH*lMxDlKlI}Dh{DyDh¿+F	ð¦ìBö"hoð@CšBÐ: F"`ÑF	ð¸ë!F@ò›Oð	Oð
^H^KxD{DÈ÷qúOðð ½Fé³Ñø€‘BúÑ)hˆEKÐb³BHÐÐø¬0F˳™h)Û3h–B=Ð39ùÑNKNI{DyDhÓhÂh0h	ðdìCö@òÖ"$OððQ½@ò¡Oô#QÃçOôÑrBö˾çAHBIxDyDhh	ðPëãç?IyD	hŠBôô®!™ˆEF
Ð!±Ñø€‘BúÑà8IyD	hŠBÄÑØøoð@AÍø”ñX	ˆB¿0ÈøÍø˜€/IÚøyDÙé#Íé.#	h+‘ˆBÍø¤Íø Íøˆ€Íø€°@ð¢ƒÚøoð@AOðVFˆB¿0Êø ,!Oðÿ2$ '‘*–.©(’ë‚‘ñH‚F,˜г¦àÊ=Ôå˜åå$4zät›÷ÿ„äÞ÷ÿ<ä/±÷ÿóÒ÷ÿp¨÷ÿËÑ÷ÿúÒ÷ÿ†ã«Í÷ÿ<ã~—÷ÿ8ããôâ*hD)`l
ñ*žDF)_ՂF,˜(lÑÖé+š‘BnуE€ò½ƒðhPø+€ñØøoð@AˆB¿0Èø,¿ hoð@AˆBÑ@F	ð”ï(³ÒHØøxDhBSÑØø(ò€ðØøÀñHCA\Ð	늉hêàraà8 `¿ F	ð’ê@F	ðpï(ÙÑ#˜ÐøÈEqÑ'™.¨Ýé)–"ë1'‘‚b"‚`Oðÿ2‚d	à'˜(@ðµ‚/˜hD/ '
ñDF‚F,˜(’Ð,™0FˆG€F(¢Ñ@ãƒE€òNƒë‹Ðø€Žç@F	ðž쐱F	ð¢ì!hoð@B‘B«Ð9!`¨сF F	ðFêHFÝø¤ ç	ðÐê(@ðª‚	늁hOðÿ0
F-˜CöZ4@ò29õÈpñs‚ŠB€òp‚Ýø¤	늁jQC(š²ñÿ??÷<¯/šD/‘:ç@F	ðhìuçØø‚l-˜*ÐøÐ@FðҁGF(𵂠˜…BÐ{HxDh…B¿MEÐ(F	ð‚ê(ժ⠘(°ú€ð@	 ³sHihxDhB@ðف¨h(òìðéhÀñûöpÑ	ðlê(@ð}„Oðÿ6(hoð@A–ˆBÐ8(`Ñ
à(hoð@AˆBÑ à8(`OðÑ(F	ð¼éØø‚l-˜*ÐøÜ@Fð~GF(ðe‚ ˜…BÐPHxDh…B¿MEÐ(F	ð(ê(ÕZ⠘(°ú€ð@	 ³GHihxDhB@𚁨h(ò­ðéhÀñHC0Ñ	ðê(@ð'„Oðÿ0(hoð@AˆBÐ8(`Ñ
à(hoð@AˆBÑ à8(`OðÑ(F	ð`騸‚l-˜*ÐøØ@Fð*GF(ð‚ ˜…BÐ$HxDh…B¿MEÐ(F	ðÌé(Õ
⠘(°ú€ð@	³HihxDhB@ðZ¨h(òmðéhÀñHCAÑ	ð¶é(@ð҃Oðÿ0oð@A(hˆB#Ð8(` Ñà(hoð@AˆBÑ à¿ØáZàVà¤ß ßîÞêÞ8(`OðÑ(F	ðøèØø‚l-˜*ÐøÐ@FðȀGF(ð·(hoð@AˆBÐ8(`¿(F	ðÞèØø‚l-˜*ÐøÜ@F𵀐GF(𣁠hoð@AˆBÐ8 `¿ F	ðÄèØø‚l-˜*ÐøØ@F𢀐G(ðhoð@B‘BÐ9`ѐ˜	ðªè˜)™HE늓hÒø(lЙš)ð(Èà !šMEвñÿ?ݚB¨¿àF(¿ZàD"êârLEÍéÆ	Ð˜Ýø¤°ñÿ?ݘB¸¿F
à(Oðÿ0¿FÝø¤àD êàsœFF FðŠë™ûóûü'ûò.®ë…™œB©dªb¿0(š êàp¨`²ñÿ?Ý›˜l`D˜dà/˜`D/)'™*žX¿
F1
ñ'‘DF å	ð éF(ô-®àà	ðéF(ô®äà	ðéF(ôծèà	ðéF(ô7¯ìà	ðéF(ôJ¯ëà	ðþè(ô]¯ëà(F	ðVê(?ô.®F	ðXêF hoð@AˆB?ô"®8 `¿ Fðüïæ(F	ðHêFæ(F	ð:ê(?ôm®F	ð<êoð@A hˆBÐ8 `¿ Fðàï˜Xæ(F	ð,êTæ(F	ð ê(?ô¬®F	ð"êoð@A hˆBÐ8 `¿ FðÆï˜˜æ(F	ðê”æ-˜CöÐT@òu9˜0èIyD
hhhRFþ÷¡ü	ðêFãHäK!FxDJF{DÇ÷lþ0F	ðê%@òî"CöÊÝé$©Ýø˜°*ž0hoð@C˜B@ðV`á%@òí"OôgQíçÚIyD	hˆB?ôX¬PF	ðÜé(ð4‚F@ho,‘)Fð6‚Ýø¤Oðÿ;ÿ÷R¼ÎHRF-™xDhÑøèhþ÷Xü	ðÆéFÉHÉKCö”1xDOôNr{DÇ÷!þ F	ðÀé%@ò2Cö!³ç%@òú"Cö!­ç@òú"Cö!¨ç%@òû"Cö,!¢ç@òû"Cö.!ç%Oô?rCöB!—çOô?rCöD!’ç%@òþ"CöX!Œç%@òÿ"Cöe!†ç%Oô@rCör!€çð®ï*žX±¦IyD	h	hÌ÷ÿ(ðâð0ï*ž0hoð@AˆBÐ80`¿0Fðï-˜"Ýé$©ÀoihÝø˜°BeÐÑø¬ *ZБh)Û2hƒBZÐ29ùÑ.m.«Oð'Ë@òXÍéÆ.®Íé\ñnF\ø[¾ñFø[øÑðÉþ(ð<€F!˜€E*Ð-˜€o(ðAØø ‚Bð¡€Òø¬0+ðG™h)Û3h†Bð”€39øÑÐKÑI{DÒhyDhÃh0hðˆïFF%OôDrCöí!]à€F}àÑø€BÐ)ùѸIyD	hˆB§ѻñðæ€.«ÕøPÀ'
ñXÛé1nˈè`@.®@òXÍødÀñnF\ø[¾ñFø[øÑðjþ(ð؀€F#˜h€Eð¹€-˜€o(ð׀Øø ‚BCÐÒø¬0+ðh)Û3h†B4Ð39ùќKœI{DÒhyDhÃh0hð*ïFF%@ò2CöÄ! F0hoð@C˜BÐ80`Ñ0F.FF
Fð4î)F5F"F-¿(hoð@C˜BlÑDFŽHŽKxD{DÇ÷éüOð»ñÐÛøoð@AˆBÐ8Ëø¿XFðî,¿ hoð@AˆB=ѸñCйñ¿Ùøoð@AˆB
Ѻñ¿Úøoð@AˆBÑ@Fc°½èð½8Éø¿HFðêíéç´Üë­÷ÿðÊ÷ÿ8Êø¿PFðÜí@Fc°½èð½’ÛvÛW­÷ÿZÊ÷ÿ´Ú8 `¿ FðÆí¸ñ»Ñ@òŸBö©ÿ÷º8(`Ñ(FF
Fð¶í)F"F‡ç€FÛøoð@AˆB’јçAHBIxDBJyDhzDhð€îOðCö°!OôCroçCöÂ!@ò2jçCöã!OôDreç7H7IxDyDhhðpí<ç7H8IxDyDhhðfíÔæFi±Ñø€BúÑàFy±Ñø€BúÑÝø˜°Kç(IÝø˜°yD	hˆB?ôD¯ç(IÝø˜°yD	hˆB?ô;¯¨æ@òú"Cö!·å@òû"Cö2!²åOô?rCöH!­åCö{@òë"$Ýé$©Ýø˜°ç%@òë"Cö}OðÝé$©Ýø˜°0hoð@C˜Bôô®þæ%@òë"Cö¤ FŠå¿œÙ˜ØéÄ÷ÿóŽ÷ÿz×¼‹÷ÿ@×Ù5Ã÷ÿhת‹÷ÿ.×ÐÙóÃ÷ÿö¦÷ÿêÇ÷ÿðµ¯-郰F*ð€hˆFoð@A“FˆB¿0Èø0k(@ð9qk@Fð]ú(ðBFÞHxDÐøLEðA¢h*@ðLÔé¢oð@@oð@EÚøB¿1ÊøhB¿H` h’¨BÐ8 `¿ FðÂìØø¨BÐ8Èø¿@Fð¶ìÅHxDh‚EBÐÄIyD	hŠE¿ÊE;ÐPFð0í(ñ±hسJh0FYFG(ðFphMEÐé
@Ð)¿Jh*RÑ(¿Àh(@ð€™0Fí÷´ÿF(KÑBöw@ò­ªàâHrhxDâIhyDÒhhðTíOðÿ0°½èð½ªë°ú€ð@	±h(ÃÑÝø€0FiZFAF˜G(ðhoð@B‘B:Ñ% Uá)¿Jh*9Ñ™(¿Àh(@ð‰€0Fí÷sÿF˜»Bö@ò¯MFià™0FGF(³аh!F*Fƒh0F˜G(ðހ!hoð@F±BÐ9!`рF Fð"ì@Fh±B@ðá9`¿ðì%á™0FGF(ËИh¬BðꀴHxD€o(ðǀÔøEð߀Üø¬0+ðƀ™h)Û3h‚BðҀ39øѫJ«IzDÃhyDhÜø 0hðÄìBö’ hoð@BBÐ8 `Ñ FFðÖë!F@ò¯Ýø€HKxD{DÇ÷‘úOðÿ0Éà™0Fí÷†þF(ô‰¯;ç0Fí÷~þF(©ÑtçH%JxDzDÐø¬Ðk"æ÷þBö OôÓràBö2OôÔr%Oð
Îç…H†IxDyDhhð€ë˜OôÔrBöIh+à*ÛqH"qIxDyDhhðfìàBöWOôÕràBöa@ò«%¦ç*ÔgH*gMxDgKhI}Dh{DyDh¿+FðJìOôÔrBö:Oð
% hoð@C˜B?ô‹¯8 `ô‡¯ FFFðTë2F!F~çÝø€@ò­Böy hoð@C˜B?ôs¯æçBö¬@ò±%kçOHOIxDyDhhðëOçaFY±Ñø€BúÑà¿ÖºÕ´ÕEIyD	hˆBô1¯°h!FZFÃh0F˜G(VÐ!hoð@F±BÐ9!`ÑF Fðë(Fšhh±BÐ9`Ñðë Ýø€ºñ¿Úøoð@B‘BÑ-¿)hoð@B‘BѸñ¿Øøoð@B‘BѰ½èð½9ÊøçÑFPFðÚê Fáç9)`åÑF(FðÐê Fßç9ÈøäÑF@FðÆê F°½èð½Bö“ hoð@BBôܮâæDÖ%¹÷ÿ†"€+©¨÷ÿ:Ã÷ÿ°Óï÷ÿ‚Óu ÷ÿ9Â÷ÿ¶—÷ÿ.#ÖÒ‡÷ÿ¶ÒJÔm¾÷ÿ¬Ó¦Š÷ÿðµ¯-郰F@h‹FøW@Ô ðÊê(ð-‚"hoð@AŠB¿Q!`Ä`à hoð@AˆB¿0 `”+êëpðhë(ðՁÝøÀF»ñÛãH"oð@CxDÐøähžB¿6`ÐøäîhFø"2“EòÑÚH•xDh(F¤Eð¼Üøoð@@B¿HÌøÜø)Àò¡€ $oð@HOð	&Oð
à˜(QÐOð
Üø	ñ	4E}Úë‰0FÎh1hAE¿11`(¿hAEѽM}Dèm†BàмHqhxDhBÐ0FðâîP¹ßà9`ìÑðüéÝøÀççOð
!F´ñÿ?¨hؿÝøB"Òêh3hRø!CE¿Z2`êhBø!`hAE·Ð9`´ÑðØéÝø/çÜøAð3ëOð
 ¢ç FðÎì(ð}F˜)F2FðTí)hAEÐ9)`Ñ)FFFð²é(FÝøÀ(õ†¯Cö
@ò¶(OðdFOð	eF7áºúŠñÜøOêQoð@AˆBÑà&Oð$oð@AˆBÐ8ÌøиñЫëðŠìF°¹Cö5
@òº(ïà`Fðv靸ñìѰHoð@BxDh!h‘B¿hH `(Fðí(ð送F ð¦é(ðë€ÀéIÝé5)hoð@B‘B	Ð9)`ÑF(FFðJé+F F+¿hoð@B‘B
Ñ.¿1hoð@B‘BѰ½èð½9`ñÑFFð.é Fëç91`ïÑF0Fð&é F°½èð½ ðfé(ðڀ€LƒFoð@B|DÔø´h‘B¿1`Ôø´zIËøphyD
hAh‘B@ð̀hoð@B‘BÐ1`ph(ð¾€iJ
ÔOöÿsÁó‚Àò)¿Oöÿs)¿ÿ#à#ÐøÀ!FËøÔø0oð@Dh¢B¿2`Ñø0ñËøXF!õ÷Éø(ðœ€FÛøoð@H@EÐ8Ëø¿XFð¼èèk!F"Oðæ÷¥û h@EÑCòòz@òµ(
à8 `Ñ Fð¦èCòòz@òµ(,FOð	4àCòƒz@ò®(ðæÒÒÐ6(fÑ Còz@ò§(&$à5H5IxDyDhhðhèCòOz@ò«(&%F.àCö:
@òº(OðOð	àCö<
@òº(Oð FÅ÷QþXFÅ÷NþHFÅ÷Kþ(HQF(KBFxD{DÆ÷ÿ› -ôü®	ç Cò
z@ò¥(&%$Oð¤çCö
@ò¶(àCòÚz@òµ(OðŠçCòâz	àJzDh‘BÑÑjˆG3çCòíz@òµ(Oð	,F¼ç	JzDh‘BîÐaið&ì!çzÍt„÷ÿH´ÎâÌpÍ.ÏD„÷ÿR¼÷ÿ„°ðµ¯-遰FÕHÇé‘xDÇé#Ðø€ÁEÐøop±ÐHxD
àØøoð@B‘B¿Ðø€HÈødáÉHxDhoð@A hˆB¿0 ` ð$è(ð²FØøoð@BOðB¿0Èø¼HÆø€xDÐø¤h“B¿Z
`Ðø¤Æé1FÀo"þ÷®ø‚F(ðœÜH"ÊøñxDAoØøÊøoð@AˆB¿0ÈøPF@øX/2hŠBÐQ1`ÑF0Fð”ï FYFh"ð4ì¹ñÐ	ñ¿ó[Pè/Q@è+øÑ*¿ó[@óoÛøP¨hÁi(FˆG(ð`ÚøÀoð@D>o
h¢BÐ:
`сFFðdïHFÊøÀñ hm,"ÊøT
ñ ðþëØø
ñ€ÛøÊø4` BÊé¿0Èøél ÊøD `ó_
ñ 
ñ`ÊøLë†ÊéRˆB	ÒFh+Õ2ŠBùÓàÊøDë†	Úø,OðMEÊø(wÒoð@Hà5Êø(@MEoÒ(h\Fðê(ðŸ€,ƒF¿ h@E-ÑÚø(ðê(ð—€YFFð’ê(ðœ€F h@EÐ8 `¿ FðôîHqhxDhBѰh(<ØðñhÀñûô`#Ð0h@EÀÐ(à8 `¿ FðØîÚø(ðÜé(ÌÑbà0Fðép±Fðé!FFh@EàÐ8`¿FðÀîÙçðLï(iÑOðÿ40h@E–Ð80`¿0Fð°îç0FðüèFÄçÚø×é!Êé1!oð@AˆBÑÐFà0\FÐFÊøoð@AˆBÐ8Êø¿PFðŽî£F»ñ¿Ûøoð@AˆBÑ@F°½è½èð@°pG8Ëø¿XFðtîïçDò1@òBàDò&1@òB\F8H8KxD{DÆ÷)ý/àDò(1@òB hoð@C˜BÑà@Ì<Ì"Ì®Dò+1@òB4F hoð@C˜B	Ð8 `Ñ FFFð>î*F!FHKxD{DÆ÷üüºñ	Ð\FÚøOðoð@AˆB•ћçOð™çDò%!@òõ2OðOð
 hoð@C˜BÒÑÛçDò0!@òõ2ÆçDòO!@òú2$£ç	ÑÙøoð@AˆB¿0Éø…æDòF"î÷¶ù©˜÷ÿ¸÷ÿt#™÷ÿj¸÷ÿ\ʀµoFý÷äþˆ±	I	JyDzD	hSoƒ`oð@C
hÀøÀšB¿2
`!e€½Èìðµ¯Mø½)gÐQMoð@F}D+hK`h´B¿f`Ö¿k.dÑL¿Äk$Ìað¿l$bôŒ¿Dl$LbRL¿‚k"Šaj
`BkJaÂjÊ`‚jŠ`k
aoð@Bh”B¿c`Khh”BÐb`Ð*hH`BÐ ]ø»ð½FFFð†í F1F*hH`BðÑhoð@C˜BÐ8`Ð H`]ø»ð½FFðní!F H`]ø»ð½HIxDyDhhðHíOðÿ0]ø»ð½HFKxD{DÐø° XkF"æ÷?øHBö^aKOôrxD{DÆ÷ü`hh±hoð@C!FšBÐ:`Ñð8í!F H`Oðÿ0]ø»ð½ȘŽ÷ÿÚÇÌÆJ“÷ÿ.¶÷ÿý÷.¼ðµ¯Mø½¸°*2ÚF+GÑ© Fü÷~û(LÐek¬Fh" Fð®é-Û˜Àjë…Jl²ñÿ?
ÜJj‚BÑIh=ûðñÑ'HxDà&HxDhoð@Bh‘B¿1`8°]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEð´í 8°]ø»ð½˜h(´ÐIFyDå÷†û(­Ñ	àHCòAK@òs"xD{DÆ÷û 8°]ø»ð½6ƒŒ÷ÿï—÷ÿVz÷ÿA“÷ÿŗ÷ÿ<Æ:Ɓ÷ÿµ÷ÿðµ¯Mø½¸°*4ÚF+IÑ© Fü÷þú(NÐek¬Fh" Fð.é-Û˜!Àj끓l³ñÿ?ܓjƒBђh1BûððÑ'HxDà&HxDhoð@Bh‘B¿1`8°]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEð2í 8°]ø»ð½˜h(²ÐIFyDå÷û(«Ñ	àHCòyAK@òy"xD{DÆ÷ýú 8°]ø»ð½2Ŏ‹÷ÿߚ÷ÿRy÷ÿ=’÷ÿµš÷ÿ8Å6ŕª÷ÿ´÷ÿðµ¯Mø¸°*VڀF+kÑñ<ØøLØø @Øø40 ðx&Í+Íé„#ۍ±
ñx Qø `뀦`Rø `¦bUø `0ƒB¦dñÑà¨Fñ(Oðÿ0Qøk<Eø lRøk(bEøkôÑØø,Lð8ØøP/JÍ騑zD©ðúð`쐻­©h"(Fðnè@F)Fðû`³8°]ø‹ð½H&IxDLKyDh|D{DhM’"F}DÍéeðŽì 8°]ø‹ð½˜h(ÐIFyDå÷`ú(ô‰¯àCòòA@ò"àCòýA@ò†"HKxD{DÆ÷Sú 8°]ø‹ð½êÃFŠ÷ÿpÖûÿ
x÷ÿõ÷ÿFÖûÿ±ÖûÿÝz÷ÿ¾²÷ÿðµ¯MøҰ*VڀF+kÑñ<ØøLØø @Øø40 ðx&Í+Íé8„#ۍ±
ñà Qø `뀦`Rø `¦bUø `0ƒB¦dñÑà8¨Fñ(Oðÿ0Qøk<Eø lRøk(bEøkôÑØø,LðXØøP/JÍ騑zD8©ð\ùð¸됻­©h"(FðÆï@F)FðÙú`³R°]ø‹ð½H&IxDLKyDh|D{DhM’"F}DÍéeðæë R°]ø‹ð½˜h(ÐIFyDå÷¸ù(ô‰¯àCòlQ@ò"àCòwQ@ò’"HKxD{DÆ÷«ù R°]ø‹ð½šÂöˆ÷ÿÇw÷ÿºv÷ÿ¥÷ÿw÷ÿcÕûÿ	–÷ÿn±÷ÿðµ¯Mø½„°*Ú{»#H$JxDzDÐø<Ðk"å÷¬ý HCòÍQ K"xD{DÆ÷yù °]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEð|ë °]ø»ð½˜h(ÌÐ	IFyDå÷Nù(ÅÑ×ç¿ÆÁ"ˆ÷ÿÔûÿæu÷ÿю÷ÿçÓûÿ¤žp‰÷ÿ
±÷ÿðµ¯-釰EL |DõÁ`C±ë‚
º±*;јh(Ûdà*5Ñ=H"Ôø<xDÀkå÷Fý:HCòRa:K"xD{D?àÓø°’»ñ۠F FØøV™F	ñ&FTø&¨B4Ð6³EøÑ&Tø&(F"å÷ú('Ñ6³EôÑðºêšè»%H&%IxD%L&KyDh|D{Dh$M’"F}DÍéeðöêCò)a H" KxD{DÆ÷Òø °½èð½ÙÔZø&(ÕК«ñKFDF(œÛH­QFxDÍé ªF+Få÷þø°ñÿ?ŽÜCòaÖçCòaÓç¿øÇÒûÿÌ ÷ÿ>°÷ÿºÀ‡÷ÿÓûÿÚt÷ÿ¯÷ÿ—Ÿ÷ÿ¼¯÷ÿðµ¯-é¹°
Fh!F’F8ðrî8i,7×écÕø€6“(ÛñH"Pø")@ñ2”B÷Ñ Fðôé(ðƒF,Û5–ñOð	Vø)ð¤ì(ðù€ë‰	ñ	LEÈ`ñÑ5žà FðÖéƒF(ðç€5•šøØø8€œMf(}D
ÑÕø#oð@AÚøˆBÐõpq	àÕø"oð@AÚøˆBÐõ0q0ÊøÑø 0Fðlì(ðF@FðÜë(ðހ€F ðžé(ðހÛøFoð@@"B¿1ËøÆé¹Oð	Æø€ÚøB¿HÊøÆø 1F(où÷,þ(ð@€F0h5oð@IHEÐ80`¿0Fð$騸HE
ÐAoð@B‘BÈøÐ(Èø¿@FðéÚøoð@AˆBÐ8Êø¿PFðéÝøиñð®€(hÝé62FCm@Fì÷ý(XÐ!FJF#í÷0ø(QԕèñmFÍé0DX$2–\øk<EøkùÑ
ñXh$MFUøk<LøkùÑü÷ø°ñÿ?3ÝÛøoð@AˆBÐ8Ëø¿XFðÄè¸ñ¿Øøoð@AˆBÑ9°½èð½8Èø÷Ñ@F9°½è½èð@ðæ¿-H.IxDyDhhð‚éOðOðÝøàÙø(¿hoð@B‘BÑ »ñÉé¼ÑÈç9`¿ðˆè »ñÉé°ѼçBòD Oð	àBòF 4Oð&àBòH &àBòV Oð4HF5Ä÷Sþ@FÄ÷Pþ0FÄ÷MþH@òK4™xD{DÅ÷ÿOðºñô@¯²çOð±ç轀§÷ÿ ć÷ÿT¬÷ÿðµ¯Mø½š°*JChzDÒø|ÀcEÐÓø¬@Œ±£h+Û4"hbEÐ4;ùÑOð$àÓø€0cEÐ+ùÑJzDh”EðÑÐé1NmEkÑéÑé#ÍéæñÍéTX$iF^ø[<Aø[ùÑaFþ÷ùÿ±°]ø»ð½F Ä÷æý	HDòåA	K@òMBxD{DÅ÷¶þ F°]ø»ð½¿–¬¼à˜÷ÿ„«÷ÿðµ¯-éš°jÐø4ÐéƒÐøD9ñÍé%ۼñÐ$îFSø$Pë„\ø$`Xø$ 4¡EŠ`bŽdñÑàmFñ(Oðÿ<Xø[¹ñ	SøëÄø ÀDø \DøëòÑiFÿ÷dÿ(?ÐFSHxDh„BfÐQHxDÀo(GÐbh‚B^ÐÒø¬0+NЙh)Û3h†BSÐ39ùÑJKKI{DÒhyDhÃh0hð`è hoð@AˆBÐ8 `¿ FðvïBHBö˜qAKOôrxD{DÅ÷1þ °½èð½0HDòiA0L@ò<BxD|D#FÅ÷!þ-HBö–qOôr#FxDåç,H,IxDyDhhð4ï hoð@AˆBÊÑÏçF!±Ñø€BúÑà#IyD	hˆB®ÑñXü÷­ü0Ð hoð@AˆBÑ F°½èð½A!` Foð@B‘B·Ð9!`´ÑF Fðï(F°½èð½HBö£qK@ò-"xD{DÅ÷Òý!h oð@B‘B›Ðâ翛r÷ÿ\ª÷ÿPš÷ÿˆ»Z
»Do÷ÿ満»£¥÷ÿ„š÷ÿzª÷ÿƙ÷ÿ¼©÷ÿе¯hÉiˆG(¿нIFK@ò2"yD{DFBöíqÅ÷šý Fнá„÷ÿR©÷ÿðµ¯-éF ðÆï(~ÐFhkîk뀮B2Òoð@Ià6®B,Ò0hð¼é(?Сh"iŠBÝhJE¿2`âhBø!1¡`hIEæÐ9`¿ðœîàç€F FAFð~éF@F)íÐCòd"hoð@CšB Ñ)à Fð(ê(BÐ!hoð@B‘BÐ9!`нèð½F Fðvî(F½èð½ Còb"hoð@CšB	Ð:"`ÑF FFðbî!F(F(¿hoð@CšBÑH@ò9"KxD{DÅ÷ý ½èð½:`ðÑFðHî!FëçCò\èç Còh"hoð@CšBÏÑØç¿#v÷ÿF¨÷ÿðµ¯-éFl(~Ð ð*ï(ðˆ€Fhk.l뀮B,Òoð@Ià6®B&Ò0hðéг¡h"iŠBÝhJE¿2`âhBø!1¡`hIEçÐ9`¿ðîáç€F FAFðâèF@F)íÐCò×à Fðé(QÐ!hoð@B‘BÐ9!`нèð½F FðÞí(F½èð½CòÕ "hoð@CšB	Ð:"`ÑF FFðÊí(F!F(¿hoð@CšBÑ@òA"HKxD{DÅ÷ü ½èð½:`ðÑFð°í!Fëç
H
JxDzDÐø¤Pk"å÷“øCò»@ò?"ÞçCòÏÙçCòÛ¿çrlً÷ÿ§÷ÿðµ¯-éF@l(RÐ &ð„î(ð€€Fhknl뀮B/Òoð@Hà6®B)Ò0hðzè(TСh"iŠBÝhBE¿2`âhBø!1¡`hAEæÐ9`¿ðZíàç‚F FQFð<èFPF)íÐCòNOôy5à Fðèè(JÐ!hoð@B‘BÐ9!`ÑF Fð:í(F½èð½HikxDÐøèBhRk*¿’h*Ñð‰ù(±½èð½G(ùÑCò.@òF)&àCòLOôyOð
&F0FÄ÷üúPFÄ÷ùúHAFKJFxD{DÅ÷Ëû ½èð½CòFOôyOð
æçCòRÞ翂´s÷ÿ®¥÷ÿе¯@kðTí(¿нIFKOôryD{DFCò•Å÷¢û Fнó{÷ÿb¥÷ÿе¯ÀjðÚï(¿нIFKOôryD{DFCòÖÅ÷ˆû Fнbs÷ÿ.¥÷ÿðµ¯MøF,HihxDŠlÐøœ(Fr³GF€³èjð²ïx³F F)Fðèh³!hoð@F±BÐ9!`Ð)h±BÐ9)`Ð]ø‹ð½€F FðŽì@F)h±BñÑóçF(Fð„ì F]ø‹ð½ðfíF(ÎÑCò&àCò&%àCò& FÄ÷[ú(FÄ÷XúH1FKOôrxD{DÅ÷)û ]ø‹ð½¿†¯÷ÿj¤÷ÿðµ¯-遰VI€FiyD	hˆBÐ$Oð	ZàQIoð@C$yDÑø¨hšB¿2`Ñø¨Øø4Øø<`ë
VE-Òoð@Kà6VE'ҁF0h%Fð0ï(kÐ-F¿(hXEÑHF!Fð¬ï(dÐÙøYEåÐ9ÉøáÑFHFðì(FÛç8(`¿(Fðìäçhoð@B‘B¿1`Øøh“BÐZ
`ÑFFðòë(FFÈøhoð@B%F‘B¿1`Øø¹ñ¿Ùøoð@B‘B
Ñ-¿)hoð@B‘B
Ѱ½èð½9ÉøðÑFHFðÈë Fêç9)`îÑF(Fð¾ë F°½èð½Cò~!@ò["àCòŠ!Oôr%FHKxD{DÅ÷oú Ãç¿à´¤¯y÷ÿö¢÷ÿ°µ¯FFð F(F!Fðúî!hoð@B‘BÐ9!`¿°½F Fð†ë(F°½ °½¿е¯„°F@hÐøÄ(LÑ Fð$ªðè hoð@AˆB¿0 ` m(KÐ3IyD	hˆBFÐñ¿ó[RèABè+øÑ"(¿ó[âe8ۢe hoð@AˆB¿8 `Ýé!˜ðòïÔøÀ`±!oð@BÄøÀh‘BÐ9`¿ð2ë Fðè Fü÷°ù°н FðÈí(­Ñ`hI€iyDˆB§Ñ FðÄí(íѡç  eÇçy¹ m(ÃÐ!oð@B¡eh‘B¼Ð9`¿ðë¶çDò0ì÷¹þ¿Aÿÿÿ³ðµ¯Mø½FÀhFF(±)F G±]ø»ð½0i±)F G(öÑpi±)F G(ðÑpj±)F G(êÑÖøÀ8±)F G(¿ ]ø»ð½ ]ø»𽰵¯Fü÷_û%Hoð@BxDhÔøÀÄøÀP)h‘B¿1)`(¿h‘B-Ѡm(¿¨BÑ  e °½ñ¿ó[RèABè+øÑ"(¿ó[âe¢¿¢e °½©¹ mX±!oð@B¡eh‘BÐ9`¿ðˆê °½9`¿ð‚êËçKöY2ì÷4þȱðµ¯Mø½„°*Ú{»#H$JxDzDÐø<Ðk"ä÷Xý HDòK K"xD{DÅ÷%ù °]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEð(ë °]ø»ð½˜h(ÌÐ	IFyDä÷úø(ÅÑ×翱zw÷ÿiÃûÿ>e÷ÿ)~÷ÿ?ÃûÿüÿöÂn÷ÿb ÷ÿðµ¯-釰EL |DõÁ`C±ë‚
º±*;јh(Ûdà*5Ñ=H"Ôø<xDÀkä÷òü:HDòÐ:K"xD{D?àÓø°’»ñ۠F FØøV™F	ñ&FTø&¨B4Ð6³EøÑ&Tø&(F"ä÷-ú('Ñ6³EôÑðfêšè»%H&%IxD%L&KyDh|D{Dh$M’"F}DÍéeð¢êDò§ H" KxD{DÅ÷~ø °½èð½ÙÔZø&(ÕК«ñKFDF(œÛH­QFxDÍé ªF+Fä÷ªø°ñÿ?ŽÜDòœÖçDò—Óç¿PÿÂûÿ$'‘÷ÿ–Ÿ÷ÿ°nv÷ÿoÂûÿ2d÷ÿåž÷ÿ¥÷ÿŸ÷ÿðµ¯Mø¶°FFFFð`鐳AhIm)ԀF*H*IxDyDhhàÐéC³ð¿"“BȿF
D€F²B"Ò!HxDhh IÍébyD"F+Fð(êØøoð@B‘BÐ9@FÈø¿ð<é 6°]ø‹ð½"
D€F²BÜӸh(ѱBÙJ#FÍéV­zD‘(FÈ!ðZé )F"ð\é°ñÿ?ÐÝ@F6°]ø‹ð½>¯.÷ÿ>¯t†÷ÿY{÷ÿðµ¯-é‚°ˆF3IšF‘FyDFðîè(@ÐAFFð 騱QFFðºëà±0FQFðÖêÉøP³ hoð@AˆB9Ñ °½èð½"HxDhh(Fðªê IF0FyDàHxDhÐø(FðœêF0Fð¸íI*FÍé HFyDCFð é hoð@AˆBÑOðÿ0°½èð½8 `Oðÿ0а½èð½8 `OðöÑF Fð¢è(F°½èð½¿øœ÷ÿö­ü“÷ÿ®éƒ÷ÿðµ¯-é‚°ˆF3IšF‘FyDFðvè(@ÐAFFð(騱QFFðBëà±0FQFð^êÉøP³ hoð@AˆB9Ñ °½èð½"HxDhh(Fð2ê IF0FyDàHxDhÐø(Fð$êF0Fð@íI*FÍé HFyDCFð(é hoð@AˆBÑOðÿ0°½èð½8 `Oðÿ0а½èð½8 `OðöÑF Fð*è(F°½è𽿜÷ÿ­As÷ÿ&­òh÷ÿðµ¯-é‘°¤N Íé+~DÍé
õÁ`õÀ`ò`
JÐ*2؛Fë‚	ßèðRcØFÍé’XøŸ	–¹ñÛ	˜ñ%ÐøfTø%°Bðò5©E÷Ñ%Tø%0F"ä÷*ø(@ðã5©EóÑðbèš(@ð
ƒH&IxDL‚KyDh|D{Dh€M’"F}DÍéeðœèDöPdAâ*çÑÑ頉hÍé ‘ðûF0&Ñ àÍé’ÛøÑé	–ÈFÍéÍé¹ñ€òîâÑ頋hÛø“Íé )€ò6‚ðôúF0Ñðè(@ðv‚HFÝø@€ðèï(ð=‚FÖøì)Fðnì(ñ8‚)hoð@B‘BÐ9)`ð°€(ðµ€poÖø,Bh’l*ð(‚GF(ð)‚LHahxDhB@ð‚åh-ð
‚)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ Fð8ï 4F
©B1Íé
Z¡ë€ FÌ÷qþ-F¿(hoð@AˆB@ð.ð hoð@AˆBÐ8 `¿ Fðï*HxDh€EÐ)IØøyD	hˆB@ðځ0FAFú÷éû(ðáhoð@B‘BÐ9`¿ðöî0hoð@AˆBÑ0F°½èð½A1`0Foð@B‘BÐ91`ð䀰½èð½ØFhXø¯Íé&PFÍø ºñ€òî€á¿<û¬br÷ÿоûÿ&`÷ÿy÷ÿ<«fª”ªF(Fð¶î F(ôK¯ ð°ï(ð¡FÖøÔoð@Bh‘B¿1`ÖøÔéh`ÖøÌEðZè(ð1FFˆF	h 2F F+FðTèF0hoð@AˆBÐ80`¿0Fð€î,ðv(hoð@AFFˆBÐ8(`¿(FðrîÖøÔ FÅ÷ú(ðy€Fhoð@E¨BÐAÈø©BÐ(Èø¿@FðXî h¨BÐ8 `¿ FðNîHFð´î(ð^FÖøˆ!Fð2é(ðXF h¨BÐ8 `¿ Fð6î@F1F"ä÷ ù0h¨BÐ80`¿0Fð(îDö«a½H"½KxD{DÄ÷äüØøoð@AˆBÐ8Èø¿@Fðî °½èð½8(`¿(Fðî.ôä®OðDöÑa"áF0Fðúí F°½èð½?õ®˜Pø%(?ô®©ñØø ÝøºñÛ	˜ñ$ÐøfUø$°BÐ4¢EøÑ$Uø$0F"ã÷þ(Ñ4¢EôÑðVî(@ðû€Dö2dOð3àôÔYø$(ïА˜ÍøØø ñ¹ñÛ	˜ñ$Ðøf‚FUø$°B8Ð4¡EøÑ$Uø$0F"ã÷çý(+Ñ4¡EôÑð î(@ðÀDö<dOðfH&fIxDfJfKyDhzD{DhdMÍøÀ}DÍéeðVîaH!FaK"xD{DÄ÷4ü °½èð½ÕÔ˜Pø$(ÏÐVF¨ñš˜Ýé©)ÿöʭLH«IFxDÍé 
ªXFã÷\ü(ñŠ€Ýé ð¯øF0��å% 	æDöa"EàDöƒa"2àðîF(ô׭Dö½a"7àCIyD
hBICJÃhyD(hzDðîDöéaàDöêa>H	">KxD{DÄ÷Üû1h oð@B‘B?ô.®(æDöKd”çDöŽa"àDö“a"(hoð@C˜B	Ð8(`Ñ(FFFðøì*F!F#H#KxD{DçOðDö–a"àDö¤aÁæDö¦a" hoð@C˜B	Ð8 `Ñ FFFðØì*F!FHKxD{DÄ÷•û¸ñ��æDö:dPçDö0dMçDö(dJçDöAdGçî¹ûÿ|§Øm÷ÿFºûÿœ[÷ÿ‡t÷ÿ¨y÷ÿ€–÷ÿªx÷ÿ‚•÷ÿ{÷ÿà—÷ÿȦx÷ÿ°]÷ÿøx÷ÿЕ÷ÿjx÷ÿB•÷ÿ°µ¯Ah‘øWÉ
Ёh)ٽè°@ðä»ðÀhÁñHC°½ã÷ÿþˆ±Fÿ÷åÿ!hoð@B‘BóÐ9!`¿°½F Fðpì(F°½Oðÿ0°½¿ðµ¯-鉰àM àN}D~D,hòt`Íé@k±ë‚*AÐ*ÑhÓø°”»ñrÛ~á*oÐ*Ñh”jàÑH²ñÿ?ÑLxDÑN|DÑMh~DÐK}DÐIhؿ&FÔCyDOêÔ|ÍL{D’|D²ñÿ?ÍéÆؿ+F"FðíKònaÇHAò2ÆKxD{DÄ÷ßú$ F	°½èð½Óø°»ñ4ÛÖøtF•ñ–&Uø& BÐ6³EøљF’F&Uø& F"ã÷Gü(Ñ6³EôÑ	à™F’FXø&@$±«ñ”à÷Õðvì(@𑁘hRFKFž»ñ€ò
ÖøÌHhøWÀQÕ`h‚l F*XАG(YÐhoð@B‘BÐ9`¿ðÀë`hÖøÈ‚l F*ðû€GF(ðü€ÉI(FyDðvî)hoð@B‘BÐ9)`а³0Ñð2ì(@ðõ€!ðn‘©"1Èò”Ì÷ÙúF(ôw¯Kò°aAòW2Wá°FF(Fð†ë0FFF(ÛÑà«H¬IxDyDhhð`ëEòŽq‰"¿àðZì(¥ÑðŽëahðnBð‘€Ñø¬ *ퟐ�h)Û2hƒBð„€29øÑÖøÐQ0hêh)Fð²ì(ð@Fhoð@AˆB¿0Éø”HÙøxDhBð½€Oð ©Íé„B¤ë€HFÌ÷wú¸ñF¿Øøoð@AˆB-ѭ³Ùøoð@AˆBÐ8Éø¿HFðëðn"!Èò‘!F•Ì÷UúF(hoð@A,𭀈B?ôí®8(`ôé®(Fðþê F	°½èð½8Èø¿@Fðòê-ÉÑÙøoð@AˆB@ð›€KòøaAò]2±àÑø€BÐ)ùÑ_IyD	hˆBô¯ hoð@AˆB¿0 ` F	°½èð½PH¬AFxDÍé ªF#Fã÷Ïù(jÔœãæð¤ëF(ô¯EòµqŒ"GHHKxD{DÄ÷tùð<ë(?ô¯Kò¥aAòU2qà¥Üóð¤
r÷ÿϓ÷ÿ†÷ÿ(k÷ÿ8k÷ÿ²·ûÿ(„÷ÿº“÷ÿðë ¹(FÉ÷Hù(XÑKòäaAò]2NàÙø€¸ñ?ô=¯Øøoð@@ÙøPB¿1Èø)hB¿H(`Ùøoð@AˆBÐ8Éø¿HFð^ê ©FçˆBÑKòüaAò]2!àKò`a/æKò[a,æ8KòødÉøÐAò]2Kòøaà8Kòüd(`ÐAò]2KòüaàMF(Fð6êAò]2!FHKxD{DæFäæ¿ê´ûÿl£øx÷ÿ*x÷ÿä÷ÿá~÷ÿ&¢£N€÷ÿà÷ÿÔÔÔԀµoFh‚hFG
Ÿíî
¸î@
 î
î
€½€3hÂhFG)¸¿pGðµ¯Mø½F
FF0hñhˆGAì=¤ìöÑ]ø»½èð@pG)¸¿pGðµ¯Mø½-틟í
ŠF
FF0h±hˆG
=î
¸î@
 î
¤ì
ñѽì‹]ø»½èð@pG¿€3¿¿ðµ¯-遰-í‹€F3HxDF3HxD‚F2HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(Fð"îAìà²IFRF	ëÀ
ëÀ‘íZø0!î‹Rhivë/Ó!ÐëÀØøíí›Øø0îI«ˆG±îHAìQì
î›ð°îAì´î@›ñîú½ÕàØøØøˆGðAð°îŸíAì0îA‹Qì½ì‹°½è𽿃»~)ÙÉ@2½ûÿ,Åûÿ&ùûÿ¿¿ðµ¯-遰-í‹‚°ƒF)’F‘fÛ8HOð
Ÿí5‹xD€F6HxDFàÛøÛøˆGðAðrîAì8î@›˜ëÊ
ñ
€í›˜‚EDÐÛéˆGÂÀ
@êATÍ
BêAv)F FðŠíAìð²AFJFëÀ	ëÀ‘íYø0!î›RhauëÓÓ1ÄÐIyDëÀÛøíí«Ûø0îJ»ˆG±îIAìQìî«ðîAì´î@«ñîú»հ簽싰½è𽃻~)ÙÉ@.¼ûÿ(Äûÿª÷ûÿðµ¯-é-í‹7NFŸí3Š~D°F5N6H~DxDF h¡hˆGA
ÀóGîAFë…¸î@
‘í1FVø%±ëP/!îš#Øôÿ'Ð h¡hˆGî
î
	노î@
ííª1îJ î
ð@ðšíî
´î@ªñîúÄÕî
½ì‹½èð½ h¡hˆG
Ÿí
î
¸î@
 î
î
ðtíŸí
î
0îAšî
½ì‹½èð½€3€³ÉNö@4Ëûÿ,Ïûÿ*ÿûÿðµ¯-遰-í
‹‚°)’iÛ;LFŸí8ЉF|DŸí7šŸí4ªOð
£F5L6H|DxD€Fà0h±hˆG
î
¸î@
 î
î
ð.íî
9î@º˜ëŠ
ñ
ÊE€íº;Ð0h±hˆGA
ÀóGîYFë…¸î@
‘í!FTø%±ëP/!îºßØôÿÊÐ0h±hˆGî
î
노î@
ííÊ1îL î

îʁð@ðöìî
´î@ÊñîúÄպç°½ì
‹°½èð½€3€³ÉNö@0ÊûÿÎûÿþûÿ)¸¿pGðµ¯Mø½F
FF0hñhˆGðAðúìðA=Aì¤ìðÑ]ø»½èð@pG)¸¿pGðµ¯Mø½-틟íŠF
FF0h±hˆG
î
¸î@
 î
·îÀ
QìðÎìAì=·îÀ±î@
¤ì
åѽì‹]ø»½èð@pG¿€³¿¿ðµ¯-遰-í
‹€FKH¾î‹xDFJHxD‚FIHxDƒFØéˆGF@
@êÁVÁóS$0F!FðÌëê²KF	ëÂAìQFZø2“í
ëÂë!î@›Ih!î+X¿°îB›0tëTÓ³)îëÂØøíí«Øø)î»1îJˈGAìQìî«ðTìAì´î@«ñîú·Õ2àŸí‹ØøØøˆGðAðRìFFØøØøˆGðAFìK î›ðBì)î	AìðAAì2îA´î@ñîúØݟí¨9î±î@›X¿°î@›Qì½ì
‹°½èð½¿Áè lªƒѿ3­	‚´;
@†Ðûÿ€Øûÿzàûÿ)¸¿pGðµ¯Mø½F
FF0Fð6ìAì=¤ìöÑ]ø»½èð@pGðµ¯-é-í‹QNF¾î‹~D°FONPH~DŸíIšxDF h¡hˆGA
ŲîAFë…¸î@
‘íÁ1F!î@ª!î
X¿°î@ªVø%±ëP/'Øm³·îÊ
 h¡h î!G
î
	노î@
íí*Qì1îB î	
î*·îºðšëAì´îKñîú»Ýî
½ì‹½èð½Ÿí"ŠFŸí"š h¡hˆG
î
¸î@
 î
î
ðRëF h¡hˆG

îZî
¸î@
 î
î
ð@ëî
*î	
±îA* î:2îA´îCñîúÑݟí°0î
±î@ªX¿°î@ªî
½ì‹½èð½€3€³SŒ¾¤Ýi@çûÿëûÿþîûÿ)¸¿pGðµ¯Mø½F
FF0FðvëDø=øÑ]ø»½èð@pGðµ¯-遰-í‹„°·î‹FCì+´îH›ñîúLѾHxD€F¾HxD‚F½HxDƒFÙéˆGÂÀ
@êAUÎ
BêAt1F(Fð@êAìà²AFRFëÀ
ëÀ‘íZø0!îËRhivëÀð9!&ÐëÀÙøíí‹Ùø0îH›ˆG±îLAìQì	î‹ðÎêAì´î@‹ñîú¼Õáµî@›ñîúџíËáÙøÙøˆGðAðÄêŸíAì0îAËÿà´îH›ñîú@񥀈î	‹L‹H|DxD‚FQìŸ킻8îI«Íé†HxDƒF
àÝéÝé2ð¦êAì´îMËñîú@òـÙøÙøˆGAìÍéÙéˆGÂÀ
@êAUÎ
BêAx1F(Fð´éAì_úˆð!FRFëÀ
ëÀ‘íZø0!îÛRhivë Ó_êa#ÐëÀÙøííëÙø0îNûˆG±îMAìQìîëð@êAì´î@ëñîú»մîJËñîúŸÙàÙøÙøˆGðAð:êAì;î@۴îJËñîúŒÙ8îL€î	Qìðê°îJÝé2Aì	îLQìð&ê=îLAì´î@Ëñîú?ö}¯TàŸí0¶îË9î)î±îÀˆî«Ÿí+»HFð0ê°îHAì
îµî@ñîúñÙ.îÙøÙø î;!î+°îHûîû îۈGAì´îOñîúÔFFQì8îMûð¬éAì(F1F.î?î)îûîûðžéAì´îOñîú¼Õ)î
ËQ창싰½èð½UUUUUUտmÅþ²{򠿃»~)ÙÉ@nµûÿh½ûÿbñûÿ’´ûÿ¼ûÿzðûÿðµ¯-é-í‹·îŠF	î´îHšñîúKÑÄNŸíJ~D°FÃNÃH~DxDF h¡hˆGA
ÀóGîAFë…¸î@
‘í1FVø%±ëP/!îê#Øôÿ5Ð h¡hˆGî
î
	노î@
ííš1îI î
ð@ðéî
´î@šñîúÄÕî
½ì‹½èð½µî@šñîú%џí–êî
½ì‹½èð½ h¡hˆG
ْҔ
¸î@
 î
î
ðæèŸíŽ
î
0îAêî
½ì‹½èð½´îHšñîú@񡀈î	
ˆM}D©F‡MˆH}DxD‚Fí}º8îIªŸí|ʟí|Úàî
AFðéî
´îOêñîú¦Ù h¡hˆG
î
¸î@
 îê h¡hˆGA
ÀóGîIF	놸î@
‘í)FUø&±ëP/!îú#Øôÿ&Ð h¡hˆGî
î

놸î@
íÐíŠ1îh î
Að@ð|èî
ôî@ŠñîúÄմîJêñîú©Ùà h¡hˆG
î
¸î@
 î
î
ðZèî
=î@ú´îJêñîú‘Ù8îN
۔	
î
ð˜è°îJ
AFî
	îN
î
ð–è?îN
î
´î@êñîú?ö¯&çŸí0
²î¶îڟí.º9í-Ê)î
±îÀ
ˆîª FðŽè°îHúî

îúµî@úñîúñÙ h¡hˆG
.î
î
/î:¸îA î*/îúaîаîHîôîAŠñîúÔî
xîOšðBèî
î
9î€
.î
iîŠAîŠð4èî
´îh
ñîú»Õ)îêî
½ì‹½è𽿫ªª¾ޓ½€3€³ÉNö@6Âûÿ.Æûÿ,öûÿ<Áûÿ4Åûÿ2õûÿ€µoFÐéˆG_êQOê0€½€µoFh‚hFG@€½€µoFh‚hFG@!€½€µoFh‚hFG!€½¿¿¿ðµ¯Mø-í
‹·îËAìŸíF»´îL›ñîú~аî´î@›ñîúwбî«:îIQìð~î´îJ›€F
Fñîú\¿Oð%@F)Fð²îAìŸí5Ÿí6+0î	‹Œî îî+Ÿí3QìîŸí2+î+Ÿí2îŸí2+î+Ÿí2îŸí2+î+Ÿí2îŸí2+î+¾î‚îŸí0+8î»0îËð:ïAì´îJ›îËñîú<îH»ոñuñۿî›&$8î	‹Qìð ïAì4Fñ¸ë;î@»uëíÚQì½ì
‹]ø‹ð½¿5gGö¿…8–þÆ?—SˆBž¿¤A¤Az?<™ٰj_¿$ÿ+•K?88C¿  J?lÁlÁf¿UUUUUUµ?´¾dÈñgí?°µ¯FFð.ï—íAìDì[î+Qì°½¿¿¿ðµ¯-遰-í‹€F5HCì+xDF4HxD‚F3HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðîAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ð’îAì´î@«ñîú½ÕàØøØøˆGðAð’îŸíAì0îA›)îQì½ì‹°½è𽿃»~)ÙÉ@ö¬ûÿð´ûÿêèûÿ°µ¯hFÂhFFG—íAìDì[î+Qì°½€µoFð(ì—íAì!îQ쀽е¯Fð"ìîJî
!î
î
нðµ¯-遰-í‹„°·î«FCì+—í‹´îJ›ñîúœ¿´îJ‹ñîúÙ FðôëSì+Aì FðîëAì8îˆîQ창싰½èð½ŸíN´î@›ñîúD¿´î@‹ñîú=Ԋî	ŠîQìÍéQìÍé háhˆGÝé2FFðþí‚F‹F háhˆGÝé2€F‰FðòíAìKì«0î´îJñîúàØFì[Iì‹2î+µî@+ñîúÕݵî@ñîú݀î¬ç h9î‹áhˆGAì(î´îIŸí&ñîúH¿°îJ™ç(F1FðŽíAì@FIFðˆíAìŠî	€î´î@°î@+ñîúȿ°îA+1îB‹Qì0îB›ðˆíF
FQìð‚íAìEìK1îQìð`íAì8î@Q창싰½è½èð@𬿰̶Œe€¥*€µoF¶îCì+!îSì+ð,ëAì0îQ쀽е¯-í‹¶î‹FCì+)îSì+ðë—í«*îSì+Aì FðëAì8î0î!î
 î	îQì½ì‹не¯-í‹Fð\íAì FðVíAìˆîQì½ì‹н¿ðµ¯-遰-í‹€F7HCì+xDF6HxD‚F5HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(Fð0ìAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ð¾ìAì´î@«ñîú½ÕàØøØøˆGðAð¾ìŸí
Aì0îA›‰îQì½ì‹°½è½èð@ð便¿ƒ»~)ÙÉ@N©ûÿH±ûÿBåûÿ¿¿ðµ¯-遰-í‹Cì+µî@‹ñîú	џí>Qì½ì‹°½èð½€F;HxDF:HxD‚F:HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(Fð ëAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ð0ìAì´î@«ñîú½ÕàØøØøˆGðAð.ìŸíAì0îA›·î€îQìSì+½ì‹°½è½èð@ðW¾¿¿¿ƒ»~)ÙÉ@0¨ûÿ*°ûÿ$äûÿ¿¿ðµ¯-遰-í‹€F;HCì+xDF:HxD‚F9HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðëAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ð¦ëAì´î@«ñîú½ÕàØøØøˆGðAð¦ëŸíAì0îA›·î€î‹±îIQìðVëðASì+½ì‹°½è½èð@ðȽƒ»~)ÙÉ@§ûÿ¯ûÿãûÿе¯-í‹¶î«F—í›Cì+ háhˆGAì´îJñîúڵî@ñîúðÝ0îQìð6ëAì	î‹Qì½ì‹н°î1î@1î@Qìð$ëAì	î@‹Qì½ì‹не¯-í‹·î«F—í‹Cì+ háhˆGAì:î@´îJñîúóÕQìðëðAðüêAìî@›Qì½ì‹не¯-í‹—í‹Cì+F háhˆGAìµî@ñîúõݷî1î@€îQìðÖêAìî›Qì½ì‹н°µ¯FFðë—íAìDì[î+Qì½è°@ð½ðµ¯-遰-í‹€F7HCì+xDF6HxD‚F5HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðôéAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ð‚êAì´î@«ñîú½ÕàØøØøˆGðAð‚êŸí
Aì0îA›9î	±îÀ îQì½ì‹°½è𽿃»~)ÙÉ@֤ûÿЬûÿÊàûÿðµ¯Mø½-í‹¶îFCì+!î‹ð„êSì+F FFðè±îÈAìFì[±îÀ!îîQì½ì‹]ø»ð½¿ðµ¯-遰-틐°²îFCì+´î@‹ñîú	ڵî@‹ñîú@ðbOð&}á±îÈFFŸíÁŸí›î›ŸíŸíÃ+9î‚î¸î9îŸíÂ+Ÿíë	í½;ŸíÂ+ƒî0îQìŸíÀ:î
û1îëðÆé€FF0F)FðÀé±îHíAì¾î»¿îˍíD싍ìëí%à°îN«íëÝéíí;AìÝé
í+1îAìÝéíûî+Aì0îA2îM´îAñîú@òÙøÙøˆGAì¶î+0î°îÀ2îAۏî
9î°îH+î+Ÿí“2îQìðHéð`è€FFÙøÙøˆGŸíAì´îAÛñîú۴îNñîú@òڀ.Æԟ톴îAÛñîúմîMñîúºÜ-î
Šî9îÛð:éÍéQìð4éÍé@F1FðjèÍé
¸ñŸívÛvñÿô{¯ñ
°îJëFñPFYFðVè±îÚñOðOðr븿$Aì0îMQìðè‚F‹F,¿Oð
OðPFYFð6èAìŸí_+Ÿí`=îû·î€î îîŸí\+Qìî+Ÿí[îŸí[+î+Ÿí[îŸí[+î+Ÿí[îŸí[+î+Ÿí[îîŸíZ?îÛ0î«ð¾èAì,
î«:îOÛô¯ºñ{ñÿö¯°îN«$%íë?îûQìð¤èAì5Dñºë=î@Û{ëíÚìæ±îHQìð¨è·î‹Aì !F€FÙøÙøˆGAìñFñ(îI‹ñîúëÜ@F1F°½ì‹°½èð½¿=
ףp=@˜nƒÀÊí?333333ÀrŠŽäòò?B>è٬úÀ[¶Ö	m™?h‘í|?5®¿$—ÿ~ûñ?rù鷯í?…ëQ¸…Û?ìQ¸…ë±?9´Èv¾ŸŠ?5gGö¿…8–þÆ?—SˆBž¿¤A¤Az?<™ٰj_¿$ÿ+•K?88C¿  J?lÁlÁf¿UUUUUUµ?´¾dÈñgí?е¯Fðøí·î—í0îA€îAì F îSì+½èÐ@ðbºðµ¯-遰-í‹¶°<iFF/–Íé&# hx±Ôéi@P@C	єí—í´îAñîú𮃷î›F)F’F—í‹9îH»´îH»ñîúȿ°îH»ðþîAìŸíã+9îKË î îí±îÁ,î+ŸíÞ;0î«î+Qìðˆï€F‰FQìð‚ïðšî«FF
FðØî¶îÄé«AìŸíÒ;Iì‹°F1î{  `/žÄé…2îÛ7îMû°îJ+îK+7î
ë:îOK,î[>îJk„î+†îK1îŸíÃ;°îIkƒî°îI;î;îkŸí¿["î;1î[$îK5î…î0î	…î+-î0î2î+„í‹í»„í»°îB»í˄í˄í
«„íۍí{„í{„íûí ë„íëí*[„í[í$;„í;í"K„íKí4„íí0„í„í +0hñhˆGAì0hñh+îëˆG´îMëAìñîú@óÂÝø˜°Ýøœ ñJñ´ëfëð>îÍø̀€F‰F F1F2•
”–ð2îAì3˜Iì‹Ýé2X0EñÍéð$îFFCì+Ÿí;*î
»ëjë/ž$îƒî+Ÿí{[ƒî;5îB+‚î+5îC;Ÿíx[ƒî;5îB+‚î+5îC;Ÿíu[ƒî;5îB+‚î5îC;Ÿír+ƒî2î@€î2îAíKŸínKî
€îíîí+í;í
«‚î«¶î+¿î‹í,»í»íî‹ðÊí;îíAì¶î@F)F0î*î	›í,»íð¶í2Aìíûí(í‹à´îNË/žñîú@ó*‚0hñhˆGAì0hñh+îëˆG´îMëAìñîú@ó
‚í4´î@ëñîú,ÝQìðLîí0Aì´îAëñîúuݝí"€îí 1î@Qìðîð.í‚F&˜°ë
'˜ˆAÄ۵î@Ëñîú¿Нí0‹Fí"pà>îMí*;í(€î?î1î@¶î+1î°îÁî
·îK°îD+î+2îA˴îDËñîú˜ÜQìðÞíðöì‚F‹FLàffffffÂõ(\@š™™™™™.@€4@ôýÔxé&Á?€a@ÀX@€`@à|@¸Ê@€MAí$€î?îQìð¢íðºì)?õU¯µî@Ëñîú?ôO¯í4‚F‹Fí$>î@ î!îË3˜ºë2˜kë	ˆêép‰êéq°ëépaëéq°ñqñÀòþ€ðÒìAì´îK‹ñîú@óô€¨û"û	@Bû	bëð¾ì°î‹î¶î0îŸíÒîí+¶î;î‹î+Aì0îí;Qì"îëî»;îNûð^íAì´îOËñîúñ;î´î@˝íûí,»ñîú?÷á®
˜™°ë
aëð~ìAìŸí©Ÿíªñ"îûKñ€î1î@€îŸí¥°îB‹1î@€îíí
í+€îëðZìAìíQìí î!îŸí˜+í;€î‹2îC+‚îëðííí€îSì+Aì!îûFFðöìAìŸí‹Qì1îN‹°îAëíîûðæì+îFF@FIFŸíyŸíz+î2îAîŸíx+2îAîŸíw+2îAî>î@€î»ðìí+FìKAìí;ˆî+/žîûŸíní‹‹î‚îí+í,»2î+3î+2î1î´î@˝íûñîú?÷2®ZàÝø̀¸ë
uë"Ú˜·îëºë˜í,»{ëÿö®Ýéd F1Fð¼ëAì4Fñºë‰î{ë0îJ.îëëÚÿå·îëñKñºë{ëí,»Ûñå0F!FðšëAì6Dñ‰î0îJŽîë¸ëuëëÚÜåí
îL>îQìð"ìð:ë‚F‹F¶î&˜'™°ë
aë—í´î@ñîúܿPFYF6°½ì‹°½èð½F)Fð^ë”í”íí”í”í+í ”íÔé…í*”í”íۍí$”í”íûí"”í”í »í4Aìí!î"îí”íí+í0Ë俀a@ÀX@€`@à|@¸Ê@€MAUUUUUUÅ?ðµ¯-遰-í‹>i‚F—틘F‘F0hx±Öéê€ê	Cіí´îHñîúð‘€HFAFðêêAì·î*î»0îH›î	Qì±îÀ²î°îKËîËð˜ëAì"´îJË î
Qìñîúȿ°îJËUìK†í‹2`Æé˜ð˜ëAì F)F†í»†í«†í›ðnêƒF
FÆéµÚøÚøˆGAì ´îJ»!ñîú;ݰîJË à¹ëhëð–êAì0F!Fðê-îAì0F,î!F)îî;îL»°î@˴îL»ñîúÝFAñ»ëuëÖÚÚøÚøˆGAì °îJË!´îL»ñîúçܽì‹°½èð½Öéµ–í«–í›¨çðµ¯-遰-í‹„°Cì+‚Fµî@‹ ñîú+Ð×é˜YêOðð؀¶î<i´î@‹ñîúٷî«HFAF:îH‹ð,êAì³î(î»´î@»ñîú#ÙPFJFCF”í‹ðFë¯à!±àHFAFðêAì³î+î«´î@«ñîú@ò©€PFJFCF”í‹ð*ë˜à hx±Ôéê€ê	Cєí´îHñîúð':îH›QìðªêAì"Äø î"`Qì„í‹ð´êî	«²î±îʰîK+î+Aì´îL+ñîúȿ°îL+Sì+„í»Äø€„í«„í›FFðtéƒF
FÄéµÚøÚøˆGAì ´îJ»!ñîú;ݰîJË à¹ëhëðœéAì0F!Fð–é(î
Aì0F,î!F)îî;îL»°î@˴îL»ñîúÝFAñ»ëuëÖÚÚøÚøˆGAì °îJË!´îL»ñîúçܹëhë°½ì‹°½èð½ hx±Ôéê€ê	Cєí´îHñîúퟸ�îË<îH›QìðêAì"Äø î"`Qì„í‹ðê
î	˲î±ḭ̂îJ+î+´îK+ñîúȿ°îK+Sì+„í«AìÄø€„후í«FFðÒèƒF
FÄéµÚøÚøˆGAì ´îJ»!ñîúݰîJË!à¹ëhëðúèAì0F!Fðôè-îAì0F,î!F)îî;îL»°î@˴îL»ñîú÷y¯FAñ»ëuëÕÚÚøÚøˆGAì °îJË!´îL»ñîúçÜ_çÔéµ”í«”í›
çÔéµ”í«”í›¥ç¿¿ðµ¯Mø½-í‹—í›´îI›ñîú\ֵî@›Cì+ñîúѶî(îAà·î´î@‹ñîú$ݿîF8î¶î îSì+ð<ïF FFðžé±îÉAìFì[0î2îîQì½ì‹]ø»ð½¶î«F)î
Sì+ðrïIAêÐq@ð`èAì F0î î
Sì+ð
ïAì0îQì½ì‹]ø»ð½ŸíQì½ì‹]ø»ð½¿øðµ¯-é-í‹‚°—íFFFíððî¶î€F0F‰F—í‹(îSì+ðÔîAìIì‹0îDì[!î îîQ창싽èð½е¯-í‹FCì+ðéAì—í;±î+ háh î î#î î+î+3î±îÂ+ˆî0îB°îH›î›(î9î€î	«ˆî‹ˆGAì´îHñîúˆ¿°îJ›Qì½ì‹н¿¿¿е¯-í‹‚°—í›´îI›ñîú€ñŸí‡F´î@›ñîúÕ háhˆGAì¿î0î0îŸí‰ î«Qì°½ì‹нŸízCì+´î@›ñîúշî€î	í«0î	»SàŸís´î@›ñîú,ٷî F€î	±îð˜èAìŸín	íj´îA«Ÿín:îñîúH¿°î@«´îA«Ÿígñîú:îȿ°î@«Qì°½ì‹н±î)î·î°îA+î	+±îÂ0î0î+±îÂ+9î	;0îB€îî0îî»í«·î˰î۟íO« háhˆGAì î
QìðÄï°îLAì háhî;îîë;îN î	û=îO‹ˆGAì°î@îµî@ñîúڏîQìðÈïAì0î0îOµî@ñîúÅÛ háhˆGSì+Aì¶î‹FFðÀï´îH›AìðAñîúAìH¿°îAí0î‹°îÈ0î
ŸíQìSì+ðÊïŸíAìµî@‹1îJñîúH¿°î@«Qì°½ì‹нŸí«Qì°½ì‹н¿ø:Œ0âŽyE>ñh㈵øä>€„.A-DTû!@-DTû!	À-DTû!À-DTû!	@ðµ¯-é-틃ðA€FFCì+ðnï·î«AìØøØøˆGAì´îH»ñîúBځFFØøØøˆGAì)îQìðïAìðE î´îA»Eìñîú-ØFHF1FðïFF F)FðïAìF웁î0î
Qìðäîðüíµî@»ñîú¹ÐBqñµ۽싽èð½! ½ì‹½èð½´î@» !ñîú¸¿ ½ì‹½è𽀵oF-í‹hCì+ÂhFGAì´îHñîúݷî! 1îH°îH+!î‹0Añ2î+´îBñîúóܽì‹€½! ½ì‹€½¿¿ðµ¯-遰-í‹€FEHCì+xDFDHxD‚FCHxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðìíAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðzîAì´î@«ñîú½ÕàØøØøˆGðAðzîŸíAì0îA›±îHQì±îI‹ðlîAìˆîQìðDîF
Fð2íŸíEìK´î@ñîú¤¿Oðÿ0oðA½ì‹°½è𽃻~)ÙÉ@àCƌûÿûÿºÈûÿ¿¿€µoF-틟íCì+´î@‹ñîúڽ싽è€@ðu¸hÂhFGAì´îHñîúݷî! 1îH°îH+!î‹0Añ2î+´îBñîúóܽì‹€½! ½ì‹€½¿¿UUUUUUÕ?ðµ¯-遰-í‹¿î‹FCì+0î›Yì‹@FIFðàíˆî	[쫟í'ËAì·î»9î« háhˆGAìRF[F;î@QìðØíð†íFF háhˆGFì[´îLÛñîúäܴîKÛñîúßԋî
BFKF0îAìQìð¸íAì.î
1î+ îî	€î
´îAñîúÂØ(F1Fðnì½ì‹°½èð½¿àC€µoF-í‹Cì+—í‹—í»8îI«hÂhF;îIˌî
ېGAì´îMñîúÙ8îK·î+!î
2î@!î±îÀ8î@Qì½ì‹€½,î
!î±îÀ0î	Qì½ì‹€½ðµ¯-éFRêEÐ_êSFOê2CCFOê‘Bê€r@êAêOêBêr@êAêOê"Bêb@ê Aê@êIOêBBêBAêIêc¹0h±hˆG(@¸ëtñöÓ!½èð½ÖéˆG(@ê	¸ëtëôӽèð½ !½èð½ðµ¯-郰×é¹FšFF[ê	ð£€=i¹ñ¸iÑi꡹0h±hˆGàê	1Ðð±|iÖéˆG(@!@»ëyëõÓ
à(cÐ0h±hˆG(@XEùØëxàÖéˆGëJë
ràÖéÍ騈GñIñ
 û2û
"û$»ëyë$ӓoê	oêFF
FFBFSFðí“FšHF)F²ëtëÒFÖéˆG û#û
3²ëû3sëñӠû%Ýé&áû
b+F û
ì4Fáû4¡ûIVëBñëTëAñ
à0h±hÍø€ñˆG û”ÙEØoêAFðÈëIEÙ
F0h±hˆG û…BøØÝø€ëJñ
@FQF°½èð½ðµ¯-éˆFB±ñ	FFÑ(h©hˆG€D@F½èð½¸hX±F(h©hˆG0@ Bù؀D@F½èð½(h©hˆG û	¦¢E
ØàCIFð†ëQEÙF(h©hˆG û	„BøذD@F½èð½*ð•€ðµ¯-郰×饁FOöÿpF‚BÑÚøx³hˆ(`Úø82à¸hȱÚøFˆF
àhˆ(`Úø8Êø)h!@±BÙ(òÑÙøÙøˆG(` ïçÚøñ‘¨±hˆ(`ÚøDàADOàFÙøÙøˆG(`!F Êø(ˆDAàÙøÙøˆG(`$Êø@ú‹ñÕø€úˆðûûú‹ðˆB)ҐOöÿpp@‘ð
똈BÒF™àOê@(`ÚøDÊø@Õø€úˆðûûú‹ð°B
Ò,ëÑÙøÙøˆG™$(`èç™ëA°½è½èð@ˆ²pG*ð•€ðµ¯-郰×é¥FFÿ*	ÑÚø³(h
(`Úø84à¸hбÚøFˆFà(h
(`Úø8Êø)h!@±BÙ(ñÑÙøÙøˆG(` ïçÚøñ‘°±(h
(`ÚøDàADNàFÙøÙøˆG(`!F Êø(xD@àÙøÙøˆG(`$Êø@_ú‹ñÕø€_úˆðûû_ú‹ðˆB(Ґ†ðÿ‘ðpꘈBÒF™àOê (`ÚøDÊø@Õø€_úˆðûû_ú‹ð°B
Ò,ëÑÙøÙøˆG™$(`èç™ë!°½è½èð@ȲpGº±°µ¯×éT)h)± h@ `(h8àh‚hFG ` (` hð½è°@FpGðµ¯-釰™FF×éEF×ø°:iTêÐxišFÍé9í¹eê)eÑ*ÀòQ0hF±hˆGQFë
Iñ"FbëèñÑAá*Àò?ëè9:ûÑ9áê1ðˆ€(ð—€_êUOê4*Àò+ºhOð
CúhCŠBê€r@êC
	Bêr@êC

Bêb@ê C@êD
BêBCDê×é˜ÖéˆG(@!@¹ëxëõÓ›ÝøÀKø:Aë	ëÊ
ñ
H`8i‚EãÑíà(ð·€*Àòè€ûhOðºh_êSOê2CCŠBê€r@êC
	Bêr@êC

Bêb@ê C
BêB@ê@C@ê½h0h±hˆG @¨BùØë
Kø8ëÈQFñIñA`8i€EéѬà*Àòª€ÖéFˆGë
"FAë	bSFëèñњà*À򘀸hOðùhDAñÀCÈC•"àFÝø*û#ÝéëûëûªûèÀBñëHñ@¹iAø<ëÌBñH`ñ8i„EgÐÖéÍøG‚F‹F û+F
ûû¸h@øh¨AÉÓ‘"F˜™ðê˜Ýøu띾ҐF™FÖéˆG‚F‹F û
û°ëûqë	ïөç*1۸hOð
ñ	oêàÝø°˜¹i@Aø:ëÊKñA`
ñ
8i‚EÐ0h±hˆG û	µ¸hƒEæØ@FIFðÈèYEÝø°àÙF0h±hˆG û	„BøØ×ç°½èð½ðµ¯-é…°×ø ›Fš±ñ	FF‘ѻñoÛ0h±hˆG™»ñDJøõÑdà»ñaÛJø»ñúÑ[à¸h€³ _êPOê5»ñQÛ)COðŠBê€r@êC
	Bêr@êC

Bêb@ê C
Bê@@ê0h±hˆG @¨BùØ™DJø(ñØEñÑ(à»ñ%ÛèC!à™˜@DJø!1YEБ0h±hˆG û	¨BïØIF˜ðBè˜FB™æÙ0h±hˆG û	„BøØÝç°½èð½ðµ¯-é…°×ø°™F‘ê±FOöÿpF‚B"ѹñÀò¤€! 	à9š¹ñ	D+ø+ð—€)óÑ0h±hˆG!ðç¹ñÀòŒ€˜+ø¹ñ	úфà¸hȳ _êPOê5¹ñzÛ)COðŠBê€r@êC
	Bêr@êC

Bê`@ê! à9ꓲ«B
Ù)öÑ0h±hˆG!ꓲ«BôØ›D+ø ñÈEìÑHà¹ñEÛèCi€²%úúOð 	à˜™ëA+ø5ME0иñШñà0h±hˆGOð²û
ô¡²QEåÒÍéP˜‘QFðï˜ˆBÙÒ˜
Fà¨ñ²û
��BÎҸñóÑ0h±hˆGOððç°½èð½ðµ¯-é…°Føh™F‹FұFÿ*"ѹñTÛ! 
à9
›¹ñ	ëø+“FÐ)òÑ(h©hˆG!ïç¹ñ<ÛIFZFð:ï°½èð½¸h°³ _êPOê6¹ñ*Û1COðŠBê€r@êC
	Bêp@ê! à9
êӲ³B
Ù)öÑ(h©hˆG!êӲ³BôØûhZDø ñÈEìѰ½èð½¹ñøÛðCq2Oð
βOð Íé¹àÝø°úhë!ø

ñ
™ŠEßиñШñ
à(h©hˆGOðrûù_ú‰û³EàҐ1F˜ðÖî‹EÒÝéF	à¨ñ
rûù_ú‰ñ¡BÍҸñòÑ(h©hˆGOðïçÝéÁçðµ¯Mø½+ÛþhFұF! à9@ðø+<Ð)õÑ(h©hˆG!ðø+<óÑ]ø»ð½
F0F!Fð„î]ø»ð½ðµ¯-遰-í‹„°ƒF8i×ø€F ñ	F¹ñÍø#۷î‹×ø þh–íXFÍéT€îÍø Sì+ðâì-ÈéŒAhtñ۶ìñ¹ñ	8î@‹áÑàhtñ۸h™@ø1PëÁD`°½ì‹°½èð½ÔÔðµ¯-釰€FRêOðГF×é!C¿¹i)Ѱ½èð½OꋙFð˜ë(ð€×é΂F¼ñÐ !à1aEÐëÁ^ø1 [hVsñóÛ$&4Jø Fñ¥ñvëôÛåç¸iëÙq=i~iûóIñ_ê`Oê1Jpë*F¸¿«ë+’“ð‹€š×øà*aÐIºh°AOð	Oð²ú‚ñ¨¿ I	CÐ«ñóFà˜áDƒD˜EjÒÍø°uFžTFÝø°@F2F#ðŽìTø >"hDø  »ñDøïÑšëÉ®FQFQø;Pø3`ëÃlh6@ø3`Dñ:k`ðÑ˜Ýø°×øÀ(øhYFbFÄÑÑé6ðèEãeë:áè6ôѸçOðÿ0°½èð½I°AÛ ¹hD™ˆBúÓà¸hø±ðFOêÀOðúhCF¾hÓéTòè@¡A>ãèõѸhàD†D˜†EìÓPFðÔê °½èð½þçÔÔðµ¯-鏰RêÍé#	Ð×éQê¿×ø<ñѰ½èð½Ýé%×ø€ëÖsFñ_êbOê3\r먿%°ë	fëûö-¿tF
”¿‰F–.ÚÐ×ø°×ø ëÈ
>	–¹ñuñt۸ñqÓYrë¸úˆñOðO𨿠I	COêÈÍøà˜æDÝøƒD˜†E­ÒÍø4°\FÝéh%Ýø(°Íø0àÚé#˜¶hëè@ðšë¹ë	Äékë¹ñ{ñ۹hh
ñ
4BFâÓÙñÝø0àOð×øÀpë¿¿	˜@ø>ëÎÀø°˜Ýø4°×ø (·Ñ aF
ëë[ø Zø0uhdhšKø dë09r`ìѡçYrëÛ Ùñ¨AFÚOêÈ!Ýé	2ADÃé’Dš	“‘BõÓ@ç ¸ñ:ÐÙñOêÈOð¨AÚ	˜[FFFëÎ@ø>
˜P`RFÓéTòè@¡A>ãèõјÆDãD†EæÓçRF[FFFÓéTòè@¡A>ãèõјÆDãD†EíÓç™ @DˆBüÓçÙñ¨AÚ	˜Àé•þçþçðµ¯-遰-í‹’°×éº×élëJë¸ñ
eñ¶ñ
|ñÍé	2À򬁀qëÀ򧁸ë™FeëˆtëO𸿠(”¿¤FÍø@ÀF‘¿FpLñð¨ëAì´ëyë
RFO𸿠(XF¿JF F0FBñ’ðëAìñEñðˆë)îAìîQìð"ìð:ë‚F‹FðŒìÍ阰ë
dëð‚ìÍé¶ë
™aëðzì
œºhÍéùhqë	O𸿠(¿IF‘F‘¿¡Fœ¹ë¡Aë
‘AëðZìÝø<°AìÝø8 ¶ëtë
OðQF¸¿ (XF¿!F0F0Añð.ëAì0F!Fð(ëAì¸ëeë
–ðëAìXFQFðë‹F™‚FHFðëAì@F)FKì«ð
ëF¸ñ‰FeñðëIìK)î;î+Šî"î;!îAì¶î‹î0î±îÀÛî	‹³î°îH
îQìð„ëAìÝéŸ�´îL›AìÝéñîú¸îëAìÝéȿ°îL›¾îËAì2îŸí•+1î
î«0 háhˆGF
F háhˆGAìEìk0î*î€î8îµî@ñîúåԴîIñîúàÚQìð<ëðTêFˆFð¦ëªF5FF˜F™°ë	aëðšëAì
˜Dìk,FUF°ë	
˜0îÛ`ëPFYFðˆëAì˜™ë	=îÛAëð|ë±î1îOAì°îN+=îî+;î@۴îM+ñîúÙ?îM/î·î´îAñîúŽÚ F)Fð
ëAì0î´îMñîú?ö¯
›"¸h	™ÀøhˆAO𸿠(¿ØFÑF³ë	;iaëžóž{iv븿"*¿HFAFxàëÕpOð
Eñ_êaOê0‘€qëO𸿠¸ë	eë(¿ãF±F²ësë5ÚPsñ1۹ñ{ñ,ÛFF¸ñ˜eñBF+Fðé€qëO𸿠qdñ(¿FF¹ñkñ¹ñ{ñÓVêжëFtë‹FÕÛàFFHFYFˆê…êC3dë*¿%F3F
˜	™:iÀž©A²žziv븿Oð
ºñ¿F)F°½ì‹°½è𽿿¿˜3?Írû?q¼ÓëÃì?"Ðñ}ŠAÛ#IyDëÀíQìpG€µoF-í
‹ð|éŸíAì·î(î îî›¶îî«8íËð*ê9îAìŸí+
î+î‹8î½ì
‹½è€@QìpG¿¿¿€vÀUUUUUUµ?µ¾dÈñgí?¼ûÿÔÔÔԐ@-épâ@ àÀ/ àÁ?!àÀBàÁCàëÄ àÄ@Ѐ½èQã:ÿ/Pá 3ÿ/1Ïoá?oá0CàΏâÁLàƒÁLà0 ãÿ/á°ã€@-é¡뀀½èPá1ƒ"@ Pá1ƒ"@ Pá2ƒ"@ Pá2ƒ"@ 
Pá3ƒ"
@ 
Pá3ƒ"
@ Pá4ƒ"@ Pá4ƒ"@ Pá5ƒ"@ Pá5ƒ"@ 
Pá6ƒ"
@ 
Pá6ƒ"
@ 	Pá7ƒ"	@ 	Pá7ƒ"	@ Pá8ƒ"@ Pá8ƒ"@ Pá9ƒ"@ Pá9ƒ"@ Pá:ƒ"@ Pá:ƒ"@ Pá;ƒ"@ Pá;ƒ"@ Pá<ƒ"@ Pá<ƒ"@ Pá€0ƒ"@ Pá@0ƒ"@ Pá 0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@  áÿ/á0Aì@õîúñîZH-é`ñî0Qìëpâá∽èêÔÔÔÔ0Aì ã@õî ãúñîÿ/‘ßí	+ßí¡`îá¼î@øî¢Aîîà¼î
îÿ/áð=ðÁî	ßí
+ßíãÀøî0Dã¡+@î0Aì rî0Qìÿ/áð ãðA0à ã	ßí0%Dã1Bìã0Dã qî1Aì¡pî0Qìÿ/áð ã0Åÿ/áÿ/á|êê0 á á  áê  á°ã|êà-åÐMâ
  áëåЍâðäQãs:o
Páj:Ïoá?oá0Cà͏âÁLàƒÁLà0 ãÿ/áPá1ƒ"@ Pá1ƒ"@ Pá2ƒ"@ Pá2ƒ"@ 
Pá3ƒ"
@ 
Pá3ƒ"
@ Pá4ƒ"@ Pá4ƒ"@ Pá5ƒ"@ Pá5ƒ"@ 
Pá6ƒ"
@ 
Pá6ƒ"
@ 	Pá7ƒ"	@ 	Pá7ƒ"	@ Pá8ƒ"@ Pá8ƒ"@ Pá9ƒ"@ Pá9ƒ"@ Pá:ƒ"@ Pá:ƒ"@ Pá;ƒ"@ Pá;ƒ"@ Pá<ƒ"@ Pá<ƒ"@ Pá€0ƒ"@ Pá@0ƒ"@ Pá 0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ ‚å áÿ/á‚å ãÿ/á0 ã0‚åÿ/á ãuÿÿê@@-éÐMâ`â`åë å0åЍâ@€½èðO-éÐMâ( å` áQã

P áRã
Sã)
oáOoá@Dà TãD:Zã`ŠPŠêSã5
Zã
P ã`ŠåPŠå` ã á áЍâð½èSã<
Pãh
Câás3ÿæZãoá`ŠŠ5` áê` ãP ã á áЍâð½èBâá*Zã0 @@Š0ŠRãÜÿÿ
2ÿæ  ãoá…0 á Âá5Q á" á0â0c‚á á áЍâð½è á@ áP áiþÿëZã` á–E` ?êà„â` ã ^ã
@$â5ž át á0އá´ áê á áЍâð½èoáooáFà` ã!àâ ^ã= à ã€ á ã° áP ãˆp á‰ á«‡á¨€á€Wà@àáÀààá@”à±à Q€ Q¡ á‹ ᦿá†`…áà^âP áìÿÿ¦ á‹Pá† áZãÁãð€Ê`€á á áЍâð½è á á@ á(þÿë` áZã–Ta P ãðÊ á áЍâð½èoáOoáDàQãoÿÿ*`!âàâF á¶ á0Ž„á5ž á` ãÅÿÿê^㊠Ànâ5ž áL á0Ž„á¼ á½ÿÿê@Ànâ `N␠ãL á0¶„á5† ál áµÿÿê@ò(ÀòüD`G@ò|ÀòüD`G@òLÀòüD`G@òÄ,ÀòüD`G@òh\ÀòüD`G@ò|ÀòüD`G@öÀÀòüD`G@òÀòüD`G@öHÀòüD`G@ö¬ÀòüD`G@ö0,ÀòüD`G@òÔ\ÀòüD`GOö@,Ïöÿ|üD`G@öl<ÀòüD`G@ö<ÀòüD`G@ö„<ÀòüD`G@ò¨|ÀòüD`G@öì<ÀòüD`Gà-åæâêŽâþ¾åÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔƏâʌâðý¼åÔÔÔÔƏâʌâäý¼åÔÔÔÔƏâʌâØý¼åÔÔÔÔƏâʌâÌý¼åÔÔÔÔƏâʌâÀý¼åÔÔÔÔƏâʌâ´ý¼åÔÔÔÔƏâʌâ¨ý¼åÔÔÔÔƏâʌâœý¼åÔÔÔÔƏâʌâý¼åÔÔÔÔƏâʌâ„ý¼åÔÔÔÔƏâʌâxý¼åÔÔÔÔƏâʌâlý¼åÔÔÔÔƏâʌâ`ý¼åÔÔÔÔƏâʌâTý¼åÔÔÔÔƏâʌâHý¼åÔÔÔÔƏâʌâ<ý¼åÔÔÔÔƏâʌâ0ý¼åÔÔÔÔƏâʌâ$ý¼åÔÔÔÔƏâʌâý¼åÔÔÔÔƏâʌâý¼åÔÔÔÔƏâʌâý¼åÔÔÔÔƏâʌâôü¼åÔÔÔÔƏâʌâèü¼åÔÔÔÔƏâʌâÜü¼åÔÔÔÔƏâʌâÐü¼åÔÔÔÔƏâʌâÄü¼åÔÔÔÔƏâʌâ¸ü¼åÔÔÔÔƏâʌâ¬ü¼åÔÔÔÔƏâʌâ ü¼åÔÔÔÔƏâʌâ”ü¼åÔÔÔÔƏâʌâˆü¼åÔÔÔÔƏâʌâ|ü¼åÔÔÔÔƏâʌâpü¼åÔÔÔÔƏâʌâdü¼åÔÔÔÔƏâʌâXü¼åÔÔÔÔƏâʌâLü¼åÔÔÔÔƏâʌâ@ü¼åÔÔÔÔƏâʌâ4ü¼åÔÔÔÔƏâʌâ(ü¼åÔÔÔÔƏâʌâü¼åÔÔÔÔƏâʌâü¼åÔÔÔÔƏâʌâü¼åÔÔÔÔƏâʌâøû¼åÔÔÔÔƏâʌâìû¼åÔÔÔÔƏâʌâàû¼åÔÔÔÔƏâʌâÔû¼åÔÔÔÔƏâʌâÈû¼åÔÔÔÔƏâʌâ¼û¼åÔÔÔÔƏâʌâ°û¼åÔÔÔÔƏâʌâ¤û¼åÔÔÔÔƏâʌâ˜û¼åÔÔÔÔƏâʌâŒû¼åÔÔÔÔƏâʌâ€û¼åÔÔÔÔƏâʌâtû¼åÔÔÔÔƏâʌâhû¼åÔÔÔÔƏâʌâ\û¼åÔÔÔÔƏâʌâPû¼åÔÔÔÔƏâʌâDû¼åÔÔÔÔƏâʌâ8û¼åÔÔÔÔƏâʌâ,û¼åÔÔÔÔƏâʌâ û¼åÔÔÔÔƏâʌâû¼åÔÔÔÔƏâʌâû¼åÔÔÔÔƏâʌâüú¼åÔÔÔÔƏâʌâðú¼åÔÔÔÔƏâʌâäú¼åÔÔÔÔƏâʌâØú¼åÔÔÔÔƏâʌâÌú¼åÔÔÔÔƏâʌâÀú¼åÔÔÔÔƏâʌâ´ú¼åÔÔÔÔƏâʌâ¨ú¼åÔÔÔÔƏâʌâœú¼åÔÔÔÔƏâʌâú¼åÔÔÔÔƏâʌâ„ú¼åÔÔÔÔƏâʌâxú¼åÔÔÔÔƏâʌâlú¼åÔÔÔÔƏâʌâ`ú¼åÔÔÔÔƏâʌâTú¼åÔÔÔÔƏâʌâHú¼åÔÔÔÔƏâʌâ<ú¼åÔÔÔÔƏâʌâ0ú¼åÔÔÔÔƏâʌâ$ú¼åÔÔÔÔƏâʌâú¼åÔÔÔÔƏâʌâú¼åÔÔÔÔƏâʌâú¼åÔÔÔÔƏâʌâôù¼åÔÔÔÔƏâʌâèù¼åÔÔÔÔƏâʌâÜù¼åÔÔÔÔƏâʌâÐù¼åÔÔÔÔƏâʌâÄù¼åÔÔÔÔƏâʌâ¸ù¼åÔÔÔÔƏâʌâ¬ù¼åÔÔÔÔƏâʌâ ù¼åÔÔÔÔƏâʌâ”ù¼åÔÔÔÔƏâʌâˆù¼åÔÔÔÔƏâʌâ|ù¼åÔÔÔÔƏâʌâpù¼åÔÔÔÔƏâʌâdù¼åÔÔÔÔƏâʌâXù¼åÔÔÔÔƏâʌâLù¼åÔÔÔÔƏâʌâ@ù¼åÔÔÔÔƏâʌâ4ù¼åÔÔÔÔƏâʌâ(ù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâøø¼åÔÔÔÔƏâʌâìø¼åÔÔÔÔƏâʌâàø¼åÔÔÔÔƏâʌâÔø¼åÔÔÔÔƏâʌâÈø¼åÔÔÔÔƏâʌâ¼ø¼åÔÔÔÔƏâʌâ°ø¼åÔÔÔÔƏâʌâ¤ø¼åÔÔÔÔƏâʌâ˜ø¼åÔÔÔÔƏâʌâŒø¼åÔÔÔÔƏâʌâ€ø¼åÔÔÔÔƏâʌâtø¼åÔÔÔÔƏâʌâhø¼åÔÔÔÔƏâʌâ\ø¼åÔÔÔÔƏâʌâPø¼åÔÔÔÔƏâʌâDø¼åÔÔÔÔƏâʌâ8ø¼åÔÔÔÔƏâʌâ,ø¼åÔÔÔÔƏâʌâ ø¼åÔÔÔÔƏâʌâø¼åÔÔÔÔƏâʌâø¼åÔÔÔÔƏâʌâü÷¼åÔÔÔÔƏâʌâð÷¼åÔÔÔÔƏâʌâä÷¼åÔÔÔÔƏâʌâØ÷¼åÔÔÔÔƏâʌâÌ÷¼åÔÔÔÔƏâʌâÀ÷¼åÔÔÔÔƏâʌâ´÷¼åÔÔÔÔƏâʌâ¨÷¼åÔÔÔÔƏâʌâœ÷¼åÔÔÔÔƏâʌâ÷¼åÔÔÔÔƏâʌâ„÷¼åÔÔÔÔƏâʌâx÷¼åÔÔÔÔƏâʌâl÷¼åÔÔÔÔƏâʌâ`÷¼åÔÔÔÔƏâʌâT÷¼åÔÔÔÔƏâʌâH÷¼åÔÔÔÔƏâʌâ<÷¼åÔÔÔÔƏâʌâ0÷¼åÔÔÔÔƏâʌâ$÷¼åÔÔÔÔƏâʌâ÷¼åÔÔÔÔƏâʌâ÷¼åÔÔÔÔƏâʌâ÷¼åÔÔÔÔƏâʌâôö¼åÔÔÔÔƏâʌâèö¼åÔÔÔÔƏâʌâÜö¼åÔÔÔÔƏâʌâÐö¼åÔÔÔÔƏâʌâÄö¼åÔÔÔÔƏâʌâ¸ö¼åÔÔÔÔƏâʌâ¬ö¼åÔÔÔÔƏâʌâ ö¼åÔÔÔÔƏâʌâ”ö¼åÔÔÔÔƏâʌâˆö¼åÔÔÔÔƏâʌâ|ö¼åÔÔÔÔƏâʌâpö¼åÔÔÔÔƏâʌâdö¼åÔÔÔÔƏâʌâXö¼åÔÔÔÔƏâʌâLö¼åÔÔÔÔƏâʌâ@ö¼åÔÔÔÔƏâʌâ4ö¼åÔÔÔÔƏâʌâ(ö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâøõ¼åÔÔÔÔƏâʌâìõ¼åÔÔÔÔƏâʌâàõ¼åÔÔÔÔƏâʌâÔõ¼åÔÔÔÔƏâʌâÈõ¼åÔÔÔÔƏâʌâ¼õ¼åÔÔÔÔƏâʌâ°õ¼åÔÔÔÔƏâʌâ¤õ¼åÔÔÔÔƏâʌâ˜õ¼åÔÔÔÔƏâʌâŒõ¼åÔÔÔÔƏâʌâ€õ¼åÔÔÔÔƏâʌâtõ¼åÔÔÔÔƏâʌâhõ¼åÔÔÔÔƏâʌâ\õ¼åÔÔÔÔƏâʌâPõ¼åÔÔÔÔƏâʌâDõ¼åÔÔÔÔƏâʌâ8õ¼åÔÔÔÔƏâʌâ,õ¼åÔÔÔÔƏâʌâ õ¼åÔÔÔÔƏâʌâõ¼åÔÔÔÔƏâʌâõ¼åÔÔÔÔƏâʌâüô¼åÔÔÔÔЇ	4ò òÙîæûÿÿoð+¨
úÿÿo
Ð6¼‰	ð
ÿõþÿoԇ	ðÿÿoþÿÿoÀÿÿÿo°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	°;	ämp×	üÌ	…òñôÿÿÿÿÿÿÿÿvh°9¡½¡դD£FA§}§0Ñ	@Ô	ñ§…ªen<-e´Ô	ÜÔ	fèÔ	 ðÔ	0Õ	Qf!`Í|1}DG}e}XÕ	­}Õ~vXXi™}š˜Õ	ÀÕ	œÌÕ	D=‘ÔÕ	TÖ	Mž—^ÌaÕ DwiÖÉÖ×	}ÀÛZ-¬DY™1¬‚f™E­‚s™-¯‚~™ݵ‚„™žŸͻ‚¥ŸCb)ÂP§gñÆ‚¬EYýÉ‚âµV»ÙÒ‚_»Ruî‚3ÈYoµõ‚³Éïmmû‚©Ø{â•‚‹â¤kñ‚Ÿë¡]­‚úäZ‚Ayc±"‚JZYy&‚hÚe+‚¥*÷m
.‚«2gYÙ1‚]=«k%4‚UF{c17‚¤VXuý:‚›b$q	>‚‹q°]A‚~+M!D‚G‹ÚUåG‚ì—_u©K‚ª¶]mO‚yµúS1S‚_ÆT=V‚`ÏR	Z‚¤ÙHbÝn‚ýâf_%‹‚ñ5C…™‚+huœ‚
`o…Ÿ‚×x_¢‚"›V¸‚Á-áU»‚±8,qYÀ‚úQ¶k]ÂÿfäeQÇ‚z3Mu₳…i™‚qô<ł󕛉d=VnŸdµd«gUt	ttItõtAvàA©uH)›Íw‚;›}x‚O›ÍyÛZ)D)›A‚;›mƒ‚U¢c¢U¢¡¢Q²µÀÛZÂD—Z!‚‹^!Âd›%Ä‚>uÅ‚)›ÅÆ‚;›uÇ‚s›Ìu›‘ÎW›ÅÎz›ùϾXAÑ‚›Ò‡›µÒÉXéҐ›±Ó)›mׂ;›Ø‚¨›-Ü‚¼›ã‚țLinker: LLD 18.0.3Android (12470979, +pgo, +bolt, +lto, +mlgo, based on r522817c) clang version 18.0.3 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262)A;aeabi1C2.09
A	
"&.fini_array.ARM.exidx.text.got.comment.note.android.ident.got.plt.rel.plt.bss.ARM.attributes.dynstr.gnu.version_r.data.rel.ro.rel.dyn.gnu.version.dynsym.gnu.hash.relro_padding.note.gnu.build-id.dynamic.shstrtab.rodata.data,TT˜Âìì$¡€”ÿÿÿo0oþÿÿoÀÀ@©öÿÿoðgððÿ‹	ð+ð+¨

p‚˜6˜68I	BÐ6Ð6è2Ð<Ð<Pµ ò ò„IM°;	°;	 ~Ї	ÐG	ԇ	ÔG	Õ܇	ÜG	Àœˆ	œH	 @¼‰	¼I	³Ȍ	ÈL	8ðÈÌ	ÈL	¤
Rp×	lW	P
#0lW	ÌWp8X	<ÞtX	ö