Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / mtrand.cpython-312.so
Size: Mime:
ELF(4ˆ4 	(444  €€@€€G€G€@ˆˆ‹ˆ‹$@ŒŒGŒGÀÀRåtd€€G€G€QåtdTTT¼¼pÄ!Ä!Ä!88„Androidr27c12479018GNU«›ý]"äy‘{(|+õi7ꅺ=N`y‰ ³¿Ðåü/>Qd{†”¡­Çãö)@UmŽ›§ºÝì÷!5DQarŒ˜¦­¾ÓØèþ!,M\l}’£¿Øç÷&3CXiwƒ”­ºÈãô"4J`n€¨ÊÞëù
*@Xiv‡“¤¸ÉÕã÷$6K_t€‘¤³ÆÔäò		$	0	B	I	]	q	‰	˜	¦	·	Ð	é	

%
6
G
Y
g
…
•
§
³
·
½
Â
É
Í
Ñ
Ö
Û
á
ç
ë
ð
õ
ú
ÿ
/ùÌ " c
c
¬ˆ¬gl Ž__cxa_finalize__cxa_atexit__register_atforkPyInit_mtrandPyModuleDef_InitPyThreadState_GetPyInterpreterState_GetIDPyErr_SetStringPyObject_GetAttrStringPyModule_NewObject_Py_DeallocPyModule_GetDictPyDict_SetItemStringPyErr_ExceptionMatchesPyErr_ClearPyExc_ImportErrorPyExc_AttributeError_Py_NoneStructPyExc_RuntimeErrorPyImport_AddModulePyObject_SetAttrStringPy_VersionPyOS_snprintfPyErr_WarnExPyTuple_NewPyBytes_FromStringAndSizePyUnicode_FromStringAndSizePyFloat_FromDoublePyLong_FromLongPyLong_FromStringPyObject_SetAttrPyImport_GetModuleDictPyDict_GetItemStringPyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyTuple_PackPySlice_New_Py_EllipsisObjectPyUnstable_Code_NewWithPosOnlyArgsPyDict_SetItemPyList_NewPyType_ModifiedPyLong_TypePyCMethod_New_PyDict_NewPresizedPyErr_OccurredPyErr_FormatPyExc_NameErrorPyObject_GetAttrPyGC_DisablePyType_ReadyPyGC_EnablePyCapsule_NewmallocPyObject_GetItemPyCapsule_GetPointerfreePyExc_TypeErrorPyImport_ImportModulePyImport_GetModulePyObject_IsTruePyDict_NewPyImport_ImportModuleLevelObject_Py_TrueStruct_Py_FalseStructPyModule_GetNamePyUnicode_FromStringPyUnicode_Concat_PyThreadState_UncheckedGetPyException_GetTracebackPyCapsule_TypePyExc_Exception_PyDict_GetItem_KnownHash_PyObject_GetDictPtrPyObject_NotPyCode_NewEmptyPyUnicode_FromFormatPyUnicode_AsUTF8PyMem_ReallocPyFrame_NewPyTraceBack_HerePyException_SetTracebackPyMem_MallocPyObject_HashPyUnicode_InternFromStringPyUnicode_DecodePyErr_GivenExceptionMatchesPyBaseObject_TypePyCapsule_IsValidPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyExc_SystemErrorPyErr_SetObjectPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyObject_GC_UnTrackPyNumber_AddPyMethod_TypePyNumber_InPlaceAddPyDict_SizePyType_IsSubtypePyVectorcall_FunctionPyObject_VectorcallDictPyCFunction_TypePyTuple_TypePyObject_GetIterPyList_TypePyExc_ValueErrorPyObject_IsInstancePyObject_SetItemPyDict_TypePyObject_SizePySequence_ContainsPyFloat_AsDoublePyFloat_Type_PyType_LookupPyEval_SaveThreadPyEval_RestoreThreadPyLong_FromLongLongPyObject_RichComparePyBool_TypePyUnicode_FormatPyNumber_RemainderPyUnicode_TypePyLong_FromSsize_tPyNumber_LongPySequence_ListPyList_AppendPyNumber_MultiplyPyList_AsTuplePySequence_TuplePyDict_NextPyUnicode_ComparememcmpPyExc_StopIterationPyExc_OverflowErrorPyDict_GetItemWithErrorPyExc_KeyErrorPyLong_AsLongPyErr_WarnFormatPyExc_DeprecationWarningPyErr_NormalizeExceptionPyNumber_InPlaceTrueDividePyNumber_SubtractPyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyLong_AsLongLongPyUnicode_New_PyUnicode_FastCopyCharactersPyObject_FormatPyCapsule_GetNamePyDict_Copyexplog1pexpflog1pfpowlogpowflogfexpm1floorcosacosfmodceilexp2memcpymemmovememsetlibm.soLIBClibc.solibpython3.12.so€G„GˆG¨H¬H°H´HÀHÄHÈHÌHÐHÔHØHÜHàHäHèHìHðHôHøHüHIIIIIIII I$I(I,Iœ‹¨‹¬‹ȋì‹ø‹Œ$Œ8Œ<Œ@ŒTŒ\ŒtŒ|Œ°Œ´ŒČЌԌàŒäŒðŒôŒüŒ $,04<@DLPT\`dlpt|€„Œ”œ ¤¬°´¼
č̍Ѝԍ܍àäìðôüŽŽŽŽŽŽ Ž$Ž,Ž0Ž4Ž<Ž@ŽDŽLŽPŽTŽ\Ž`ŽdŽlŽpŽtŽ|Ž€Ž„ŽŒŽŽ”ŽœŽ Ž¤Ž¬Ž°Ž´Ž¼ŽĎ̎ЎԎ܎àŽäŽìŽðŽôŽüŽ $,04<@DLPT\`dlpt|€„Œ”œ ¤¬°´¼ď̏Џԏ܏àäìðôü8<DHLTX\dhltx|„LHPHTHXH\H`H!dH%hH*lH/pH9tH?xH@|HF€HG„HWˆH\ŒHbHh”Hi˜HkœHl Ho¤Hs¸Hy¼H|0I‡4Iˆ8IŠ<I@I“ܪäªàªܪàªøªÜPITIXI\I`IdIhIlIpI	tI
xI|I€I
„IˆIŒII”I˜IœI I¤I¨I¬I°I´I¸I ¼I"ÀI#ÄI$ÈI&ÌI'ÐI(ÔI)ØI+ÜI,àI-äI.èI0ìI1ðI2ôI3øI4üI5J6J7J8J:J;J<J=J> JA$JB(JC,JD0JE4JH8JI<JJ@JKDJLHJMLJNPJOTJPXJQ\JR`JSdJThJUlJVpJXtJYxJZ|J[€J]„J^ˆJ_ŒJ`Ja”Jc˜JdœJe Jf¤Jg¨Jj¬Jm°Jn´Jp¸Jq¼JrÀJtÄJuÈJvÌJwÐJxÔJzØJ{ÜJ}àJ~äJèJ€ìJðJ‚ôJƒøJ„üJ…K†K‰K‹KŒKŽKKK‘ K’$K”(K•,K–0K—4K˜8K™<Kš@K›DKœHKLKžPKŸTK XK¡\K¢`K£dK¤hK¥lK¦pK§tK¨xK©|Kª€K«4294967296name '%U' is not definednumpy.random.mtrand.RandomStateexactlyMissing type object_rand_int16module compiled against API version 0x%x but this version of numpy is 0x%x . Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem .numpy.random.mtrand.ranfnumpy.random.mtrand.RandomState.bytesnumpy.random.mtrand.RandomState.standard_normalnumpy.random.mtrand.RandomState.standard_tSeedSequence%s() got multiple values for keyword argument '%U'__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)numpy.random.mtrand.RandomState.random_samplenumpy.random.mtrand.RandomState.fndarray_rand_bool_rand_int32numpy.random.mtrand.get_bit_generatordoes not match__setstate__too many values to unpack (expected %zd)numpy.random.mtrand.RandomState.vonmisesflexiblevalidate_output_shapeC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)numpy.core._multiarray_umath%.200s() keywords must be stringsnumpy.random.mtrand.RandomState.randintnumpy.random.mtrand.RandomState.multivariate_normalcomplexfloatingneed more than %zd value%.1s to unpacknumpy.random.mtrand.RandomState.set_statenumpy.random.mtrand.RandomState.rayleighmultiple bases have vtable conflict: '%.200s' and '%.200s'integer%.200s does not export expected C function %.200sloader__package____getstate__at most%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random.mtrand.RandomState.tomaxintboolfloatingLEGACY_POISSON_LAM_MAXdiscPyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)an integer is requiredassignmentPOISSON_LAM_MAX_rand_uint8_rand_int64_ARRAY_API is NULL pointercannot fit '%.200s' into an index-sized integernumpy.random.mtrand.RandomState.lognormalnumpy.random.mtrand.RandomState.shuffle%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectsnumpy.random.mtrand.RandomState.logseriesSeedlessSequencePyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)_ARRAY_APIFATAL: module compiled as unknown endiannumpy/random/mtrand.cpython-312.so.p/numpy/random/mtrand.pyx.c
    RandomState(seed=None)

    Container for the slow Mersenne Twister pseudo-random number generator.
    Consider using a different BitGenerator with the Generator container
    instead.

    `RandomState` and `Generator` expose a number of methods for generating
    random numbers drawn from a variety of probability distributions. In
    addition to the distribution-specific arguments, each method takes a
    keyword argument `size` that defaults to ``None``. If `size` is ``None``,
    then a single value is generated and returned. If `size` is an integer,
    then a 1-D array filled with generated values is returned. If `size` is a
    tuple, then an array with that shape is filled and returned.

    **Compatibility Guarantee**

    A fixed bit generator using a fixed seed and a fixed series of calls to
    'RandomState' methods using the same parameters will always produce the
    same results up to roundoff error except when the values were incorrect.
    `RandomState` is effectively frozen and will only receive updates that
    are required by changes in the internals of Numpy. More substantial
    changes, including algorithmic improvements, are reserved for
    `Generator`.

    Parameters
    ----------
    seed : {None, int, array_like, BitGenerator}, optional
        Random seed used to initialize the pseudo-random number generator or
        an instantized BitGenerator.  If an integer or array, used as a seed for
        the MT19937 BitGenerator. Values can be any integer between 0 and
        2**32 - 1 inclusive, an array (or other sequence) of such integers,
        or ``None`` (the default).  If `seed` is ``None``, then the `MT19937`
        BitGenerator is initialized by reading data from ``/dev/urandom``
        (or the Windows analogue) if available or seed from the clock
        otherwise.

    Notes
    -----
    The Python stdlib module "random" also contains a Mersenne Twister
    pseudo-random number generator with a number of methods that are similar
    to the ones available in `RandomState`. `RandomState`, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    See Also
    --------
    Generator
    MT19937
    numpy.random.BitGenerator

    numpy.random.mtrand.RandomState.permutationnumpy.random._bounded_integers__file__parentsubmodule_search_locationsnumpy.random.mtrand.RandomState.randnumpy.PyArray_MultiIterNew3_rand_int8check_array_constraintPyObject *(PyObject *, PyArrayObject *)NULL result without error in PyObject_Callnumpy.random.mtrand.RandomState.normalnumpy.random.mtrand.RandomState.__init__check_constraintdouble (double *, npy_intp)__loader__init numpy.random.mtrand__repr__numpy.random.mtrand.RandomState.paretodouble_fillnumpy.random.mtrand.samplenumpy.random.mtrand.RandomState.seednumpy.random.mtrand.RandomState.laplacenumpy.random.mtrand.RandomState.waldnumpy.random.mtrand.RandomState.triangularflatiterPyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)numpy.random.mtrand.RandomState.noncentral_fModule 'mtrand' has already been imported. Re-initialisation is not supported.intnumpy.random.mtrand.RandomState.random_integersnumpy.random.mtrand.RandomState.standard_gammanumpy.random.mtrand.RandomState.gammanumpy.random.mtrand.RandomState.dirichlethasattr(): attribute name must be stringnumberC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)_rand_uint64%s (%s:%d)cython_runtimenumpy.random.mtrand.RandomState.__repr__numpy.random.mtrand.RandomState.exponential__init__%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject_rand_uint16PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)cannot import name %S__path__numpy.random.mtrand.RandomState.get_stateinvalid vtable found for imported typecharacterufuncmodule compiled against ABI version 0x%x but this version of numpy is 0x%xnumpy.random.mtrand.set_bit_generatorBitGeneratornumpy.random.mtrand.RandomState.noncentral_chisquare_rand_uint32originnumpy/__init__.cython-30.pxdcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%dnumpy.random.mtrand.RandomState.__setstate__deletionnumpy.random.mtrand.RandomState.choicenumpy.random.mtrand.RandomState.geometricint (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)uint64_t_ARRAY_API is not PyCapsule objectcalling %R should have returned an instance of BaseException, not %Rnumpy.random.mtrand.RandomState.standard_exponential'%.200s' object does not support slice %.10snumpy.random.mtrand.int64_to_longnumpy.random.mtrand.RandomState.multinomial%.200s.%.200s is not a type objectkahan_sumnameat leastnumpy.random.mtrand.RandomState.betanumpy.random.mtrand.RandomState.gumbelunsignedintegerMAXSIZEcontnumpy.import_arraybuiltinsnumpy.random.mtrand.RandomState.negative_binomialextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typePyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)'%.200s' object is unsliceablenumpy.random.mtrand.RandomState.randnnumpy.random.mtrand.RandomState.weibullnumpy.random.mtrand.RandomState.logisticbroadcast%.200s does not export expected C variable %.200sFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random.mtrand.RandomState.binomialnumpy.random.mtrand.RandomState.poissonnumpy.random.mtrand.RandomState.hypergeometricbase class '%.200s' is not a heap typenumpy.random.bit_generatornumpy.random._commoncont_broadcast_3discrete_broadcast_iiinumpy.random.mtrand.seedInterpreter change detected - this module can only be loaded into one interpreter per process.__builtins__ while calling a Python objectraise: exception class must be a subclass of BaseExceptiontomaxint%s() got an unexpected keyword argument '%U'numpy.PyArray_MultiIterNew2mtrandnumpy.random.mtrand.RandomState.__str__numpy.random.mtrand.RandomState.__getstate__numpy.random.mtrand.RandomState.__reduce__Cannot convert %.200s to %.200s'%.200s' object is not subscriptablenumpy.random.mtrand.RandomState.uniformnumpy.random.mtrand.RandomState.standard_cauchynumpy.random.mtrand.RandomState.powernumpy.random.mtrand.RandomState._initialize_bit_generatornumpy.random.mtrand.RandomState.zipfcomplexsignedintegerinexactnumpy.random.mtrand.RandomState.randomnumpy.random.mtrand.RandomState.chisquarejoin() result is too long for a Python stringgeneric__pyx_capi__int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)numpy.random.mtrandnumpy/random/mtrand.pyxCannot take a larger sample than population when 'replace=False'DeprecationWarningFewer non-zero entries in p than sizeImportErrorIndexErrorInvalid bit generator. The bit generator must be instantized._MT19937MT19937Negative dimensions are not allowedOverflowErrorProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.
In future version, providing byteorder will raise a ValueErrorRandomStateRandomState.binomial (line 3353)RandomState.bytes (line 805)RandomState.chisquare (line 1910)RandomState.choice (line 841)RandomState.dirichlet (line 4394)RandomState.exponential (line 500)RandomState.f (line 1729)RandomState.gamma (line 1645)RandomState.geometric (line 3772)RandomState.gumbel (line 2764)RandomState.hypergeometric (line 3834)RandomState.laplace (line 2670)RandomState.logistic (line 2888)RandomState.lognormal (line 2974)RandomState.logseries (line 3969)RandomState.multinomial (line 4257)RandomState.multivariate_normal (line 4058)RandomState.negative_binomial (line 3505)RandomState.noncentral_chisquare (line 1986)RandomState.noncentral_f (line 1823)RandomState.normal (line 1454)RandomState.pareto (line 2354)RandomState.permutation (line 4668)RandomState.poisson (line 3593)RandomState.power (line 2561)RandomState.rand (line 1177)RandomState.randint (line 679)RandomState.randn (line 1221)RandomState.random_integers (line 1289)RandomState.random_sample (line 385)RandomState.rayleigh (line 3090)RandomState.seed (line 228)RandomState.shuffle (line 4543)RandomState.standard_cauchy (line 2075)RandomState.standard_exponential (line 577)RandomState.standard_gamma (line 1563)RandomState.standard_normal (line 1385)RandomState.standard_t (line 2150)RandomState.tomaxint (line 621)RandomState.triangular (line 3244)RandomState.uniform (line 1050)RandomState.vonmises (line 2265)RandomState.wald (line 3167)RandomState.weibull (line 2457)RandomState.zipf (line 3676)Range exceeds valid boundsRuntimeWarningSequenceShuffling a one dimensional array subclass containing objects gives incorrect results for most array subclasses.  Please use the new random number API instead: https://numpy.org/doc/stable/reference/random/index.html
The new API fixes this issue. This version will not be fixed due to stability guarantees of the API.TThis function is deprecated. Please call randint(1, {low} + 1) insteadThis function is deprecated. Please call randint({low}, {high} + 1) insteadTypeErrorUnsupported dtype %r for randintUserWarningValueError()*.?a'a' and 'p' must have same size'a' cannot be empty unless no samples are takena must be 1-dimensionala must be 1-dimensional or an integera must be greater than 0 unless no samples are takenaddall__all__allclosealphaalpha <= 0anyarangeargsarrayarray is read-onlyasarrayastype at 0x{:X}atolbbg_type
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        bit_generatorbitgenbool_
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        can only re-seed a MT19937 BitGeneratorcapsulecastingcheck_validcheck_valid must equal 'warn', 'raise', or 'ignore'
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        __class____class_getitem__cline_in_tracebackcollections.abccopycount_nonzerocovcov must be 2 dimensional and squarecovariance is not symmetric positive-semidefinite.cumsumdfdfdendfnum
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        disabledotemptyempty_likeenable__enter__epsequal__exit__
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        finfoflagsfloat64format
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gaussgc
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        getget_state and legacy can only be used with the MT19937 BitGenerator. To silence this warning, set `legacy` to False.greater
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        has_gausshigh
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        idignore__import__index_initializingint16int32int64int8intpisenabledisfiniteisnanisnativeisscalarissubdtypeitemitemsizekappakeykwargsllam
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        leftleft > modeleft == rightlegacylegacy can only be True when the underlyign bitgenerator is an instance of MT19937._legacy_seedinglengthlessless_equalloclocklogical_or
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        low__main__may_share_memorymeanmean and cov must have same lengthmean must be 1 dimensionalmodemode > right_mt19937mu
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        n__name__nbadndim
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        newbyteorderngoodngood + nbad < nsamplenonc
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        npnsamplenumpy.core.multiarray failed to importnumpy.core.umath failed to importnumpy.linalgobject_' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.operatorp'p' must be 1-dimensional
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _pickle
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        _poisson_lam_maxpos
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        probabilities are not non-negativeprobabilities contain NaNprobabilities do not sum to 1prodpvalspvals must be a 1-d sequence__pyx_vtable__raise_rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        __randomstate_ctorrangeravel
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        reducereplacereshapereturn_indexreversedrightrtolscalesearchsorted
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        set_state can only be used with legacy MT19937 state instances.shape
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        sidesigmasingletonsizesort__spec__sqrtstacklevel
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        statestate dictionary is not valid.state must be a dict or a tuple.__str__stridessubtractsumsum(pvals[:-1]) > 1.0sum(pvals[:-1].astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.svdtake__test__tobytestol
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        <u4uint16uint32uint64uint8
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        uniqueunsafe
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        warnwarnings
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        writeablexx must be an integer or at least 1-dimensionalyou are shuffling a 'zeros
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        __reduce__seed
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        get_state
        get_state(legacy=True)

        Return a tuple representing the internal state of the generator.

        For more details, see `set_state`.

        Parameters
        ----------
        legacy : bool, optional
            Flag indicating to return a legacy tuple state when the BitGenerator
            is MT19937, instead of a dict. Raises ValueError if the underlying
            bit generator is not an instance of MT19937.

        Returns
        -------
        out : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            If legacy is True, the returned tuple has the following items:

            1. the string 'MT19937'.
            2. a 1-D array of 624 unsigned integer keys.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If `legacy` is False, or the BitGenerator is not MT19937, then
            state is returned as a dictionary.

        See Also
        --------
        set_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        set_state
        set_state(state)

        Set the internal state of the generator from a tuple.

        For use if one has reason to manually (re-)set the internal state of
        the bit generator used by the RandomState instance. By default,
        RandomState uses the "Mersenne Twister"[1]_ pseudo-random number
        generating algorithm.

        Parameters
        ----------
        state : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The `state` tuple has the following items:

            1. the string 'MT19937', specifying the Mersenne Twister algorithm.
            2. a 1-D array of 624 unsigned integers ``keys``.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If state is a dictionary, it is directly set using the BitGenerators
            `state` property.

        Returns
        -------
        out : None
            Returns 'None' on success.

        See Also
        --------
        get_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        For backwards compatibility, the form (str, array of 624 uints, int) is
        also accepted although it is missing some information about the cached
        Gaussian value: ``state = ('MT19937', keys, pos)``.

        References
        ----------
        .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
           623-dimensionally equidistributed uniform pseudorandom number
           generator," *ACM Trans. on Modeling and Computer Simulation*,
           Vol. 8, No. 1, pp. 3-30, Jan. 1998.

        random_sample
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        random
        random(size=None)

        Return random floats in the half-open interval [0.0, 1.0). Alias for
        `random_sample` to ease forward-porting to the new random API.
        beta
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        .. note::
            New code should use the `~numpy.random.Generator.beta`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.


        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        See Also
        --------
        random.Generator.beta: which should be used for new code.
        exponential
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        standard_exponential
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        randint
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        bytes
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        choice
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        uniform
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        randn
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        random_integers
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        standard_normal
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        normal
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        standard_gamma
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gamma
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        f
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        noncentral_f
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        chisquare
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        noncentral_chisquare
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        standard_cauchy
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        standard_t
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        vonmises
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        pareto
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        weibull
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        power
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        laplace
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        gumbel
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        logistic
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        lognormal
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        rayleigh
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        wald
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        triangular
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        binomial
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        negative_binomial
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        poisson
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        zipf
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        geometric
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        hypergeometric
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        logseries
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        multivariate_normal
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        multinomial
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        dirichlet
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        shuffle
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        permutation
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _bit_generatortypenumpydtypedouble
    seed(seed=None)

    Reseed the singleton RandomState instance.

    Notes
    -----
    This is a convenience, legacy function that exists to support
    older code that uses the singleton RandomState. Best practice
    is to use a dedicated ``Generator`` instance rather than
    the random variate generation methods exposed directly in
    the random module.

    See Also
    --------
    numpy.random.Generator
    get_bit_generator
    Returns the singleton RandomState's bit generator

    Returns
    -------
    BitGenerator
        The bit generator that underlies the singleton RandomState instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random`` namespace. This function, and its counterpart set method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    set_bit_generator
    numpy.random.Generator
    set_bit_generator
    Sets the singleton RandomState's bit generator

    Parameters
    ----------
    bitgen
        A bit generator instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random``namespace. This function, and its counterpart get method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    get_bit_generator
    numpy.random.Generator
    sample
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    ranf
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    Á]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛe'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msyÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒx€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9Ÿåà€ÌêÔzÿ/áýÿÿêPãÿ/ÿ/á áŸå Ÿåà àxÌêàÿÿÿ¤z0Ÿå0àwÌêzÔÔÔÔHxD3ðz¸Š¾ðµ¯-éF3ððè€h3ðôè‚JzDÒécê5Ðp@Y@CÐ}H~IxDyDhh3ðèè ½èð½Oðÿ3ÂéX@Y@Cðà€uHxD@hP±hoð@B‘Bð£€1`½èð½nI FyD3ðÐè(ð™€F3ðÒè)hoð@B‘BÐ9)`ÑF(F3ðÎè0F(ퟘ�F3ðÎè(ð­€_IF FyD3ð®è(yÐ\IF(F2FyD3ðÄè1hoð@B‘BÐ91`сF0F3ð¨èHF(ñŽ€RI FyD3ðè(eÐPIF(F2FyD3ð¦è1hoð@B‘BÐ91`сF0F3ðŠèHF(pÔGI FyD3ðrè(RÐDIF(F2FyD3ðŠè1hoð@B‘BÐ91`сF0F3ðnèHF(SÔ;I FyD3ðVè(?ÐF8HxDh„BÐ7I(F"FyD3ðhèÅà%!hoð@B@F‘BÐ9!`Ñ F3ðHè@F…»½èð½ +à HxDhh3ðTè³3ðXè’çHxDhh3ðJèȱ3ðNè¥çHxDhh3ð@èx±3ðDè¸çHxDhh3ð6è(±3ð:è@F½èð½@Fðûÿ ½è𽿺¾{|ûÿ¤Ëývûÿê^ûÿ›mûÿŒyãsûÿlûÿxyâkûÿi^ûÿdy¯kûÿÒy)rûÿPy¿¿ðµ¯-éð
L|Dah±±BðHIxDyDhh2ð¼ïOðÿ0C°½èð½„ÉÈxpmûÿ``oð@Bh‘B¿1`2ðÆïM(}D•(`ð‡€àÌÀhoð@B‘B¿1`HxD2ðÒï(ð‡à¿uûÿhoð@B‘B¿1`Ih`yDF2ð¾ï(ð‚‡࿅nûÿhoð@B‘B¿1`IchjhyD¨`F2ð°ï(ñs‡à¿nyûÿHOöÿq”xDhh ê±ñC+Ðà¿xI¬JÀóFKyD%zD{DÍé0 FÍéQÈ!#–2ðŒï!F "&Oð
œ2ðŠï(ñK‡à‰|ûÿƒqûÿ¶Yûÿ &2ð„ï(è`ð)€H!xD2ð‚ï((að%€à¿.|ûÿH!xD2ð~ï(hað€à|ûÿ¿¿:Œ0âŽyE>q¬‹Ûhð?ðŽúíQì2ðhï(Åøhðއ·îQì2ð^ï(ÅølðӇíQì2ðRï(ÅøpðȇíQì2ðHï(Åøt𽇠2ðHï(Åøx𵇠Oð
2ð>ï(Åø|ðµ‡H!"xD2ð:ï(Åø€ðª‡à¾TûÿOðÿ02ð&ï(Åø„𞇠hH±Õø,$Õøx`h2ð(ï(ñ­†2ð,ï(ð©‡IFyD2ð,à¿{ûÿI˜yDBh F2ð¨î(ñb€à¿ýzûÿhhIÕø`CBhyD
h!F’lªBBðˆ‡à¿2v"#2ðï(ð†‡šQhÒø„AšÐ`Hh‚lF!FªBBð}‡"#2ðøî(ð‡šQhÒøxAšaHh‚lF!FªBBð{‡"#2ðäî(ð}‡šQhÒø`AšPaHh‚lF!FªBBðt‡"#2ðÐî(ðv‡›šYhaÓøÀEHh‚lF!FªBBðm‡"#2ð¼î(ðo‡šQhTošÐaHh‚lF!FªBBðg‡"#2ðªî(ði‡šQhÒø˜@šbHh‚lF!FªBBð`‡"#2ð–î(ðb‡šQhÒø€AšPbHh‚lF!FªBBðY‡"#2ð‚î(ð[‡›šYhbÓøèEHh‚lF!FªBBðR‡"#2ðnî(ðT‡šQhÒø€@šÐbHh‚lF!FªBBð[‡"#2ðZî(ð]‡šQhÔošcHh‚lF!FªBBðc‡"#2ðFî(ðe‡œÕøà`c 2ðDî(ÅøŒðP†Õøä 2ð:î(ÅøðF†Õø¸ 2ð0î(Åø”ð<†Õø„ 2ð&î(Åø˜ð2†Õø4 2ðî(Åøœð(†¢i Õø82ðî(Åø ð†Õøà 2ðî(Åø¨ð†Õø¨ 2ðüí(Åø¬ð	†Õø¬ 2ðòí(Åø°ðÿ…Õø( 2ðèí(Åø´ðõ…Õøh' Õø2ðÜí(Åø¸ðé…Õøx' ÕøL2ðÐí(Åø¼ðI…HxDh !F"F#F2ðÂí(ÅøÀð;…àts˜Õøœj 2ð´í(ÅøÄð,…Õøx Õø€'2ð¨í(ÅøÈð …Õø´ 2ðží(ÅøÌð…Õø¸ 2ð”í(ÅøÐð…Õø° 2ðŠí(ÅøÔð…Õø¬ 2ð€í(ÅøØðø„Õø 2ðví(ÅøÜðî„Õø¨ 2ðlí(Åøàðä„ÕøL 2ðbí(ÅøäðڄÕøH 2ðXí(ÅøèðЄÕøP 2ðNí(ÅøìðƄ)o 2ðDí(Åøðð½„Õø” 2ð:í(Åøô𳄩o 2ð2í(Åøøðª„éh 2ð(í(Åøüð¡„Õø\ 2ðí(Åøð—„ÕøÔ 2ðí(Åøð„ÕøH 2ð
í(Åøðƒ„ÕøØ 2ðí(Åøðy„Õø  2ðöì(Åøðo„Õø@ 2ðìì(Åøðe„Õø€ 2ðâì(Åøð[„Õø< 2ðØì(ÅøðQ„ F!F"F2ðÖì(Åø¤ðG„ÕøH 2ðÄì(Åø ð=„˜Õø„‚i 2ð¸ì(Åø$ð1„Õø„ 2ð®ì(Åø(ð'„Õø¤ "F2ð¤ì(Åø,ð„Õø` 2ðšìœ(Åø0ð¥„ÕøÐ 2ðŽì(Åø4ð›„Õøä 2ð„ì(Åø8𑄢j Õøh2ðzì(Åø<ð†„HÕøxxDh 2ðlì(Åø@ðy„àÒpÕøP 2ð`ì(ÅøDðl„Õø" Õø2ðTì(ÅøHð̃FÕéiÕø¦!Õøð´HxD2ðúë(ð¤ƒàuûÿ€FAò³ Íé
  !"Íé #ÍéºÍé˜Íé–ÍédÍéf2ð4ìØøoð@B‘BÐ9ÈøÑF@F2ð~ë(Fž(ÆøTð‹ƒÖéZ!Öø(³Oð	Öøð„HxD2ðºë(ðnƒàžtûÿFAòË Íé
° Íé !"#Íé‹Íé¤Íé¥ÍéUÍéU2ðôë!hoð@B‘BÐ9!`ÑF F2ð@ë(FÝø< (ÊøXðLƒÚøL& Úø 2ðÊë(ÊøLð@ƒFÚéiÚø¶!Úøð„HxD2ðpë(ð'ƒà
tûÿFAòå Íé
° !"Íé #Íé‹Íé”Íé–ÍéeÍéf2ðªë!hoð@B‘BÐ9!`ÑF F2ðöê(FÝø< (Êø\ðƒÚøÜ Úø´#2ð€ë(ÊøPðö‚FÚéiÚøøµ!Úøð„HxD2ð&ë(ðà‚àvsûÿFAò0Íé
° !"Íé #Íé‹Íé”Íé–ÍéeÍéf2ð`ë!hoð@B‘BÐ9!`ÑF F2ð¬ê(FÝø<°(Ëø`ð¸‚ÛéZ!Ûø¸eÛøð„ÛøP˜HxD2ðèê(ð¤‚à¿ørûÿFAò
0Íé
` !"Íé #Íé†Íé¤Íé¥ÍéYÍéU2ð ë!hoð@B‘BÐ9!`ÑF F2ðlê(Fœ(Äødðy‚ðYú(ñ@„ð.ü(ñU„ð-þ(ñU„ðˆþ(ñU„Ôøüðåÿ(ðS„FÔøü hJF2ðôê(ñ‚Ùøoð@AˆBÐ8Éø¿HF2ð4êÔø8ðÇÿ(ð@„FÔø8 hJF2ðÖê(ñw‚Ùøoð@AˆBÐ8Éø¿HF2ðê &2ðÊê(ð-„Foð@B$Õødh‘B¿1`ÕødÙø"`IFÕøpðoø(ð„€FÙøoð@AˆBÐ8Éø¿HF2ðæéÕød@Fð‹ø(ð„F(hÕødJF2ðˆê(ñT‚Ùøoð@D BBðS‚Øø BBðZ‚ÕøÜð\ÿ(ða‚€FÕøÐ(hBF2ðjê(ñ\‚Øøoð@AˆBÐ8Èø¿@F2ðªé 2ð`ê(ð܃€Foð@BÕøŒh‘B¿1`ÕøŒØø"`AFÕøLðø(ðȃFØøoð@AˆBÐ8Èø¿@F2ð~éÕøŒHFð"ø(ð·ƒF(hÕøˆ"F2ðê(ñ‚ hoð@E¨BBð‚Ùø¨BBð‚ðnøÝéE0ð$‚ híQì2ð²é(𛃁FènÕø4JFÐø„2ðöé(ñ‚Ùøoð@D BÐ8Éø¿HF2ð6éèn2ðôéHOðBxDhh B¿0`Åøˆ!Íé©èn1	ðþ(ðrƒ࿄kFÕøt(hJF2ðÂé(ñîÙøoð@AˆBÐ8Éø¿HF2ðéÕøtðÅù(ðZƒF@hÕø‚lHF*ðVƒG€F(ðWƒÙøoð@AˆBÐ8Éø¿HF2ðàè(hBFÕø2ðŠé(ñ¾Øøoð@AˆBÐ8Èø¿@F2ðÊèÕøtðù(ð7ƒ€F@hÕø‚l@F*ð3ƒGF(ð4ƒØøoð@AˆBÐ8Èø¿@F2ð¨èœJFÔø h2ðPé(ñŠÙøoð@AˆBÐ8Éø¿HF2ðèÔøtðTù(ðƒF@hÔø(‚lHF*ðƒG€F(ðƒÙøoð@AˆBÐ8Éø¿HF2ðnè˜BFÐø(h2ðé(ñ‚Øøoð@AˆBÐ8Èø¿@F2ðXè˜Ðøtðù(ðF@h‚l˜*ÐøL@Fð邐GF(ðê‚Øøoð@AˆBÐ8Èø¿@F2ð4è˜JFÐøLh2ðÜè(ñíÙøoð@AˆBÐ8Éø¿HF2ðè˜Ðøtðßø(ðȂF@h‚l˜*ÐøXHFðG€F(ðĂÙøoð@AˆBÐ8Éø¿HF1ðøï˜BFÐøXh2ð¢è(ñ·Øøoð@AˆBÐ8Èø¿@F1ðâï˜Ðøtð¤ø(ð䂀F@h‚l˜*Ðø¤@Fð߂GF(ðà‚Øøoð@AˆBÐ8Èø¿@F1ð¾ï˜JFÐø¤h2ðfè(ñ„Ùøoð@AˆBÐ8Éø¿HF1ð¦ï˜Ðøtðiø(𾂁F@h‚l˜*ÐøÜHF𹂐G€F(ðº‚Ùøoð@AˆBÐ8Éø¿HF1ð‚ï˜BFÐøÜh2ð,è(ñNØøoð@AˆBÐ8Èø¿@F1ðlï˜Ðøtð.ø(𘂀F@h‚l˜*Ðøè@F𓂐GF(ð”‚Øøoð@AˆBÐ8Èø¿@F1ðHï˜JFÐøèh1ððï(ñÙøoð@AˆBÐ8Éø¿HF1ð0ï˜Ðøtðóÿ(ðr‚F@h‚l˜*ÐøHFðm‚G€F(ðn‚Ùøoð@AˆBÐ8Éø¿HF1ðï˜BFÐøh1ð¶ï(ñØøoð@AˆBÐ8Èø¿@F1ðöî˜Ðøtð¸ÿ(ðL‚€F@h‚l˜*Ðø0@FðG‚GF(ðH‚Øøoð@AˆBÐ8Èø¿@F1ðÒî˜JFÐø0h1ðzï(ñá€Ùøoð@AˆBÐ8Éø¿HF1ðºî˜Ðøtð}ÿ(ð&‚F@h‚l˜*ÐøHFð!‚G€F(ð"‚Ùøoð@AˆBÐ8Éø¿HF1ð–î˜BFÐøh1ð@ï(ñº€Øøoð@AˆBÐ8Èø¿@F1ð€î˜ÐøtðBÿ(ð‚€F@h‚l˜*Ðø@@FðûGF(ðüØøoð@AˆBÐ8Èø¿@F1ð\î˜JFÐø@h1ðï(ñ„€Ùøoð@AˆBÐ8Éø¿HF1ðDî˜Ðøtðÿ(ðځF@h‚l˜*ÐøTHFðցG€F(ðׁÙøoð@AˆBÐ8Éø¿HF1ð î˜BFÐøTh1ðÊî(ñ]€Øøoð@AˆBÐ8Èø¿@F1ð
î˜ÐøtðÌþ(𵁀F@h‚l˜*ÐøÄ@F𱁐GF(ð²Øøoð@AˆBÐ8Èø¿@F1ðæí˜JFÐøÄh1ðŽî(ñ,€Ùøoð@AˆBÐ8Éø¿HF1ðÎí˜Ðøtð‘þ(𐁁F@h‚l˜*ÐøHFퟰ�G€F(ðÙøoð@AˆBÐ8Éø¿HF1ðªí˜BFÐøh1ðTî(ñû‡Øøoð@AˆBÐ8Èø¿@F1ð”í˜ÐøtðVþ(ðl€F@h‚l˜*Ðø@FðhGF(ðiØøoð@AˆBÐ8Èø¿@F1ðpí˜JFÐøh1ðî(ñՇÙøoð@AˆBÐ8Éø¿HF1ðXí˜Ðøtðþ(ðHF@h‚l˜*ÐøHFðDG€F(ðEÙøoð@AˆBÐ8Éø¿HF1ð4í˜BFÐøh1ðÞí(ñ¯‡Øøoð@AˆBÐ8Èø¿@F1ðí˜Ðøtðàý(ð%€F@h‚l˜*ÐøX@Fð!GF(ð"Øøoð@AˆBÐ8Èø¿@F1ðúì˜JFÐøXh1ð¢í(ñ‰‡Ùøoð@AˆBÐ8Éø¿HF1ðâì˜Ðøtð¥ý(ðF@h‚l˜*ÐødHFðþ€G€F(ðÿ€Ùøoð@AˆBÐ8Éø¿HF1ð¾ì˜BFÐødh1ðhí(ñc‡Øøoð@AˆBÐ8Èø¿@F1ð¨ì˜Ðøtðjý(ð߀€F@h‚l˜*Ðøˆ@FðۀGF(ð܀Øøoð@AˆBÐ8Èø¿@F1ð„ì˜JFÐøˆh1ð,í(ñ‡Ùøoð@AˆBÐ8Éø¿HF1ðlì˜Ðøtð/ý(𼀁F@h‚l˜*Ðø¬HF𸀐G€F(ð¹€Ùøoð@AˆBÐ8Éø¿HF1ðHì˜BFÐø¬h1ðòì(ñY‡Øøoð@AˆBÐ8Èø¿@F1ð2ì˜Ðøtðôü(𙀀F@h‚l˜*Ðø¸@F𕀐GF(ð–€Øøoð@AˆBÐ8Èø¿@F1ðì˜JFÐø¸h1ð¶ì(ñ3‡Ùøoð@AˆBÐ8Éø¿HF1ðöë˜Ðøtð¹ü(ðv€F@h‚l˜*ÐøÄHFðr€G€F(ðs€Ùøoð@AˆBÐ8Éø¿HF1ðÒë˜BFÐøÄh1ð|ì(ñ
‡Øøoð@AˆBÐ8Èø¿@F1ð¼ë˜Ðøtð~ü(ðS€€F@h‚l˜*Ðø@FðO€GF(ðP€Øøoð@AˆBÐ8Èø¿@F1ð˜ë˜JFÐøh1ð@ì(ñç†Ùøoð@AˆBÐ8Éø¿HF1ð€ë˜ÐøtðCü(ð0€F@h‚l˜*ÐøHFð,€G€F(ð-€Ùøoð@AˆBÐ8Éø¿HF1ð\ë˜BFÐøh1ðì(ñFØøoð@AˆBÐ8Èø¿@F1ðFë˜Ðøtðü(ð
€€F@h‚l˜*Ðø(@Fð	€GF(ð
€Øøoð@AˆBÐ8Èø¿@F1ð"ë˜JFÐø(h1ðÊë(ñ›†Ùøoð@AˆBÐ8Éø¿HF1ð
ë˜ÐøtðÍû(ðꇁF@h‚l˜*Ðø<HFð懐G€F(ðç‡Ùøoð@AˆBÐ8Éø¿HF1ðæê˜BFÐø<h1ðë(ñu†Øøoð@AˆBÐ8Èø¿@F1ðÐê˜Ðøtð’û(ðLJ€F@h‚l˜*Ðøl@FðǐGF(ð㨸oð@AˆBÐ8Èø¿@F1ð¬ê˜JFÐølh1ðTë(ñP†Ùøoð@AˆBÐ8Éø¿HF1ð”ê˜ÐøtðWû(𤇁F@h‚l˜*Ðø|HF𠇐G€F(ð¡‡Ùøoð@AˆBÐ8Éø¿HF1ðpê˜BFÐø|h1ðë(ñ+†Øøoð@AˆBÐ8Èø¿@F1ðZê˜Ðøtðû(ퟄ�F@h‚l˜*Ðøˆ@Fð}‡GF(ð~‡Øøoð@AˆBÐ8Èø¿@F1ð6ê˜JFÐøˆh1ðÞê(ñ†Ùøoð@AˆBÐ8Éø¿HF1ðê˜Ðøtðáú(ð^‡F@h‚l˜*Ðø”HFðZ‡G€F(ð[‡Ùøoð@AˆBÐ8Éø¿HF1ðúé˜BFÐø”h1ð¤ê(ñâ…Øøoð@AˆBÐ8Èø¿@F1ðäé˜Ðøtð¦ú(ð;‡€F@h‚l˜*Ðøœ@Fð7‡GF(ð8‡Øøoð@AˆBÐ8Èø¿@F1ðÀé˜JFÐøœh1ðhê(ñ¿…Ùøoð@AˆBÐ8Éø¿HF1ð¨é˜Ðøtðkú(ð‡F@h‚l˜*Ðø¨HFð‡G€F(ð‡Ùøoð@AˆBÐ8Éø¿HF1ð„é˜BFÐø¨h1ð.ê(ñœ…Øøoð@AˆBÐ8Èø¿@F1ðné˜Ðøtð0ú(ðõ†€F@h‚l˜*ÐøÈ@Fðñ†GF(ðò†Øøoð@AˆBÐ8Èø¿@F1ðJé˜JFÐøÈh1ðòé(ñy…Ùøoð@AˆBÐ8Éø¿HF1ð2é˜Ðøtðõù(ð҆F@h‚l˜*Ðø HFðΆG€F(ðφÙøoð@AˆBÐ8Éø¿HF1ðé˜BFÐø h1ð¸é(ñV…Øøoð@AˆBÐ8Èø¿@F1ðøè˜Ðøtðºù(𯆀F@h‚l˜*Ðø4@F𫆐GF(ð¬†Øøoð@AˆBÐ8Èø¿@F1ðÔè˜JFÐø4h1ð|é(ñ3…Ùøoð@AˆBÐ8Éø¿HF1ð¼è˜Ðøtðù(ퟰ�F@h‚l˜*ÐødHFퟠ�G€F(ð‰†Ùøoð@AˆBÐ8Éø¿HF1ð˜è˜BFÐødh1ðBé(ñ…Øøoð@AˆBÐ8Èø¿@F1ð‚è˜ÐøtðDù(ði†€F@h‚l˜*Ðøp@Fðe†GF(ðf†Øøoð@AˆBÐ8Èø¿@F1ð^è˜JFÐøph1ðé(ñí„Ùøoð@AˆBÐ8Éø¿HF1ðFè˜Ðøtð	ù(ðF†F@h‚l˜*Ðø|HFðB†G€F(ðC†Ùøoð@AˆBÐ8Éø¿HF1ð"è˜BFÐø|h1ðÌè(ñʄØøoð@AˆBÐ8Èø¿@F1ðè˜ÐøtðÎø(ð†€F@h‚l˜*Ðøˆ@Fð†GF(ð†Øøoð@AˆBÐ8Èø¿@F0ðèï˜JFÐøˆh1ðè(ñ§„Ùøoð@AˆBÐ8Éø¿HF0ðÐï˜Ðøtð“ø(ðú…F@h‚l˜*Ðø”HFðö…G€F(ð÷…Ùøoð@AˆBÐ8Éø¿HF0ð¬ï˜BFÐø”h1ðVè(ñ„„Øøoð@AˆBÐ8Èø¿@F0ð–ï˜ÐøtðXø(ðׅ€F@h‚l˜*Ðøà@FðӅGF(ðԅØøoð@AˆBÐ8Èø¿@F0ðrï˜JFÐøàh1ðè(ña„Ùøoð@AˆBÐ8Éø¿HF0ðZï˜Ðøtðø(𴅁F@h‚l˜*ÐøHF𰅐G€F(ð±…Ùøoð@AˆBÐ8Éø¿HF0ð6ï˜BFÐøh0ðàï(ñ>„Øøoð@AˆBÐ8Èø¿@F0ð ï˜Ðøtðâÿ(𑅀F@h‚l˜*Ðø@Fퟴ�GF(ðŽ…Øøoð@AˆBÐ8Èø¿@F0ðüî˜JFÐøh0ð¤ï(ñ„Ùøoð@AˆBÐ8Éø¿HF0ðäî˜Ðøtð§ÿ(ðn…F@h‚l˜*Ðø$HFðj…G€F(ðk…Ùøoð@AˆBÐ8Éø¿HF0ðÀî˜BFÐø$h0ðjï(ñøƒØøoð@AˆBÐ8Èø¿@F0ðªî˜Ðøtðlÿ(ðE…€F@h‚l˜*Ðø<@FðA…GF(ðB…Øøoð@AˆBÐ8Èø¿@F0ð†î˜JFÐø<h0ð.ï(ñՃÙøoð@AˆBÐ8Éø¿HF0ðnî˜Ðøtð1ÿ(ð…F@h‚l˜*Ðø\HFð…G€F(ð…Ùøoð@AˆBÐ8Éø¿HF0ðJî˜BFÐø\h0ðôî(ñ²ƒØøoð@AˆBÐ8Èø¿@F0ð4îL!˜#|DÐøì$ F0ðòî(ðî„à¿R€F˜BFÐøh0ðÊî(ñ¡ƒØøoð@AˆBÐ8Èø¿@F0ð
î˜!#Ðøì$ñ0ðÊî(ð̄€F˜BFÐø(h0ð¦î(ñ•ƒØøoð@AˆBÐ8Èø¿@F0ðæí˜!#Ðøì$ñ 0ð¦î(𮄀F˜BFÐøh0ð‚î(ñ‰ƒØøoð@AˆBÐ8Èø¿@F0ðÂí˜!#Ðøì$ñ00ð‚î(𐄀F˜BFÐøøh0ð^î(ñ}ƒØøoð@AˆBÐ8Èø¿@F0ðží˜!#Ðøì$ñ@0ð^î(ðr„€F˜BFÐø¸h0ð:î(ñqƒØøoð@AˆBÐ8Èø¿@F0ðzí5 0ð0î(ðZ„€F˜Ðøoð@@
h‚B¿2
`™ÑøØø `™Ñø
h‚B¿P`˜ÐøØøA`˜Ðø,oð@@
h‚B¿2
`™Ñø,Øø ‘`™ÑøP
h‚B¿P`˜ÐøPØøÁ`˜Ðø\oð@@
h‚B¿2
`™Ñø\Øø a™Ñø¨
h‚B¿P`˜Ðø¨ØøAa˜Ðøàoð@@
h‚B¿2
`™ÑøàØø ‘a™Ñøì
h‚B¿P`˜ÐøìØøÁa˜Ðøoð@@
h‚B¿2
`™ÑøØø b™Ñø
h‚B¿P`˜ÐøØøAb˜Ðø,oð@@
h‚B¿2
`™Ñø,Øø ‘b™Ñø4
h‚B¿P`˜Ðø4ØøÁb˜ÐøDoð@@
h‚B¿2
`™ÑøDØø c™ÑøX
h‚B¿P`˜ÐøXØøAc˜ÐøÈoð@@
h‚B¿2
`™ÑøÈØø ‘c™Ñø
h‚B¿P`˜ÐøØøÁc˜Ðøoð@@
h‚B¿2
`™ÑøØø d™Ñø 
h‚B¿P`˜Ðø ØøAd˜Ðø\oð@@
h‚B¿2
`™Ñø\Øø ‘d™Ñøh
h‚B¿P`˜ÐøhØøÁd˜ÐøŒoð@@
h‚B¿2
`™ÑøŒØø e™Ñø°
h‚B¿P`˜Ðø°ØøAe˜Ðø¼oð@@
h‚B¿2
`™Ñø¼Øø ‘e™ÑøÈ
h‚B¿P`˜ÐøÈØøÁe˜Ðøoð@@
h‚B¿2
`™ÑøØø f™Ñø
h‚B¿P`˜ÐøØøAf˜Ðø,oð@@
h‚B¿2
`™Ñø,Øø ‘f™Ñø@
h‚B¿P`˜Ðø@ØøÁf˜Ðøpoð@@
h‚B¿2
`™ÑøpØø g™Ñø€
h‚B¿P`˜Ðø€ØøAg˜ÐøŒoð@@
h‚B¿2
`™ÑøŒØø ‘g™Ñø˜
h‚B¿P`˜Ðø˜ØøÁg˜Ðø oð@@
h‚B¿2
`™Ñø Øø Âø€™Ñø¬
h‚B¿P`˜Ðø¬ØøÀø„˜Ðø¼oð@@
h‚B¿2
`™Ñø¼Øø Âøˆ™ÑøÌ
h‚B¿P`˜ÐøÌØøÀøŒ˜Ðøüoð@@
h‚B¿2
`™ÑøüØø Âø™Ñø
h‚B¿P`˜ÐøØøÀø”˜Ðøoð@@
h‚B¿2
`™ÑøØø Âø˜™Ñø$
h‚B¿P`˜Ðø$ØøÀøœ˜Ðø8oð@@
h‚B¿2
`™Ñø8Øø Âø ™Ñøh
h‚B¿P`˜ÐøhØøÀø¤˜Ðøtoð@@
h‚B¿2
`™ÑøtØø Âø¨™Ñø€
h‚B¿P`˜Ðø€ØøÀø¬˜ÐøŒoð@@
h‚B¿2
`™ÑøŒØø Âø°™Ñø˜
h‚B¿P`˜Ðø˜ØøÀø´˜Ðøäoð@@
h‚B¿2
`™ÑøäØø Âø¸™Ñø
h‚B¿P`˜ÐøØøÀø¼˜Ðøoð@@
h‚B¿2
`™ÑøØø ÂøÀ™Ñø(
h‚B¿P`˜Ðø(ØøÀøÄ˜Ðø@oð@@
h‚B¿2
`™Ñø@Øø ÂøÈ™Ñø`
h‚B¿P`˜Ðø`Øøoð@BÀøÌ˜Ðø¤h‘B¿1`˜Ðø¤ØøBFÁøÐ™hÑøÄ0ðìê(ñ:€Øøoð@AˆBÐ8Èø¿@F0ð,ê- 0ðøê(ð€F˜Ðø&Ðø$@F0ðÌê(ñE€˜Ðø°%Ðø@F0ðÂê(ñR€˜Ðøä"Ðø¼@F0ð¶ê(ñ_€˜Ðøx&Ðø0@F0ð¬ê(ñl€˜ÐøÜ&Ðø@@F0ð ê(ñy€˜Ðø„%Ðø@F0ð–ê(ñԀ˜Ðø¬Ðø0"@F0ðŠê(ñπ˜Ðø´Ðø`"@F0ð€ê(ñʀ˜Ðø'ÐøH@F0ðtê(ñŀ˜Ðøx%Ðø@F0ðjê(ñ˜Ðø%Ðø@F0ð^ê(ñ»€˜Ðø¤%Ðø@F0ðTê(ñ¶€˜Ðø&Ðø8@F0ðHê(ñ±€˜ÐøÌ$Ðøø@F0ð>ê(ñ¬€˜Ðø„&Ðø4@F0ð2ê(ñ§€˜Ðø#ÐøÄ@F0ð(ê(ñ¢€˜Ðøð"ÐøÀ@F0ðê(ñ€˜ÐøÀ$Ðøô@F0ðê(ñ˜€˜Ðø°ÐøT"@F0ðê(ñ“€˜Ðø´$Ðøð@F0ðüé(ñŽ€˜Ðøl&Ðø,@F0ððé(ñ‰€˜Ðøœ&Ðø<@F0ðæé(ñ„€˜Ðø 'ÐøL@F0ðÚé(ñ€˜Ðø%Ðøü@F0ðÐé(ñz€˜ÐøD'ÐøT@F0ðÄé(ñu€˜ÐøD%Ðø@F0ðºé(ñp€˜ÐøÌ#ÐøÔ@F0ð®é(ñk€˜ÐøH#ÐøÌ@F0ð¤é(ñf€˜Ðø$ÐøØ@F0ð˜é(ña€˜Ðø$ÐøÜ@F0ðŽé(ñ\€˜ÐøÐ%Ðø @F0ð‚é(ñW€˜Ðø,'ÐøP@F0ðxé(ñR€˜Ðøè&ÐøD@F0ðlé(ñM€˜Ðø¨Ðø"@F0ðbé(ñH€˜Ðø$Ðøì@F0ðVé(ñC€˜Ðø0%Ðø@F0ðLé(ñ>€˜Ðød'ÐøX@F0ð@é(ñ9€˜Ðø #ÐøÈ@F0ð6é(ñ4€˜Ðø\#ÐøÐ@F0ð*é(ñ/€˜Ðø$$Ðøà@F0ð é(ñ*€˜Ðøl$Ðøè@F0ðé(ñ%€˜Ðø`$Ðøä@F0ð
é(ñ €˜Ðø¸Ðø¬"@F0ðþè(ñ€˜Ðø<&Ðø(@F0ðôè(ñ€˜Ðø %Ðø@F0ðèè(ñ€˜BFÐøÐh0ðÞè(ñ
€Øøoð@AœˆBiÐ8ÈøeÑ@F0ðèaà C°½èð½&Gò·an`Oð
)à&Gò¸a®`Oð
"à&Gò¹aOð
àöTàGòêa&àGòÄaàöXà
ö\à
õ`àöd!`Oð
Gò÷a&œ`h𱚆ðh²ú‚òR	CÑàHRFàKxD{Dð¾ø`h¸±!oð@Ba`h‘BÐ9`
Ñ/ðÆï
à0ðœè8¹ÕHÖIxDyDhh/ð¢ïah )¿Oðÿ0C°½èð½GòqOð
àGòqOð
$Ùøoð@BBÐ8ÉøÑHF
F/ð˜ï)F,¬ЉF FØøoð@AˆBÑ&IF¢ç8Èøœ¿@F/ð‚ïIFçGò.qOð
DFÓç8Éø¿HF/ðtïØø B=ô¦­8Èø¿@F/ðhïÕøÜðûü(}ôŸ­Gò9qOð
sçGò;yOð
ÂçGò÷aTçGòOqOð
§ç8 `¿ F/ðHïÙø¨B=ôã­8Éø¿HF/ð<ïðJþÝéE0}ôܭGòZqOði
Iç&GòµaOð
CçGòeqOð²
}çGòãaOð
9çGò}qAò*sçGòãa1çGòŒyAòƒ*çGò›qAò„*fçGòÈaOð
"çGòÉaOð
çGòÊaOð
çGòîaç*𽁐G(}ô|¨ð-ú˜ñkà*𶁐G(}ôƒ¨ð ú˜ñ^àGòªyAò…*Iç*𪁐G(}ô…¨ðú˜ñLà*𣁐G(}ôŒ¨ðú˜ñ?à*𜁐G(}ô“¨ðôù˜ñ2à*𕁐G(}ô™¨ðçù˜ñ %à*ퟸ�G(}ô ¨ðÚù˜ñ$à*ퟜ�G(}ô§¨ðÍù˜ñ(à*ퟀ�G(}ô®¨ðÀù˜ñ,/ðZï@¹6H"F6IxDyDhh/ðXï Gòõa(`‰æ*ðiG(}ô¥¨ð£ù/ð@ï@¹+H"F+IxDyDhh/ð>ïœ Gòõa cXæ*ðTG(}ô¨ðˆù/ð$ï@¹ H"F IxDyDhh/ð"ïœ Gòõa`c=æGò¹qAò†*æGòÈyAò‡*žæGòðaFæGò×qAòˆ*‚æGòæyAò‰*‘æGòõqAòŠ*xæOð
Gòüa2æ¿è;ûÿ‡MûÿˆH¶;ûÿ"F'$ûÿîEó#ûÿ¸E½#ûÿOð
GòýaæOð
GòþaæOð
Gòÿaæ&GòqOð
	æGö	Aò‹*Xæ&GòqOð
þåGöAòŒ*9æGò$qOð
ôåGò)qOð
0æGò,yOð
>æGö"	Aò*9æGö1AòŽ* æGòEqOð
ÛåGòJyOð
*æGòMqOð
æGö@	Aò* æGòcqOð²
ÈåGöOAò*æGò{qAò*½åGö^	Aò‘*æGò‡qAòƒ*³å/ð‚î€F(}ô©¬Gò‰qAòƒ*èåGömAò’*ãåGò–qAò„*žå/ðlîF(}ô̬Gò˜yAò„*çåGö|	Aò“*âåGò¥qAò…*‰å/ðXî€F(}ôð¬Gò§qAò…*¾åGö‹Aò”*¹åGò´qAò†*tå/ðBîF(}ô­Gò¶yAò†*½åGöš	Aò•*¸åGòÃqAò‡*_å/ð.î€F(}ô<­GòÅqAò‡*”å/ð"î(|ô¾®@æ/ðî(|ô̮Gæ/ðî(|ôڮSæ/ðî(|ôè®Zæ/ð
î(|ôö®aæ/ðî(|ô¯hæ/ðþí(|ô¯oæ/ðøí(|ô¯væ/ðòí(|ô-¯}æ/ðìí(|ô;¯”æ/ðæí(|ôH¯©æGö©Aò–*MåGòÒqAòˆ*å/ðÖíF(}ô ­GòÔyAòˆ*QåGö¸	Aò—*LåGòáqAò‰*óä/ðÂí€F(}ôF­GòãqAò‰*(åGöÇAò˜*#åGòðqAòŠ*Þä/ð¬íF(}ôl­GòòyAòŠ*'åGöÖ	Aò™*"åGòÿqAò‹*Éä/ð˜í€F(}ô’­GöAò‹*þäGöåAòš*ùäGöAòŒ*´ä/ð‚íF(}ô¸­Gö	AòŒ*ýäGöô	Aò›*øäGöAò*Ÿä/ðní€F(}ôޭGöAò*ÔäGöAòœ*ÏäGö,AòŽ*Šä/ðXíF(}ô®Gö.	AòŽ*ÓäGöAò*ÎäGö;Aò*ÿ÷u¼/ðBí€F(}ô)®Gö=Aò*©äGö!Aòž*¤äGöJAò*ÿ÷_¼/ð,íF(}ôN®GöL	Aò*§äGö0AòŸ*¢äGöYAò‘*ÿ÷I¼/ðí€F(}ôs®Gö[Aò‘*}äGö?Oô•Zÿ÷x¼GöhAò’*ÿ÷2¼/ðíF(}ô—®Göj	Aò’*zäGöNAò¡*ÿ÷u¼GöwAò“*ÿ÷¼/ðèì€F(}ô»®GöyAò“*ÿ÷O¼Gö]Aò¢*ÿ÷I¼Gö†Aò”*ÿ÷¼/ðÐìF(}ôޮGöˆ	Aò”*ÿ÷K¼GölAò£*ÿ÷E¼Gö•Aò•*ÿ÷ë»/ð¸ì€F(}ô¯Gö—Aò•*ÿ÷¼Gö{Aò¤*ÿ÷¼Gö¤Aò–*ÿ÷ӻ/ð ìF(}ô$¯Gö¦	Aò–*ÿ÷¼GöŠAò¥*ÿ÷¼Gö³Aò—*ÿ÷»»/ðˆì€F(}ôG¯GöµAò—*ÿ÷ï»Gö™Aò¦*ÿ÷é»GöÂAò˜*ÿ÷£»/ðpìF(}ôj¯GöÄ	Aò˜*ÿ÷ë»Gö¨Aò§*ÿ÷å»GöÑAò™*ÿ÷‹»/ðXì€F(}ô¯GöÓAò™*ÿ÷¿»Gö·Aò¨*ÿ÷¹»GöàAòš*ÿ÷s»/ð@ìF(}ô°¯Göâ	Aòš*ÿ÷»»GöÆAò©*ÿ÷µ»GöïAò›*ÿ÷[»/ð(ì€F(}ôӯGöñAò›*ÿ÷»GöÕAòª*ÿ÷‰»GöþAòœ*ÿ÷C»/ðìF(}ôö¯OôòIAòœ*ÿ÷‹»GöäAò«*ÿ÷…»Gö
Aò*ÿ÷+»/ðøë€F(~ô¨GöAò*ÿ÷_»GöóAò¬*ÿ÷Y»GöAòž*ÿ÷»/ðàëF(~ô<¨GöAòž*ÿ÷[»Gö)Aò­*ÿ÷U»Gö+AòŸ*ÿ÷ûº/ðÈë€F(~ô_¨Gö-AòŸ*ÿ÷/»Gö!Aò®*ÿ÷)»Gö:Oô•Zÿ÷ãº/ð°ëF(~ô‚¨Gö<Oô•Zÿ÷+»Gö )Aò¯*ÿ÷%»GöIAò¡*ÿ÷˺/ð˜ë€F(~ô¥¨GöKAò¡*ÿ÷ÿºGö/!Aò°*ÿ÷ùºGöXAò¢*ÿ÷³º/ð€ëF(~ôȨGöZAò¢*ÿ÷ûºGö>)Aò±*ÿ÷õºGögAò£*ÿ÷›º/ðhë€F(~ôë¨GöiAò£*ÿ÷ϺGöJ)Aò³*ÿ÷ݺGövAò¤*ÿ÷ƒº/ðPëF(~ô©GöxAò¤*ÿ÷˺GöV)AòË*ÿ÷źGö…Aò¥*ÿ÷kº/ð8ë€F(~ô1©Gö‡Aò¥*ÿ÷ŸºGöb)Aòå*ÿ÷­ºGö”Aò¦*ÿ÷Sº/ð ëF(~ôT©Gö–Aò¦*ÿ÷›ºGön)Aò:ÿ÷•ºGö£Aò§*ÿ÷;º/ðë€F(~ôw©Gö¥Aò§*ÿ÷oºGöz)Aò
:ÿ÷}ºGö²Aò¨*ÿ÷#º/ððêF(~ôš©Gö´Aò¨*ÿ÷kºGö%9Aò:ÿ÷eºGöÁAò©*ÿ÷º/ðØê€F(~ô½©GöÃAò©*ÿ÷?ºGöÐAòª*ÿ÷ù¹/ðÆêF(~ôæ©GöÒAòª*ÿ÷AºGö/9Oð
ÿ÷;ºGößAò«*ÿ÷á¹/ð®ê€F(~ô	ªGöáAò«*ÿ÷ºGö09Oð
ÿ÷#ºGöîAò¬*ÿ÷ɹ/ð–êF(~ô,ªGöðAò¬*ÿ÷ºGö19Oð
ÿ÷ºGöýAò­*ÿ÷±¹/ð~ê€F(~ôOªGöÿAò­*ÿ÷å¹Gö29Oð
ÿ÷ó¹Gö!Aò®*ÿ÷™¹/ðfêF(~ôrªGö)Aò®*ÿ÷á¹Gö39Oð
ÿ÷۹Gö!Aò¯*ÿ÷¹/ðNê€F(~ô•ªGö!Aò¯*ÿ÷µ¹Gö*!Aò°*ÿ÷o¹/ð<êF(~ô¾ªGö,)Aò°*ÿ÷·¹Gö9!Aò±*ÿ÷]¹/ð*ê€F(~ôçªGö;!Aò±*ÿ÷‘¹GöH!Aò³*ÿ÷K¹GöT!AòË*ÿ÷E¹Gö`!Aòå*ÿ÷?¹Göl!Aò:ÿ÷9¹Göx!Aò
:ÿ÷3¹Gö„!Aò:ÿ÷-¹Oð
Gö-1ÿ÷'¹Gö49Oð
ÿ÷u¹Gö59Oð
ÿ÷o¹Gö69Oð
ÿ÷i¹Gö79Oð
ÿ÷c¹Gö89Oð
ÿ÷]¹Gö99Oð
ÿ÷W¹Gö:9Oð
ÿ÷Q¹Gö;9Oð
ÿ÷K¹Gö<9Oð
ÿ÷E¹Gö=9Oð
ÿ÷?¹Gö>9Oð
ÿ÷9¹Gö?9Oð
ÿ÷3¹Gö@9Oð
ÿ÷-¹GöA9Oð
ÿ÷'¹GöB9Oð
ÿ÷!¹GöC9Oð
ÿ÷¹GöD9Oð
ÿ÷¹GöE9Oð
ÿ÷¹GöF9Oð
ÿ÷	¹GöG9Oð
ÿ÷¹GöH9Oð
ÿ÷ý¸GöI9Oð
ÿ÷÷¸GöJ9Oð
ÿ÷ñ¸GöK9Oð
ÿ÷ë¸GöL9Oð
ÿ÷å¸GöM9Oð
ÿ÷߸GöN9Oð
ÿ÷ٸGöO9Oð
ÿ÷ӸGöP9Oð
ÿ÷͸GöQ9Oð
ÿ÷ǸGöR9Oð
ÿ÷xGöS9Oð
ÿ÷»¸GöT9Oð
ÿ÷µ¸GöU9Oð
ÿ÷¯¸GöV9Oð
ÿ÷©¸GöW9Oð
ÿ÷£¸GöX9Oð
ÿ÷¸GöY9Oð
ÿ÷—¸GöZ9Oð
ÿ÷‘¸Gö[9Oð
ÿ÷‹¸Gö\9Oð
ÿ÷…¸(¿hoð@B‘BÐ9`¿.ðl¿pG¿ðµ¯-鉰×L×M|D×NØH}DØI~DØJxDØKyDÔø¨(FEø zD¼ñ{D–µcÄfÅé2%ÐÜø0+!ÛÔøa±ñZhøU0›@ñù€1:öÑàâhñ;høU`¶@ñë€Ðø`.@ðX1;ñÑ/ð²èF`m@ô@p`e F/ð²èF`m. ôp`e¿/ð°è-ñH˜ÅnÕø@¹±H©lxDhB¿¨d˜Ånñ !"/ð¢èF(ð6™"FÕø„Ñød/ð>è(ñ+ hoð@AˆBÐ8 `¿ F.ð€ï˜&ÁnQø€‘Œj ±Ðø€6(úÑ ë†/ð~è¢hOðÿ1*`Àòâ€.@󨀑HOð
xDhH”xDàœ
ñ
 h‚E€ò̀ëŠQø‘™Ðø„Ñød/ð\èœ(éÐ!F/ð^èƒF8¹/ðè ¹˜™h.ðï(hoð@AˆBÐ8(`¿(F.ð(ï»ñÍИOð	Tø)PÐø€h%Ñ™Øø„Ñød/ð.蠱!F/ð0èF¹.ðäïð± hoð@AˆBÐ8 `¿ F.ðïà%œOðÿ1ë‰Dø)PA`]EœÐ
³	ñ	ñ€NEÊєçXI˜yDh.ðÎî hoð@AˆBÚÑáçKIyDhKIÂhhyD.ð¸ïOðÿ0	°½èð½NH™xD
h™hhKIÓhòhyDh.ð¤ï F.ðèïOðÿ0	°½èð½;I oð@IyDÑø€9IyDŠFà¡hªhŠB&ÚFTø ™ÑødÐø„.ð¸ï(îÐ!F.ðºï¹.ðpïH±0hHEãÐ80`¿0F.ðŽîÜçØøQF.ðpî0hHEÔÐïç.ð¢î˜.ð¦ï˜ÂnÐø ˜@h.ðîî°ñÿ?
Ý 	°½èð½IyDhIÃh0hyD.ðFïOðÿ0	°½èð½ Fÿ÷DþOðÿ0	°½èð½¢|<м‰LYZa\7\ê6#7ûÿh8€6/ûÿÒ7\0ûÿ|/ûÿ6Î2ûÿÊ6ƒûÿðµ¯Mø½‚°ÎHxD.ðXï(ð‚ËIFËJ yDzD FOôæs'ðþÇM(}D¨að\ hoð@AˆBÐ8 `¿ F.ðîÀHxD.ð4ï(ð^½IF½J yDzD F#'ðmþ(èað; hoð@AˆBÐ8 `¿ F.ðæí²HxD.ðï(ð=°IF°J yDzD F#'ðLþ((bð hoð@AˆBÐ8 `¿ F.ðÆí¥HxD.ðòî(ð¢I&¢J8#yDFzD–'ð,þ(hbðú€I FJ@ò$SyD–zD'ðþ(¨bð쀘I F˜JOôŒsyD–zD'ðþ(èbðހ“I F“J(#yD–zD'ðþ((cðрI&J FyD#zD–'ðõý(hcðÀŠI FŠJ#yD–zD'ðèý(¨c𶀅I F…J#yD–zD'ðÛý(èc𩀁I FJ#yD–zD'ðÎý((dðœ€|I F|J#yD–zD'ðÁý(hdð€xI FxJ#yD–zD'ð´ý(¨dð‚€sI FsJ#yD–zD'ð§ý(èduÐoI FoJ#yD–zD'ð›ý((eiÐkI FkJ#yD–zD'ðý(he]ÐgI FgJ#yD–zD'ðƒý(¨eQÐcI cJ|#yDzD F'ðvý(èeDÐ hoð@AˆBÐ8 `¿ F.ððìYHxD.ðî(GÐWI0#WJFyD–zD'ðYý(f@³TI FTJ #yD–zD'ðNýhfè±Ðø„'ðýNIyD`¨±MI MJ#yDzD F'ð:ý¨fH± hoð@AˆBÑ °]ø»ð½ hoð@AˆBÑOðÿ0°]ø»ð½8 `Oðÿ0а]ø»ð½Oðÿ0°]ø»ð½8 `OððÑF F.ð”ì(F°]ø»ð½2ûÿ2ûÿ1iÿÿ€}Ï1ûÿ»1ûÿëûÿ1ûÿy1ûÿz8ûÿ‚hÿÿnhÿÿphÿÿPhÿÿ—(ûÿ4hÿÿ“3ûÿhÿÿÏûÿhÿÿg8ûÿägÿÿÏ)ûÿÊgÿÿüûÿ°gÿÿ‚7ûÿ–gÿÿ+0ûÿ|gÿÿ\7ûÿbgÿÿ`ûÿJgÿÿ·ûÿ2gÿÿšûÿgÿÿë+ûÿgÿÿÝ+ûÿt3ûÿb3ûÿ,ûÿL3ûÿûÿZƒ&3ûÿCûÿ°µ¯%HxD.ðV툳F#H$I$KxDñyD{D F'ðý(Ô M F I K}DyDñ{D'ðôü(ÔIñK FyD{D'ðéü(Ô hoð@AˆB	Ñ °½ hoð@AˆBÑOðÿ0°½8 `Oðа½8 `Oðÿ0¿°½F F.ðàë(F°½2ûÿ‚—ûÿ@eÿÿb‚)ûÿ$eÿÿ­-ûÿó+ûÿðµ¯Mø½‡HxD.ðôì(ðNF…I…K~DyDñX{D'ðý(ñ܀Iñ\€K FyD{D'ð
ý(ñЀ}Iñ`|K FyD{D'ðþü(ñĀyIñdxK FyD{D'ðòü(ñ¸€uIñhtK FyD{D'ðæü(ñ¬€qIñLpK FyD{D'ðÚü(ñ €mIñHlK FyD{D'ðÎü(ñ”€iIñPhK FyD{D'ðÂü(ñˆ€eIñTdK FyD{D'ð¶ü(|Ô hoð@AˆBÐ8 `¿ F.ðJë\HxD.ðvì(pÐZIFZMZKyD}D{D*F'ð™ü(_ÔWIñtVK FyD{D'ðŽü(TÔSIñlSK FyD{D'ðƒü(IÔPIñ<OK FyD{D'ðxü(>ÔLIñxLK FyD{D'ðmü(3ÔIIñ@HK FyD{D'ðbü((ÔEI*EK FyD{D'ðXü(ÔBIñpBK FyD{D'ðMü(Ô?Iñ>K FyD{D'ðBü(Ô hoð@AˆBÑ ]ø»ð½ hoð@AˆBÑOðÿ0]ø»ð½8 `Oðÿ0Ð]ø»ð½8 `Oð÷ÑF F.ð¼ê(F]ø»ð½>"ûÿ:³&ûÿ:ûÿî)ûÿ"ûÿw'ûÿ
ûÿ—ûÿòûÿÏûÿÚûÿsûÿÂûÿªûÿªûÿPûÿ’ûÿï!ûÿzûÿA0ûÿ~"ûÿ¸€ô3ûÿª!ûÿú)ûÿ}+ûÿ]"ûÿ¹"ûÿ„#ûÿ‘ûÿ}!ûÿ·+ûÿJ&ûÿûÿûÿ¨/ûÿŠ,ûÿ£/ûÿt,ûÿðµ¯-é‚°€F.ð˜ëfL(|D]ЁF@hdKÔøX{D‚lHFhªBYÑ"#.ðÞêF(DÐph¢FÔøp‚lªBTÑ0F"#%$.ðÌêà±VIyD	hˆBÐTJzDhB
ÐSJzDhBÐF.ðjëF(FàA±úñI	)xÑ$F0hoð@AˆBÐ80`¿0F.ðêd¹&(hoð@AˆBÐ8(`¿(F.ðê6».ð$êHF°½èð½.ðÔê(¿.ðê/à*TАGF(¦Ñð)ýèç0F*QАG(¬Ñð ý%$0hoð@AˆBÅÑÊç0hoð@D BÐ80`¿0F.ðÔéÙø BTFÐ8ÉøÑHF.ðÈé.ðëOð	(½Ð!hF@F*F#Íø.ðëF(hoð@AˆB®Ð8(`¿(F.ð¬éHF°½èð½F(hoð@AˆB”љç.ð†êF(ôP¯§ç.ð€ê(ôY¯ªç¿vÊ-¤-ž-p-ðµ¯Mø‚°FˆFF.ðÆêð±FH"FCFxD–h(F.ðÄê!hoð@B‘BÐ9!`а]ø‹ð½F F.ðdé(F°]ø‹ð½ °]ø‹ð½¿Ftðµ¯-éF@hF‚l(F"±G0±½èð½.ð.ê(øÑ%HxDhh.ðVé8³.ðZé(F.ðêp³.ð”êX³FHxDÐø˜HF.ð”ê8³!FF.ðŽê8³F.ðZê€F(Fÿ÷ù0Fÿ÷ùHFÿ÷ù@F¸ñÉÑH"FIxDyDhh.ðìé ½èð½OðOð	àOð&%ÛçOð%×翐+¶s*+#ûÿðµ¯-é„° Íé.ðVê‚Fl½IyD	hh,¿ŒBÑ@h(÷ÑOð	$Oðà!hoð@@B¿1!`ÔøÙøB¿HÉø F.ð8ê€F«HxD.ðêé(sЩIFyD.ð¤èF0hoð@AˆBÐ80`¿0F.ð¨è-`СHihxDhBПHŸIxDyDhh.ð€è(hoð@AˆBMÐ8(`JÑ(F.ðŒèFà(F!.ð¨é•Noð@B~Dpd)h‘BÐ9)`Ñ(F.ðzèplرh€G	%Àò¨BÑplÐøL€G(򨀋HqlxDhhÑøL€GˆIF(F
"yDà€H€IxDyDhh.ð<è
à}HqlxDhhh€G{IF0F*FyD.ð$é~HxDhÚø<	hðäûˆ³{HAöh1zK@òÖ2xD{Dðù©ª«PFðõý($ÔtHtJxDzDÐøŒPk"ðþ(ð±€FðÕþ(hoð@AˆBÐ8(`¿(F.ðèAö’5OôvvàAöh5@òÖ6àAö‚5@ò×6Úø@IF"FCFðhþ˜(¿hoð@B‘Bј(¿hoð@B‘Bј(¿hoð@B‘BÑRH)FRK2FxD{DðÃøOðÿ0°½èð½9`¿-ðÎïÛç9`¿-ðÈïÝç9`¿-ðÂïßçplÐøH€G(л5H6IxDyD]ç¹ñ¿Ùøoð@AˆB"Ñ,¿ hoð@AˆB#Ѹñ)ÐØøoð@AˆB	Ñ °½èð½&H&IxDyD:ç8ÈøÐ °½èð½8Éø¿HF-ð‚ïÔç8 `¿ F-ð|ï¸ñÕÑ °½èð½@F-ðpï °½èð½AöŽ5[çÔ*J
ûÿ…ûÿ~*N*,%ûÿÈzÆ)3ûÿ´)m"ûÿâ)Jûÿ„(’ûÿ>(Á'ûÿÂ)&ûÿ#ûÿ¢qzj%ûÿ^"ûÿе¯FHâh!FxDh.ð®è@±hoð@B‘BÑн1`н-ðúï(¿ F½èÐ@ðº н¿¸oðµ¯-é…°F’F‰F.ð|èÉJ€F¹ñzD’”9Аh(ð€Øø<`$Èø<@~±thoð@A hˆB¿0 `ui-±(hˆB¿0(`à%h.ðnèšÒølµK{D›F¸±Êhh.ðZè3ÛøˆB>аIyD	hˆB;Ð.ð^è(¿Oð	4àOð	Sàhðáù³.ðPèÝøÀF¤KXF)ÛøÜø {D¿hoð@AŠBÔÐÍø ‚FPÌøÑ`F-ð¤îPFÝø Æç-ð¾î˜Ûø Ðøl€h-ðïOð	.¿pi¨B@ðցØø<Èø<`(¿hoð@B‘B@ðö€,¿ hoð@AˆB@ðô€-¿(hoð@AˆB@ðó€ÓF¹ñ¿Éñ}I»ñyD‘¿Èi((Ñ@FØø<€VFOð
¸ñÀø< =ÐØø oð@AÚøˆB¿0ÊøØø@|³ hˆB¿0 `™¹ñ+ј2F-ðÔïFFàIiLñ™€ëÄRhZEÍÛ,ð‘€%àU#FBF€ò‹€bëÒrëbëÂ^hF^EðÜíۀà$™¹ñÓÐÇHKFÇJxDzD-ð®ï(ðF-ð°ï(ðð€F˜2F-ð˜ïF(hoð@AˆBÐ8(`¿(F-ðôí¹ñð怸ñ¿Øø B@ðN™ÈkÁø<€ˆF(¿hoð@B‘B@ðºñ¿Úøoð@AˆB@ð,¿ hoð@AˆB@ð»ñ²Fð“€èi(ðÕø<ñJÔëÁdFRhZERÛ)BÐ%àe
F•BF=ÚJëÒrëbëÄSh"F[EñÜîÛ3àFh"^E¸¿2ŠB¿ö2¯ëÂIhYEô,¯Pø2Sà9`¿-ðˆíç8 `¿ F-ð€íç8(`¿(F-ðzíçboö&Ø&š&wCh$[E¸¿4dEÚëÄIhYEð̀©iŒE
Ññ@é-ðï8³™ÑøÀÁéP¤E
ÝëÌbF+FUø:Søm¢BÅéaFõÜ™@ø4ëÄÀø°ñHaÙøoð@AˆB¿0Éø˜IF#h@F-ðàîF(¿Äø  F-ðàîÙøoð@AˆB)Ð8Éø%ÑHF!à(hoð@AˆBÐ8(`Ñ(F-ð
íºñ¿Úøoð@AˆB%Ѹñ¿Øøoð@AˆBÐ8ÈøÑ@F-ððì,¿ hoð@AˆBѰ½èð½8 `øÑ F°½è½èð@-ð:¼8Êø¿PF-ðÔìÑç9`¿-ðÎìòæ8Êø¿PF-ðÆìôæ8 `¿ F-ð¾ì»ñ²Fô÷®ˆç0F)F-ð|î$æOôp-ð€›@!"Ãé!oð@AØaÀé›ÙøˆB¿0Éø²FÝø€iç@F!F-ð^î¬æPø4oð@B@ø4hBíÐ8`êÑF-ð†ìæçjûÿm
ûÿðµ¯-é­õ]°üIëFOô€ROô€|yD+øÀòdsBòÄ"Bò°$Kø0õìcBòœ%Kø0ò\sBòˆ(Kø0õëcBòt*Kø0òTsBò` Kø
0õêcOôVKø0òLsBòL Kø0õécBò8 Kø0òDsBò$ Kø0õècBò Kø0ò<sBòüKø0õçcBòèKø0ò4sBòÔKø0õæcBò¬Kø0ò,sOôVKø0õåcBò˜Kø0ò$sBò„Kø0õäcBòpKø0òsBò\Kø0õãcBòHKø0òsBò4Kø0õâcBò Kø0òsBòKø0õácBòøKø0òsBòäKø0õàcBòÐKø0òücBò¼Kø0õßcBò¨Kø0òôcBò”Kø0õÞcBòlKø0òìcOôÿVKø0õÝcBòXKø0òäcBòDKø0õÜcBò0Kø0òÜcBòKø0õÛcBòKø0òÔcAöôpKø0õÚcAöÌpKø0òÌcOôúVKø0õÙcAö¸pKø0òÄcAö¤pKø0õØcAöpKø0ò¼cAö|pKø0õ×cAöhpKø0ò´cAöTpKø0õÖcAö,pKø0ò¬cOôõVKø0õÕcAöpKø0ò¤cAöpKø0õÔcAöð`Kø0òœcAöÜ`Kø0õÓcAöÈ`Kø0ò”cAö´`Kø0õÒcAöŒ`Kø0òŒcOôðVKø0õÑcAöx`Kø0ò„cAöd`Kø0õÐcAöP`Kø0ò|cAö<`Kø0õÏcAö(`Kø0òtcAö`Kø0õÎcAöìPKø0òlcOôëVKø0õÍcAöØPKø0òdcAöÄPKø0õÌcAö°PKø0ò\cAöœPKø0õËcAöˆPKø0òTcAötPKø0õÊcAöLPKø0òLcOôæVKø0õÉcAö8PKø0òDcAö$PKø0õÈcAöPKø0ò<cAöü@Kø0õÇcAöè@Kø0ò4cAöÔ@Kø0õÆcAö¬@Kø0ò,cOôáVKø0õÅcAö˜@Kø0ò$cAö„@Kø0õÄcAöp@Kø0ð¸:jòcAö\@Kø0õÃcAöH@Kø0òcAö4@Kø0õÂcAö@Kø0òcOôÜVKø0õÁcAöø0Kø0òcAöä0Kø0õÀcAöÐ0Kø0òüSAö¼0Kø0õ¿cAö¨0Kø0òôSAö”0Kø0õ¾cAöl0Kø0òìSOô×VKø0õ½cAöX0Kø0òäSAöD0Kø0õ¼cAö00Kø0òÜSAö0Kø0õ»cAö0Kø0òÔSAöô Kø0õºcAöÌ Kø0òÌSOôÒVKø0õ¹cAö¸ Kø0òÄSAö¤ Kø0õ¸cAö Kø0ò¼SAö| Kø0õ·cAöh Kø0ò´SAöT Kø0õ¶cAö, Kø0ò¬SOôÍVKø0õµcAö Kø0ò¤SAö Kø0õ´cAöðKø0òœSAöÜKø0õ³cAöÈKø0ò”SAö´Kø0õ²cAöŒKø0òŒSOôÈVKø0õ±cAöxKø0ò„SAödKø0õ°cAöPKø0ò|SAö<Kø0õ¯cAö(Kø0òtSAöKø0õ®cAöìKø0òlSOôÃVKø0õ­cAöØKø0òdSAöÄKø0õ¬cAö°Kø0ò\SAöœKø0õ«cAöˆKø0òTSAötKø0õªcAöLKø0òLSOô¾VKø0õ©cAö8Kø0òDSAö$Kø0õ¨cAöKø0ò<SAòüpKø0õ§cAòèpKø0ò4SAòÔpKø0õ¦cAò¬pKø0ò,SOô¹VKø0õ¥cAò˜pKø0ò$SAò„pKø0õ¤cAòppKø0òSAò\pKø0õ£cAòHpKø0òSAò4pKø0õ¢cAòpKø0òSOô´VKø0õ¡cAòø`Kø0òSAòä`Kø0õ cAòÐ`Kø0òüCAò¼`Kø0õŸcAò¨`Kø0òôCAò”`Kø0õžcAòl`Kø0òìCOô¯VKø0õcAòX`Kø0òäCAòD`Kø0õœcAò0`Kø0òÜCAò`Kø0õ›cAò`Kø0òÔCAòôPKø0õšcAòÌPKø0òÌCOôªVKø0õ™cAò¸PKø0òÄCAò¤PKø0õ˜cAòPKø0ò¼CAò|PKø0õ—cAòhPKø0ò´CAòTPKø0õ–cAò,PKø0ò¬COô¥VKø0õ•cAòPKø0ò¤CAòPKø0õ”cAòð@Kø0òœCAòÜ@Kø0õ“cAòÈ@Kø0ò”CAò´@Kø0õ’cAòŒ@Kø0òŒCOô VKø0õ‘cAòx@Kø0ò„CAòd@Kø0õcAòP@Kø0ò|CAò<@Kø0õcAò(@Kø0òtCAò@Kø0õŽcAòì0Kø0òlCOô›VKø0õcAòØ0Kø0òdCAòÄ0Kø0õŒcAò°0Kø0ò\CAòœ0Kø0õ‹cAòˆ0Kø0òTCAòt0Kø0õŠcAòL0Kø0òLCOô–VKø0õ‰cAò80Kø0òDCAò$0Kø0õˆcAò0Kø0ò<CAòü Kø0õ‡cAòè Kø0ò4CAòÔ Kø0õ†cAò¬ Kø0ò,COô‘VKø0õ…cAò˜ Kø0ò$CAò„ Kø0õ„cAòp Kø0òCAò\ Kø0õƒcAòH Kø0òCAò4 Kø0õ‚cAò Kø0òCOôŒVKø0õcAòøKø0òCAòäKø0õ€cAòÐKø0õsAò¼Kø0õ~sAò¨Kø0õ}sAò”Kø0õ|sAòlKø0õ{sOô‡VKø0õzsAòXKø0õysAòDKø0õxsAò0Kø0õwsAòKø0õvsAòKø0õusAòôKø0õtsAòÌKø0õssOô‚VKø0õrsAò¸Kø0õqsAò¤Kø0õpsAòKø0õosAò|Kø0õnsAòhKø0õmsAòTKø0õlsAò,Kø0õksëKø0AòõjsKø0AòõisKø0@öÉ>"ýH#²tOð	xDÆé3‚ëò`&÷LOðƒt|D‚ÀéFÂ`ë	%ÀéF&ƒt øÀÂ`ëîLOð/ƒt|D øÀÀéIÂ`ë
éL@öj‚t|DÀéF‚&Â`Bò` äLXD|DÀéH‚t@öîX‚Â`BòL ßLXD|DÀéFƒt
& øÀÂ`Bò8 ÚLXD|DÀéFƒt& øÀÂ`Bò$ ÕLXD|DÀéH‚t@ök8‚Â`Bò ÐLXD|Dƒt‚ÀéNÂ`BòüXDƒt øÀÀéNÂ`BòèëÆHxDÄéBòÔ£t¤øÀXDâ`%ÁLƒt|D‚D`ÀéRõPÀéE	%ƒt øÀÂ`Bò¬¹LXD|DÀéH‚t@öX‚Â`Bò˜´LXD|Dƒt‚ÀéFÂ`Bò„XDƒt øÀÀéFÂ`Bòp¬LXD|DÀéH‚tOð‚Â`Bò\§LXD|Dƒt‚D`ÀéRBòHXDÀéE%ƒt øÀÂ`Bò4žLXD|Dƒt‚ÀéHÂ`Bò šLXD|Dƒt øÀÀéHÂ`Bò•LXD|DÀéJ‚t@öŒ*‚Â`BòøLXD|Dƒt‚ÀéNÂ`BòäXDƒt øÀÀéNÂ`BòЈLXD|Dƒt øÀÀéIÂ`Bò¼ƒLXD|Dƒt øÀÀéHÂ`Bò¨LXD|Dƒt øÀÀéHÂ`Bò”zLXD|DÀéHƒtõT øÀOðÂ`uH¢txDÄéBòl#‚â`XDqLƒt|D øÀÀéFÂ`BòXmLXD|DÀéJ‚t@òSZ‚Â`BòDhLXD|Dƒt‚ÀéHÂ`Bò0XDÀéHOð	ƒt øÀÂ`Bò^LXD|DÀéJ‚tOðØ
‚Â`BòYLXD|Dƒt øÀÀéEÂ`AöôpULXD|DÀéNƒtõÿT øÀÂ`PH£txD``AöÌp¤øÀÄé‚XDLLƒt|D øÀÀéFÂ`Aö¸pHLXD|Dƒt øÀÀéEÂ`Aö¤pCLXD|DÀéJ‚tOð
‚Â`Aöp>LXD|DD`$‚t‚ÀéBAö|p:LXD|DÀéEƒt!% øÀÂ`Aöhp5LXD|Dƒt øÀÀéHÂ`AöTp0LXD|DÀéNƒtõúT øÀÂ`,H£txDÄéAö,p¤øÀâ`ðO¸¿÷&ýÿòáþÿ¯&ýÿ&ýÿ>&ýÿ$&ýÿ&ýÿüýÿ(?þÿ³ýÿ”ýÿýÿ¤þÿÄþüÿb!þÿ}þüÿbþüÿ-ðüÿ•}ýÿéïüÿÌïüÿ¯ïüÿ’ïüÿtïüÿãGÿÿÀäüÿ®þÿ+ßüÿßüÿñÞüÿÒÞüÿ·ÞüÿŸÞüÿ±ÝüÿƒÝüÿiÝüÿHÝüÿ*ÝüÿÝüÿXDüLOð‚t|DÀéE‚%Â`Aöp÷LXD|DÀéE‚t%‚Â`AöpòLXD|Dƒt‚D`ÀéRAöð`XDÀéEAò‚ƒt øÀÂ`AöÜ`éMXD}DÀéT‚t%‚Â`AöÈ`äLXD|Dƒt‚D`ÀéRAö´`XDÀéE@özƒt øÀÂ`õõPÛM‚t}D‚ÀéTÂ`AöŒ`×LXD|Dƒt‚ÀéJÂ`Aöx`XDÀéJ@ö4ƒt øÀÂ`Aöd`ÎMXD}DÀéT‚t%‚Â`AöP`ÉLXD|Dƒt‚ÀéEÂ`Aö<`XDÀéE@ò6Dƒt øÀÂ`Aö(`ÀMXD}DÀéT‚t%‚Â`Aö`»LXD|Dƒt‚ÀéEÂ`õðPÀéE@öA$ƒt øÀÂ`AöìP²MXD}DÀéT‚t
%‚Â`AöØP®LXD|Dƒt‚ÀéJÂ`AöÄPXDÀéJOð
ƒt øÀÂ`Aö°P¤LXD|DÀéNƒtOð
 øÀÂ`AöœPŸLXD|Dƒt øÀÀéFÂ`AöˆPšLXD|DÀéHƒtOð øÀÂ`AötP•LXD|DÀéFƒtõëT øÀÂ`H£txDÄéAöLP¤øÀâ`XDŒLÀéR%|Dƒt øÀD`Aö8P‡LXD|Dƒt‚D`ÀéRAö$PXDƒt øÀÀéEÂ`AöPLXD|DÀéFƒtOô–d øÀÂ`Aöü@yMXD}DÀéT‚t%‚Â`Aöè@uLXD|Dƒt‚D`ÀéRAöÔ@XDÀéEõæTƒtAö¬E øÀÂ`kH£txD#‚Äé	â`ëÄé	Aö˜@£tXD¤øÀâ`@$cM‚t}DÀéT‚
%Â`Aö„@_LXD|Dƒt‚D`ÀéRAöp@XDÀéE%ƒt øÀÂ`Aö\@VLXD|Dƒt‚ÀéEÂ`AöH@XDÀéE@òw$ƒt øÀÂ`Aö4@LMXD}DÀéT‚tõáT‚AöEÂ`GH£txD#‚Äéâ`ë%ÄéAöø0£tXD¤øÀâ`?Lƒt|D øÀÀéNÂ`Aöä0;LXD|Dƒt‚ÀéIÂ`AöÐ0XDƒt øÀÀéIÂ`Aö¼02LXD|Dƒt‚D`ÀéRAö¨0XDÀéE%ƒt øÀÂ`Aö”0)LXD|DÀéFƒtõÜT øÀÂ`%H£txD#‚Äé	â`ðD¸/ÜüÿüÛüÿàÛüÿ4ÊüÿcþÿzÁüÿ?¡ýÿ¶üÿb¹ýÿ©±üÿ;Týÿ*§üÿþÿߦüÿ&üÿ¡¦üÿ‚¦üÿg¦üÿC¦üÿ+¦üÿ¦üÿ6¡üÿ¨9ÿÿð üÿŠ üÿÛ2ýÿšGÿÿ­üÿû*ýÿbüÿHüÿÁIÿÿõœüÿٜüÿAöl4\DÄé	AöX0£tXD¤øÀâ`üLƒt|DD`	$ øÀÀéBAöD0øLXD|DÀéNƒtOð øÀÂ`Aö00òLXD|Dƒt øÀÀéHÂ`Aö0îLXD|Dƒt øÀÀéHÂ`Aö0éLXD|Dƒt øÀÀéJÂ`Aöô åLXD|DD`ƒtOô"d øÀÀéRõ×PßM‚t}DÀéT‚	%Â`AöÌ ÛLXD|Dƒt‚D`ÀéRAö¸ XDÀéE%ƒt øÀÂ`Aö¤ ÒLXD|Dƒt øÀÀéIÂ`Aö ÎLXD|Dƒt øÀÀéIÂ`Aö| ÉLXD|Dƒt‚ÀéFÂ`Aöh XDÀéF&ƒt øÀÂ`AöT ÀLXD|DÀéEƒt@ò´d øÀÂ`õÒP»M‚t}D‚ÀéTÂ`Aö, ·LXD|Dƒt‚ÀéFÂ`Aö XDÀéF@ö4ƒt& øÀÂ`Aö ­MXD}DÀéT‚t%‚Â`Aöð©LXD|Dƒt‚D`ÀéRAöÜXDƒt øÀÀéEÂ`AöÈ LXD|Dƒt‚ÀéJÂ`Aö´XDÀéJ@ö(ƒtOð
 øÀÂ`õÍP–M‚t}D‚ÀéTÂ`AöŒ’LXD|Dƒt‚ÀéIÂ`AöxXDÀéI@öv4ƒt øÀÂ`Aöd‰MXD}D‚t‚ÀéTÂ`AöP…LXD|Dƒt‚ÀéHÂ`Aö<XDÀéH@òqDƒtOð øÀÂ`Aö(zMXD}DÀéT‚tAöì‚Â`AöuLXD|DÀéIƒtõÈT øÀÂ`qH£txD#‚``Äébë%ÄéAöØ£tXD¤øÀ&â`hLƒt|DÀéI‚Oð	Â`AöÄcLXD|DÀébƒt& øÀD`Aö°^LXD|D‚t‚ÀéEÂ`AöœZLXD|Dƒt‚D`ÀébAöˆXDÀéF&ƒt øÀÂ`AötQLXD|DÀéNƒtõÃT øÀOðÂ`LH¢txDÄéAöL#‚â`XDHL&‚t|DÀéF‚#&Â`Aö8CLXD|DÀéF‚tOô_d‚&Â`Aö$>MXD}DÀéT‚t%‚Â`Aö9LXD|Dƒt‚D`ÀébAòüpXDÀéF&ƒt øÀÂ`Aòèp0LXD|Dƒt‚D`ÀébAòÔp,LXD|DÀéEƒt@öÿ øÀÂ`õ¾P'M‚t}DÀéTðJ¸œüÿû›üÿٛüÿ»›üÿž›üÿ.)ýÿN‘üÿu‘þÿ‘üÿðüÿLHÿÿŸüÿщüÿî6ýÿ€~üÿªýÿH=ýÿîtüÿ‡ýÿ<iüÿCXýÿ‰düÿkdüÿ‚ýÿ'düÿdüÿÍcüÿ³cüÿ†cüÿNcüÿcüÿçbüÿÝTüÿ<Aþÿ›TüÿvTüÿ]Jüÿ‚%Â`Aò¬pýLXD|Dƒt‚D`ÀéRAò˜pXDƒt øÀÀéEÂ`Aò„pôLXD|DÀéEƒtOôžd øÀÂ`AòppïMXD}DÀéT‚t%‚Â`Aò\pêLXD|D øÀtÀéEÂ`AòHpXDÀéE@ö÷tƒt øÀÂ`Aò4pàMXD}DÀéT‚tõ¹T‚%Â`ÜH£txD#‚``ÄéRAòt\DÍø-­ø=Äéõ€P£t
õReƒpAònÍø¤õCp¤øÀâ`@öDø
=Íø
ÊHÍøMxDÍø
Íø-õDp­ø=ø-ÄLÍø,-|D…è@õEp­ø0=
%ø2=Oð
Íø4
½HÍø<xDÍø8
Íø@-õFp­øD=øF-·LÍøH
õGp|DÍø\
õHpÍøLMÍø`M@ò{tÍøP]Íød]%ÍøT-­øX͍øZ=Íøh-­øl=øn=Íøp
¦HÍøxMxDÍøt
Íø|-õIp­ø€=ø‚- LÍø„
õJp|DÍøŒmÍøˆM&Íø-­ø”͍ø–=™LÍø˜
õKp|DÍø¬
ÍøœMõLpÍø ]Íø´]
õ\eÍø¤-­ø¨͍øª=Íø°MÍø¸-­ø¼=ø¾=ŠLÍøÌ-|D…è@õMpÍøÔ
õNpÍøØMu$­øÐÍ%øÒ=ÍøÜíÍøà-­øä=øæ=Íøè
|HÍøðMxDÍøì
Íøô-õOp­øø=øú-vLÍøü
õPp|DÍø®ÍøNOð
Íø.­ø΍ø>nLÍøõQp|DÍø$õRpÍøNÍø(NAò!4Íø^Íø,^
õfeÍø.­ø ΍ø">Íø0.­ø4>ø6>Íø8]HÍø@NxDÍø<ÍøD.õSp­øH>øJ.WLÍøLõTp|DÍøPNÍøTîÍøX.­ø\>ø^>PLÍøl.|D…èõUp­øpÎ%ør>JLÍøtõVp|DÍøˆõWpÍøxNÍø|^Íø^
õkeÍø€.­ø„΍ø†>ÍøŒNÍø”.­ø˜>øš>Íøœ:H;LxDÍø |DÍøôOÍø¨.õXp­ø¬>ø®.4LÍø¼.|D…èõYp­øÀÎOðøÂ>%.LÍøÄõZp|DÍøÈNÍø̮ÍøÐ.­øÔ>øÖ>'LÍøØõ[p|DÍøÜNÍøàŽÍøä.­øè΍øê> LÍøìõ\p|DÍøðNÍøô^ð7¸¿QÊþÿƒIüÿyDüÿZ7ÿÿ@4üÿ®!þÿ¶gûÿ©sûÿsûÿäÞþÿ.sûÿ‰zûÿ¸<ÿÿ“%ýÿóyûÿHzûÿˆYþÿèyûÿéŒûÿ׌ûÿ‹äþÿ€Œûÿcûÿ̜ûÿ­œûÿ”œûÿœûÿÍøø.­øü΍øþ>üLÍø |DÍøÍøOõ]pÍø/­øύø?õLÍøõ^p|DÍøOÍø_Íø /­ø$ύø&?îLÍø(õ_p|DÍø,OÍø0_Íø4/­ø8ύø:?çLÍø<õ`p|DÍøD_Íø@O%ÍøH/­øLύøN?ßLÍøPõap|DÍøTOÍøX_Íø\/­ø`ύøb?ØLÍødõbp|DÍøl_ÍøhO	%Íøp/­øtύøv?ÑLÍøxõcp|DÍø€ïÍø|O
õznÍø„/­øˆ?øŠ/ÉLÍøŒõdp|DÍøOÍø”_Íø˜/­øœύøž?ÂLÍø¬/|DŽèQõep­ø°Ï	&ø²?Oð»LÍø´õfp|DÍø¸OÍø¼_ÍøÀ/­øÄύøÆ?´LÍøÈõgp|DÍøÌOÍøÐ_ÍøÔ/­øØύøÚ?­LÍøÜõhp|DÍøäÍøðAòÍøàOXDÍøè/Oð­øìύøî?ÍøøŸ¢LÍøü/|DÀéFƒtAòød øÀëÂ`Aò›NXD›L~Dn`&|DÅébAò,ªt^D+‚AòTD`]DÀéâ øt‘HÆéNõ‚TxDh`ò`Oð3‚HÅé¢@öÒZxD`` ³tÄéAòh£tXD#‚«t¥øLƒt|DD`Aòäd‚Àé‚Aò|€MëLXD}D³t|DD`Àéâ øtAòÌ3‚ÆéXò`ëAòXDÆø ÀéNAò¸ë
Aò¤Â`\D‚OðƒtmHÄéâxDÊé``Oð¤ø#tŠø0ªø0Êø eH²txDp`AòÐ`3‚ò`XDbLõ‡VÀéXAò0|DÆéIƒtë
 øÀAòôÂ`T$ò`Oð¦ø3tëUHAòÊø@xDp` 3‚Æé²tëOHAò]DNLxD³th` |Dt`ÅéAò¼d+‚\Dªt¦øÀÆéâFHŠø xDÊøªø0AòDÊø XDAMAN}De`	%£tÄéR~D¤øÀ$ÀéBAò¨dF`ë
 øÀAòXƒtë6HÂ%ÊøPAòlxDÆéò`\D¦øÀOð³tõŒV.H.MxDÄé	Aò”}Dâ`XD¤ø#t³t¦øÀu`Æéâ&&Lƒt|D øÀD`ÀébAò¨"MðD¸õ›ûÿߛûÿśûÿ«›ûÿ›ûÿt›ûÿW›ûÿ=›ûÿ*›ûÿ›ûÿ÷šûÿàšûÿšûÿ~.üÿ¥šûÿƒšûÿišûÿTšûÿø-üÿ6šûÿ4GþÿΙûÿ„§ûÿW§ûÿG§ûÿM§ûÿ4§ûÿÕ,üÿd§ûÿD§ûÿ/§ûÿ*§ûÿ§ûÿï*üÿXDŠø }DÊøPÀéFAòЪø0Aò¼Êø ]DÂ`^D‚õ–ZƒtûHûLxDÆé	|DÅéNAòøAòäò`XD¦øÀ\D³t	&«tOð
¥øÀOð	ê`ïM£t}D¤øÀe`ÀéVOôGeÄéb&ƒt‚Â`Aò”`çLXD|DD`Aò$Àébƒt\D øÀõ‘VáHâ`xDÄé#‚AòH%¢t]DÝHÞLxDp`|Dl`Aò4$Æéâ\D¦ø3tÄéAòÎÅéAò\ £tXDâ`#‚ªt+‚õ´UÐLƒt|D øÀÀéNÂ`Aòp XDÌNªtÀéN~DÂ`Aò„$‚Oðƒt Åéi@öö6¥øÀOð		ê`ëÊøAò¬$¿Hê`xDÅéëAò˜$+‚\DªtºHºMxDÄéOð	}Dâ`¤ø#tAòldu`ë³t¦øÀÆé‚±HŠø0xDÊøªøÀAòÔ Êø XD«NOð
«L~DÅéjAòè&|D«t^D¥øÀê`Aò5D`]DÀéâ øt¡HÆéNAòü$xDh`ò`\D3‚H³txD``# ¢tÄé ÅéAò$0#‚XDªt+‚–Lƒt|DÀéN øÀAòXdÂ`Aò80‘M\D‘NXD}De`
%~DÀéeAòL6ÄéRë£tAòt6¤øÀOðÂ`‚†L‚t|DÅéH«tëê`&¥øÀõ›U€HOð"«txDh`ÄéAòˆ0ÅébXD¥øÀAòDe£të#‚â`vLƒt|D øÀD`ÀéâAòœ0rMXD²tÀéNAò°4}DÆéX3‚\Dò`AòôVÂ`Oð'‚Oðƒt@öQ@gM¢t}DÄéPâ`AòÄ5#‚AòØ4cH\D]DxD£t«tÅé
Äé
Aòì0ê`XD¥øÀOð
#‚â`ZLÀébõ V|D‚t‚D`Aò0`UMXDUL}DÀé^Oð|D‚tAò(E‚]DÂ`t`Æéâ¦ø3tAòFLH^D«txDÅé	AòP@ÆéNò`XD3‚Oð	³tAò<F¥øÀëê`&AMOð£t}D¤øÀe`ÄébÀéVAòfƒtë‚Â`Aòd@7MXD7N}De`~DÀéj£tõ¥U¤øÀAòxFÄé’^DÂ` øt.H/LxDp`|Dl`AòŒDÆéâ\D¦ø3t
&ÄéOôX`ÅéAò´@£tXDâ`ðF¸K¦ûÿJ¦ûÿäeþÿa*üÿå¥ûÿ	rþÿ=²ûÿJîþÿ§ûÿ…ÃûÿcÏûÿ]ÏûÿBÏûÿýûÿ-Ïûÿ-ÏûÿüÎûÿÏûÿº(üÿûÎûÿàÎûÿÉÎûÿ®ÿÿ(üÿ`ÎûÿJøþÿmÚûÿa'üÿEðûÿ#ðûÿúïûÿ0ÿÿÓïûÿñ¯þÿ®ïûÿOð#‚ªt+‚ýLÀébAòf|Dƒt øÀëD`AòÈ@÷LXD÷NÂ`|D~DÀéi øtAòð@«t+‚l`Åé‚ëAòÜ@XDÀéiÂ`‚ëNƒtAòP~DÅénAòVªt+‚^Dê`XDåM@öN³t}D¦øÀÆéZò`AòôV^Dƒt‚ÀéZÂ`Aò,PÜMXDÆéH$³t}D¦øÀò`õªVE`ÆéT
%ÀéB øtAò|P³tXDò`3‚AòhV^D…`µ`AòTUÌL]D|DÅéNê`Oð+‚ªtOôWeÇL³t|Dt`¦øÀò`& øÀtÂ`D`õ¯PÁLÀébAòV|Dƒt øÀ^DD`¼Hò`xDÆé3‚Aò¤U²tAòÌV¸H^D¸L]DxD²t|Dt`Aò¸Th`\D3‚ò`Äé@öÒp°`@ö• ÍøL3 Íøl
 Íø
@öÏPÍø¸	@ö6Íø|	@òž ÍøÈ Íø
@öaFÍøìÍøØÍøœÍø$ ÍøØÍøÀÍøpÍø€
Íø¤	Íø	ÍøxÍøtÍø Íø
ÍøìÍø°ÍøœÍøüÍø˜Íø„Íøø
Íøä
ÍøÐ
Íø¼
Íø´Íø ÍøŒÍø8ÍøÔ ÍøèÍø\ÍøD
ÍøüÍø˜5 Íøp0 Íø4
 ÍøÔÍø ÍøÍøÌ	Íøh	ÍøT	Íø0L Íø ÍøtÍø`ÍøÄÍø°ÍøÍøøÍøäÍøÐÍø¼Íø¨Íø”OôŸpÍøà ÍødÍø¸ Íø¤ ã% ÍøX
ِ§*   Íø4k&Íø Íø|Íø@Íø萻' Íø¨jÍø”j&÷z Íøài4&ʐ±¬u Íø@i@övf# Íø<h&Íø,Íøa Íø„f&ϐkW" ÍøHfG&ސ‰p\R Íøe&ÍøÍøhŐM! Íøôd(&ÍøDÍøTސ„Ë 9 ÍøÜhü–í–Ԗ-&¢–,&Íø0
ÍøP$ 򖘖!&¶“/ H–&ÍøÄÍøHÍø	Íø	ÍøðÍøÍø`Íø¬*%	 4–	&ÍøÍø(ÍøÍøÀÍøÌ>  –& Åéâ¥ø+t@öe¤øÀâ`#tÍøˆ\Íø8lÍø$lð¸¿^üûÿ¹%üÿOüûÿ!üûÿüûÿßýÿ¹ûûÿûÇýÿÀ$üÿnüÿs’ýÿÀüÿÍø¬Íø,iÍøˆÍøèÍøl& ÍøXeC–>––ýLÍø\ ûM|D­øô̭øàÌ}D­øÌ̭ø¸̭ø¤̭øh̭ø,̭ø̭ø̭øð˭øÜ˭ø´˭ø ˭øŒ˭øx˭ød˭ø˭øìʭøÄʭøœʭøˆʭøLʭø8ʭø$ʭøʭøüɭøèɭøÔɭø˜ɭø\ɭø4ɭø ɭøøȭø¨ȭø”ȭø€ȭølȭøȭøȭøàǭø¸ǭø¤ǭø|ǭøhǭø@ǭø,ǭøǭøǭøÜƭøÈƭø´ƭø ƭøŒƭøƭøìŭøÄŭøtŭø`ŭø8ŭøüĭøÔĭøÀĭømøØ-øœ-øˆ-ø`-øL-ø$6Nøö<øâ<~DøÎ<øº<ø¦<­ø<ø~<­ø|<øj<­øT<øB<­ø@<ø.<ø<ø<øò;øÞ;­øÈ;ø¶;ø¢;øŽ;øz;øf;­øP;­ø<;ø*;­ø(;ø;ø;­ø;øî:øÚ:­øØ:øÆ:ø²:­ø°:øž:øŠ:­øt:­ø`:øN:ø::ø&:ø:øþ9Íøô	øê9øÖ9­øÀ9ø®9­ø¬9øš9­ø„9ør9­øp9ø^9­øH9ø69ø"9ø9­ø9øú8­øä8­øÐ8ø¾8­ø¼8øª8ø–8ø‚8øn8øZ8­øX8­øD8ø28­ø08ø8ø
8øö7­øô7øâ7øÎ7­øÌ7øº7ø¦7­ø7ø~7øj7­øT7ÍøLA øB7ø.7ø7ø7­øð6øÞ6øÊ6ø¶6ø¢6øŽ6­øx6­ød6­øP6­ø<6­ø(6ø6­ø6ø6øî5­øØ5øÆ5­ø°5­øœ5­øˆ5Íø€5øv5øb5­øL5ø:5­ø$5­ø5øþ4­øè4øÖ4øÂ4­ø¬4­ø˜4­ø„4­øp4­ø\4­øH4­ø44­ø 4­ø4­øø3­øä3­øÐ3­ø¼3­ø¨3­ø”3­ø€3­øl3­øX3­øD3­ø03­ø3­ø3­øô2­øà2­øÌ2­ø¸2­ø¤2­ø2­ø|2­øh2­øT2­ø@2­ø,2­ø2­ø2­øð1­øÜ1­øÈ1­ø´1­ø 1­øŒ1­øx1­ød1­øP1­ø<1­ø(1ø1­ø1ø1­øì0øÚ0­øÄ0ø²0ð¸¿jªýÿVûÿ}Uûÿ­ø°0øž0øŠ0­øt0øb0øN0­ø80ø&0­ø0üKüH{DÍøüLÍøèLxDúLÍøÔ\ùM|DÍøÀløN}DÍø¬<÷K~DÍø˜öH{DÍø„LõLxDÍøp\Íø\\|DóMÍøHlòN}DÍø4<Íø <~DðKÍøïH{DÍøøKîLxDÍøä[íM|DÍøÐkìN}DÍø¼;ëK~DÍø¨êH{DÍø”KéLxDÍø€[èM|DÍølkçN}DÍøX;æK~DÍøDåH{DÍø0KäLxDÍø[Íø[|DâMÍøôjÍøàj}DàNÍøÌ:Íø¸:~DÞKÍø¤
Íø
{DÜHÍø|JÛLxDÍøhZÚM|DÍøTjÙN}DÍø@:ØK~DÍø,
×H{DÍøJÖLxDÍøZÕM|DÍøðiÔN}DÍøÜ9ÓK~DÍøÈ	ÒH{DÍø´IÑLxDÍø YÍøŒY|DÏMÍøxiÎN}DÍød9ÍøP9~DÌKÍø<	ËH{DÍø(IÊLxDÍøYÉM|DÍøiÍøìh}DÇNÍøØ8ÆK~DÍøÄÅH{DÍø°HÍøœHxDÃLÍøˆXÂM|DÍøthÁN}DÍø`8ÀK~DÍøL¿H{DÍø8H¾LxDÍø$XÍøX|D¼MÍøüg»N}DÍøè7ÍøÔ7~D¹KÍøÀÍø¬{D·HÍø˜G¶LxDÍø„WµM|DÍøpg´N}DÍø\7³K~DÍøH²H{DÍø4G±LxDÍø W°M|DÍøg¯N}DÍøø6®K~DÍøä­H{DÍøÐF¬LxDÍø¼V«M|DÍø¨fªN}DÍø”6©K~DÍø€¨H{DÍølF§LxDÍøXV¦M|DÍøDf¥N}DÍø06¤K~DÍø£H{DÍøFÍøôExD¡LÍøàU M|DÍøÌeŸN}DÍø¸5žK~DÍø¤H{DÍøEœLxDÍø|U›M|DÍøhešN}DÍøT5™K~DÍø@˜H{DÍø,E—LxDÍøU–M|DÍøe•N}DÍøð4”K~DÍøÜ“H{DÍøÈD’LxDÍø´T‘M|DÍø dN}DÍøŒ4K~DÍøxŽH{DÍødDLxDÍøPTŒM|DÍø<d‹N}DÍø(4ŠK~DÍø‰H{DÍøDˆLxDû•ˆM|Dö–‡N}Dñ“‡K~D쐆H{D甆LxD╅M|Dݖ…N}Dؓ„K~DӐ„H{DΔƒLxDɕƒM|DĖ‚N}D¿“‚K~DºH{Dµ”LxD°•€M|D«–€N}D¦“K~D¡H{Dœ”~LxD—•~M|D’–}N}Dðú¸yRûÿiRûÿCDûÿC²ýÿž9ûÿh+ýÿ…9ûÿu9ûÿg9ûÿS9ûÿB9ûÿ/9ûÿ!9ûÿF&ÿÿD&ÿÿ9ûÿõ8ûÿŒ,ûÿåÿÿv,ûÿh,ûÿ],ûÿL,ûÿ
,ûÿÜ+ûÿÌ+ûÿ´+ûÿ§+ûÿ+ûÿt+ûÿZ+ûÿH+ûÿqûÿÑLýÿ+ûÿÆÌýÿçûÿÑûÿ¿ûÿ­ûÿ{ûÿÕûÿÝIýÿ½ûÿ¬ûÿ%ÿÿŒûÿûÿû•þÿgûÿ^#ýÿUûÿFûÿ1ûÿ ûÿûÿïûÿáûÿÔûÿÅûÿ¹ûÿ¦ûÿ˜ûÿ‡ûÿwûÿkûÿ_ûÿ"ûÿôÿúÿÔÿúÿœÿúÿtÿúÿjÿúÿ`ÿúÿVÿúÿLÿúÿ@ÿúÿ4ÿúÿÒôúÿÿúÿÿúÿÜþúÿÊþúÿvþúÿ'þúÿþúÿ×üúÿÆüúÿ¯üúÿŒüúÿgüúÿ?üúÿüúÿñûúÿÉûúÿžûúÿvûúÿKûúÿûúÿìúúÿ¸úúÿˆúúÿbúúÿ@úúÿúúÿîùúÿÀùúÿœùúÿwùúÿTùúÿ0ùúÿ
ùúÿàøúÿ»øúÿ–øúÿkøúÿ8øúÿøúÿÖ÷úÿ¬÷úÿ„÷úÿ\÷úÿ5÷úÿ÷úÿêôúÿ“ýK~DˆüH{Dƒ”üLxD~•ûM|Dy–ûN}Dt“úK~DoúH{Dj”ùLxDe•ùM|D`–øN}D[“øK~DV÷H{DQ”÷LxDL•öM|DG–öN}DB“=“~DôK8ôH{D3”ôLxD.•|D¤FòL)–$–|DñM“ñN}DõBpðK~DÍøøõAp{D“õ@sÍøäõ?pÍøÐ<õ>sÍø¼õ=pÍø¨<õ<sÍø”õ;pÍø€<õ:sÍølõ9pÍøX<õ8sÍøDõ7pÍø0<õ6sÍøõ5pÍø<õ4sÍøôõ3pÍøà;õ2sÍøÌõ1pÍø¸;õ0sÍø¤õ/pÍø;õ.sÍø|õ-pÍøh;õ,sÍøTõ+pÍø@;õ*sÍø,õ)pÍø;õ(sÍøõ'pÍøð:õ&sÍøÜ
õ%pÍøÈ:õ$sÍø´
õ#pÍø :õ"sÍøŒ
õ!pÍøx:õ sÍød
õpÍøP:õsÍø<
õpÍø(:õsÍø
õpÍø:õsÍøì	õpÍøØ9õsÍøÄ	õpÍø°9õsÍøœ	õpÍøˆ9õsÍøt	õpÍø`9õsÍøL	õpÍø89õsÍø$	õpÍø9õsÍøüõ
pÍøè8õsÍøÔõpÍøÀ8õ
sÍø¬õ	pÍø˜8õsÍø„õpÍøp8õsÍø\õpÍøH8õsÍø4õpÍø 8õsÍøõpÍøø7õsÍøäõþpÍøÐ7õüsÍø¼õúpÍø¨7õøsÍø”õöpÍø€7õôsÍølõòpÍøX7õðsÍøDõîpÍø07õìsÍøõêpÍø7õèsÍøôõæpÍøà6õäsÍøÌõâpÍø¸6õàsÍø¤õÞpÍø6õÜsÍø|õÚpÍøh6õØsÍøTõÖpÍø@6õÔsÍø,õÒpÍø6õÐsÍøõÎpÍøð5õÌsÍøÜõÊpÍøÈ5õÈsÍø´õÆpÍø 5õÄsÍøŒõÂpÍøx5õÀsÍødõ¾pÍøP5õ¼sÍø<õºpÍø(5õ¸sÍøõ¶pÍø5õ´sÍøìõ²pÍøØ4õ°sÍøÄõ®pÍø°4õ¬sÍøœð-¸¿ÅôúÿôúÿyôúÿYôúÿ0ôúÿôúÿäóúÿ¼óúÿ™óúÿróúÿ`óúÿòúÿ{òúÿQòúÿCòúÿ2òúÿîñúÿßñúÿÉñúÿ›ñúÿ~ñúÿ3ñúÿõªpÍøˆ4õ¨sÍøtõ¦pÍø`4õ¤sÍøLõ¢pÍø84õ sÍø$õžpÍø4õœsÿõšpú“õ˜sõõ–pð“õ”sëõ’pæ“õsáõŽpܓõŒsאõŠpғõˆs͐õ†pȓõ„sÐõ‚p¾“õ€s¹ñü´“ñø¯ñôª“ñð¥ñ젓ñ蛐ñ䖓ñà‘ñ܌“ñ؇ñԂ“ñÐ}ñÌx“ñÈsñÄn“ñÀiñ¼d“ñ¸_ñ´Z“ñ°Uñ¬P“ñ¨Kñ¤F“ñ Añœ<“ñ˜7ñ”2“ñ-ñŒ(“ñˆ#ñ„“ñ€ñ|“ñxñtp1‘•BòØ Kø XDÍøð,ÍøÜ,ÍøÈ,Íø´,Íø ,ø’,ÍøŒ,Íøx,Íød,øV,ÍøP,Íø<,Íø(,Íø,Íø,Íøì+ÍøØ+øÊ+ÍøÄ+Íø°+Íøœ+Íøˆ+Íøt+Íø`+øR+ÍøL+ø>+Íø8+Íø$+Íø+Íøü*Íøè*ÍøÔ*ÍøÀ*Íø¬*Íø˜*Íø„*øv*Íøp*øb*Íø\*ÍøH*Íø4*Íø *Íø*Íøø)Íøä)ÍøÐ)øÂ)Íø¼)Íø¨)Íø”)ø†)Íø€)Íøl)ÍøX)øJ)ÍøD)Íø0)Íø)Íø)Íøô(øæ(Íøà(øÒ(ÍøÌ(Íø¸(Íø¤(Íø(Íø|(Íøh(ÍøT(øF(Íø@(Íø,(Íø(Íø(Íøð'ÍøÜ'ÍøÈ'Íø´'Íø 'ø’'ÍøŒ'Íøx'Íød'øV'ÍøP'Íø<'Íø('Íø'Íø'øò&Íøì&ÍøØ&ÍøÄ&Íø°&Íøœ&Íøˆ&øz&Íøt&øf&Íø`&øR&ÍøL&ø>&Íø8&ø*&Íø$&Íø&Íøü%Íøè%øÚ%ÍøÔ%ÍøÀ%ø²%Íø¬%øž%Íø˜%øŠ%Íø„%Íøp%Íø\%øN%ÍøH%Íø4%ø&%Íø %ø%Íø%Íøø$øê$Íøä$ÍøÐ$Íø¼$ø®$Íø¨$øš$Íø”$ø†$Íø€$ør$Íøl$ø^$ÍøX$øJ$ÍøD$ø6$Íø0$ø"$Íø$ø$Íø$øú#ý’øæ#ø’øÒ#ó’ø¾#øª#钍ø–#䒍ø‚#ߒøn#ڒøZ#ՒøF#Вø2#˒ø#ƒø
#Røö"¼’øâ"·’øÎ"²’øº"­’ø¦"¨’ø’"£’ø~"ž’øj"™’øV"”’øB"’ø."Š’ø"…’ø"€’øò!{’øÞ!v’øÊ!q’ø¶!l’ø¢!g’øŽ!b’øz!]’øf!X’øR!S’ø>!N’ø*!I’D’?’øî :’5’øÆ 0’+’&’!’øv ’’’ø: 
’’ø ’ÍøTÀ”–
“Àé"Àé"%³ñ
à9)ðí((`¿)ðï¥h4µ±bhTéBê#íÐôÐ)ðïêç"h9±#)ðïãç)ðzíàç
õ]
°½èð½¿е¯FHxD@hIBhyD	h’lŠBÑ!F"#)ð˜í(¿н)ðÜí@¹
H"F
IxDyDhh)ðÚí н!F*±G(ùÑð*øéç)ðÖí(òÑ÷ç€+@ã&ã+ÁúÿKBh{D’lhšB¿"#)ð=¼€µoF:±G(¿€½ðø €½)ð²íõç¿Üâе¯)ð2îÐø<<ñIÐ0IÜø0yD	h	h‹BÐJhRmTNÔ\hdm´ñÿ?ؿ²ñÿ? ÝFF)ð–îF Fq³Ðø<À!¼ñÁcÑ&à!ÁcÜøoð@AˆB¿н8ÌøÑ`F½èÐ@)ðè»Zmð€BÚБøW RÖÕÓø¬ r±“h+Û2hŒBÕÐ2;ùÑнÓø€0‹BÍÐ+ùÑJzDh‰±úñI	)ÀÑîçFFðuø·ç¿€ââ(¿ pG@hˆB¿ pGJhRmSH¿`àCh[m³ñÿ?ؿ²ñÿ?
ÜBmð€B¿)𨻑øW RH¿²à)ð¡»ðµ¯Mø*F¿Pi˜B6Ñàkâc(¿hoð@F²BÑ)¿hoð@BBÑ+¿hoð@AˆBÑ]ø‹ð½:`ëÑF
F)ð
ì)F#Fäç8`èÑFF)ðì#Fâç8`æÑF]ø‹½èð@)ðT»ˆFFFFF)ð¶í*FAF3F½çðµ¯Mø½Œh,:Ûñ"F)FhƒB.Ð1:ùÑ,.Û)hB&ÐBhRm²ñÿ?ܐøW RÕJhRm²ñÿ?ܑøW0[
ÕFð:ø€¹5<Oð0FàÑ
àRÕFðYøñçF)ðžííç!F]ø»ð½!F]ø»ð½ˆB¿ pGBhRm²ñÿ?ܐøW RX¿)ðÿºJhRm²ñÿ?ܑøW0[H¿àRH¿-à)ððºˆBÐÐø¬ бh(¼¿ pG2h‹BÐ8ñ¿ pGõç pGF 2±Òø€0‹BF¿pG÷çHxDh°ú€ð@	pG¿à‹h+¼¿ pGðµ¯Mø½ñ%Rø%`†B>Ð5«BøÑ+@Û$JOðzDÒøààñ"œE.ÐëŒÔhbhRm²ñÿ?òܔøW RîՄBÐÐø¬`F†±²h*åÛñ.h¦BÐ5:ùÑÜçÕø€P"¥BÐ-øÑtEÓÑ"]ø»½èð@FpG"]ø»½èð@FpG"]ø»½èð@FpG¿À߈BÐÐø¬ бh(¼¿ pG2h‹BÐ8ñ¿ pGõç pGF 2±Òø€0‹BF¿pG÷çHxDh°ú€ð@	pG¿ìÞðµ¯-遰FhŠFoð@AˆB¿0ÊøÙøhŠBÐQ`¿)ð´êfLÉø Úø|DÔø8‚lPF*jАGF(kÐ_I(FyD)ð–ì(uÐ_I(FyD)ð¸ëƒF ¹)ðlë(@𔀕 F	ñ›è|F|ÁÙøÉø(HFIhˆG(sÐhoð@B‘BÐ9`¿)ðvêÚøØøü‚lPF*fАGF(gÐÙøÀoð@Dh¡BÐ9`¿)ð\ê@IÉøÀ`yDhh¢B¿hQ`)hoð@B‘BÐ9)`а½èð½F(F)ðBê F°½èð½)ð"ëF(“Ñ ú÷ú-HBòº!-KÖ"xD{Dû÷û °½èð½!H"Ôø˜xDiðœø³FðÖø hoð@AˆBÐ8 `Ñ F)ðêBòÝ$Ù&àBò4Ý&à)ðìêF(—ÑBò
4Þ&àBòï$Û& ú÷Þù
H!F
K2FxD{Dû÷Øú -™ѠçBòÙ$Ùç¿°&’×úÿ.Màúÿ»áúÿ„×úÿÂÝÇàúÿ5âúÿFH#xDÁé3Kcoð@AhhŠB¿Q`pG²Üðµ¯-éMø=F9)%ۓFš×é9ñ
Âñû4>PF#2F&ðü™ºhû%HFZF)F(ðhî(F!FZF(ðbî FIFZF(ð^îDD.ãØHoð@BxDhh‘B¿1`°½èð½.Üðµ¯MøF@hF
Fl„±HxD)ðt븹0F)FBF GF)ðtë F\±]ø‹ð½0F)FBF]ø‹½èð@)ðи)ð4ê± ]ø‹ð½HIxDyDhh)ð8é ]ø‹ð½¿aÝúÿîÛ-Îúÿðµ¯Mø½F@hAmJԱñÿ?ܔøW@Ô)H*IxDyDhh]ø»½èð@)ð ¸!F]ø»½èð@)🸠)ðféh³F F1F")ð(ëF0hoð@AˆBÐ80`¿0F)ðéձkh“øW@	ÔH"FIxDyDhh)ðÜéà F)F)ðë(hoð@AˆBÐ8(`Ð]ø»ð½(F]ø»½èð@)ðE¸¿0ÛÖúÿÛôÜúÿе¯F@hÐøÄx± F)ðòêX¹`hI€iyDˆBÑ F)ððê(¿н F)ðòêàhX±!oð@Bá`h‘BÐ9`¿)ð´èÔøÀ`±!oð@BÄøÀh‘BÐ9`¿)ð¤è`hÐø  F½èÐ@G¿áÿÿÿðµ¯-郰¾NF@h~D‚lHFÖø°*ðG€F(ð·HOð
ØøxDÐø°YE@ðØø@,ðû€!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@F)ðZè"¨F¨ÍéJñ
@Fªë‚ð®ý,F¿ hoð@AˆB@ð•€-ð›€Øøoð@AˆBÐ8Èø¿@F)ð6èÖøðÖø•Bh’l*𽀐GF$(𾀊H"ÈòQFxDÍéIÀhðzý(𵀁FhhXE@ð·€ìh,ðµ€!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F(ðöï 5Fªë€B(FÍéIðLý,€F¿ hoð@AˆB@ÑÙøoð@AˆBFѸñMÐ(hoð@AˆBÐ8(`¿(F(ðÐïAF(F)ðê(rÐ)hoð@D¡BÐ9)`8ÐØø¡B>Ð9Èø:ÑF@F(ð¶ï F°½èð½8 `¿ F(ðªï-ôe¯OôÿQ$_à8 `¿ F(ðžïÙøoð@AˆB¸Ð8Éø¿HF(ðï¸ñ±ÑOðAöûq)à)FFF(ð„ï(FØø¡BÀѰ½èð½$"ç)ð^è€F(ôì®AöÌq@à)ðTèF$(ôB¯AöäqOðàOðAöæq,Fà dç $açAöÿq$(hoð@BBÐ8(`Ñ(F
F(ðHï)F¸ñÐØøoð@BBÐ8ÈøÑ@F
F(ð6ï)F,¿ hoð@BBÑHÀ"KxD{Dû÷ø °½èð½8 `ðÑ FF(ðï!Fêçx"HÚ¶Íúÿ+Üúÿ*ðµ¯-é„LF@h|D‚l0FÔød*𣀐GF(ð¤€hhÔøx‚l(F*𢀐G‚F(ð£€(hoð@AˆBÐ8(`¿(F(ðâîðhÔødBh’l*𘀐GF(ð™€phÔøx‚l0F*𗀐GF(ð˜€0hoð@AˆBÐ80`¿0F(ð¾îÔøŒ)F)ððè(ðˆ€F(hoð@AˆBÐ8(`¿(F(ðªîÔø0F)ðÜè(wÐF0hoð@AˆBÐ80`¿0F(ð–îPF)F)ðÒè(kÐ)hoð@D¡BÐ9)`
ÐÚø¡BÐ9ÊøÑFPF(ð|î FàF(F(ðvî0FÚø¡BìÑhoð@B‘BÐ1`Foð@B‘BÐ9`¿(ð`î F½èð½(ðBïF(ô\¯BòGOðÃ	%	à(ð6ï‚F(ô]¯BòIOðÃ	&Oð
"à(ð(ïF(ôg¯BòVOðÄ	%à(ðïF(ôh¯BòXàBò[àBò^OðÄ	%àBòaOðÄ	&(Fù÷þ0Fù÷þ
HAF
KJFxD{Dú÷ûþºñÐÚø$PFoð@B‘B Ѥç ½èð½¿bP×úÿÚúÿðµ¯Mø½FÀhFF(±)F G±]ø»ð½ÖøÀ8±)F G(¿ ]ø»ð½ ]ø»𽰵¯Ioð@CyDhÁhÄ`"hšB¿2"`)¿
hšBÑ"hÐøÀÀøÀ@oð@@‚B¿P `)¿hoð@BB
Ñ °½:
`èÑFF(ð®í(Fâç8`¿F(ð¦í °½¾Ôðµ¯-釰FéJŽh€FéMzD ,}DÒø ò`Íé GÐ.±.HÑÑø Íø  F“F©F(ðÈïFf¹-
ÛÙø FÊh(ðöî(jÐ=‚F-MFZFiÚh‚EyÐÕø<HhøWÀ@ñ€Úø‚lPF*ðǀG(ðȀhoð@D¡BÐ9`¿(ðNíÚøÓF B¿0ÊøQá.0Ð.OнH¶ñÿ?½JxD½MzD½Lh}D¼K|D¼IhؿFòCyDOêÒ|¹J{DÍéÅzD–¶ñÿ?ؿ#F(ðîAö¸a³H´"³KxD{Dú÷þOðÿ0°½èð½Ñø Íø h‚EŸÑà(ðàí(MF@ð‚¨Hª«!xDÍé` Fð‰þ(SÔÝø ZFh‚Eô†¯Õøˆ@(hâh!F(ðjî(ð^Fhoð@AˆB¿0(`–H$ihxDhBð["&¨Íéd0 ë‚(Fð+ú.ƒF¿0hoð@AˆBѻñÐ(hoð@AˆBðȀ8(`@ðĀ(F(ð´ì¿à80`¿0F(ð¬ì»ñèÑOðAöq¶"áAöªaçÙHÚIxDyDhh(ð€ì·"AöqEá(ðzí(ô8¯(ð®ìÕøˆ@(h•âh!F(ðî(ð)Fhoð@AˆB¿0(`ÊH&ihxDh¡Bð)"Oð	¨Íé–(F¦ë‚ðÆù¹ñƒF¿Ùøoð@AˆB@𭀻ñð´€(hoð@AˆBÐ8(`¿(F(ðLìÛø‚l˜*ÐøäXFðGF(ð hh B@ð ìh±F,ð=!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F(ðì 5FNF¦ë€B(FÍéJðqù,¿!hoð@B‘BlÑ(ðñ€)hoð@D¡BÐ9)`ÑF(F(ðüë0Fh¡BÐ9`¿(ðòëØøYFh@FG(UÐhoð@B‘BÐ9`¿(ðàë Ûøoð@B‘BÐ9ËøÐ°½èð½FXF(ðÎë F°½èð½@Ô~¤Óÿºúÿ2Øúÿ¨Ïúÿà·úÿð·úÿÊúÿ
Æúÿ
ØúÿµÉúÿþÒ8Éø¿HF(ð¨ë»ñôL¯OðAö>q¸"‰à9!`ÑF F(ð–ë0F‰ç½"Aö„qWHWKxD{Dú÷uüOðÿ0¨ç(ð^ì(¹ Fþ÷hþ(@ퟸ�"Aöóa,àîh.?ô¡®1hoð@@ÕøB¿11`ÙøB¿HÉø(hoð@AˆBÐ8(`¿(F(ð\ë"MF„æ(ð0ì ¹ Fþ÷9þ(aѸ"Aö*q2H3KxD{D/æÕø¹ñ?ôѮÙøoð@@Õø°B¿1ÉøÛøB¿HËø(hoð@AˆBÐ8(`¿(F(ð&ë"]F³æ(ð
ìF(ôஹ"AöLq‡ç $üæOôûQ¹"(hoð@C˜B	Ð8(`Ñ(FFF(ðë*F!FHKxD{Dú÷èûOðÿ0»ñô¯!ç $ÙæAö¥aÒåFæFræ¿hÒúÇúÿoÂúÿoÔúÿ6ÒõÂúÿõÔúÿÛÁúÿÛÓúÿ€µoFøVÉÔÐø˜ !G¸±Ioð@LJyDzD	h“k
hÀé1bE¿ÀøÀ€½SÀøÀ`cE¿2
`€½IJyDzDhÑh"Óøœ0˜G(ÚÑñ翨κ¦ÎTðµ¯Mø½2ðF
FFÐ.>ÑDI`hyD	hˆBÐ(ðÞ쨳 hh
1ՉT¿äh$Fh-h;HxD(ð~ì(QÑ F)F°Gà3I`hyD	hˆBÐ(ðÀì1 hhJՉT¿äh$Eh+HxD(ðb찻 F!¨GF(ðdì F\³]ø»ð½ F(ð¬ìH±„F F)F2F#]ø»½èð@`GN± F)F2F#]ø»½èð@(ðyHahxDlÅh†±HxD(ð4ì8¹ F)F"°GÎç(ðë`± ]ø»ð½ F)F"]ø»½èð@(ð¹HIxDyDhh(ðþé ]ø»ð½¿8Î=ÏúÿrÎuÏúÿÊßÎúÿz͹¿úÿÿ÷d¹ðµ¯Mø„°*€ò‰€+@ðž€oNAh~DŠlÖø0*𦀐G€F(ð§€(ð,ëF(ð¤€hHÖøÜxDh F(ðˆê(1ÔØøöhl-ð–€`HxD(ðÊë(@ð›€@F1F"F¨GF(ðÈë0F.ð€Øøoð@E©BÐ9ÈøÑF@F(ð®é0F!h©BÐ9!`'а]ø‹ð½BòÏØøoð@BBÐ8ÈøÑ@F
F(ð”é)F,¿ hoð@BBÑ<HÉ"<KxD{Dú÷nú °]ø‹ð½F F(ð|é(F°]ø‹ð½8 `çÑ FF(ðpé!Fáç&H&&IxD&L&KyDh|D{Dh$M’"F}DÍée(ð:ê °]ø‹ð½™h)?ô^¯IFF"yDðŠúF F)ôR¯¿ç(ð*ê€F(ôY¯Bò˯çBòÍ–ç@F1F"F(ðDë(ôt¯à(ðê±BòЇçHIxDyDhh(ð
éóçÌ`°úÿG°úÿ0ªúÿI³úÿ°úÿ6^ÎúÿçÐúÿìÌ
Îúÿ’Ëѽúÿðµ¯-鉰‘L&–|DõÔf–s±ë‚*uÐ*@ð™€Ñø™hÍø)ÛÓà*@ðŽ€ÑøÍøAhŠlÔø *ðۀGF(ð܀…HahxDhB@ð̀åh-ðȀ)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ F(ð´è 4F©B1ÍéY¡ë€ Fÿ÷þ-¿)hoð@B‘BhÑ(ð¦€!hoð@E©BÐ9!`fÐh©BÐ9`¿(ðŽèaIoð@CyDhhšB¿hQ`	°½èð½Óø°Íé»ñÛÔø VšF
ñ	&FYø&¨BGÐ6³EøÑ&Yø&(F"ð5û(:Ñ6³EôÑ(ð4éš(sÑ?H&?IxD?L?KyDh|D{Dh=M’"F}DÍée(ð&éBò99HË"9KxD{Dú÷'ù 	°½èð½9)`“ÑF(F(ð2è0FçF F(ð,è0Fh©B“їçÆÔXø&Íø¹ñ¿ÐÝé«ñSF)ÿö3¯FH­AFxDÍé ªF+Fðšù(%ÔÝø0F ç% Nç(ðèèF(ô$¯Bògà hoð@AˆBÐ8 `¿ F'ðîïBò{HÌ"KxD{D¥çBò)çBò.šç¿P+«úÿØÉ8®úÿ©«úÿ¨úÿZÎúÿ“ÃúÿYÎúÿòÊ&ÊáÂúÿ§Íúÿðµ¯-é‹°*€òu‚F+@ð‰‚ÙøÃNBh~DÖøÔ’l*𐂐GƒF(𑂽H%ÛøxD–hB@ðT‚Ûø@,ðO‚!hoð@@Ûø`B¿1!`1hB¿H0`Ûøoð@AˆBÐ8Ëø¿XF'ð~ï³Fž"	¨Íé	E0 ë‚XFÿ÷Òü,F¿ hoð@AˆB@ðс-ðׁÛøoð@AˆBÐ8Ëø¿XF'ðZï—IhhyD	hˆB@ðI‚ªh*@ð÷‚ñññÑø°Òø Ðø€oð@@ÛøB¿1ËøÚøB¿HÊøØøoð@@B¿1Èø)hBÐH(`¿(F'ð ï 'ðÖï(ðP‚FÖø´oð@Bh‘B¿1`Öø´éh`Öø$E(ðPè(Íø€ð>‚1FF	h  F2F+F(ðJèF0hoð@AˆBÐ80`¿0F'ðîî,ð%‚(hoð@AžˆBÐ8(`¿(F'ðÞîÖø´ Fù÷ƒý(ð‚Fhoð@E¨B	ÐA1`©BÐ(0`¿0F'ðÆî h¨BÐ8 `¿ F'ð¾îPF!"#ðÁú(ðûF 'ðøî(ðÿÄ`FÛøoð@AˆB¿0ËøÅø°™ÙøÑø0‚lHF*ðõGF(ðö'ðØï(ðù1JÝø zDÙøÜh'ð2ï([Ô`hÍéjÙø`Ðø@€¸ñðë'HxD(ðrè(@ð큚 F1FÀG€F(ðpè¸ñðô hoð@F°BÐ8 `¿ F'ðXîÝø Úø°BÐ8Êø¿PF'ðLî 'ðîÝø (ðˁžoð@B1h‘B¿11`Àø€Ýø€Àée]F)hoð@B‘BqÑx༐ÈþÇFÆ[ÇúÿÒ OðBòb!ÝøÀ(hoð@BBÐ8(`Ñ(FÑFŠFeF'ðîQF¬FÊF]FÃFÝø€#»ñÐÛøoð@BBÐ8ËøÑXFÍø ‹FâF™F'ðòíÔFÝø KFYF¼ñ¿Üøoð@BB@ð‹€t± hoð@BB	Ð8 `Ñ F‰FF'ðÔí#FIF+¿hoð@BBjÑáHáKšxD{Dù÷®þ e±)hoð@B‘BÐ9)`ÑF(F'ð¶í Fºñ¿Úøoð@B‘B+Ѹñ¿Øøoð@B‘B,Ñ.¿1hoð@B‘B/Ѱ½èð½8 `¿ F'ð’í-ô)®Ï Bòö&Oð$#OðOð
%|ç9ÊøÏÑFPF'ðxí FÉç9ÈøÎÑF@F'ðní FÈç91`ÌÑF0F'ðfí F°½èð½8`‘ÑFF'ðZí!F‹ç8Ìøôp¯`F‹F™F'ðNíKFYFgç$"Ëå¾H&¾IxD¾L¾KyDh|D{Dh¼M’"F}DÍée'ðî °½èð½˜h(?ôs­µIF"yDðeþ(ôj­ °½èð½'ðîƒF(ôo­¬HBòâ«KÏ"xD{Dù÷øý °½èð½§IyD	hˆBð¤€(F'ðhï(ðâ€F(hoð@AˆBÐ8(`Ñ(FF'ððì"FPhFoF GƒF(ðπ(F G(ðр‚F(F G(ð׀€F(F G!ðkø(ñ©€(hoð@AˆB?ô¬­8¤å&Ñ"Bò=!àÑ $BòB!àÑ BòE!&àÒ"BòT!„H…KxD{Dù÷šý xæBòV!Ò #]F hoð@BBôƮÎæ'ðˆíF(ô
®Ò $Bò^!OðàÒ OðBò`!Oðmæš F1F'ð–î€F(ô®Ò OðBòc!ÝéjYæÒ $Bòg!OðžRæ'ðFí(ð–€Ò OðBòc!ÝøÀÝéjBæªh*Ñéhñ
å*	ÛNH"NIxDyDhh'ð,íà*ÔJH*JLxDJKJI|Dh{DyDh¿#F'ðíÏ OôQ OðOð
$OðOð&æÏ ÔFDF+FBò$!&OðOð
%æÏ Bò!ßç7L(FOð%|Dà4L(F%Oð|D	à¿ÇúÿgÉúÿ/L(F%ÐF|Dhoð@AŠBÐQ`¿'ðöëðÑÿH¹'H*F'I#FxDyDhh'ðÈìÏ Bò,! %Oð
$&ÄFÝø€#»ñôҭçåHIxDyDhh'ð´ë`翴èúÿÆßüÿä¡úÿýªúÿ˜ßüÿŸÅúÿûÇúÿdÃüÁ¶£úÿäÁ©úÿFÆúÿû¤úÿãÄúÿ?Çúÿ¯¨úÿÚÅúÿ‹¨úÿ4ÁU¤úÿèÀ'³úÿðµ¯-é‹°áL€FáN |D
~DÔøò`Íé{±ë‚
*CÐ*ÑÑøÓø°Íø »ñvۑá*sÐ*ÑÑøÍø lààH²ñÿ?àLxDàN|DàMh~DßK}DßIhؿ&FÔCyDOêÔ|ÜL{D’|D²ñÿ?ÍéÆؿ+F"F'ð.ìBò©1ÖHä"ÖKxD{Dù÷.ü °½èð½Óø°»ñ8Û–%Öøf”ñÍé#Tø%°BÐ5«EøÑ%Tø%0F"ðõý(Ñ5«EôÑàÔZø%¹ñÐ¬Íø «ñÌ	à'ðæë(@ðSœÝé#Ôøž»ñ€òØøPoð@A”³F(hˆB¿0(`Öøˆ@0hâh!F'ðpì(ðµ€Fhoð@AˆB¿00`(F1F'ðPíAð²€)hoð@D¡BÐ9)`Ð1h¡BÐ91`
ÑF0F'ðÌê Fà‚F(F'ðÆêPF1h¡BîÑ(ð—€ØøÛøäBh’l*𤀐GF(𥀋HihxDhBoÑîh.lÐ1hoð@@¬hB¿11`!hB¿H `(hoð@AˆBÐ8(`¿(F'ðê %F	©B1Íé	i¡ë€(Fþ÷ãÿ.¿1hoð@B‘B/Ñ(rÐ)hoð@D¡BÐ9)`.Ðh¡BÐ9`¿'ðjêØøAh@FˆGÝø°(wÐh¡BÐ9`¿'ðZêÛøh¡B¿Ûø1`°½èð½91`ÌÑF0F'ðFê FÆçF(F'ð@ê0Fh¡BËÑÏç& ©ç'ðë ¹ Fý÷ý(}ÑBòÛ1ø"&àBòÝ1ø"#àFH"ÛøœxD@iþ÷ø(gÐFþ÷Öø0hoð@AˆBFÑBòî1ù"Pà'ðøêF(ô[¯OôQú"FàBòAú"&(hoð@C˜B	Ð8(`Ñ(FFF'ðöé*F!F.¿0hoð@C˜B,Ð80`)Ñ!àBò!Aû"$àH5F®QFxDÍé 	ªF3Fðiû(ÔÝø .FÑæ¿2Àr8Bòî1Oðù0`Ñ0FFF'ðÂé*F!FHKxD{DtæBò›1læBò–1iæBòê1ù"ðçFÊæ¿ÙüÿÀ[§úÿŽÄúÿ¼úÿ<¤úÿL¤úÿÜüÿ8³úÿgÄúÿ¤¾$°úÿSÁúÿðµ¯-é‹°ÝL&ÝM|D”}D	–$hõwv–
”•s±ë‚
*CÐ*Ñh€FÓø°
”»ñqÛjã€F*mÐ*Ñh
”hàÌH²ñÿ?ÌLxDÌN|DÌMh~DËK}DËIhؿ&FÔCyDOêÔ|ÈL{D’|D²ñÿ?ÍéÆؿ+F"F'ð(êBòŒAÂHý"ÂKxD{Dù÷(úOð	HF°½èð½Óø°€F»ñ1ÛÕøÜCñ%“Vø% BÐ5«EøёF%Vø% F"ðîû(Ñ5«EôÑà‘FZø%@$±«ñ
”à÷Õ'ðäé(@ð„˜hJF›»ñ€òú‚ hoð@AÃFˆB¿0 `ØøÕø Bh’l*ðO‚G€F(ðP‚–HØø xDÕøh‚B@ðJ‚@Fð•ýF(ðJ‚Õø0F"ð£û(ñD‚1hoð@B‘BÐ91`ÑF0F'ðÂè(F‚N(‚I~D–yDŠFð€˜h„B¿	hŒBÑ °ú€ð@	à1hŒB÷Ð F'ðæé(ñˆƒ(uÐ(FÕø8Whêh)F'ðê(ðGƒFhoð@AˆB¿00`phÍø°Õø0‚l0F*ðAƒGƒF(ðBƒ0hoð@AˆBÐ80`¿0F'ðrèÛøÕø Wl.ð5ƒYHxD'ðfê(@ðBƒXF)F"°GF'ðdê-ð4ƒÛøoð@F°BÐ8Ëø¿XF'ðLè(h°BÐ8(`¿(F'ðDèÚøPFoð@@Ýø°ÙøB¿1Éø!hBÐH `¿ F'ð,èà¡FÛø,'ðŽè(ðÕøLF@F2F'ð”ê(ñ¢0hoð@AˆBÐ80`¿0F'ðè›íQì'ðhè(ðœÕøF@F2F'ðvê(ñ¡0hoð@AˆBÐ80`¿0F&ððï˜™Úø h	h©ë©ë²ú‚ò°ú€ð©ë±úñR	@	CL	Dê
ºñÑ F#àD¼dô»O£úÿ‚Àúÿø·úÿ0 úÿ@ úÿqÚüÿ´úÿ[Àúÿ(»ŠºªºE»úÿHF'ðòè(ñc(DÐÛø`oð@A0hˆB¿00`(hÕøˆPêh)F'ðé(𤁃Fhoð@AˆB¿0Ëø0FYF'ðüéAð«1hoð@E©BÐ91`ÑÍøF0F&ð|ïHFÝøÛø©BÐ9ËøÑFXF&ðlï(F(ð+ºñÑHF'ð¢èF(ñI,ð€ØøœÕø B@ð€@Fð	üƒF(ð€ØøÕø¤ B@ðˆ@FðûûF(ðˆphÕø° B@ð0Fðîû(ðoð@A0hˆBÐ80`¿0F&ð&ïØøÕø¤ B@ðˆ@FðÕûF(ðˆphÕø8 B@ð0FðÈû‚F(ð0hoð@AˆBÐ80`¿0F&ðïØøÕøL B@ð…@Fð¯ûF(ð…ØøÕø B@ð‡@Fð¡ûF(ð‡ LF&ð(ï(ퟠ�FÀø°˜Éé
ÉéeØøoð@AˆBÑàØøoð@AˆBÑLFÁFà0LFÁFÈøoð@AˆBÐ8Èø¿@F&ð´î hoð@AˆBÑHF°½èð½8 `¿ F&ð¤îHF°½èð½&ð†ï€F(ô°­BòÁI@ò%}á@F&ðªïF(ô¶­BòÍIqáBòÏIOô“pMá@ò+LF &OðOð
%BòYhá@ò+LF OðOð
%BòYZáOô–pLF &OðOð
%BòYKáOô–pLF OðOð
%BòY=á@ò-LF &OðOð
%Bò&Y.á¼H"Õø¨&xDiý÷±ü(ðIFý÷éü hoð@AˆBÐ8 `Ñ F&ð"îOô—pLF OðOð
%BòCYáOô™pLF &OðOð
%BòUY÷àœH
®QFxDÍé ªF3FðŠÿ(ñ
œõä&ðÌî(¹(Fý÷Õø(@ð@ò-LF OðOð
%Bò.YÐà@ò-LF Oð
%Bò0YÄà@F&ðèîƒF(ô€®@ò3LF &OðOð
%Bò`Y®à@F&ðÒîF(ôx®@ò3LF &Oð
%BòbYšà0F&ð¾î(ôq®@ò3LF Oð
%BòdYˆà@F&ð¬îF(ôx®@ò3LF&Oð
%BògYvà0F&ðšî‚F(ôs®@ò3LFOð
%BòiYeà@F&ðˆîF(ô{®OôšpLF&%BòtYUà@F&ðxîF(ôy®OôšpLF%BòvYFà@ò3OôY@à&ð$î ¹(Fý÷.ø(wÑBòâI@ò'*à&ð(îƒF(ô¾¬BòäI@ò' àXF)F"&&ð@ïF(ôҬ@ò'BòïIà&ðüí(GÐ@ò'BòïI&àBòÖIOô“p&Oð Oð
%0F÷÷òüXF÷÷ïü˜÷÷ìüPF÷÷éü(F÷÷æüHIFKšxD{Dø÷àýOð	¸ñô®:æBò~Aÿ÷¦»BòyAÿ÷¢»Oô—pLF OðOð
%Bò?YËçHIxDyDhh&ðºì®çƒF=åF>äÓÓüÿò²1¥úÿr«úÿ˷úÿ.ðµ¯-遰-틈°ÞL&–|D”õÔf–s±ë‚*ðl*@ð‘h˜h–(Ûóâ*@ð‡h–ph@mñø€ðÀoðõ‚0F!"#ð•ø(ðƒF˜"Ðø FðRÿ(ñ	ƒ!hoð@B‘BÐ9!`ÑF F&ðrì(F(@ðƒ&ð´íœ(ðƒƒF0F!"#Oððhø(ðƒÔøFXF*F&ðí(ñ¡(hoð@AˆBÐ8(`¿(F&ðFì&ðŒí(𒃀F0F!"#Oð
ðBø(ðŽƒÔø°F@F*F&ðÞì(ñ
‚(hoð@AˆBÐ8(`¿(F&ð ì0F!"#ð$ø(ð~ƒÔø8F@F*F&ðÀì(ñò(hoð@AˆBÐ8(`¿(F&ðìÔø¤XFBF&ð¬ì(ñ8‚Øøoð@AˆBÐ8Èø¿@F&ðìë0F&ðjîOð	Aðlƒ(cÛ0F!"#ðæÿ(ðfƒF˜"FÐøLXF&ðJî(ñ`ƒ hoð@AˆBÐ8 `¿ F&ðÄë0F!"#ðÇÿ(ðQƒF˜"FÐøXF&ð*î(ñKƒ hoð@E¨BÐ8 `¿ F&ð¤ëÛøÙFœ¨BÑàÔø0F&ð î(ñ‚ð­€Ôø¤0F&ðî(ñׂð£€0hoð@AOð	³FˆBÐ0ËøÛøÔø$‚lXF*ð1‚GF(ð2‚`hl˜.Ðø¸Wð/‚7HxD&ðdí(@ð?‚ F)F"°GF&ðbí-ð0‚ hoð@AˆBÐ8 `¿ F&ðLë*HihxDžhBðŸ€(F&ðÒíAìšàœhF,Û˜šF
ñ	&Ðø VFYø&¨Bðs6´B÷Ñ&Yø&(F"ðôý(@ðd6´BóÑ&ðòë(BF@ðz‚H&IxDLKyDh|D{DhM’"F}DÍée&ðäëBòaH@ò7
KxD{DEà¾úA±úÿô¯R¯²“úÿåÒüÿ‚úÿԳúÿœ’úÿѳúÿæH!FÑø¬WxDi`hl.ðH‚âHxD&ðØì(@ðO‚ F)F"°GF&ðÖì,ðA‚ Fý÷ƒù hoð@AˆBÐ8 `Ñ F&ð¼ê@òmBòeaÑHÒKxD{Dø÷œû êáBòÜaOô»vOð
\F¨FOð	‘à•틿î@‹ñîúÑ&ðrë(@ðò(hoð@AˆBÐ8(`¿(F&ðŒê†í‹ÛøÔø$‚lXF*ðtG€F(ðuØøÔø¼Gl-ðr±HxD&ðpì(@ð€@F!F"¨GF&ðnì,ðqØøoð@AˆBÐ8Èø¿@F&ðVê FðRÿF0Ñ&ð&ë(@ð́ hoð@AˆBÐ8 `¿ F&ð@êðhõb™BhÑø ÓlZF+ðO˜G(ñPIoð@CyDhhšB¿hQ`Ûøoð@B‘BHÑOáBòêaàBòîa\F@òwOð	ªFOð hoð@BBÐ8 `Ñ FF&ðê!F¸ñÐØøoð@BBÐ8ÈøÑ@FF&ðôé!Fºñ¿Úøoð@BBÑßH2FßKxD{Dø÷Ìú »ñðÛøoð@B‘Bð9Ëø@ðFXF&ðÎé Füà8ÊøÝÑPFF&ðÄé!F×çBòðaOô»v\Fç?õ®[ø&`–.?ô—®`œBFSF(ÿö­¹H®YFxDÍé ªF3Fð1û(ñžå´H"Ôø°xD@iý÷ø(ð4Fý÷Jø hoð@AˆBÐ8 `Ñ F&ð„é@òqBò£aÅæOô¶rBòOaÀæ@òsBòµa»æBò·a@òsOðÂàžH"™xDÑø´iü÷âÿ(ð	Fý÷ø hoð@AˆBÐ8 `Ñ F&ðTéOôºrBòÆa•æOô»rBòØaæBòÚaOô»v˜à&ð*êF(ôέ@ò}Bò4q\à F)F"Oð&ðBëF(ô׭Bò6q@ò}Oð
ç&ðþé(ðπBò6q@ò}OðOð
翄ÿ'°úÿ’úÿC³úÿW¯úÿj­&ðòé€F(ô‹®Oô¿rBòDq$à@F!F"Oð
&ð
ëF(ô”®BòFqOô¿vïæ&ðÈé(ð¢€BòFqOô¿vOð
ãæ&ð\é(õ°®@òBòTqVHWKxD{Dø÷Àù Ûøoð@B‘Bôø®¹ñ¿Ùøoð@B‘BѰ½ì‹°½èð½9ÉøôÑFHF&ð¶è FîçOô¶rBòUaöåBòæa@òw\FOð
þåBòèaàBò9q@ò}Oð
¨FšæBòa—åBòìa@òw\Fêå F)F"&ðžêF(ô-à&ð`é(CÐ@òmBòaaÇåBòa{åBòIqOô¿vYçOô¼rBòüa–ç@òyBòq‘çBò	q@òyàOô½rBòq‡çBòqOô½vOðKæ@òqBòŸaŸåOôºrBòÂašåHIxDyDhh&ð4è'çHIxDyDhh&ð*èTçHIxDyDhh&ð"è²çÐüÿ©œúÿðü”üVŽúÿ‹¯úÿnúÿ£±úÿæ©%œúÿԩœúÿðµ¯-鉰mL%mN|D•~D£F$hõÊe•”[±ë‚*>Ð*Ñhh”-n۩à*kÐ*Ñh”fàdH²ñÿ?cLxDcN|DcMh~DcK}DcIhؿ&FÔCyDOêÔ|`L{D’|D²ñÿ?ÍéÆؿ+F"F&ð¸èBò¿qYH@òYKxD{Dø÷¸ø 	°½èð½h-3ÛÖøPFñ
Oð	Íé#Zø)¡BÐ	ñ	ME÷ÑFOð	Zø) F"ðú(Ñ	ñ	MEóÑàFXø)@±=”àøÕ&ðtè(WÑXFÛø@0FÝé#-;ÚÐøÀPoð@B)h+F‘B¿1)`'I(JyDzDÎkñhÛø ’"F°G)hx±oð@B‘B§Ð9)`¤ÑF(F%ðnï F	°½èð½oð@@BÐH(`¿(F%ð`ïHBòîqK@òµxD{D…çF
H¬AFxDÍé ªF#FðÚø(Ôœ(F²çBò±qkçBò¬qhç¿<©|ñ‚ÒüÿÌøn¨‰úÿ‰¬úÿ©qúÿ¤­úÿ¥úÿRúÿbúÿ¢ÓüÿŠúÿ{­úÿðµ¯-鉰˜M&˜L}D–|D.h«F¢FõÊe•–S±ë‚³*Ñhœh–,cÛèà*`Ð*Ñh–[à‹H²ñÿ?ŠLxDŠN|DŠMh~DŠK}DŠIhؿ&FÔCyDOêÔ|‡L{D’|D²ñÿ?ÍéÆؿ+F"F%ð¸ïBöY€H@ò·€KxD{D’àœh,.ÛÚøPVQFñ	&©
ÁYø&©BÐ6´BøÑ&Yø&(F"ðˆù(Ñ6´BôÑàÔXø&`±–<à%ð€ï(@ð¯€Ûø`«
Ë,€ò†€AhŠlQFÚø¨*rАGF(tÐ%ðØïF(rÐÚøP F2F%ð8ï(,ÔhhÚø€l.xÐYHxD&ð|è(}Ñ(FAF"F°GF&ðzè0F.pÐ)hoð@F±BÐ9)`рF(F%ðdî@F!h±BÐ9!`&Ð	°½èð½Bö‹(hoð@BBÐ8(`Ñ(F
F%ðJî)F,¿ hoð@BBÑ8HOôßr8KxD{D÷÷$ÿ 	°½èð½F F%ð2î(F	°½èð½8 `æÑ FF%ð&î!Fàç%ð
ïF(ô‹¯Bö‡×çBö‰ÀçFH®AFxDÍé ªF3Fð›ÿ(Ôž Fhç(FAF"F&ðè(Ñà%ðÔî@±BöŒ¡çBöKçBöFçHIxDyDhh%ðÒííç¿<§|ïÆÖüÿ§qŽúÿ¤«úÿ£úÿR‹úÿb‹úÿdØüÿŠªúÿ{«úÿb©úÿSªúÿo§úÿ$¥c—úÿðµ¯-é›°ÛNFÛM"~D’}DÍé"õÊb’õür’2h›F»ñõÐs“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$Ðø aUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðSø(@ð‚€4¢EóÑ%ðRîœH±Böí½à,nÐ,ъh’jà½H&½I,xD¼KyDh{DŒF»IhyDºM¸¿&ºJ}D”zDÍée¨¿cF%ð4îBö™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøPfTø%°Bð€5¨E÷Ñ%Tø%0F"ðøÿ(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%ÐøøaTø%°B6Ð5©EøÑ%Tø%0F"ð§ÿ()Ñ5©EôÑ%ð¦í(@ðº€gH&gI%xDfJgKyDhzD{DheL–|DÍéT%ð˜íBö÷gHOôàrgKxD{D÷÷˜ý °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà%ð^í(uÑ­ž™1Í2h)TÚÐøÀ@oð@C±F!h™B¿1!`7I7KyDÕø¤±{DÕøˆaÑø@àÙøOð	Óø€Õøh7
‘ñ(˜Íéi&Íé¨Õøü@è@@FÍéc#F–ðG!hx±oð@B‘B™Ð9!`–ÑF F%ð@ì(F°½èð½oð@@BÐH `¿ F%ð2ìHBöLK@òïxD{DwçFHª«xDIFÍé@XFð­ý(Ô˜(FÝ额–çBöZçBöõWçBöþT翊¤Êì¨Óüÿ¢òD¢úÿ-¦úÿº¢‡úÿäÔüÿúÿŠúÿþ£Xˆúÿ úÿTˆúÿC‹úÿÖüÿ«žúÿ;§úÿðµ¯-é—°±M–F±L"}D’|DõÊb’Õøl—õÀf"h–”Íé’“±ë޾ñSоñFоñÑÑé’Óø€”Íé’Æà"h¾ñðŀ¾ñоñÑJh’ÑøÍøT·à›H"›M"êž|xDšK›I}Dh{DyD¾ñh˜N˜J~DÍøàzDÍéÆX¿+F%ðjìBöÅ“HOôúr’KxD{D÷÷iü °½èð½šFÑøZø”•ÍøTCàšFZø¸ñ}Û)FñÑøfOð‘Íé2ÍéNUø+±BÐñØE÷ÑFOðUø+0F"ðþ(ÑñØEóÑàF˜Pø+P±F¨ñ FÝø<àÝé2
àðÕ%ðìÝø<à(Ýé2 F@𯀸ñ#ÛÚø ›FÍø<àºñ
%Û˜ñ&ÐøPFXFUø& BÐ6²EøÑ&Uø& F"ðÝý(Ñ6²EôÑ
ààÔ˜Pø& ±¨ñ’à%ðÐë(uјh
˜[FÝø<à¸ñTÚÐøÀ@oð@COðOð
!h™B¿1!`5I5KyDÍé©{DÑø@À)FÑøhgÓøàÑøˆ1™ÕøVÍé8	h
‘ñ(ÍécpF#FÍéZÍé†àG!hˆ±oð@B‘B?ô9¯9!`ô5¯F F%ð°ê(F°½èð½oð@@BÐH `¿ F%ð êHBöüK@ò;"xD{Dç.FFH¬™ªxDÍéàF#Fðü(Ô(FÝé’5F–çBö´øæBö¯õæBö¨òæé¾ üÖüÿzï Ÿ¿”úÿ£úÿj „úÿrœúÿĄúÿ±‡úÿúØüÿ‘–úÿݤúÿðµ¯-é‘°sL%sN|D•~D£F$hõÊe•”[±ë‚*>Ð*Ñhh”-n۶à*kÐ*Ñh”fàjH²ñÿ?iLxDiN|DiMh~DiK}DiIhؿ&FÔCyDOêÔ|fL{D’|D²ñÿ?ÍéÆؿ+F"F%ðöêBög!_H@òA"_KxD{D÷÷öú °½èð½h-3ÛÖøPFñ
Oð	Íé#Zø)¡BÐ	ñ	ME÷ÑFOð	Zø) F"ð½ü(Ñ	ñ	MEóÑàFXø)@±=”àøÕ%ð²ê(dÑXFÛø@0FÝé#-HÚÐøÀPoð@BÛø0&)h‘B¿1)`,I-JyDÍé6zD
“Ñø@Àñ(hÍécÍé6FÍé3Íéc"F+FàG)hx±oð@B‘BšÐ9)`—ÑF(F%ð é F°½èð½oð@@BÐH(`¿(F%ðéHBöž!K@òg"xD{DxçFH¬AFxDÍé ªF#Fðû(Ôœ(F¥çBöY!^çBöT![縝øåßüÿDíîœp—úÿë úÿ’í„úÿ ¢úÿ–™úÿ΁úÿށúÿ»àüÿ|˜úÿ÷¡úÿðµ¯-é‘°	 çMçL}D
|D
”õÊ`Õø Íé ãHxDS±ë‚â³*	ÑÑø œhÍø, rà*WÐ*PÐÚH²ñÿ?ÚLxDÚN|DÚMh~DÙK}DÙIhؿ&FÔCyDOêÔ|ÖL{D’|D²ñÿ?ÍéÆؿ+F"F%ðêéBö	1ÐH@òm"ÏKxD{D÷÷éù%(F°½èð½œh,Ý
˜ñ	•&“ÐøPVYø&¨BÐ6´BøѓF&Yø&(F"ð±û(Ñ6´BôÑà Íé3âÑø Íø, à“FXø&8±ÝéS<‚FZFàôÕ%ðšéÝéS(ZF@ðk…,€ò„)h ÍéŠEð‚
˜ÐøÐDhâh!F%ð(ê(ðDFhoð@AˆB¿0(`•hh‚l
˜*ÐøÀ(FðGF(ðD(hoð@AˆBÐ8(`¿(F%ð‚è %ðÈè(ð¹„FÚøoð@AˆB¿0ÊøÅø %ð¶é(𬄁F
˜ÐøÐdhòh1F%ðàé(𪄀Fhoð@AˆB¿0ÈøØø‚l
˜*Ðø|@F𨄐GF(ð©„Øøoð@AˆBÐ8Èø¿@F%ð8è
˜2FÐø¼HF%ðâè(ñ‚0hoð@AˆBÐ80`¿0F%ð$è`hl.ðˆ„]HxD%ðê(@ð„ F)FJF°GF%ðê.ð„ hoð@H@EÐ8 `¿ F%ðè(h$”@EÐ8(`¿(F$ðøïÙø”oð@D BÐ8Éø¿HF$ðêï0h BÐAoð@B‘B1`Ð(0`¿0F$ðÚï<H#ÖéxD–“Bl0iÒøx"G(ÀòGƒF	˜0¨0àñ»ñð9	˜oð@JÐøÀP
˜nhÐøØB0F!F%ðHê(ðՂF@hÐøˆ03±HF)F2F˜GF8¹ÏâÙøPE¿0Éø	˜ÐøÀ`
˜Öø ÐøÌBPF!F%ð&ê(ðBF@hÐøˆ0;³(F1FRF˜G(ð¼‚F@hoð@B"ޛÞãx›ӂúÿ úÿ|—úÿ´úÿÄúÿóœúÿÔúÿݟúÿ­šúÿlé)hoð@B‘B¿1)`™$”	hˆB@ð–€ìh”,𓀠h®hB¿0 `0hB¿00`(hBÐ8(`¿(F$ð8ï"5F Íé@˜ ë‚(Fü÷Œü™oð@C)¿
hšBSÑ!(‘ð_‚(h˜BÐ8(`SИh™BÐ9`¿$ðï %ð¬éF˜ðÏÿÈé F%ðªéÙø
™lÑøÀW,DÐèHxD%ðöè(HÑHF)F" GF%ðöèí³Ùøoð@AˆBÐ8ÉøÑHF$ðàîoð@A-ð/‚(hˆB?ô¯8(`¿(F$ðÐîç:
`¨ÑFF$ðÈîoð@C F ç(F$ðÂîoð@C˜h™B¦Ѫç"‚ç$"çHF)F"%ðÀèFÁç$ð„ï±%¼çÁHÁIxDyDhh$ðŠîôçÝø$€ªF
˜ØøÀ@ÐøØbeh1F(F%ð,é(ð‚ƒF@hÐøˆ0›±XF!F*F˜GƒF°¹ûáœoð@A hˆB@ð€%F(F°½èð½Ûøoð@AˆB¿0ËøØøÀP
˜nhÐø̂0FAF%ðüè(ðށF@hÐøˆ0S± F)F2F˜G(ðځF@hà!hoð@B‘B¿1!`”™OðÍø8€	hˆB@ðœåh•-ð—)hoð@@¦hB¿1)`1hB¿H0` hoð@A–ˆBÐ8 `¿ F$ð"î"4F¨ÍéX0 ë‚ Fü÷wû-¿)hoð@B‘B@ðò€!(‘ð’!hoð@E©BÐ9!`ÑF F$ðþí0F!‘h©BÐ9`¿$ðòí$ð`ïFlÚø h,¿TEÑ@h(÷ÑOð$&à!hoð@@B¿1!`Ôø€ØøB¿HÈø F$ðDïF	˜0ðþ%ðvè!(‘ð[Ùø@Fh`(¿hoð@B‘B@𡀸ñ¿Øøoð@AˆB@ð€.¿0hoð@AˆB@ð€Ûøl
˜.ÐøÀGðЁ:HxD$ð”ï(@ð–XF!F"°GF$ð’ï,ð‡Ûøoð@AˆB@ð,𔁠hoð@AˆB?ôy¬8 `¿ F$ðrí(F°½èð½Oð@òž$BöJÙøoð@AˆBÐ8Éø¿HF$ðZí 5F˜(¿hoð@B‘Boј(¿hoð@B‘BRѸñ¿Øøoð@AˆBOÑ-¿(hoð@AˆBPÑ
HQF
K"FxD{Dö÷þœ”³ h%¬ç¿e˜úÿ’–шúÿ¡•úÿ2xúÿ;˜úÿ9)`ô
¯F(F$ðí0Fç9`¿$ðíXç8Èø¿@F$ðíZç80`¿0F$ðþì[ç0 `%F|ç%(F°½èð½9`¿$ðîì¦ç8Èø¿@F$ðæì§ç8(`¿(F$ðàì§ç9`¿$ðÚì‰çäH!FxDhh$ðêîOð@ò£$Bö8JáÞH!FxDhh$ðÜîBö:J%àBöNJÙøoð@AˆBÐ8ÉøÑHF$ð°ìOð@ò£$TçOð@ò£$Bö„Jîà%"€æÚH®AFxDÍé ªF3Fð&þ(ñÝø, ÿ÷׻ÒH1FxDhh$ð î@ò›$BöR:ÉàÕHAFxDhh$ð”î BöT:àBöh:Ûøoð@AˆBÐ8ËøÑXF$ðhì@ò›$«à¾HOô'r½KxDÍé{DBö1ö÷Cý©ª«HFðú™(‘ñҀÝé2 Íé#$ðàì(ð&FXF)F"û÷¼úoð@AÛøˆBÐ8ËøÑXF$ð0ìoð@A(hˆBÐ8(`¿(F$ð&ì-ðžHxDh…B𢀜IyD	hB¿UEðš€(F$ðPíƒF™àXF!F"$ðîFÛøoð@AˆB?ô®à$ðÖì(ðɀ$Ûøoð@AˆB?ôs®8Ëø¿XF$ðìë,ôl®@ò›$BöÓ:*à$ðºì(@𶀠Fú÷Âþ(@ðæ€@òž$Böô:à$ðºìF(ô?« Böö:@òž$%Oðsæ@òž$Böù:à@òž$Böþ: Oð%\æ$ðŠì(¹0Fú÷“þ(@ð»€Oð@òž$Oô0Z&;æ$ðˆìF(ôW«&@òž$BöJ/æ F)FJF$ð¢íF(ô€«à$ðbì(oÐOð@òž$BöJ&æBöû!ÿ÷uºBö“:.à(°ú€ðOêP(hoð@AˆBÐ8(`¿(F$ðjë»ñÔZИõ÷Jû˜%•õ÷Eû˜•õ÷AûÙø@AF"F3FðÁùÿ÷ ºBöö!ÿ÷EºBö :Ùø@AF"F3Fð²ùÝø @ò›$Oð¹ñOðOðôͭÛå*H+IxDyDhh$ðë-ç! @òž$‘Böô:OðhçBö—:ÐçBöœ:Íç H!IxDyDhh$ðøê†ç¿¸’œ’$ðàê™Ýé#ú÷ÎþÙø@AF"F3Fðkù
HBö¨1
K@ò›"xD{Dÿ÷ñ¹Fÿ÷Sº€Fÿ÷˜º	”úÿ&’vúÿ•–úÿp‘h‘ºsúÿÓúÿ¤ãúÿ’p¯úÿðµ¯-é—°‘FÒM ÒJšF}DÍézDºñõ/p+hÒøˆGõÊ`õTpõ…`
’Íé3”5йñHØë‰	ßè	ð—‚ŒvPF•Pø¿ÍéC»ñÛ
˜
ñ$Ðø(dUø$°Bð®€4£E÷Ñ$Uø$0F"ðUý(@ðŸ€4£EóÑ$ðTë1BöQ9à©ñ(Ø+hFßèðÌh”‹h“Nh–Ñø€“ÍøL€&áŸH¹ñžJOðxDMzDLh}DK|DIh¨¿F¹ñ¸¿&šJyD{DÍéezDÍø¨¿#F$ð ëBö1Q”H@ò§"“KxD{Dö÷û$ F°½èð½ÑéÑé†ÚøÍéÍé†åàÑé†QFQøÍéCÍé†`àRFÑ醈hRøÍ醖àÑø€QFQøÍéCÍøL€(2ÛÑø°
»ñ•‘9Û
˜
ñ$ÐøPSVø$¨B%Ð4£EøÑ$Vø$(F"ð¹ü(Ñ4£EôÑà?õb¯	˜Pø$€ÍøL€¸ñ?ôY¯«ñ™(ÌÚ.h–œ‘à	Ô	˜Pø$`.±
˜–8™à$ð˜ê(Aðς
˜™.h("ÛÑø°•»ñÍé
‘)Û
˜
ñ$ÐøPVVø$¨BÐ4£EøÑ$Vø$(F"ðkü(Ñ4£EôÑàœVàÔ	˜Pø$@±
™9ÝéeÝé$à$ðZê(Að‚Ýé
Ýé$(h):ÛÒø°•»ñ”Íé
%Û
˜
ñ$Ðø¼RVø$¨BÐ4£EøÑ$Vø$(F"ð*ü(Ñ4£EôÑà
Ô	˜Pø$0±
™F9Ýéeà$ðêœ(Ýé
Aðê)€ò«†Øøoð@@B¿1Èø1hB¿H0`(h
†BÐÂF@ގÜÖâ=uúÿp’úÿ2rúÿЉúÿ&rúÿ¥ÚüÿpúÿI’úÿØøoð@B‘B¿1Èøh
‘BÐ9`¿$ðþèÕøx§oð@@ÚøB¿1ÊøÕøx§ØøBÐHÈø¿@F$ðæèFF
!‘©"1hjÈò”‘û÷8þ(ðe…F@hÕø””‚lHF*ðh…G5F
žƒF(Íø ðc…ÍHxDhƒEÌHxD	¿	˜hƒEÑ˜«ë°ú€ð@	à³EöÐXF$ðêé(ñ	†Ûøoð@B‘BÐ9Ëøðр(•@ðր
˜Ðø8Ghâh!F$ðê(ð†ƒFhoð@AˆB¿0ËøÛø‚l
˜*Ðø0XFð†G€F(ð†Ûøoð@AˆBÐ8Ëø¿XF$ðhèØøl
˜-ÐøÄGð†HxD$ðZê(@ð†@F!F"¨GF$ðXê,ð†Øøoð@E¨BÐ8Èø¿@F$ð@è hÝø ¨BÐ8 `¿ F$ð6èÙø‚l
˜*Ðø”HFð념G€F(ð셂HOðØøxDhB@ðv…Øø@,ðq…!hoð@@Øø`B¿1!`1hB¿H0`Øøoð@AˆBÐ8Èø¿@F#ðüï°F
ž"˜ÍéK ë‚@Fû÷Qý,F¿ hoð@AˆB@ðd-ðjØøoð@D BÐ8Èø¿@F#ðØïÙø BÐ8Éø¿HF#ðÎï©FàFXF#ðÆï F(•?ô*¯
˜ÐøÐDhâh!F$ð:é(ð_„ƒFhoð@AˆB¿0ËøÛø‚l
˜*ÐøxXFð]„G€F(ð^„Ûøoð@AˆBÐ8Ëø¿XF#ð’ïHFAF"$ðDê(ðO„ƒFØøoð@AˆBÐ8Èø¿@F#ð|ï˜ƒE¿	˜hƒEÑ˜«ë°ú€ð@	à³EõÐXF$ð¨è(ñ˄Ûøoð@B‘BÐ9Ëø<Ð(AКoð@A$#Òø0ÛøˆB¿0ËøH™xDÍø°†lñ*FÍé@PF°G(𗄂FÛøoð@AˆBÑ
žð„½
ž8Ëø@ð~…ðy½¿²Š¬Š-‹úÿЉNØFXF#ðï F(½Ñ
˜ÐøÐDhâh!F$ðŽè(ð섀Fhoð@AˆB¿0ÈøØø‚l
˜*Ðø|@Fð鄐GƒF(ðê„Øøoð@AˆBÐ8Èø¿@F#ðäîHFYF"$ð˜é(ð㄀FÛøoð@AˆBÐ8Ëø¿XF#ðÎî˜€E¿	˜h€EÑ˜¨ë°ú€ð@	à°EöÐ@F#ðüï(ñQ‡Øøoð@B‘BÐ9Èø:Ð(?Кoð@A#Òø0ÛøˆB¿0ËøëH!Íø°xDÆlñ*FÍéPF™°G(@ðӄBö>a@ò2ØFOð
ðؾ8 `¿ F#ð~î-ô–®Oð
BöÖQ@ò2ðǾF@F#ðpî F(¿Ñ
˜ÐøÐDhâh!F#ðäï(ð>‡ƒFhoð@AˆB¿0ËøÛø‚l
˜*ÐøtXFð;‡G€F(ð<‡Ûøoð@AˆBÐ8Ëø¿XF#ð<îHFAF"$ððè(ð6‡ƒFØøoð@AˆBÐ8Èø¿@F#ð&î˜ƒE¿	˜hƒEÑ˜«ë°ú€ð@	à³EõÐXF#ðRï(ñ\‡Ûøoð@B‘BÐ9ËøÑFXF#ðî F³šoð@A$#Òø0ÛøˆB¿0Ëø•H™xDÍø°mñ*FÍé@PF°G(@ð&„OôDrBöiaGã
˜ÐøÐDhâh!F#ðTï(ð$‡€Fhoð@AˆB¿0ÈøØø‚l
˜*Ðø€@Fð"‡GƒF(ð#‡Øøoð@AˆBÐ8Èø¿@F#ð¬íHFYF"$ð^è(ð‡€FÛøoð@AˆBÐ8Ëø¿XF#ð–í˜€E¿	˜h€EÑ˜¨ë°ú€ð@	à°EöÐ@F#ðÂî(ñ÷†Øøoð@B‘BÐ9ÈøÑF@F#ðrí F³šoð@A#Òø0ÛøˆB¿0ËøOH!Íø°xDFmñ*FÍéPF™°G(@ð–ƒBö”a@ò2Áæ
œÔøÐõ÷þ(ðƆƒF@hÔøü‚lXF*ðƐG€F(ðĆÛøoð@AˆBÐ8Ëø¿XF#ð(íHFAF"#ðÜï(𵆃FØøoð@AˆBÐ8Èø¿@F#ðí˜ƒE¿	˜hƒEÑ˜«ë°ú€ð@	à³EõÐXF#ð>î(ñ–†Ûøoð@B‘BÐ9ËøÑFXF#ðìì FX³šoð@A$#Òø0ÛøˆB¿0Ëø
H™xDÍø°†mñ*FÍé@PF°G(@ðƒOôErBö¿a3â¿ôÖœÕzÔtÓ
œÔøÐõ÷ý(ðX†€F@hÔøø‚l@F*ðU†GƒF(ðV†Øøoð@AˆBÐ8Èø¿@F#ðœìHFYF"#ðNï(ðH†€FÛøoð@AˆBÐ8Ëø¿XF#ð†ì˜€E¿	˜h€EÑ˜¨ë°ú€ð@	à°EöÐ@F#ð²í(ñ*†Øøoð@B‘BÐ9ÈøÑF@F#ðbì F³šoð@A#Òø0ÛøˆB¿0ËøëH!Íø°xDÆmñ*FÍéPF™°G(@ð†‚Böêa@ò2±å
œÔøÐõ÷þü(ðó…ƒF@hÔøô‚lXF*ðð…G€F(ðñ…Ûøoð@AˆBÐ8Ëø¿XF#ðìHFAF"#ðÌî(ð⅃FØøoð@AˆBÐ8Èø¿@F#ðì˜ƒE¿	˜hƒEÑ˜«ë°ú€ð@	à³EõÐXF#ð.í(ñÅÛøoð@B‘BÐ9ËøÑFXF#ðÜë F³šoð@A$#Òø0ÛøˆB¿0Ëø©H™xDÍø°nñ*FÍé@PF°G(@ð‚OôFrBöq#á
œÔøÐõ÷zü(ퟸ�F@hÔø‚l@F*ퟬ�GƒF(ðŒ…Øøoð@AˆBÐ8Èø¿@F#ð”ëHFYF"#ðHî(ð~…€FÛøoð@AˆBÐ8Ëø¿XF#ð~ë˜€E¿	˜h€EKÑ˜¨ë°ú€ð@	Là|HBöQ|K@òù"xD{Dõ÷Pü$5FÜá#ðJìÿ÷•º@òû"Bö›QOð
ð¼#ð.ì(¹ Fù÷7þ(@ðã…@ò2BöÿQOð
ðŒ¼#ð,ì€F(ô¢«@ò2Böað1¼Oð
Böa@ò2Øøoð@C˜B@ðf„ðq¼°E±Ð@F#ðfì(ñ…Øøoð@B‘BÐ9ÈøÑF@F#ðë F³šoð@A#Òø0ÛøˆB¿0ËøIH!Íø°xDFnñ*FÍéPF™°G(@ð:Oô=Q@ò2eä
œÔøÐõ÷²û(ð䄃F@hÔø$‚lXF*ðᄐG€F(ðâ„Ûøoð@AˆBÐ8Ëø¿XF#ðÌêHFAF"#ð€í(ðӄƒFØøoð@AˆBÐ8Èø¿@F#ð¶ê˜ƒE¿	˜hƒE@ðº€˜«ë°ú€ð@	»à$"ÿ÷©ºOôCrBöa	à@òû"BöQŽã@ò2Böa$OðªãHª	™«xDÍéPFðü(ñ+ƒ˜Ý醐œÿ÷A¹¿ZÒTÑãbúÿ«„úÿÂÏ/Ëüÿ#ðDë(¹ Fù÷Ný(@ðÿ„@òý"Bö©QOð
£ã#ðDë€F(ôä©@òý"Bö«QIã@F!F"Oð
#ð\ìF(ôû©àOð
Bö¶Q@òý"“â#ð&ë€F(ôª@ò2BöÂQOð
wã#ðë(ð—„Oð
Bö¶Q@òý"Øøoð@C˜B@ðXƒcã#ðôê(¹ Fù÷ýü(@ð±„@ò
2Bö*aOð
Rã#ðôêƒF(ô«Oð
Bö,a@ò
2Øøoð@C˜B@ð3ƒ>ã@ò
2Bö/aêâ³E?ôC¯XF#ð.ë(ñO„Ûøoð@B‘BÐ9ËøÑFXF#ðÜé Fš(ðíƒÒø0oð@A$#ÛøˆB¿0ËøìH™xDÍø°†nñ*FÍé@PF°G(ð„‚FÛø
žoð@AˆBÐ8ËøÑXF#ð¬éµB;ÐÚøoð@ATFˆB¿0ÊøÙøoð@AˆBÐ8Éø¿HF#ð’éºñ¿Úøoð@AˆBMÑÝø ºñ¿Úøoð@AˆB4Ñ(hoð@AˆB>ôC¯8(`¿(F#ðré F°½èð½Ýø°oð@A"ÛøˆB¿0Ëø¸HxDhXF#ðì(ퟰ�F˜€E¿	˜h€EÑ˜¨ë°ú€ðD	à8Êø¿PF#ðBé(hoð@AˆB>ô¯Âç8Êø¿PF#ð4é©ç°EàÐ@F#ðnêF(ñ́Øøoð@AˆBÐ8Èø¿@F#ðét»—H"xDhXF#ðÌë(ð‚€F˜€E¿	˜h€EÑ˜¨ë°ú€ðD	à°EöÐ@F#ð>êF(ñ‚Øøoð@AˆBÐ8Èø¿@F#ðìèÛøoð@AˆBÐ8Ëø¿XF#ðàè,?ô4¯
˜ÐøÐDhâh!F#ðTê(ð
€Fhoð@AˆB¿0ÈøØø‚l
˜*Ðøà@FðGF(ð	Øøoð@AˆBÐ8Èø¿@F#ð¬è`HihxDh±Bð$ ™BÍéJ¡ë€(Fú÷úý,ƒF¿ hoð@AˆB@𩀻ñð¯€(hoð@AˆBÐ8(`¿(F#ð‚èÛø‚l
˜*Ðø,XFð÷€G€F(ðø€Ûøoð@AˆBÐ8Ëø¿XF#ðfè
˜"Áh@F#ðë(ð逃FØøoð@AˆBÐ8Èø¿@F#ðNè˜ƒE¿	˜hƒEÑ˜«ë°ú€ð@	à
˜ƒEõÐXF#ðzé(ñ
Ûøoð@B‘BÐ9ËøÑFXF#ð*è F(?ô}®Ýø€oð@AØøˆB¿0ÈøØø°Bðƀ% ™BÍéZ¡ë€@Fú÷jý-F¿(hoð@AˆB)ф³Øøoð@AˆB?ô[®8ÈøôV®@F"ðòïQæPÍ2|V{œz8 `¿ F"ðâï»ñôQ¯@ò!2BöÎq¨F+à8(`¿(F"ðÒï,ÎÑ@ò"2BööqàOðOôHrBöqÞà#ðšè(¹ Fù÷¤ú(@ð]‚@ò!2Bö·qûà#ðœèF(ô÷®Bö¹q@ò!2Øøoð@C˜B@ð݀èàìh,?ôú®!hoð@@Õø€B¿1!`ØøB¿HÈø(hoð@AˆBÐ8(`¿(F"ð„ï EFÝæ#ðh蝀F(ô¯Oð@ò!2BöÒqà@ò!2BöÕqØøoð@C˜B@𡀬à@ò
2Bö1aOð
¸ñ@𐀡àOôHrBöžqqàBöQþ÷½BöQþ÷½ØøP-𿁘)hÐø€oð@@B¿1)`ØøB¿HÈø˜oð@AhˆBЙ8`¿˜"ð,ï çOð@ò!2Bö×q=à"ðúï(¹ Fù÷ú(@ð¾@ò2BöUaOð
Xà"ðúï€F(ôĨ@ò2BöWa$Oð àOðOôHrBö¥qàOð
BöZa@ò2Øøoð@C˜B*Ñ6àBöQþ÷°¼BöQþ÷¬¼OôHrBö¦qTFÛøoð@C˜BÐ8ËøÑXF«FFF"ðÔî*F1F]F¢F¸ñÐØøoð@C˜BÐ8ÈøÑ@F.FF
F"ð¾î)F5F"F¸H¹KxD{Dô÷žÿ$å@ò2Bö\aÿ÷¼"ð‚ï(¹ Fù÷‹ù(@ðL@ò2Oô:QOð
àç"ð‚ïƒF(ôݨOð
Bö‚a@ò2áæ@ò2Bö…aÿ÷ô»@ò2Bö‡aOð
¸ñ°ÑÂç@ò2Bö«aÿ÷A¼"ð^ï€F(ô<©@ò2Bö­aÿ÷׻Oð
Bö°a@ò2·æ@ò2Bö²aÿ÷ʻ@ò2BöÖaÿ÷"¼"ð>ïƒF(ôª©Oð
BöØa@ò2žæ@ò2BöÛaÿ÷±»@ò2BöÝa»ç@ò2Böqÿ÷¼"ð ï€F(ôª@ò2Böqÿ÷š»Oð
Böq@ò2zæ@ò2Böqÿ÷»@ò2Bö,qÿ÷å»"ðïƒF(ôtªOð
Bö.q@ò2aæ@ò2Bö1qÿ÷t»@ò2Bö3q~ç@ò2BöWqÿ÷ǻ"ðäî€F(ô«@ò2BöYqÿ÷]»Oð
Bö\q@ò2=æ
˜1FNFÝø,Ðø|ˆBZÐqhIJzDh‘B¿Imð€QPÑ1F#ð”è€FOð
(PÐBH"™ÈòxDÍé¨@iú÷$û(HÐFØøoð@E¨BÐ8Èø¿@F"ð´í Fù÷mü h¨BÐ8 `Ñ F"ð¨í@ò2BöŠqMF±FææOôGrBökqÿ÷»@ò2Bö^qÿ÷»"H"IxDyDhh"ðvíÿ÷_»% Ýø€rå1F#ðLè€FOð
(®Ñ@ò2BöƒqÔçMFBö…q@ò2±FØøoð@C˜B��æÝø ƒFþ��Fþ÷à¼Ýø €Fþ÷^¾€F“äÝø ƒF
žþ÷þ¾Ýø €F
žþ÷‰¿jt©fúÿ6uTÅYúÿG{úÿðµ¯-鉰ÝLƒF |Dõzpk±ë‚
*ð³*@ð؁h™h)Ûuâ*@ðρhðÈû€F0ðÛøÔø|‚lXF*ðq‚G‚F(ðr‚"ðVîƒF(ðq‚¨ñÁë‘p!ë "ðÐï(ðg‚ÔøPFXF*F"ð¦í(ñ¸(hoð@AˆBÐ8(`¿(F"ðèìÔøÐd hòh1F"ð`î(ðQ‚Fhoð@AˆB¿0(`hhÔøø‚l(F*ðO‚GF(ðP‚(hoð@AˆBÐ8(`¿(F"ð¾ìÔø¼XF2F"ðhí(ñ°0hoð@A¡FˆBÐ80`¿0F"ð¨ìÚøÙøÈWlHF,ð,‚ŽHxD"ðœî(@ðC‚PF)FZF GF"ðšî.ð6‚Úøoð@D BÐ8Êø¿PF"ð‚ìÛø BÐ8Ëø¿XF"ðvìphLFÙøì‚l0F*ð‚GƒF(ð‚0hoð@AˆBÐ80`¿0F"ð^ìnHÛøxDÐøIE@ðÛøP-ð½)hoð@@Ûø`B¿1)`1hB¿H0`Ûøoð@AˆBÐ8Ëø¿XF"ð4ì ³FÔøðB‘©ñ
•ªë€XFú÷…ù-F¿(hoð@AˆB@ð9.ð?Ûøoð@AˆBÐ8Ëø¿XF"ðìphÔøÔ‚l0F*𵁐GƒF0hoð@A»ñ𯁈BÐ80`¿0F"ðôëÛø&HE@ð^ÛøP-ðY)hoð@@Ûø@B¿1)`!hB¿H `Ûøoð@AˆBÐ8Ëø¿XF"ðÎë"£Fªë‚XFÍéVú÷$ù-F¿(hoð@AˆB@ðä€.ðê€Ûøoð@AˆBÐ8Ëø¿XF"ð¬ë !Íé0FAF"#ðuú1h(ðXoð@B‘BÐ91`ÑF0F"ð’ë F	°½èð½"ðdì(?ôk®Cò~Cà¿̻¯súÿüqhÍéB-Û˜™F	ñ$ÐøècFXø$°Bð­€4¥B÷Ñ$Xø$0F"ð4þ(@ðž€4¥BóÑ"ð2ìš(@ðH&IxDLžKyDh|D{DhœM’"F}DÍée"ð$ìCò‚˜H@ò%2—KxD{DOàCòÔ@òF9&Úøoð@AˆBÐ8Êø¿PF"ð(ë»ñÐÛøoð@AˆBÐ8Ëø¿XF"ðë-¿(hoð@AˆBÑþ±0hoð@AˆBÐ80`Ñ0F"ðëàCòã@òF9%Úøoð@AˆBÉÑÏç8(`¿(F"ðòê.ßÑqHAFqKJFxD{Dô÷Òû 	°½èð½8(`¿(F"ðÞê.ônCò
à8(`¿(F"ðÒê.ô¯Cò'@òG9%&Ûøoð@AˆB¢Ѩç?õc¯Zø$(?ô]¯šiœKF)ÿö­JH®QFxDÍé ªF3Fð7ü(kÔ˜å"ðŠë‚F(ôŽ­CòÆ@òF9§çCòÐAàCòÒ>à% \æ"%Àæ"ðbë ¹0Fø÷lý(dÑCòÞ@òG9%Gç"ðdëF(ô°­Còà@òG9<çPF)FZF"ð~ìF(ôܭà"ðPëƒF(ôû­Còù@òG90hoð@AˆBôN¯gç"ð.ë`³Còí@òF9%ç"ð6ëHæˆBÑCò@òG9Tçoð@@BÑCò+@òG9KçCòr÷æCòwôæ80`CòàHCò+0`@òG9ô9¯çHIxDyDhh"ðêÉçFGå¿õÆüÿÒo2Túÿ3ÈüÿNúÿTtúÿKOúÿQtúÿ©Núÿ¯súÿmÏ_úÿðµ¯-é—°×N’F×L"×M~D|DÍé"}DÖø€Ôø°õ b’òÜR’õÊb+’õÐr’ÍøX°Íé¸=кñTØëŠ’•ßè
𦋖€–FSøŸÍé
¤¹ñ
“Û˜ñOð
Ðø QTø*¨Bð¼€
ñ
ÑEöÑOð
Tø*(F"ð‚ü(@ð«€
ñ
ÑEòÑ"ð€êÝø( à±Cò›=àªñ+ØÔø°Öø€ZFßèð
Ñø°ÍøX°Ñø€ÍøT€Jh’	h‘IáºHºñ¹JOðxD¸MzD¸Lh}D¸K|D¸Ih¨¿Fºñ¸¿&µJyD{DÍéezDÍø ¨¿#F"ðFêCò˯H@òI2®KxD{Dô÷Eú °½èð½Ñéb
ñLÑé‹1FžhŒè	áFÑé–UøoÍé.qÚáÑébFÑø€
ñL1FUøoŒè.€òª€òàF	hUø/‘*:ÛÕø–¹ñÍé	!”
ÍéS>Û˜$ÐøPV˜ñVø$¨B(Ð4¡EøÑ$Vø$(F"ðÚû(Ñ4¡EôÑ#à?õW¯˜Pø*‘)?ôP¯3F©ñ
˜Ýø( œž*ÄÚÔø°ZF¬à
Ô˜Pø$ 2±	ž’>
˜Ýé
	à"ð´é(@ð@œ
˜Ýé	a"hÝéS.Àò’€Õø€™FÍé	a¸ñ”
Íé%+Û˜	ñ$ÐøÜUHFVø$¨BÐ4 EøÑ$Vø$(F"ð€û(Ñ4 EôÑàÔ˜Pø$€¸ñ	Ð	žKFÍøT€>
˜šÝé
à"ðné(wјKFšœÐø€
˜Ýé	a.IÛÕøÍé	a¹ñ”“’
1Û˜$ÐøU˜ñVø$¨BÐ4¡EøÑ$Vø$(F"ð9û(Ñ4¡EôÑàÔ˜Pø$°»ñÐ	žÍøX°>
˜š›
™à¿$mm@µ"ð é@»˜š›Ðø°
˜Ýé	a.ÚCFÍø°ðšÿ°½èð½FH™ªxDÍé F«ð¹ù(Ô
ñL F›è	ãçCòµºæCò°·æCò©´æCò¢±æ¿›Äüÿ.l‰Súÿ¼púÿ~PúÿhúÿrPúÿÇüÿfúÿ•púÿðµ¯-遰-틜° ‘L’N|D”~D$hõÊ`Öøh·Öøl—õTpõ…`”Íé¹–ƒ³*AØë‚“ßèðvfmFQø¯ºñÀòÖø(dñOð’Íé
‘Uø(°BiÐñÂE÷ÑOðUø(0F"ð…ú(ZÑñÂEóÑaà*ؘhßèðõŒh”ÑøÍøhÑø°Íød°çàeHOðdM*xDdKdI}Dh{DyDhbNH¿OðaL~D’|DÍéÆX¿+F"F"ð^èCöÔ!\H@òB[KxD{Dô÷]øOðð)¼Ñé¹Sø¯Íé¹eàÑ鹌hÓø ”Í鹩àÑø°Sø¯Íø4Íød°à
Ô˜Pø(0±ªñ
ƒFš›à"ð èš(›@𬆺ñ#Ûh’-“0Û˜OðÐøPc˜ñ	Yø(°BÐñEE÷ÑOðYø(0F"ðõù(ÑñEEóÑàžÝø4fàÔ˜Pø(¹ñÐÍøhªñ
š›à!ðàïš(Ýé
“@ðg†ºñ ÛÓø€’¸ñ:Û˜%ÐøPf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð¶ù(Ñ5¨EôÑàž*àÔ˜Pø%@ıªñ
”à¿øh8±Th¬Lúÿ\dúÿ®Lúÿ™OúÿÑüÿÙjúÿÅlúÿ!ð”ï(@ð†˜hÝébºñ€òეÜHxD@lÐø´ÐøA ˆGF Oô€r#Íé XF" G(𺃂Fhoð@A]FˆBÐBÊø ŠBÐ(Êø¿PF!ð†î˜@lÐø´ÐøA ˆGFOðOô€p"ÍéHF#ËF GF(ð™ƒÙøoð@AˆBÐBÉø ŠBÐ(Éø¿HF!ð\îÙøÚøÍøDCÍø< ðcÖøÐD0hâh!F!ðÊï(𙃀Fhoð@AˆB¿0ÈøØøÖø¸‚l@F*𕃐GF(ð–ƒØøoð@AˆBÐ8Èø¿@F!ð$î—HahxDhBð†ƒ %©‚è ©ñ«ë€ Fù÷mû-€F¿(hoð@AˆB@ð݂¸ñð゠hoð@E¨BÐ8 `¿ F!ðöíØø¨B¿0Èø˜@lÐø@FˆG(ðpƒFhoð@AˆB	ÐB"`ŠBÐ( `¿ F!ðÖíÖøÐT0h
”êh)F!ðNï(ð\ƒFhoð@AˆB¿0 ``h
ÖøÀ‚l FÍø,€*ðWƒG€F hoð@A¸ñðQƒˆBÐ8 `¿ F!ð¦íÖøÐD0hâh!F!ð ï(ðVƒ‚Fhoð@AˆB¿0ÊøÚøÖøŒ‚lPF*ðWƒGF(ðXƒÚøoð@AˆBÐ8Êø¿PF!ðxíÙø™ˆBðKƒ $Ýø< «ë€BHFÍéEù÷Æú,F¿ hoð@AˆB@ðE‚.ðK‚Ùøoð@AˆBÐ8Éø¿HF!ðNíØø™ˆBðFƒ %ÝøD«ë€B@FÍéVù÷›ú-F¿(hoð@AˆB@ð)‚0hoð@AˆBÐ80`¿0F!ð&í,ðGƒØøoð@AˆBÐ8Èø¿@F!ðíHžxDh„BðˀIyD	hŒB¿™	hŒBð@ F!ðBîÝø,€(ñ*ƒ!hoð@B‘B@ð¾€Åà·ŠeXcPc(F!ð|ï¿î«F
FAì´îJ‹ñîúÑ!ð¶í(@ð„XF!ðhïAì´îJ›ñîúÑ!ð¨í(@ð„ÖøÐD0hâh!F!ðFî(ðƒ€Fhoð@AˆB¿0ÈøØøÖøŒ‚l@F*ðƒGF(ðƒ9îH‹Øøoð@A
•ˆBÐ8Èø¿@F!ðœìXì»XFAF!ðöì(ðƒFéHahxDhBðƒ& ©B1Íée¡ë€ Fù÷Þù.‚F¿0hoð@AˆB@ðs(hoð@AˆB@ðyºñð hoð@AˆBÐ8 `¿ F!ð`ìÑHxDh‚EkÐÏIyD	hŠE¿™	hŠEbÐPF!ðŽí(ñè‚Úøoð@B‘BaÑià Ýø,€°ú€ð@	!hoð@B‘BÐ9!`ÑF F!ð2ì0Fž(ðb‚ÕøÀ@oð@AOð	 hˆB¿0 `´H™xDl™hÑøˆ1Ñøh'™Íé9Íé’	h
‘ñ%šÍéZ
Íé9ÍéS#F°G(ðN‚ƒF hoð@AˆBÑÝøD‹àÝøD8 `@ð†€ F!ððëàªë°ú€ð@	Úøoð@B‘BÐ9ÊøÑFPF!ðÜë F(ðy‚˜oð@AÐø ÚøˆB¿0Êø
™HF!ð(ì(ð…‚FXFAF!ð ìÝøD&(ퟔ�F€H™
ñxDÕøh'Õøˆ1%Ñø@À™’h	h
‘™š1Íé6ŽèHÍé6SFÍéTàG(Oððj‚ƒFÚøoð@E¨BÐ8Êø¿PF!ðˆë h¨BÐ8 `¿ F!ð~ëØøoð@AÝø< ˆBÐ8ÈøÑ@F!ðpë%OðÚøoð@AˆBÐ8Êø¿PF!ð`ë¹ñ¿Ùøoð@AˆBÑ-¿(hoð@AˆBѸñ¿Øøoð@AˆBÑXF°½ì‹°½èð½8Éø¿HF!ð8ëßç8(`¿(F!ð0ëßç8Èø¿@F!ð(ëàç8(`¿(F!ð"ë¸ñô­@òŒKCöñ6Œá8 `¿ F!ðë.ôµ­Cö3F@ò‘K$÷á8(`¿(F!ðëÏå80`¿0F!ðüê(hoð@AˆB?ô‡®8(`¿(F!ððꝺñô®Ýø< @òƒKCö|6%OðOð	ÝáHCö1K@ò|BxD{Dÿ÷`»Cö(1@ò}BŽáH«™xDÍé ª˜ðVü(ñôÝ鹜ÿ÷
¼fbìaæa¼aä`aúÿ‰cúÿ«Çüÿ!ð„ë(¹ F÷÷Žý(@ð0‚CöÚ1@òŒB^á!ð†ëF(ôj¬CöÜ6@òŒKþàåh-ðþ)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ F!ðzê 4Fž[ä CöA
Oô’b¯á!ðDë(¹(F÷÷Ný(@ðóCöA@ò‘B¡á!ðFë¦äˆBÐ8 `¿ F!ðVêèHCöAçK@ò‘BxD{Dó÷5ûOðÝø,€Ùæ!ðë(¹ F÷÷&ý(@ð΁CöF@ò‘K$Oð	Ýø< !á!ðëF(ô¨¬$@ò‘KCöFáÙø@Ýø< ,ð!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HF!ðê ©F
’䨸PÝøD-ðm)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@F!ðàé  F˜ä
CöJF@ò‘K$Oð	ÁàCöNF@ò‘KOð	
Æà˜"Öø@jø÷Bø(ð8Fø÷zø hoð@AˆB@ðà€Cö^A@ò’Bôà@ò“KCö{F¬à!ð„ê(¹ F÷÷Žü(@ð9Cöb1@òƒBÝà!ð†êF(ôï¬Cöd6@òƒK $Oð	%}à@òƒKCög6%OðOð	ƒàæh.?ô÷¬1hoð@@Ôø B¿11`ÚøB¿HÊø hoð@AˆBÐ8 `¿ F!ðfé TFÚä@òƒKOônV"à˜"ÕøOð@j÷÷Óÿ(ðҀFø÷ø hoð@AÝø< ÝøDˆB@ð‘€Cö1@ò„B à@ò‡KCö­6 %Oð$à Oô‘kCö·6Oð%à @ò†KCöÁ6Úøoð@AˆBÐ8Êø¿PF!ðéÝø< Oð	¸ñÐØøoð@AˆBÐ8ÈøÑ@F!ðéÝø,€T± hoð@AˆBÐ8 `Ñ F!ðöè¹ñ¿Ùøoð@AˆBÑBH1FBKZFxD{Dó÷ÏùOðÝøDså8Éø¿HF!ðÚèêç
8Cö^A@ò’B `Ñ&àOôkQÿ÷P¹CöE1OôbàCöO1@òB ÝøD
,H-KxD{Dó÷¢ù
OðGå8 `OðCö1@ò„BOð
éÑ FFF!ð¤è2F!F
•àçCö»!ÿ÷ ¹Cö´!ÿ÷¹Cö­!ÿ÷¹ %æ $‰æ %ÿ÷F»CöZA@ò’BÅç‰`úÿubúÿ CöŒ1@ò„B
Ýø< ÝøD¶ç€Fÿ÷4ºFÿ��Fÿ÷ٺ€Fÿ÷°»¿½]úÿ©_úÿc]úÿO_úÿðµ¯-é‚°ˆF*@ðÿ€Øøoð@B‘B¿1ÈøØø)KÐ1ð	©MAh}DŠlÕø¨*ðGF(ð	!ð€éF(ðÕøP FBF!ðÞè(ñ˜€Ùøíhl.ðšHxD!ð ê(@ðHF)F"F°GF!ðê(F-ðÙøoð@E©BÐ9ÉøÑFHF!ðè0F!h©BMÑTà‚IBhyD’lÑø¨*ðʀGF(ðˀ|HOð	ahxDhB@ð®€æh.ðª€1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ F ðÌï",FhFÍéi0 ë‚ Fø÷ ý.¿1hoð@B‘BWÑ(ð™€!hoð@B‘BÐ9!`ÑF F ðªï(FØøoð@B‘BÐ9ÈøÐ°½èð½F@F ð˜ï F°½èð½CöQÙøoð@BBÐ8ÉøÑHF
F ð‚ï)F@òÃBt± hoð@C˜B	Ð8 `Ñ FFF ðrï*F!F>H>KxD{Dó÷Sø Øøoð@B‘B¾ÑÁç91`¤ÑF0F ðZï(FžçFFF!ðœéF F*?ô÷®)I(F"yDðˆøF F)ôì® °½èð½CöÕAOô˜bÉç&"lç!ðèF(ô÷®CöQ@òÃB»ç!ðèF(ô5¯CöáA@òÁB°çCöQŒçCöõA@òÁB hoð@C˜BšѣçHF)F"F!ðé(ôú®à ðàï±CöQsçHIxDyDhh ðäîóç¿ÎÎüÿL¡ YޡÔIúÿ±\úÿ·ZúÿHW‡Iúÿðµ¯-é‚°ˆF*@ðÿ€Øøoð@B‘B¿1ÈøØø)KÐ1ð	©MAh}DŠlÕøˆ*ðGF(ð	!ðèF(ðÕøP FBF ðfï(ñ˜€Ùøíhl.ðšHxD!ð¨è(@ðHF)F"F°GF!ð¦è(F-ðÙøoð@E©BÐ9ÉøÑFHF ðŒî0F!h©BMÑTà‚IBhyD’lÑøˆ*ðʀGF(ðˀ|HOð	ahxDhB@ð®€æh.ðª€1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ F ðTî",FhFÍéi0 ë‚ Fø÷¨û.¿1hoð@B‘BWÑ(ð™€!hoð@B‘BÐ9!`ÑF F ð2î(FØøoð@B‘BÐ9ÈøÐ°½èð½F@F ð î F°½èð½Cö¨QÙøoð@BBÐ8ÉøÑHF
F ð
î)F@òRt± hoð@C˜B	Ð8 `Ñ FFF ðúí*F!F>H>KxD{Dò÷Ûþ Øøoð@B‘B¾ÑÁç91`¤ÑF0F ðâí(FžçFFF!ð$èF F*?ô÷®)I(F"yDðÿF F)ôì® °½èð½CöjQ@òRÉç&"lç ð¤îF(ô÷®Cö¤Q@òR»ç ðšîF(ô5¯CövQ@òR°çCö¦QŒçCöŠQ@òR hoð@C˜BšѣçHF)F"F ð¦ï(ôú®à ðhî±Cö©QsçHIxDyDhh ðlíóç¿TÐüÿ\ž0VîžÐSúÿÁYúÿÇWúÿXT—Fúÿðµ¯-é‘°˜F¡L ¡M¸ñ|DÍé
}D#hõÊ`õTpõ…`
Íé3ÍéE2Ð*DØë‚ßèð¨pžÁF’FYø¿“»ñÛ	˜ñ$Ðø(dUø$°Bðð€4£E÷Ñ$Uø$0F"ðýÿ(@ðá€4£EóÑ ðüíRF°±Cöa6àÔø*ð¢€*Ð*
ÑÑøÍø@ÍøÑøÍø<”àsH*sLOðxDrN|DrMh~DrK}DrIh¨¿&F*¸¿OðoLyD{D’|DÍéƨ¿+F"F ðÊíCö2aiH@ò	RhKxD{Dò÷Éý °½èð½ÁF“Ñé0Yø¿‚FÍé0»ñÀò̀Ùø“¹ñ’]Û	˜ñ$ÐøPfUø$°BJÐ4¡EøÑ$Uø$0F"ð„ÿ(=Ñ4¡EôÑCàÑé9Øø°ˆhÍé9EàÁF“hYø¿“»ñaÛÙø “ºñ’Àòƒ€	˜ñ$ÐøPcUø$°BVÐ4¢EøÑ$Uø$0F"ðOÿ(IÑ4¢EôÑhàÍøh“sàÔ˜Pø$ ±«ñà ð>í(@ðG…˜hšÑF›	»ñZÛ$H«™xDÍé 
ª@Fðßý(ñ…˜Ýé9Hà?õ ¯˜Pø$0“+?ô¯«ñRFœ»ñÚÔøÍø	2à!Ô˜Pø$豫ñ‚F à¿ØSœ6S‘:úÿÄWúÿ†7úÿ$Oúÿz7úÿ¾×üÿ×GúÿWúÿˆÖüÿ ðäì(@ð…˜Ðø š›»ñ¿ö3¯	ÑFhoð@@B¿1`Ùø“B¿HÉøÕø8G(hâh!F ðhíF˜Ðø°ÙEðÀ.ðxƒ0hoð@AˆB¿00`phÝø Õø0‚l0F*ðuƒGF(ðvƒ0hoð@AˆBÐ80`¿0F ð¾ë	™Íø ÑøtÑøBh’l*ðiƒGF(ðjƒ ðòì(ðlƒ	žRF€FÖø( ðPì(ñ]Ýø °@FÖøPZF ðFì(ñYÙøöhl,ðՃÆHxD ðˆí(@ð
„HF1FBF GF ð†í.ðüƒÙøoð@D BÐ8Éø¿HF ðnëØø BÐ8Èø¿@F ðbë²HihxDÝø hBð­ƒ$ Ýø€­I‚Íé
FyD	j‘
©1¡ë€(Fø÷§ø,¿!hoð@B‘B@ð1hoð@B‘BÐ91`ÑF0F ð4ë F(ðªƒ)hoð@D¡BÐ9)`ð4h¡B@ð9Ýø°	<á.ð(ƒ0hoð@AˆB¿00`phÝø Õø0‚l0F*ð.ƒGF(ð/ƒ0hoð@AˆBÐ80`¿0F ðúêÕøpÕøBh’l*ð"ƒGF(ð#ƒ˜Ðø° ð0ì(ð&ƒÕø(RF€F ðŽë(ñ§€phíhl,ðbƒnHxD ðÒì(@ðŒƒ0F)FBF G‚F ðÐìºñð}ƒ0hoð@D BÐ80`¿0F ð¸êØø BÐ8Èø¿@F ð®ê[HÙøxDhBð<ƒ& Ýø€‚UIÍé
jyD	j‘
©1¡ë€HF÷÷óÿ.F¿0hoð@AˆBhÑÚøoð@AˆBnÑ-vÐÙø BÐ8Éø¿HF ðxê(h BÐ8(`¿(F ðpêÝøoð@AšÙøˆB¿0Éøh	hŠBÐQ`¿ ðZêÕø|·oð@@ÛøB¿1ËøÕø|·ÙøBfÐHÉøHF¿ ðBê^à@òcRCöÝaÝø °Qá@òcRCöÞaLáOôzQ@ò[R%4á9!`ô뮀F F ð&ê@FÝø€âæ80`¿0F ðêÚøoð@AˆBÐ8Êø¿PF ðê-ô‰¯˜%@òZRCö aOðÝø Ðø°ῇQúÿPb PúÿœNúžF(F ðîé0Fh¡B?ôǮÝø°9	`Ñ ðâ騸Õø|‚l@F*𦁐G€F(ð§âHÙøxDh¡Bð•€HF ð ì(ðZ	™F@hÑø|g B@𗁨hÁ@ð“€ð(ò®èhÁñHC0 ðêF(ðށ(hoð@AˆBÐ8(`¿(F ðžé  ðäé(ðFÛøoð@AˆB¿0ËøÅé¶ ðÒê(ðt	œFšÔøP ð0ê(eÔÔø¼0FÔø¸# ð(ê(_ÔØøl,ð9‚±HxD ðlë(@ð>‚@F)F2F GF ðjë F,ð0‚Øøoð@D¡B
Ð9ÈøÑÊFF@F ðNéHFÑF)h¡BÐ9)`ÑF(F ðBé F1hoð@B‘BÐ91`ðƀÚF–àÙøoð@AˆB¿0ÉøÕø|gMF¨hÁ?ôm¯0hoð@AˆB¿00`(hoð@AˆBôu¯yçCöqàCö qØøoð@BBÐ8ÈøÑ@FF ðé!F@òfR.SÐHFÚFOð	OðƒF0hoð@C˜B	Ð80`Ñ0FFF ðìè2F!F¹ñÐÙøoð@C˜B
Ð8ÉøÑHFFF ðØè"F1F¸ñ¿Øøoð@C˜BÑÙF
³(hoð@C˜BÐ8(`Ñ(F
FF ð¾è"F)Fà8ÈøéÑ@FFF ð²è"F1FÙF-áÑàÚF-ÝÑOHOKxD{Dò÷ù ºñ	ÐÚøoð@B‘BÐ9ÊøÐÙøoð@B‘BÐ9ÉøÐ°½èð½FHF ð„è F°½èð½FPF ðzè FÙøoð@B‘BçÐâçF0F ðnè FÚFËçCöq%&Rç ð<é(¹ Fö÷Fû(@ðx@òaRCöÌaqà ð>éF(ôЬËF%@òaRCöÎaOð±F`ç ð.éF(ô–¬@òcRCöÙaÝø oçOð@òcRCöÛaÝø °Jç ðé€F(ôY®@òfRCöqÚF|ç©IyD	hˆBðù€(F1F ðTêmæ&CöqçCöq%ÿæ&Cöqûæ¿ÄLOMúÿ_?úÿ%OúÿÁñÀHC(ðç€0@ðï€Õé"@êp@Bbë‘ßà ðÊè(¹ Fö÷Óú(@ð@òZRCöoaÝø ‚HƒKxD{Dò÷Èø <ç ðÂèF(ôѬCöqa@òZROð	à ð¶èF(ôݬ˜%@ò[RCö|aOðÐø°ÖæCö~a@ò[ROð%¼æHF1FBF ðÂéF(ô3¬1àìh,ð¥€!hoð@@Õø€B¿1!`ØøB¿HÈø(hoð@AˆBÐ8(`¿(FðŽï EFÝø€Ýø ÿ÷0¼@òaRCöþaÝø ²æ ðTè(yÐ@òcRCößaÝé«‹æ0F)FBF ð~é‚F(ô§¬&àÙø`.?ô¿¬1hoð@@ÙøPB¿11`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HFðJï ©F¢ä ðè(JÐCöa@ò[R%Ýø @æCöaÿ÷Oº@F)F2F ðBé(ôѭà ðèسCö!qæ·î•í1îQìð~ïnåCöaÿ÷1ºÕé‘@ê‚p0Añ ð¾é_å k1Fh(FGYåCöaÿ÷º$ tçHIxDyDhhðàî|çHIxDyDhhðØî«çHIxDyDhhðÎîºçFÿ÷»Fÿ÷˻¿Õ=úÿ›Múÿ.Gm9úÿ@G9úÿªIG[9úÿðµ¯-é‘°sL%sN|D•~D£F$hõÊe•”[±ë‚*>Ð*Ñhh”-n۶à*kÐ*Ñh”fàjH²ñÿ?iLxDiN|DiMh~DiK}DiIhؿ&FÔCyDOêÔ|fL{D’|D²ñÿ?ÍéÆؿ+F"FðfïCö“q_H@òiR_KxD{Dñ÷fÿ °½èð½h-3ÛÖøPFñ
Oð	Íé#Zø)¡BÐ	ñ	ME÷ÑFOð	Zø) F"ð-ù(Ñ	ñ	MEóÑàFXø)@±=”àøÕð"ï(dÑXFÛø@0FÝé#-HÚÐøÀPoð@BÛø0&)h‘B¿1)`,I-JyDÍé6zD
“Ñø@Àñ(hÍécÍé6FÍé3Íéc"F+FàG)hx±oð@B‘BšÐ9)`—ÑF(Fðî F°½èð½oð@@BÐH(`¿(FðîHCöÊqKOôµbxD{DxçFH¬AFxDÍé ªF#Fð{ÿ(Ôœ(F¥çCö…q^çOô~Q[ç˜F؎åÔüÿ$–ÞEë$úÿËIúÿrFÍ-úÿKúÿvBúÿ®*úÿ¾*úÿÖüÿ÷%úÿ×Júÿðµ¯-é›°ÛL–FÛN"|D’~D+õÊb’õÀb’"hõ}uÖøh§Öøl·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖøôcÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"ðCø(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà°HOð°L¾ñxD¯K¯I|Dh{DyDh­NH¿Oð¬J~DÍøàzDÍéÆX¿#FðîDòQ§H@ò®R¦KxD{Dñ÷þ °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕðÔíÝøDà(Ýé
+(F#F@ðó€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðøf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð£ÿ(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	àð’í(˜ÝøDàÝé2@𫀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%ÐøPf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðdÿ(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’àðXí(rјh˜Ýéæ¹ñUÚÐøÀ@oð@COðOð	!h™B¿1!`6I7KyDÖøV{DÖøhçÑø@À™Öøˆah	h
‘ñ( ÍéhÍé
¨€è@	¨€è BF#FàG!h˜±oð@B‘BÐ9!`а½èð½F Fð8ì(F°½èð½oð@@BÐH `¿ Fð(ìHDòˆK@òbxD{DïæFHª«xDÍéàÝéð¤ý(ÔÝé« Fš—çDò=ÔæDò8ÑæDò1Îæ~D¾ŒDò*Çæ¿¿ÙüÿŒ’JBô3úÿFúÿÈC (úÿÐ?úÿ"(úÿ
+úÿÜüÿ6úÿ9Húÿðµ¯-é—°°NF°M"~D’}DÍé"õÊb’2h›F»ñò,c“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøPfUø$°Bð†€4 E÷Ñ$Uø$0F"ðSþ(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø,fTø%°BJÐ5ªEøÑ%Tø%0F"ð-þ(=Ñ5ªEôÑð,ìœ(@ð΀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cFðìOô‚AfH@òbfKxD{Dñ÷ü °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`àðÐë(vÑž
˜œ2hÝø8:ñSÚÐøÀ@oð@C°FOð
!h™B¿1!`4I5KyDÍé©{DÑø@À)FÓøàÑøˆ1ÑøhgØøOð
‘ñ(Õø0VpFÍé8Íéc#FÍéZÍé†àG!hx±oð@B‘B‘Ð9!`ŽÑF Fð°ê(F°½èð½oð@@BÐH `¿ Fð¢êHDò7K@ògbxD{Doç¨FFHª«aFxDÍé@XFðü(Ô(FÝé’EF˜çDòðSçDòäPçDòëMçÂ@‰†æüÿ|>?w3úÿ
CúÿÂ?'úÿPDúÿ$úÿ°;úÿ$úÿÎçüÿ•4úÿ+Dúÿðµ¯-é›°ØNFØM"~DÍé"}D˜FõÊb’õÀb’Õøl—¸ñ2hò,c“Íé’4Ð,DØë„“•ßèðnvÍé`@FPø¿
’»ñ”Û˜ñ%Ðø,fTø%°BrÐ5«EøÑ%Tø%0F"ðæü(eÑ5«EôÑðæêœ ±Dò—3à2h,	Ð,Ð,
ъh’ÑøÍødÑø Íø` Ùà®H,®JOðxD­M®IzDh}DyD¬KŒF¬Ih¨¿F,¸¿&ªJyD{DÍéezD”¨¿cFð¶êDò½¤H@òmb¤KxD{Dñ÷¶ú °½èð½CFÑé©SøÍé©càÑ驊hØø’Íé©—àCFÑø SøÍø` )Úuà›Ô˜Pø% Íø` ºñ“ЫñœÝé`Ýé2)cÛÓø°‘»ñ”Íé`Íé2(Û˜ñ%ÐøfTø%°BÐ5«EøÑ%Tø%0F"ðMü(Ñ5«EôÑà
Ô˜Pø%H±™F9œÝé`Ýé2
àð<ê(œÝé`™Ýé2@ð²€)"ÛÓø°‘»ñ”Íé`(Û˜ñ%ÐøPfTø%°BÐ5«EøÑ%Tø%0F"ðü(Ñ5«EôÑààÔ˜Pø% :±™’9Ýé`ÝéEàðþé(vÑ­ž™1Í2h)YÚÐøÀ@oð@C³F!h™B¿1!`8I9KyD{DÑø@À)FÓø€ÑøhçÑøfÛø0OðÑøˆÍéñ(
“#Õø0V Íé
@FÍéSÍé>#FÍé–àG!h˜±oð@B‘BÐ9!`а½èð½F FðÚè(F°½èð½oð@@BÐH `¿ FðÌèHDòôK@ò¼bxD{DóæFH™ªxD«Íé@@FðGú(Ô(FÝ驚’çDòª׿Dò¥ÔæDòžÑæ¶=ô…îüÿà‹ª;ú/úÿa?úÿ=g$úÿœAúÿ`!úÿü8úÿR!úÿHðüÿ2úÿwAúÿðµ¯-é›°ÛNFÛM"~D’}DÍé"õÊb’õ%r’2h›F»ñõ's“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$ÐøœbUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðû(@ð‚€4¢EóÑðéœH±DòS!½à,nÐ,ъh’jà½H&½I,xD¼KyDh{DŒF»IhyDºM¸¿&ºJ}D”zDÍée¨¿cFðôèDò{!™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøPfTø%°Bð€5¨E÷Ñ%Tø%0F"ð¸ú(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%Ðø”bTø%°B6Ð5©EøÑ%Tø%0F"ðgú()Ñ5©EôÑðfè(@ðº€gH&gI%xDfJgKyDhzD{DheL–|DÍéTðXèDò]!gH@òÁbgKxD{Dñ÷Xø °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEàðè(uÑ­ž™1Í2h)TÚÐøÀ@oð@C±F!h™B¿1!`7I7KyDÕø ²{DÕøˆaÑø@àÙøOð	Óø€Õøh7
‘ñ(˜Íéi&Íé¨Õø˜€è@@FÍéc#F–ðG!hx±oð@B‘B™Ð9!`–ÑF Fðï(F°½èð½oð@@BÐH `¿ FðòîHDò²!K@òrxD{DwçFHª«xDIFÍé@XFðmø(Ô˜(FÝ额–çDòi!ZçDò[!WçDòd!Tç¿
:J‚möüÿ"ˆì7gúÿ­;úÿ:8šúÿ©÷üÿ@4úÿ…úÿ~9Øúÿˆ5úÿÔúÿà úÿÙøüÿuúÿ»<úÿðµ¯-靰ËNFËM"Íé"~D}DÍé"õÊb’ò¤B’õ%r’2h›F»ñõ's“’6Ð,;Øë„“•ßèð³j~^ÙFÍé&YøÍé¸ñÛ˜ñ$ÐøœbUø$°Bð¯€4 E÷Ñ$Uø$0F"ð)ù(@ð €4 EóÑð(ïœH±Dò4á,!Ð,ÑÊh’àßH&ßI,xDèKyDh{DŒFçIhyDæM¸¿&æJ}D”zDÍée¨¿cFð
ïDòH4ïà2hÑø€Ñé:Íøh€“Íé:$áÑé:Ñé‚ÛøÍé‚“Íé:áÙFÍéYøÑé
Íé&Íé
@FÍø,€¸ñ€򑀨àÙFÑé:Ñø€YøÍøh€“Íé:)ÀòրÙøÍé¹ñÍéÀòà€˜ñ$ÐøPfUø$°BðĀ4¡E÷Ñ$Uø$0F"ðŸø(@ð¶€4¡EóÑÃàÙFÑø€Yø¯ÍéÍé&Íø`€PFÍø, ºñÚ+à?õa¯˜Pø$‘)?ôZ¯F¨ñÙø €F‘ºñÛ˜ñ%Ðø”bTø%°BÐ5ªEøÑ%Tø%0F"ð_ø(Ñ5ªEôÑð^î(@ðù€Dò4Oð4àôÔ˜Pø% Íød ºñìÐ˜ÍøH€8Ùø€¸ñÛ˜ñ$Ðø¤dUø$°B9Ð4 EøÑ$Uø$0F"ð)ø(,Ñ4 EôÑð(î(@ðDò(4OðiH&iIxDiJiKyDhzD{DhgMÍøÀ}DÍéeðîhH!FhK@òrxD{Dð÷þ °½èð½ÔÔ˜Pø$€Íøh€¸ñÌИÝé&AÝé)¿ö*¯àÔ˜Pø$ b±™’9œÝé
`à¿>6€~ðØí(vÑ
žÝé2h™)PÚÐøÀ@oð@COð	6h!h™B¿1!`5I6KyDÕø ²{D
–Ñø@À&Õø¨Íéñ( h˜Íé¨Õø˜â€è@DF#FÍéhàG!hx±oð@B‘B—Ð9!`”ÑF Fð¾ì(F°½èð½oð@@BÐH `¿ Fð®ìHDò1K@òqrxD{DuçFH™ªxD«Íé@XFð*þ(Ô˜(FÝ騚™çDò44VçDò&4SçDò4PçDò/4Mçª5úÿýÿƒ^3á&úÿ'7úÿ¸3úÿEýÿ¾/úÿúÿ´1úÿúÿïúÿ#ýÿó'úÿ98úÿðµ¯-é—°°NF°M"~D’}DÍé"õÊb’2h›F»ñõ#s“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøPfUø$°Bð†€4 E÷Ñ$Uø$0F"ðÑþ(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%ÐøŒbTø%°BJÐ5ªEøÑ%Tø%0F"ð«þ(=Ñ5ªEôÑðªìœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cFðŽìDò÷1fH@òvrfKxD{Dð÷Žü °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`àðNì(uÑž
˜œ2hÝø8:ñRÚÐøÀ@oð@C°FOð
!h™B¿1!`4I5KyDÕøˆa{DÕø²Ñø@ÀÓøàÕøh7ØøOð
‘ñ( Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF Fð0ë(F°½èð½oð@@BÐH `¿ Fð ëHDò.AK@ò½rxD{Dpç¨FFHª«aFxDÍé@XFð›ü(Ô(FÝé’EF™çDòç1TçDòÛ1QçDòâ1N翾1þyb
ýÿx€J0A3úÿ4úÿ¾0úÿL5úÿúÿ¬,úÿúÿ¨ýÿ]4úÿ'5úÿðµ¯-é›°ÜNFÜM"~D’}DÍé"õÊb’ò¤B’2h›F»ñõ#s“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$ÐøŒbUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðgý(@ð‚€4¢EóÑðfëœH±DòA½à,nÐ,ъh’jà¾H&¾I,xD½KyDh{DŒF¼IhyD»M¸¿&»J}D”zDÍée¨¿cFðHëDòµA™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøPfTø%°Bð€5¨E÷Ñ%Tø%0F"ðý(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%Ðø¤dTø%°B6Ð5©EøÑ%Tø%0F"ð»ü()Ñ5©EôÑðºê(@ð¼€hH&hI%xDgJhKyDhzD{DhfL–|DÍéTð¬êDò—AhH@òÂrhKxD{Dð÷¬ú °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEàðrê(wÑ­ž™1Í2h)VÚÐøÀ@oð@C±F!h™B¿1!`8I8KyDÕø²{DÕøˆaÑø@ÀÙøOð	Óø€Õøh7
‘ñ(˜ÍéiOð	&Íé¨Õø¨ä€è@D@FÍé“#F–àG!hx±oð@B‘B—Ð9!`”ÑF FðRé(F°½èð½oð@@BÐH `¿ FðDéHDòìAK@öxD{DuçFHª«xDIFÍé@XFð¿ú(Ô˜(FÝ额”çDò£AXçDò•AUçDòžAR翲.òvìýÿÊ| ,×$úÿQ0úÿâ,Búÿ,ýÿè(úÿ-úÿ&.€úÿ0*úÿ|úÿkúÿ\ýÿé%úÿc1úÿðµ¯-é‘°€L%€N|D•~DÔøàõÊe•Íø@àk±ë‚*BÐ*ÑÑøàhÍø@à-{ÛÈà*xÐ*ÑÑøàÍø@àqàtH²ñÿ?tLxDtN|DtMh~DsK}DsIhؿ&FÔCyDOêÔ|pL{D’|D²ñÿ?ÍéÆؿ+F"FðŠéDòWQjH@öiKxD{Dð÷‰ù °½èð½h->Û1F&FÑøPFñ
Oð	‘Íé#Zø)¡BÐ	ñ	ME÷уFOð	Zø) F"ðMû(Ñ	ñ	MEóÑàƒFXø)à¾ñÐÍø@à=XFÝé#4F
àñÕð<é(oÑÖøà4FÝé#XFž-MÚÐøÀPoð@B)h‘B¿1)`3I3JyDÖøh7zDÖøˆaÑø@Àh!h$
‘ñ(FÍéCÍé6rFÍéC+FÍédÍédàG)hˆ±oð@B‘B?ôŒ¯9)`ôˆ¯F(Fð"è F°½èð½oð@@BÐH(`¿(FðèHDòŽQK@öcxD{DhçFH±F&FxD¬AFÍé ªF#FðŒù(Ô4FÝø@à(FNF›çDòIQIçDòDQFçè*(s¢ýÿZz4*-,úÿñ-úÿ¸*úÿF/úÿ¼&úÿôúÿúÿüýÿY-úÿ/úÿðµ¯-é—°°NF°M"~D’}DÍé"õÊb’2h›F»ñõ#s“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøPfUø$°Bð†€4 E÷Ñ$Uø$0F"ð?ú(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%ÐøŒbTø%°BJÐ5ªEøÑ%Tø%0F"ðú(=Ñ5ªEôÑðèœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cFðüïDòafH@öffKxD{Dï÷üÿ °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`àð¼ï(uÑž
˜œ2hÝø8:ñRÚÐøÀ@oð@C°FOð
!h™B¿1!`4I5KyDÕøˆa{DÕø²Ñø@ÀÓøàÕøx7ØøOð
‘ñ( Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF Fðžî(F°½èð½oð@@BÐH `¿ FðŽîHDò=aK@öÓxD{Dpç¨FFHª«aFxDÍé@XFð	ø(Ô(FÝé’EF™çDòöQTçDòêQQçDòñQN翚(Úpå ýÿTw2'7úÿç*úÿš'óúÿ(,úÿìúÿˆ#úÿÞúÿ+"ýÿSúÿ,úÿðµ¯-é›°ÜNFÜM"~D’}DÍé"õÊb’õjr’2h›F»ñõŠc“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$ÐøPdUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðÕø(@ð‚€4¢EóÑðÔîœH±Dòœa½à,nÐ,ъh’jà¾H&¾I,xD½KyDh{DŒF¼IhyD»M¸¿&»J}D”zDÍée¨¿cFð¶îDòÄa™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøPfTø%°Bð€5¨E÷Ñ%Tø%0F"ðzø(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%Ðø¨cTø%°B6Ð5©EøÑ%Tø%0F"ð)ø()Ñ5©EôÑð(î(@ð½€hH&hI%xDgJhKyDhzD{DhfL–|DÍéTðîDò¦ahH@öÙhKxD{Dï÷þ °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEàðàí(xÑ­ž™1Í2h)WÚÐøÀ@oð@C±F
ñ!h™B¿1!`7I7KyD{DÑø@À)FÑøhçÑø¬cÓø€Ùø0Oð	ÑøˆÍéñ 
“#˜ÕøTT‹è!@FÍéc#FÍøààG!hx±oð@B‘B–Ð9!`“ÑF FðÀì(F°½èð½oð@@BÐH `¿ Fð°ìHDòûaK@ö-xD{DtçFHª«xDIFÍé@XF
ð,þ(Ô˜(FÝ额“çDò²aWçDò¤aTçDò­aQçŽ%Îmº.ýÿ¢sˆ#‘úÿ+'úÿ¾#úÿü/ýÿÄúÿ	úÿ%\	úÿ!úÿX	úÿGúÿ,1ýÿ¥úÿ?(úÿðµ¯-é—°°NF°M"~D’}DÍé"õÊb’2h›F»ñõÐs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøPfUø$°Bð†€4 E÷Ñ$Uø$0F"
ðÓþ(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø aTø%°BJÐ5ªEøÑ%Tø%0F"
ð­þ(=Ñ5ªEôÑð¬ìœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cFðìDòsqfH@ö2fKxD{Dï÷ü °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`àðPì(uÑž
˜œ2hÝø8:ñRÚÐøÀ@oð@C°FOð
!h™B¿1!`4I5KyDÕøˆa{DÕø¤±Ñø@ÀÓøàÕøh7ØøOð
‘ñ( Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF Fð2ë(F°½èð½oð@@BÐH `¿ Fð"ëHDòªqK@ö”xD{Dpç¨FFHª«aFxDÍé@XF
ðü(Ô(FÝé’EF™çDòcqTçDòWqQçDò^qNç¿Â!j¦8ýÿ|pb ’úÿ$úÿ úÿP%úÿúÿ°úÿúÿì9ýÿ®úÿ+%úÿðµ¯-é—°°NF°M"~D’}DÍé"õÊb’2h›F»ñõÐs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøPfUø$°Bð†€4 E÷Ñ$Uø$0F"
ðMý(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø aTø%°BJÐ5ªEøÑ%Tø%0F"
ð'ý(=Ñ5ªEôÑð&ëœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cFð
ëDö"fH@ö™fKxD{Dï÷
û °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`àðÊê(uÑž
˜œ2hÝø8:ñRÚÐøÀ@oð@C°FOð
!h™B¿1!`4I5KyDÕø¤±{DÕøˆaÑø@ÀÓøàØøOðÕøh7
‘ñ(¨“€èHpF#FÍéhÍé©ÍéºàG!hx±oð@B‘B’Ð9!`ÑF Fð¬é(F°½èð½oð@@BÐH `¿ FðœéHDöYK@öüxD{Dpç¨FFHª«aFxDÍé@XF
ðû(Ô(FÝé’EF™çDöTçDöQçDö
Nç¿¶öf˜EýÿpmZ8úÿ!úÿ¶úÿD"úÿúÿ¤úÿúúÿÞFýÿTúÿ"úÿðµ¯-é—°°NF°M"~D’}DÍé"õÊb’2h›F»ñõÐs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$ÐøPfUø$°Bð†€4 E÷Ñ$Uø$0F"
ðÇû(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø aTø%°BJÐ5ªEøÑ%Tø%0F"
ð¡û(=Ñ5ªEôÑð éœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cFð„éDöÑfH@ö"fKxD{Dï÷„ù °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`àðDé(uÑž
˜œ2hÝø8:ñRÚÐøÀ@oð@C°FOð
!h™B¿1!`4I5KyDÕøˆa{DÕø¤±Ñø@ÀÓøàÕøh7ØøOð
‘ñ( Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF Fð&è(F°½èð½oð@@BÐH `¿ FðèHDöK@öi"xD{Dpç¨FFHª«aFxDÍé@XF
ð‘ù(Ô(FÝé’EF™çDöÁTçDöµQçDö¼N翪êc‚PýÿdjRcúÿ÷úÿªúÿ8úÿüþùÿ˜úÿîþùÿÈQýÿúÿúÿðµ¯-é›°ÜL–FÜN"|D’~D+õÊb’õÀb’"hõ}uÖøh§Öøl·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖøôcÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"
ðSú(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#Fð(èDö©H@ön"¨KxD{Dï÷'ø °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕðäïÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðøf˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ð³ù(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	àð¢ï(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%ÐøPf˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ðtù(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’àðhï(vјh˜Ýéæ¹ñYÚÐøÀ@oð@COð	!h™B¿1!`9I:KyDÖøøS{DÑø@À1FÓø€›ÑøhçÑøˆhÍéñ 
“Íé
¨Öøf#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F FðDî(F°½èð½oð@@BÐH `¿ Fð4îHDöÆK@öÇ"xD{DëæFHª«xDÍéàÝéð°ÿ(ÔÝé« Fš“çDö{ÐæDövÍæ¿žÞ`DöoÅæDöhÂæ¸Zýÿ°f¢)	úÿ3úÿè@üùÿðúÿBüùÿ-ÿùÿ]ýÿOúÿYúÿðµ¯-é›°ÜL–FÜN"|D’~D+õÊb’õÀb’"hõ}uÖøh§Öøl·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖøôcÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"
ðqø(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#FðFîDöM!©H@öÌ"¨KxD{Dî÷Eþ °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕðîÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðøf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðÑÿ(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	àðÀí(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%ÐøPf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð’ÿ(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’àð†í(vјh˜Ýéæ¹ñYÚÐøÀ@oð@COð	!h™B¿1!`9I:KyDÖøøS{DÑø@À1FÓø€›ÑøhçÑøˆhÍéñ 
“Íé
¨Öøf#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F Fðbì(F°½èð½oð@@BÐH `¿ FðRìHDö„!K@öC2xD{DëæFHª«xDÍéàÝéðÎý(ÔÝé« Fš“çDö9!ÐæDö4!Íæ¿Ú]Dö-!ÅæDö&!ÂæÎdýÿìbâúÿoúÿ$|øùÿ,úÿ~øùÿiûùÿgýÿ*úÿ•úÿðµ¯-é›°ÜL–FÜN"|D’~D+õÊb’õÀb’"hõ}uÖøh§Öøl·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖøôcÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"ðþ(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#FðdìDö1©H@öH2¨KxD{Dî÷cü °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕð ìÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðøf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðïý(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	àðÞë(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%ÐøPf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð°ý(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’àð¤ë(vјh˜Ýéæ¹ñYÚÐøÀ@oð@COð	!h™B¿1!`9I:KyDÖøøS{DÑø@À1FÓø€›ÑøhçÑøˆhÍéñ 
“Íé
¨Öøf#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F Fð€ê(F°½èð½oð@@BÐH `¿ FðpêHDöB1K@ö™2xD{DëæFHª«xDÍéàÝéðìû(ÔÝé« Fš“çDö÷!ÐæDöò!Íæ¿VYDöë!ÅæDöä!Âæ2týÿ(_"
úÿ«úÿ`¸ôùÿhúÿºôùÿ¥÷ùÿ€výÿ.úÿÑúÿðµ¯-é›°ÜL–FÜN"|D’~D+õÊb’òDb’"hò4EÖøh§Öøl·•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖø4dÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"ð­ü(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#Fð‚êDöÉ1©H@öž2¨KxD{Dî÷ú °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕð>êÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%ÐøDf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð
ü(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	àðüé(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%ÐøPf˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðÎû(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’àðÂé(vјh˜Ýéæ¹ñYÚÐøÀ@oð@COð	!h™B¿1!`9I:KyDÖø8T{DÑø@À1FÓø€›ÑøhçÑøˆhÍéñ( 
“Íé
¨ÖøHf#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F Fðžè(F°½èð½oð@@BÐH `¿ FðŽèHOô˜AK@ö
BxD{DëæFHª«xDÍéàÝéð
ú(ÔÝé« Fš“çDöµ1ÐæDö°1Íæ¿R
’UDö©1ÅæDö¢1Âæç|ýÿd[bÞðùÿçúÿœôðùÿ¤úÿöðùÿáóùÿ5ýÿóùÿ
úÿðµ¯-é—°±M–F±L"}D’|DõÊb’Õøl—õÀf"h–”Íé’“±ë޾ñSоñFоñÑÑé’Óø€”Íé’Æà"h¾ñðŀ¾ñоñÑJh’ÑøÍøT·à›H"›M"êž|xDšK›I}Dh{DyD¾ñh˜N˜J~DÍøàzDÍéÆX¿+FðÐèDöyA“H@öB’KxD{Dî÷Ïø °½èð½šFÑøZø”•ÍøTCàšFZø¸ñ}Û)FñÑøfOð‘Íé2ÍéNUø+±BÐñØE÷ÑFOðUø+0F"ð…ú(ÑñØEóÑàF˜Pø+P±F¨ñ FÝø<àÝé2
àðÕðrèÝø<à(Ýé2 F@𯀸ñ#ÛÚø ›FÍø<àºñ
%Û˜ñ&ÐøPFXFUø& BÐ6²EøÑ&Uø& F"ðCú(Ñ6²EôÑ
ààÔ˜Pø& ±¨ñ’àð6è(uјh
˜[FÝø<à¸ñTÚÐøÀ@oð@COðOð
!h™B¿1!`5I5KyDÍé©{DÑø@À)FÑøhgÓøàÑøˆ1™ÕøVÍé8	h
‘ñÍécpF#FÍéZÍé†àG!hˆ±oð@B‘B?ô9¯9!`ô5¯F Fðï(F°½èð½oð@@BÐH `¿ FðïHDö°AK@öZBxD{Dç.FFH¬™ªxDÍéàF#Fð€ø(Ô(FÝé’5F–çDöhAøæDöcAõæDö\AòæÒQŠ	«‹ýÿFXHÌêùÿ×úÿ6	Žíùÿ>úÿíùÿ}ðùÿ©ýÿžìùÿ©
úÿðµ¯-é›°ÜNFÜM"~D’}DÍé"õÊb’õÀb’2h›F»ñò4C“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$Ðø4dUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðOù(@ð‚€4¢EóÑðNïœH±DöQ½à,nÐ,ъh’jà¾H&¾I,xD½KyDh{DŒF¼IhyD»M¸¿&»J}D”zDÍée¨¿cFð0ïDö7Q™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%ÐøPfTø%°Bð€5¨E÷Ñ%Tø%0F"ðôø(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%ÐøfTø%°B6Ð5©EøÑ%Tø%0F"ð£ø()Ñ5©EôÑð¢î(@ð¼€hH&hI%xDgJhKyDhzD{DhfL–|DÍéTð”îDöQhH@ö_BhKxD{Dí÷”þ °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEàðZî(wÑ­ž™1Í2h)VÚÐøÀ@oð@C±F!h™B¿1!`8I8KyD{DÑø@À)FÓø€Õø8TÙø0Oð	ÑøhçÑøfÑøˆÍéñ(
“#˜Íé@F“Íé:Íéc#FÍøààG!hx±oð@B‘B—Ð9!`”ÑF Fð:í(F°½èð½oð@@BÐH `¿ Fð,íHDönQK@ö§BxD{DuçFHª«xDIFÍé@XFð§þ(Ô˜(FÝ额”çDö%QXçDöQUçDö QR翂ÂN"’ýÿšT¤?÷ùÿ!úÿ²éùÿb“ýÿ¸úÿýëùÿöPêùÿúÿLêùÿ;íùÿ’”ýÿQøùÿ3	úÿðµ¯-遰-í‹ °ÇL˜FÇKƒF|D {DÍéÍéõÊ`%h¸ñòìPòD@õtp“”•3Ð*:Øë‚ßèð·q„cÁF•Yø¯’ºñÛ˜ñ%ÐøÐCVø% Bð²€5ªE÷Ñ%Vø% F"ðaÿ(@ð£€5ªEóÑð`íšX±DöÐTá*%Ð*ÑÍhÍø4°•"àœHOð›M*xD›K›I}Dh{DyDh™N¸¿Oð˜L~D’|DÍéƨ¿+F"Fð>íDödêà˜Íø4°hÑéÑø°Íøx°Íé3áÑéÍø4°Ñ鵨ø Í鵐Íé!áÁFÍø4°Yø¿Ñé•ÚF’‘Íé»ñ€򈀟àÁFÍø4°‘è	©Yø¯“è	ºñÀòʀÙø’¹ñÀòñ&ÐøPVTø&¨Bð¼€6±E÷Ñ&Tø&(F"ðÑþ(@ð®€6±EóÑÑàÁFÍø4°Yø¿h•ÚF’»ñÚ+à?õ^¯˜Pø%(?ôV¯Íø4°ªñ
Ùø°»ñÛ˜ñ&ÐøDDUø& BÐ6³EøÑ&Uø& F"ð”þ(Ñ6³EôÑð”ì(@ðò‡DöÚTOð0àôÔ˜Pø&(íÐÙø°ªñ
»ñÛ˜ñ&ÐøìEUø& B8Ð6³EøÑ&Uø& F"ðbþ(+Ñ6³EôÑðbì(@ð¼‡DöäTOð&H&&IxD&J'KyDhzD{Dh%MÍøÀ}DÍéeðPì"H!F"K@ö¬BxD{Dí÷PüOð
ðf¸ÕÔ˜Pø&°Íøx°»ñÍЪñ
šºñ¿ö6¯Ýø85à&Ô˜Pø&P³ªñ
•%à¿°ðJlæùÿþùÿnæùÿYéùÿ œýÿ*ŠäùÿJšýÿ0üùÿsçùÿîóùÿ«úÿðüë(@ðƇ˜hšÝø8ºñ€ò‡«N~DplÐø´ÐøA ˆGF Oô€r#Íé HF"Íø8 G(𩄁Fhoð@AˆBÐBÉø ŠBÐ(Éø¿HFðîêpl–Ðø´ÐøA ˆGFOðOô€p"Íé#˜ Gž(ퟤ�Fhoð@AˆBÐBÊø ŠBÐ(Êø¿PFðÄê˜@lÐø´ÐøA ˆGF Oô€r#Íé XF" G(ðg„€Fhoð@AˆBÐBÈø ŠBÐ(Èø¿@FðžêÚøÙøÍøDBÍøT€•¿ØøPêðdƒÖøÐD0hâh!Fðì(ð?„Fhoð@AˆB¿0(`hhÖøÔ‚l(F*ð=„GƒF(ð>„(hoð@AˆBÐ8(`¿(FðbêÖøÐD0hâh!FðÜë(ð.„Fhoð@AˆB¿0ÉøÙøÖø<‚lHF*ð*„G€F(ð+„Ùøoð@AˆBÐ8Éø¿HFð4ê:HØøxDhBð„ %ÝøD©‚è ©ñ
ªë€@Fò÷{ÿ-F¿(hoð@AˆB@ðr‚.ðx‚Øøoð@AˆBÐ8Èø¿@FðêÛø™ˆBð„ $ÝøT€ªë€BXFÍéFò÷Pÿ,F¿ hoð@AˆB@ð]‚0hoð@AˆB@ðc‚-ði‚Ûøoð@AˆBÐ8Ëø¿XFðÒé
HxDh	Hž¥BxD¿h…BÑ(°ú€ð@	àîOªýÐüÊü˜h…BîÐ(Fðòê(ñµ…)hoð@B‘BÐ9)`уF(Fð¢éXF(@ðâƒ”ÖøÐD0hâh!Fðë(ðFhoð@AˆB¿0ËøÛøÖøÔ‚lXF*ð냐GF(ðìƒÛøoð@AˆBÐ8Ëø¿XFðpéÖøÐD0hâh!Fðèê(ðڃ€Fhoð@AÝø8°ˆB¿0ÈøØøÖø<‚l@F*ð؃GF(ðكØøoð@AˆBÐ8Èø¿@Fð@éÙø™ˆBðփ &œ™‚”Íéaªë€HFò÷Œþ.€F¿0hoð@AˆB@𳁸ñð¹Ùøoð@AˆBÐ8Éø¿HFðéhh™ˆBðу $ÝøDªë€B(FÍéHò÷aþ,F¿ hoð@AˆB@ð™Øøoð@AˆB@ðŸ.ð¦(hoð@AÝøT€ˆBÐ8(`¿(Fðâè^E¿˜h†BѦë°ú€ð@		à˜h†BõÐ0Fðê(ñׄ1hoð@B‘BÐ91`ÑF0FðÀè F(@ð¡ƒžÖøÐD0hâh!Fð4ê(ð¯ƒFhoð@AˆB¿0(`hhÖøÔ‚l(F*𭃐GƒF(ð®ƒ(hoð@AˆBÐ8(`¿(FðèÖøÐD0hâh!Fð
ê(𞃁Fhoð@AˆB¿0ÉøÙøÖøÔ‚lHF*𣃐G€F(ð¤ƒÙøoð@AˆBÐ8Éø¿HFðbèØø™ˆBð܃ %ÝøD™‚‘ªë€@FÍéYò÷®ý-F¿(hoð@AˆB@ð.ðØøoð@AˆBÐ8Èø¿@Fð6èÛø™ˆBðՃ $ÝøT€ªë€BXFÍéFò÷ƒý,F¿ hoð@AˆB@ðë€0hoð@AÝøH ˆBÐ80`¿0Fðè-ðփÛøoð@AˆBÐ8Ëø¿XFðþB¿˜h…BÑh
œ°ú€ð@	
à˜h…BõÐ(Fð(é
œ(ñöƒ)hoð@B‘BÐ9)`ÑF(FðØï0Fž(@ð«ƒÔøÀPoð@A"(hˆB¿0(`ïH™xD’Íé*o™hÑøˆ1ñÍé2šÍé“Íéƒ+F°G(🃂F(hoð@AˆBð„8(`@ð‹„(Fð¢ïð†¼8(`¿(Fðšï.ôˆ­%Dödt@öVØøoð@AˆB@ð߂äâ8 `¿ Fð„ï0hoð@AˆB?ô­80`¿0Fðxï-ô—­@öVDö{t?ã80`¿0Fðjï¸ñôG®OðDö¼t@öV˜â8 `¿ FðZïØøoð@AˆB?ôa®8Èø¿@FðLï.ôZ®DöÓtÆá8(`¿(Fð@ï.ôú®%EòOôQfØøoð@AˆB@ퟐ�â8 `¿ Fð*ï
ç˜ð¶é¿î«F‰FAì´îJ‹ñîúÑððï(@ð¾ƒXF”ð¢éAìƒF´îJ›FñîúÑðÞï(@𳃘ðéAìÝø4 ´îJ»FFñîúÑðÌï(@𧃴îK‹ñîúó(ƒ´îI»ñîúó:ƒ´îI‹ñîúðLƒÚøoð@AØøˆB¿0Èø˜IF–^Fð.ï(ðTƒF(F!Fð&ï(ðTƒ™ƒF0Fðï%(ðSƒFgH™#xDÍé9«l™hÑøˆ!™ƒè$«	hdÃCFÍé%š
‘
ñ G(ð:ƒ‚FØøoð@D BÑÙø BÑÛøÝøT€ BÑ0hÝøD B%Ñiã8Èø¿@Fð~îÙø BèÐ8Éø¿HFðrîÛøÝøT€ BáÐ8Ëø¿XFðfî0hÝøD BðEƒ80`@ðAƒ0FðXî<ã8HDöHa7K@öøBxD{Dÿ÷åº@öùBDöWa%ã@öúBDöfa ãðï(¹ Fñ÷#ù(@ðƒ@öRDöHqãðïƒF(ô«DöJt@öV—áðï(¹ Fñ÷
ù(@ð{ƒ@öVDöMt@áðï€F(ôի%DöOt@öVIáØøPÝøD-ð#ƒ)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@Fðîí  Fÿ÷û^ù:÷¼éùÿyúùÿÛø@ÝøT€,ðù‚!hoð@@ÛøPB¿1!`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XFðÀí «Fÿ÷Ļ˜"Öøiñ÷3ü(ðԂFñ÷kü hoð@AˆB@ð@ö
RDöŽqâðzî(¹ Fñ÷„ø(@ðø‚@öRDö qsâð|îF(ô¬@öVDö¢tZáðbîÝø8°(¹ Fñ÷iø(@ðà‚Dö¥t@öVÝøT€æàð`îF(ô'¬OðDö§t@öVÝøDØøoð@AˆB@𸀽àÙø`œ.ð„‚1hoð@@Ùø€B¿11`ØøB¿HÈøÙøoð@AˆBÐ8Éø¿HFð@í ÁFÿ÷¼ìhÝøD,ða‚!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(Fðí 5Fÿ÷¼˜"Ðø˜iñ÷û(ð>‚Fñ÷Èû hoð@AˆB@ð&@öRDöæqÞáðØí(¹ Fð÷áÿ(@ð[‚OôQbDöøqÐáðÚíƒF(ôR¬DöútOôQfUàð¾í(¹ Fð÷Èÿ(@ðE‚OôQfDöýt%ÝøDÛøoð@AˆB7Ñ=àð¸í€F(ô\¬%DöÿtOôQfOðÙøoð@AˆBÐ8Éø¿HFð¸ìÝøD¸ñÐØøoð@AˆBÐ8Èø¿@Fð¦ìÝøT€»ñÐÛøoð@AˆBÐ8Ëø¿XFð”ìU±(hoð@AˆBÐ8(`¿(FðˆìéH!FéK2FxD{DaáØøPÝøD-ð­)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@Fð^ì  Fÿ÷¼Ûø@ÝøT€,ð‹!hoð@@ÛøPB¿1!`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XFð8ì «Fÿ÷	¼OôQfEò+%Ûøoð@AˆBŽєç˜"Öøiñ÷Ÿú(ðZFñ÷×ú hoð@AˆB>Ñ@öREò>îàEò[@öVyçºH«™xDÍé ª@F
ð’ý(1ÔÝéÝ鵐ÿ÷á¸Döt@öVaç5FDö×t@öV[çEò/OôQfVç8@ö
RDöŽq `@𿀶à8@öRDöæq `@𶀭à8@öREò> `@𭀤àDöðTÿ÷[¸DöâTÿ÷W¸DöØTÿ÷S¸˜"Ðø˜iñ÷8ú(ðø€Fñ÷pú hoð@AˆBlÑ@öRDö³a.à˜"Ðø˜iñ÷ ú(ðå€Fñ÷Xú hoð@AˆB[Ñ@öRDöÓaà˜"Ðø˜iñ÷ú(ð׀Fñ÷@ú hoð@AˆBJÑ@öRDöóaÝøDÝøT€Sà%Döt@öVOðæ%Döt@ö	VOð¡æDö$t@ö
Vœæ5FDö.t@öV–æDöëTþ÷è¿@öýBDö‡aÝøD-à@öþBDö‘aÝøD&à@öÿBDö›aÝøDà8@öRDö³a `à8 `@öRDöÓaà8 `@öRDöóaÝøDÝøT€Ñ FF
Fð$ë)F"FFHGKxD{Dì÷üOð
Ùøoð@AˆBÐ8Éø¿HFðë˜(¿hoð@AŠBѸñ¿Øøoð@AˆB
ÑPF °½ì‹°½èð½Q`¿ððêèç8Èø¿@Fðèêéç %ÿ÷»¸ $ÿ÷æ¸@ö
RDöŠq¶ç &ÿ÷Ÿ¹ $ÿ÷ȹ@öRDöâq©ç %ÿ÷pº $ÿ÷™º@öREò:œç@öRDö¯a>ç@öRDöÏa9ç¿ æùÿÝöùÿ@öRDöïa/çÝøH Fÿ÷,¸Fÿ÷T¸ƒFÿ÷¹€Fÿ÷C¹Fÿ÷ò¹Fÿ÷º¿h‹ýÿZãùÿôùÿðµ¯-靰™LšF™KF|D {D&hºñÍéõÊ`õ `õŽ`“–Íø43Ð*:Øë‚”ßèðT…ÓF–[ø’¸ñÛ˜
ñ$ÐøpTVø$¨Bð‘€4 E÷Ñ$Vø$(F"
ðý(@ð‚€4 EóÑðëšX±EòÀ»à*mÐ*шh”iàoHOðnM*xDnKnI}Dh{DyDhlN¸¿OðkL~D’|DÍéƨ¿+F"FðøêEòè“àÓF–[øÑéÍé¸ñÀò£€Ûø°
–»ñ’Àòŀ˜
ñ$ÐøPVVø$¨Bð“€4£E÷Ñ$Vø$(F"
ð¼ü(@ð…€4£EóѨàÑéVÚø€ˆhÍéV©àÓFh[øŸ–’ÈF¹ñÚ1à h”ÑéVÍéV˜à?õ¯˜Pø$(?ôw¯Ûø¨ñ¹ñÛ˜
ñ$ÐøeUø$°B7Ð4¡EøÑ$Uø$0F"
ðqü(*Ñ4¡EôÑðpê(@ðQ†&H&&I%xD%J&KyDhzD{Dh$L–|DÍéTðbêEòÊ H@öR KxD{Dì÷bú%(F°½èð½ÖÔ˜Pø$`–.ÐШñš¸ñ¿ö]¯6à&Ô˜Pø$³¨ñ%àî^6ˆíàÑùÿéùÿâÑùÿÍÔùÿ+’ýÿNì®Ðùÿ‘ýÿTèùÿ™ÓùÿçëùÿÏðùÿðê(@ð†˜hšÝé
e¸ñ€ò]…ÕHOðÍøl€xDÍøh€@lÐø´ÐøA ˆGFOô€pÍé0F"# G(ð
…Fhoð@A²FˆB	ÐB"`ŠBÐ `¹ Fðþèœ˜Ôø°$”@lÐø´Ðøa ˆGFOô€pÍé(F"#©F°GÝøD€F(ðè„(hoð@AˆB	ÐB*`ŠBÐ((`¿(FðÐè ž»ñÍé«F¿Ûø(ðUœ"Öø˜co˜G0ð̄ÖøtXFco"˜G0ðʄ˜Ðø—HÈExDð»€ÖøÐD0hâh!Fð ê(ðá„Fhoð@AˆB¿0(`•hhÖøÀ‚l(F*ð䄐GF(ðå„(hoð@AˆBÐ8(`¿(Fð|è™%ph•	hˆBðå„ zI‚ÍéXyD	h‘©1¡ë€0Fñ÷Äý-€F¿(hoð@AˆB@ð́ ¸ñðӁ0hoð@E¨BÐ80`¿0FðJèØø¨B
ÐAoð@B‘BÈøÐ(Èø¿@Fð8è$”jl&Øé–Òøx"GAFhl[FšÍø,°ÐøŒQ ¨G(ð@„
‚FHEðð„˜Àj(ð§„Úø ‚Bðæ„Òø¬0+𺄙h)Û3h†Bðل39øÑAK¢FAI{DÒhyDhÃh0hðÔèEò'!@öŽRÝø,°9à`lZF™ÐøŒ1 ˜G(ð„FHEðC€˜Àj(ð˜„bh‚Bð:€Òø¬0+ðU‡™h)Û3h†Bð-€39øÑ&K'I{DÒhyDhÃh0hðšèOð
Eòä@ö‰ROð˜(¿hoð@F³B@ðM˜(¿hoð@F³B@ð.˜(¿hoð@F³B@ð0HKxD{Dì÷{ø¸ñðØø%Íø,°oð@AˆBð@†ð7¾¿<žêê"é˜ëùÿ°è&ëùÿèùÿíùÿPFðüé¿îŠF
Aì´î@ñîúÑð6è(@ðî†HFðÖù	0Ñð,è(Aðŀ£L5FÖø%QF|D
˜#&h°G0ð¹†	˜#Õøt$&hî
¸îÀQì°G0ð²†˜h€EðހžÖøÐD0hâh!Fð¨è(ð¿†Fhoð@AˆB¿0(`•hhÑFÖøÀ‚l(F*ðFG‚F(ð†(hoð@AˆBÐ8(`¿(Fðï}H&ÚøxD–hB𴆠xI‚ÍéhyD	h‘©¤ë€PFñ÷Gü.F¿0hoð@AˆB@𡁠-ð§Úøoð@FÍø°BÐ8Êø¿PFðÊî(h”°BÍø,°ÐAoð@B‘B)`Ð((`¿(Fð¸î˜#““BlÕéÒøx"GF
˜•Õø€ÐøÀ@˜ehÐøآ(FQFð6é(ð†AhÑøˆ0+eÐ!F*F˜G(
˜gÑðz¾8(`¿(Fðˆî ¸ñô-®Oð
EòÆ@ö‡RÅæ%šºñ@ð7…ðD½;`ôή
FFðjî2F)FÆæ;`ô̮
FFð`î2F)FÄæ;`ô¯®
FFðTî2F)F§æ
˜ÐøÀ@˜ehÐøØb(F1FðÞè(ð¿‡AhÐFÑøˆ0+ð!F*F˜G(™
˜@ðð´¿hoð@AŠB¿Q`
˜ÐøÀP˜Õø Ðø̲PFYFð´è(ð
†F@hÐøˆ0‹± F)FRF˜G(ð	†F@hà¿Ò8Bçç!hoð@B‘B¿1!`”™Oð
Íøl ˆB@ð¼‚Ôø°Íøl°»ñð´‚Ûøoð@@¥hB¿1Ëø)hB¿H(` hoð@A•ˆBÐ8 `¿ FðÐí",F˜Íéº ë‚ Fñ÷%û»ñ¿Ûøoð@B‘B@ð€!(‘ðµ…!hoð@EÝø(°©BÐ9!`тF Fð¨íPFh$”©BÐ9`¿ðœí”ð:è.
˜Ýø Ýø$Ûñ8ñOêépZFÍé(FSF”ðëüHø>ñÑ˜ð$èž™phÑøÀGl-ð…íHxDðpïÝø,°(Ýø<€@ð£…0F!F"¨GFðjï,ð¡…0hoð@AˆB@ð‚…,ðˆ… hoð@E¨BÐ8 `¿ FðJíØø¨BÑEFšð¼0ÈøOð
ìã80`¿0Fð6í -ôY®Oð
EòÓ1@ö¦Ruå9Ëøôk¯FXFð"í(Fdçhoð@AŠB™¿2`
˜ÐøÀ@Ñø̢ehQF(Fð¤ï(ð•†F@hÐøˆ0S±0F!F*F˜G(ð‘†F@hà1hoð@B‘B¿11`–­IÁFOðyDÍøp€	hˆB@ðu„ôh”,ðp„!hoð@@µhB¿1!`)hB¿H(`0hoð@A•ˆBÐ80`¿0FðÈì".F¨ÍéH0 ë‚0Fñ÷ú,
¿!hoð@B‘B@ð”€!(‘ðF†1hoð@D¡BÐ91`ÑF0Fð¢ì(F
!‘h¡BÐ9`¿ð–ìðîl	œ™h.¿ŽBÑ@h(÷Ñ &Oðà1hoð@@B¿11`rhhB¿H`0F’ðêí€Fñ8
šñáKFÍéAðÌûðÊì(ð
†F˜lh`!‘(¿hoð@B‘B<јœ(¿hoð@AŠB9Ѹñ¿Øøoð@AˆB6ÑÔøÀ"œ Fð÷¶ú‚F hoð@AˆBÐ8 `¿ Fð,ìºñð†Úøoð@AšˆB@ðé‚ðâ9!`ôh¯F Fðì(F
`ç9`¿ðì¼çQ`¿ð
ì¿ç8Èø¿@FðìÀç@ö~REòIOð
OðMäOð
EòiOôXbOð«F:äOð
Eò“@ö„R1äOð
Eòœ@ö…Rÿ÷*¼$HAöò$KOôCrxD¢F{Dë÷½ü–Eò%!ÿ÷ݻH«™xDÍé ªPF	ðTý(yÔ˜ÝéVÿ÷‘ºð’ì(@ð† Fï÷šþ(@ðJ†Oð
Eò¯@ö‡Rÿ÷ô»ðŽìF(ô«Oð
Eò±@ö‡Rÿ÷廿Wåùÿ"ãÏÒùÿRÚùÿƒ…ýÿõh•-ðó…)hoð@@´hB¿1)`!hB¿H `0hoð@A”ˆBÐ80`¿0Fðpë &Fÿ÷úºçH¢FçIxDyDhhðLëÿ÷n»äHOôÎQãK@ò	2xD{Dë÷Aü Oð
Eòâÿ÷™»Fñ±Ñø€BúÑàEòÖÿ÷ĹEòÈÿ÷9ÕHÖIxDyDhhð ëÿ÷|»Oð"dåEòÑÿ÷®¹ÎIyD	hˆBô*«,¿ hoð@AˆB@ð‚Úø‚l˜*Ðø,PFð&‚GF(ð'‚˜AF‚o FG(ð!‚!hoð@FÍø<€±BÐ9!`рF Fðúê@FhOðÍøl€±BÐ9`¿ðìêÕøÀ@˜Íøh€fhÐøؒ0FIFðxí(ðÿAhÝø<€Ñøˆ0;±!F2F˜G
P¹EòA!>âhoð@A
ŠB¿Q`ÕøÀ`˜ÖøÐø̲HFYFðTí(ðçF@hÐøˆ0S± F1FJF˜G(ðãF@hà!hoð@B‘B¿1!`”™Oð	Íøp	hˆB@ð¤Ôø°Íøp°»ñðœÛøoð@@¦hB¿1Ëø1hB¿H0` hoð@A–ˆBÐ8 `¿ Fðvê"4F¨Íé¹0 ë‚ Fð÷Êÿ»ñ¿Ûøoð@B‘B@ð`!(‘ð”!hoð@F±BÐ9!`рF FðNê@Fh$”±BÐ9`¿ðDê”ðàì˜(Àò­€ñ8ñ	Oðà˜ñƒEð €Úé'Ðø˜íÑø˜Sì+hÁèHFð…ùÚø˜Ñø˜`ÚøÚø(ñÊøÙÛ àÓø!Óø˜b2DÃø˜"	hJi2JaÚø0ˆBÇÚ
ë€Qø˜/Óh3Ó`hšh*äГøœb>±Óé¥ÉiIiDÃø˜äç*њiÓø˜`²B#Ú2ša	hÑø!Ñø˜25à*ÓÔhë‚^iÓø”P®B"Û\a*hë‚Óø˜bÕø”Q¦ëÃø˜b¢ñFæܹçœa
hSi3Sa	hÑø!Ñø˜1Ñø˜bÒ2DÁø˜"¨ç6^a	hë‚Ñø˜2Òø!DÁø˜"›ç¿à@¾ùÿ¹áùÿZÙùÿÀßê½ùÿšß˜ð4ì
™hhÑøÀGl.ð̀ëHxDð~ëÝø<€(@ð׀(F!F"°GFðzë,ðȀ(hoð@AˆB@ð΀,ðԀ hoð@F°BÐ8 `¿ Fð\騸°BÑEFÝø,°šà0ÈøEFoð@AˆBÐ8Èø¿@FðDéÝø,°šºñÐÚøoð@AˆBÐ8ÊøÑPFFð0é"F*¿hoð@AˆB
ѻñ¿Ûøoð@AˆBÑ(F°½èð½8`¿Fðéêç8Ëø¿XFðé(F°½èð½8 `¿ FðéÞå9Ëøô›®FXFðöè0F”æOð"|æðÖéF(ô٭Eò2!àEò4!@öRÝø,°ÿ÷,¹šHIFxDhhððêEòA!OôYbåà•HYFxDhhðäê EòC!àEòW!
˜oð@Bh“B-ÐZ`*ÑFð¸è!F%à(F!F"ðÂêFÝø<€(hoð@AˆB?ô?¯àð~é(ðý‚$(hoð@AˆB?ô2¯8(`¿(Fð–è,ô,¯Eòµ!OôYbÝø,°ÿ÷ظOð
Eòô!@öžRÿ÷θOð
Eòý!@öŸRÿ÷ƸF)ðրÑø€BøÑÖà$"ÿ÷§»Oð
Eòà!@öœRÿ÷±¸ð<é(@ðق Fï÷Cû(@ðû‚Oð
Eò¼1@ö¦Rÿ÷¸ð8é‚F(ô>©Oð
Eò¾1@ö¦Rÿ÷Ž¸Úø`–.ðº‚1hoð@@ÚøPB¿11`)hB¿H(`Úøoð@A•ˆBÐ8Êø¿PFð è ªFÝøD€ÿ÷%¹:HQFxDhhð,êOð
Eò÷1@öªRà4HYFxDhhðê Eòù5àEò
E˜oð@AhˆBЙ8`јðòïOð
@öªR)FÝø,°Ýø<€ÿ÷4¸0F!F"ðòéFÝø,°Ýø<€0hoð@AˆB?ô~ª80`¿0FðÐï,ôxªOð
EòPA@öªRÿ÷¸$0hoð@AˆB?ôfªæçð”è(ð9‚Ýø,°$Ýø<€ž0hoð@AˆB?ôTªÔç¿uÝùÿÄÚ¬Ú<Ù ÙÜIyD	hˆB~ô֯˜!‘ÐøÐdhòh1Fðé(ð €Fhoð@AˆB¿0(`•žhhÖøÀ‚l(F*𥀐G‚F(ð¦€(hoð@AˆBÐ8(`¿(Fðjï`hÖø,‚l F*𜀐GF(ð€™Úø	hˆBðŸ€% ·I‚ÍéVyD	h‘©1¡ë€PFð÷¥ü-€F¿(hoð@AˆB/Ñ0hoð@AˆB5Ñ ¸ñ;ÐÚøoð@E¨BÐ8Êø¿PFð&ïØø¨Bѝþ÷꾝Aoð@B‘BÈø>ôá®(Èø¿@Fðïþ÷ؾ8(`¿(Fðï0hoð@AˆBÉÐ80`¿0Fðüî ¸ñÃѢF@öŠREò	!Oðþ÷D¿¢F\FðÂï(@ðS0Fï÷Éù(@ð|@öŠREòïOð£Fþ÷-¿ð¼ï‚F(ôZ¯¢FOðEòñ@öŠRþ÷¿ð¬ïF(ôc¯¢F@öŠREòôOðþ÷
¿ÚøPÍø,°-ð%)hoð@@Úø€B¿1)`ØøB¿HÈøÚøoð@AÍøl€ˆBÐ8Êø¿PFðî ÂFÝø,°7çOð
Eòê!@öRþ÷Ͼ—H1FxDhhð”èOð
Eò1@ö¢Rþ÷>”HQFxDhhð†è Eò5àEò'5˜oð@AhˆBÐ™8`Ñ˜ðZîOð
@ö¢R)Fþ÷ž¾Íø!~H@ö£R}KÙFxD‘{DÍéEòF1ê÷+ÿ˜©ª«	ðü(7Ô« 
ñˌèðÈî(ð·€œ‚FQF" Fï÷¤üF hoð@D B!ÑÚø B(х³fHxDh…B3ÐdIyD	hB¿™B+Ð(FðLïF*àOð
Eò›1@ö¢Rþ÷M¾Eò[5Ià™8`¿˜ðøíÚø BÖÐ8Êø¿PFðìí-ÎÑEòd52à¿~ØÂ×(°ú€ðD	(hoð@AˆBÐ8(`¿(FðÔí,Ô\Иé÷µý˜$”é÷°ý˜é÷­ý˜2F™CF”l	ð,üÝøD€ËFÝø þ÷‡¾Eòh5˜2F™CFl	ðüOð
@ö¢R)FËFþ÷ñ½&H&IxDyDhhð†íùä Oð
ÿ÷è¹%þ÷ ½Oð@öŠREòïÍøp€°æ% øæ Oð
*å& `åHIxDyDhhð`í½åEò_5¾çðJí«Ëï÷8ù Eòp5Í鐱çFþ÷ϼž£FFTFÚåÝéhFþ÷>¾¿ŠÔÉÆùÿÖƒÕùÿiÚùÿdÕ^ÕðÕ>Ô}Æùÿðµ¯-é›°ßMFßN"}D’~DÍé"õÊb’õ b’*h›F»ñõŽc“’4Ð,9Øë„	–ßèðRƒØFÍé%Xø¯ÍéºñÛ˜ñ$ÐøpdUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðÑÿ(@ð‚€4¢EóÑðÐíœH±EòÉA½à,nÐ,ъh’jàÏH&ÏI,xDÎKyDh{DŒFÍIhyDÌM¸¿&ÌJ}D”zDÍée¨¿cFð²íEòñA™àØFÑéXø?•‘Íé+Àò­€Øø€“¸ñÍéÀò°€˜ñ%ÐøPfTø%°Bðœ€5¨E÷Ñ%Tø%0F"ðvÿ(@ðŽ€5¨EóѓàÑé:ŠhÛø’“Íé:“àØFÍé
’XøŸÍéPh”HFÍø0¹ñÚ2à*hÑé‘Íé}à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%ÐøeTø%°B6Ð5©EøÑ%Tø%0F"ð%ÿ()Ñ5©EôÑð$í(@ðã€yH&yI%xDxJyKyDhzD{DhwL–|DÍéTðíEòÓAyH@ö±RyKxD{Dê÷ý °½èð½×Ô
˜Pø% Íød ºñÏÐ˜Ýé
’CÝé+¿öS¯žàÔYø% *±®™’QÎ9	àðàì(@𡀘®™hQÎ)€ò€€ÐøÀ@oð@C
ñ 	Oð!h™B¿1!`HIHKyDÖøtT{DÖø…ÑøÀÖøhÖøˆah‰èB@&ñ(˜Oð	Íén
ñŽèaF#FÍé‰àGF hoð@A­³ˆBÑ(Fðoþر)hoð@B‘B‘Ð9)`ŽÑF(Fð¶ë F°½èð½8 `¿ Fð¬ë(FðTþ(ãÑ%IF%K@öbyD{DFEò6Qê÷„ü F)hoð@B‘B?ôh¯ÔçˆBÐ8 `¿ FðŠë&HEò(Q&K@öbxD{DR翆ÓÆF
Hª«xDIFÍé@XFðý(Ô˜(FÝé¢lçEòßA1çEòÑA.çEòÚA+çéƒýÿ"¨ÑÍùÿÕùÿ¶Ñ¶ùÿy…ýÿ¼Íùÿ¹ùÿúÒT·ùÿÏùÿP·ùÿ?ºùÿ©†ýÿ,Îùÿ7ÖùÿÔÌùÿßÔùÿðµ¯-é—°ÄM–FÄL"}D’|DõÊb’Õøl—õov"h–Íé’“±ë޾ñ”RоñEоñÑÑé’Óø€Íé’Çà"h¾ñðƀ¾ñоñÑJh’ÑøÍøT¸à¯H"¯M"êž|xD®K®I}Dh{DyD¾ñh«N¬J~DÍøàzDÍéÆX¿+FðÀëEò¯Q¦H@ö	b¦KxD{Dê÷Àû °½èð½šFÑøZøÍéeÍøTDàšFZø¸ñ~Û)F–Ñø¼cñOð‘Íø8àÍé2Uø+±BÐñØE÷ÑFOðUø+0F"ðuý(ÑñØEóÑàF˜Pø+P±F¨ñ FÝø8àÝé2
àðÕðbëÝø8à(Ýé2 F@ðԀ¸ñ"ÛÚø ›FÍé
ºñ%Û˜ñ&ÐøPFXFUø& BÐ6²EøÑ&Uø& F"ð4ý(Ñ6²EôÑ
ààÔ˜Pø& ±¨ñ’àð(ë(@𛀘hÝé
[FÝée¸ñyÚÐøÀ@oð@COðOð

!h™B¿1!`HIHKyDÕø{DÕøhgÕøˆQhÑøÀñ ÍéeÍéF#FÍø(àÍé˜Íé¦Íé^àGF hoð@A½³ˆBÑ(Fð¸üè±)hoð@B‘B?ô0¯9)`ô,¯F(Fðþé F°½èð½8 `¿ Fðòé(Fð›ü(áÑ&IF&K@öZbyD{DFEòôQê÷Ëú F)hoð@B‘B?ô¯ÓçˆBÐ8 `¿ FðÒé"HEòæQ!K@öUbxD{Dïæ¨FFH¬ª1FxDÍéàF#FðKû(Ô(FÝé’EFqçEòžQÒæEò™QÏæEò’QÌæ¿²jÏŽýÿ¢8ÎèÌùÿ§ÑùÿÏp³ùÿ Ëùÿr³ùÿ_¶ùÿYýÿÌÎùÿ‹Óùÿ®ÌùÿmÑùÿðµ¯-é—°¿NF¿M"~D’}DÍé"õÊb’2h›F»ñõÐs“’Жë„,FÐ,Ð,lÑÑé’Ûø Íé’ºñÀòÀ9á,ðŽ€,\ÑJh’‰àØFÑøXø¯
–•ÍøPºñÀò”€Øø€”¸ñÀò—€˜ñ$ÐøPfUø$°Bð„€4 E÷Ñ$Uø$0F"ðúû(vÑ4 EôÑ{àØF•Xø¯Íé
dºñÍé Û˜ñ%Ðø aTø%°BJÐ5ªEøÑ%Tø%0F"ðÕû(=Ñ5ªEôÑðÔéœ(@ðH,€JOðxDM€IzDh}DyD~KŒF~Ih¨¿F,¸¿&|JyD{DÍéezD”¨¿cFð¸éEòlavH@ö\bvKxD{Dê÷¸ù °½èð½2hÑøÍøP*àÃÔ
˜Pø%ÍøP¹ñ»Ъñ
œÝé ºñ¿öl¯àÔ
˜Pø$ ±ªñ
’àð|é(@𚀘hÝéEÝéºñwÚÐøÀ@oð@COðOð
!h™B¿1!`FIFKyDÕøˆa{DÕø¤ÕøhWhÑøÀ©è`@ñ ÍéF#FÍé˜Íé¥ÍénàGF hoð@Aµ³ˆBÑ(Fðûà±)hoð@B‘BÐ9)`ôŒ¯F(FðVè F°½èð½8 `¿ FðJè(Fðóú(âÑ%IF%K@öºbyD{DFEò±aê÷#ù F)hoð@B‘B?ôe¯ÓçˆBÐ8 `¿ Fð*è"HEò£a!K@öµbxD{DOç¨FFHª«1FxDÍé@XFð¤ù(Ô(FÝé’EFtçEò\a3çEòPa0çEòWa-çÌNƔýÿNèÊ#ÍùÿWÎùÿËk²ùÿ Ïùÿd¯ùÿÇùÿV¯ùÿN–ýÿGÎùÿ{ÏùÿéÌùÿÎùÿðµ¯-é—°ÀNFÀM"~D’}DÍé"õÊb’2h›F»ñõ c“’Жë„,FÐ,Ð,lÑÑé’Ûø Íé’ºñÀòÀ;á,ðŽ€,\ÑJh’‰àØFÑøXø¯
–•ÍøPºñÀò”€Øø€”¸ñÀò—€˜ñ$ÐøPfUø$°Bð„€4 E÷Ñ$Uø$0F"ðRú(vÑ4 EôÑ{àØF•Xø¯Íé
dºñÍé Û˜ñ%ÐøeTø%°BJÐ5ªEøÑ%Tø%0F"ð-ú(=Ñ5ªEôÑð,èœ(@ðð€H,JOðxD€MIzDh}DyDKŒFIh¨¿F,¸¿&}JyD{DÍéezD”¨¿cFðèEò)qwH@ö¼bwKxD{Dê÷ø °½èð½2hÑøÍøP*àÃÔ
˜Pø%ÍøP¹ñ»Ъñ
œÝé ºñ¿öl¯àÔ
˜Pø$ ±ªñ
’àðÔï(@𜀘hÝéEÝéºñyÚÐøÀ@oð@COðOð
!h™B¿1!`GIGKyDÕø…{DÕøhgÕøˆQhÑøÀñ ÍéeÍéF#FÍø(àÍé˜Íé¦Íé^àGF hoð@A½³ˆBÑ(Fðfùè±)hoð@B‘B?ôޝ9)`ôНF(Fð¬î F°½èð½8 `¿ Fð î(FðIù(áÑ%IF%K@öøbyD{DFEònqé÷yÿ F)hoð@B‘B?ôc¯ÓçˆBÐ8 `¿ Fð€î"HEò`q!K@öóbxD{DMç¨FFHª«1FxDÍé@XFðúÿ(Ô(FÝé’EFrçEòq1çEò
q.çEòq+ç¾Èþ@ýÿþœÇšÀùÿËùÿÂǯùÿPÌùÿ¬ùÿ°Ãùÿ¬ùÿ̞ýÿÂÁùÿ+Ìùÿ`ÀùÿÉÊùÿðµ¯-韰ÄM›FÄL#}D•|DÍé3Íé3õÊc-h»ñ“òÔC“ò|C“õ“c”“•4Ð*:ؐ낐ßèð±m€aÚF•Zø’¸ñÛ˜ñ%Ðø˜DVø% Bðª€5¨E÷Ñ%Vø% F"ð¾ø(@ð›€5¨EóÑð¼îšP±EòÐt	á*$Ð*ÑÍh•!à™HOð˜M*xD˜K˜I}Dh{DyDh–N¸¿Oð•L~D’|DÍéƨ¿+F"FðœîEöâà˜hÑé Ñø€Íøp€
Íé -áÑé Ñé…ÛøÍé…
Íé áÚFÑéZøŸ•’
‘ÍéHFÍø<¹ñ€򃀚àÚF‘è	©ZøŸ
“è	¹ñÀòɀÚø ’ºñÀò퀘ñ%ÐøPFVø% Bð»€5ªE÷Ñ%Vø% F"ð4ø(@ð­€5ªEóÑÐàÚFhZøŸ•’ÈF¹ñÚ)à?õf¯˜Pø%(?ô^¯Úø¨ñ¹ñÛ˜ñ%Ðø|dTø%°BÐ5©EøÑ%Tø%0F"ðûÿ(Ñ5©EôÑðúí(@ð†EòÚtOð1àôÔ˜Pø%(
íШñÚø¹ñÛ˜ñ%ÐøÔDVø% B9Ð5©EøÑ%Vø% F"ðÈÿ(,Ñ5©EôÑðÈí(@ðͅEòätOð'H&'IxD'J(KyDhzD{Dh&MÍøÀ}DÍéeð¶í#H!F#K@öúbxD{Dé÷¶ý °½èð½ÔÔ˜Pø%€Íøp€¸ñÌИš ñ	¹ñ¿ö7¯Ýø@ 4à&Ô˜Pø%P³©ñ	•%à¿jŪ
ÐÄ(©ùÿØÀùÿ*©ùÿ¬ùÿk£ýÿöÂV§ùÿ¥¡ýÿü¾ùÿ?ªùÿàÂùÿwÇùÿð`í(@ðꆘhÝ颹ñ€ò(…ÚHxD@lÐø´ÐøA ˆGFOð	Oô€p"Íé	PF# G(ð´ƒFhoð@A•ˆB	ÐB2`ŠBÐ(0`¿0FðTì˜@lÐø´ÐøA ˆGF"Oô€p#Íé
˜ GÝøP(ð˜ƒFhoð@AˆB	ÐB*`ŠBÐ((`¿(Fð.ì˜@lÐø´ÐøA ˆGFOðOô€p"Íé@F# G(ð~ƒhoð@AƒF‹BÐZËø ŠBÐ+Ëø0¿XFðìèhñh•BÍé¶¿ÛøPêðw‚ÙøÐDÙøâh!Fðrí(ð]ƒ€Fhoð@AˆB¿0ÈøØøÙøÔ‚l@F*ð]ƒG‚F(ð^ƒØøoð@AˆBÐ8Èø¿@FðÊëÙøÐTÙøêh)FðBí(ðRƒFhoð@AˆB¿0 ``hÙøì‚l F*ðPƒGƒF(ðQƒ hoð@AˆBÐ8 `¿ Fð ëÙøÐDÙøâh!Fðí(ð\ƒFhoð@AˆB¿0(`hhÙø¼‚l(F*ð^ƒGF(ð_ƒ(hoð@AˆBÐ8(`¿(FðtëVHahxDÐøIEð\ƒ %™‚‘™ÍéQ©ñ¨ë€ Fï÷¼ø-F¿(hoð@AˆB@ðu.ð{ hoð@AˆBÐ8 `¿ FðFëÛøHEðOƒ $™‚‘¨ë€XFÍéFï÷”ø,F¿ hoð@AˆB@ðZ0hoð@AˆB@ð`-ðfÛøoð@AˆBÐ8Ëø¿XFðëÚøHEðBƒ &¨ë€BPFÍéeï÷fø.F¿0hoð@AˆB@ðE(hoð@AˆB@ðKž,ðQÚøoð@AˆBÐ8Êø¿PFðæêHxDh„B ÐIyD	hŒB¿™	hŒBÐ FðìÝøL (ñ$ƒ!hoð@B‘BÑ࿸,Àú¾ô¾ ÝøL °ú€ð@	!hoð@B‘BÐ9!`ÑF Fð®ê0Fž(@ðƒhhÖøì‚l(F*ðƒG‚F(ðƒÖøÐD0hÍø<€âh!Fðì(ðƒ€Fhoð@AˆB¿0ÈøØøÖø|‚l@F*ðƒGF(ðƒØøoð@AˆBÐ8Èø¿@FðlêÚøÍø4HE@ðƒÚøPÝø<€-ðƒ)hoð@@Úø`B¿1)`1hB¿H0`Úøoð@AˆBÐ8Êø¿PFðBê ²F¨ë€BPFÍéTî÷˜ÿ-F¿(hoð@AˆB@𒀠hoð@AˆB@𘀹ñðž€Úøoð@AˆBÐ8Êø¿PFðê˜ÝøL hEðþ‚˜k(ðȂÙø ‚Bðô‚Òø¬0+ðւ™h)Û3h†Bðç‚39øÑîKîI{DÒhyDhÃh0hðÌêEö©@öwrLF hoð@C˜B@ð.…ð/½8(`¿(FðØé.ô…®%Eö8³á8 `¿ FðÌé0hoð@AˆB?ô ®80`¿0FðÀé-ôš®$EöO‹á80`¿0Fð²é(hoð@AˆB?ôµ®8(`¿(Fð¦éž,ô¯®@ötrEöf1â8(`¿(Fð˜é hoð@AˆB?ôh¯8 `¿ FðŒé¹ñôb¯@öwrEö¥âPF
ðÝýF@F0ÑðPê(@ði†
˜Oðÿ;
ðÎýFŠFê„êCÑð>ê(@ð]†@F
ð¾ý€F‰FêˆêCÑð.ê(@ðS†b(FJë²ë”së	ÀòWƒÕø01Foð@CÛø šB¿2Ëø ðêë(ðaƒF˜QF•ðàë(ðyƒ‚F@FIFðØëOð(ðxƒF†H‡IOðžxDyDÍø(ÀEhOðÖøœ4Öø€$ÖøØdh™Íé–&Íé&1šÍéC[FÍéŒÍéj¨G(ðVƒ€FÛøoð@F°B!Ñ h°B(ÑÚøoð@D B.ÑÙø BÐ8Éø¿HFðâè@F
ðŠûÝøL (ÝøDð7ƒÝø@°ð\½8Ëø¿XFðÌè h°BÖÐ8 `¿ FðÄèÚøoð@D BÐÐ8Êø¿PFð¶èÙø BÉÑÏç@öarEöKOð
OðOðûã@öbrEöZ±FOðOðOð
ïã@öcrEöi±FªFOðæãðhé(¹ Fí÷qû(@ð…@ötrEöOð±Fð¼ðfé‚F(ô¢¬$Eö@ötr&ÝøL°Ýé•ð2¼ðDé(¹(Fí÷Mû(@ð|…@ötrEöóàðFéƒF(ô¯¬OðEö@ötrOð hoð@C˜B	Ð8 `Ñ FF
FðDè)F"F$»ñOðOð@ðn‚~âðé(¹ Fí÷û(@ðJ…$Eö!@ötr%OðZâðéF(ô¡¬$Eö#@ötrOðL⽈¿ùÿv¼åh-?ô ¬)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ Fðôï 4F†äÛø@,?ô¬¬!hoð@@ÛøPB¿1!`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XFðÒï «FäÚø`.?ô¹¬1hoð@@Úø@B¿11`!hB¿H `Úøoð@AˆBÐ8Êø¿PFð®ï ¢FœäEöj@ötr hoð@C˜B@ðï‚ðâ˜"ÖøOðií÷þ(ðž„Fí÷Mþ hoð@AˆBRÑ@öurEöyÙâðnè‚F(ôæ¬@öwrEö‹OðÝøDPáðNè(¹ Fí÷Xú(@ð„@öwrEöOðãðNèF(ôê¬@öwrEöã %Ýø<€å %åßH«™xDÍé ªXFðÛø(%ÔÝé Ýé…
ÿ÷źÖH×IxDyDhhð"ïMå8@öurEöy `@ð„‚ÓFEöy©F@öuz¤âF±Ñø€BúÑàEòðtÿ÷JºEòâtÿ÷FºEòØtÿ÷BºÃIyD	hˆBô­(hoð@AˆBÐ8(`¿(FðïÚøž‚lPFÖøì*ðɀG‚F(ðʀÖøÐD0hâh!Fðpè(ðɀƒFhoð@AˆB¿0ËøÛøÖø|‚lXF*ðɀGF(ðʀÛøoð@AˆBÐ8Ëø¿XFðÊîÚø
™ˆB@ð€ÚøP-ðˆ€)hoð@@Úø`B¿1)`1hB¿H0`Úøoð@AˆBÐ8Êø¿PFð¤î ²F¨ë€BPFÍéTî÷ùû-F¿(hoð@AˆBBÑ hoð@AˆBHÑ.NÐÚøoð@AˆBÐ8Êø¿PFð~î˜ÝøL †B–ðö€˜k(pЙJh‚Bðí€Òø¬0+pЙh)Û3h†Bðá€39øÑgKhI{DÒhyDhÃh0hð4ïEöÒ@öxrœ•á8(`¿(FðHî hoð@AˆB¶Ð8 `¿ Fð>î.°Ñ@öxrEöÎà %‘çðï‚F(ô6¯@öxrEö´OðÝøL wáðúî(¹ Fí÷ù(@ð<ƒ@öxrEö¶OðÍøD¼áðøîF(ô6¯$Eö¸@öxr%OðÍøD5à;H;IxDyDhhðâí£çF)nÐÑø€BùÑoà˜"OðÐø˜ií÷dü(ðò‚Fí÷œü hoð@AˆB@ð¾‚@ölrEö¶Yæ$EöÒ@önr%OðOð
Ûøoð@C˜B
Ð8ËøÑXF‘FFð¼í1FJF.Fºñ@ðbqáOðEöÜ@öorOð
YåEöæOôwbTåEöð@ömrÈFNå@örrEöîàEòëtÿ÷¸¿‰–ýÿķî•ùÿl·äµZ¸ùÿBµl“ùÿÙIyD	hˆBô"¯Úøoð@AˆBÐ8Êø¿PFðt혝AhŠlÕøì*ðñ€G‚F(ðò€ÕøÐD(hâh!FðÞî(ðó€€Fhoð@AˆB¿0ÈøØøÕø|‚l@F*ðHGF(ðIØøoð@AˆBÐ8Èø¿@Fð8íÚø
™ˆB@ðGÚø`Ýø8€.ðE1hoð@@ÚøPB¿11`)hB¿H(`Úøoð@AˆBÐ8Êø¿PFðí ªF™BÍéd¡ë€PFî÷dú.ƒF¿0hoð@AˆBYÑ hoð@AˆB_ѻñeÐÚøoð@AˆBÐ8Êø¿PFðè옃Eð!˜k(ðü€Ûø ‚BðÒø¬0+ðû€™h)Û3h†Bð
39øÑ|K|I{DÒhyDhÃh0hð íEöû@öyr\FÝøH MF hoð@C˜BÐ8 `%ÐOð©FÝø@°nHoKxD{Dè÷Žý 'á80`¿0Fðœì hoð@AˆBŸÐ8 `¿ Fð’ì»ñ™Ñ@öyrEö÷-àÓFF©F’F]FÝø@° Fð€ìOðRF1FªFÎçð`í‚F(ô¯@öyrEöÝOðÝø@°ÝøH ½çð>í(¹ Fì÷Hÿ(@ðƒ@öyrEöߘOðÍøD&$Úøoð@C˜B
Ð8ÊøÑPF‘F
FðDì)FJFÝøL°¸ñÝé•ÐØøoð@C˜B
Ð8ÈøÑ@FFŠFð,ìQFBF.¿0hoð@C˜BÑ,¿ hoð@C˜BÐ8 `ÐÚFËFOð©Fhç80`ìÑ0FFFðì1FBFäçHF©F]FF’FƒF~çðèìF(ô·®˜@öyrEöá&ÍøD$Úøoð@C˜Bѧç &Ýø8€×æ &Ôæ„H…IxDyDhhðÂëçFq±Ñø€BúÑàJ´º²0µùÿ²ùÿ'·ùÿ{IyD	hˆBôù®˜oð@Fh±BÐ9`¿ð¸ëØøÀ@Oð% h°B¿0 `lHlIžxDyDÍø ÀÐøàÖøœ4Öø€$hñÍé“›Íé2#FšÖøØd•Íé[–ðG(dЀF hoð@AˆBÐ8 `¿ Fð‚ë@Fð*þÝøH (XйñÐÙøoð@B‘BÐ9ÉøÑFHFðjë Fºñ¿Úøoð@B‘Bѻñ¿Ûøoð@B‘BѸñ¿Øøoð@B‘BѰ½èð½9ÊøåÑFPFðBë Fßç9ËøäÑFXFð8ë FÞç9ÈøãÑF@Fð.ë F°½èð½Eö!@özrÍø@°fæ@örEö!qæ8@ölzEö¶ `ÐÝøL @ölrÝé¹Eö¶aæ@ögrEöŠÿ÷‰»@öhrEö”ÿ÷ƒ»@öirEöžÿ÷}»Ýé¹sæ@öurEöuCæ@ölrEö²ÿ÷p»€Fþ÷¿Fþ÷.¿Fþ÷V¿€Fÿ÷Y¸ƒFÿ÷ø»€F†å¿±.ùÿ6±ΰðµ¯-é—°ÀNFÀM"~D’}DÍé"õÊb’2h›F»ñõ c“’Жë„,FÐ,Ð,lÑÑé’Ûø Íé’ºñÀòÀ;á,ðŽ€,\ÑJh’‰àØFÑøXø¯
–•ÍøPºñÀò”€Øø€”¸ñÀò—€˜ñ$ÐøPfUø$°Bð„€4 E÷Ñ$Uø$0F"ð@ý(vÑ4 EôÑ{àØF•Xø¯Íé
dºñÍé Û˜ñ%ÐøeTø%°BJÐ5ªEøÑ%Tø%0F"ðý(=Ñ5ªEôÑðëœ(@ðð€H,JOðxD€MIzDh}DyDKŒFIh¨¿F,¸¿&}JyD{DÍéezD”¨¿cFðþêEöž!wH@örwKxD{Dè÷þú °½èð½2hÑøÍøP*àÃÔ
˜Pø%ÍøP¹ñ»Ъñ
œÝé ºñ¿öl¯àÔ
˜Pø$ ±ªñ
’àðÂê(@𜀘hÝéEÝéºñyÚÐøÀ@oð@COðOð
!h™B¿1!`GIGKyDÕø…{DÕøhgÕøˆQhÑøÀñ ÍéeÍéF#FÍø(àÍé˜Íé¦Íé^àGF hoð@A½³ˆBÑ(FðTüè±)hoð@B‘B?ôޝ9)`ôНF(Fðšé F°½èð½8 `¿ FðŽé(Fð7ü(áÑ%IF%K@ö×ryD{DFEöã!è÷gú F)hoð@B‘B?ôc¯ÓçˆBÐ8 `¿ Fðné"HEöÕ!!K@öÒrxD{DMç¨FFHª«1FxDÍé@XFðèú(Ô(FÝé’EFrçEöŽ!1çEö‚!.çEö‰!+皮Úö›ýÿÚý€­•“ùÿ߰ùÿž­÷”ùÿ,²ùÿð‘ùÿŒ©ùÿâ‘ùÿªœýÿ½”ùÿ²ùÿ[“ùÿ¥°ùÿðµ¯-韰“FÓL ÓJ˜F|DzDÍéõÛ`õpÒø47%h¸ñõÊ`Òøpgõpò4@’
“ÍéS––4лñIØë‹”ßèðqb@F•Pø¯ºñہF˜ñ%Ðø4dTø%°Bðš€5ªE÷Ñ%Tø%0F"ð û(@ð‹€5ªEóÑðžéбEöJ1Èà«ñ(Ø”#hßèð
iÈh
‹h“Ñé%“Íé%“á›H&›L»ñxDšK›I|Dh{DyDh™M¸¿&˜J}DÍø°zDÍée¨¿#FðpéEö†1’àÑé Ñé5AFQøŸ
’Íé “Íé5+áÂF•ZøŸÑéÍé¹ñ€ò”€@áÑé%ˆhAFQøŸ’Íé%¹ñ€ò½€0áÂFhZøŸ•HFÍøD¹ñ%Ú=àØøÑé Ñé5	i‘‘
’Íé “Íé5$á?õv¯˜Pø%(?ôn¯HFªñÙø‚F‘¹ñÛ˜ñ%Ðø|bTø%°B8Ð5©EøÑ%Tø%0F"ðêú(+Ñ5©EôÑðêè(Bð3SH&SI%xDSJSKyDhzD{DhQL–|DÍéTðÜèEöT1NH@öÚrMKxD{Dè÷ÛøOð	HF°½èð½ÕÔ˜Pø%P•-ÏИ ñ	¹ñÀò®€Íø4 Úø •ºñ#Û˜ñ%ÐøPfTø%°BÐ5ªEøÑ%Tø%0F"ð’ú(Ñ5ªEôÑ	àÔ˜Pø% ±©ñ	àð†è(Bð뀘h
™¹ñtÛÑø •ºñ
‘CÛ˜ñ%ÐøDbTø%°BÐ5ªEøÑ%Tø%0F"ðZú(Ñ5ªEôÑ)à(Ô˜Pø% ³©ñ	

™$àB«‚óvªΎùÿ~¦ùÿЎùÿ½‘ùÿŽ¥ýÿ@© ùÿl¤ýÿF¥ùÿ‹ùÿ!Œùÿmùÿð.è(
™Bðr€¹ñÛÑø •ºñ&Û˜ñ%ÐøØfTø%°BÐ5ªEøÑ%Tø%0F"ðú(Ñ5ªEôÑàšà	Ô˜Pø%(±©ñ	àðøï(Bð€š¹ñò5„hoð@@FB¿1`)hœB¿H(` ð¾ï(ð‚FÔøÈ•oð@B&h‘B¿1`ÔøÈÙø`ÔøèTð6è(ð‚!FF	h(F"FKF–ð2èF hoð@AˆBÐ8 `¿ FðÖî-ðùÙøoð@AœˆBÐ8Éø¿HFðÄîÔøÈ(Fç÷iý(ð큃Fhoð@D BÐAËø¡BÐ(Ëø¿XFðªî(h BÐ8(`¿(Fð¢î˜ÐøÐDhâh!Fðè(ðہFhoð@AˆB¿0Éø™ÙøÑøà‚lHF*ð߁G‚F(XFÍø,°ðہÙøoð@AˆBÐ8Éø¿HFðnî„HÚøxDh±Bðہ©F $EF©B1ÍéEˆF¡ë€PFí÷¶û,¿ hoð@AˆB@𻀘(ð@Úøoð@D BÐ8Êø¿PFð<î(h BÐ8(`¿(Fð4î˜ÐøÐDhâh!Fð¬ï(ðǁ‚Fhoð@AMFˆB¿0Êø™ÚøÑøà‚lPF*ð́GF(ð΁Úøoð@AˆBÐ8Êø¿PFðîÙø°Bðā $¨ë€BHFÍéEÃFí÷Rû,€F¿ hoð@AˆBtѸñ{ÐÙøoð@D BÐ8Éø¿HFðÚí(h– BÐ8(`¿(FðÐ혝œhµBÐih‘øWÀmÑàkBjÐÑø¬ *_Бh)Û2hƒB_Ð29ùÑ(hªFoð@AˆB¿0(`dà ð`î‚F(^Ñ EFEö/AAògOð
Oð&Ýø,°ðP¿8 `¿ FðŒí˜(ô?¯ •Eöò1AòdOð&MFÍéÍéðo¾8 `¿ Fðpí¸ñô„¯EöAAòe ð“¸¦Ñø€BÐ)ùÑÜIyD	hˆB¢Ñ ðî(ðe‚‚F(hoð@AˆB¿0(`Úø`˜Ôø,@h‚l*ð*˜GF(ð+(Fð¶ïAÍø4 ð))hoð@B‘BÐ9)`ÑF(Fð$í Fœ(Að ØøÔø,‚l@F*ð6GF(ð7(FðŽïAð4)hoð@B‘BÐ9)`ðh(@ðnØøÔø,‚l@F*ðUGF(ðV(F!"#ðõø(ðSF(hoð@AˆBÐ8(`¿(FðÜìØøÔø,‚l@F*ðOGF(ðP(F!"#ðÒø(ðP‚F(hoð@AˆBÐ8(`¿(FðºìHFQF"ðlï(ðKFÙøoð@D BÐ8Éø¿HFð¤ìÚø BÐ8Êø¿PFð˜ì{HxDh{HBœxD‘¿˜h…BÑhÝø4 °ú€ð@		àµBöÐ(Fð¾íÝø4 (ñ‚)hoð@B‘BÐ9)`ÑF(Fðnì Fœ(@ð׀˜Ôø,@h‚l*ðÿ€˜GF(ð(F!"#ð^ø(ðÿ€‚F(hoð@AˆBÐ8(`¿(FðFìØøÔø,‚l@F*ðò€GF(ðó€(F!"#ð;ø(ðò€F(hoð@AˆBÐ8(`¿(Fð"ìPFIF"ðÖî(ðè€FÚøoð@D BÐ8Êø¿PFðìÙø BÐ8Éø¿HFðì™Ýø4 Bœ¿˜h…BÑh°ú€ð@	àµBøÐ(Fð.í(ñ8‚)hoð@B‘BÐ9)`ÑF(FðÞë Fœ(Að°€Úøk)¿Jh*ð€Ôø¤PFG(ð€FHihxDhB¿(h(Ð(Fðœî(bÑ AòxEöQOðOð
&Íéð‰¼ (`aà¿ö£^¢X¢à F(Fð–ë Fœ(?ô’®!H!FÑøXxDi`hl.ðԇHxDð‚í(@ð÷‡ F)F"°GFð€í,ðè‡ Fì÷.ú hoð@AˆBÐ8 `Ñ FðhëEöÉAAòp EFOðÝø,°ð~»)hoð@B‘BÑF
à¿Úð}¡ùÿ9F)`¿(FðDë%Fœ˜Ôø,•@h‚l*ðn€˜GF(ðo€HF!"#ð6ÿ(ðn€FÙøoð@A–ˆBÐ8Éø¿HFðëž°h1iBĿIˆBó_ƒ0F)Fðöí0ð€(hoð@AˆBÐ8(`¿(Fðë˜AhŠlÔøˆ*ðE€Gž‚F(ðF€Úø°B@ð,‡Úø@,ð'‡!hoð@@ÚøPB¿1!`)hB¿H(`Úøoð@AˆBÐ8Êø¿PFðÌê ªF™BÍéA«ë€PFí÷!ø,F¿ hoð@AˆB@ðƒ¹ñðƒÚøoð@AˆBÐ8Êø¿PFð¨êÙøœ‚lHFÔøà*ð€G‚F(ð€Ùøoð@AˆBÐ8Éø¿HFðŒê˜Ôø,@h‚l*ð÷‡˜GF(ðø‡HF!"#ðþ(ðø‡FÙøoð@AˆBÐ8Éø¿HFðfêÚø°B@ð¥†ÚøP-ð †)hoð@@Úø`B¿1)`1hB¿H0`Úøoð@AˆBÐ8Êø¿PFðBê²Fž ™‚•”Ñø„‘«ë€PFì÷’ÿ-¿(hoð@AˆB@𘂠hoð@AˆB@𞂘(ð¤‚Úøoð@AˆBÐ8Êø¿PFðêØøœ‚l@FÔøì*𜇐G‚F(𝇠FÔøÐDhÍø$°âh!Fðzë(𠇃Fhoð@AˆB¿0Ëø™ÛøÑø¸‚lXF*𥇐GF(ð¦‡Ûøoð@AˆBÐ8Ëø¿XFðÒéÚø°B@ð†ÚøP-ð†)hoð@@Úø`BÝø(¿1)`1hB¿H0`Úøoð@AˆBÐ8Êø¿PFðªé²Fž 	™BÍéT¡ë€PFì÷þþ-¿(hoð@AˆB@ð‚ hoð@AˆB@ð$‚-ð*‚Úøoð@D BÐ8Êø¿PFð~騸 BÐ8Èø¿@FðtéÝø, oð@AÚøˆB¿0ÊøÚøÝø€°Bð6‡ $	™BÍéE¡ë€PFì÷¶þ,F¿ hoð@AˆB@ðõ-ðûÚøoð@AˆBÐ8Êø¿PFð>éðIhhyDœ	hˆB@ð/‡ªhÝø4 *Að#‚ñññhhhhF’oð@@B¿1š`™	hB¿H™`1hoð@@B¿11`)hBÐH(`Ñ(FðéÔødHF"ðÐû(ñ<‡–ðBÔø4HF"ðÃû(ñM‡
ÐÔøhHF"ð¹û(ñ¾@ðD‡ FÔøÐDhâh!FðZê(ðT‡Fhoð@AˆB¿0(`œhhÔøÈ‚l(F*ðS‡GƒF(ðT‡(hoð@AˆBÐ8(`¿(Fð¶è FÔøÐDhâh!Fð.ê(ðG‡Fhoð@AˆB¿0ÉøœÙøÔø´‚lHF*ðQ‡G‚F(ðR‡Ùøoð@AˆBÐ8Éø¿HFð†èphÔøl‚l0F*ðL‡GF(ðM‡™HFðfë(ðI‡FÙøoð@AˆBÐ8Éø¿HFðdèÚø™ˆBðH‡ &™‚‘	™Íéd¡ë€PFì÷±ý.F¿0hoð@AˆB@ð
 hoð@AˆB@ðž-ðÚøoð@AœˆBÐ8Êø¿PFð0è ðvè(ð:‡š‚FÅ`oð@AhˆB¿0`Êø ðdé(ð3‡ÔøôBFFðÄè(ñˀÔøô(FBFðºè(ñã€Ûøl,ðESHxDðþé(AðHXFQF*F GFðüé, F”ðDÛøoð@D BÐ8Ëø¿XFðâïÚø BÐ8Êø¿PFðÖï(hoð@AÝø,°œˆBÐ8(`¿(FðÈï™ÝøÝø4 ‰E
¿˜hE@ðñ€©ë°ú€ð@	ôàOð	?á)hoð@B‘B¿1)`ñhAø P0°`(hoð@AˆB��ä8 `¿ Fðšï¹ñôá¬Eö;Qð½8(`¿(FðŒï hoð@AˆB?ôb­8 `¿ Fð€ï˜(ô\­EöZQðô¼8(`¿(Fðrï hoð@AˆB?ôܭ8 `¿ Fðfï-ô֭Eö‚Qð½¿ƛsšùÿ8 `¿ FðRï-ô® Eö£QAòŒÍéWâ Aò“EöLaà80`¿0Fð8ï hoð@AˆB?ôð®8 `¿ Fð,ïž-ôê®Eö>að@¾ Aò“EöMa(hoð@C˜BÐ8(`Ñ(F4F
FFðï2F&F)F–ºñžÐÚøoð@C˜BÐ8Êø
ÑPF²F©F
FFðöî2F)FMFVFÝø4 »ñÐÛøoð@C˜BÐ8ËøÑXF¨F
FFðÜî)F"FEFÝø,°.Ýø€ðú†0hoð@C˜Bðô†ð޾˜E?ô¯HFðè(ñF€(KÑÔø4(F"ðŠù(ñ@€ðC€Ôø8æ÷wÿ(ðz€F@hÔø0‚l0F*ðv€GF(ðw€0hoð@AˆBÐ80`¿0Fð”îÔø$(F"ë÷ý(ðq€)hoð@D¡BÐ9)`рF(Fð~î@Fh¡BÑœà9`œ¿ðrî FÔøÐDhâh!Fðêï(Íøð†…Fhoð@AˆB¿0(`œhhÔø´‚l(F*ퟬ�G‚F(ðŒ…(hoð@AˆBÐ8(`¿(FðDî FÔøÐDhâh!Fð¼ï(ퟌ�Fhoð@AˆB¿0Ëø™ÛøÑø\‚lXF*ퟌ�GžF(ð„…Ûøoð@AˆBÐ8Ëø¿XFðîÙø™ˆBðy…$ 	™BÝø€¡ë€HFÝø,°ÍéHì÷^û,F¿ hoð@AˆB@ðâ€-ðè€Ùøoð@AœˆBÐ8Éø¿HFðäíhhÔø,Ðé
*¿Rh*Ñ(¿Àh(@ð¹€(F
ðëÿFh¹ AòœEö×aOð¨æ(FGF(ñÐ(hoð@AˆBÐ8(`¿(Fð¶íHF1Fð¢è(ð?…FÙøoð@AˆBÐ8Éø¿HFð¢íÚø±F™ˆBðj… &™‚”Íéa	™¡ë€PFì÷íú.F¿0hoð@AˆB~Ñ hoð@AˆB@ð…€-ð‹€Úøoð@DNF BÐ8Êø¿PFðní˜h¡BÐ9`¿ðfí™(Fð¢ïÝø4 (œFðQ…(hoð@AˆBÐ8(`¿(FðNí˜ðDè(ðG…F˜2FAhËlÔø,+ðC…˜G(ñD…0hoð@E¨BÐ80`¿0Fð0íÝø@Ùø¨B¿0ÉøžÛøoð@AˆB@ðW…ð\½(F
ðÆþF(ôS¯Cç8 `¿ Fðí-ô¯EöÓað˜¼80`¿0Fðí hoð@AˆB?ô{¯8 `¿ Fðôì-ôu¯EöðaAòœOððQ¼ïHEöÅ1îKAòaxD{Dæ÷ÉýOð	ÍøH€ð‚½ EöÊ1AòaÍøH€
7à AòaEöÍ1OðOð
Í鐐Íé
ÍøH€åð’í(¹ Fê÷šÿ(@ð,‡ ÍøH€EöÛ1AòdOð
OðWàðŠíþ÷¾ EöÝ1Aòd
ÍøH€Oð$Oð%Oð
ð&¼Úø@EF,ðr†!hoð@@Úø€B¿1!`ØøB¿HÈøÚøoð@AˆBÐ8Êø¿PFðhì ÂFÝøDþ÷¾ð8íMF(¹ Fê÷@ÿ(@ðՆ Oô¸AAòeOð
Oð&ð¾ð.íF(~ô2® EöAAòeÍé
¹áÙø@,ð&†!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HFðì ©Fþ÷¾˜ðúìF(~ôծEö}AAòmÿ÷¤¸ AòmEöAÿ÷L¸|H"ÔøxDië÷uú(ðî…Fë÷­ú hoð@AˆBÐ8 `Ñ FðæëEöAAònÿ÷}¸ðÆìF(~ôɮEö¡A=à AòoEö£Aÿ÷¸eIyDhdIÂhhyDð¦ìEö	QAòxÿ÷]¸$ ÿ÷ò¸ %ÿ÷z¹% Ýø(ÿ÷º F)F"ð¾íF(ô4¨ EöÅAAòpÿ÷@¸ðˆìF(~ôª®Eö«AAòoÿ÷2¸ AòoEö­Aþ÷ڿðdì(ðŠ…EöÅAÿ÷¸ðjìF(~ô°® Eö°AAòoÍøD€Þæ Eö²AAòoÍéOð$Oð׿EöµAAòo2à˜ðFìF(~ô¯ EöÛAAòqEF¬à AòqEöÝAþ÷—¿ð0ìF(~ô
¯ EöàAAòqEF¼à AòqEöâAOðþ÷ƒ¿EöåAAòq Íé´àH"ÔøxDië÷Ÿù(ð*…Fë÷×ù hoð@AˆBÐ8 `Ñ FðëEö÷AAòrþ÷§¿ýuùÿ—ùÿ¶áȐYùÿ
à AòyEöQOðOð
&Íéÿ÷ϻ EöWAAòiOð
EFþ÷¿ãHª™«xDÍé°@Fðgü(ñªƒ˜˜
˜Ýé%þ÷´»˜ð°ëF(~ô‘¯EöQAòyEF þ÷[¿ EöQAòyÍøD€æð˜ëž‚F(~ôº¯Eö'QAòzEF OðÝø4 Ýø,°Áâð€ë‚F(~ôü¯ Eö?QAòzÍéöå˜ðrëF(ô¨EöBQAòzEF 5à EöDQAòzÍøD€Oð$Oð%âðRë‚F(ôc¨ EFEöhQAò‹OðÝø,°Ýø4 }âð,ë(¹ Fê÷6ý(@ð΄EöjQ Aò‹EFOðÍé&ÿ÷8»ð$ëF(ôZ¨ EölQAò‹EFÍé&ÿ÷%»Úø@,?ôŨ!hoð@@Úø B¿1!`ÚøB¿HÊø˜oð@AhˆBЙ8`¿˜ð
ê ÿ÷§¸™ˆBðë‚(Fðhì(ð„ƒF(hoð@AˆBÐ8(`¿(FððéÛøØFoXF G‚F(ð„@F G(Fð„@F G(ð„F@F G!ðjý(ñ6ƒØøoð@AˆB@ð?ƒÍø  Ýø4 œÝø(Ýø€ÿ÷»¸ EöêQAòސ–âEö¸AAòoàEöèAAòq &Oð
ÍéO𐐐jáEöôQyâBH"Ôø xDië÷ø(ð÷ƒFë÷Lø hoð@AˆB@𳂠Eö
aAò8ãðZê(¹ Fê÷cü(@ðþƒ EöaAò“¡àðZêƒF(ô¬¨ Aò“EöaOðyà°Fð:ê(¹ Fê÷Cü(@ðäƒ &Aò“Eö!aÝø4 Ûøoð@C˜Bôcªÿ÷nºð.ê‚F(ô®¨˜Eö#aAò“Oð4FÝøÀ%Oð
àðêF(ô³¨Eö&aDàÝøÀEö(a˜Aò“Oð4F%Íø<°¶àŠýÿôÜÚø`.ðxƒ1hoð@@ÚøPB¿11`)hB¿H(`Úøoð@AˆBÐ8Êø¿PFðöè ªFÝø€ÿ÷”¸ Aò“EöBaOð
ÿ÷ȹEöJa Aò“Fàžð´é(¹ Fê÷¾û(@ðfƒEö·aAòœÝø,°Ýø4 Ýø€†âð°é‚F(ôtª AòœEö¹aOðOð
žÿ÷™¹ðŒé(¹ Fê÷–û(@ðAƒEö¼aAòœOð&ÿ÷¹ðŠéžF(ô|ªEö¾aAòœ&ÿ÷Ž¹Ùø@,?ô‚ª!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HFðtè ©Fÿ÷eºEöÚa˜Aòœ%ÄF4FÝøà OðÙøoð@C˜BÐ8ÉøÐ˜&FÍøÀÍøàÝø<°ÍøL€àHFÍø0€¡FˆFFdFóFðBè˜2FAFÍø°NFÝø<°˜”-ô©ÿ÷$¹Úø`.ð•‚1hoð@@ÚøPB¿11`)hB¿H(`Úøoð@AˆBÐ8Êø¿PFðè ªFÝø,°Ýø€ÿ÷pº•EöþaAò¾áEö
qAòž·áðrè(õ¼ªEöqAòž0hoð@C˜BÐ80`Ñ0F.FFÍø€Íø,°FðàïÝø,°*FÝø€5F!FçHæKxD{Dæ÷¼øžOð	»ñÐÛøoð@AˆBÐ8Ëø¿XFðÀïºñ,F¿Úøoð@AˆB.ј5F(¿hoð@AŠB-јž(¿hoð@AŠB*Ñ.¿0hoð@AˆB)Ѹñ¿Øøoð@AˆB'Ñ}³*hoð@A(FŠB)ÐQ`¿ðˆï#à8Êø¿PFð€ïÈçQ`¿ðzïËçQ`¿ðtïÎç80`¿0FðlïÎç8Èø¿@Fðdï-Ïј%F(¿hoð@AŠBј¨±˜oð@AhˆBЙ8`¿˜ðJïàQ`¿ðDï˜(éÑ-¿(hoð@AˆBÑHF°½èð½8(`¿(Fð0ïHF°½èð½Eön1ý÷-¿EöúQAò Ýø€Ýø,°ØàEöi1ý÷¿ªhÝø4 *Ñêhñþ÷ã½*	ÛÔH"ÔIxDyDhhðâïà*ÔÐH*ÐLxDÐKÑI|Dh{DyDh¿#FðÐï AòŒEö­QOðOð
&þ÷¿Eöb1ý÷â¾EöR1ý÷޾8Eö
eAòOð	 `|ÐEö
aAòÝø4  Ýø€Ýé¶ÿ÷vºEö[1ý÷þXFQF*FðÈè(F~ôĮ Aò“EöNaþ÷Œ¿ð€ï(ð Aò“EöNažþ÷~¿ EöÑQAòŒOð$OðÝø%–)æÍø  8Ýø4 ]FœÝø(Ýø€Ëø~ôx­þ÷s½Eö]aAò”.àEöhaAò•)à”H"Ôø(xDiê÷æü(ðۀFê÷ý hoð@AˆBÐ8EöšeAò™ `ÐEöšaAò™à FÍøðLî)F2FÝø,°Ýø4 Ýø€žlHmKxD{Då÷&ÿOð	Ûøoð@AˆBôm®ræEöraAò–æçðïF(~ô‰¯EötaAò–Ýø€0hoð@C˜Bô.®@æ Aò–EöaTå $ÿ÷©¹ $ÿ÷󹃍ùÿãkùÿ Eö‹AAònþ÷ºLHMIxDyDhhðÞíÿ÷lº EöóAAòrþ÷‹º AòŒEöÇQûæHLOð	%|D
àHL%Oð	|DàFL%Ýø|DÛøoð@AˆBÐ8Ëø¿XFðÈíð£ùH¹8H*F8I#FxDyDhhðšî AòŒEöÙQ¹ñOðOðOðOðOðOðO𐐐ô=­þ÷¾EöaÌæ &¡ä &„å$H$IxDyDhhðtíäæEö–aAò™:çFý÷ö¾‚Fý÷a¿ƒFþ÷»œFÝø€þ÷¨¼FFœÝø€Fþ÷μFþ÷¿ƒFþ÷9¿¿·hùÿWŠùÿ<…{wùÿf‡ iùÿN‡{nùÿ°‹ùÿejùÿMlùÿ؄ùgùÿz‰ùÿ5lùÿf„¥vùÿ˜Öðµ¯-é™°ƒF˜H™LšF#xD|D“Íé3õÊc“õ«c“ºñhõŽ`”F
““1Ð*:Øë‚ßèðoVdPFÍø$°Pø¿
’»ñÛ˜
ñ$ÐøpdUø$°BjÐ4£EøÑ$Uø$0F"ðÐÿ(]Ñ4£EôÑðÐí
šh±Oô¿A›à*Ð*шhÑéÍéáoHOðnM*xDnKnI}Dh{DyDhlN¸¿OðkL~D’|DÍéƨ¿+F"Fð¬íEö¨qqàÑéQFÍø0€QøÍ鐸ñ€ò€×àÑéÍø0€Úø€‰h‘ÍéÈàPFÍé‚PøÑøÍøH@FÍø€¸ñÚ-à£ÔXø$ÍøH¹ñœÐ˜Íø0€Ðø€«ñÝø$°¸ñÛ˜
ñ$ÐøXUVø$¨B6Ð4 EøÑ$Vø$(F"ðGÿ()Ñ4 EôÑðFí(AðЁ7H&7I%xD6J7KyDhzD{Dh5L–|DÍéTð8íEöŠq1HAò¡1KxD{Då÷8ý °½èð½×Ô˜Pø$(ÑИ
š ñ™¸ñWÛÍø$°Ñø°
’»ñCÛ˜
ñ$ÐøPVVø$¨BÐ4£EøÑ$Vø$(F"ððþ(Ñ4£EôÑ)à(Ô˜Pø$ ³¨ñ
šÝø$°%ăÆËð‚Hgùÿø~ùÿJgùÿ5jùÿ”ýÿúZfùÿ.“ýÿ~ùÿEiùÿ„}ùÿ{†ùÿðÄì
š(Ýø$°Aðr¸ñ€òê†HFÍø$°	ð[þ0Ñð°ì(Að¾€ÝéeOð²HÍø\€xDÍøX€ƒF@lÐø´ÐøA ˆGF@òÍé0F"# Gœ(ðc†˜oð@AhˆBÐ›BŠB`Ð™(`¿˜ð¢ë˜Áh Íé)ðO†ÛøD ÙFÝø0 
–&FÒøx"ÚøGÛøt0FÖø\PF"Úø€±F˜G0ðV†D³Ûøl a@FGŸíˆAì´î@ñîúÝ
žÊFÙø0qhBðƒÑø¬ *ðƒ‘h)Àòä„2hƒBðƒ29øÑðڼ(F

”¨BÍø°Íø€ЂFðºìlh.¿®BÑ@h(÷Ñ &&à Fð¢ë(ðD€F ðzëOð(ð@€
Ä`Íø\€Íà1hoð@@B¿11`rhhB¿H`0F’ðŽì˜ÐøüDhâh!FðŒì(ð"†Fhoð@AˆB¿0(`•hh‚l˜*Ðøl(Fð†G€F(ð†(hoð@AˆBÐ8(`¿(Fðæê@H%ØøxD•hBð† ©B1ÍéZ¡ë€@Fë÷1ø-F¿(hoð@AˆBCÑ ,IÐØøoð@AˆBÐ8Èø¿@Fð¸ê
˜ðë(ð	†F ðöê(ð†
ÀéE Íé˜(¿hoð@AŠB(Ñ.œ¿0hoð@AˆB0Ѽ³ hoð@AÝø,ˆB2Ð8 `/Ñ Fð†ê+à8(`¿(Fð~ê ,µÑFòM-@ðæ…ðï½Q`¿ðnêÐç\Ñ¿¿˜ð?80`¿0Fð\ê,ÇÑÝø,ÙøÐDÙøâh!FðÐë(ð.…Fhoð@AˆB¿0(`•hhÙøX‚l(F*ð-…GÝø( €F(ð)…(hoð@AˆBÐ8(`¿(Fð*ê ðnê(ð…FÚøoð@AˆB¿0ÊøÅø ð\ë(ð…FÒH™xDh0FÑø¼ð¶ê(kÔØøl,ðf†ÊHxDðúë(@ðt†@F)F2F GFðøë,”ðd†Øøoð@IHEÐ8Èø¿@Fðàé(h$Ýø$°HE”Ð8(`¿(FðÒé0hÝø4€”oð@D BÐ80`¿0FðÄé›!Ý饑h B¿0`ÚøD iÓé¡Òøx"GîZF¤J#¸îÀzDhšÒøt$Qì°G0ð†¸ñÐ FAFðâìàFòÄAòOð
OðOð$Oð	Ýø( Eã žÛøÀPÖøØBÕø!FHFðì(ðø…€F@hÐøˆ0;±@F)FJF˜G€FP¹ðò½Øøoð@AˆB¿0ÈøÛøÖø̲Ùø@YF Fððë(ðà…F@hÐøˆ0S±(FIF"F˜G(ðb‡F@hà)hoð@B‘B¿1)`•kI$”yD	hˆB@ð„ÕøÍøX¹ñð„Ùøoð@@Õø°B¿1ÉøÛøB¿HËø(hoð@AÍø\°ˆBÐ8(`¿(Fðé"]F¨Ýø$°0Íé” ë‚(Fê÷`þ¹ñ¿Ùøoð@B‘B@ð€!(‘ð‰…)hoð@D¡BÐ9)`ÑF(Fðæè0F!ÑF‘hÍø€¡BÐ9`¿ðØèðvë˜Ýø €Ýø (Û
™ñ8ñŒ
™ƒFÍé(FAFJFSFðúXF¡D»ñðјð^ëž™phÑøÀGl-ðb…$HxDð¨êÝø( (Ýø@ðm…0F!F"¨GFð¢ê,ð^…0hoð@AˆB@ðd…,ðj… hoð@E¨BÐ8 `¿ Fð„èÙø$¨B¿0ÉøHF™)@ðy‚†â9Éøôz¯FHFðlè Fsç>}m~ùÿ’ͺ{É{ùÿÑø€BÐ)ùÑéIyD	hˆB@ð؁ÚøÐTÚøÍø°êh)FðÊé(ð}…Fhoð@AˆB¿0 `”`hÚøœ‚l F*ð{…G€F(ð|… hoð@AˆBÐ8 `¿ Fð&èphÚø¼‚l0F*ðl…GF(ðm…ÉHØøxDh	Bðn…±F$ ÚøL‚‘©ñ
ÍéEªë€@Fê÷]ý,F¿ hoð@AˆB@ð-(hoð@AˆB@ð3 .ð9Øøoð@AÝø°ˆBÐ8Èø¿@FðÚï«HxDÐø€ ©MFE}D¿(h†BѦë°ú€ð@	à
˜†BöÐ0Fðé(ñZ…1hoð@BÍø  ‘BÐ91`ÑF0Fð°ï FÝø, (ð-ÙøNFÚø¼
•‚lHF*ð.…GF(ð/…ŒH"xDh(FðJê(ð'…F(hoð@AˆBÐ8(`¿(Fð‚ï DE
˜¿h„BѤëÝø°°ú€ð@	
à
˜„BôÐ Fð¬èÝø°(ñ…!hoð@B‘B	Ð9!`ÑF FðZïÝø°(F!(‘ðրphÁFÚø¼‚l0F*ð섐GÝø( FOð(ðæ„`h	™Íø`€ˆB@ðâ„Ôø€Íø`€¸ñð݄Øøoð@@¥hB¿1Èø)hB¿H(` hoð@A•ˆBÐ8 `¿ Fðï",F˜&Íé† ë‚ Fê÷jü¸ñF¿Øøoð@AˆB@ðœ-–𣁠hoð@AžˆBÐ8 `¿ FðîîÖøt(F"Oððžé(ð”„F(hoð@AˆBÐ8(`¿(FðÖî LE¿
˜h„B"Ѥë	Ýø°°ú€ð@	$à8 `¿ FðÀî(hoð@AˆB?ôͮ8(`¿(Fð´î .ôǮFòtðJ¼TEÚÐ FðæïÝø°(ñf„!hoð@B²F‘B	Ð9!`ÑF Fð”îÝø°(F˜±ÚøÄFoð@A hˆBÐ
òÄaàòypyàxÖxŒxÚøÀFoð@A hˆBÐ
õØa0 `h©Ûø"1OðÈò”Íø8€ê÷Âû(ðjƒFé÷ý(hoð@AˆBÐ8(`¿(FðPîÍø\€Fòî
AòOðOðOð
Oð	˜(¿hoð@B‘B@𚀘(¿hoð@B‘B@𜀘(¿hoð@B‘B@𞀸ñ¿Øøoð@AˆB@🀼ñ¿Üøoð@AˆB@𠀻ñ¿Ûøoð@AˆB@𞀸H*F¸K
™xD{Dä÷êþ ™q±™oð@B	h‘BÐš9`ÑF˜ððí(F¹ñ¿Ùøoð@B‘BÑ,¿!hoð@B‘BѺñ¿Úøoð@B‘Bѹñ¿Ùøoð@B‘B Ѱ½èð½9ÉøÞÑFHFðÀí(FØç9!`ÜÑF Fð¸í(FÖç9ÊøÛÑFPFð®í FÕç9ÉøÚÑFHFð¤í F°½èð½9`ôb¯.FeFð–í¬F5FZç9`ô`¯Íø(ÀðŒíÝø(ÀXç9`ô^¯Íø(Àð€íÝø(ÀVç8Èøô\¯@FfFðtí´FUç8Ìø¿`FðlíWç8Ëø¿XFðdíYç8Èø¿@Fð\í-–ô]®Fò®Aò


ãEöðpAòü
ãÔø0"Ûøé÷Âû(ð)ƒFé÷ùû hoð@AˆBÐ8 `¿ Fð2íÍø\€Fò

AòÿåâFò1Aò
ÝâOð	"ÿ÷¼ðöí(@ðƒ Fè÷ýÿ(@ð1ƒFò¸ÿ÷y»ðöíÿ÷кFòºàFò½
AòOðOðOð½âFòÂÿ÷b»2H«™xDÍé ªPFð~þ(ñ‚ÝøHÿ÷¹ð¾í0¹ Fè÷Çÿ(@ðþ‚Fò6VàðÀí€F(ôâ© Fò8+àØøP•-ð¾‚)hoð@@Øø@B¿1)`!hB¿H `Øøoð@A”ˆBÐ8Èø¿@Fð¬ì  Fÿ÷͹ FòQ³(hoð@AˆBÐ8(`¿(Fð˜ìàèpùÿßyùÿT„ýÿFòS(hoð@AˆBÐ8(`¿(Fð„ì ˜OðÍø\€(¿hoð@B‘B@ðրæH!FæKAòxDÍøX€{Dä÷Sý©ª«(Fð,ú(ñˆ€ÞHSFÚøxDhB@ð!‚hoð@A
˜ŠB¿Q`ð´ì(
ð{‚ ðŽì(ð‚F
˜È`PFÐF‹Fðrî(
ð‚Øøoð@D BÐ8Èø¿@Fð*ìÛø¡BÐ9Ëø¿XFðì˜(¿hoð@B‘B@ð˜$”(¿hoð@B‘B@ðý€˜”(¿hoð@B‘B@ðù€)lœh`!‘(¿hoð@B‘B@ðñ€,Ýø,¿ hoð@AˆB@ð퀘(¿hoð@AŠB?ô‡©Q`ôƒ©ðÚëÿ÷¹FòyAò
OðOðœ˜lh`(¿hoð@B‘B@ðä€,¿ hoð@AˆB@ð倚*¿hoð@AˆBðp8fFÍø,°`јð¨ëÝø,°Oð
$Oð	´F\å9`¿ðšë#ç@F)F2Fð¤í(ô£©
àFòûAò
1àð^ì(ð|FòÅÿ÷é¹ßH!FxDhhðíFò 
àÜHYFxDhhð†í Fò àFò3 
oð@AØøˆBÐ8ÈøÑ@FðXëAò#OðOðOð$Ýø( Ýøå0F!F"ðVíFÝø( Ýø0hoð@AˆB?ô©ªàðì(ð9$0hoð@AˆB?ôœª80`¿0Fð(ë,ô–ªFò Aò#
OðOðOð$ÕäEö¢qþ÷½¾9`¿ðë÷æ9`¿ðëüæ9`¿ðëç9`¿ðüêç8 `¿ FðöêçFòê¤äFò
Aò
¤àFòAò
 àEö–qþ÷‹¾Eöˆqþ÷‡¾9`ô¯fFðÖê´Fç8 `ô¯ FfFðÌê´Fçð ë(@ðӀ(Fè÷¨ý(@ðâ€FòZYàð¢ë€F(ô„ªFò\Oàð˜ëF(ô“ªFò_E࿾mùÿ±vùÿrØø@,ð³€!hoð@@ØøB¿1!`ÙøB¿HÉøØøoð@AÍøXˆBÐ8Èø¿@Fð|ê ÈFÝø, Ýø4ÿ÷iºEö‘qþ÷¾ðVëF(ôѪFò‡àFò‰àFòxAò
àðDëÿ÷»Fòšà"ÿ÷@»Oð"ÿ÷;»Fò²àFò‹
Aò	OðOðOðOð
$ÿ÷ø»Fò´
Aò
ðçFð2í(YÑFò…AòWæœFò‰Ýø(ÀAòOðÐF
QæFòŽAò
OðHæFò	åäOðFò¸ÍøX€Aòÿ÷x¸%þ÷+¿!H!IxDyDhhðèéFòÅÿ÷e¸HIxDyDhhðÜ齿OðFòZÍø`€Aò
£ç$ jçFò {æFþ÷›¿Fþ÷ܾÝø, F
žÿ��F
˜ð:ê(
ô…­Fò‡Aò
OðÐFóåNm_ùÿp6mu_ùÿðoðµ¯-遰-í‹–°	›FiN iK»ñ~DÍé{DõÊ`4hõæp“Íé@Ð낳*Ð*GÑÑé¤ÛøÍ餹ñÀòҀðվ*gÐ*7ÑLh”càØFÑø XøŸ
•Íø8 ¹ñnڼàØF–XøŸÍé
T¹ñ
’Û˜ñ$ÐøÌQVø$¨BIÐ4¡EøÑ$Vø$(F"ð(ü(<Ñ4¡EôÑð(ê
š(Að¹€:H*:LOðxD9N|D9Mh~D8K}D8Ih¨¿&F*¸¿Oð5LyD{D’|DÍéƨ¿+F"Fð
êFò1/HAò*/KxD{Dä÷
ú ð›¼4hÑø Íø8 _àÄÔ
˜Pø$ Íø8 ºñ¼Щñ	
šœž¹ñNÛØø€–¸ñ
’:Û˜ñ$ÐøPfUø$°BÐ4 EøÑ$Uø$0F"ð½û(Ñ4 EôÑ àÔ
˜Pø$@ܱ”©ñ	
šžàbl ´¸kSùÿFpùÿPùÿ¦gùÿüOùÿ+‰ýÿÞ`ùÿpùÿðšé(Að1€ž
š4h
¹ñ€ò†OðPFÍøT€Íéˆð.ëAð„”
¬M}DhlÐø´ÐøA ˆGF@òÍéPF"# G(ðn„ƒFhoð@A•ˆBÐBËø ŠBÐ(Ëø¿XFð€è˜!‘ÐøÐThêh)Fðöé(ð[„Fhoð@AˆB¿0 `”`h‚l˜*ÐøÔ FðX„G(ðY„ hoð@AˆBÐ8 `¿ FðRè˜!‘ÐøÐDhâh!FðÈé(ðD„Fhoð@AˆB¿0ÉøÙø‚l˜*ÐøðHFð?„GF(ð@„Ùøoð@AˆBÐ8Éø¿HFð èhHahxDÐøIEð1„ %™‚Íé[Ñøx‘©ñ
ªë€ Fé÷fý-¿)hoð@B‘B@ð݂(ð6„ hoð@AÍø °ˆBÐ8 `¿ FðîïÝøL€³FØøHEð(„ &œªë€B@FÍédé÷:ý.F¿0hoð@AˆB@𼂠hoð@AˆB@ð‚ -ðȂØøoð@AˆBÐ8Èø¿@Fð¸ï5H!‘xDh…BÐ3IyD	hB¿ÛøBÐ(Fðæè(ñ
„)hoð@B‘B	Ñà(°ú€ð@	)hoð@B‘BÐ9)`ÑF(FðŒï F(@ðþƒ˜Ûø@Íø€h
˜ BÐðìèlÝø °Íø h-¿¥B(Ñ@h(÷ÑOð
% 3à
˜ðÎï(ð8†F ð¦ïÝø °Oð(ð;†FÄ`Í鈩࿻‚išh”h)hoð@@B¿1)`Õø ÚøB¿HÊø(Fð®è˜ÐøüDhâh!Fð¬è(ðˆ„Fhoð@AˆB¿00`–ph‚l˜*Ðøl0Fퟌ�G€F(ð„„0hoð@AˆBÐ80`¿0FðïØø&–HEðw„ ™BÍéa™¡ë€@Fé÷Tü.F¿0hoð@AˆB@𕂠,ð›‚Øøoð@AˆBÐ8Èø¿@FðØî
˜ð>ï(ðp„F ðï(ð}„F ÉéFºñÍé¿Úøoð@AˆB@ðw‚-¿(hoð@AˆB@ðw‚˜Ýø (¿hoð@AŠB@ðs‚˜ÐøÐDhâh!Fð èF(HFÍøð3ƒ(hoð@AˆB¿0(`•hh‚l˜*ÐøX(Fð1ƒGF(ð2ƒ(hoð@AˆBÐ8(`¿(Fðvî˜ÐøÐThêh)Fðîï(ðƒFhoð@AˆB¿00`–ph‚l˜*Ðøü0FðƒG€F(ðƒ0hoð@AˆBÐ80`¿0FðJî`h&™–ˆBðƒ ªë€‚ FÍøH€Íéié÷—û.F¿0hoð@AˆB@ð:Øø!‘oð@AˆBÐ8Èø¿@Fðî-ðƒ hoð@F°BÐ8 `¿ Fðî(h"’°B¿0(`˜Õé‘’Cl(iÓøx2˜G	˜ÐøÀ@˜fhÐø؂0FAFðŒè(•ðé‚AhÑøˆ0C±!F2FÐF˜GX¹FòàJ(ãhoð@AÐFŠB¿Q`	˜ÐøÀ`˜uhÐø̢(FQFðhè(ðςF@hÐøˆ0ƒ± F1F*F˜G(ð}…F@hÂF™OðˆBЈá!hoð@BÂF‘B¿1!`”™OðˆB@ðzæh.ðv1hoð@@¥hB¿11`)hB¿H(` hoð@A•ˆBÐ8 `¿ FðŠí",Fªë‚ FÍéhé÷áú.¿1hoð@B‘B@ðŒ€(ð„‚!hoð@E©BÐ9!`ÑF Fðjí0Fh$”©BÐ9`¿ð^í”ðüï™Ýø4°)vۻñoÝ	˜·î›OêË
%ñ(Ÿí܋°îH«
œÈF´ì0FSì+ðyþAì»ñ:ìïщî
Ýø4°HFYFí9 î ì÷ј]DÑD…BØÛAà9)`ô­°FF(Fðí0FFFå80`¿0Fðí hoð@AˆB?ô>­8 `¿ Fðí -ô8­Fò¦:AòžOð$Oð	Òã80`¿0Fðîì¾æ91`ôp¯F0Fðäì(Fiç XDˆBüÛ˜ð„ïœ™`hÑøl-ðHxDðÎîÝø °(Ýéi@ðúœAF" F¨GFðÈî-ðê hoð@AˆB@ðñ-ð÷(hoð@D BÐ8(`¿(Fð¨ì0h B¿00`0F»ñ¿Ûøoð@B‘BÑ.¿1hoð@B‘B ѹñ¿Ùøoð@B‘B Ñ.¿1hoð@B‘B#Ѱ½ì‹°½èð½9ËøÝÑFXFðtì F×ç91`ÛÑF0Fðjì FÕç9ÉøÚÑFHFð`ì FÔç91`ØÑF0FðXì FÒç80`¿0FðPì ,ôe­žFò!A.@ðøâ8Êø¿PFð<ì€å8(`¿(Fð6ìåQ`ô‰­ð.ì…å"&¡æFòZ:AòšàFòd:Aò› $Oð	ÍéOðãðîì(@ð©ƒ(Fç÷öþ(@ð̓Fòs:àððì(ô§«Fòu:
àðÖì(¹ Fç÷àþ(@ð»ƒFòx:AòžÚâðØìF(ô+Fòz:Aòž$Ñâåh°F-ðzƒ)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ FðÊë 4FFFÿ÷¯»Fò:AòžOð¦âØø`.?ôӫ1hoð@@Øø@B¿11`!hB¿H `Øøoð@A”ˆBÐ8Èø¿@Fðœë  Fÿ÷µ»Fòª:Aòžlâ¿¿¿dùÿ˜"OðÐø4˜iè÷þù(ðƒFè÷5ú hoð@AÝø °ˆBÐ8 `¿ FðlëÍøP€Fò¹:AòŸMâð<ì(@ðƒ Fç÷Cþ(@ð ƒFòJDàð<ìF(ôάFòJ:àð"ì(@ðí‚(Fç÷*þ(@ðƒFò’J+àð$ì€F(ôã¬Fò”J"àæh–.ðނ1hoð@@¥hB¿11`)hB¿H(` hoð@A•ˆBÐ8 `¿ Fðë ,FÑäFòªJAòªOð $Oð	õáèHAFxDhhðíFòàJBàäHQFxDhhðí FòâJàFòöJ˜oð@AhŠB.ÐQ`+Ñðäê(à FAF"ðîìFÝø °Ýéi hoð@AˆB?ô®àð¨ë(ð‚œ% hoð@AˆB?ô®8 `¿ FðÀê-ô	®FòZAò°Oð$Oð	 á¿H«)FxDÍé ªXFð8ü(ñ‚Ýé¤ÿ÷ê¹ðxë0¹ Fç÷ý(@ðh‚Fò
ATàðzë€F(ô|« FòA+àØø`–.ð=‚1hoð@@Øø@B¿11`!hB¿H `Øøoð@A”ˆBÐ8Èø¿@Fðfê  Fÿ÷d»ž Fò%Aö±0hoð@BBÐ80`Ñ0FFðPê!FàFò'A0hoð@BBÐ80`Ñ0FFð@ê!F ˜OðÍøP€(¿hoð@CšB@ðˀHAò¦KxDÍøL€{Dã÷û˜©ª«ðêÿ(ñƒ€xJ˜zDAhh‘B@ð‹hoð@AŠB¿Q`
˜ðtê(ퟬ�F ðLê(ð‹ž€FÀøAF0Fð2ì(ퟌ�F0hoð@D BÐ80`¿0Fðê騸 BÐ8Èø¿@Fðàé˜(¿hoð@B‘Bzј$”(¿hoð@B‘Bvј”(¿hoð@B‘Bsјlh
`!‘(¿hoð@B‘BlѺñœ¿Úøoð@AˆBhÑ,oÐ hoð@AÝø ˆB?ôüª8 `ôøª Fðœéÿ÷óºFòN@Aò§
 Oð	˜lh
`(¿hoð@B‘B@ðۀºñœž¿Úøoð@AˆB@ðՀ.ð܀0hoð@A
ˆBÐ80`Ñ0Fðjé Ýø0 Qà:`ô1¯Fð^é!F+ç9`¿ðXé~ç9`¿ðRé‚ç9`¿ðLé…ç9`¿ðFéŒç8Êø¿PFð>é,ÑÝø ÿ÷º¿__%|ýÿîRùÿ+bùÿ†]FòÞ:Aò£Oð$Oð	 ÍéÝø °	àFòà:Aò£$Oð	 Íé˜(¿hoð@B‘B6ј(¿hoð@B‘B4ј(¿hoð@B‘B2ѹñ¿Ùøoð@AˆB/Ñ,¿ hoð@AˆB0ѸñÝø¿Øøoð@AˆB,ÑXHQFXK*FxD{Dã÷Àùž ÿ÷0¼9`¿ðÎèÂç9`¿ðÈèÄç9`¿ðÂèÆç8Éø¿HFðºèÇç8 `¿ Fð²èÇç8Èø¿@FðªèÊç9`¿ð¤èç8Êø¿PFðœè.ô$¯Ýé¥çFò1þ÷j¿Fòø!þ÷f¿Fòÿ!þ÷b¿ðˆë(Fôu®FòZ@Aò¨çæFò\@Aò¨
ãæFò^@àOð	Fòc@Aò¨
ÙæÍøT€Zä %œäFòµ:AòŸ:çOðFòJàOðFò’JÍøT€AòªCå&ÿ÷ºHIxDyDhhð.èwå&ÿ÷C¹FòâJOåFþ÷ҿFþ÷þ¿ÝøFÿ÷¤¹ÝøFÿ÷͹Fÿ÷¹JPùÿ‹_ùÿÜYLùÿðµ¯-釰EL&–|DòLv–S±ë‚б*3Ñ	hžh‘.Û[à*+Ñ	h‘ð°ü°½èð½žh‘F.ÛÔøLWšF
ñ$FXø$¨B6Ð4¦BøÑ$Xø$(F"ðºú()Ñ4¦BôÑðºè(JFCÑ&H&&IxD&L'KyDh|D{Dh%M’"F}DÍéeð¬èFòa!HAò¿ KxD{Dã÷«ø °½èð½×Ô[ø$‘)ÒИ>JFSF.§ÛFH­YFxDÍé ªF+Fð4ù(
Ô™ FðHü°½èð½FòóQÍçFòøQÊ猡Š‚ýÿâXB=ùÿނýÿ7ùÿd]ùÿ‚?ùÿa]ùÿðµ¯-鍰ëNF ~DòLp
–ƒ±ë‚*ðŀ*@ðí€Ñø ˜hÍø$ (Ûðؽ*@ðá€Ñø Íø$ Úø‘øWÀ@ð±„ðkBð­„Ñø¬ *𠄑h)Û2hƒBð „29øÑÖøÐD0hâh!Fðºè(ð(†€Fhoð@AˆB¿0ÈøØøÖøè‚l@F*ð)†GF(ð*†Øøoð@AˆBÐ8Èø¿@Fðï¶HihxDhBð(† $
©B1‘¡ë€(FÍø Íé
Jè÷[ü,‚F¿ hoð@AˆB@ðƒºñðƒ(hoð@AˆBÐ8(`¿(FðäîÚøÖø„‚lPF*ð†GF(ð†Öø|  F"ð†é(ð†F hoð@AˆBÐ8 `¿ Fð¾îHŽJxDŽIzD’Ðø°yD‘]E¿h…BTѥë°ú€ð@	WàÍøFÓø¹ñÛ˜šF
ñ$ÐøLWFVø$¨Bðù„4¡E÷Ñ$Vø$(F"ð\ù(@ðê„4¡EóÑðZï(BF@ðl…pH&pIxDpLqKyDh|D{DhoM’"F}DÍéeðLïFöê!kHAò<"jKxD{Dâ÷KÿOðXF
°½èð½h…B§Ð(Fð”ï(ñL†)hoð@B‘BÐ9)`ÑF(FðFî F(@ð’…ÚøÖø„‚lPF*𩅐GF(ðª…Öø|BÐPJhhzDhB@𪅨h ð(Ñèh8°ú€ðF	à&à&(hoð@AˆBÐ8(`¿(Fðî˜ÐøÐThêh)FðˆïF.wÐ,𜅠hoð@AžˆB¿0 ``hÖø0‚l F*𜅐G€F(𝅘𝅥𝅮hoð@AˆBÐ8 `¿ FðâíØø™ˆB𗅠$™‚‘™Íé
J¡ë€@Fè÷.û,F¿ hoð@AˆB@ðd‚-ðj‚Øøoð@AˆB™Ð8ÈøÑ@FFð´í!F]E¿h…B@ðV¥ë°ú€ð@	ZáH hW¨V¨V|V"V‚:ùÿքýÿR4ùÿ¤ZùÿNGùÿ¡Zùÿ~U,ðօ hoð@AÝø °ˆB¿0 ``hÛøØ‚l F*ðՅGF(ðօ hoð@AˆBÐ8 `¿ FðhíÚøÛø,‚lPF*ðͅGF -–ðʅ(F!"#ð[ù(ðɅ€F(hoð@AˆBÐ8(`¿(FðBí ðˆí(ð¼…FÀø€ð€î(ð¾…ÛøÐD€FÛøâh!Fð¬î(ð½…Fhoð@AˆB¿00`phÛø„‚l0F*𽅐G˜(ð¾…0hoð@AˆBÐ80`¿0FðíÛø¼@Fšð²í(ñ¶˜oð@AhˆBЙ8`¿˜ðòìžËFphl,ð«…ÏHxDðæî(@ð­…0F)FBF GFðäî¹ñð½…0hoð@D B@ðç(h B@ðíØøoð@AˆBÐ8Èø¿@FðÂìÛøXFŠl™*Ñø4𑅐G€F(ð’…Øø™ˆB@ð¬„Øø@,ð§„!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@FðŒì ¨F™BÍé
I¡ë€@Fè÷áù,¿!hoð@B‘B@ð·(ðg…Øøoð@D¡BÐ9ÈøÑF@Fðhì(Fh¡BÐ9`¿ð`ìPFIFð¿ý(ðN…ƒFgá˜h…B?ô¥®(FðŽí(ñ‹„)hoð@B‘BÐ9)`ÑF(Fð@ì F(rÐÖøÐD0hâh!Fð¶í(ð6„€Fhoð@AˆB¿0ÈøØøÖøà‚l@F*ð4„GF(ð5„Øøoð@AˆBÐ8Èø¿@Fðì`h™ˆBð(„ %™BÍé
Z¡ë€ Fè÷^ù-ƒF¿(hoð@AˆB@ð"»ñð( hoð@E¨BÐ8 `¿ FðæëÚø¨BÐ8Êø¿PFðÜëà8 `¿ FðÔëºñô⬠Aòp"Fö¢;mâÓFÙøÖø4‚lHF*𠃐GF(ð¡ƒ`h™ˆB@ð•‚åh-ð‘‚)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ Fðšë 4F™BÍé
[¡ë€ Fè÷îø-¿)hoð@B‘B3Ñ(ðsƒ!hoð@E©BÐ9!`ÑF Fðxë0Fh©BÐ9`¿ðpëÛøoð@AˆBð¢0ËøOð	ÚF†á8 `¿ Fð\ë-ô–­Föù;Aòw"câ9)`ÈÑF(FðLë0FÂçETùÿ&Aò}"Fö‚Kœ hoð@AˆBÐ8 `Ñ FFð6ë"Fe±(hoð@AˆBÐ8(`Ñ(FFð(ë"FOð	¸ñÐØøoð@AˆBÐ8ÈøÑ@FFðë"F.¿3hoð@A‹BSјp±˜oð@AhˆBЙ8`јFðüê"FïHYFïKxD{Dâ÷ÞûOðºñðÚøá80`¿0Fðæê(h B?ô®8(`¿(FðÜêØøoð@AˆBô®æ8(`¿(FðÎê»ñôخ Aòx"FöKxâ9!`ôE®F Fðºê(F>æY1`¨Ñ0FFð²ê"F¢çÑø€BÐ)ùÑÈIyD	hˆBôc«ÖøÐD0hâh!Fðì(ð$Fhoð@AˆB¿0(`hhÖøØ‚l(F*ð"G€F(ð#(hoð@AˆBÐ8(`¿(Fðzê±HØøxDh©Bð $
©BÍé
J¦ë€@Fç÷Åÿ,‚F¿ hoð@AˆB@𛀺ñð¡€Øøoð@AˆBÐ8Èø¿@FðLêÙø‚l˜*Ðø4HFðG€F(ðØø¨B@ð¿€Øø@,ðº€!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@Fðê ¨F¦ë€B@FÍé
Jç÷mÿ,¿!hoð@B‘BSÑ(ðހØøoð@D¡BÐ9ÈøÑF@Fðöé(Fh¡BÐ9`¿ðìéÚøoð@AˆBÑÓFXF
°½èð½0ÊøOð	ÓFoð@AˆBÐ8Êø¿PFðÐé¹ñ¿Ùøoð@AˆBÑXF
°½èð½8 `¿ Fð¼éºñô_¯FöG;Aòl"Àà9!`¨ÑF Fð¬é(F¢ç8Éø¿HFð¢éXF
°½èð½?õ«[ø$	(?ô«F©ñÝé–SFBFŠF(ÿö/ª:H	®YFxDÍé 
ªF3Fðû(ñú€Ýéjÿ÷º $_çðLê(¹ Fæ÷Uü(@ð‡‚Fö01Aòl"eàðNê€F(ôݮ Aòl"Fö2;&OðOð
 æØø@,?ô߮!hoð@@Øø`B¿1!`1hB¿H0`Øøoð@AˆBÐ8Èø¿@Fð6é °FÂæðê€F(ôð®FöU1Aòm"Oð	âFöi;Aòm"0à %…å¿t@ùÿÇSùÿN4NøzýÿFöÚ!ÿ÷¥ºðäé(¹ Fæ÷îû(@ð"‚Fö‹1Aòp"êHêKxD{Dÿ÷˜ºðâéF(ô֩Fö;Aòp"Oð
Oð	 &Øøoð@AˆBôǭÎåìh,ðâ!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(FðÆè 5Fžÿ÷¹¹ð¨éF(ôæ©Fö°1Aòq"Oð	­áAòq"Fö²;eàÃH"ÖøDOð	xDkæ÷#ÿ(ð©Fæ÷[ÿ hoð@AˆBÐ8 `Ñ Fð”èFöÃ1Aòr"ˆáðvéF(ôVªFöÕ1Aòu"Oð	{áFöß!ÿ÷ºÙJzDhBð,(F"ð,ëðæù(@ñ” Aòu"Fö×;&Oð0åð<é(¹(Fæ÷Eû(@ð}Föâ1Aòw"Oð	Náð<é€F(ôcª Aòw"Föä;&Oð%娸@,ðK!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@Fð$è ¨Fžÿ÷FºðéF(ô_¬Fö6AAòy"Oð	ÚF
áÚF Aòy"&Oð%FöJKÂäFö´;Aòq"Cà $ÿ÷r»ðÒè(¹ Fæ÷Üú(@ðFöAAòx"Oð	åàðÒèF(ô˫Fö
KAòx"ñæåh-ðì€)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ FðÆï 4Fžÿ÷¹»Föý;Aòw" Oð&-􀬋äðŠè(¹(Fæ÷“ú(@ðրFölAAò}"Oð	œàðŠèF(ô*ª Aò}"FönK&Oð%F]äðxèÿ÷0ºAò}"FöqK&OðàAò}"FösKà Aò}"FövK&%ÿ÷3¼ Aò}"Fö{K&Oðÿ÷(¼ðBè(¹ Fæ÷Kú(@𓀠Aò}"Fö}KHàðB萘(ôBª Aò}"FöKÿ÷	¼·î&•í´î@ñîú¿&ÿ÷%¹0F)FBFðJéF(ô^ª 4FAò}"Fö„K&ÿ÷껂<ùÿÕOùÿ›ðè€F(ônªFö“AAò~"àðòïH³ Aò}"Fö„K&ÿ÷̻Fö§KAò~"æFöµAAò" H!KxD{Dá÷êÿOðÿ÷¼ $4æFö¿1Aòr"íç $Îæ %*çHIxDyDhhðÎîÌçFQ䞀Fþ÷²¿žFÿ÷â¸Fÿ÷¾¸ž€Fÿ÷«ºÝø °Fÿ÷O¹Ýø °Fÿ÷ª¹ZJG[9ùÿŒ8ùÿßKùÿðµ¯-é‚°FFKh “øW@Õ j¹ŠhZ±Ëh“H"FIxDyDhhð‚ï °½è𽮐FéF
FFIF2F#ðœ週˜)F@høWÀðÔ	H"F	IxDyDhhðbïÞç ¸ñÛÑ›+ØÐÍç¿<Fû(ùÿ|F$Hùÿðµ¯-é…°F FÍéoð@F`h‘¹h@më	ëñ@˜Oð
(¿h±BÑ˜Íø (¿h±BÑ˜Íø (Ô©ª« FðDéð¹Ëà9`¿ð6îäç9`¿ð0î˜Íø (çÕ˜¡hˆB€ò·€™ë€«ÒhQø 0øhUø 0˜ƒ±BFIFhƒBÐRø;1+÷Ñà˜` Íé±çh±B¿1`˜h±B¿1`˜@høWÀ@񯀸hUø ³ÊFÃFàðÄî(DÑ[ø
ñ
 ±™hŠhƒh“BôÑðìè°ñÿ?ëÝ(íÑ˜Êø[ø(ôx¯¸h„ÑHHIIxD›yDàðœîð¹<ñòÐ(h™h‹BЈhšh‚BòÑFðÄè°ñÿ?éÝ(êÑ›;H;IxDyDhhúhð„î˜(¿hoð@B‘Bјè±hoð@B‘BÑOðÿ4 F°½èð½9Oðÿ4`Ð F°½èð½9`¿ð€í˜(áÑOðÿ4 F°½èð½ðtí F°½èð½˜(¿hoð@B‘Bј1hoð@B‘BÐ9`Oð¿ðXí F°½èð½9`¿ðNí˜(æÑ$ F°½èð½	H	IxDúhyDhhðî–ç¿ÀDfFùÿ‚D³$ùÿ²Co&ùÿðµ¯MøˆBð“€ZLKh|DFh$h¦B¿£B,ÐVMf@}DÕø€ê.Cð‡€c@€ê3C³úƒó[	~ÑðÂïx³FLHxDh„B.ÐKIyD	hŒB¿DE'Ð Fð:î!hoð@B‘B(Ñ]ø‹ð½„h‹hœB_ÑËh^¿Æhñ%Ñi
iÃó‚Åó‚°EPўÔÐøÀ!àOðÿ0]ø‹ð½ °ú€ð@	!hoð@B‘BÖÐ9!`ÓÑF FðÄì(F]ø‹ð½žB0ÑÖçñ[X¿ñ¨ÔÑøààñhX¿ñ¸ñиñ	ўøœøà¾ø¼øàÞøÜøBÑ,
ѐ°ú€ð@	]ø‹ð½Ð°ú€ð@	]ø‹ð½ûôF`FqF"Fð–ï(°ú€ñ¿ -¿H	]ø‹ð½¿ÂCHC>C8Cе¯H¹ðÖíÁk)¿Jh*Ñ нFhoð@B‘BÐ9`¿ðRìH"FIxDyDhhð*íOðÿ0нFHxDhhFæ÷œø€±ák àc)ÙÐhoð@BBÓÐ8`¿Fð.ìÌçOðÿ0н¿öA°#ùÿtBе¯ðŽíÁk)¿Jh*Ñ нFHxDhhFæ÷lø€±ák àc)ðÐhoð@BBêÐ8`¿FðþëãçOðÿ0н¿Bðµ¯Mø½RLFh|D%h®B$ÐPL|D%h®B5ÐÖé
V.¿sh+RÑ-¿ëh+CÑFFð¨î(ðƒ€F(F!Fðèì!hoð@B‘BKÑ]ø»ð½±ñÿ?FÜF*¿‚hV±‚h–BÞÒÀhPø&hoð@B‘BçÐà±ñÿ?FÜF*¿‚hV±‚h–BÈÒë†Àhhoð@B‘BÑÐ1`]ø»ð½±ñÿ?Üú¹êh]ø»½èð@GFFðZrhF(F!FG!hoð@B‘B³Ð9!`°ÑF Fðxë(F]ø»ð½F)hF©± FˆG(Ô1F Fêh]ø»½èð@GHxDhhðtëH±ðzë F1Fêh]ø»½èð@G ]ø»ð½¿4A&A²@°µ¯Fðbî8±hoð@B‘B¿1`°½FðìF(F)÷Ñ`høW@ÔH!FxDhhð>í(F°½ !Fð¸ëF((FáÐH!FxDhhð,í!hoð@B(F‘BÔÐ9!`¿°½ Fðë(F°½¿&@H@°µ¯Ah‘øWÉ
Ёh)ٽè°@ð|ºðÀhÁñHC°½ðøˆ±Fÿ÷åÿ!hoð@B‘BóÐ9!`¿°½F FðØê(F°½Oðÿ0°½¿€µoFAh‘øW ÒÐhoð@B‘Bр½1`€½	k)¿	l)Ñð’ë8¹HIxDyDhhðšê €½ˆG(ïÐIBhyD	hŠB¿€½IyD½è€@àx>U3ùÿš>¥$ùÿе¯‚°F@h
FøWÃhÈ
ÑHxDhhI“FyDðdë	àH!JxDzDhhðªíX± hoð@AˆBÐ8 `¿ Fðnê$ F°н¿ö>ŽùÿD>Fùÿ°µ¯FFHxDhh(¿ BÑ[h+÷Ñ ``(`°½`oð@Bh“B¿3`Ch`h‘B¿1`ð´ë(`°½¿Æ=ðµ¯Mø„°FÀkF!˜FF‘ácÍéX±Ahoð@C‘
hšB¿2
`ð”됨©ªðNíàk(lÑ™q±˜ðÖë(eÔ˜(¿hoð@B‘B1¿`˜(¿hoð@B‘B1¿`˜@±hoð@B‘B¿1`˜à š™2`(`Èø!lh`˜(¿hoð@B‘Bј(¿hoð@B‘BÑô± hoð@AˆBÑ °]ø‹ð½8 `Ð °]ø‹ð½9`¿ðºéÞç9`¿ð´é,àÑ °]ø‹ð½ Fðªé °]ø‹ð½˜!1`)`Èøà÷…ù˜à÷‚ù˜à÷ùOðÿ0°]ø‹𽰵¯„FhÌø (¿hoð@EªBÑ)¿hoð@BBÑ+¿hoð@AˆBѰ½:`íÑF
Fðné)F#Fæç8`êÑFFðdé#Fäç8`¿°½F½è°@𹸰µ¯Ah‘øWÉ
Ёh)ٽè°@ðոðÀhÁñHC°½ÿ÷pþˆ±Fÿ÷åÿ!hoð@B‘BóÐ9!`¿°½F Fð2é(F°½Oðÿ0°½ðµ¯-éFhµk-¿Õø<ñÑ>H>IxDòhyDhhðöé ½èð½+±h½è½èð@`G€F×é
1N~Dx± ±FFFðÐë2FNF!F(FâÐ:±h$à0hOð	*÷ѺñBÐFFðºëF FFá³2hð‚é¹ñF¿Ùøoð@AˆBÑ,¿ hoð@AˆBÑ.¸Ðjh@F1FG1hoð@B‘B°Ð91`­ÑF0FðÀè F½èð½8Éø¿HFð´èÚç8 `¿ Fð®è.Ûѓç1h°çHFà÷øç;f;ý9ùÿðµ¯-遰-í‹¢°
“#F‘	h!’ “Íé3“oð@C™B¿1ž1`h¼h™B¿1`oð@A hˆB¿0 `˜HxDÐøÐdhòh1Fðîé(”ðiFhoð@AˆB¿0(`•œhhÔøà‚l(F*ðoG‚F(ðp(hoð@AˆBÐ8(`¿(FðHè ðŒè(ði™oð@B	h‘B¿1š`™Á`ð|é(ð`FtHÔøtxDÐø(FJFðÔè(jÔÚøžl,ð[kHxDðê(Cð„PF1F*F GFðê-ðu•Úøoð@Dž BÐ8Êø¿PFðúï˜h¡BÐ9`¿ðòï˜%•Íø\h¡BÐ9`¿ðäï˜Ýøt •h BЙ8`¿˜ðÖï Öø„Úø‚lPF*ðG(ðÖøxAKˆB{D“!ÐBhhšBCð}‚hðàOð	@ò©6Cò.,# Oð%ÍéÍé
Í鐐ð¹¾$hoð@B‘BÐ9`¿ð’ï (M)H}DxD	(HÍøH xD•Œ±ðòèFlÕø°h-¿]E@Ñ@h(÷Ñ %JàÚøÖø„œ‚lPF*ðᇐG×ø°(ðâ‡Öø|ˆBð‚Bh#hšBDðفh!ð)@ðd„ÁhL¿$hoð@B‘B@ð‚â@‚Š9¥:ùÿ¨8,8b8@8)hoð@@B¿1)`jhhB¿H`(F’ð è0FÖøüdhòh1Fðžè(ðóFhoð@AˆB¿0 `”ž`hÖøl‚l F*ðóG(ðô hoð@AˆBÐ8 `¿ Fðúî Öø Úø‚lPF*ðぐG‚F(ðä	™ÚøÍøLOð	Ñø€@ECð€Úø`.ð€1hoð@@Úø@B¿11`!hB¿H `Úøoð@AˆBÐ8Êø¿PFð¾î"¢F¨Íéiñ	PF©ë‚æ÷ü.¿1hoð@B‘B@ð5(ð<Úøoð@AžˆBÐ8Êø¿PFð˜î˜AhAEð’"$ÝøH ÝéÍéA©ë‚2æ÷åû,¿ hoð@AˆB@ð˜oð@Bh‘BÐ9`¿ðrî˜!‘(ð˜oð@Bh‘BÐ9`¿ð` ˜(¿hoð@AŠB@ðõ€-¿(hoð@AˆB@ðó€˜(¿hoð@AŠB@ðñ€Öøx"˜ðôè(ðj‚™	hˆB¿šBÑA±úñL	àXEøÐðfï(ñ†F˜hoð@B×ø°‘BÐ9`¿ðî ,ð†ÖøÐD0hâh!FðŠï(ð˜…hoð@B‘B¿1`AhŠlÖøT*𛅐G(ðœ…˜oð@Bh‘BÐ9`¿ðèí˜"’AhAEð…!™›˜Íé1©ë‚2æ÷6ûF˜‘P±hoð@B‘BÐ9`¿ðÈí™ )ð—…˜oð@Bh‘BÐ9`¿ð¸í˜$Öøx”ˆB	ЛBhhšBDð	€h""êhoð@B‘BÐ9`¿ðœí ,ð
&H"ÖøÐxDiå÷
ü(ðŒ„å÷Eü˜oð@Bh‘BÐ9`¿ð~íOð	@ò±6ÍøxCò<#ðu½H0`¿0Fðní˜(ôĮžCòt,ðЏ8 `¿ Fð^íàæQ`¿ðXíç8(`¿(FðRíçQ`¿ðLíçæ„$hoð@B‘BÐ9`¿ð>í ,Cð¾…ÚøÖø,‚lPF*ðۅGF(ð܅ F!"#ÿ÷-ù(ðۅ hoð@AˆBÐ8 `¿ Fðíš!ÖøxÍé‚B’@ð€€ÖøÐT0hêh)Fð„î(ðӁFhoð@AˆB¿0 `”`hÖøT‚l F*ðԁG(ðՁ hoð@AˆBÐ8 `¿ FðÞì	›"˜’hAh™Bðǁ!™Ýé0Íé1©1¡ë‚2æ÷)úF˜‘P±hoð@B‘BÐ9`¿ð¼ì™ )ð́˜oð@Bh‘BÐ9`¿ðªì˜$Öøx”ˆB	ЛBhhšBDퟘ�h""êhoð@B‘BÐ9`¿ðì ,C𑃱F.F-h«Eð6XFðï€F0ð·€ÙøÐDÙøâh!Fðöí(ð±€hoð@B‘B¿1`AhŠlÙø\*𳀐G(ð´€˜oð@Bh‘BÐ9`¿ðTìÙøÐD!Ùø‘âh!FðÊí(𤀂Fhoð@AˆB¿0ÊøÚøÙøô‚lPF*𧀐GF(ð¨€Úøoð@A•ˆBÐ8Êø¿PFð"ìÙøÐTÙøêh)Fðší(𚀂Fhoð@AˆB¿0ÊøÚøÙøü‚lPF*𞀐GF(ðŸ€Úøoð@AˆBÐ8Êø¿PFðòë	™`h	h‘ˆB𖀠&ÝøH ©B1‘¡ë€ FÍéeæ÷<ù.¿0hoð@AˆB@ð¾€(hoð@AˆB@ðĀ˜ž(ðʀ hoð@AˆBÐ8 `¿ Fð¾ë˜ÖøÐBh’l*ퟘ�GF(ð‡€˜oð@Bh‘BÐ9`¿ð¤ë˜"’›Ah™Bð{€ÝéÍ陡ë‚2æ÷òøF˜‘(¿hoð@B‘B@𔀠oð@A hˆBÐ8 `¿ Fðzë˜(ðv€˜ÁFoð@Bh‘BÐ9`¿ðjëÝøt€"Ûø0k’B’ð…€Ñø¬ *yБh)Û2hƒByÐ29ùÑÍø8€kâ ªFÝø„€¨E@ðׄ˜5FNFhhoð@@B¿1š`Ùø@!‘!hB¿H `Ùø@Ùø|'oð@AhˆB¿0`Öø|'!˜!’hŠBð”…Q`@ð…ðëðŒ½80`¿0Fðë(hoð@AˆB?ô<¯8(`¿(Fð똞(ô6¯ OôovCòÙ<Oð	#Fð÷º9`¿ðîêeç$hoð@B‘B?��åÑø€BÐ)ùÑÞIyD	hˆBˆÑÖøÐD0hâh!FðTì(ðЃhoð@B‘B¿1`AhŠlÖøœ*ðԃGF(ðՃ˜oð@Bh‘BÐ9`¿ð²êÛøÖø¼‚l XF*ðɃG!(ðʃ‘hh™ˆBð˃ ÝéÍé!‚ñl‘™¡ë€(Få÷ìÿF˜‘(¿hoð@B‘B@ðY˜$”oð@Bh‘BÐ9`¿ðtꘔ(ðă(hoð@AˆBÐ8(`¿(FðdꙘÑø PE¿™ˆB@ðþ€ ë
±úñL	hoð@B‘BÐ9`¿ðJê ,ðü€ÖøÐà÷	û(ðé„F@hÖø\‚l F*ð焐G(ðè„ hoð@AˆBÐ8 `¿ Fð&êÖøÐà÷éú(ðï„AhŠlÖøô*ðGF(ðð„˜oð@Bh‘BÐ9`¿ðêÛøÖø¼‚l XF*ðᄐG(ðâ„hh™ˆBðå„ $™BÍéA™¡ë€(Få÷EÿF Fß÷Éù˜oð@Bh‘BÐ9`¿ðÖé .ðç„(hoð@AˆBÐ8(`¿(FðÆéph‚l˜*ÐøÐ0FðڄGF(ðۄ0hoð@AˆBÐ80`¿0Fð®é˜šAh‘BðԄ"$™˜¡ë‚2žÍéEå÷ûþ Fß÷ù(hoð@AˆBÐ8(`¿(FðŒé˜(ðׄ˜oð@Dh¡BÐ9`¿ð|é AF"Øø B¿0Èø˜Íøx€ð$ì(ð¿„PEF¿˜„BѤë
ÝøH °ú€ð@	!à)hˆB?ôþ®ð–ê(ñµ„F˜hoð@B‘Bôû®þæÍø8€ÝøH aà(h„BÝÐ Fð~êÝøH (ñY†!hoð@B‘BÐ9!`ÑF Fð.é(FP±˜©	à9`¿ð$é æü.˜©hoð@CšB¿2`oð@E˜hh©BÐ9`¿ðé˜!‘h©BÐ9`¿ðé” h¨B	ÐA!`©BÐ( `¿ Fðòè˜Øø¨BÐ8Èø¿@Fðæè 3HxD@lÐø´ÐøA ˆGF"@ò#ÍéXF G(ðՅ€Fhoð@D BÐ0Èø˜h¡BÐ9`¿ðºèÛø!‘ BÐ8Ëø¿XFð¬èÕø ÐEÐ1k@Fðpù(ð~€ØéÖø„‚l@F*𷅐G(ð¸…Öø|ˆBЛBhhšBCðn€h!ð)AðЃÁhM¿%hoð@B‘BÑà‚{%hoð@B‘BÐ9`¿ðnè-Bð•…ØøÖøP‚l@F*𫅐GF(𬅙(F"ðë(ðª…(hoð@AˆBÐ8(`¿(FðHè™˜Ñø°XE¿™ˆB@ð| ë±úñM	hoð@B‘BÐ9`¿ð0è -Bð‰…˜IFÂn FGÖøÐDF0h
Fâh!Fðœé(ð§…Fhoð@AˆB¿00`ph‚l˜*Ðø0F𻅐G(ð¼…0hEì›oð@AˆBÐ80`¿0F
ðöïHF)FðRè(ð¿…F˜šAh‘Bðȅ"%ž™˜¡ë‚2ÍéTå÷<ý-¿(hoð@AˆBA𨃠hoð@AˆBA𮃘(𴃘oð@Bh‘BÐ9`¿
ð¾ï˜!‘XE¿™ˆB@ð ë±úñL	hoð@B‘BÐ9`¿
ð¦ï ,Bð«…ÖøÐà÷eø(ðå…AhŠlÖø*ðö…GF(ð÷…˜oð@Bh‘BÐ9`¿
ð‚ï ÖøØÙø‚lHF*ð腐G(ðé…Ùøoð@AˆBÐ8Éø¿HF
ðfïÖøx@F"ðê(ðڅF˜šAh‘BBð’€Åh-ퟸ�hoð@@*h‚B¿2*`
h‚B¿P`˜oð@B‘h‘BÐ9`¿
ð8ï"™˜¡ë‚2ÍéTå÷Žü(FÞ÷ÿ hoð@AˆBÐ8 `¿ F
ð (🅘oð@Bh‘BÐ9`¿
ðï˜!‘XE¿™ˆBfѠë±úñL	hoð@B‘BÐ9`¿
ðøî ,Bð…¿î8î°îÀQì
ðJï(ð¨…™"ðšé(ð§…˜oð@Bh‘BÐ9`¿
ðÒî˜!‘XE¿™ˆB8Ѡë±F±úñ.FL	;àPE?ô®
ðþï(ñô†F˜hoð@B‘Bô~®æPE?ôù®
ðìï(ññ†F˜hoð@B‘Bôö®ùæPE–Ð
ðÜï(ñè†F˜hoð@B‘B”јçPEÄÐ
ðÎï(ñô†F˜±F.Foð@Bh‘BÐ9`¿
ð|î ,BðG…ÂFÝø„€¨E?ô)«˜NFhoð@@B¿1š`!‘ØøB@F¿HÈø!˜ÖøÐD0hâh!F
ðÒï(ðíƒhoð@B‘B¿1`AhœŠlÖøT*ð„G(ð„˜oð@Bh‘BÐ9`¿
ð0î  
ðrî(ðýƒ!hoð@B‘B¿H `˜Ä`
ðdï(ð„ÖøÐTF0hêh)F
ðï(ðF„Fhoð@AˆB¿0 ``hÖø„‚l F*ðP„G(ðQ„ hoð@AˆBÐ8 `¿ F
ðîíšHFÖø¼
ð˜î(ñ˜oð@Bh‘BÐ9`¿
ðÚíœ `hl.ðç…+HxD
ðÌï(Bðù… F)FJF°GF
ðÊï,ðê…ž”˜oð@Dh¡BÐ9`¿
ð²í˜%•h¡BÐ9`¿
ð¨í•Ùø BÐ8Éø¿HF
ðœí!˜™!‘h¡BÐ9`¿
ðí˜œh ˜
™”h
B¿˜hBÑ
˜°ú€ð@	
à&ùÿ(hBôÐF
ð°î(ñö„(ð>‚.h²Eð»€Úø‚l˜*ÐøˆPFð̆GF"(Íø€Íø@ ðƆ	™’`hÑø€@EÑàh¸±hoð@A¥hŠB¿2`(hˆB¿0(` hˆBÐ8 `¿ F
ð2í",F˜%Íé¨ñ	 F©ë‚å÷„úF˜‘P±hoð@B‘BÐ9`¿
ðí™)•ð† hoð@AˆBÐ8 `¿ F
ðíž Oðÿ1"#0Fþ÷ù(ð~†F0Fð4è(Fð}†˜oð@Dh¡BÐ9`¿
ðäì 0h BÐ80`¿0F
ðØìhhœ‚l˜*Ðø¨(Fðe†G"(ðf†’AhAEÑÂh’*ðy†hoð@@hƒB¿3`
h‚B¿P`˜oð@B‘h‘BÐ9`¿
ð¦ì"ÝéÍé©ë‚2å÷üùƒF˜Þ÷€ü »ñð7†˜oð@Bžh‘BÐ9`¿
ð†ì Öøhh‚l(F*ð8†GF(ð9† 
ð¼ì(ð;†Ûøoð@B‘B¿HËø˜Àø°
ðªí(ð8†Öøð%Öø@
ðí(ñG€Ýé!HFä÷Íú(ðȇÙøoð@F°BÐ8Éø¿HF
ð>ì˜h±BÐ9`¿
ð6ì˜!‘oð@Bœh‘BÐ9`¿
ð(ì˜!ÔøÐÍéß÷æüÝøH (ð‡AhŠlÔøà*𞇐G(ðŸ‡˜oð@Bh‘BÐ9`¿
ðì  
ðDì(ð“‡›oð@Bh‘B¿H`˜Ã`
ð4í(ð‹‡šÔøth
ð’ì(ñ¤€šÝéä÷Xú(ðF˜h±BÐ9`¿
ðÎë˜OðÍøx€h±BÐ9`¿
ðÀë˜oð@BÍøt€žh‘BÐ9`¿
ð²ë ÖøìÙø‚lHF*ðڀG(ðۀÙøoð@AˆBÐ8Éø¿HF
ð–ë 
ðÚë(ðЀF˜oð@Bhh‘B¿1`Éø
ðÊì(ðƀÖø'Öø@
ð(ì(ñ{€šIF˜ä÷íù(ð~˜oð@Fh±BÐ9`¿
ð`ë Ùø°BÐ8Éø¿HF
ðRë˜oð@Dh¡BÐ9`¿
ðHë&š–(h BÐ8(`Ñ(FF
ð:ë"F –ÍéOð	Ýø@€ðm¸!˜"™
ðàí(ð…
™ˆB¿™	hˆB@ð ‡
™A±úñL	hoð@B‘BÐ9`¿
ðë ,Bðó„!˜"Öøx
ðºí(ð…
™ˆB¿™	hˆB@ð
‡
™A±úñL	hoð@B‘BÐ9`¿
ðæê ,Bðû„(h‚Eð
‡ÖøÐT0hêh)F
ðVì(𝆁Fhoð@AˆB¿0ÉøÙøÖøx‚lHF*𝆐G(ðž†Ùøoð@AˆBÐ8Éø¿HF
ð®êÖøxPF"
ð`í#(ð†	šF˜“hAh
’‘Bð‘†ÝéZÍé©1‘¡ëƒä÷îÿF˜‘(¿hoð@B‘B@𙇠oð@A hˆBÐ8 `¿ F
ðvê˜(ð‰†˜oð@Bh‘BÐ9`¿
ðhê˜"!™’
ðí(ð}†˜oð@Bh‘BÐ9`¿
ðRê!˜‘
™ˆB¿™	hˆB@ð‡
™A±úñL	hoð@B‘BÐ9`¿
ð8ê ,Bð[†Öøxoð@Bh‘B¿1`Öøx ÚøÖøt‚lPF*ðt†G(ðu†Ah%
š‘BBðƒÄh,ð{ƒhoð@@"h‚B¿2"`
h‚B¿P`˜oð@B‘h‘BÐ9`¿
ðöé"™˜¡ë‚ÍéEä÷Mÿ FÞ÷Ñù˜(ðJ†˜oð@Dh¡BÐ9`¿
ðÚ阐 Úø BÐ8Êø¿PF
ðÌéÖøÐ!‘ß÷úœ(ð.†AhÝøH ŠlÖøX*ð<†G(ð=†˜oð@Bh‘BÐ9`¿
ð¨é  
ðêé(ð0†!hoð@B‘B¿H `˜Ä`
ðÜê(ð)†F˜Öø¼hHF
ð8ê(ñx†™JF˜ã÷þÿ(ð҆˜oð@Eh©BÐ9`¿
ðré˜&–h©BÐ9`¿
ðfé–oð@AÙøˆBÐ8Éø¿HF
ðXé ™hhÑøÄ‚l(F*𪆐GF"(•ð§†’Ùø
™ˆBÑÙøбhoð@AÙøPŠB¿2`(hˆB¿0(`ÙøˆBÐ8Éø¿HF
ð"é"©F˜%Íé˜ ë‚HFä÷vþ™FÞ÷ùø˜•(ðw†Ùøoð@AˆBÐ8Éø¿HF
ðé˜#"Ýé ’“
ð®ë(ðâÍø€!oð@JOð	Oð‘
àÝé "Íøt°
ð˜ë™Còô|(ðˆƒÍéOðÝø(€–@E¿™	hˆB@ð4ƒ ëž±úñL	hQEÐ9`¿
ð¼è,Íøx°ðé…hhÖøl‚l(F*ð:ƒGF(Oðð"‚Ýé 
ðìë(ð"‚Íø|°`h
™ˆBÑàh¸±h¦hQE¿1`0hPE¿00` hPEÐ8 `¿ F
ð‚è4FžOð˜ñ™Íé˜ ë‹ Fä÷Òý™FÞ÷Uø˜•hQEÐ9`¿
ðd蘕(ðò hPEÐ8 `¿ F
ðV蘐˜Þ÷8ø ˜OðÖøx"Íøx°
ðþê(ðè@E¿™	hˆB@𷂠ë±úñL	hQEÐ9`¿
ð.è•ü±  ªÍé!˜#ý÷÷þ(ðt‡FÖøx'˜
ð’ê(ñz‡˜hQEÐ9`¿
ðè•ÖøÐß÷Ðø(ð±F@hÖøˆ‚l F*𒂐G(𫁠hPEÐ8 `¿ Fðîï˜
šAh‘Bð†‚$"™˜ÍéA™¡ë‚2ä÷<ý FÝ÷Àÿ˜(ð˜hQEÐ9`¿ðÌï˜œÍøt°Ý÷­ÿ FOðÿ1"#Íøx°ý÷Æû(ð{F F
ðôê(ðƒ˜hQEÐ9`¿ð¨ï˜• hPEÐ8 `¿ Fðœï˜•ÖøBh’l*ðK‚GLF(ðt ðÒï(ðtšhQE¿H`˜Â`
ðÄè(ðxÖøð%FÖø@
ð"è(ñN†Ýé"Fã÷çý(ðm˜hQEÐ9`¿ð\hQEÐ9`¿ðRï• hPEÐ8 `¿ FðHïHFœÝ÷,ÿÖøÐÍø|°ß÷ø(ðIAhŠlÖø*ðõGF(ðD˜hQEÐ9`¿ð&ï Íø|°ðhï(ð;!hQE¿H `˜Ä`
ð\è(ð<™BFÑøäðºï(ñ÷…Ýé!HFã÷ý(ð.ÙøPEÐ8Éø¿HFðòî˜hQEÐ9`¿ðêhQEÐ9`¿ðàîÔJ˜zD•Ahh‘B@𢁂h*AðÁh0‘h
hRE¿P`˜hQE¿1`˜hQEÐ9`¿ðºî•˜žÝ÷œþ˜Ýø|€•Ý÷–þ•™ØøÑøT‚l@F*𭁐G(ðã€Íøx°Ah
š‘BÑÂh’²±hhSE¿X`hPE¿0`˜‘hQEÐ9`¿ð€îOðÝéZFÍé™¡ë‹ä÷Ôû™FÝ÷Wþ˜•(𼀘hQEÐ9`¿ðbhQEÐ9`¿ðXî•™`hÑøÌ‚l F*ð_GOð(ð¨€Íøx°Ah
š‘BÑÂh’²±hhSE¿X`hPE¿0`˜‘hQEÐ9`¿ð(îOðÝéñÍé™¡ë‹ä÷{û™FÝ÷þý˜•(ðƒ€˜hQEÐ9`¿ðî• hÝøtPEÐ8 `¿ Fðüí•™ÙøÑøP‚lHF*ð
GF(ðn€ ˜
ð è(ðk€˜hQEÐ9`¿ðÜí˜ ª«OðIFÍøt°ðßþ(ñф˜hQEÐ9`¿ðÆí•™ÙøÑøP‚lHF*ð߀GF(ðQ€ ˜ðòï(ðN€˜hQEÐ9`¿ð¤í™ ˜ÍéQhQE?ô¶¬9`¿ð˜í¯ä™ˆB?ôȬðÐîž(ñ˄F˜hQEôŬÈ䙈B?ôE­ð¾î(ñð„F˜hQEôB­EåðZîF(OðôŬðå¾ðPî(ôm­ð¿Äh,?ôv­"hhRE¿P `hPE¿0`˜‘hQEÐ9`¿ðJí"`åð.îLF(ô´­ð&¿ð$îF(ô
®ðL¿
¯JzDh‘B\Ðð–ï(ðńF˜hQEÐ9`¿ð íOðÍøt€ÙøoHF°GF(ð·„HF°G(ð¯„HF°G!ý÷ø(ñ¾ƒÙø%PE?ôF®8Éø¿HFðøì=æðÜí(ôR®ð3¿ðÔíOð(ô ®ðF¿ðÊíF(ôò®ð^¿ðÂíF(ô ¯ðo¿‚h*@ð‡ÀhPøùå Íø@ @òÖ6Còé\#Oð


OðÌã%hoð@B‘B>ô@¬þ÷9¼›Xh‚l˜*Ðø|FðL€GÝøH (ðM€ ðàì(ðN€oð@AÕøx'h‹B¿X`˜Õøx'Â`šhˆB¿0`˜aðÄí(ð;€F˜šÐøPHFð í(ñNÝéJFã÷æú(ðµ˜oð@Eh©BÐ9`¿ðZì˜&–h©BÐ9`¿ðNì–oð@AÙøˆBÍø€Ð8Éø¿HFð>ì !šOð	Õø€Oð‘Í鐐(F‘lá8(`¿(Fð&ì hoð@AˆB>ôR¬8 `¿ Fðì˜(~ôL¬ @òÊ6
Cò"\ðb¼ @òá6Cò‹l#Oð

Íé•ã)hˆB?ôܨð6í(ñ•€F˜hoð@B‘Bô٨ÿ÷ܸ)hˆB?ôï¨ð"í(ñ‹€F˜hoð@B‘Bôì¨ÿ÷︿º˜AhŠlÖø*ðWGœ#ÝøH (ðR	š“Ahh‘BÑÂh’ʱhoð@@hƒB¿3`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ð ë#šÝéÍé©1Z¡ëƒä÷òø™FÝ÷uû˜!‘(ð!˜oð@Bh‘BÐ9`¿ð|ë˜!ª!#‘Íéý÷Gú(ð˜oð@Bh‘BÐ9`¿ðdë™ F‘HhÖø,Ãl+ð˜"F˜G!(‘)h‘jÔÍø€ š!Ýø@€Oð	ÍéOð.F(F‘|à OôyvCò§lOð	>à™ˆB?ôç¨ðlì(ñ¢€F˜hoð@B‘Bôä¨ÿ÷ç¸ CòÞl–#OðÍé@òæ6Íé
9à @òó6CòÁ|#ÍéÍé
Oð˜&à OôyvCò·l#ÍéÍé
•à9`¿ðæêÿ÷`¸ @òFCö{Oð	#OðÍéÍé
Íø` Oð
çáÝø,€oð@AØøBFˆB¿0ÈøÝø€˜Ðø ˜Íø@€PEÐFnàžFTh1k Fâ÷¶ÿ(eТlÖø *•ðŀ˜G"(ðƀ	›’Ahh™BÑÂh’*ðҀhoð@@hƒB¿3`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðzê"Ýé‘™Ñøx‘©1¡ë‚2ã÷Ëÿ™FÝ÷Nú˜!‘(ð€˜oð@Dšh¡BÐ9`ÑðTêš&–h BÐ8`¿FðHê–˜žœAhŠlÖø„*ð{„G(•ð|„Öøx"ðÃú(ñy„™oð@C
hšBÐ:
`рFFð"ê@F!‘8±(hoð@AˆB@ðЀžÐàÝøH€TELFð׀˜Öø„@h‚l*ðI€˜G(ðJ€Öøx"ðŽú(ñG€™oð@C
hšBÐ:
`ÑFFðìé0Fž!(‘ð­€ÖøÐÞ÷©ú(ð8€AhŠlÖøÀ*ðE€G(ðF€˜oð@Bh‘BÐ9`¿ðÆé ð
ë(ð9€ØøÖø¼‚l@F*ð6€GF(ð7€˜Öø¼ðZê(ñƒ‚˜oð@Bh‘BÐ9`¿ðœé˜#šÖøü“ã÷ø(ð2€˜oð@Fh±BÐ9`¿ð„é˜$”h±BÐ9`¿ðzé™@FžÍéDðÖú(ð€F˜Áh0Fðàë(ñ€˜oð@Dh¡BÐ9`¿ðZé 0h B¿00`Ýé Íé˜–œÍø`€¥àž00` œÝé Íé˜˜à™@Fð˜úF .ð‡Ýé Íé@œ˜Íø`€˜à @òû6Cöƒ#˜Oð

˜Íé¡Fà CöŸOôv#˜Oð

˜Íé@˜à 
–Cö'#Oð
@òÿ6Íø(€Íø0Oð	˜ ˜˜˜(¿hoð@B‘B@ð[ºñ¿Úøoð@AˆB@ðf˜(¿hoð@B‘B@ðn˜(¿hoð@B‘B@ðt+¿hoð@AˆB@ð{¹ñÝø( ¿Ùøoð@AˆB@ð{ßHaFßK2FxD{DÞ÷ùœ&˜(°F¿hoð@AŠB8Ñ˜Ýø4(¿hoð@AŠB4Ñ-¿(hoð@AˆB3ј(¿hoð@AŠB2Ñ,¿ hoð@AˆB1ѻñ¿Ûøoð@AˆB/ј¸³˜oð@AhˆB1Й8`¿˜ð`è)àQ`¿ðZèÀçQ`¿ðTèÄç8(`¿(FðNèÄçQ`¿ðHèÆç8 `¿ Fð@èÆç8Ëø¿XFð8è˜(ÇÑ ˜ž(œ¿hoð@B‘BIјÝé[(¿hoð@AŠBEÑ-¿(hoð@AˆBDÑ,¿ hoð@AˆBDÑ.¿0hoð@AˆBCѹñ¿Ùøoð@AˆBAѺñ¿Úøoð@AˆB@Ñ-¿(hoð@AˆBAј(GИoð@AhˆBAЙ8`¿˜ðâï9à9`¿ðÜï¯çQ`¿ðÖï³ç8(`¿(FðÐï³ç8 `¿ FðÈï³ç80`¿0FðÂï´ç8Éø¿HFðºïµç8Êø¿PFð²ï¶ç8(`¿(Fðªï˜(·Ñ!˜(¿hoð@B‘Bѻñ¿Ûøoð@AˆB
Ñ@F"°½ì‹°½èð½9`¿ðŠïèç8Ëø¿XFð‚ïéç9`ô¡®LF±FØF«FUFfFšFðtïSFªF]F´FNFÃF¡Fæ8Êøô•®PF4FªFfFFð`ï+F´FUF&Fˆæ9`ôŽ®4FªFfFFðPï+F´FUF&F‚æ9`ôˆ®4FªFfFFðBï+F´FUF&F|æ8`ô®F4FfFð4ï´F&Fxæ8Éøô€®HF4FfFð&ï´F&Fwæ@òFCö, #Oð
˜Oð	
˜Íé@˜Íé€*æ @òõ6Còô|Oð	#
Íéÿ÷¼ðÖï(Að…0Fâ÷Þù(Að+‡Oð	@ò©6Cò",࿕ùÿ%ùÿðÎï‚F(|ô®Oð	@ò©6Cò$,#Oð
ü÷(¿Oð	@ò©6Cò',ü÷¿Oð	@ò©6Cò,,ü÷¿"&ý÷¸"%ý÷ˆ¿PF1F*FðÊè(|ô®®#@ò©6Cò/,Oð	ü÷þ¾ð”ï(|ôá® Íø` #@òª6Cò>,Oð	OðÍéOð
ü÷ì¾ðjï(ðx…Oð	@ò©6ÍøtCò/,ü÷վ @òö6Oô`\ðý @òö6Cö˜#
Oð
˜Íé¡F˜å @òö6Cö#˜Oð

˜Íé¡F˜òà@ò÷6Cö%ð­½ @òù6CöFðǽ @òù6CöH*å @òù6Cö]ð¨½ @òú6Cök˜#
Oð
˜”Íé=å @òú6Cöm#˜Oð

˜”ÍéOð	˜.å @òû6Cözà @òû6Cö|#˜Oð

˜Íé@ð…½ @òû6Cöðs½ @òû6Cö„ÖäOôvCö“Oð	à OôvCö•Oð	×äCö˜Oôv #Oð
˜
˜
Bà CöÂä Cö ¾äÝø€*Àòž†ìH"ìIxDyDhhðžî𤾠
–CößOð	#Oð
@òý6à 
–CöóOð	#Oð
@òý6Íø(€à 
–Oôd\Oð	#Oð
@òþ6Íø(€” ä 
–CöOð	#Oð
Íø(€@òþ6”à Cö"à Cö$
–#Íø0Oð
@òÿ6Íø(€Oð	˜Oðyä Cö1à Cö3
–#Oð
Oô€fÍø(€ðӼ Íé–#Oð
˜Oð	@òõ6˜Íø(€‘VäªK{DhšBð®‡"Fðìïð¥þ(Añ…#@òª6OôI\"áðþí(Að@„0Fâ÷ø(AðV…Oð
Cò[,ž=àðüí(|ô® Cò],Iàðòí‚F(|ô®Oð
Cò`,'àÄhÝøH ,ð„hoð@@"h‚B¿2"`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðâì"ü÷P¾Oð
Cò‹,ÝøL˜(¿hoð@B‘B@ðùƒ ºñ¿Úøoð@AˆB@ð÷ƒÝøH ˜(¿hoð@B‘B@ðÀ˜$”(¿hoð@B‘B@ðπ”Ùø<(oÐ`L@h|DaiˆBÐJhRmSñ_ƒCh[m³ñÿ?ؿ²ñÿ?EÝàFð‚îÝøH (žÄFSÐSHaFSK@ò­2xD{DÝ÷mý©ª«HFü÷Gú(EÔ$iÖø̇`hl.ð@ƒIHxDðpî(AðBƒ FAF"°GFðnî,ð>ƒ Fâ÷û hoð@AˆBÐ8 `¿ FðTì@ò¯6Cò¿,àBmð€BµБøW R±ÕÐø¬ *ð5ƒh(Û2h‹B®Ð28ùÑ@ò­6à@ò®6Cò¯,Ùø@šh
`h±hoð@B‘BšÐ9`ÑdFð 욤F*¿hoð@AˆB?Ñ-¿(hoð@AˆBÐ8(`Ñ(FdFðì¤F#Oð	 Íø` OðÍéOð
%ü÷N¼9`ô9¯dFðîë¤F3çÞ˜æøÿØSUüøÿåùÿWùÿ9`ô-¯àFðØëÄF'ç8`¼ÑFdFðÎë¤F¶ç#OôlvCòÚ,Åã@òº6Cò­<àð˜ì(Að゠Fá÷Ÿþ(|ôK¯OôovCò·<	àð–ì(|ôL¯OôovCò¹<Oð	#£ãðxì(Að˂ Fá÷€þ(Aðփ OôovCò¼<Oð	#"àðtìF(|ôX¯ OôovCò¾<Oð	#ð~¹ðRì(¹(Fá÷\þ(A𵃠OôovCòÁ<Oð	#FOð
ðh¹ðLìF(|ôa¯ OôovCòÃ<Oð	#FðW¹æhÁFÝøH .ðƒ‚1hoð@@Ôø€B¿11`ØøB¿HÈø hoð@AˆBÐ8 `¿ Fð4ë DFÈFü÷G¿ðìF(|ôy¯ OôovCòÝ<&àÂh’*ðU‚hoð@@hƒB¿3`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðë"ü÷d¿ OôovCòó<Oð	#ùâ @òÁ6
CòžLOð	#Oð
ÍéÍéðâðÈë(}ôHª @òÅ6
Cò·Lã˜"ÖøÜiâ÷Lù(ð‚Fâ÷„ù hoð@AˆBÐ8 `Ñ Fð¾ê @òÆ6
CòÈLõâðœëF(}ôTª @òÇ6
CòÚLèâ @òÇ6
CòÜL©Fââ˜"Öøàiâ÷ù(ðځâ÷Pù˜oð@Bžh‘BÐ9`¿ðˆê Oð	–CòíLÍøt#Oð
ÍéOð%Oôrv+áðHë(¹ Fá÷Rý(A𮂠@òÊ6
Cò\¶âð8ë(Íø@ A𧁠Fá÷>ý(A𜂠@òÖ6CòØ\Æãð4ë(}ôDª ±F
Cò
\@òÊ6•âð&ë(}ôÿ« Íø@ @òÖ6CòÚ\©ã @òÊ6
Cò
\}â Íø@ @òÖ6CòÝ\™ãÅhž-ðmhoð@@*h‚B¿2*`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðê"ý÷º Íø@ @òÖ6Còâ\oã˜"Öøäiâ÷mø(ðAâ÷¥ø˜oð@Bžh‘BÐ9`¿ðÞé Oð	–Cò5\Íøt#Oð
ÍéOð%@òË6€àðžêÍø@ (¹(Fá÷¥ü(Að‚ @òÖ6Còä\þ÷ò¼ Oôsv
CòG\âð”ê(}ô¯« Íø@ @òÖ6Còæ\#Fþ÷ۼð‚êF(}ô	ª Oôsv
CòI\ãáðvê(}ôª Oôsv
CòL\Øá Oôsv
CòO\Ïá Oôsv
Còc\Èá˜"Öøèiá÷ëÿ(ðǀâ÷#ø˜oð@Bžh‘BÐ9`¿ð\é Oð	–Còv\Íøt#Oð
ÍéOð%@òÍ6Íé
ÍéÍø@€ÿ÷Y¸ @òÎ6
Còˆ\Šá @òÎ6
CòŠ\ƒá˜"Ùøìiá÷¦ÿ(ðŠ€á÷Þÿ˜oð@Bh‘BÐ9`¿ðé Oð	Íøx@òÏ6Cò›\#Oð

Íé•Oð%ÍéÍø@€ÿ÷¸åH"ÖøØxDiá÷oÿ(ðc€á÷§ÿ˜oð@Bh‘BÐ9`¿ðàèOð	@ò·6ÍøtCò<#×à9`ô¬dFðÐè¤Fÿ÷ý»8Êøô¬PFdFðÄè¤Fÿ÷ý» @òõ6Còõ|#˜Oð

˜ÍéOð	˜þ÷¿Oô~vCö1 #Oð
˜
˜
þ÷«¿ IFOô~vCö3#˜Oð

˜Íéà @ò÷6Cö&#˜Oð

˜
Íø0Oð	þ÷w¿ Íø@ OôwvCòlçáðDé(Að6€ Fá÷Lû(Að¸€#OôlvCòâ,ÍâðBé(|ôdª#OôlvCòä,OàÂh’*ð€hoð@@hƒB¿3`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ð2è"ÝøH ÝéVü÷Kº#OôlvCòù,Oð	%à @òÃ6Cò­L
[àwK{DhšBðՄ"FðÊêð„ù(Añp€ ±F
Cò¹L@òÅ6Fà#OôlvCòÛ,Oð	 ÍéOðÍé
ÍéÍø` Oð
%þ÷¿ F)FJFðôéž(}ô"ª Íø@ @òÖ6Còë\þ÷»ð¬è(ð¤‡#Íø@ “@òÖ6Còë\ð¼ @òÇ6
CòÞLOð	#Oð

à @òÊ6
Cò&\à Oôsv
Còg\Oð	#Oð

Oð%ÍéÍø@€ð¥½ @òÎ6CòŒ\Oð	#Oð


ãçðnè×ø°(|ô¨@ò²6Cò*<0à'H"ÖøÔxDiá÷ðý(ðL‡Fá÷'þ hoð@AˆBÐ8 `¿ F
ð`ïOð	@ò³6ÍøxCò;<#Oð
íáð:èF(|ô$ª@òµ6CòN<Oð	#ÿ÷A» Íø` @òµ6CòP<Oð	#OðÍé%Oð
û÷ˆ¿¿ªK–ù¬H*ÔóH*óMxDóKôI}Dh{DyDh¿+F
ðøï OôvCö«Oð	˜#
Oð
˜Íé@˜Íø@€þ÷¾
ðÖï(@ðö† Fá÷Þù(@ðP‡ @ò¾6CòLUâ
ðÔïF(|ô+¬ @ò¾6Cò
LOð	#:à
ðÄï!(|ô6¬ @ò¾6CòL)àèh(ðˆhoð@A¬hŠB¿2` hˆB¿0 `(hˆBÐ8(`¿(F
ð´î %FÝøH ×ø°žü÷¼ @ò¾6Cò%LOð	+F
Oð
ÍéÍéÍø8€£æ$"ý÷›¼
ðvïý÷1¹ @òÞ6Cò/lOð	þ÷9 @òÞ6CòCl¡Fþ÷·¹ –@òß6CòQlà –@òß6CòSlà
ðPï"(}ôš© OôxvCò`làOôxvCòtlOð	#Oð

OðÍé
þ÷_½"ý÷ž¹
ð*ïF(}ôǩ @òá6Cò‚lOð	à @òá6Cò„l#Oð


þ÷%º @òá6Cò‰lþ÷º Íø@ OôzvCòûlÇâÍø@ "mHÖøðxD’iá÷‡ü(ð	†á÷¿ü˜oð@Bh‘BÐ9`¿
ðøíOð	@òé6Cò|Íø|:â Íø@ @òë6Cò|™âÍø@ "WHÖøôxD’iá÷Yü(ðà…á÷‘ü˜oð@Bh‘BÐ9`¿
ðÊíOð	Oô{vÍø|Cò-|â
ð¨î(•~ô„«@òFCöÅà@òFCöÇ #Oð
˜
˜ÍéOð	˜þ÷º¼7K{DhšBðYƒ"ðPèð
ÿ(@ñÿ…#OôlvCòý,Oð	Oð
ˆãí$µî@ñîú¿$û÷â½&K{DhšBðJƒ"Fð,èðæþ(@ñޅOð
@ò²6Cò,<Oð	# Oð%ÍéÍé
Í鐐cã @ò¿6Cò4L¶à
ð4î(|ô« @ò¿6Cò6LOð	#F©àž÷ËÞøÿüøÿµÚøÿÜE€E ôZô @ò¿6Cò9Là
ðîF(|ô« @ò¿6Cò;L
uà
ðî(|ô« @ò¿6
Cò>L©Fiàìh,ð…!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F
ððì 5F×ø°ü÷ûº
@ò¿6CòSL©F@à
ðÊíF(|ô%« 3F
CòWLOð	@ò¿61àÄh,ð焁hoð@@"h‚B¿2"`
h‚B¿P`˜oð@B‘h‘BÐ9`¿
ð¶ì"×ø°ü÷» @ò¿6
CòmLà @ò¿6
CòsLOð	#Oð
à @ò¾6Cò)LOð	#Oð


Oð%ÍéÍéÍø8€‘â @òá6CòŒlþ÷t¸ OôyvCò›lþ÷>¹
ðZí(}ôa¨ OôyvCòlþ÷0¹ OôyvCò lþ÷(¹ OôyvCò¥lþ÷ ¹
ð<íÝøH (}ô³¯ CòÒlOð	þ÷*¹ CòÔlOð	þ÷"¹ CòÜlOð	þ÷¹Íø@ 
ð
í(¹(Fà÷ÿ(@𐄠@òï6CòI|Öà
ð
í(}ôb© Íø@ @òï6CòK|Éà Íø@ @òï6CòN|Oð	¿àÂh’ʱhoð@@hƒB¿3`
h‚B¿P`˜oð@B‘h‘BÐ9`¿
ðîë#žý÷O¹ Íø@ @òï6Còb|`á @òï6Còf|Íé
XáÍø@ "øHÖøøxD’iá÷Kú(ðåƒá÷ƒú˜oð@Bh‘BÐ9`¿
ð¼ëOð	Oô|vÍøtCòw|# Oð

Íéý÷î¾
ðì(}ô‹© Íø@ @òò6Cò“|á Íø@ @òò6Cò§|á @òó6Còµ|Oð	#Oð
ÍéOðÍé
þ÷’º
ðbì(}ôé @òó6Cò·|à @òó6Còº|à @òó6Cò¿|Oð	þ÷V¸ Íø@ OôzvCòülà Íø@ @òë6Cò|Oð	#Oð

Íéý��î%í´î@ñîú¿%žhoð@B‘B|ô½ªü÷:
ðì(@ðOƒ(Fà÷þ(@ð“ƒOð
@ò¶6Còc<á
ðì({ô+®@ò¶6Còe<þ÷h¿Âh’*ð5ƒhoð@@hƒB¿3`
h‚B¿P`˜oð@B‘h‘BÐ9`¿
ððê"ÝøH ÝéVû÷¾@ò¶6Còz<Oð	#ÿ÷㺠@ò¿6
CòtLOð	#F3ä OôyvCò¨lý÷˜¿
ð´ë(|ô%¯ OôyvCò­lý÷̿ OôyvCò°lý÷‚¿ OôyvCòµlý÷¼¿ Còßlý÷Ž¿ @òó6CòÂ|ý÷›¿
ðˆëý÷S¹ Oô}vCòÑ|Oð	à Oô}vCòå|#
Íéý÷‡¿ Íø@ @òï6Còh|Oð	#Oð

Íéý÷¹½
ðZëý÷¦¾ @òFCöVOð	à @òFCöjà @òFCönOð	#OðÍéÍé
˜ý÷v¿˜"F
ð¼êý÷íµî@ñîú¿$ÝøH ÝéVhoð@B‘B{ô¬û��î$í´î@ñîú¿$ÝøH ÝéVhoð@B‘B{ô׬û÷ڼK{DhšBð €"
ðÆìð€û(@ñ‚Oð
@ò¶6Cò~<Oð	# ÍéOð%Íé
Í鐘þ÷	¹ OôyvCò¸lý÷ò¾¿dAŒí˜
ðÆê"(}ô:¯OôfCöšàOôfCö® Ýø`€#˜Oð

˜ÍøX€ÿ÷¼"ý÷E¿˜
ð¤ê(}ô¶¯@òFCöîà@òFCöðàOôƒfCö8,#Oð
à@òFCöý#Oð
 ˜
˜Íé@˜Oð	Íé€þ÷«¸
ðvê(}ôº¯@òFCöÿþ÷eº@òFCö,þ÷_º
ðdêF(}ôɯ@òFCö,þ÷Rºíµî@ñîú¿$ÝøH ÝéVhoð@B‘B{ôˬû÷μ@òFCö,þ÷8ºCö,àCö,˜#
Oð
˜–@òFÍé®ç OôvCöÈþ÷5¸àFà÷Rýþ÷§¼Oð	Íø|þ÷Aº FAF"
ð>ëF(~ôȬ@ò¯6Cò»,þ÷ó¼
ðúé(ðM@ò¯6Cò»,ÝøH þ÷æ¼ÉHÉIxDyDhh
ðøèþ÷~ºÝøH žàF(ð˜€Ðø€ÄFˆBöÑþ÷s¼ Íø` @ò±6Cò
<Oð	ÍéOðOð
%Íé
#Íéý÷ÿ¿Oð
Íøx þ÷û"$û÷Kº OôovCò·<ìåOð
OôovCò¼<Çæ &þ÷–½"û÷(½ @òÆ6
CòÄLÿ÷ü¸ OôrvCòéL
ÿ÷	¹! ‘þ÷\¾"%ü÷Ÿ @òË6
Cò1\ÿ÷÷¸ @òÍ6
Còr\ÿ÷ï¸ @òÏ6Cò—\Oð	#Oð


þ÷ƒ¿ Íø` @ò·6Cò‹<Oð	#OðÍé%Oð
Íé
Íéý÷Š¿vHxDh°ú€ð@	þ÷ӻ OôvOôc\þ÷yºOðÙøoð@AˆBÐ8Éø¿HF
ðNèú÷*üx¹jH-jJxDjKjIzDh{DyDh¿FBF
ðé OôvCöÐþ÷Oº#“þ÷ο"þ÷û¿XHYIxDyDhh
ðèÿ÷R¸ @ò³6Cò7<ÍéOð	#OðÍé
%Oð
Í鐐˜ý÷!¿! ‘ÿ÷
¹ ÿ÷J¹@òé6Cò|àOô{vCò)|Oð	#Oð
 ¤ä $ÿ÷úº"$ÿ÷/»Oô|vCòs|Oð	#Oð
 ^åOð
Íøx ´ä"âä)H*IxDyDhh	ð²ï©æFú÷f¿ÝøH Fû��Fû��Fû÷®»Fû÷§¿Ýø@ ü÷m¹Ýø@ Fü÷ª¹žF(Fû÷¸ÝøH ÝéVû÷¦¹ÝøH ×ø°žû÷ռF0FcäÝø@ Fžü÷˼F˜VåF(FjåÝøH Fžû÷‘ºF˜æ¿në­Ýøÿêäè#Ûøÿ˜é×ÛøÿèéNîøÿÑøÿÿÌøÿе¯ˆBÐLCh|D$h£BсhZ±!ð)
ÑÀh8°ú€ð@	н нðн н
L|D$h£BÐ"
ðê½èÐ@¹àî*í ¸îÀ´î@ñîú¿ нôçèе¯á±BhŠB/ÐÒø¬0û±˜h(Û3hŒB%Ð38ùÑHLxDËh|DÒhh!Fh	ðöï нHIxDyDhh	ðôîôçF #±Óø€0‹BúÑíçHxDhBÜÑ нhç’ÅøÿDçjçàéøÿðµ¯MøF@hˆF„k,¿¡h)Ñ I¸ñLyD|DhIKÂhyD0h{D¿#F	ð´ïàHF.xDhFF¿0h+¿h	ðf£hF(F1FBF˜G1hoð@B‘BÐ91`Ð]ø‹ð½Oðÿ0]ø‹ð½F0F	ðªî F]ø‹ð½°æîæÍøÿGâøÿðàøÿBhÒé
#+¿[h+ÐG*¿Òh*;à¦à¿(¿Oðÿ0pG°µ¯FHxDh„BÐIyD	hŒB
ÐIyD	hŒBÐ F	ð²ï!hoð@B‘B	Ѱ½ °ú€ð@	!hoð@B‘BõÐ9!`¿°½F F	ð\î(F°½¿6æ0ææðµ¯Mø/JKhzDh“Bъh*MØðËhÂñûôbÑFF	ðï8»Oðÿ4(F!F"#]ø‹½èð@ú÷5º€FFF
ðvéF1F@F-äÐ(F
ðvéF(hoð@AˆBÐ8(`¿(F	ðî1F@FÐçIyD	h	h	ðúï`±`hÄh	ð$îH"FIxDyDhh	ðÜî ]ø‹ð½FFF
ðJé!FF(F¯ç¼åæþåžËøÿðµ¯Mø½‚°F@h
FAm±ñÿ?;Ü'I(KyD‚l{DÑøhh‚B&Ñ F"#	ð\îF8³ "hFÈò0F•á÷û1hoð@B‘BÐ91`а]ø»ð½F0F	ð®í F°]ø»ð½ F²±GF(ÙÑà÷Ûø	ðÀí`hIyDhIÂhhyD	ðvî °]ø»ð½	ðvîF(ÁÑæç-Èäfäöæøÿ°µ¯Ah‘øWÉ
Ёh)ٽè°@	ðþ¼ðÀhÁñHC°½ú÷™úˆ±Fÿ÷åÿ!hoð@B‘BóÐ9!`¿°½F F	ðZí(F°½Oðÿ0°½¿ðµ¯-é‚°ÌN€F~DÖøÐD0hâh!F	ðÆî(ðFhoð@AˆB¿0(`hhÖø˜‚l(F*ðGF(hoð@A,ðˆBÐ8(`¿(F	ð"í¶H±FahxDhBð
 %iFB1ÍéX¡ë€ Fá÷nú-F¿(hoð@AˆBKÑ.QÐ hoð@AˆBÐ8 `¿ F	ðúì£HxDh†BСIyD	hŽBРIyD	hŽBÐ0F	ð(î(ñö€1hoð@B‘B	Ñà0°ú€ð@	1hoð@B‘BÐ91`#ÐH³@Fð,ù@1ÑF	ð íF F)@ðí€	ð*í(ðՀ°½èð½8(`¿(F	ð´ì.­Ñr"Aö&akàF0F	ðªì F(ÕÑØøÙøì‚lHF@F*𸀐GF(ð¹€	ðÞí(ð¸€Ùø'FÙø@	ð<í(4ÔphÙø”‡l-ð±€mHxD	ð€î(@ð¶€0FAF"F¨GF	ð~î(F-ð¨€1hoð@E©BÐ91`рF0F	ðfì@F!h©B¢Ð9!`ŸÑF F	ðZì(F°½èð½u"Aö[a0hoð@C˜B	Ð80`Ñ0FFF	ðFì1F*Ft± hoð@C˜B	Ð8 `Ñ FF
F	ð6ì)F"FCHCKxD{DÛ÷ý °½èð½	ðþì ¹ Fß÷ÿ(fÑr"Aöaèç	ðíçæˆBÐ8(`Ñ(F	ðìr"AöaÙçåh-?ôï®)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ F	ðòë 4FÕæ$r"Aö*a–çt"OôòQ±ç	ðÌìF(ôG¯u"AöWa§ç$u"AöYaƒçs"Aö5ažç0FAF"F	ðÞí(ôY¯à	ð ì±u"Aö\aoç
HIxDyDhh	ð¢ëòçF|æ¿î+†ã ããìâ Ýøÿ9æøÿwãøÿÄàÓøÿ°µ¯Ah‘øWÉ'Ёh)ÙðÉÂñQC)Ð1ÑÐé"@êp@Bbë‘°½ðÀhÁñHCÁ°½Ðé‘@ê‚p°½½è°@	ð»ú÷Ÿø˜±Fÿ÷Ëÿ"hoð@CšBïÐ:"`¿°½F FF	ð`ë!F(F°½Oðÿ0Oðÿ1°½¿ðµ¯-é—°%ƒFFF•ÍéUÍéUÍéU	ðÄíAПM
”}Ddh•)k
ŒB#ÐÔø¬0£±šh*Û3hŽBÐ3:ùÑ
žŒB@ð?tàFòFiAòíð£¾"F"±Òø€ ŠBúÑàŒJzDh‘BèѢlÕøø*ðè…
ž0FGF(ðé…hh‚l˜*ÐøH(Fð煐GF(ðè…(hoð@AˆBÐ8(`¿(F	ðîêwH!‘xDh„BÐtIyD	hŒBÐsIyD	hŒBÐ F	ðì(ñɅ!hoð@B‘B
Ñà °ú€ð@	!hoð@B‘BÐ9!`ÑF F	ð¾ê(F!(‘ðk…th)kŒB@ðɀŠl0FÕø„*ð΅G(ðυÕø|ˆBÐTKBh{DhšBAퟀ�h!ð)EÑÁh9±úñN	hoð@B‘BÑ
à&hoð@B‘BÐ9`¿	ð€ê
˜!.‘Dh𐀢lÕøP*ðm‚
ž0FGF(ðn‚:HxDh„BÐ8IyD	hŒBÐ7IyD	hŒBÐ F	ðšë(ñ_‚!hoð@B‘BÑà&hoð@B‘BÉÐÃç °ú€ð@	!hoð@B‘BÐ9!`ÑF F	ð:ê(F!(‘HÐ!HxDÐøNEð„(k(ð•ƒrh‚Bð#„Òø¬0+ðƒ™h)Û3h†Bð„39øÑKI{DÒhyDhÃh0h	ðêê%FòiAòøð…½¿Ô'rßßþÞÐÞdÞÞþÝÐÝtÝPÝÆßøÿth)kŒBðh…Ôø¬0+ðۄšh*Û3hŽBð[…3:øÑ(hÕødQêh)F	ðNë(ðû„Fhoð@A
žˆB¿0 `”0F!F	ð.ìAðý„!hoð@B‘BÐ9!`ðƒ€!(‘@ðā˜Ðø8Whêh)F	ð$ë(ðb‚Fhoð@AˆB¿0 `”`hÕø0‚l F*ðb‚GF(ðc‚ hoð@AˆBÐ8 `¿ F	ð~é 	ðÄé(ðW‚‚FÕøToð@Bh‘B¿1`ÕøTÊøphÕøxBh’l*ðG‚G(ðH‚ÚJAhzDÍø, h‘BAðE‚hoð@AFŠB¿Q`oð@B‘BÐ9`¿	ðBé  iAÔOöÿuÀó‚Àò(¿Oöÿu(¿ÿ%àF F	ð*é(F!(‘@ð<vç%žoð@C hÊø@ÖøøÖ0Íø°
hšB¿2
`ÖøøÊø)F	ðtì(ð „$µõ€?8¿$ƒFiµõ€8¿$¤ñ,¿OðÍø ÔÛø	àñ@X¿ñ	‘Úø oð@ úù•h³¹ëñ߃iÃó‚™ÔÑiÝø,  BÐXF!#•	ð<ìàñ[X¿ñÝø,  BîÑ	˜úòð„íÚø Òø ºñ%Щë
¨BÀò³ƒiÃó‚™
ÔÑi BÐXF)F#Íø 	ðìàñ[X¿ñ BïÑ	šúðD
úòðXíUDžri“h+³©ë¨BÀò‰ƒiÆó‚±
ÔÑiž BГXF)F#	ðèëàñvX¿ñž BïÑ	šúðDúòð.í0hoð@AÍøX°ˆBÐ80`¿0F	ðXè 	ðžèž(ðVFUHÅø°oð@BxD€jh‘B¿1`(a	ðˆéÝø°(ðF€F˜Ðø`Ðø|'@F	ðâè(ñ‚phl,ð´CHxD	ð&ê(Að¾0F)FBF GF	ð$ê,𯁔0hoð@IHEÐ80`¿0F	ðè(h&–HEÐ8(`¿(F	ðèØøoð@E–¨BÐ8Èø¿@Fðôï h–¨BÐ8 `¿ Fðêï–ÛøÀ@˜ehÐøØb(F1F	ðvê(ð%ƒ‚F@hÐøˆ0C±PF!F*F˜G‚F(˜
ÑãÚøoð@AˆB¿0Êø˜ÛøÀ@Ðø̂fhAF0F	ðRê(ðƒF@hÐøˆ0‹±(F!F2F˜G(ðƒF@hà¿,ÜT*ÃÚøÿ)hoð@B‘B¿1)`•ËIOðÍøL€yD	hˆB@ðd‚ìh”,ð_‚!hoð@@®hB¿1!`1hB¿H0`(hoð@A–ˆBÐ8(`¿(Fðpï"5F¨ÍéH0 ë‚(Fà÷Åü,¿!hoð@B‘B@ð(!(‘ð»‚)hoð@D¡BÐ9)`ÑF(FðLï0F!‘h¡BÐ9`¿ð@ï	ð®èlžI
œyDÍø$ 	h‘h-¿BÑ@h(÷Ñ% ÍéUà)hoð@@•B¿1)`jh’hB¿H`(F’	ðŒèf.Àò–€ñ2F#Oð
ðdù
œFIF"# Fù÷û(ð	‡ƒF F1F"#Oðù÷ûú(ð‡‚F F1FZFðvþ(ñ‡Ûøoð@AˆBÐ8Ëø¿XFðØî
˜IFRFðaþ(ñî†Úøoð@AˆBÐ8Êø¿PFðÄî
˜„GÐoð@Jà<Bݘ"F#Oððù
žFIF"#0Fù÷¶ú(𝀃F0F!F"#ù÷¬ú(ð˜€1FFF!FZFð&þ(ñ‘€ÛøPEÐ8Ëø¿XFðŠî
˜IF2Fðþ(ñ†€0hPEÁÐ80`¿0Fðzîºç˜$””(¿hoð@AŠBBÑ”-ÝéF¿(hoð@AˆB>Ñ ,¿ hoð@AˆB<Ñ˜"ÐøÀ0Fß÷Ñü1hoð@B‘BÐ91`ÑF0FðFî F(ð¸hoð@B‘BÐ9`¿ð8î%•ðp¼9!`ôԮF Fð,î0FÍæQ`¿ð&î¶ç8(`¿(Fðî¹ç8 `¿ Fðî»çphð¸%FöwAò,&ð޹Fö×OðàFöÙàFöÛà¿n؄×FöÝOð°FOð
 ÍøP°Ù÷Øý@FÍøL Ù÷Óý˜ÍøX Ù÷Îý˜ÍøT Ù÷ÉýâH)FâKAò1"xDÍøP {DÚ÷Àþ˜©ª«ù÷šû(1ÔÝé‰ ÝøX JFCFQFð\î(ð€„	žF)F"0Fß÷7üF0hoð@KXEÑ(hXEÑ 4³ÊHxDh„B$ÐÈIyD	hŒB¿™ŒBÐ FðÞîàFöõ@à80`¿0Fð”í(hXEßÐ8(`¿(FðŠí ,ØÑFöþ*à °ú€ð@	!hoð@B‘BÐ9!`ÑF Fðtí(F(Ôð2„PFÙ÷Sý%HF•Ù÷Ný@F•Ù÷Jý˜Ýé!•l›ð	½Fö)˜Ýé2™lù÷Àû%Aò.&ðθ›H"Õø8%xDiß÷Áû(ð%„Fß÷øû hoð@AˆBÐ8 `¿ Fð2í•FòmiAòòð¬¸$"¸å
ž0FðîF(ôªAòñFòVi 6àðþíF(ôª%FòXià%Fò[iAòñð‡¸"F*~ÐÒø€ ŠBùÑàuHuIxDyDhhðÞìÛøoð@AˆBÐ8Ëø¿XFðèì! Aò'&FöZ‘%ði¸ðÄí(ô1ª%Fò…iAòôðR¸ð¦í(Að¶ƒ(FÞ÷®ÿ(Að
„%Fö)Aò$&ð?¸%Fö+Aò$&ð8¸SH1FxDhhðÈî%Fö˜Aò.&ð*¸MHAFxDhhðºî FöšàFö®Úøoð@AˆB?ôB¯8Êøô=¯PFðŒì8ç%Fö$)Aò.&ð¸<JzDh‘B��lÕøP*ð6„
ž0FG(ð7„ÕøxˆB
Ð1KBh{DhšB@ð5„hðà$hoð@B‘BÐ9`¿ðVìt±'Ioð@CyDhhšB¿hQ`°½èð½phÕø„‚l0F*ðc„G(ðd„Õø|ˆB2ÐKBh{DhšB@ðL…h!ð)@ðqÁh9±úñL	hoð@B‘B!Ñ%à¿°»øÿ‹ÙøÿˆÔ‚ÔN$æÓ+×øÿtÒXÒDÒøÑ´ÑŠÑ$hoð@B‘BÐ9`¿ðøë ,ð÷€phÕø¼‚l0F*ð…GF(ð…`hÕøì‚l F*ð…G€F(ð… hoð@AˆBÐ8 `¿ FðÌë(FÕøÐThêh)FðDí(ð…Fhoð@AˆB¿0 `”™`hÑøô‚l F*ð…GF(ð… hoð@F°BÐ8 `¿ FðžëØø$”°BÐ8Èø¿@Fðë(hoð@A
žˆB”Ð8(`¿(Fð„ë¨E@ð„€(FÕø8Whêh)Fðøì(ð8…Fhoð@AˆB¿0 `”™`hÑø0‚l F*ð8…GF(ð9… hoð@AˆBÐ8 `¿ FðRëð˜ì(ð.…FÕø`Õø|'ðôë(ñ4‚ÙøÕø<ˆl.ðº‡ÅHxDð4í(@ðćHFAF"F°G€Fð2í¸ñð´‡ÍøP€Ùøoð@F°BÐ8Éø¿HFðë h!‘°BÐ8 `¿ FðëØøoð@AÝéVˆBÐ8Èø¿@Fðþê (FÕøÐThêh)Fðtì(ð!ƒFhoð@AˆB¿0 `”`hÕøÄ‚l F*ð2ƒG€F(ð3ƒ hoð@AˆBÐ8 `¿ FðÎêphÕø@Ðé
*¿Rh*Ñ(¿Àh(Ñ0Fþ÷Õü
à0FG
à$hoð@B‘B?��æ0Fþ÷Zü‚F%(ðƒ}HÙFØøxD•Ðø°YEðƒ ©BÍéZ¦ë€@Fß÷ðÿ-F¿(hoð@AˆB@ðgÚø$oð@A”ˆBÐ8Êø¿PFðvê˜(”ðû‚Øøoð@A²FˆBÐ8Èø¿@FðbêÙøÀ@ ÕøØbeh1F(Fðîì(ðä‚AhÑøˆ0;±!F*F˜G	(˜	ÑÞâhoð@A	ŠB¿Q`˜ÙøÀ@Ðø̂fhAF0FðÎì(ðЂF@hÐøˆ0ƒ±(F!F2F˜G(ð̂F@hOðXEÍøL€Ðèá)hoð@B‘B¿1)`•OðXEÍøL€@ðځìh”,ðՁ!hoð@@®hB¿1!`1hB¿H0`(hoð@A–ˆBÐ8(`¿(Fððé"5Fªë‚(F
žÍéHß÷Eÿ,¿!hoð@B‘B@ðŀ!(‘ð‚)hoð@D¡BÐ9)`ÑF(FðÌé0F
ž!‘h¡BÐ9`¿ðÀéð.됩lª«ø÷Vÿ
œ`(^Û	ñOð	àáÐøÿŒÎ,F)F0F*Fð/ù(ñ°€,IÝ<XF#"Fðõû„BõЀF0FAF"#ø÷—ý(ퟔ�FæHRFxDh(Fðúë(ñ€Úøoð@AˆBÐ8Êø¿PFðré
ž!F"#Oð
%F0Fø÷rý(lÐF0FAF"Fðîø(iÔ hoð@AˆB°Ð8 `¿ FðTé©ç˜$”Ù÷5ù˜”Ù÷1ù˜”Ù÷-ù˜"	žÐøÀ0FÞ÷»ÿ1hoð@B‘BÐ91`ÑF0Fð0é F(ðçhoð@B‘BÐ9`¿ð"é ðZ¿8(`¿(Fð鑿9!`ô7¯F Fðé0F
ž/ç%Fö	Aò&ð‡¼Fö©Aò%Oð
àFö«Aò%àFöµOô‘U	àFö·Oô‘U¢FàFöÁAò!% Ù÷Ïø˜ÍøLÙ÷Êø ÍøXÙ÷ÅøPFÍøTÙ÷ÀøŽHAFŽK*FxDÍøP{DÚ÷¸ù˜©ª«ø÷’þ(4ÔÝéš ÝøT€QFKFBFðTé(ð‹‡	žF)F"0FÞ÷/ÿF0hoð@KXEÑ(hXE"Ñ L³wHxDh„B&ÐuIyD	hŒB!ÐsIyD	hŒBÐ FðÒéàFöÙ	Bà80`¿0Fðˆè(hXEÜÐ8(`¿(Fð€è ,ÕÑFöâ	,à °ú€ð@	!hoð@B‘BÐ9!`ÑF Fðhè(F(Ôð9‡PFÙ÷Gø$@F”Ù÷BøHF”Ù÷>ø˜«”Ëlø÷¾þð‰¾Föæ	˜«Ëlø÷´þ%Aò&Äã
ž0Fð&é(ôɫ%FòµyAò
&´ã$"Bæ?K{DhšBð<"FðÞêþ÷˜ù(@ñn‡%Fò·yAò
&œã6K{DhšBðŒ"FðÊêþ÷ƒù(@ñd‡%Fò‡iAòô‡ã
ž0FðêèF(~ô’­%FòŽiAòôxã%FòiAòôrãFö×OðOðÿ÷ô¹FöÙÿ÷ð¹FöÛàFöÝOðÐFÿ÷ä¹ðÂè(ôœ«%FòÖyAò&Pãð¦è(@ð¹†(FÞ÷­ú(@ð‡%Fö%	Aò&>ã¿.Ì ±øÿ{ÏøÿvÊpÊBʾɔÉð’è€F(ôͬ%Fö'	Aò& ãFö*	Aò&ãØøP•-ð‡†)hoð@@Øø@B¿1)`!hB¿H `Øøoð@A”ˆBÐ8Èø¿@Fðxï  FÚä%Fö?	Aò&ðâ¬H1FxDhhð€é%FöN	Aò&åâ¦HAFxDhhðté FöP	àFöd		šoð@AhˆB?ô¯8`ô¯	˜ðFïÿæ%FöAò&Ââðè(@ð0†(FÞ÷ú(@ð†%Fö7Aò&&®âðèF(~ô­%Fö9Aò&&¡â%FöDAò'&›âðè(~ô¸­%FöLAò'&â}JzDh‘B@ð†ÑjFˆGF(@ð>†Aò'&FöNÿ÷à¹%FöeAò&&uâAò,&Föuÿ÷Թí$µî@ñîú¿$ÿ÷‚ºFhHxDh‚Bð‰€(F"ðéþ÷Iø(@ñ>†%FòØyAò&Mâð²ïF(ôáª%FòßyAò&@âð¦ï€F(ôâª%FòáyAò&3âðˆï(@ð±…(FÞ÷ù(@ð†%FòäyAò&!âð†ïF(ôñª%FòæyAò&âBHBIxDyDhhðtîþ÷¼·î&í´î@ñîú¿&hoð@B‘B~ôò«þ÷õ»0F)FBFð€èF(~ôT®%àð@ï(ðo…%•OôÓIAò&&ÞáF)OÐÑø€BùÑFÝéVPà·î$(F•í´î@ñîú¿$ÝéVhoð@B‘BôBªÿ÷Eºðï(@ð^…(FÞ÷ù(@ð …%Fò÷yAò&«áðïF(ôǪ%FòùyAò&žá%Fö	Aò&˜á¿æÇÌÇ>Ç ÇfƐ¤øÿïIyD	hˆB~ôï«F
ž‚l0FÖø Õø´*ðځGF(ðہ(F!"#ø÷öù(ðׁF(hoð@AˆBÐ8(`¿(FðÜí  Fø÷~üF
0Ñðªî(@ðD‚ hoð@AˆBÐ8 `¿ FðÂíphÕø¼‚l0F*𱁐GF(ð²hh‚l˜*Ðø¤(F𯁐GF(ð°(hoð@AÍø°ˆBÐ8(`¿(Fð˜í  Fø÷:üƒF0Ñðfî(@ð‚ hoð@AˆBÐ8 `¿ Fð€í(FÕøÐThêh)Fðøî(ð…Fhoð@AˆB¿0 `”™`hÑøÀ‚l F*ퟌ�G€F(ð„ hoð@AˆBÐ8 `¿ FðRíXFð¶í(ðxF Íø$ ðŒí(ðrFÅ`ð„î(ðn‚F˜ÐøÐdhòh1Fð°î(ðfFhoð@AˆB¿0(`hh‚l˜*Ðø€(FðdGF(ðe(hoð@AˆBÐ8(`¿(Fð
í˜2FÐø¼PFð´í(}Ô0hoð@AˆBÐ80`¿0FðöìØøl-ðFcHxDðìî(@ðQ@F!FRF¨GFðêî-ðB(F••Øøoð@E¨BÐ8Èø¿@FðÐì h&–¨BÐ8 `¿ FðÄìÚøoð@A\FˆB–Ð8Êø¿PFð´ìÝø° MEðS˜k(ðjh‚BðJÒø¬0+ð8™h)Û3h†Bð=39øÑ6K6I{DÒhyDhÃh0hðjí%FòëiOôVà%FòÚiAòÿ ˜(¿hoð@B‘BBј(¿hoð@B‘B!ј(¿hoð@B‘BÑ-¿(hoð@AˆBј(¿hoð@B‘BÑHIFK2FxD{DÙ÷7ý â9`¿ðFì×ç9`¿ð@ìÙç8(`¿(Fð8ìÙç9`¿ð2ìÛç9`¹Ñð,ì¶ç¿PÅQÄøÿNÂÄÄøÿš¨øÿyÆøÿðíF(ô%®%Fò§iAòù’ç AòùFò©iþ÷)¿ððìF(ôN®AòúFò·iþ÷â¾ðâìF(ôP®%Fò¹iAòúpçðÆì(@ðò‚(FÝ÷Íþ(@ðGƒ%FòÇi^çðÆì€F(ô|®AòÿFòÉiþ÷¸¾%FòÌiMç%FòÎiIç%FòÓiEçÍøðšì(¹0FÝ÷¤þ(@ð"ƒ%FòÕi6çðžìF(ô›® Fò×iAòÿ,ç@F!FRFð¶í(Fôî%àðtì(ð­‚%•FòÜiçœHœIxDyDhhðtëç%Fò¬iAòùç%Fò¼iAòúÿæHFAF"FðŠí€F(ôP¨%àðHì(ð˜‚%•Fö	Aò&çæF!±Ñø€BúÑà„IyD	hˆBôƮ”˜ÛøÀ@Õø€ÐøØbeh1F(Fðäí(ðǁAhÍø€Ñøˆ0C±!F*FÊF˜G(˜
Ѿáhoð@AŠBÑÊFàFÊFP`˜ÛøÀ@Ðø̒fhIF0Fð¼í(ð¬F@hÐøˆ0S±(F!F2F˜G(ð¨F@hà)hoð@B‘B¿1)`•ZIOð	ÍøPyD	hˆB@ðzìh”,ðu!hoð@@®hB¿1!`1hB¿H0`(hoð@A–ˆBÐ8(`¿(Fðâê"5F¨ÍéI0 ë‚(Fß÷6ø,¿!hoð@B‘B@ð+!(‘ð_)hoð@D¡BÐ9)`ÑF(Fð¼ê0Fh%•¡BÐ9`¿ð²ê•ðìl
œÍø h-¿UEÑ@h(÷Ñ% ÍéUà)hoð@@•B¿1)`jh’hB¿H`(F’ðìÝøYF`¹ñ-ÑÝé	´(Ýø4€ÝøQÛû¶ñ
Èñ<PF#"FðÊüûð,[øÉø1hKøÙø0`˜DéØ3àfÀžøÿü¿P¿Ýé	+(
›Ýø€$Ûû&ñXB«ñ F#ZFðü
š	™û@FJFQFðþîPF1FJFðøî0FAFJFðôñDàØ˜oð@Ah‹BÐZ`ŠBÐ+`¿ðê˜$”(ž¿hoð@AŠBsÑ”-¿(hoð@AˆBqÑ ˜(¿hoð@AŠBnÑphl˜-ÐøÀG𜀵HxDðîë(@ð¢€0F!F"¨GFðìë,ðš€0hoð@AˆB”Ð80`¿0FðÔé,ð‚€ hoð@AˆBÐ8 `¿ FðÆé §Ioð@CyDhhšB¿hQ`-¿)hoð@B‘BѰ½èð½9)`øÑF(Fð¨é F°½èð½9!`ôѮF Fðšé0FÊæQ`¿ð”é…ç8(`¿(FðŒé†çQ`¿ð†éŠç$"¢æ|H1FxDhhð”ë%FòöiAò&øäzHIFxDhhð†ë FòøiàFòy˜oð@AhˆBЙ8`јðZé%Aò&Ùä0F!F"ðbëFmç%Fò‹yAò&Ìä$eçðê(`О$^çFöùþ÷ä»ðéQFJFCFÝ÷ý Fö
)Íéþ÷ջFöÝ	ÿ÷޸ðéQFBFKFÝ÷íü Föî	Íéÿ÷ϸFòiiAòò–ä%•þ÷N¼%•ÿ÷K¹%þ÷o¾%•ÿ÷ԹFEHxDhB3ÑÁj(Fÿ÷ö¹%•ÿ÷Sº%•å>H>IxDyDhhðÖèÿ÷‡º/H/IxDyDhhðÌèIå.H/IxDyDhhðÂè•ç%•ÿ÷¦º+H+IxDyDhhð¶è^å˜Ai(Fð@ìF(?ô©)h(FÝø, oð@B‘B}ôs¯ý÷v¿
žFý÷ò¾F(FÝéVþ÷M¼ÝéVFþ÷½F(Fÿ÷&ºÝéVFý÷¿Fþ÷å¼Fÿ÷.»ÝøFÿ÷p»F(Fÿ÷JºFþ÷"½¿»U­øÿ¼U¾øÿ»C­øÿò»êº)­øÿh»*»i­øÿ’¼ðµ¯Mø3LCh|D&h³BÐÓé
5-¿®h.#Ñ+¿[i+=Ð]ø‹½èð@GÅhoð@FhUø!0´B¿e`ÅhEø! h°BÐ8`¿FðBè ]ø‹ð½FFFðëP³«hF0F!FBF˜G!hoð@B‘BÐ9!`Ð]ø‹ð½F Fð"è(F]ø‹ð½FFFðêêX±F0F!F*FðŠê!hoð@B‘BàÑâçOðÿ0]ø‹ð½¿,ºFÀhoð@ChšB¿2`ÈhpG¿°µ¯±
hoð@CšB¿2
`ÂhhœBÐc`ÐÁ` °½Ioð@ByDh!h‘B¿1!`Áhh“BÐZ
`ÐÄ` °½FF
FðÌï)F FÁ` °½FFðÂï(FÄ` °½Ҹ°µ¯IyDÑødðÌè³!FðÐèp¹Fð„èF(FA¹
HIxDyDhhðˆï(F!hoð@B‘BÐ9!`¿°½F Fð’ï(F°½ °½Æ`¸ò°øÿðµ¯Mø¶°FFFFðnAhIm)ԀF*H*IxDyDhhàÐéC³ð¿"“BȿF
D€F²B"Ò!HxDhh IÍébyD"F+Fð6èØøoð@B‘BÐ9@FÈø¿ðJï 6°]ø‹ð½"
D€F²BÜӸh(ѱBÙJ#FÍéV­zD‘(FÈ!ðhï )F"ðjï°ñÿ?ÐÝ@F6°]ø‹ð½¸ô³øÿ¸v®øÿŠžøÿðµ¯-é‚°ˆF3IšF‘FyDFðüî(@ÐAFFðŽ僧QFFðøèà±0FQFðèÉøP³ hoð@AˆB9Ñ °½èð½"HxDhh(Fð@è IF0FyDàHxDhÐø(Fð2èF0FðVêI*FÍé HFyDCFð®ï hoð@AˆBÑOðÿ0°½èð½8 `Oðÿ0а½èð½8 `OðöÑF Fð°î(F°½è𽿋»øÿâ¶/¶øÿ¬øÿðµ¯-é‚°ˆF3IšF‘FyDFð„î(@ÐAFFð僧QFFð€èà±0FQFð¤ïÉøP³ hoð@AˆB9Ñ °½èð½"HxDhh(FðÈï IF0FyDàHxDhÐø(FðºïF0FðÞéI*FÍé HFyDCFð6ï hoð@AˆBÑOðÿ0°½èð½8 `Oðÿ0а½èð½8 `OðöÑF Fð8î(F°½è𽿛ºøÿòµšøÿþµ7˜øÿðµ¯-鉰§L §N|D~DÔøò`²FÍé{±ë‚*DÐ*ÑÑøÓø€Íø¸ñwÛMâ*tÐ*ÑÑøÍømà•H²ñÿ?•LxD•N|D•Mh~D”K}D”Ihؿ&FÔCyDOêÔ|‘L{D’|D²ñÿ?ÍéÆؿ+F"Fð¼îFöŠQ‹HAò³"ŠKxD{DØ÷»þ 	°½èð½Óø€¸ñ8Û0FñÐøV”$Íé#Vø$¨BÐ4 EøÑ$Vø$(F"÷÷‚ø(Ñ4 EôÑàÔ[ø$¹ñÐ¬Íø¨ñÌ	àðtî(@ð؂œÝé#ÔøVF¸ñ€òׁ”ÖøtE0hâh!Fðï(ðšFhoð@AˆB¿0(`hhÖø‚l(F*𚁐GƒF(ð›(hoð@AˆBÐ8(`¿(Fðdí0hÖøˆ`òh1FðÜî(ðށFhoð@AˆB¿0(`XF)Fð¾ïF0ðŒÛøoð@D BÐ8Ëø¿XFð<í(h BÐ8(`¿(Fð4íÚøtUÚøêh)Fð¬îƒF.kлñðÛøoð@AˆB¿0ËøÛøÚø‚lXF*ð}GF(ð~Ûøoð@AˆBÐ8Ëø¿XFðí HqhxDhBðr$ ©B1ÍéI¡ë€0FÞ÷Mú,¿!hoð@B‘B@ðï€(ðz1hoð@B‘BÐ91`ðí€	°½èð½¿Pµýµwœøÿª¹øÿ ±øÿX™øÿh™øÿÑúÿ˜µøÿ¹øÿD³»ñðWÛøoð@AˆBQF¿0ËøÛøÑø‚lXF*ðTG(ðUÛøoð@E©BÐ9ËøÑFXFð”ì FÐø€oð@BØø©B¿1ÈøÐø€h‘BÐ9`¿ð~ì "¨Èò@FÍø Þ÷Ñù(ð-F@hÚø ‚lPF0F*ð(GF(ð)0hoð@AˆBÐ80`¿0FðTìÚøtEÚøâh!FðÌí(ðFhoð@AˆB¿00`phÚø‚lPF0F*ðGƒF(ð0hoð@AˆBÐ80`¿0Fð(ìÛø*FÚø ÃlXF+ð	˜G(ñ
(hoð@D BÐ8(`¿(FðìÛø BÐ8Ëø¿XFðìÝø oð@BÚøh‘B¿Úø1`á9!`ô
¯F Fðîë(FçF0FáðÀì(¹ FÜ÷Éþ(@ð#AòÅ*FöºYOðôàðÀìƒF(ôe®Fö¼YAòÅ*Oð&†àð¢ì(¹0FÜ÷«þ(@ðFö¿YAòÅ*1àFöÁYAòÅ*&rà‚H®YFxDÍé ªF3Fö÷<ý(ñæ€ÝøVFæð|ì(¹(FÜ÷…þ(@ðã€AòÆ*FöÎYOð°àð|ìF(ô‚®FöÐYAòÆ*&Oð‰àôh,?ôŠ®!hoð@@µhB¿1!`)hB¿H(`0hoð@AˆBÐ80`¿0Fðlë .FpæAòÆ*FöåYOðqàð8ì(¹(FÜ÷Aþ(@ð¡€AòÈ*FöþYOðlàð8ì(ô«®]FOôÜIAòÈ*&OðOð5àAòÉ*FöiWàð"ìF(ô׮AòÉ*FöiAàðì ¹ FÜ÷þ(tÑFöiAòÉ*OðàðìƒF(ôé®FöiAòÉ*Oð	àðŒë(õö®FöiAòÉ*&(hoð@AˆBÐ8(`¿(Fðë»ñÐÛøoð@AˆBÐ8Ëø¿XFððêV±0hoð@AˆBÐ80`Ñ0FðäêHIFKRFxD{DØ÷Æû ¸ñ¿Øøoð@B‘B?ôø­9Èøôó­F@FðÈê F	°½èð½Fö|QæäFöwQãäF?åFgåƒF›åƒFQFæFpæ»Ìúÿ®¯øÿ—³øÿðµ¯Mø½'N~DÖøtU0hêh)Fð ì³Fhoð@AˆB¿0 ``hÖø‚l Fú±G³!hoð@B‘BÐ9!`Ð]ø»ð½F Fð€ê(F]ø»ð½ðRë¹(FÜ÷[ýȹFö`e$àðVë(ÝÑFöbe F×÷OúH)FKAòã"xD{DØ÷Hû ]ø»ð½FÁç¢ö–øÿ›²øÿðµ¯-鉰¡M }Dõps±ë‚*_Ð*@ð„€Ñø€˜hÍø €(ۮà*yÑÑø€Íø €Õøte(hòh1Fðªë(ð¯€Fhoð@AˆB¿0 `’HxDhF´Bð΀èn(ð«€bh‚BðƀÒø¬0+𱀙h)Û3h…Bð¹€39øчK‡I{DÒhyDhÃh0hðÖê hoð@AˆBÐ8 `¿ Fðêé~HFöùa~KxD{DAòþ"AàÓøÍéR¹ñÛ˜šF
ñ$Ðø RFVø$¨B7Ð4¡EøÑ$Vø$(F"ö÷–ü(*Ñ4¡EôÑð–êš(gÑYH&YIxDYLZKyDh|D{DhXM’"F}DÍéeðˆêFöËaTHAòå"SKxD{DØ÷‡ú&0F	°½èð½ÖÔ[ø$€Íø €¸ñÏК©ñSF(ÿöW¯?H®YFxDÍé ªF3Fö÷û(jÔÝø €FçðNê ¹0FÜ÷Wü(bÑCHFö÷aBKxD{Dƒç8H9IxDyDhhðHé hoð@AˆBôj¯nçF9±Ñø€BúÑàFö»a©ç.IyD	hˆBôJ¯ hAFh FG³hoð@E©BÐ9`¿ð:é0h¨B¿Ùø`00` hoð@AˆB?ô¯8 `¿ Fð&é0F	°½èð½HFöqKAòÿ"xD{DØ÷ú& hoð@AˆB?ôt¯âçFöÀafçFëæèõ¸äüÿš¬úøÿåüÿʊøÿ±øÿl¥øÿ±øÿJ­¬:Šøÿܫ&­œ¯øÿö¥øÿ£±øÿ¥øÿ­°øÿ`¤øÿ
°øÿðµ¯-é‰F*@ð™€ðê€F(ð¢€Ùøoð@AˆB¿0ÉøwM}DÕøtE(hâh!Fð@ê(ð“€Fhoð@AˆB¿00`phÕø¨‚l0F*퟼�GF(ð€0hoð@AˆBÐ80`¿0Fðžè@Fð"ì(ðƒ€Fhhl,ð€^HxDðŽê(@ð‡€(FIF2F G‚FðŒêºñyÐ(hoð@D BÑ0h BÑÙøoð@D BÑØø B#ÑPF½èð½8(`¿(Fðdè0h BèÐ80`¿0Fð\èÙøoð@D BâÐ8Éø¿HFðNèØø BÛÐ8Èø¿@FðDèPF½èð½1IFF"yDö÷xù0± Fð¼ë€F(ô^¯Oð
PF½èð½ðé ¹ FÜ÷
û(BÑFö`t&àðéF(ôp¯Föbt%àFöet&à(FIF2Fðê‚F(ô‡¯àðÜèбFögt0FÖ÷æÿ(FÖ÷ãÿH!FKAò2xD{DØ÷ÜøOð
Ùøoð@D B?ôw¯’ç
HIxDyDhhðÈïÛçF'ç¿ïäüÿäòyœøÿíøÿ“«øÿ©O›øÿðµ¯-é‰F*@ð™€ðé€F(ð¢€Ùøoð@AˆB¿0ÉøwM}DÕøtE(hâh!Fð.é(ð“€Fhoð@AˆB¿00`phÕø¨‚l0F*퟼�GF(ð€0hoð@AˆBÐ80`¿0FðŒï@Fðë(ðƒ€Fhhl,ð€^HxDð|é(@ð‡€(FIF2F G‚FðzéºñyÐ(hoð@D BÑ0h BÑÙøoð@D BÑØø B#ÑPF½èð½8(`¿(FðRï0h BèÐ80`¿0FðJïÙøoð@D BâÐ8Éø¿HFð<ïØø BÛÐ8Èø¿@Fð2ïPF½èð½1IFF"yDö÷fø0± Fðªê€F(ô^¯Oð
PF½èð½ðîï ¹ FÜ÷øù(BÑFöÆt&àðòïF(ôp¯FöÈt%àFöËt&à(FIF2Fð
é‚F(ô‡¯àðÊïбFöÍt0FÖ÷Ôþ(FÖ÷ÑþH!FKAò2xD{D×÷ÊÿOð
Ùøoð@D B?ôw¯’ç
HIxDyDhhð¶îÛçF'ç¿:ãüÿÀð€†øÿŸ«øÿo©øÿì¦+™øÿ€µoFh‚hFG
Ÿíî
¸î@
 î
î
€½€3hÂhFG)¸¿pGðµ¯Mø½F
FF0hñhˆGAì=¤ìöÑ]ø»½èð@pG)¸¿pGðµ¯Mø½-틟í
ŠF
FF0h±hˆG
=î
¸î@
 î
¤ì
ñѽì‹]ø»½èð@pG¿€3¿¿ðµ¯-遰-í‹€F3HxDF3HxD‚F2HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðîêAìà²IFRF	ëÀ
ëÀ‘íZø0!î‹Rhivë/Ó!ÐëÀØøíí›Øø0îI«ˆG±îHAìQì
î›ð¨éAì´î@›ñîú½ÕàØøØøˆGðAð éŸíAì0îA‹Qì½ì‹°½è𽿃»~)ÙÉ@âüÿêüÿýÿ¿¿ðµ¯-遰-í‹‚°ƒF)’F‘fÛ8HOð
Ÿí5‹xD€F6HxDFàÛøÛøˆGðAðbéAì8î@›˜ëÊ
ñ
€í›˜‚EDÐÛéˆGÂÀ
@êATÍ
BêAv)F FðVêAìð²AFJFëÀ	ëÀ‘íYø0!î›RhauëÓÓ1ÄÐIyDëÀÛøíí«Ûø0îJ»ˆG±îIAìQìî«ðéAì´î@«ñîú»հ簽싰½è𽃻~)ÙÉ@áüÿéüÿŠýÿðµ¯-é-í‹7NFŸí3Š~D°F5N6H~DxDF h¡hˆGA
ÀóGîAFë…¸î@
‘í1FVø%±ëP/!îš#Øôÿ'Ð h¡hˆGî
î
	노î@
ííª1îJ î
ð@ðÂèî
´î@ªñîúÄÕî
½ì‹½èð½ h¡hˆG
Ÿí
î
¸î@
 î
î
ð¬èŸí
î
0îAšî
½ì‹½èð½€3€³ÉNö@ðüÿôüÿ
$ýÿðµ¯-遰-í
‹‚°)’iÛ;LFŸí8ЉF|DŸí7šŸí4ªOð
£F5L6H|DxD€Fà0h±hˆG
î
¸î@
 î
î
ðfèî
9î@º˜ëŠ
ñ
ÊE€íº;Ð0h±hˆGA
ÀóGîYFë…¸î@
‘í!FTø%±ëP/!îºßØôÿÊÐ0h±hˆGî
î
노î@
ííÊ1îL î

îʁð@ðèî
´î@ÊñîúÄպç°½ì
‹°½èð½€3€³ÉNö@ïüÿüòüÿú"ýÿ)¸¿pGðµ¯Mø½F
FF0hñhˆGðAðêïðA=Aì¤ìðÑ]ø»½èð@pG)¸¿pGðµ¯Mø½-틟íŠF
FF0h±hˆG
î
¸î@
 î
·îÀ
Qìð¾ïAì=·îÀ±î@
¤ì
åѽì‹]ø»½èð@pG¿€³¿¿ðµ¯-遰-í
‹€FKH¾î‹xDFJHxD‚FIHxDƒFØéˆGF@
@êÁVÁóS$0F!Fð˜èê²KF	ëÂAìQFZø2“í
ëÂë!î@›Ih!î+X¿°îB›0tëTÓ³)îëÂØøíí«Øø)î»1îJˈGAìQìî«ðLïAì´î@«ñîú·Õ2àŸí‹ØøØøˆGðAðBïFFØøØøˆGðAFìK î›ð2ï)î	AìðAAì2îA´î@ñîúØݟí¨9î±î@›X¿°î@›Qì½ì
‹°½èð½¿Áè lªƒѿ3­	‚´;
@fõüÿ`ýüÿZýÿ)¸¿pGðµ¯Mø½F
FF0Fÿ÷MÿAì=¤ìöÑ]ø»½èð@pGðµ¯-é-í‹QNF¾î‹~D°FONPH~DŸíIšxDF h¡hˆGA
ŲîAFë…¸î@
‘íÁ1F!î@ª!î
X¿°î@ªVø%±ëP/'Øm³·îÊ
 h¡h î!G
î
	노î@
íí*Qì1îB î	
î*·îºð’îAì´îKñîú»Ýî
½ì‹½èð½Ÿí"ŠFŸí"š h¡hˆG
î
¸î@
 î
î
ðŠîF h¡hˆG

îZî
¸î@
 î
î
ðxîî
*î	
±îA* î:2îA´îCñîúÑݟí°0î
±î@ªX¿°î@ªî
½ì‹½èð½€3€³SŒ¾¤Ýi@ìýÿäýÿÞýÿ)¸¿pGðµ¯Mø½F
FF0Fÿ÷CÿDø=øÑ]ø»½èð@pGðµ¯-遰-í‹„°·î‹FCì+´îH›ñîúLѾHxD€F¾HxD‚F½HxDƒFÙéˆGÂÀ
@êAUÎ
BêAt1F(FðïAìà²AFRFëÀ
ëÀ‘íZø0!îËRhivëÀð9!&ÐëÀÙøíí‹Ùø0îH›ˆG±îLAìQì	î‹ðÆíAì´î@‹ñîú¼Õáµî@›ñîúџíËáÙøÙøˆGðAð´íŸíAì0îAËÿà´îH›ñîú@񥀈î	‹L‹H|DxD‚FQìŸ킻8îI«Íé†HxDƒF
àÝéÝé2ð¦íAì´îMËñîú@òـÙøÙøˆGAìÍéÙéˆGÂÀ
@êAUÎ
BêAx1F(Fð€îAì_úˆð!FRFëÀ
ëÀ‘íZø0!îÛRhivë Ó_êa#ÐëÀÙøííëÙø0îNûˆG±îMAìQìîëð8íAì´î@ëñîú»մîJËñîúŸÙàÙøÙøˆGðAð*íAì;î@۴îJËñîúŒÙ8îL€î	Qìð:í°îJÝé2Aì	îLQìð&í=îLAì´î@Ëñîú?ö}¯TàŸí0¶îË9î)î±îÀˆî«Ÿí+»HFÿ÷Gý°îHAì
îµî@ñîúñÙ.îÙøÙø î;!î+°îHûîû îۈGAì´îOñîúÔFFQì8îMûðäìAì(F1F.î?î)îûîûðÖìAì´îOñîú¼Õ)î
ËQ창싰½èð½UUUUUUտmÅþ²{򠿃»~)ÙÉ@NÚüÿHâüÿBýÿrÙüÿpáüÿZýÿðµ¯-é-í‹·îŠF	î´îHšñîúKÑÄNŸíJ~D°FÃNÃH~DxDF h¡hˆGA
ÀóGîAFë…¸î@
‘í1FVø%±ëP/!îê#Øôÿ5Ð h¡hˆGî
î
	노î@
ííš1îI î
ð@ðBìî
´î@šñîúÄÕî
½ì‹½èð½µî@šñîú%џí–êî
½ì‹½èð½ h¡hˆG
ْҔ
¸î@
 î
î
ðìŸíŽ
î
0îAêî
½ì‹½èð½´îHšñîú@񡀈î	
ˆM}D©F‡MˆH}DxD‚Fí}º8îIªŸí|ʟí|Úàî
AFð
ìî
´îOêñîú¦Ù h¡hˆG
î
¸î@
 îê h¡hˆGA
ÀóGîIF	놸î@
‘í)FUø&±ëP/!îú#Øôÿ&Ð h¡hˆGî
î

놸î@
íÐíŠ1îh î
Að@ð¤ëî
ôî@ŠñîúÄմîJêñîú©Ùà h¡hˆG
î
¸î@
 î
î
ð’ëî
=î@ú´îJêñîú‘Ù8îN
۔	
î
ð ë°îJ
AFî
	îN
î
ðŽë?îN
î
´î@êñîú?ö¯&çŸí0
²î¶îڟí.º9í-Ê)î
±îÀ
ˆîª Fÿ÷[ü°îHúî

îúµî@úñîúñÙ h¡hˆG
.î
î
/î:¸îA î*/îúaîаîHîôîAŠñîúÔî
xîOšðJëî
î
9î€
.î
iîŠAîŠð<ëî
´îh
ñîú»Õ)îêî
½ì‹½è𽿫ªª¾ޓ½€3€³ÉNö@çüÿëüÿýÿæüÿêüÿýÿ€µoFÐéˆG_êQOê0€½€µoFh‚hFG@€½€µoFh‚hFG@!€½€µoFh‚hFG!€½¿¿¿°µ¯-í
‹·îAìŸí=«´î@›ñîúoаî´îA›ñîúhбî»;îI½îÁ´îK›îJñîúX¿$îJŸí2+¸îÁ1î	‹€î îŸí+Qìî+Ÿí,îŸí,+î+Ÿí,îŸí,+î+Ÿí,îŸí,+î+Ÿí,îŸí,+î+¾î‚îŸí*+8î«0îËðzêAì´îK›
îËñîú<îH«Õ,ۿî›%8î	‹QìðdêAì5¥B:î@«òÝQì½ì
‹°½5gGö¿…8–þÆ?—SˆBž¿¤A¤Az?<™ٰj_¿$ÿ+•K?88C¿  J?lÁlÁf¿UUUUUUµ?´¾dÈñgí?°µ¯FFÿ÷Zú—íAìDì[î+Qì°½¿¿¿ðµ¯-遰-í‹€F5HCì+xDF4HxD‚F3HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðäêAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðžéAì´î@«ñîú½ÕàØøØøˆGðAð–éŸíAì0îA›)îQì½ì‹°½è𽿃»~)ÙÉ@þÑüÿøÙüÿò
ýÿ°µ¯hFÂhFFG—íAìDì[î+Qì°½€µoFÿ÷?û—íAì!îQ쀽е¯Fÿ÷ÍüîJî
!î
î
нðµ¯-遰-í‹„°·î«FCì+—í‹´îJ›ñîúœ¿´îJ‹ñîúÙ Fÿ÷ûSì+Aì Fÿ÷ûAì8îˆîQ창싰½èð½ŸíN´î@›ñîúD¿´î@‹ñîú=Ԋî	ŠîQìÍéQìÍé háhˆGÝé2FFðé‚F‹F háhˆGÝé2€F‰FðéAìKì«0î´îJñîúàØFì[Iì‹2î+µî@+ñîúÕݵî@ñîú݀î¬ç h9î‹áhˆGAì(î´îIŸí&ñîúH¿°îJ™ç(F1FðÚèAì@FIFðÔèAìŠî	€î´î@°î@+ñîúȿ°îA+1îB‹Qì0îB›ð”èF
FQìðŽèAìEìK1îQìð¬èAì8î@Q창싰½è½èð@ðz¼°̶Œe€¥*€µoF¶îCì+!îSì+ÿ÷DúAì0îQ쀽е¯-í‹¶î‹FCì+)îSì+ÿ÷.ú—í«*îSì+Aì Fÿ÷#úAì8î0î!î
 î	îQì½ì‹не¯-í‹Fÿ÷‡øAì Fÿ÷‚øAìˆîQì½ì‹н¿ðµ¯-遰-í‹€F7HCì+xDF6HxD‚F5HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðéAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðÊïAì´î@«ñîú½ÕàØøØøˆGðAðÂïŸí
Aì0îA›‰îQì½ì‹°½è½èð@𲻿¿ƒ»~)ÙÉ@VÎüÿPÖüÿJ
ýÿ¿¿ðµ¯-遰-í‹Cì+µî@‹ñîú	џí>Qì½ì‹°½èð½€F;HxDF:HxD‚F:HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(Fð€èAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ð<ïAì´î@«ñîú½ÕàØøØøˆGðAð2ïŸíAì0îA›·î€îQìSì+½ì‹°½è½èð@ð%»¿¿¿ƒ»~)ÙÉ@8Íüÿ2Õüÿ,	ýÿ¿¿ðµ¯-遰-í‹€F;HCì+xDF:HxD‚F9HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðøïAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ð²îAì´î@«ñîú½ÕàØøØøˆGðAðªîŸíAì0îA›·î€î‹±îIQìðÒîðASì+½ì‹°½è½èð@𖺃»~)ÙÉ@&Ìüÿ Ôüÿýÿе¯-í‹¶î«F—í›Cì+ háhˆGAì´îJñîúڵî@ñîúðÝ0îQìð‚îAì	î‹Qì½ì‹н°î1î@1î@QìðpîAì	î@‹Qì½ì‹не¯-í‹·î«F—í‹Cì+ háhˆGAì:î@´îJñîúóÕQìðLîðAðHîAìî@›Qì½ì‹не¯-í‹—í‹Cì+F háhˆGAìµî@ñîúõݷî1î@€îQìð"îAìî›Qì½ì‹н°µ¯FFþ÷Jþ—íAìDì[î+Qì½è°@ðâ¹ðµ¯-遰-í‹€F7HCì+xDF6HxD‚F5HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðÔîAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðŽíAì´î@«ñîú½ÕàØøØøˆGðAð†íŸí
Aì0îA›9î	±îÀ îQì½ì‹°½è𽿃»~)ÙÉ@ÞÉüÿØÑüÿÒýÿðµ¯Mø½-í‹¶îFCì+!î‹þ÷¯ýSì+F FFþ÷,ÿ±îÈAìFì[±îÀ!îîQì½ì‹]ø»ð½¿ðµ¯-遰-틐°²îFCì+´î@‹ñîúڵî@‹ñîú@ð=%Uá±îÈFFŸí¬Ÿ�î›Ÿí­Ÿí®+9î‚î¸î9îŸí«;Ÿí¬+ƒîŸí¬ë	îëŸí¬+>îÛ0îQìŸíª1îíðí€FF0F)Fðí±îHí
Aì¾î»¿îˍíD싍íëííÛ àíëÝø€¸îϘ@식í+í;2îí
+î+K쫝íÛ0îA2îJ´îAñîú@òê€ÙøÙøˆGAì¶î+0î°îÀ2îA«î
9î°îH+î+Ÿí2îQìðØìAìÙøÙø½îÀûˆGîZŸíwAì´îA«ñîú۝í´îAñîú@ò¯€-Âԟíp´îA«ñîúմîJñîú¶Ü*î
Žî9î«ð†ì€F‘Qìð€ìŸíe«‚F‹F-…ÓÍø€ñ±î¸ñí_+¸îÀ1î@½îÁîjȿ&îj¸îÁ0î۷î€î
 îŸíUQìîŸíT+î+ŸíTîŸíT+î+ŸíTîŸíT+î+ŸíTîŸíT+î+ŸíTîî
ŸíS=î«0îëð(ìAì¸ñ
îë>îM«?÷&¯.ÿö#¯Ýø€$íë=îÛQìðìAì4´B:î@«òÝç±îHQìðÚë·î‹Oðÿ5AìÙøÙøˆGAì5(îI‹ñîúðÜ(F°½ì‹°½èð½=
ףp=@˜nƒÀÊí?333333ÀrŠŽäòò?B>è٬úÀ[¶Ö	m™?h‘í|?5®¿$—ÿ~ûñ?rù鷯í?…ëQ¸…Û?ìQ¸…ë±?9´Èv¾ŸŠ?5gGö¿…8–þÆ?—SˆBž¿¤A¤Az?<™ٰj_¿$ÿ+•K?88C¿  J?lÁlÁf¿UUUUUUµ?´¾dÈñgí?е¯Fþ÷;ý·î—í0îA€îAì F îSì+½èÐ@ÿ÷¾ðµ¯-遰-í‹°°¼hFCì+ŠF híËP± iPEєí´îLñîúðDƒ·î«îª:îLë¸îÀ´îLëñîúȿ°îLë î‹8î›QìðZë:îNû(îí±îÀŸíΟíÏ+/îîSì+Aì½îí.ŠîŠFFð<ë¸îÈÄø ¶îAìŸíÃ;0î{  `2îÛ7îM‹°îI+îN+7î
»9îHK/î[;îIk„î+†îK0îŸí·;°îJkƒî°îJ;î;îkŸí³["î;0î[$îK5î…î0î
…î+-î0î2î+íû„íû°îHûí.j„íˍíë„íë„í
›„íj°îB‹„íۍí{„í{„íûí »„í»°îE»„í[í$;„í;í"K„íKí.„íí(„í„í +(héhˆGAì(héh(îëˆG´îMëAìñîú@ó^‚ñ
ñ¡ëŸíƒ;îJŸíƒk	‘¸îÀKÍø4 î
í
Kªëí,۸îÀ[$îƒî+%îƒî;6îB+‚î+6îC;Ÿíukƒî;6îB+‚î+6îC;Ÿírkƒî;6îB+‚î6îC;Ÿío+ƒî2î@€î2îAŸílKî€îíîí+í;íî
‚îÀ¶î;í[î¿î[í¸îÂ+î[0î*íîŠ1î¸îÀí[íí&í*‹à´î@Ëñîú@óè(héhˆGAì(héhí*!îëˆGí,ÛAì´îMëñîú@óí.´î@ëñîú*ÝQìðæéí(Aì´îAëñîútݝí"€îí 1î@QìðòéAì½îÀîjVEÁܵî@Ëñîú¼Нí(í"sà>îM€î?îí&¶î+1î@1î°îÁî
·î;°îC+î+2îA˴îCËñîú˜ÜQìð¼éAì½îÀîjOà¿ffffffÂõ(\@š™™™™™.@€4@ôýÔxé&Á?€a@ÀX@€`@à|@¸Ê@€MAí$€î?îQìð~éAì½îÀîj.?õN¯µî@Ëñîú?ôH¯í.í$>î@ î!î˶ë	HFH¿Éñ(Àòá€î
í¸îÀ´î@ñîú@óՀ°î	û	ð€î@B¶î+1îŸí´+î+í;°îKۂî€îî
¶î;¸îÂ+1îí;Qì îë‚î»°îO‹;îNûðéAì´îOËñîúñ܀;î´î@˰îHû°îM»ñîú?÷è®píî
	˜€¸î;î
¸îÀëí!î îîQìðÖè+îÍé.îŸí};Ÿí~Kƒî+ƒî;4îB+4îC;‚î+ƒî;ŸíyKŸíz[4îB+4îC;‚î+ƒî;í
K5îB+„îK5îC;‚îûƒîQìíð¢èí¢FƒFF€îQìð˜èAìíŸíg;!îÝé3îO+íKDì»TF°îHûÝø4 3îD;íKƒî;î‚îîšAì¸îÂ+îŸíW+°îM»îƒî+í;3îí;3î0î2îMæFEݷî´B?÷G® Fî
0°B¸îÁ‰î1îJ îòÝ7æ·î¿ö4®p@E?÷0®î
0¸îÁ‰î1îJ€î@EòÝ!æí
îL>îQìðFèAì½îÀîj¶îí´î@ñîúȿªë0F0°½ì‹°½èð½îª”í”í+¸îÀÔø0€!î"î”í;íí;”í;”íí ;”í;”íۍí$;”í;”íûí";”í;”í»”í ‹í.;íí+í(7å¿¿¿€a@ÀX@€`@à|@¸Ê@€MAUUUUUUÅ?ðµ¯Mø½-í
‹¾hFCì+F0hH±0i Bіí´îHñîúwÐîJ²î¸î+·î*î»0îH›î	Qì±îÀ°îKËîËðŠïAì"´îJË î
Qìñîúȿ°îJˆí‹½îÌË4a2`ðLïAì†í»†í›†í«†íÊîj(héhˆGAì ´îJñîú-ݰîJà î0îAî
F¸îÃ;¸îÂ+"î+)î;!î+‚î+°îB´îAñîúÝA±BáÝ(héhˆGAì °îJ´îAñîúïܽì
‹]ø»ð½–í«–í›6k»çðµ¯-é-í
‹‚°Cì+Fµî@‹ ñîú.Ð×é˜YêOð(жî×ø ´î@‹ñîú%ٷî«HFAF:îH‹ðÌïAì³î(î´îAñîú-ÙSì+(FIFÍø ÿ÷|ûF¹ë¦à!°½ì
‹½èð½HFAFFFð¨ïAì³î î´îAñîú@ò–€(FIF"F3FÍø ÿ÷WûáÚøX±ÚøHEњí´îHñîúð
îš:îH›¸îÀË(î»î	«Qì±îʲî°îK«î«ðžîAì"´îL« îQìñîúȿ°îL«½îÊËÊøÊø Ší‹ð^îAìŠí»Ší›îJŠí«ŠíÊ(héhˆGAì!´îJñîú.ݰîJà©ëî
0îAîF¸îÃ;¸îÂ+(î+)î;!î+‚î+°îB´îAñîúÝH BàÝ(héhˆGAì!°îJ´îAñîúïܹëhëáq°½ì
‹½èð½ÚøX±ÚøHEњí´îHñîúð„€îš²î¸î+·î*î»0îH›î	Qì±îÀ°îKËîËðîAì"´îJË î
Qìñîúȿ°îJˊ틽îÌËÊøÊø ðÎíAìŠí»Ší›îJŠí«ŠíÊ(héhˆGAì ´îJñîú.ݰîJà©ëî0îAî
F¸îÃ;¸îÂ+"î+)î;!î+‚î+°îB´îAñîúÝA¡BàÝ(héhˆGAì °îJ´îAñîúïÜÁ°½ì
‹½èð½Úø0@ší«ší›(çÚø0@ší«ší›°ç¿¿¿ðµ¯Mø½-í‹—í‹´îH‹ñîúYֵî@‹Cì+ñîúѶî)î>à·î´î@›ñîú$ݿîF9î¶î îSì+ý÷'ÿF FFý÷žý±îÈAìFì[0î2îîQì½ì‹]ø»ð½¶î«F(î
Sì+þ÷îÿ@î
 F¸îÀ0î	 î
Sì+ý÷øþAì0îQì½ì‹]ø»ð½ŸíQì½ì‹]ø»ð½øðµ¯-é-í‹‚°—íFFFíÿ÷|ÿ¶î€F0F‰F—í‹(îSì+ý÷ÃþAìIì‹0îDì[!î îîQ창싽èð½е¯-í‹FCì+ý÷ ýAì—í;±î+ háh î î#î î+î+3î±îÂ+ˆî0îB°îH›î›(î9î€î	«ˆî‹ˆGAì´îHñîúˆ¿°îJ›Qì½ì‹н¿¿¿е¯-í‹‚°—í›´îI›ñîú€ñŸí‡F´î@›ñîúÕ háhˆGAì¿î0î0îŸí‰ î«Qì°½ì‹нŸízCì+´î@›ñîúշî€î	í«0î	»SàŸís´î@›ñîú,ٷî F€î	±îý÷œüAìŸín	íj´îA«Ÿín:îñîúH¿°î@«´îA«Ÿígñîú:îȿ°î@«Qì°½ì‹н±î)î·î°îA+î	+±îÂ0î0î+±îÂ+9î	;0îB€îî0îî»í«·î˰î۟íO« háhˆGAì î
Qìð8ì°îLAì háhî;îîë;îN î	û=îO‹ˆGAì°î@îµî@ñîúڏîQìðìëAì0î0îOµî@ñîúÅÛ háhˆGSì+Aì¶î‹FFðì´îH›AìðAñîúAìH¿°îAí0î‹°îÈ0î
ŸíQìSì+ðîëŸíAìµî@‹1îJñîúH¿°î@«Qì°½ì‹нŸí«Qì°½ì‹н¿ø:Œ0âŽyE>ñh㈵øä>€„.A-DTû!@-DTû!	À-DTû!À-DTû!	@ðµ¯-é-틃ðA€FFCì+ðJë·î«AìØøØøˆGAì´îH»ñîúBځFFØøØøˆGAì)îQìðdëAìðE î´îA»Eìñîú-ØFHF1Fð:ëFF F)Fð4ëAìF웁î0î
QìðHëð´ëµî@»ñîú¹ÐBqñµ۽싽èð½! ½ì‹½èð½´î@» !ñîú¸¿ ½ì‹½è𽀵oF-í‹hCì+ÂhFGAì´îHñîúݷî 1îH°îH+!î‹02î+´îBñîúõܽì‹€½ ½ì‹€½¿¿ðµ¯-遰-í‹€FEHCì+xDFDHxD‚FCHxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(Fð¨ëAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðbêAì´î@«ñîú½ÕàØøØøˆGðAðZêŸíAì0îA›±îHQì±îI‹ðLêAìˆîQìð¤êF
FðîêŸíEìK´î@ñîú¤¿Oðÿ0oðA½ì‹°½è𽃻~)ÙÉ@àC†³üÿ€»üÿzïüÿ¿¿€µoF-틟íCì+´î@‹ñîúڽ싽è€@ÿ÷Q¿hÂhFGAì´îHñîúݷî 1îH°îH+!î‹02î+´îBñîúõÜÁ½ì‹€½ Á½ì‹€½UUUUUUÕ?ðµ¯-遰-í‹¿î‹FCì+0î›Yì‹@FIFð4êˆî	[쫟í'ËAì·î»9î« háhˆGAìRF[F;î@QìðÌéðòéFF háhˆGFì[´îLÛñîúäܴîKÛñîúßԋî
BFKF0îAìQìð¬éAì.î
1î+ îî	€î
´îAñîúÂؽîÍî
½ì‹°½èð½¿ÀÿÿÿßA€µoF-í‹Cì+—í‹—í»8îI«hÂhF;îIˌî
ېGAì´îMñîúÙ8îK·î+!î
2î@!î±îÀ8î@Qì½ì‹€½,î
!î±îÀ0î	Qì½ì‹€½ðµ¯-éFRêEÐ_êSFOê2CCFOê‘Bê€r@êAêOêBêr@êAêOê"Bêb@ê Aê@êIOêBBêBAêIêc¹0h±hˆG(@¸ëtñöÓ!½èð½ÖéˆG(@ê	¸ëtëôӽèð½ !½èð½ðµ¯-郰×é¹FšFF[ê	ð£€=i¹ñ¸iÑi꡹0h±hˆGàê	1Ðð±|iÖéˆG(@!@»ëyëõÓ
à(cÐ0h±hˆG(@XEùØëxàÖéˆGëJë
ràÖéÍ騈GñIñ
 û2û
"û$»ëyë$ӓoê	oêFF
FFBFSFðÈê“FšHF)F²ëtëÒFÖéˆG û#û
3²ëû3sëñӠû%Ýé&áû
b+F û
ì4Fáû4¡ûIVëBñëTëAñ
à0h±hÍø€ñˆG û”ÙEØoêAFðˆéIEÙ
F0h±hˆG û…BøØÝø€ëJñ
@FQF°½èð½ðµ¯-éˆFB±ñ	FFÑ(h©hˆG€D@F½èð½¸hX±F(h©hˆG0@ Bù؀D@F½èð½(h©hˆG û	¦¢E
ØàCIFðFéQEÙF(h©hˆG û	„BøذD@F½èð½*ð•€ðµ¯-郰×饁FOöÿpF‚BÑÚøx³hˆ(`Úø82à¸hȱÚøFˆF
àhˆ(`Úø8Êø)h!@±BÙ(òÑÙøÙøˆG(` ïçÚøñ‘¨±hˆ(`ÚøDàADOàFÙøÙøˆG(`!F Êø(ˆDAàÙøÙøˆG(`$Êø@ú‹ñÕø€úˆðûûú‹ðˆB)ҐOöÿpp@‘ðÊ蘈BÒF™àOê@(`ÚøDÊø@Õø€úˆðûûú‹ð°B
Ò,ëÑÙøÙøˆG™$(`èç™ëA°½è½èð@ˆ²pG*ð•€ðµ¯-郰×é¥FFÿ*	ÑÚø³(h
(`Úø84à¸hбÚøFˆFà(h
(`Úø8Êø)h!@±BÙ(ñÑÙøÙøˆG(` ïçÚøñ‘°±(h
(`ÚøDàADNàFÙøÙøˆG(`!F Êø(xD@àÙøÙøˆG(`$Êø@_ú‹ñÕø€_úˆðûû_ú‹ðˆB(Ґ†ðÿ‘ð0蘈BÒF™àOê (`ÚøDÊø@Õø€_úˆðûû_ú‹ð°B
Ò,ëÑÙøÙøˆG™$(`èç™ë!°½è½èð@ȲpGº±°µ¯×éT)h)± h@ `(h8àh‚hFG ` (` hð½è°@FpGðµ¯-釰™FF×éEF×ø°:iTêÐxišFÍé9í¹eê)eÑ*ÀòQ0hF±hˆGQFë
Iñ"FbëèñÑAá*Àò?ëè9:ûÑ9áê1ðˆ€(ð—€_êUOê4*Àò+ºhOð
CúhCŠBê€r@êC
	Bêr@êC

Bêb@ê C@êD
BêBCDê×é˜ÖéˆG(@!@¹ëxëõÓ›ÝøÀKø:Aë	ëÊ
ñ
H`8i‚EãÑíà(ð·€*Àòè€ûhOðºh_êSOê2CCŠBê€r@êC
	Bêr@êC

Bêb@ê C
BêB@ê@C@ê½h0h±hˆG @¨BùØë
Kø8ëÈQFñIñA`8i€EéѬà*Àòª€ÖéFˆGë
"FAë	bSFëèñњà*À򘀸hOðùhDAñÀCÈC•"àFÝø*û#ÝéëûëûªûèÀBñëHñ@¹iAø<ëÌBñH`ñ8i„EgÐÖéÍøG‚F‹F û+F
ûû¸h@øh¨AÉÓ‘"F˜™ðÈï˜Ýøu띾ҐF™FÖéˆG‚F‹F û
û°ëûqë	ïөç*1۸hOð
ñ	oêàÝø°˜¹i@Aø:ëÊKñA`
ñ
8i‚EÐ0h±hˆG û	µ¸hƒEæØ@FIFðˆîYEÝø°àÙF0h±hˆG û	„BøØ×ç°½èð½ðµ¯-é…°×ø ›Fš±ñ	FF‘ѻñoÛ0h±hˆG™»ñDJøõÑdà»ñaÛJø»ñúÑ[à¸h€³ _êPOê5»ñQÛ)COðŠBê€r@êC
	Bêr@êC

Bêb@ê C
Bê@@ê0h±hˆG @¨BùØ™DJø(ñØEñÑ(à»ñ%ÛèC!à™˜@DJø!1YEБ0h±hˆG û	¨BïØIF˜ðî˜FB™æÙ0h±hˆG û	„BøØÝç°½èð½ðµ¯-é…°×ø°™F‘ê±FOöÿpF‚B"ѹñÀò¤€! 	à9š¹ñ	D+ø+ð—€)óÑ0h±hˆG!ðç¹ñÀòŒ€˜+ø¹ñ	úфà¸hȳ _êPOê5¹ñzÛ)COðŠBê€r@êC
	Bêr@êC

Bê`@ê! à9ꓲ«B
Ù)öÑ0h±hˆG!ꓲ«BôØ›D+ø ñÈEìÑHà¹ñEÛèCi€²%úúOð 	à˜™ëA+ø5ME0иñШñà0h±hˆGOð²û
ô¡²QEåÒÍéP˜‘QFðP혈BÙÒ˜
Fà¨ñ²û
��BÎҸñóÑ0h±hˆGOððç°½èð½ðµ¯-é…°Føh™F‹FұFÿ*"ѹñTÛ! 
à9
›¹ñ	ëø+“FÐ)òÑ(h©hˆG!ïç¹ñ<ÛIFZFðúì°½èð½¸h°³ _êPOê6¹ñ*Û1COðŠBê€r@êC
	Bêp@ê! à9
êӲ³B
Ù)öÑ(h©hˆG!êӲ³BôØûhZDø ñÈEìѰ½èð½¹ñøÛðCq2Oð
βOð Íé¹àÝø°úhë!ø

ñ
™ŠEßиñШñ
à(h©hˆGOðrûù_ú‰û³EàҐ1F˜ð–ì‹EÒÝéF	à¨ñ
rûù_ú‰ñ¡BÍҸñòÑ(h©hˆGOðïçÝéÁçðµ¯Mø½+ÛþhFұF! à9@ðø+<Ð)õÑ(h©hˆG!ðø+<óÑ]ø»ð½
F0F!FðDì]ø»ð½ðµ¯-遰-í‹„°ƒF¸h
F’ ñ¸ñ!۷î‹×ø FFÁF–íèÍéPXF€îÍø Sì+þ÷ãû- `-
۶ì4¹ñ	8î@‹åÑà-Û˜@ø(P°½ì‹°½èð½ÔÔðµ¯Mø½-í
‹F@h`± ”íÄéà`Qì½ì
‹]ø»ð½¿î‹·î›!hhÉhˆGF!hFhÉhˆGAìFì[0î0î«1î*î
Ë0î»î˴îIËñîúàڵî@ËñîúÛÐQìðªê¸îAì ``!î€î±îÀ+î*î„íQì½ì
‹]ø»𽀵oFhhÉhˆG·îAì0îAQìð‚êðA€½¿¿ðµ¯-é-í‹·î‹FCì+´îH›ñîúÑ!hhÉhˆGAì8î@Qìð`êðAAìQì½ì‹½èð½µî@›ñîúџíQì½ì‹½èð½´îH›ñîúPՈî	Yì‹8îI«à(F1FBFKFð.êAì´îKñîúÑÙ!hhÉhˆGF!hFhÉhˆGAì8î@QìðêFì[F´îJðCFCìñîúÓÙ8î@€î	Qìðê°îJBFKFAì	îLQìðôé;îLAì´îAñîúÃؔçŸíR¿î»9î)î±îÀˆî«¸îË`hà ”íûÄéà`°îH
îµî@ñîú:Ø(îÑ!hhÉhˆGF!hFhÉhˆGAìFì[0î0îë1î.îÛ0îûî۴îHÛñîúàڵî@ÛñîúÛÐQìð¦éAì `` î€î
±îÀ/î.îû„í»ç/î!hhÉhŸí#+ î;!î+°îHÛîÛ îëˆGAì´îMñîúÔFFQì8îNÛðtéAì(F¶î1F=î/î)îÛîÛðdéAì´îMñîúõ{¯)îQì½ì‹½è𽿿¿UUUUUUտmÅþ²{򠿀µoFÿ÷Äþ—íAì!îQ쀽°µ¯-í‹hFFhÉhˆG·îAìDì[0îAQìð"éðAAì€îQìððè¿îAì1îQì½ì‹°½€µoF-í‹Cì+µî@‹ñîúџíQì½ì‹€½hhÉhˆG·î›Aì9î@Qìðìè‰îðASì+½ì‹½è€@ðʼ°µ¯-í‹hFFhÉhˆG·î‹AìDì[8î@QìðÆèðœèˆî	AìSì+8îAQì½ì‹½è°@𞼀µoF¶îCì+!îSì+ÿ÷,þAì0îQ쀽°µ¯hFÂhFFGðAðvè¸îAì!î±îÀDì[ îQì°½¿¿ðµ¯Mø½-í‹—í‹Cì+Fµî@‹ñîú	Ѷî F)îSì+ÿ÷ïýƒà·î«´îJ›ñîú`ݿî» F9î¶î îSì+ÿ÷ÚýAì`h0î›0± ”íÄéà`9à!hhÉhˆGF!hFhÉhˆGAìFì[0î0îË1î,îë0îÛ
î
ë´îJëñîúàڵî@ëñîúÛÐQìð"è¸îAì ``!î€î±îÀ-î,î„í±îÈ1îî›Qì½ì‹]ø»ð½¶î« h(î
Sì+ý÷ú@î
 F¸îÀ0î	 î
Sì+ÿ÷oý´îH‹ñîú
ÖAì0îQì½ì‹]ø»ð½ŸíQì½ì‹]ø»ð½¿¿øðµ¯-é-í‹‚°—íFFFíÿ÷8ÿ¶î€F0F‰F—í‹(îSì+ÿ÷3ýAìIì‹0îDì[!î îîQ창싽èð½ðµ¯Mø½-í‹F@h—í›Cì+0± ”íÄéà`=à¿î«·î»!hhÉhˆGF!hFhÉhˆGAìFì[0î0î
Ë1î,îë0î
Û
î
ë´îKëñîúàڵî@ëñîúÛÐQìðZï¸îAì ``!î€î±îÀ-î,î„í î!hhÉh î±î+)î î+î+9î	±îÂ+ˆî0îB°îH›î›(î9î€î	«ˆî‹ˆGAì´îHñîúˆ¿°îJ›Qì½ì‹]ø»ð½ðµ¯Mø½-í‹F@h—í‹Cì+0± ”íÄéà`=à¿î«·î»!hhÉhˆGF!hFhÉhˆGAìFì[0î0î
Ë1î,îë0î
Û
î
ë´îKëñîúàڵî@ëñîúÛÐQìðÔî¸îAì ``!î€î±îÀ-î,î„íî›Qì½ì‹]ø»ð½ðµ¯Mø½-í‹F@h—í‹Cì+0± ”íÄéà`=à¿î«·î»!hhÉhˆGF!hFhÉhˆGAìFì[0î0î
Ë1î,îë0î
Û
î
ë´îKëñîúàڵî@ëñîúÛÐQìðxî¸îAì ``!î€î±îÀ-î,î„íî›Qì½ì‹]ø»½èð@ð8ºðµ¯Mø½-í‹F@hCì+0± ”í›Äéà`=à¿î›·î«!hhÉhˆGF!hFhÉhˆGAìFì[0î0î	»1î+îÛ0î	Ëî۴îJÛñîúàڵî@ÛñîúÛÐQìðî¸îAì ``!î€î
±îÀ,î+í¶î F(î‹Sì+ÿ÷…û±îÈAì!î	±îÀîQì½ì‹]ø»ð½е¯Fÿ÷oû·î—í0îA€îAì h îSì+ý÷~øÁнðµ¯Mø½-í‹F@h(Dпî› ·î«”í‹Äéà`!hhÉhˆGF!hFhÉhˆGAìFì[0î0î	»1î+îÛ0î	Ëî۴îJÛñîúàڵî@ÛñîúÛÐQìðœí¸îAì ``!î€î
±îÀ,î+î„í=à¿î‹·î›!hhÉhˆGF!hFhÉhˆGAìFì[0î0î«1î*î
Ë0î»î˴îIËñîúàڵî@ËñîúÛÐQìð^í¸îAì Äé!îà`€î±îÀ*î‹+îˆîQì½ì‹]ø»ð½ðµ¯-遰-í‹„°·î«FCì+—í‹´îJ›ñîúœ¿´îJ‹ñîúÙ Fÿ÷ªúSì+Aì Fÿ÷£úAì8îˆîQ창싰½èð½Šî	ŠîQìÍéQìÍé!hhÉhˆGÝé2FFðòì‹F!h‚FhÉhˆGÝé2€F‰FðæìAìKì«0î´îJñîúÞصî@ñîú݀îÁç(F1FðØìAì@FIFðÒìAìŠî	€î´î@°î@+ñîúȿ°îA+1îB‹Qì0îB›ð’ìF
FQìðŒìAìEìK1îQìðªìAì8î@Q창싰½è½èð@ðx¸е¯-í‹¶î‹FCì+)îSì+ÿ÷ú—í«*îSì+Aì Fÿ÷úAì8î0î!î
 î	îQì½ì‹н°µ¯-í‹hFFhÉhˆG·îAìDì[0îAQìðZìAì îHQì½ì‹°½е¯‚°¶î¼h9iCì+´îAñîúٷî1î@îJSì+¸îÁ î³î+´îBñîúّ!Fý÷¿ø Á°нîJ¸îÁ!î³î´îAñîúّ!Fý÷ªøÁ°н‘!Fý÷Wü Á°н‘!Fý÷OüÁ°нðµ¯-遰-틆°×øF×ø F¹ñÀòf
ë–ÐEVF ë	¸¿FFîštIE‘¸¿‰F	ñ ë	î
îjîJîºî¸îÀ8¸îÁ¸îÄK¸îÅ[¸îÂ+¸îÃ;î‹$î"îî·îû¸îÂ+î(î?îH+"îî
Qì¸îÂ+€î«ðÈëAì¶î›½îÀîZ:î	«hî
¸îÀQìü÷¹øb”«ëîšî*ÐE¸îÁÍø€¸îÀSì+îJTFȿDF±îʻ¤ë	4¸îÀAìFFî‹Xì«ü÷øAì`°îIëAF”î
PF¸îÁË:îÛîëü÷~øSì+ŸíAì±EÍø¸¿NFîjŸ튫ž=î˸î‹FFî«UìKü÷bøAì F)F8î‹<î»ðTëAì¾î۴îL‹¸îûñîúH¿°îHË0hñhˆGƒFŠF0hñhˆGAìJì»0î
*î€î9îµî@ñîúæԴîLñîúáÚQìð&ëAìš½îÀîZhRî
¸îÀQìî*¸îÀëü÷øFFQìü÷øšF웜Aì¢ëñ,D1îëî*¸îÀSì+îJ¸îÀVìKFFû÷ñÿAì1F Fž>îëû÷èÿ±î1îHAì°îO+>îî+;î@ë´îN+ñîúÙ8îN(î·î´îAñîú¿ö~¯XFQFð¢êAì0î´îNñîú?öp¯˜¹hˆBȿEF9išŠB¸¿ECà¹ñ?Û@FÂE¸¿PFî
(¸î°îH›(۰îH›
ë©ñîJ0hñh¸îÀ‰î«ˆGAì:îQìð†êAìh¨B½îÀ¸îÀ9î@›ҵî@›<FñîúÜÜ8îIÂE½îÀîZ¸¿©ëà%é(F°½ì‹°½è𽿿¿˜3?Írû?q¼ÓëÃì?€µoFü÷ÔüÁ€½€µoFþ÷*øÁ€½€µoF-틟íCì+´î@‹ñîú%ÚhÂhFGðAðôé·î0îHSì+AìFFðêAìˆîQìð@êAì½îÀî
Á½ì‹€½ý÷ðþÁ½ì‹€½¿¿¿UUUUUUÕ?€µoF×éÎÇéνè€@þ÷²¾¿¿е¯-í‹‚°—í‹´îH‹ñîú€ñ̀ŸímF´î@‹ñîúÕ háhˆGAì¿î0î0îŸíg îQì°½ì‹нŸí`´î@‹ñîúշî€î0î»à±î(î·î°îA+î+±îÂ0î0î+±îÂ+8î;0îB€îî0îî»·î˰îÛCì+ŸíI›í háhˆGAì î	Qìðšé°îLAì háhî;îîë;îN îû=îO«ˆGAì°î@î
µî@ñîúڏîQìðNéAì0î0îOµî@ñîúÅÛ háhˆGSì+Aì¶î‹FFðfé´îH«AìðAñîúAìH¿°îAí0î‹°îÈ0î	ŸíQìSì+ðPéŸíAìµî@‹1î±î@ñîúH¿°îAQì°½ì‹нŸíQì°½ì‹н¿¿¿ø:Œ0âŽyE>ñh㈵øä>-DTû!	@-DTû!@-DTû!	Àðµ¯Mø½-í
‹·î‹FCì+8îIQìðÐèAì háhˆGAì´îI»ñîú;ÚFF háhˆGAì*îQìðŽèAì8î@Ë,î´î@»ñîú*Ø(F1Fð¨èFFQìð¢èAìFì[î0îQìð¶èµî@»ñîúÂÐAì½îÀî
(ºÛ
à! ½ì
‹]ø»ð½´îL» ñîú¸¿ !½ì
‹]ø»ð½ÔÔÔÔÔԐ@-épâ@ àÀ/ àÁ?!àÀBàÁCàëÄ àÄ@Ѐ½èQã:ÿ/Pá 3ÿ/1Ïoá?oá0CàΏâÁLàƒÁLà0 ãÿ/á°ã€@-é¡뀀½èPá1ƒ"@ Pá1ƒ"@ Pá2ƒ"@ Pá2ƒ"@ 
Pá3ƒ"
@ 
Pá3ƒ"
@ Pá4ƒ"@ Pá4ƒ"@ Pá5ƒ"@ Pá5ƒ"@ 
Pá6ƒ"
@ 
Pá6ƒ"
@ 	Pá7ƒ"	@ 	Pá7ƒ"	@ Pá8ƒ"@ Pá8ƒ"@ Pá9ƒ"@ Pá9ƒ"@ Pá:ƒ"@ Pá:ƒ"@ Pá;ƒ"@ Pá;ƒ"@ Pá<ƒ"@ Pá<ƒ"@ Pá€0ƒ"@ Pá@0ƒ"@ Pá 0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@  áÿ/á0Aì@õîúñîZH-é`ñî0Qìëpâá∽èêÔÔÔÔ0Aì ã@õî ãúñîÿ/‘ßí	+ßí¡`îá¼î@øî¢Aîîà¼î
îÿ/áð=ðÁî	ßí
+ßíãÀøî0Dã¡+@î0Aì rî0Qìÿ/áð ãðA0à ã	ßí0%Dã1Bìã0Dã qî1Aì¡pî0Qìÿ/áð ã0Åÿ/áÿ/ážê¡ê0 á á  á¡ê  á°ãžêà-åÐMâ
  áëåЍâðäQãs:o
Páj:Ïoá?oá0Cà͏âÁLàƒÁLà0 ãÿ/áPá1ƒ"@ Pá1ƒ"@ Pá2ƒ"@ Pá2ƒ"@ 
Pá3ƒ"
@ 
Pá3ƒ"
@ Pá4ƒ"@ Pá4ƒ"@ Pá5ƒ"@ Pá5ƒ"@ 
Pá6ƒ"
@ 
Pá6ƒ"
@ 	Pá7ƒ"	@ 	Pá7ƒ"	@ Pá8ƒ"@ Pá8ƒ"@ Pá9ƒ"@ Pá9ƒ"@ Pá:ƒ"@ Pá:ƒ"@ Pá;ƒ"@ Pá;ƒ"@ Pá<ƒ"@ Pá<ƒ"@ Pá€0ƒ"@ Pá@0ƒ"@ Pá 0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ ‚å áÿ/á‚å ãÿ/á0 ã0‚åÿ/á ãuÿÿê@@-éÐMâ`â`åë å0åЍâ@€½èðO-éÐMâ( å` áQã

P áRã
Sã)
oáOoá@Dà TãD:Zã`ŠPŠêSã5
Zã
P ã`ŠåPŠå` ã á áЍâð½èSã<
Pãh
Câás3ÿæZãoá`ŠŠ5` áê` ãP ã á áЍâð½èBâá*Zã0 @@Š0ŠRãÜÿÿ
2ÿæ  ãoá…0 á Âá5Q á" á0â0c‚á á áЍâð½è á@ áP áiþÿëZã` á–E` ?êà„â` ã ^ã
@$â5ž át á0އá´ áê á áЍâð½èoáooáFà` ã!àâ ^ã= à ã€ á ã° áP ãˆp á‰ á«‡á¨€á€Wà@àáÀààá@”à±à Q€ Q¡ á‹ ᦿá†`…áà^âP áìÿÿ¦ á‹Pá† áZãÁãð€Ê`€á á áЍâð½è á á@ á(þÿë` áZã–Ta P ãðÊ á áЍâð½èoáOoáDàQãoÿÿ*`!âàâF á¶ á0Ž„á5ž á` ãÅÿÿê^㊠Ànâ5ž áL á0Ž„á¼ á½ÿÿê@Ànâ `N␠ãL á0¶„á5† ál áµÿÿê@òàÀòüD`G@ò4ÀòüD`G@òH,ÀòüD`G@òüLÀòüD`G@ò0\ÀòüD`G@òÔÀòüD`G@ò(\ÀòüD`G@ò¬\ÀòüD`G@ò0|ÀòüD`G@ò”|ÀòüD`G@òè|ÀòüD`G@ö\ÀòüD`G@öÀòüD`Gà-åæâêŽâ°ú¾åÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔƏâʌâ˜ú¼åÔÔÔÔƏâʌâŒú¼åÔÔÔÔƏâʌâ€ú¼åÔÔÔÔƏâʌâtú¼åÔÔÔÔƏâʌâhú¼åÔÔÔÔƏâʌâ\ú¼åÔÔÔÔƏâʌâPú¼åÔÔÔÔƏâʌâDú¼åÔÔÔÔƏâʌâ8ú¼åÔÔÔÔƏâʌâ,ú¼åÔÔÔÔƏâʌâ ú¼åÔÔÔÔƏâʌâú¼åÔÔÔÔƏâʌâú¼åÔÔÔÔƏâʌâüù¼åÔÔÔÔƏâʌâðù¼åÔÔÔÔƏâʌâäù¼åÔÔÔÔƏâʌâØù¼åÔÔÔÔƏâʌâÌù¼åÔÔÔÔƏâʌâÀù¼åÔÔÔÔƏâʌâ´ù¼åÔÔÔÔƏâʌâ¨ù¼åÔÔÔÔƏâʌâœù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâ„ù¼åÔÔÔÔƏâʌâxù¼åÔÔÔÔƏâʌâlù¼åÔÔÔÔƏâʌâ`ù¼åÔÔÔÔƏâʌâTù¼åÔÔÔÔƏâʌâHù¼åÔÔÔÔƏâʌâ<ù¼åÔÔÔÔƏâʌâ0ù¼åÔÔÔÔƏâʌâ$ù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâôø¼åÔÔÔÔƏâʌâèø¼åÔÔÔÔƏâʌâÜø¼åÔÔÔÔƏâʌâÐø¼åÔÔÔÔƏâʌâÄø¼åÔÔÔÔƏâʌâ¸ø¼åÔÔÔÔƏâʌâ¬ø¼åÔÔÔÔƏâʌâ ø¼åÔÔÔÔƏâʌâ”ø¼åÔÔÔÔƏâʌâˆø¼åÔÔÔÔƏâʌâ|ø¼åÔÔÔÔƏâʌâpø¼åÔÔÔÔƏâʌâdø¼åÔÔÔÔƏâʌâXø¼åÔÔÔÔƏâʌâLø¼åÔÔÔÔƏâʌâ@ø¼åÔÔÔÔƏâʌâ4ø¼åÔÔÔÔƏâʌâ(ø¼åÔÔÔÔƏâʌâø¼åÔÔÔÔƏâʌâø¼åÔÔÔÔƏâʌâø¼åÔÔÔÔƏâʌâø÷¼åÔÔÔÔƏâʌâì÷¼åÔÔÔÔƏâʌâà÷¼åÔÔÔÔƏâʌâÔ÷¼åÔÔÔÔƏâʌâÈ÷¼åÔÔÔÔƏâʌâ¼÷¼åÔÔÔÔƏâʌâ°÷¼åÔÔÔÔƏâʌâ¤÷¼åÔÔÔÔƏâʌâ˜÷¼åÔÔÔÔƏâʌâŒ÷¼åÔÔÔÔƏâʌâ€÷¼åÔÔÔÔƏâʌât÷¼åÔÔÔÔƏâʌâh÷¼åÔÔÔÔƏâʌâ\÷¼åÔÔÔÔƏâʌâP÷¼åÔÔÔÔƏâʌâD÷¼åÔÔÔÔƏâʌâ8÷¼åÔÔÔÔƏâʌâ,÷¼åÔÔÔÔƏâʌâ ÷¼åÔÔÔÔƏâʌâ÷¼åÔÔÔÔƏâʌâ÷¼åÔÔÔÔƏâʌâüö¼åÔÔÔÔƏâʌâðö¼åÔÔÔÔƏâʌâäö¼åÔÔÔÔƏâʌâØö¼åÔÔÔÔƏâʌâÌö¼åÔÔÔÔƏâʌâÀö¼åÔÔÔÔƏâʌâ´ö¼åÔÔÔÔƏâʌâ¨ö¼åÔÔÔÔƏâʌâœö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâ„ö¼åÔÔÔÔƏâʌâxö¼åÔÔÔÔƏâʌâlö¼åÔÔÔÔƏâʌâ`ö¼åÔÔÔÔƏâʌâTö¼åÔÔÔÔƏâʌâHö¼åÔÔÔÔƏâʌâ<ö¼åÔÔÔÔƏâʌâ0ö¼åÔÔÔÔƏâʌâ$ö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâôõ¼åÔÔÔÔƏâʌâèõ¼åÔÔÔÔƏâʌâÜõ¼åÔÔÔÔƏâʌâÐõ¼åÔÔÔÔƏâʌâÄõ¼åÔÔÔÔƏâʌâ¸õ¼åÔÔÔÔƏâʌâ¬õ¼åÔÔÔÔƏâʌâ õ¼åÔÔÔÔƏâʌâ”õ¼åÔÔÔÔƏâʌâˆõ¼åÔÔÔÔƏâʌâ|õ¼åÔÔÔÔƏâʌâpõ¼åÔÔÔÔƏâʌâdõ¼åÔÔÔÔƏâʌâXõ¼åÔÔÔÔƏâʌâLõ¼åÔÔÔÔƏâʌâ@õ¼åÔÔÔÔƏâʌâ4õ¼åÔÔÔÔƏâʌâ(õ¼åÔÔÔÔƏâʌâõ¼åÔÔÔÔƏâʌâõ¼åÔÔÔÔƏâʌâõ¼åÔÔÔÔƏâʌâøô¼åÔÔÔÔƏâʌâìô¼åÔÔÔÔƏâʌâàô¼åÔÔÔÔƏâʌâÔô¼åÔÔÔÔƏâʌâÈô¼åÔÔÔÔƏâʌâ¼ô¼åÔÔÔÔƏâʌâ°ô¼åÔÔÔÔƏâʌâ¤ô¼åÔÔÔÔƏâʌâ˜ô¼åÔÔÔÔƏâʌâŒô¼åÔÔÔÔƏâʌâ€ô¼åÔÔÔÔƏâʌâtô¼åÔÔÔÔƏâʌâhô¼åÔÔÔÔƏâʌâ\ô¼åÔÔÔÔƏâʌâPô¼åÔÔÔÔƏâʌâDô¼åÔÔÔÔƏâʌâ8ô¼åÔÔÔÔƏâʌâ,ô¼åÔÔÔÔƏâʌâ ô¼åÔÔÔÔƏâʌâô¼åÔÔÔÔƏâʌâô¼åÔÔÔԀG´Ì Ì*"ûÿÿoÔðúÿÿoàü!hDI˜
;õþÿo|„Gðÿÿoàþÿÿo<ÿÿÿoù¡-ìÓíá}³Ùà‹è¹á)ä}íçIå©åëýéùòCä™äùäm¹å¹5ºAéoåç‰ÓÑêIòUòaò©îñôþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþþcJˆ¼‹ÍqÏÿÿÿÿÿÿÿÿŒ&ȉm
n%qDÐ0Ms‰s°Œýsy•;A{DÁ,E{‚K*5}‚Œd¹‚—d
ˆ‚œdgŒ‚g
lU‚l"sŸ‚0säy¡‚ëy¤zµ£‚©z}§‚*¿‹‰ª‚ԋJ¡¬‚
]•¹‚e•۠¹Ô‚á £9Û‚†£U±Aß‚]±|¿î¿òÃqñøÃ Íaô‚0ÍCØ©‚SØÍàÁ‚Ôà¦ð}‚µðÔû‰
‚Úûé5‚ëý‚„#‚Ž#Ä,‚Ù,Ú8Y‚ê8+C¥‚6C¸T±"‚ÁTÄa}&‚ËaÂq‰)‚Êq¸•,‚¾®¡/‚¶ˆ›e3‚›°®)7‚¹®)»í:‚3»Í±>‚
Í*×½A‚/ךâ‰E‚¥â1í!Z‚:í=ü¹t‚OüÏ	Ñx‚×	Ö1|‚Û¤‚®)'Ղ‚8'¦7¥™‚°7¦Cùœ‚ºC®Y¹Ä‚ºYfÑÛ‚fvrùî‚~r.w=ð‚:w*|9Q—dñ’‚Q|ü}é™~ô€š‚½ƒă,„¥Ÿ1„Linker: LLD 18.0.3Android (12470979, +pgo, +bolt, +lto, +mlgo, based on r522817c) clang version 18.0.3 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262)A;aeabi1C2.09
A	
"&.fini_array.ARM.exidx.text.got.comment.note.android.ident.got.plt.rel.plt.bss.ARM.attributes.dynstr.gnu.version_r.data.rel.ro.rel.dyn.gnu.version.dynsym.gnu.hash.relro_padding.note.gnu.build-id.dynamic.shstrtab.rodata.data,TT˜Âìì$¡Ð
”ÿÿÿoààZoþÿÿo<<@©öÿÿo||g˜˜;‹	ÔÔð
p‚Ä!Ä!8I	Bü!ü!hè2h&h&8¦ Ì Ìð1Mþþð~€G€„G„ÕŒGŒÀLHLø@DID	@³„K„|ðˆ‹ˆRˆˆ$	#0ˆÌWpT<ސö