Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / mtrand.cpython-312.so
Size: Mime:
ELF4ó	4 	(444  Pè	Pè	@Pè	P(
P(
ü°@Pì	Pl
Pl
$@\è	\(
\(
ÀÀRåtdPè	P(
P(
ü°PåtdðÐðÐðÐ<<QåtdTTT¼¼„Androidr27c12479018GNUŸü+³eËÍM¦Èû
ˆÖ\G,€¨G=N`y‹›²ÅÑâ÷2>Qd{†”¡­Çãö)@UmŽ›§ºÝì÷!5DTarŒ˜¦­¾Óãèþ 0@Kl}’£¿Øç÷&3?Pev†”­ºÕæô"4;Qgu‡—«Ãåó 1BXp}‰š«¿ËÜêþ+=Rf{‡–§ºÍÛéû
		+	7	I	P	d	x		Ÿ	­	Æ	×	ð	

,
=
N
`
n
Œ
œ
®
º
¾
Ä
É
Ð
Ô
Ø
Ý
â
è
î
ò
÷
ü
/pL#
  c
c
ªˆªgl Ž__cxa_finalize__cxa_atexit__register_atforkPyInit_mtrandPyModuleDef_InitPyThreadState_GetPyInterpreterState_GetIDPyExc_ImportErrorPyErr_SetStringPyObject_GetAttrStringPyModule_NewObject_Py_DeallocPyModule_GetDictPyDict_SetItemString_Py_NoneStructPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyExc_RuntimeErrorPyImport_AddModulePyObject_SetAttrStringPy_VersionPyOS_snprintfPyErr_WarnExPyTuple_NewPyBytes_FromStringAndSizePyUnicode_FromStringAndSizePyFloat_FromDoublePyLong_FromLongPyLong_FromStringPyObject_SetAttrPyImport_GetModuleDictPyDict_GetItemStringPyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyTuple_PackPySlice_New_Py_EllipsisObjectPyUnstable_Code_NewWithPosOnlyArgsPyDict_SetItemPyList_NewPyType_ModifiedPyLong_TypePyCMethod_New_PyDict_NewPresizedPyErr_OccurredPyExc_NameErrorPyErr_FormatPyObject_GetAttrPyGC_DisablePyType_ReadyPyGC_EnablePyCapsule_NewmallocPyObject_GetItemPyCapsule_GetPointerPyExc_TypeErrorfreePyImport_ImportModulePyImport_GetModule_Py_TrueStruct_Py_FalseStructPyObject_IsTruePyDict_NewPyImport_ImportModuleLevelObjectPyModule_GetNamePyUnicode_FromStringPyUnicode_Concat_PyThreadState_UncheckedGetPyException_GetTracebackPyCapsule_TypePyExc_Exception_PyDict_GetItem_KnownHash_PyObject_GetDictPtrPyObject_NotPyFrame_NewPyTraceBack_HerePyUnicode_FromFormatPyUnicode_AsUTF8PyCode_NewEmptyPyMem_ReallocPyException_SetTracebackPyMem_MallocPyUnicode_InternFromStringPyUnicode_DecodePyObject_HashPyBaseObject_TypePyErr_GivenExceptionMatchesPyCapsule_IsValidmemcpyPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyExc_SystemErrorPyErr_SetObjectPyObject_GC_UnTrackPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyMethod_TypePyNumber_AddPyNumber_InPlaceAddPyDict_SizePyCFunction_TypePyType_IsSubtypePyVectorcall_FunctionPyObject_VectorcallDictPyTuple_TypePyList_TypePyObject_GetIterPyExc_ValueErrorPyObject_IsInstancePyDict_TypePyObject_SetItemPyObject_SizePySequence_ContainsPyFloat_TypePyFloat_AsDouble_PyType_LookupPyEval_SaveThreadPyEval_RestoreThreadPyLong_FromLongLongPyObject_RichComparePyBool_TypePyUnicode_TypePyUnicode_FormatPyNumber_RemainderPyLong_FromSsize_tPyNumber_LongPyList_AppendPyNumber_MultiplyPyList_AsTuplePySequence_ListPySequence_TuplePyDict_NextPyUnicode_ComparememcmpPyExc_StopIterationPyExc_OverflowErrorPyDict_GetItemWithErrorPyExc_KeyErrorPyLong_AsLongPyExc_DeprecationWarningPyErr_WarnFormatPyErr_NormalizeExceptionPyNumber_InPlaceTrueDividePyNumber_SubtractPyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyLong_AsLongLongPyUnicode_New_PyUnicode_FastCopyCharactersPyObject_FormatPyCapsule_GetNamePyDict_Copyexplog1pexpflog1pfpowlogpowflogfexpm1floorcosacosfmodceilmemsetlibm.soLIBClibc.solibpython3.12.soP(
T(
X(
x)
|)
€)
„)
)
”)
˜)
œ)
 )
¤)
¨)
¬)
°)
´)
¸)
¼)
À)
Ä)
È)
Ì)
Ð)
Ô)
Ø)
Ü)
à)
ä)
è)
ì)
ð)
ô)
ø)
ü)
dl
pl
tl
ˆl
l
¨l
¬l
´l
¸l
¼l
Äl
Èl
Ìl
Ôl
Øl
Ül
äl
èl
ìl
ôl
m
m
$m
<m
Pm
Tm
Xm
lm
tm
Œm
”m
Èm
Ìm
Øm
Üm
èm
ìm
øm
üm
n
n
n
n
n
$n
(n
,n
4n
8n
<n
Dn
Hn
Ln
Tn
Xn
\n
dn
hn
ln
tn
xn
|n
„n
ˆn
Œn
”n
˜n
œn
¤n
¨n
¬n
´n
¸n
¼n
Än
Èn
Ìn
Ôn
Øn
Ün
än
èn
ìn
ôn
øn
ün
o
o
o
o
o
o
$o
(o
,o
4o
8o
<o
Do
Ho
Lo
To
Xo
\o
do
ho
lo
to
xo
|o
„o
ˆo
Œo
”o
˜o
œo
¤o
¨o
¬o
´o
¸o
¼o
Äo
Èo
Ìo
Ôo
Øo
Üo
äo
èo
ìo
ôo
øo
üo
p
p
p
p
p
p
$p
(p
,p
4p
8p
<p
Dp
Hp
Lp
Tp
Xp
\p
dp
hp
lp
tp
xp
|p
„p
ˆp
Œp
”p
˜p
œp
¤p
¨p
¬p
´p
¸p
¼p
Äp
Èp
Ìp
Ôp
Øp
Üp
äp
èp
ìp
ôp
øp
üp
q
q
q
q
(q
,q
0q
)
 )
$)
()
,)
0)
!4)
%8)
*<)
.@)
8D)
<H)
=L)
FP)
GT)
VX)
]\)
b`)
fd)
jh)
kl)
mp)
ot)
sˆ)
zŒ)
{*
ˆ*
‰*
‹*
*
” *
$*
(*
,*
0*
4*
8*
<*
	@*

D*
H*
L*

P*
T*
X*
\*
`*
d*
h*
l*
p*
t*
x*
|*
€*
„*
ˆ*
 Œ*
"*
#”*
$˜*
&œ*
' *
(¤*
)¨*
+¬*
,°*
-´*
/¸*
0¼*
1À*
2Ä*
3È*
4Ì*
5Ð*
6Ô*
7Ø*
9Ü*
:à*
;ä*
>è*
?ì*
@ð*
Aô*
Bø*
Cü*
D+
E+
H+
I+
J+
K+
L+
M+
N +
O$+
P(+
Q,+
R0+
S4+
T8+
U<+
W@+
XD+
YH+
ZL+
[P+
\T+
^X+
_\+
``+
ad+
ch+
dl+
ep+
gt+
hx+
i|+
l€+
n„+
pˆ+
qŒ+
r+
t”+
u˜+
vœ+
w +
x¤+
y¨+
|¬+
}°+
~´+
¸+
€¼+
À+
‚Ä+
ƒÈ+
„Ì+
…Ð+
†Ô+
‡Ø+
ŠÜ+
Έ+
Žä+
è+
ì+
‘ð+
’ô+
“ø+
•ü+
–,
—,
˜,
™,
š,
›,
œ,
,
ž ,
Ÿ$,
 (,
¡,,
¢0,
£4,
¤8,
¥<,
¦@,
§D,
¨H,
©ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ€€€€€€.eüÿWfüÿfüÿ7füÿ‚üÿ.…üÿº„üÿæ„üÿ‹„üÿ\ƒüÿQƒüÿFƒüÿ?ƒüÿN°üÿì±üÿ¥±üÿqüÿ‚±üÿý°üÿö°üÿï°üÿè°üÿoµüÿæ¶üÿ›¶üÿ½¶üÿ¸¸üÿ¶üÿ¶üÿýµüÿ*Òüÿ“ÓüÿWÓüÿwÓüÿEçüÿ èüÿ`èüÿ|èüÿ]êüÿãçüÿÜçüÿÑçüÿÐïüÿ?ñüÿñüÿñüÿnôüÿ—õüÿSõüÿwõüÿIùüÿáúüÿ~úüÿ²úüÿSúüÿ¾ýÿçýÿ£ýÿÇýÿÞ
ýÿýÿÃýÿçýÿõýÿNýÿýÿ*ýÿý ýÿ‘ýÿŠýÿýÿµ"ýÿ$ýÿÎ#ýÿê#ýÿ½%ýÿQ#ýÿJ#ýÿ?#ýÿu'ýÿÎ(ýÿŽ(ýÿª(ýÿ}*ýÿ(ýÿ
(ýÿÿ'ýÿ5,ýÿŽ-ýÿN-ýÿj-ýÿ=/ýÿÑ,ýÿÊ,ýÿ¿,ýÿ~4ýÿ§5ýÿc5ýÿ‡5ýÿx9ýÿ(;ýÿÅ:ýÿù:ýÿ—:ýÿUýÿÏVýÿVýÿ§VýÿyýÿUzýÿzýÿ5zýÿ‡Šýÿ8ŒýÿՋýÿ	Œýÿ§‹ýÿª­ýÿã¯ýÿ¯ýÿF¯ýÿæ®ýÿ°ýÿq®ýÿj®ýÿc®ýÿU®ýÿ®éýÿêêýÿ±êýÿÑêýÿnumpy.random.mtrandnumpy/random/mtrand.pyxCannot take a larger sample than population when 'replace=False'DeprecationWarningFewer non-zero entries in p than sizeImportErrorIndexErrorInvalid bit generator. The bit generator must be instantized._MT19937MT19937Negative dimensions are not allowedOverflowErrorProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.
In future version, providing byteorder will raise a ValueErrorRandomStateRandomState.binomial (line 3353)RandomState.bytes (line 805)RandomState.chisquare (line 1910)RandomState.choice (line 841)RandomState.dirichlet (line 4394)RandomState.exponential (line 500)RandomState.f (line 1729)RandomState.gamma (line 1645)RandomState.geometric (line 3772)RandomState.gumbel (line 2764)RandomState.hypergeometric (line 3834)RandomState.laplace (line 2670)RandomState.logistic (line 2888)RandomState.lognormal (line 2974)RandomState.logseries (line 3969)RandomState.multinomial (line 4257)RandomState.multivariate_normal (line 4058)RandomState.negative_binomial (line 3505)RandomState.noncentral_chisquare (line 1986)RandomState.noncentral_f (line 1823)RandomState.normal (line 1454)RandomState.pareto (line 2354)RandomState.permutation (line 4668)RandomState.poisson (line 3593)RandomState.power (line 2561)RandomState.rand (line 1177)RandomState.randint (line 679)RandomState.randn (line 1221)RandomState.random_integers (line 1289)RandomState.random_sample (line 385)RandomState.rayleigh (line 3090)RandomState.seed (line 228)RandomState.shuffle (line 4543)RandomState.standard_cauchy (line 2075)RandomState.standard_exponential (line 577)RandomState.standard_gamma (line 1563)RandomState.standard_normal (line 1385)RandomState.standard_t (line 2150)RandomState.tomaxint (line 621)RandomState.triangular (line 3244)RandomState.uniform (line 1050)RandomState.vonmises (line 2265)RandomState.wald (line 3167)RandomState.weibull (line 2457)RandomState.zipf (line 3676)Range exceeds valid boundsRuntimeWarningSequenceShuffling a one dimensional array subclass containing objects gives incorrect results for most array subclasses.  Please use the new random number API instead: https://numpy.org/doc/stable/reference/random/index.html
The new API fixes this issue. This version will not be fixed due to stability guarantees of the API.TThis function is deprecated. Please call randint(1, {low} + 1) insteadThis function is deprecated. Please call randint({low}, {high} + 1) insteadTypeErrorUnsupported dtype %r for randintUserWarningValueError()*.?a'a' and 'p' must have same size'a' cannot be empty unless no samples are takena must be 1-dimensionala must be 1-dimensional or an integera must be greater than 0 unless no samples are takenaddall__all__allclosealphaalpha <= 0anyarangeargsarrayarray is read-onlyasarrayastype at 0x{:X}atolbbg_type
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        bit_generatorbitgenbool_
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        can only re-seed a MT19937 BitGeneratorcapsulecastingcheck_validcheck_valid must equal 'warn', 'raise', or 'ignore'
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        __class____class_getitem__cline_in_tracebackcollections.abccopycount_nonzerocovcov must be 2 dimensional and squarecovariance is not symmetric positive-semidefinite.cumsumdfdfdendfnum
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        disabledotemptyempty_likeenable__enter__epsequal__exit__
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        finfoflagsfloat64format
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gaussgc
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        getget_state and legacy can only be used with the MT19937 BitGenerator. To silence this warning, set `legacy` to False.greater
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        has_gausshigh
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        idignore__import__index_initializingint16int32int64int8intpisenabledisfiniteisnanisnativeisscalarissubdtypeitemitemsizekappakeykwargsllam
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        leftleft > modeleft == rightlegacylegacy can only be True when the underlyign bitgenerator is an instance of MT19937._legacy_seedinglengthlessless_equalloclocklogical_or
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        low__main__may_share_memorymeanmean and cov must have same lengthmean must be 1 dimensionalmodemode > right_mt19937mu
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        n__name__nbadndim
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        newbyteorderngoodngood + nbad < nsamplenonc
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        npnsamplenumpy.core.multiarray failed to importnumpy.core.umath failed to importnumpy.linalgobject_' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.operatorp'p' must be 1-dimensional
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _pickle
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        _poisson_lam_maxpos
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        probabilities are not non-negativeprobabilities contain NaNprobabilities do not sum to 1prodpvalspvals must be a 1-d sequence__pyx_vtable__raise_rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        __randomstate_ctorrangeravel
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        reducereplacereshapereturn_indexreversedrightrtolscalesearchsorted
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        set_state can only be used with legacy MT19937 state instances.shape
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        sidesigmasingletonsizesort__spec__sqrtstacklevel
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        statestate dictionary is not valid.state must be a dict or a tuple.__str__stridessubtractsumsum(pvals[:-1]) > 1.0sum(pvals[:-1].astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.svdtake__test__tobytestol
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        <u4uint16uint32uint64uint8
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        uniqueunsafe
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        warnwarnings
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        writeablexx must be an integer or at least 1-dimensionalyou are shuffling a 'zeros
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        __reduce__seed
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        get_state
        get_state(legacy=True)

        Return a tuple representing the internal state of the generator.

        For more details, see `set_state`.

        Parameters
        ----------
        legacy : bool, optional
            Flag indicating to return a legacy tuple state when the BitGenerator
            is MT19937, instead of a dict. Raises ValueError if the underlying
            bit generator is not an instance of MT19937.

        Returns
        -------
        out : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            If legacy is True, the returned tuple has the following items:

            1. the string 'MT19937'.
            2. a 1-D array of 624 unsigned integer keys.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If `legacy` is False, or the BitGenerator is not MT19937, then
            state is returned as a dictionary.

        See Also
        --------
        set_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        set_state
        set_state(state)

        Set the internal state of the generator from a tuple.

        For use if one has reason to manually (re-)set the internal state of
        the bit generator used by the RandomState instance. By default,
        RandomState uses the "Mersenne Twister"[1]_ pseudo-random number
        generating algorithm.

        Parameters
        ----------
        state : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The `state` tuple has the following items:

            1. the string 'MT19937', specifying the Mersenne Twister algorithm.
            2. a 1-D array of 624 unsigned integers ``keys``.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If state is a dictionary, it is directly set using the BitGenerators
            `state` property.

        Returns
        -------
        out : None
            Returns 'None' on success.

        See Also
        --------
        get_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        For backwards compatibility, the form (str, array of 624 uints, int) is
        also accepted although it is missing some information about the cached
        Gaussian value: ``state = ('MT19937', keys, pos)``.

        References
        ----------
        .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
           623-dimensionally equidistributed uniform pseudorandom number
           generator," *ACM Trans. on Modeling and Computer Simulation*,
           Vol. 8, No. 1, pp. 3-30, Jan. 1998.

        random_sample
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        random
        random(size=None)

        Return random floats in the half-open interval [0.0, 1.0). Alias for
        `random_sample` to ease forward-porting to the new random API.
        beta
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        .. note::
            New code should use the `~numpy.random.Generator.beta`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.


        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        See Also
        --------
        random.Generator.beta: which should be used for new code.
        exponential
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        standard_exponential
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        randint
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        bytes
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        choice
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        uniform
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        randn
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        random_integers
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        standard_normal
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        normal
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        standard_gamma
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gamma
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        f
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        noncentral_f
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        chisquare
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        noncentral_chisquare
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        standard_cauchy
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        standard_t
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        vonmises
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        pareto
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        weibull
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        power
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        laplace
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        gumbel
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        logistic
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        lognormal
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        rayleigh
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        wald
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        triangular
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        binomial
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        negative_binomial
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        poisson
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        zipf
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        geometric
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        hypergeometric
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        logseries
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        multivariate_normal
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        multinomial
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        dirichlet
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        shuffle
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        permutation
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _bit_generatortypenumpydtypedouble
    seed(seed=None)

    Reseed the singleton RandomState instance.

    Notes
    -----
    This is a convenience, legacy function that exists to support
    older code that uses the singleton RandomState. Best practice
    is to use a dedicated ``Generator`` instance rather than
    the random variate generation methods exposed directly in
    the random module.

    See Also
    --------
    numpy.random.Generator
    get_bit_generator
    Returns the singleton RandomState's bit generator

    Returns
    -------
    BitGenerator
        The bit generator that underlies the singleton RandomState instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random`` namespace. This function, and its counterpart set method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    set_bit_generator
    numpy.random.Generator
    set_bit_generator
    Sets the singleton RandomState's bit generator

    Parameters
    ----------
    bitgen
        A bit generator instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random``namespace. This function, and its counterpart get method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    get_bit_generator
    numpy.random.Generator
    sample
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    ranf
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    …ëQ¸…Û?>@à|@ð¿$ÿ+•K?ffffff@˜3?Írû?@@h‘í|?5®¿À3­	‚´;
@9´Èv¾ŸŠ?333333@Áè lªƒѿUUUUUUÕ?˜nƒÀÊí?88C¿mÅþ²{ò ?=
ףp=@ÀX@ð?ê-™—q=ƒ»~)ÙÉ@  J?-DTû!	À0̶Œe€¥*àCà¿$@à?@5gGö¿@q¼ÓëÃì?<™ٰj_¿…8–þÆ?B>è٬ú@ìQ¸…ë±?€4@ôýÔxé&Á?ñh㈵øä>š™™™™™.@€a@—SˆBž¿lÁlÁf¿UUUUUUµ?rŠŽäòò?€MA€„.AÂõ(\@ä?€`@´¾dÈñgý?:Œ0âŽyE>$—ÿ~ûñ?¸Ê@¤A¤Az?[¶Ö	m™?rù鷯í?UUUUUUÅ?-DTû!	@4294967296name '%U' is not definednumpy.random.mtrand.RandomStateexactlyMissing type object_rand_int16module compiled against API version 0x%x but this version of numpy is 0x%x . Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem .numpy.random.mtrand.ranfnumpy.random.mtrand.RandomState.bytesnumpy.random.mtrand.RandomState.standard_normalnumpy.random.mtrand.RandomState.standard_tSeedSequence%s() got multiple values for keyword argument '%U'__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)numpy.random.mtrand.RandomState.random_samplenumpy.random.mtrand.RandomState.fndarray_rand_bool_rand_int32numpy.random.mtrand.get_bit_generatordoes not match__setstate__too many values to unpack (expected %zd)numpy.random.mtrand.RandomState.vonmisesflexiblevalidate_output_shapeC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)numpy.core._multiarray_umath%.200s() keywords must be stringsnumpy.random.mtrand.RandomState.randintnumpy.random.mtrand.RandomState.multivariate_normalcomplexfloatingneed more than %zd value%.1s to unpacknumpy.random.mtrand.RandomState.set_statenumpy.random.mtrand.RandomState.rayleighmultiple bases have vtable conflict: '%.200s' and '%.200s'integer%.200s does not export expected C function %.200sloader__package____getstate__at most%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random.mtrand.RandomState.tomaxintboolfloatingLEGACY_POISSON_LAM_MAXdiscPyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)an integer is requiredassignmentPOISSON_LAM_MAX_rand_uint8_rand_int64_ARRAY_API is NULL pointercannot fit '%.200s' into an index-sized integernumpy.random.mtrand.RandomState.lognormalnumpy.random.mtrand.RandomState.shuffle%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectsnumpy.random.mtrand.RandomState.logseriesSeedlessSequencePyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)_ARRAY_APIFATAL: module compiled as unknown endiannumpy/random/mtrand.cpython-312.so.p/numpy/random/mtrand.pyx.c
    RandomState(seed=None)

    Container for the slow Mersenne Twister pseudo-random number generator.
    Consider using a different BitGenerator with the Generator container
    instead.

    `RandomState` and `Generator` expose a number of methods for generating
    random numbers drawn from a variety of probability distributions. In
    addition to the distribution-specific arguments, each method takes a
    keyword argument `size` that defaults to ``None``. If `size` is ``None``,
    then a single value is generated and returned. If `size` is an integer,
    then a 1-D array filled with generated values is returned. If `size` is a
    tuple, then an array with that shape is filled and returned.

    **Compatibility Guarantee**

    A fixed bit generator using a fixed seed and a fixed series of calls to
    'RandomState' methods using the same parameters will always produce the
    same results up to roundoff error except when the values were incorrect.
    `RandomState` is effectively frozen and will only receive updates that
    are required by changes in the internals of Numpy. More substantial
    changes, including algorithmic improvements, are reserved for
    `Generator`.

    Parameters
    ----------
    seed : {None, int, array_like, BitGenerator}, optional
        Random seed used to initialize the pseudo-random number generator or
        an instantized BitGenerator.  If an integer or array, used as a seed for
        the MT19937 BitGenerator. Values can be any integer between 0 and
        2**32 - 1 inclusive, an array (or other sequence) of such integers,
        or ``None`` (the default).  If `seed` is ``None``, then the `MT19937`
        BitGenerator is initialized by reading data from ``/dev/urandom``
        (or the Windows analogue) if available or seed from the clock
        otherwise.

    Notes
    -----
    The Python stdlib module "random" also contains a Mersenne Twister
    pseudo-random number generator with a number of methods that are similar
    to the ones available in `RandomState`. `RandomState`, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    See Also
    --------
    Generator
    MT19937
    numpy.random.BitGenerator

    numpy.random.mtrand.RandomState.permutationnumpy.random._bounded_integers__file__parentsubmodule_search_locationsnumpy.random.mtrand.RandomState.randnumpy.PyArray_MultiIterNew3_rand_int8check_array_constraintPyObject *(PyObject *, PyArrayObject *)NULL result without error in PyObject_Callnumpy.random.mtrand.RandomState.normalnumpy.random.mtrand.RandomState.__init__check_constraintdouble (double *, npy_intp)__loader__init numpy.random.mtrand__repr__numpy.random.mtrand.RandomState.paretodouble_fillnumpy.random.mtrand.samplenumpy.random.mtrand.RandomState.seednumpy.random.mtrand.RandomState.laplacenumpy.random.mtrand.RandomState.waldnumpy.random.mtrand.RandomState.triangularflatiterPyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)numpy.random.mtrand.RandomState.noncentral_fModule 'mtrand' has already been imported. Re-initialisation is not supported.intnumpy.random.mtrand.RandomState.random_integersnumpy.random.mtrand.RandomState.standard_gammanumpy.random.mtrand.RandomState.gammanumpy.random.mtrand.RandomState.dirichlethasattr(): attribute name must be stringnumberC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)_rand_uint64%s (%s:%d)cython_runtimenumpy.random.mtrand.RandomState.__repr__numpy.random.mtrand.RandomState.exponential__init__%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject_rand_uint16PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)cannot import name %S__path__numpy.random.mtrand.RandomState.get_stateinvalid vtable found for imported typecharacterufuncmodule compiled against ABI version 0x%x but this version of numpy is 0x%xnumpy.random.mtrand.set_bit_generatorBitGeneratornumpy.random.mtrand.RandomState.noncentral_chisquare_rand_uint32originnumpy/__init__.cython-30.pxdcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%dnumpy.random.mtrand.RandomState.__setstate__deletionnumpy.random.mtrand.RandomState.choicenumpy.random.mtrand.RandomState.geometricint (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)uint64_t_ARRAY_API is not PyCapsule objectcalling %R should have returned an instance of BaseException, not %Rnumpy.random.mtrand.RandomState.standard_exponential'%.200s' object does not support slice %.10snumpy.random.mtrand.int64_to_longnumpy.random.mtrand.RandomState.multinomial%.200s.%.200s is not a type objectkahan_sumnameat leastnumpy.random.mtrand.RandomState.betanumpy.random.mtrand.RandomState.gumbelunsignedintegerMAXSIZEcontnumpy.import_arraybuiltinsnumpy.random.mtrand.RandomState.negative_binomialextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typePyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)'%.200s' object is unsliceablenumpy.random.mtrand.RandomState.randnnumpy.random.mtrand.RandomState.weibullnumpy.random.mtrand.RandomState.logisticbroadcast%.200s does not export expected C variable %.200sFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random.mtrand.RandomState.binomialnumpy.random.mtrand.RandomState.poissonnumpy.random.mtrand.RandomState.hypergeometricbase class '%.200s' is not a heap typenumpy.random.bit_generatornumpy.random._commoncont_broadcast_3discrete_broadcast_iiinumpy.random.mtrand.seedInterpreter change detected - this module can only be loaded into one interpreter per process.__builtins__ while calling a Python objectraise: exception class must be a subclass of BaseExceptiontomaxint%s() got an unexpected keyword argument '%U'numpy.PyArray_MultiIterNew2mtrandnumpy.random.mtrand.RandomState.__str__numpy.random.mtrand.RandomState.__getstate__numpy.random.mtrand.RandomState.__reduce__Cannot convert %.200s to %.200s'%.200s' object is not subscriptablenumpy.random.mtrand.RandomState.uniformnumpy.random.mtrand.RandomState.standard_cauchynumpy.random.mtrand.RandomState.powernumpy.random.mtrand.RandomState._initialize_bit_generatornumpy.random.mtrand.RandomState.zipfcomplexsignedintegerinexactnumpy.random.mtrand.RandomState.randomnumpy.random.mtrand.RandomState.chisquarejoin() result is too long for a Python stringgeneric__pyx_capi__int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)€?¤Ýi@ޓ=?ASŒ¾€3@@ÉNö@ÀÁ]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛe'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msyÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒx€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9;8æ°zTàz|ðz{¤ {ÌP{€{4°{\à~œðÓT%0Ԅ%@ÙÌ&àÝ (°Þà(Ðá )0ä* äd*Àå¤*àéè*@ê<+àñ€+j, j|,kØ,ðk-pl€- mÄ-Ðm.@n`.°nœ.`oÜ.Ðo/Pr\/rt/Psè/ðs`0àt1 u41`yx1P|¼1°|2@}L2à„2€…è2 ‡È30‡Ü3‰Ì4¨5ð—ì5 06`ªt6з¸6@ºp7н|8 Â„90Æd:°È8; Û€;@Ä;à<ð
¸<#=ð&D=Ð*ˆ=`=Ì=à? >°DŒ?pHl@MXAàQ`B WxC`[XD0``EÀb4F€fGPkHoüHÐrÜIv¼JP{¨K€”LЄ€M‰lN LOð‘TP°­œPÀÑäPðÖRàÚôRðÞèSãÜTð$UV@B`V°_¨V€zðV0|pW@”´W• X€˜ÜX€šPY@›˜YàY@$Zž\Z€ž°ZŸèZ Ÿ\[0 œ[à¡à[`¢\à¢p\`¤°\P%ø\ð%d] &À]p'4^À'„^@(Ì^P)_@*˜_À*ì_°/0`€0l`@d´`Peø`peaàeDapf|a gHbÐhcj¸cPsüc@txdðwle z°eP}ôe}fÀ}Df~„fp~ÄfàgpDg€g@„Àghp…@h ‡„hð‡Ähð‰üh@Š<i`’„iЙÀišèi0šj`š8jš`jpœ˜jÀj0žüj€ž$kОLk ŸtkP¢Ðk°¢øk`£(l#Xl0¥”lЦÐlp¨mP©Hmªxm€ª¨mЪÐmP¬nà¬<n°²€n ³°n ¾ønÀ<opÁtoÃÌoÀÃüo°Ä8pɤpÐÊðpPËq ÍTqpϐqÑÄqàÑôq°Ò4r0ÕtrÖ´r×ørÙ<s`ÙtsÞ´sÀßôs0â4t@ättÀäÌtpåuÀæHu çpu€ìÀuÐìèu`ívðí@v€îhvàîvPï¸v0òôvàò$wõ`wpöwà÷Àw ùðw ú x üTx@ÿ¤xðÿÔx`üxP,y0pyp˜y°Àypèy°z@lzzR|ˆ$Ts#ACƒEAWAD\sXXs$lTsACƒEASA0”Ls/ACƒEAIMDA HA0ÈHs-ACƒEAMDDD HA$üDs#ACƒEAWA<$Ls"AAAAC0†‡ƒ…E4A0AAAA´d<vUAAAAF†‡ƒ…E”Ah˜GœB H`œA HeœG H^œG H^”L˜AœF HnœW A¤A¨A¬B°B´A¸E¼AÀH”B˜AœB HKœB HQ˜HœA HQ˜BœA HV PV˜EœB HQ˜EœE HQ˜EœE HQœB HQœB HQ”H˜BœA HQœB HZ”F˜FœF HZ˜GœA HG”F˜AœA Hh”B˜AœA Hn”B˜AœA Hn”B˜AœA Hn”B˜AœA Hn”B˜AœA Hn”B˜AœA Hn”B˜AœA Hn”B˜AœA Hn”B˜AœA Hn”B˜AœA Hn”B˜AœA HQ˜FœB HV˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ”F˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ”F˜FœB HQ”F˜FœB HU”A˜AœB HQ”F˜FœB HQ”F˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ”A˜AœA HQ˜FœB HQ”F˜FœB HQ˜FœB HQ”A˜FœB HQ˜FœB HQ˜FœB HQ˜FœB HQ”F˜FœB HQ”G˜FœB HQ˜FœB HU”F˜FœB Hw˜BœD HMàhRœA Lq˜BœD HMà[RœA LQ”F˜FœB Hw˜BœD HMàaRœA LQ”F˜FœB Hw˜BœD HMàhRœA L{˜BœD HMàaRœA LZ”A˜FœF H[œA HX”A˜FœF HYœA HCœB HqœD H[œA HZ”A˜FœF HYœA HQœA HX”A˜FœF HYœA HCœB HqœD H[œA HZ”A˜FœF HYœA HQœA H` MS”A˜FœF HYœA HCœF HvœE HM”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA Hl˜AœA E[œA HC”A˜FœF HYœA HH”F˜BœA HM”A˜FœF HYœA HH”F˜BœA HM”A˜FœF HYœA HH”F˜BœA HM”A˜FœF HYœA HH”F˜BœA HM”A˜FœF HYœA HH”F˜BœA HM”A˜FœF HYœA HCœB H¶”A˜FœF HYœA HCœB HM”F˜FœA HR”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”F˜FœA HK”A˜FœF HaœA J™˜OœD HfœA GR˜GœB HQAAAAAë˜AœA Eh˜AœA E{˜AœA Eh˜AœA Eh˜AœA Eh˜AœA Eh˜AœA Ee˜AœA Ee˜AœA Ee”G˜AœB H]˜AœA E_”G˜AœB HW˜AœA E_”G˜AœB H˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H[˜AœA HM˜AœA HM˜AœA HM˜AœA HM˜AœA HM˜AœA HM˜AœA HM˜AœA HM˜AœA HM˜AœA HM˜AœA Hq˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HC˜AœA H˜AœA HA˜AœA H˜AœA HA˜AœA H˜AœA HA˜AœA Hn˜AœA Hz˜AœA Hx˜AœA Hz˜AœA Hx˜AœA Hz˜AœA Hk˜AœA Hm˜AœA HiœA H]œA J,”®4ACƒEA[AAKADL¤®AAAAC@†‡ƒ…EDA@ÄLAPH@FDBHBLAPH@MDAHFLFPH@YLAPH@DLAPH@_HFLFPH@IHBLAPH@ZHDLFPL@^LAPL@fHFLFPH@GHBLEPH@uHDLFPL@[LAPT@zDIHE@aDCHALBPHLDPJ@wHFLFPH@IHBLAPH@^LAPH@EHALFPH@VLDPHDFHFLFPH@YDDHALBPH@HAAAAA@Дl²’AAAAC †‡ƒ…E$A I,G0H R$L(E,A0H _,A0H C,A0H M$L(B,A0H _,A0H C,A0H M$L(B,A0H _,A0H C,G0H M$L(B,A0H Q$L(E,A0H Q$L(E,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H _,A0H C,G0H M$L(B,A0H M$L(B,A0H b$L(B,A0H o,A0H EAAAA<h!8µÏAAAAC †‡ƒ…E$A ½AAAA<¨!ȵAAAAC †‡ƒ…E$A 
AAAAàè!¨¸QAAAAC †‡ƒ…G$A I,A0H h$B(A,A0H d$B(A,A0H e,A0H E(A,A0E \(A,A0E z,A0H NAAAAA C,A0L ^,A0H U,A0H N,B0B4A8F<A@H [,A0H L(A,A0H O(A,A0H \Ì"$ºeAAAAC †‡ƒ…I$A T,D0A4A8F<A@H R,A0L CAAAAA <,#4ºAAAAC0†‡ƒ…I4A0`AAAAA0@l#»AAAAC@†‡ƒ…EDA@ZAAAAA@P°#ð¾ZAAA†ƒGAICAF HTAAANAAEEAA@$ü¾˜AAAAC@†‡ƒ…KDA@rAAAAA@„H$XÆxAAAF€F†‡ƒE„FA€FvwŒFAFH€FVˆFAŒFAFH€F\„FAˆFAŒFAFH€FKˆFAŒFAFH€FYŒFAFH€FKAAApÐ$ð=”AAA†ƒGA\BAA HGAAAGAA E_GAB JCAAAAA HXD%>_ACƒEAVBAA HAAGAA EGAAAA HNA< % >ìAAAAC †‡ƒ…E$A ÚAAAAdà%Ð>}AAA†ƒEACAAAHAAACAA HAAAEAAAHAA@H&è>©AAAAC †‡ƒ…E$A sAAAAA LŒ&T?­AAAAC †‡ƒ…E$A (A,C0H JAAAAA HÜ&´?gACƒEARAAgAAOAACAA HA8('Ø?aAA†‡EAvAACAAZA<d'@­AAAAC†‡ƒ…E A›AAAA8¤'|@aAA†‡EAvAACAAZA@à'°@qAAAAC †‡ƒ…E$A aAAAAA $(ìB3EAp<(C·AAAAC †‡ƒ…E$A w$B(A,D0H N$E(A,E0H$D(A,A0H$D(D,A0H _AAAAt°(`C–AAAAC †‡ƒ…I$A S,G0H G$D(A,A0E PAAAAA C$D(A,A0HB V(G,B0H œ()ˆCìAAAAC †‡ƒ…E$A g(G,B0G C(A,A0HAAAAA C,B0J I$B(A,A0H S,A0H Z$A(A,B0G C(A,A0H QE C,A00È)ØC¸AAA†ƒEA}AAA@ü)dD¶AAAAC0†‡ƒ…E4A0´AAAAA0@@*àGìAAAAC0†‡ƒ…E4A0ÎAAAAA0T„*ŒJVAAAAC †‡ƒ…E$A \(A,A0E Q(A,A0E IAAAA4Ü*”J‡AAAC †‡ƒE$A wAAA@+ìJ‘AAAACP†‡ƒ…ETAPAAAAAPTX+HR“AAA†ƒEASBA IiAAA[AAAIBFA Iܰ+RžAAAAC †‡ƒ…I$A h(G,A0H l,G0H K(A,A0B N(G,A0H b,G0H K(B,A0E PB C,A0H F$A(A,A0D F$A(A,A0HAAAAA S,G0H G$B(A,A0D P$B(A,A0G I(G,B0H ,PSì¤,LS[AAAAC †‡ƒ…E$A y(A,A0E \$G(F,A0H e,G0H K$A(A,E0E `,A0H Q,A0H X,A0L U,A0L C(M,E0H GAAAAA I$Y(A,B0A4A8A<B@H O,H0H J(A,A0H a$A(A,E0H v(G,B0H ؔ-¼TzAAAAC0†‡ƒ…E4A0x8A<A@E0r<A@L0c<C@H0X<A@L0u<A@H0M<F@H0i4Y8A<B@ADAHALBPH0H8M<E@H0G<A@L0jAAAAA0{4D8A<A@H0V8A<A@H0g<A@M0C8M<E@E0@p.`WÙ
AAAAC`†‡ƒ…EdA`ýAAAAA`@´.üa)AAAACP†‡ƒ…ETAPªAAAAAP@ø.èf5
AAAAC`†‡ƒ…EdA`HAAAAA`@</äsj
AAAAC`†‡ƒ…EdA`•AAAAA`´€/nAAAAC0†‡ƒ…E4A0–4P8A<A@ADAHALBPH0H8M<E@H0E<F@H0}<M@ADAHALAPI0V<A@L0CAAAAA0P<A@H0C8R<E@E0Q4A8A<A@H080Ȃ„AAAAC0†‡ƒ…E4A0˜4P8A<A@ADAHALBPH0H8M<E@E0v<D@H0w8A<A@E0\4A8F<A@H0c<G@H0K4D8A<A@E0`<A@H0U<A@H0X<A@L0U<A@L0C8M<E@H0GAAAAA08A<A@H0l4A8A<E@H0P4D8A<A@H0@8G<B@H0D1L…ÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPÜL2‰‡AAAAC@†‡ƒ…EDA@ÆDVHALAPATAXA\B`H@HHMLEPH@]LDPH@„LDPH@DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@UDAHALAPH@Ð,3ċ|AAAAC0†‡ƒ…E4A0–4P8A<A@ADAHALBPH0H8M<E@H0E<F@H0}4M8B<A@ADBHALAPBTAXA\B`AdAhAlApI0V<A@L0CAAAAA0P<A@H0C8R<E@E0Q4A8A<A@H0D4peAAAAC€†‡ƒ…E„A€uAAAAA€@H4˜Ÿ%AAAACp†‡ƒ…EtApAAAAAp@Œ4tÄ›AAAACP†‡ƒ…ETAPaAAAAAP¬Ð4ÐÌAAAAC`†‡ƒ…EdA`ÊlDpH`›dPhAlApAtAxA|B€H`HhMlEpH`ÈlDpH`älDpH`¤lDpH`adAhAlApH`CAAAAA`SdDhAlApH`D€50ÑAAAAFÀ†‡ƒ…EÄAÀV
AAAAAÀ@È5æÞAAAAC0†‡ƒ…E4A0¬AAAAA0@6¤éÞAAAAC0†‡ƒ…E4A0¬AAAAA0@P6@í‡AAAACp†‡ƒ…EtApœAAAAApД6Œÿ|AAAAC0†‡ƒ…E4A0–4P8A<A@ADAHALBPH0H8M<E@H0E<F@H0}4M8B<A@ADBHALAPBTAXA\B`AdAhAlApI0V<A@L0CAAAAA0P<A@H0C8R<E@E0Q4A8A<A@H0èh78ÄAAAACP†‡ƒ…ETAPÊ\D`HPsTVXA\A`AdAhAlBpHPHXM\E`HPÚ\D`HP¤\D`HP•TMXB\A`FdBhFlApBtAxD|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPÜT8³AAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@è49ü—AAAACP†‡ƒ…ETAPÊ\D`HPŒTPXA\A`AdAhAlBpHPHXM\E`HPÇ\D`HP”\D`HP{TMXB\F`FdBhFlApBtFxD|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HP :°ÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HP(;x·AAAAC`†‡ƒ…EdA`ÊlDpH`^dVhAlApAtAxA|B€H`1lDpH`„lDpH`udYhAlBpAtAxA|F€H`ChOlEpH`slDpH`{dMhBlFpDtBxF|D€B„FˆAŒBA”A˜AœA I`VlApL`CAAAAA`PlApH`ChRlEpE`UdAhAlApH`Ü@< ³AAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@ =ÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPÐ(>ȏAAAAC0†‡ƒ…E4A0–4P8A<A@ADAHALBPH0H8M<E@H0E<F@H04M8B<A@ADBHALAPBTAXA\B`AdDhAlApI0V<A@L0CAAAAA0P<A@H0C8R<E@E0Q4A8A<A@H0Üü>„³AAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@Ü?dÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPÜä@,#³AAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@ÜÄA&³AAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@ܤBì(³AAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@è„CÌ+±AAAACP†‡ƒ…ETAPÊ\D`HPqTVXA\A`AdAhAlBpHPHXM\E`HPÌ\D`HP¤\D`HP‹TMXB\F`FdBhFlApBtFxA|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPèpD /±AAAACP†‡ƒ…ETAPÊ\D`HPqTVXA\A`AdAhAlBpHPHXM\E`HPÌ\D`HP¤\D`HP‹TMXB\F`FdBhFlApBtFxA|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPè\Et3±AAAACP†‡ƒ…ETAPÊ\D`HPqTVXA\A`AdAhAlBpHPHXM\E`HPÌ\D`HP¤\D`HP‹TMXB\F`FdBhFlApBtFxA|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPèHFH7±AAAACP†‡ƒ…ETAPÊ\D`HPqTVXA\A`AdAhAlBpHPHXM\E`HPÌ\D`HP¤\D`HP‹TMXB\F`FdBhFlApBtFxA|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPÜ4G;‡AAAAC@†‡ƒ…EDA@ÆDVHALAPATAXA\B`H@HHMLEPH@]LDPH@„LDPH@DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@UDAHALAPH@HÌ=ÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPDI”A¹AAAAFІ‡ƒ…EÔAÐëAAAAAÐDdI]$AAAAFÀ†‡ƒ…EÄAÀAAAAAÀ¬IԀ.AAAACP†‡ƒ…ETAPÊ\D`HPcTVXA\A`AdAhAlBpHPü\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{THXF\F`BdFhDlBpFtAxB|B€A„AˆAŒAIPW\A`HP]\A`LPCAAAAAPO\A`HPCXR\E`EPCXR\E`LPeTAXA\A`HPðÈJè„íAAAAC@†‡ƒ…EDA@ÂDVHALAPATAXA\B`H@HHMLEPH@aLDPH@”LDPH@“DHHALAPBTAXA\B`FdAhBlBpAtDxA|A€I@WLAPH@]LAPL@CAAAAA@OLAPH@CHRLEPE@CHRLEPL@cDAHALAPH@ð¼Kä‡AAAAC@†‡ƒ…EDA@
LDPH@QDPHALAPATAXA\B`H@HHMLEPH@‚LDPH@‡DHHALAPBTAXA\B`FdDhBlBpAtAxA|A€I@WLAPH@]LAPL@CAAAAA@OLAPH@CHRLEPE@CHRLEPL@aDAHALAPH@ð°L‹AAAAC@†‡ƒ…EDA@
LDPH@QDPHALAPATAXA\B`H@HHMLEPH@‚LDPH@‡DHHALAPBTAXA\B`FdDhBlBpAtAxA|A€I@WLAPH@]LAPL@CAAAAA@OLAPH@CHRLEPE@CHRLEPL@aDAHALAPH@D¤MŽáAAAAF°†‡ƒ…E´A°AAAAA°ðìMĬAAAAC@†‡ƒ…EDA@
LDPH@QDPHALAPATAXA\B`H@HHMLEPH@‚LDPH@‡DHHALAPBTAXA\B`FdDhBlBpAtAxA|A€I@WLAPH@]LAPL@CAAAAA@OLAPH@CHRLEPE@CHRLEPL@aDAHALAPH@DàNà¯4<AAAAF°†‡ƒ…E´A°06AAAAA°D(OØëeAAAAF †‡ƒ…E¤A àAAAAA DpO	ÎAAAAF°†‡ƒ…E´A°`AAAAA°|¸Oˆ#¨AAAAC0†‡ƒ…E4A0¬<F@H0e4Y8A<B@ADAHALBPH0H8M<E@H0EAAAAA0{4A8A<A@H0@8P¸$AAAAC`†‡ƒ…EdA`îAAAAA`h|P„<ÀAAAAC †‡ƒ…E$A D$A(A,B0H EAAAAA J$E(A,C0H [$J(A,B ¸èPØ<~AAAAC0†‡ƒ…I4A0W<A@H0V4E8E<A@H0Z<A@H0.8A<A@H0Y8A<A@H0V4D8A<B@B0O4D8A<B@H0Y<A@H0_<A@L0CAAAAA0Y<A@H0f4p¤Qœ?öAAAAC †‡ƒ…G$A ¸$A(A,A0H _,A0J B,A0L yAAAAA F$A(A,D0J DR(A¸AAC †ƒE$A dAAA @AAA @AAD`R AzAAA†ƒEA`AAA@AAAHAA@¨RØArAAAAC †‡ƒ…E$A ðAAAAA 4ìRC±AAAC †‡ƒG$A fAAAA P$SœC€AAA†ƒEAbAAAQAAApAAAHAA4xSÈC‹ACƒGA_AArAAhAp°S D‡AAA†‡ƒGA[G A$A(A,B0HOABB HVAAACAAACA HCAA<$T<D„AAAAC †‡ƒ…E$A rAAAA@dTŒD¢AAAAC0†‡ƒ…I4A0SAAAAA08¨TøEzAAA†ƒEA`AAAKAAPäT<F€AAA†ƒEAbAAAQAAApAAAHAA<8UhFuAAAAC0†‡ƒ…E4A0uAAAAA0DxU¨Gá€AAAAFÀ†‡ƒ…EÄAÀGLAAAAAÀhÀUPÈ•AAA†ƒEAvAAAHAAAHAAAKBAA HEAAEWAAX,V„ȧAAAAC †‡ƒ…E$A M$C(A,B0H EAAAAA I(G,B0G pˆVØÈÇAAAAC †‡ƒ…E$A ~$A(A,A0H I$D(A,A0F T,A0L `$C(A,B0H HAAAALüV4ÉPAAA†ƒEA]AA EAAARAAAHAADLW4É|AAA†ƒEAyAAAiAAAHAA@”WlÉAAAAC †‡ƒ…G$A YAAAAA „ØW8ÊìAAAAC †‡ƒ…G$A h$B(A,A0H Y,G0H T,A0L I(A,A0E \$I(A,B0H EAAAAA (A,A0H P`X Ê€AAA†ƒEAbAAAQAAApAAAHAA@´XÌÊëAAAAC0†‡ƒ…G4A0‡AAAAA08øXxÏÈAAAC †‡ƒE$A yAAAA D4Yб3AAAAC€†‡ƒ…I„A€i0AAAAA€@|Y„
AAAAC0†‡ƒ…E4A0ÁAAAAA0ÀYP4ÔY\nAAAC †‡ƒE$A ^AAA4Z”AAAC †‡ƒE$A AAAÈDZì,AAAAFà†‡ƒ…GäAàPèAìAðHàbäAèAìBðHàBèGìAðAôAøAüF€HàQìAðHàHAAAAAà\äIèAìAðAôAøEüE€HäBèAìBðHà´[P(AAAAC †‡ƒ…I$A I(G,A0H P(A,E0H I(D,A0H K(D,A0H h,A0H G$A(A,A0H Q,A0H E,A0H(G,D0A4A8A<D@H Z,A0H EAAAA´È[È(AAAAC †‡ƒ…I$A I(G,A0H P(A,E0H I(D,A0H K(D,A0H h,A0H G$A(A,A0H Q,A0H E,A0H(G,D0A4A8A<D@H Z,A0H EAAAA@€\@M	AAAACP†‡ƒ…ETAP¸AAAAAPxÄ\LáAAAAC †‡ƒ…E$A O$C(A,F0H e(A,A0E V,A0L CAAAAA _(A,A0H S(O,E0H ð@]À¥AAAAC0†‡ƒ…E4A0f4C8A<F@H0y4C8A<B@H0Q<A@H0C8R<E@E0D<F@H0e4Y8A<B@ADAHALBPH0H8M<E@H0~4D8A<A@H0l8V0I8G<B@H0@8D<A@E0V<A@H0k<A@L0CAAAAA0C8R<E@H0@4^|°AAAAC0†‡ƒ…E4A0•AAAAA0@x^è°AAAAC0†‡ƒ…E4A0•AAAAA0$¼^T;ACƒEAoA$ä^l!ACƒEAUA<_tNAAAAC †‡ƒ…E$A |AAAA<L_„_AAAAC †‡ƒ…E$A MAAAA8Œ_¤eAAAF†‡ƒE”ARAAA@È_Ø‚AAAAC†‡ƒ…E”ApAAAA8`$LAACP†ƒETAPïAAAPLAA<H`8rAAAAC`†‡ƒ…EdA``AAAA<ˆ`xwAAAACP†‡ƒ…ETAPeAAAA<È`¸¦AAAAC`†‡ƒ…EdA`”AAAA@a(#AAAAFÀ†‡ƒ…EÄAÀAAAA<LaMAAAAC †‡ƒ…E$A {AAAA4Œa$óAAACp†‡ƒEtApãAAA<Äaì MAAAAC †‡ƒ…E$A {AAAADbü AAAAF†‡ƒ…E”A`AAAAA8LbÔ(cAAAFÀ†‡ƒEÄAÀPAAA$ˆb0'ACƒEA[A$°b0#ACƒEAWA$Øb0%ACƒEAYA$c 0#ACƒEAWA4(c(0ÚAAAC`†‡ƒEdA`ÊAAA$`cÐ1CAC ƒE$A wA8ˆcø1bAAAC€†‡ƒE„A€RAAA$Äc,3CAC ƒE$A wA$ìcT3IAC0ƒE4A0}A$d|3IAC ƒE$A }AX<d¤3%AAFÀ†ƒEÄAÀ AAPÀ
AAAÀ{AAAÀ×AA$˜dx6[AC0ƒE4A0OA,Àd°6¤AACP†ƒETAP–AA,ðd07XAAC@†ƒEDA@JAA8 e`7aAAAC€†‡ƒE„A€QAAA8\e”8’AAAF†‡ƒE”AAAA8˜eø9˜AAAF†‡ƒE”A…AAA8Ôe\;ÕAACP†ƒETAP}AAAPGAA,f<®AACP†ƒETAP AA,@f€<AAC0†ƒE4A0qAA$pfÐ<BAC ƒE$A vA8˜fø<rAAAC€†‡ƒE„A€bAAA,Ôf<>ƒAAC@†ƒEDA@uAA@gœ>ËAAAAFІ‡ƒ…EÔAжAAAA,Hg(DkAAC0†ƒE4A0]AADxghDú
AAAAF€†‡ƒ…E„A€U
AAAAA€@Àg OæAAAAC`†‡ƒ…EdA`¶AAAAA`4hÌPRAAACP†‡ƒETAPBAAAT<hôQAACp†ƒEtApAAAAp]AAAp‚AAApfAA,”h<S¦AACP†ƒETAP˜AA8Äh¼SîAAC@†ƒEDA@ÇAAA@VAAhipTBAAFà†ƒEäAàGAAAàiAAAà¹AAAà¥AAAàWAAHliTXÎAAF †ƒE¤A –AAA TAAA MAA$¸iØYtAC ƒE$A hA8ài0ZÊAAAF †‡ƒE¤A ·AAA8jÄ[PAAAF †‡ƒE¤A =AAA0XjØ]›AAC€†ƒE„A€AA,ŒjD_ÎAC@ƒEDA@AA@qA<¼jä_ÄAAAAC †‡ƒ…E$A ²AAAA<üjt`tAAAAC@†‡ƒ…EDA@bAAAA<<k´bÃAAAAC †‡ƒ…E$A ±AAAA@|kDcAAAAC0†‡ƒ…E4A0/AAAAP0@ÀkdfAAAAC0†‡ƒ…E4A0AAAAI04l¼eUAAAC †‡ƒE$A EAAA<<läeœAAAACP†‡ƒ…ETAPŠAAAA<|lDj¸AAAAC0†‡ƒ…E4A0¦AAAA<¼lÄklAAAAC0†‡ƒ…E4A0ZAAAA<ülômAAAAC0†‡ƒ…E4A0ôAAAAT<mÄozAAAAC †‡ƒ…E$A z,F0F JB H$D(A,A0HAAAA<”mìo¯AAAAC@†‡ƒ…EDA@AAAA8Ôm\pLAAC`†ƒEdA`fAAA`AA$npq\AC0ƒE4A0PAL8n¨qZAAF°†ƒE´A°™AAA°‡AAA°cAA$ˆn¸vIAC0ƒE4A0}A$°nàv‰AC0ƒE4A0}A,ØnHwŽAC0ƒE4A0_AA0aA$o¨w‹AC@ƒEDA@A$0ox[AC0ƒE4A0OA$XoHxdAC0ƒE4A0XA8€ox×AAAF †‡ƒE¤A ÄAAA,¼o4{¦AACP†ƒETAP˜AA8ìo´{AACp†ƒEtAp÷AAApVAA,(p˜}pAAC`†ƒEdA`bAA,XpØ~oAACP†ƒETAPaAA,ˆp€¹AACp†ƒEtAp«AA,¸p¨rAAC0†ƒE4A0dAA0èpøtAAC€†ƒE„A€fAALqD„œAAF°†ƒE´A°<AAA°rAAA°×AA,lq”†¤AACP†ƒETAP–AA$œq‡dAC0ƒE4A0XA,Äq\‡âAAC †ƒE$A ÔAA@ôqˆÕAAAAF †‡ƒ…E¤A ÀAAAA$8r¸2AC ƒE$A fA$`rЍ2AC ƒE$A fA$ˆr荴AC@ƒEDA@¨A$°r€Ž3AC ƒE$A gAXØr˜Ž†AAFІƒEÔAÐGAAAÐiAAAÐ¥AAAÐWAA84s̑¨AAAF†‡ƒE”A•AAASƒìè[Ãkލƒ<þÿÿ‰$èⓃÄ[АÐéëÿÿÿSƒìè[ÃÞ‹D$…ÀtÿЃÄ[ÐSƒìè[Ãû݃썃<þÿÿ‹Ü!ûÿPÿt$Qèv“ƒÄ[ÐSƒìè[ÃËݍƒ<þÿÿPÿt$ÿt$ÿt$èX“ƒÄ[ÃÌÌÌSƒìè[Ûݍƒ<B‰$èB“ƒÄ[АUSWVƒìè[ÃhÝè(“‹@‰$è-“‹‹B‹³ŒB‰÷!σÿÿt'1Æ1Ñ	ñt6‹ƒÿÿÿ‹‹÷Zúÿ‰L$‰$è“é·‰ƒŒB‰“B!Ѓøÿ„ ‹³PG…öt‹=ÿÿÿ?„‹@‰éƒ‹L$0ƒ)Vúÿ‰D$‰$èŒ1ö…À„Z‰lj$èR‹ùÿÿÿ?tI‰u‰<$‰Ç踒‰ø…À„-‰Ɖ$贒‰D$…À„ƒZ>úÿ‰D$‹D$0‰$èb’…À„„‰ʼnD$ƒMúÿ‰D$‹D$‰$è~’‰NjE=ÿÿÿ?tH‰Eu‰,$èD’…ÿˆ»ƒSúÿ‰D$‹|$0‰<$è’…À„F‰ʼnD$ƒ¿Kúÿ‰D$‹D$‰$è"’‹Mùÿÿÿ?tI‰Mu‰,$‰Çè瑉ø‹|$0…ÀˆXƒÈKúÿ‰D$‰<$觑…À„‰ʼnD$ƒa>úÿ‰D$‹D$‰$èÑ‹Mùÿÿÿ?tI‰Mu‰,$‰Ç舑‰ø‹|$0…ÀˆùƒÏKúÿ‰D$‰<$èH‘…À„ĉÅ;ƒÿÿÿt*‰l$ƒeRúÿ‰D$‹D$‰$è\‘Áè‹Mùÿÿÿ?uë1Mùÿÿÿ?tI‰Mt
„À„™é‹‰,$‰Ç葉ø„À„€ëu‹ƒÿÿÿ‹‰$è‘…Àtaè‘éœþÿÿ‹ƒÿÿÿ‹‰$èø…ÀtCèÿéáþÿÿ‹ƒÿÿÿ‹‰$èڐ…Àt%èáé"ÿÿÿ‹ƒÿÿÿ‹‰$輐…ÀtèÐë	‰ñè*U1ö‰ðƒÄ^_[]АUSWVìüè[Ã5Ú‹„$‹‹PG…Ét,9Á„Ã=‹ƒÿÿÿƒì‹®NúÿQÿ0èꏃĸÿÿÿÿé¯>‰ƒPG‹ùÿÿÿ?tA‰ƒìP萃ĉƒXGÇ$…À„ä>‹ùÿÿÿ?tA‰ƒìƒ³VúÿPè
ƒÄ…À„K=‹ùÿÿÿ?tA‰‰ƒ\GƒìƒCPúÿPèàƒÄ…À„1=‹ùÿÿÿ?tA‰‰ƒ`GƒìƒV[úÿÿ³\GPÿ³PG跏ƒÄ…Àˆ=‹ƒÿÿÿ‹‰AáÿÿùtP‰ÁÁéÁè¶Ѓì»è;úÿ«‰þõÿƒ³Súÿt$<RQWUjjPhÈVèlƒÄ,jVjèoƒÄ…Àˆ½<ƒìjèjƒÄ‰ƒdG…À„&>ƒì«ˆþõÿjUèXƒÄ‰ƒhG…À„>ƒìjUèLƒÄ‰ƒlG…À„>è&qƒìWÀò$è6ƒÄ‰ƒÀN¿ãv…À„Ú=ƒìhð?j菃ĉƒÄN…À„º=ƒìhŽyE>h:Œ0âèĉƒÈN…À„—=ƒìhhð?hq¬‹ÛèˎƒÄ‰ƒÌN…À„t=ƒìjèƒÄ‰ƒÐN…À„Y=ƒìj襎ƒÄ‰ƒÔN…À„>=ƒìƒ8úÿjjP葎ƒÄ‰ƒØN…À„=ƒìjÿèfŽƒÄ‰ƒÜN…À„ÿ<ƒ»<Gt%ƒìÿ³„Kÿ³ÐKÿ³PGèRŽƒÄ…Àˆ';èRŽ…À„Ë<‰ƃ썻‰þõÿWPèHŽƒÄ…Àuƒìÿ³PGWVèAƒÄ…ÀˆH?‹³¸J‹ƒ\G‹H‹IH;‹ÿÿÿ……<jjVPè
ŽƒÄ…À„Ž<‰ƒÀO‹³ÜH‹ƒ\G‹H‹IH;‹ÿÿÿ…z<jjVPèӍƒÄ…À„ƒ<‰ƒÄO‹³ÐH‹ƒ\G‹H‹IH;‹ÿÿÿ…‚<jjVP虍ƒÄ…À„‹<‰ƒÈO‹³¸H‹ƒ\G‹H‹IH;‹ÿÿÿ…w<jjVPè_ƒÄ…À„€<‰ƒÌO‹³M‹ƒ\G‹H‹IH;‹ÿÿÿ…l<jjVPè%ƒÄ…À„u<‰ƒÐO‹³ÌG‹ƒ\G‹H‹IH;‹ÿÿÿ…a<jjVPè댃ąÀ„j<‰ƒÔO‹³ðG‹ƒ\G‹H‹IH;‹ÿÿÿ…V<jjVP豌ƒÄ…À„_<‰ƒØO‹³ØH‹ƒ\G‹H‹IH;‹ÿÿÿ…H<jjVPèwŒƒÄ…À„Q<‰ƒÜO‹³@M‹ƒ\G‹H‹IH;‹ÿÿÿ…:<jjVPè=ŒƒÄ…À„C<‰ƒàO‹³ØG‹ƒ\G‹H‹IH;‹ÿÿÿ…[<jjVP范ąÀ„d<‰ƒäO‹³ÔG‹ƒ\G‹H‹IH;‹ÿÿÿ…p<jjVPèɋƒÄ…À„y<‰ƒèOƒìÿ³8Lj踋ƒÄ‰ƒäN¿÷v…À„09ƒìÿ³<Lj蒋ƒÄ‰ƒèN…À„9ƒìÿ³Kjèq‹ƒÄ‰ƒìN…À„î8ƒìÿ³ÜGjèP‹ƒÄ‰ƒðN…À„Í8ƒìÿ³ŒIjè/‹ƒÄ‰ƒôN…À„¬8ƒìÿ³ÌOÿ³Jj苃ĉƒøN…À„…8ƒìÿ³8Kjè犃ĉƒO…À„d8ƒìÿ³NjèƊƒÄ‰ƒO…À„C8ƒìÿ³Nj襊ƒÄ‰ƒO…À„"8ƒìÿ³€Mj脊ƒÄ‰ƒO…À„8ƒìÿ³ÀNÿ³hJjè]ŠƒÄ‰ƒO…À„Ú7ƒìÿ³ÐNÿ³¤Jjè6ŠƒÄ‰ƒO…À„³7‹³ÿÿÿVVVj芃ĉƒO…À„’7ƒìÿ³ÔOÿ³ôGjèĉƒO…À„k7ƒìÿ³ØNÿ³ÐNjèljƒÄ‰ƒ O…À„D7ƒìÿ³Ij覉ƒÄ‰ƒ$O…À„#7ƒìÿ³Ij腉ƒÄ‰ƒ(O…À„7ƒìÿ³Ijèd‰ƒÄ‰ƒ,O…À„á6ƒìÿ³IjèC‰ƒÄ‰ƒ0O…À„À6ƒìÿ³`Ljè"‰ƒÄ‰ƒ4O…À„Ÿ6ƒìÿ³Ij艃ĉƒ8O…À„~6ƒìÿ³¤LjèàˆƒÄ‰ƒ<O…À„]6ƒìÿ³ Lj迈ƒÄ‰ƒ@O…À„<6ƒìÿ³¨Lj螈ƒÄ‰ƒDO…À„6ƒìÿ³ÈGjè}ˆƒÄ‰ƒHO…À„ú5ƒìÿ³ìGjè\ˆƒÄ‰ƒLO…À„Ù5ƒìÿ³ÐGjè;ˆƒÄ‰ƒPO…À„¸5ƒìÿ³dGj舃ĉƒTO…À„—5ƒìÿ³´Hjèù‡ƒÄ‰ƒXO…À„v5ƒìÿ³,Kjè؇ƒÄ‰ƒ\O…À„U5ƒìÿ³ Kj跇ƒÄ‰ƒ`O…À„45ƒìÿ³0Kj薇ƒÄ‰ƒdO…À„5ƒìÿ³øKjèu‡ƒÄ‰ƒhO…À„ò4ƒìÿ³˜KjèT‡ƒÄ‰ƒlO…À„Ñ4ƒìÿ³ØIjè3‡ƒÄ‰ƒpO…À„°4ƒìÿ³”Kj臃ĉƒtO…À„4ƒìVVV臃ĉƒüN…À„s4ƒìÿ³ IjèՆƒÄ‰ƒxO…À„R4ƒìÿ³ÌOÿ³ÜIj讆ƒÄ‰ƒ|O…À„+4ƒìÿ³ÜIj荆ƒÄ‰ƒ€O…À„
4ƒìVÿ³üNjèk†ƒÄ‰ƒ„O…À„è3ƒìÿ³¸LjèJ†ƒÄ‰ƒˆO…À„Ç3ƒìÿ³(Ijè)†ƒÄ‰ƒŒO…À„¦3ƒìÿ³<Ij膃ĉƒO…À„…3ƒìÿ³ÜOÿ³ÀHjèᅃĉƒ”O…À„^3ƒì‹ƒ ÿÿÿPÿ³ÐNj蹅ƒÄ‰ƒ˜O…À„63ƒìÿ³¨Nj蘅ƒÄ‰ƒœO…À„3‰l$ƒìÿ³`Iÿ³dMjèm…ƒÄ‰ƒ O…À„22‰NjƒhG‰D$‹«dG‹ƒHL‰D$‹ƒdM‰D$ ƒìjÿt$蘄ƒÄ…À„µ1‰ƃìP‰D$D‹D$`‰D$@‹L$p‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒüûõÿ)D$p$ÇD$<³ÇD$ÇD$èӄƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æèfƒ‰ðƒÄ‰ƒ¬O…À„Y1‹ƒhG‰D$‹«dG‹ƒHL‰D$‹»€Jƒìjÿt$èŃƒÄ…À„ü0‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$T‰L$0‰l$,‰l$(‰l$$‰l$ ‰l$‰D$WÀ$ÇD$<ËÇD$ÇD$è
„ƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æ蠂‰ðƒÄ‰ƒ°O…À„“0ƒìÿ³¤Mÿ³xIj觃ƒÄ‰ƒ¤O…À„l0‰NjƒhG‰D$‹«dG‹ƒHL‰D$‹ƒpM‰D$ƒìjÿt$è҂ƒÄ…À„0‰ƃìP‰D$D‹D$`‰D$@‹L$\‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(D$p$ÇD$<åÇD$ÇD$胃ÄP‹ùÿÿÿ?tI‰uƒìV‰Æ见‰ðƒÄ‰ƒ´O…À„š/ƒìÿ³Kÿ³4Ij讂ƒÄ‰ƒ¨O…À„s/‰NjƒhG‰D$‹«dG‹ƒHL‰D$‹ƒPM‰D$ ƒìjÿt$èفƒÄ…À„ /‰ƃìP‰D$D‹D$`‰D$@‹L$p‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ\üõÿ)D$`$ÇD$<ÇD$ÇD$肃ÄP‹ùÿÿÿ?tI‰uƒìV‰Æ觀‰ðƒÄ‰ƒ¸O…À„š.‹ƒhG‰D$‹«dG‹ƒ¨O‰D$ ‹ƒHL‰D$‹»Mƒìjÿt$èü€ƒÄ…À„K.‰ƃìP‰D$D‹D$T‰D$@‰|$8‰|$4‹L$\‰L$0‰l$,‰l$(‹L$p‰L$$‰l$ ‰l$‰D$(D$`$ÇD$<
ÇD$ÇD$è>ƒÄP‹ùÿÿÿ?tI‰uƒìV‰ÆèщðƒÄ‰ƒ¼O…À„Ä-è©D…Àˆ$2è¬I…Àˆ#2è?N…Àˆ"2èO…Àˆ!2‹‹TLèR…À„2‰ǃìPÿ³TLÿ³XGèƒÄ1ö…Àˆ.‹=ÿÿÿ?tH‰uƒìWè<ƒÄ‹‹Nè¾Q…À„ï1‰ǃìPÿ³Nÿ³XGèo€ƒÄ…ÀˆÉ-‹=ÿÿÿ?tH‰uƒìWèí~ƒÄƒìjèP€ƒÄ…À„Â1‰Njƒ¼H‹ùÿÿÿ?t	A‰‹ƒ¼H‹O‰‹‹ÈIƒì‰újè“SƒÄ…À„˜1‰Ƌ=ÿÿÿ?tH‰uƒìWè~ƒÄ‹“¼H‰ñèÏS…À„x1‰ǃìPÿ³¼Hÿ³XG调ąÀˆ-‹=ÿÿÿ?tH‰uƒìWè.~ƒÄ‹=ÿÿÿ?tH‰uƒìVè~ƒÄ‹‹4Lè–P…À„51‰ƃìPÿ³(Lÿ³XGèGƒÄ…ÀˆÃ,‹=ÿÿÿ?tH‰uƒìVèÅ}ƒÄƒìjè(ƒÄ…À„1‰ƋƒäG‹ùÿÿÿ?t	A‰‹ƒäG‹N‰‹‹¤Kƒì‰òjèkRƒÄ…À„Þ0‰Nj=ÿÿÿ?tH‰uƒìVèW}ƒÄ‹“äG‰ùè§R…À„À0‰ƃìPÿ³àGÿ³XGèˆ~ƒÄ…Àˆ,‹=ÿÿÿ?tH‰uƒìVè}ƒÄ‹=ÿÿÿ?tH‰uƒìWèì|ƒÄèdSƒøÿ¾„{0‹ƒTGòƒìò$è}ƒÄ…À„l0‰NjƒÄGƒìWÿ³ŒLÿ°„è÷}ƒÄ…Àˆ£+‹=ÿÿÿ?tH‰uƒìWèu|ƒÄƒìÿ³ÄGèä}ƒÄ‹ƒ$ÿÿÿ‹ùÿÿÿ?tA‰‰ƒàN‹‹ÄGÇD$4ÇD$0T$4ƒìh€èaòƒÄ…À„ò/‰ǃìPÿ³ÌLÿ³XGè_}ƒÄ…Àˆ+‹=ÿÿÿ?tH‰uƒìWèÝ{ƒÄ‹‹ÌLèoV…À„É/‰NjƒXI‹O‹IHƒì…É„Ã/PWÿуĉƅÀ„Æ/‹=ÿÿÿ?tH‰uƒìWè†{ƒÄƒìVÿ³XIÿ³XGèÎ|ƒÄ…Àˆœ*‹=ÿÿÿ?tH‰uƒìVèL{ƒÄ‹‹ÌLèÞU…À„/‰ƋƒdI‹N‹IHƒì…É„{/PVÿуĉDžÀ„~/‹=ÿÿÿ?tH‰uƒìVèõzƒÄƒìWÿ³dIÿ³XGè=|ƒÄ…Àˆ*‹=ÿÿÿ?tH‰uƒìWè»zƒÄ‹‹ÌLèMU…À„=/‰Njƒ€I‹O‹IHƒì…É„7/PWÿуĉƅÀ„:/‹=ÿÿÿ?tH‰uƒìWèdzƒÄƒìVÿ³€Iÿ³XGè¬{ƒÄ…Àˆ,*‹=ÿÿÿ?tH‰uƒìVè*zƒÄ‹‹ÌLè¼T…À„õ.‰Ƌƒ¤I‹N‹IHƒì…É„ï.PVÿуĉDžÀ„ò.‹=ÿÿÿ?tH‰uƒìVèÓyƒÄƒìWÿ³¤Iÿ³XGè{ƒÄ…Àˆ¾+‹=ÿÿÿ?tH‰uƒìWè™yƒÄ‹‹ÌLè+T…À„±.‰Njƒ°I‹O‹IHƒì…É„«.PWÿуĉƅÀ„®.‹=ÿÿÿ?tH‰uƒìWèByƒÄƒìVÿ³°Iÿ³XGèŠzƒÄ…Àˆ>+‹=ÿÿÿ?tH‰uƒìVèyƒÄ‹‹ÌLèšS…À„f/‰ƋƒüI‹N‹IHƒì…É„`/PVÿуĉDžÀ„c/‹=ÿÿÿ?tH‰uƒìVè±xƒÄƒìWÿ³üIÿ³XGèùyƒÄ…ÀˆÌ*‹=ÿÿÿ?tH‰uƒìWèwxƒÄ‹‹ÌLè	S…À„"/‰Njƒ4J‹O‹IHƒì…É„/PWÿуĉƅÀ„/‹=ÿÿÿ?tH‰uƒìWè xƒÄƒìVÿ³4Jÿ³XGèhyƒÄ…ÀˆL*‹=ÿÿÿ?tH‰uƒìVèæwƒÄ‹‹ÌLèxR…À„Ú.‰Ƌƒ@J‹N‹IHƒì…É„Ô.PVÿуĉDžÀ„×.‹=ÿÿÿ?tH‰uƒìVèwƒÄƒìWÿ³@Jÿ³XGè×xƒÄ…ÀˆÎ)‹=ÿÿÿ?tH‰uƒìWèUwƒÄ‹‹ÌLèçQ…À„–.‰Njƒ\J‹O‹IHƒì…É„.PWÿуĉƅÀ„“.‹=ÿÿÿ?tH‰uƒìWèþvƒÄƒìVÿ³\Jÿ³XGèFxƒÄ…Àˆ‘)‹=ÿÿÿ?tH‰uƒìVèÄvƒÄ‹‹ÌLèVQ…À„N.‰ƋƒˆJ‹N‹IHƒì…É„H.PVÿуĉDžÀ„K.‹=ÿÿÿ?tH‰uƒìVèmvƒÄƒìWÿ³ˆJÿ³XGèµwƒÄ…Àˆ&)‹=ÿÿÿ?tH‰uƒìWè3vƒÄ‹‹ÌLèÅP…À„
.‰NjƒpJ‹O‹IHƒì…É„.PWÿуĉƅÀ„.‹=ÿÿÿ?tH‰uƒìWèÜuƒÄƒìVÿ³pJÿ³XGè$wƒÄ…ÀˆÝ(‹=ÿÿÿ?tH‰uƒìVè¢uƒÄ‹‹ÌLè4P…À„Â-‰Ƌƒ˜J‹N‹IHƒì…É„¼-PVÿуĉDžÀ„¿-‹=ÿÿÿ?tH‰uƒìVèKuƒÄƒìWÿ³˜Jÿ³XGè“vƒÄ…Àˆr(‹=ÿÿÿ?tH‰uƒìWèuƒÄ‹‹ÌLè£O…À„~-‰Njƒ¬J‹O‹IHƒì…É„x-PWÿуĉƅÀ„{-‹=ÿÿÿ?tH‰uƒìWèºtƒÄƒìVÿ³¬Jÿ³XGèvƒÄ…Àˆ)(‹=ÿÿÿ?tH‰uƒìVè€tƒÄ‹‹ÌLèO…À„6-‰ƋƒK‹N‹IHƒì…É„0-PVÿуĉDžÀ„3-‹=ÿÿÿ?tH‰uƒìVè)tƒÄƒìWÿ³Kÿ³XGèquƒÄ…ÀˆÑ'‹=ÿÿÿ?tH‰uƒìWèïsƒÄ‹‹ÌLèN…À„ò,‰Njƒ\K‹O‹IHƒì…É„ì,PWÿуĉƅÀ„ï,‹=ÿÿÿ?tH‰uƒìWè˜sƒÄƒìVÿ³\Kÿ³XGèàtƒÄ…Àˆd'‹=ÿÿÿ?tH‰uƒìVè^sƒÄ‹‹ÌLèðM…À„ª,‰ƋƒhK‹N‹IHƒì…É„¤,PVÿуĉDžÀ„§,‹=ÿÿÿ?tH‰uƒìVèsƒÄƒìWÿ³hKÿ³XGèOtƒÄ…Àˆ'‹=ÿÿÿ?tH‰uƒìWèÍrƒÄ‹‹ÌLè_M…À„f,‰NjƒtK‹O‹IHƒì…É„`,PWÿуĉƅÀ„c,‹=ÿÿÿ?tH‰uƒìWèvrƒÄƒìVÿ³tKÿ³XGè¾sƒÄ…ÀˆØ&‹=ÿÿÿ?tH‰uƒìVè<rƒÄ‹‹ÌLèÎL…À„,‰Ƌƒ°K‹N‹IHƒì…É„,PVÿуĉDžÀ„,‹=ÿÿÿ?tH‰uƒìVèåqƒÄƒìWÿ³°Kÿ³XGè-sƒÄ…Àˆ’&‹=ÿÿÿ?tH‰uƒìWè«qƒÄ‹‹ÌLè=L…À„Ú+‰Njƒ¼K‹O‹IHƒì…É„Ô+PWÿуĉƅÀ„×+‹=ÿÿÿ?tH‰uƒìWèTqƒÄƒìVÿ³¼Kÿ³XGèœrƒÄ…ÀˆL&‹=ÿÿÿ?tH‰uƒìVèqƒÄ‹‹ÌLè¬K…À„’+‰ƋƒàK‹N‹IHƒì…É„Œ+PVÿуĉDžÀ„+‹=ÿÿÿ?tH‰uƒìVèÃpƒÄƒìWÿ³àKÿ³XGèrƒÄ…Àˆ'‹=ÿÿÿ?tH‰uƒìWè‰pƒÄ‹‹ÌLèK…À„N+‰NjƒL‹O‹IHƒì…É„H+PWÿуĉƅÀ„K+‹=ÿÿÿ?tH‰uƒìWè2pƒÄƒìVÿ³Lÿ³XGèzqƒÄ…Àˆ½&‹=ÿÿÿ?tH‰uƒìVèøoƒÄ‹‹ÌLèŠJ…À„+‰ƋƒL‹N‹IHƒì…É„+PVÿуĉDžÀ„+‹=ÿÿÿ?tH‰uƒìVè¡oƒÄƒìWÿ³Lÿ³XGèépƒÄ…Àˆw&‹=ÿÿÿ?tH‰uƒìWègoƒÄ‹‹ÌLèùI…À„Â*‰NjƒL‹O‹IHƒì…É„¼*PWÿуĉƅÀ„¿*‹=ÿÿÿ?tH‰uƒìWèoƒÄƒìVÿ³Lÿ³XGèXpƒÄ…Àˆ1&‹=ÿÿÿ?tH‰uƒìVèÖnƒÄ‹‹ÌLèhI…À„z*‰ƋƒdL‹N‹IHƒì…É„t*PVÿуĉDžÀ„w*‹=ÿÿÿ?tH‰uƒìVènƒÄƒìWÿ³dLÿ³XGèÇoƒÄ…Àˆë%‹=ÿÿÿ?tH‰uƒìWèEnƒÄ‹‹ÌLè×H…À„6*‰NjƒpL‹O‹IHƒì…É„0*PWÿуĉƅÀ„3*‹=ÿÿÿ?tH‰uƒìWèîmƒÄƒìVÿ³pLÿ³XGè6oƒÄ…Àˆ¥%‹=ÿÿÿ?tH‰uƒìVè´mƒÄ‹‹ÌLèFH…À„î)‰Ƌƒ€L‹N‹IHƒì…É„è)PVÿуĉDžÀ„ë)‹=ÿÿÿ?tH‰uƒìVè]mƒÄƒìWÿ³€Lÿ³XGè¥nƒÄ…Àˆ_%‹=ÿÿÿ?tH‰uƒìWè#mƒÄ‹‹ÌLèµG…À„ª)‰Njƒ”L‹O‹IHƒì…É„¤)PWÿуĉƅÀ„§)‹=ÿÿÿ?tH‰uƒìWèÌlƒÄƒìVÿ³”Lÿ³XGènƒÄ…Àˆ%‹=ÿÿÿ?tH‰uƒìVè’lƒÄ‹‹ÌLè$G…À„b)‰ƋƒÄL‹N‹IHƒì…É„\)PVÿуĉDžÀ„_)‹=ÿÿÿ?tH‰uƒìVè;lƒÄƒìWÿ³ÄLÿ³XGèƒmƒÄ…ÀˆÓ$‹=ÿÿÿ?tH‰uƒìWèlƒÄ‹‹ÌLè“F…À„)‰NjƒÔL‹O‹IHƒì…É„)PWÿуĉƅÀ„)‹=ÿÿÿ?tH‰uƒìWèªkƒÄƒìVÿ³ÔLÿ³XGèòlƒÄ…Àˆ$‹=ÿÿÿ?tH‰uƒìVèpkƒÄ‹‹ÌLèF…À„Ö(‰ƋƒàL‹N‹IHƒì…É„Ð(PVÿуĉDžÀ„Ó(‹=ÿÿÿ?tH‰uƒìVèkƒÄƒìWÿ³àLÿ³XGèalƒÄ…ÀˆG$‹=ÿÿÿ?tH‰uƒìWèßjƒÄ‹‹ÌLèqE…À„’(‰NjƒìL‹O‹IHƒì…É„Œ(PWÿуĉƅÀ„(‹=ÿÿÿ?tH‰uƒìWèˆjƒÄƒìVÿ³ìLÿ³XGèÐkƒÄ…Àˆ$‹=ÿÿÿ?tH‰uƒìVèNjƒÄ‹‹ÌLèàD…À„J(‰ƋƒôL‹N‹IHƒì…É„D(PVÿуĉDžÀ„G(‹=ÿÿÿ?tH‰uƒìVè÷iƒÄƒìWÿ³ôLÿ³XGè?kƒÄ…Àˆ»#‹=ÿÿÿ?tH‰uƒìWè½iƒÄ‹‹ÌLèOD…À„(‰NjƒM‹O‹IHƒì…É„(PWÿуĉƅÀ„(‹=ÿÿÿ?tH‰uƒìWèfiƒÄƒìVÿ³Mÿ³XGè®jƒÄ…Àˆu#‹=ÿÿÿ?tH‰uƒìVè,iƒÄ‹‹ÌLè¾C…À„¾'‰Ƌƒ M‹N‹IHƒì…É„¸'PVÿуĉDžÀ„»'‹=ÿÿÿ?tH‰uƒìVèÕhƒÄƒìWÿ³ Mÿ³XGèjƒÄ…Àˆ/#‹=ÿÿÿ?tH‰uƒìWè›hƒÄ‹‹ÌLè-C…À„x'‰NjƒxM‹O‹IHƒì…É„r'PWÿуĉƅÀ„u'‹=ÿÿÿ?tH‰uƒìWèDhƒÄƒìVÿ³xMÿ³XGèŒiƒÄ…Àˆé"‹=ÿÿÿ?tH‰uƒìVè
hƒÄ‹‹ÌLèœB…À„0'‰ƋƒŒM‹N‹IHƒì…É„*'PVÿуĉDžÀ„-'‹=ÿÿÿ?tH‰uƒìVè³gƒÄƒìWÿ³ŒMÿ³XGèûhƒÄ…Àˆ£"‹=ÿÿÿ?tH‰uƒìWèygƒÄ‹‹ÌLèB…À„ê&‰Njƒ¼M‹O‹IHƒì…É„ä&PWÿуĉƅÀ„ç&‹=ÿÿÿ?tH‰uƒìWè"gƒÄƒìVÿ³¼Mÿ³XGèjhƒÄ…Àˆ]"‹=ÿÿÿ?tH‰uƒìVèèfƒÄ‹‹ÌLèzA…À„¢&‰ƋƒÈM‹N‹IHƒì…É„œ&PVÿуĉDžÀ„Ÿ&‹=ÿÿÿ?tH‰uƒìVè‘fƒÄƒìWÿ³ÈMÿ³XGèÙgƒÄ…Àˆ"‹=ÿÿÿ?tH‰uƒìWèWfƒÄ‹‹ÌLèé@…À„\&‰NjƒÔM‹O‹IHƒì…É„V&PWÿуĉƅÀ„Y&‹=ÿÿÿ?tH‰uƒìWèfƒÄƒìVÿ³ÔMÿ³XGèHgƒÄ…ÀˆÑ!‹=ÿÿÿ?tH‰uƒìVèÆeƒÄ‹‹ÌLèX@…À„&‰ƋƒàM‹N‹IHƒì…É„ý%PVÿуĉDžÀ„&‹=ÿÿÿ?tH‰uƒìVèoeƒÄƒìWÿ³àMÿ³XGè·fƒÄ…Àˆ‹!‹=ÿÿÿ?tH‰uƒìWè5eƒÄ‹‹ÌLèÇ?…À„¶%‰NjƒìM‹O‹IHƒì…É„°%PWÿуĉƅÀ„³%‹=ÿÿÿ?tH‰uƒìWèÞdƒÄƒìVÿ³ìMÿ³XGè&fƒÄ…ÀˆE!‹=ÿÿÿ?tH‰uƒìVè¤dƒÄ‹‹ÌLè6?…À„g%‰Ƌƒ8N‹N‹IHƒì…É„a%PVÿуĉDžÀ„d%‹=ÿÿÿ?tH‰uƒìVèMdƒÄƒìWÿ³8Nÿ³XGè•eƒÄ…Àˆÿ ‹=ÿÿÿ?tH‰uƒìWèdƒÄ‹‹ÌLè¥>…À„%‰Njƒ\N‹O‹IHƒì…É„%PWÿуĉƅÀ„%‹=ÿÿÿ?tH‰uƒìWè¼cƒÄƒìVÿ³\Nÿ³XGèeƒÄ…Àˆ¹ ‹=ÿÿÿ?tH‰uƒìVè‚cƒÄ‹‹ÌLè>…À„Ë$‰ƋƒpN‹N‹IHƒì…É„Å$PVÿуĉDžÀ„È$‹=ÿÿÿ?tH‰uƒìVè+cƒÄƒìWÿ³pNÿ³XGèsdƒÄ…Àˆs ‹=ÿÿÿ?tH‰uƒìWèñbƒÄ‹‹ÌLèƒ=…À„~$‰Njƒ|N‹O‹IHƒì…É„x$PWÿуĉƅÀ„{$‹=ÿÿÿ?tH‰uƒìWèšbƒÄƒìVÿ³|Nÿ³XGèâcƒÄ…Àˆ- ‹=ÿÿÿ?tH‰uƒìVè`bƒÄ‹‹ÌLèò<…À„"$‰Ƌƒ”N‹N‹IHƒì…É„$PVÿуĉDžÀ„$‹=ÿÿÿ?tH‰uƒìVè	bƒÄƒìWÿ³”Nÿ³XGèQcƒÄ…Àˆç‹=ÿÿÿ?tH‰uƒìWèÏaƒÄ‹‹ÌLèa<…À„È#‰Njƒ´N‹O‹IHƒì…É„Â#PWÿуĉƅÀ„Å#‹=ÿÿÿ?tH‰uƒìWèxaƒÄƒìVÿ³´Nÿ³XGèÀbƒÄ…Àˆ¡‹=ÿÿÿ?tH‰uƒìVè>aƒÄƒ”Bjÿ³DLjPèµbƒÄ…À„§#‰ǃìPÿ³dMÿ³XGècbƒÄ…Àˆ‹=ÿÿÿ?tH‰uƒìWèá`ƒÄƒ¤Bjÿ³DLjPèXbƒÄ…À„]#‰ǃìPÿ³€Jÿ³XGèbƒÄ…Àˆ}‹=ÿÿÿ?tH‰uƒìWè„`ƒÄƒ´Bjÿ³DLjPèûaƒÄ…À„#‰ǃìPÿ³pMÿ³XGè©aƒÄ…Àˆi‹=ÿÿÿ?tH‰uƒìWè'`ƒÄƒÄBjÿ³DLjPèžaƒÄ…À„É"‰ǃìPÿ³PMÿ³XGèLaƒÄ…ÀˆW‹=ÿÿÿ?tH‰uƒìWèÊ_ƒÄƒÔBjÿ³DLjPèAaƒÄ…À„"‰ǃìPÿ³Mÿ³XGèï`ƒÄ…ÀˆC‹=ÿÿÿ?tH‰uƒìWèm_ƒÄƒìj5èÐ`ƒÄ…À„A"‰Njƒ\I‹ùÿÿÿ?t	A‰‹ƒ\I‹O‰‹ƒhI‹ùÿÿÿ?t	A‰‹ƒhI‹O‰A‹ƒ„I‹ùÿÿÿ?t	A‰‹ƒ„I‹O‰A‹ƒ¨I‹ùÿÿÿ?t	A‰‹ƒ¨I‹O‰A‹ƒ´I‹ùÿÿÿ?t	A‰‹ƒ´I‹O‰A‹ƒJ‹ùÿÿÿ?t	A‰‹ƒJ‹O‰A‹ƒ8J‹ùÿÿÿ?t	A‰‹ƒ8J‹O‰A‹ƒDJ‹ùÿÿÿ?t	A‰‹ƒDJ‹O‰A‹ƒ`J‹ùÿÿÿ?t	A‰‹ƒ`J‹O‰A ‹ƒtJ‹ùÿÿÿ?t	A‰‹ƒtJ‹O‰A$‹ƒ„J‹ùÿÿÿ?t	A‰‹ƒ„J‹O‰A(‹ƒŒJ‹ùÿÿÿ?t	A‰‹ƒŒJ‹O‰A,‹ƒœJ‹ùÿÿÿ?t	A‰‹ƒœJ‹O‰A0‹ƒ°J‹ùÿÿÿ?t	A‰‹ƒ°J‹O‰A4‹ƒ K‹ùÿÿÿ?t	A‰‹ƒ K‹O‰A8‹ƒ`K‹ùÿÿÿ?t	A‰‹ƒ`K‹O‰A<‹ƒlK‹ùÿÿÿ?t	A‰‹ƒlK‹O‰A@‹ƒxK‹ùÿÿÿ?t	A‰‹ƒxK‹O‰AD‹ƒ´K‹ùÿÿÿ?t	A‰‹ƒ´K‹O‰AH‹ƒÀK‹ùÿÿÿ?t	A‰‹ƒÀK‹O‰AL‹ƒäK‹ùÿÿÿ?t	A‰‹ƒäK‹O‰AP‹ƒL‹ùÿÿÿ?t	A‰‹ƒL‹O‰AT‹ƒL‹ùÿÿÿ?t	A‰‹ƒL‹O‰AX‹ƒ L‹ùÿÿÿ?t	A‰‹ƒ L‹O‰A\‹ƒhL‹ùÿÿÿ?t	A‰‹ƒhL‹O‰A`‹ƒtL‹ùÿÿÿ?t	A‰‹ƒtL‹O‰Ad‹ƒ„L‹ùÿÿÿ?t	A‰‹ƒ„L‹O‰Ah‹ƒ˜L‹ùÿÿÿ?t	A‰‹ƒ˜L‹O‰Al‹ƒÈL‹ùÿÿÿ?t	A‰‹ƒÈL‹O‰Ap‹ƒØL‹ùÿÿÿ?t	A‰‹ƒØL‹O‰At‹ƒäL‹ùÿÿÿ?t	A‰‹ƒäL‹O‰Ax‹ƒðL‹ùÿÿÿ?t	A‰‹ƒðL‹O‰A|‹ƒøL‹ùÿÿÿ?t	A‰‹ƒøL‹O‰€‹ƒM‹ùÿÿÿ?t	A‰‹ƒM‹O‰„‹ƒM‹ùÿÿÿ?t	A‰‹ƒM‹O‰ˆ‹ƒ$M‹ùÿÿÿ?t	A‰‹ƒ$M‹O‰Œ‹ƒTM‹ùÿÿÿ?t	A‰‹ƒTM‹O‰‹ƒhM‹ùÿÿÿ?t	A‰‹ƒhM‹O‰”‹ƒtM‹ùÿÿÿ?t	A‰‹ƒtM‹O‰˜‹ƒ|M‹ùÿÿÿ?t	A‰‹ƒ|M‹O‰œ‹ƒM‹ùÿÿÿ?t	A‰‹ƒM‹O‰ ‹ƒÀM‹ùÿÿÿ?t	A‰‹ƒÀM‹O‰¤‹ƒÌM‹ùÿÿÿ?t	A‰‹ƒÌM‹O‰¨‹ƒØM‹ùÿÿÿ?t	A‰‹ƒØM‹O‰¬‹ƒäM‹ùÿÿÿ?t	A‰‹ƒäM‹O‰°‹ƒðM‹ùÿÿÿ?t	A‰‹ƒðM‹O‰´‹ƒ<N‹ùÿÿÿ?t	A‰‹ƒ<N‹O‰¸‹ƒ`N‹ùÿÿÿ?t	A‰‹ƒ`N‹O‰¼‹ƒtN‹ùÿÿÿ?t	A‰‹ƒtN‹O‰À‹ƒ€N‹ùÿÿÿ?t	A‰‹ƒ€N‹O‰Ä‹ƒ˜N‹ùÿÿÿ?t	A‰‹ƒ˜N‹O‰È‹ƒ¸N‹ùÿÿÿ?t	A‰‹ƒ¸N‹O‰Ì‹ƒüG‹ùÿÿÿ?t	A‰‹ƒüG‹O‰ÐƒìWÿ³Iÿ³XGèõYƒÄ…Àˆ”‹=ÿÿÿ?tH‰uƒìWèsXƒÄƒìj-èZƒÄ…À„Z‰ǃìÿ³lMÿ³|HPè¤YƒÄÇ$…Àˆ¿ƒìÿ³Mÿ³tHWè}YƒÄ…Àˆáƒìÿ³<Jÿ³HWè]YƒÄ…Àˆƒìÿ³ÐMÿ³ˆHWè=YƒÄ…Àˆ'ƒìÿ³4Nÿ³˜HWèYƒÄ…ÀˆKƒìÿ³ÜLÿ³hHWèýXƒÄ…Àˆƒìÿ³ˆIÿ³HWèÝXƒÄ…Àˆ‡ƒìÿ³¸Iÿ³HWè½XƒÄ…Àˆqƒìÿ³dNÿ³ HWèXƒÄ…Àˆ[ƒìÿ³ÐLÿ³dHWè}XƒÄ…ÀˆEƒìÿ³èLÿ³lHWè]XƒÄ…Àˆ/ƒìÿ³üLÿ³pHWè=XƒÄ…Àˆƒìÿ³èMÿ³HWèXƒÄ…Àˆƒìÿ³$Lÿ³PHWèýWƒÄ…Àˆíƒìÿ³ÜMÿ³ŒHWèÝWƒÄ…Àˆ×ƒìÿ³dJÿ³HWè½WƒÄ…ÀˆÁƒìÿ³HJÿ³HWèWƒÄ…Àˆ«ƒìÿ³Lÿ³LHWè}WƒÄ…Àˆ•ƒìÿ³¬Iÿ³HWè]WƒÄ…Àˆƒìÿ³Lÿ³HHWè=WƒÄ…Àˆiƒìÿ³ÄMÿ³„HWèWƒÄ…ÀˆSƒìÿ³ôMÿ³”HWèýVƒÄ…Àˆ=ƒìÿ³xNÿ³¤HWèÝVƒÄ…Àˆ'ƒìÿ³lLÿ³THWè½VƒÄ…Àˆƒìÿ³œNÿ³¬HWèVƒÄ…Àˆûƒìÿ³œLÿ³`HWè}VƒÄ…Àˆåƒìÿ³$Kÿ³,HWè]VƒÄ…ÀˆÏƒìÿ³ Jÿ³$HWè=VƒÄ…Àˆ¹ƒìÿ³dKÿ³0HWèVƒÄ…Àˆ£ƒìÿ³pKÿ³4HWèýUƒÄ…Àˆƒìÿ³(Mÿ³xHWèÝUƒÄ…Àˆwƒìÿ³„Nÿ³¨HWè½UƒÄ…Àˆaƒìÿ³@Nÿ³œHWèUƒÄ…ÀˆKƒìÿ³lIÿ³HWè}UƒÄ…Àˆ5ƒìÿ³èKÿ³DHWè]UƒÄ…Àˆƒìÿ³ˆLÿ³\HWè=UƒÄ…Àˆ	ƒìÿ³¼Nÿ³°HWèUƒÄ…Àˆóƒìÿ³xJÿ³ HWèýTƒÄ…ÀˆÝƒìÿ³´Jÿ³(HWèÝTƒÄ…ÀˆÇƒìÿ³|Kÿ³8HWè½TƒÄ…Àˆ±ƒìÿ³ÄKÿ³@HWèTƒÄ…Àˆ›ƒìÿ³¸Kÿ³<HWè}TƒÄ…Àˆ…ƒìÿ³Jÿ³HWè]TƒÄ…Àˆoƒìÿ³”Mÿ³€HWè=TƒÄ…ÀˆYƒìÿ³xLÿ³XHWèTƒÄ…ÀˆCƒìWÿ³(Nÿ³XGèýSƒÄ…Àˆ-‹=ÿÿÿ?„H‰…ƒìWèsRé1Àé	ǃ\G¿·v1Òëaǃ`G¿¸v1ÒëN¿¹v1ÒëEƒ¬Oë0²¿êvë4¿Äv1Òë+ƒ°O덃´O덃¸O덃¼ODz¿÷v‹ƒPG…Àt]ƒ»XG”@òÊu(ƒìƒþõÿ‹(Múÿ‰úPÿt$è½,ƒÄ‹ƒPG…ÀtGǃPG‹ùÿÿÿ?t3I‰u.ƒìPèŽQë è7S…Àu‹ƒÿÿÿƒì‹(MúÿQÿ0è<QƒÄ1»PGÄü^_[]ýwÇ$醲éHÿÿÿ½wÇ$én½.wÇ$é]½;wÇ$‰÷éjÇ$½Owé9¿µv1Òéöþÿÿ½ewÇ$²é½}wÇ$é½ŒwÇ$ƒ‰÷é½›wÇ$„éå¿Èv1Òé¤þÿÿ¿Év1Òé˜þÿÿ¿Êv1ÒéŒþÿÿ¿îv²é€þÿÿƒì…É„ÎVPÿуÄ…À…wÃÿÿè¬èÿQ»ÀO逃ì…É„¶VPÿуÄ…À…‚Ãÿÿèå«èÐQ»ÄOéQ½ªwÇ$…‰÷éfƒì…É„‹VPÿуÄ…À…zÃÿÿ裫èŽQ»ÈOéƒì…É„sVPÿуÄ…À……Ãÿÿèt«è_Q»ÌOéàƒì…É„[VPÿуÄ…À…ÃÿÿèE«è0Q»ÐO鱃ì…É„CVPÿуÄ…À…›Ãÿÿè«èQ»ÔO邃ì…É„+VPÿуÄ…À…¦ÃÿÿèçªèÒP»ØOëVƒì…É„VPÿуÄ…À…´Ãÿÿ軪è¦P»ÜOë*ƒì…É„VPÿуÄ…À…ÂÃÿÿ菪èzP»àO…Àu‹ƒ(ÿÿÿƒì‹8úÿVQÿ0èhPƒÄÇ¿õv²é üÿÿƒì…É„½VPÿуÄ…À…¡Ãÿÿè4ªèP…Àu‹ƒ(ÿÿÿƒì‹8úÿVQÿ0èPƒÄǃäO륃ì…É„…VPÿуÄ…À…ŒÃÿÿèå©èÐO…Àu‹ƒ(ÿÿÿƒì‹8úÿVQÿ0èÄOƒÄǃèOéSÿÿÿ½¹wÇ$†é#½ÈwÇ$‡‰÷é2¿ðv²éÏûÿÿ½×wÇ$ˆéó½æwÇ$‰‰÷é½õwÇ$ŠéÏ¿üv²éŽûÿÿ¿ýv²é‚ûÿÿ¿þv²évûÿÿ¿ÿv²éjûÿÿ¿wÇ$²éWûÿÿ½xÇ$‹‰÷雿wÇ$²é1ûÿÿ½xÇ$ŒéU¿$wÇ$²é
ûÿÿ½)wÇ$é1½,wÇ$‰÷é@½"xÇ$‰÷é-¿9wÇ$²éÃúÿÿ½1xÇ$Žéç¿EwÇ$²éŸúÿÿ½JwÇ$‰÷éãÇ$½Mwé°½@xÇ$‰÷é¿¿ZwÇ$i²éUúÿÿ¿cwÇ$²²éBúÿÿ½OxÇ$éf¿{wÇ$²éúÿÿ½^xÇ$‘‰÷éb¿‡wÇ$ƒ²éøùÿÿPWè´MƒÄ‰ƅÀ…:Ðÿÿ½‰wÇ$ƒé½mxÇ$’é÷
¿–wÇ$„²é¯ùÿÿPVèkMƒÄ‰DžÀ…‚Ðÿÿ½˜wÇ$„‰÷éß
½|xÇ$“‰÷éÌ
¿¥wÇ$…²ébùÿÿPWèMƒÄ‰ƅÀ…ÆÐÿÿ½§wÇ$…ér
½‹xÇ$”éa
¿´wÇ$†²éùÿÿPVèÕLƒÄ‰DžÀ…Ñÿÿ½¶wÇ$†‰÷éI
½šxÇ$•‰÷é6
¿ÃwÇ$‡²éÌøÿÿPWèˆLƒÄ‰ƅÀ…RÑÿÿ½ÅwÇ$‡éÜVPècLƒÄ…À…¦½ÿÿé*úÿÿVPèLLƒÄ…À…ɽÿÿéBúÿÿVPè5LƒÄ…À…ì½ÿÿémúÿÿVPèLƒÄ…À…¾ÿÿé…úÿÿVPèLƒÄ…À…2¾ÿÿéúÿÿVPèðKƒÄ…À…U¾ÿÿéµúÿÿVPèÙKƒÄ…À…x¾ÿÿéÍúÿÿVPèÂKƒÄ…À…›¾ÿÿéâúÿÿVPè«KƒÄ…À…¾¾ÿÿé÷úÿÿVPè”KƒÄ…À…á¾ÿÿé;ûÿÿVPè}KƒÄ…À…¿ÿÿésûÿÿ½©xÇ$–éοÒwÇ$ˆ²é†÷ÿÿPVèBKƒÄ‰DžÀ…Ðÿÿ½ÔwÇ$ˆ‰÷é¶½¸xÇ$—‰÷飿áwÇ$‰²é9÷ÿÿPWèõJƒÄ‰ƅÀ…áÐÿÿ½ãwÇ$‰éI½ÇxÇ$˜é8¿ðwÇ$вéðöÿÿPVè¬JƒÄ‰DžÀ…)Ñÿÿ½òwÇ$Љ÷é ½ÖxÇ$™‰÷é
¿ÿwÇ$‹²é£öÿÿPWè_JƒÄ‰ƅÀ…mÑÿÿ½xÇ$‹é³
½åxÇ$šé¢
¿xÇ$Œ²éZöÿÿPVèJƒÄ‰DžÀ…µÑÿÿ½xÇ$Œ‰÷éŠ
½ôxÇ$›‰÷éw
¿xÇ$²é
öÿÿPWèÉIƒÄ‰ƅÀ…ùÑÿÿ½xÇ$é
½yÇ$œé
¿,xÇ$޲éÄõÿÿPVè€IƒÄ‰DžÀ…AÒÿÿ½.xÇ$މ÷éô	½yÇ$‰÷éá	¿;xÇ$²éwõÿÿPWè3IƒÄ‰ƅÀ……Òÿÿ½=xÇ$é‡	½!yÇ$žév	¿JxÇ$²é.õÿÿPVèêHƒÄ‰DžÀ…ÍÒÿÿ½LxÇ$‰÷é^	½0yÇ$Ÿ‰÷éK	¿YxÇ$‘²éáôÿÿPWèHƒÄ‰ƅÀ…Óÿÿ½[xÇ$‘éñ½?yÇ$ éà¿hxÇ$’²é˜ôÿÿPVèTHƒÄ‰DžÀ…YÓÿÿ½jxÇ$’‰÷éȽNyÇ$¡‰÷鵿wxÇ$“²éKôÿÿPWèHƒÄ‰ƅÀ…Óÿÿ½yxÇ$“é[½]yÇ$¢éJ¿†xÇ$”²éôÿÿPVè¾GƒÄ‰DžÀ…åÓÿÿ½ˆxÇ$”‰÷é2½lyÇ$£‰÷é¿•xÇ$•²éµóÿÿPWèqGƒÄ‰ƅÀ…)Ôÿÿ½—xÇ$•éŽ{yÇ$¤é´¿¤xÇ$–²élóÿÿPVè(GƒÄ‰DžÀ…qÔÿÿ½¦xÇ$–‰÷霽ŠyÇ$¥‰÷鉿³xÇ$—²éóÿÿPWèÛFƒÄ‰ƅÀ…µÔÿÿ½µxÇ$—é/½™yÇ$¦é¿ÂxÇ$˜²éÖòÿÿPVè’FƒÄ‰DžÀ…ýÔÿÿ½ÄxÇ$˜‰÷齨yÇ$§‰÷éó¿ÑxÇ$™²é‰òÿÿPWèEFƒÄ‰ƅÀ…AÕÿÿ½ÓxÇ$™é™½·yÇ$¨éˆ¿àxÇ$š²é@òÿÿPVèüEƒÄ‰DžÀ…‰Õÿÿ½âxÇ$š‰÷ép½ÆyÇ$©‰÷é]¿ïxÇ$›²éóñÿÿPWè¯EƒÄ‰ƅÀ…ÍÕÿÿ½ñxÇ$›é½ÕyÇ$ªéò¿þxÇ$œ²éªñÿÿPVèfEƒÄ‰DžÀ…Öÿÿ½yÇ$œ‰÷éÚ½äyÇ$«‰÷éÇ¿
yÇ$²é]ñÿÿPWèEƒÄ‰ƅÀ…YÖÿÿ½yÇ$ém½óyÇ$¬é\¿yÇ$ž²éñÿÿPVèÐDƒÄ‰DžÀ…¡Öÿÿ½yÇ$ž‰÷éD½zÇ$­‰÷é1¿+yÇ$Ÿ²éÇðÿÿPWèƒDƒÄ‰ƅÀ…åÖÿÿ½-yÇ$Ÿé×½zÇ$®éÆ¿:yÇ$ ²é~ðÿÿPVè:DƒÄ‰DžÀ…-×ÿÿ½<yÇ$ ‰÷鮽 zÇ$¯‰÷雿IyÇ$¡²é1ðÿÿPWèíCƒÄ‰ƅÀ…q×ÿÿ½KyÇ$¡éA½/zÇ$°é0¿XyÇ$¢²éèïÿÿPVè¤CƒÄ‰DžÀ…¹×ÿÿ½ZyÇ$¢‰÷é½>zÇ$±‰÷é¿gyÇ$£²é›ïÿÿPWèWCƒÄ‰ƅÀ…ý×ÿÿ½iyÇ$£é«½JzÇ$³é¼¿vyÇ$¤²éRïÿÿPVèCƒÄ‰DžÀ…EØÿÿ½xyÇ$¤‰÷邽VzÇ$Ëéq¿…yÇ$¥²éïÿÿPWèÃBƒÄ‰ƅÀ…‹Øÿÿ½‡yÇ$¥é½bzÇ$åé(¿”yÇ$¦²é¾îÿÿPVèzBƒÄ‰DžÀ…ÓØÿÿ½–yÇ$¦‰÷éî½nzÇ$éÝ¿£yÇ$§²ésîÿÿPWè/BƒÄ‰ƅÀ…Ùÿÿ½¥yÇ$§éƒ½zzÇ$
锿²yÇ$¨²é*îÿÿPVèæAƒÄ‰DžÀ…aÙÿÿ½´yÇ$¨‰÷éZ½%{Ç$éI¿ÁyÇ$©²éßíÿÿPWè›AƒÄ‰ƅÀ…§Ùÿÿ½ÃyÇ$©éï¿ÐyÇ$ª²é§íÿÿPVècAƒÄ‰DžÀ…Úÿÿ½ÒyÇ$ª‰÷é×½/{éÍ¿ßyÇ$«²écíÿÿPWèAƒÄ‰ƅÀ…MÚÿÿ½áyÇ$«és½0{é‹¿îyÇ$¬²é!íÿÿPVèÝ@ƒÄ‰DžÀ…œÚÿÿ½ðyÇ$¬‰÷éQ½1{éG¿ýyÇ$­²éÝìÿÿPWè™@ƒÄ‰ƅÀ…éÚÿÿ½ÿyÇ$­éí½2{é¿zÇ$®²é›ìÿÿPVèW@ƒÄ‰DžÀ…8Ûÿÿ½zÇ$®‰÷é˽3{éÁ¿zÇ$¯²éWìÿÿPWè@ƒÄ‰ƅÀ……Ûÿÿ½zÇ$¯ëj¿*zÇ$°²é"ìÿÿPVèÞ?ƒÄ‰DžÀ…áÛÿÿ½,zÇ$°‰÷ëU¿9zÇ$±²éëëÿÿPWè§?ƒÄ‰ƅÀ…;Üÿÿ½;zÇ$±1ö‹=ÿÿÿ?tH‰uƒìWè¥=ƒÄ‰÷…öt	‹=ÿÿÿ?u²ëH‰²uƒìWè=²ƒÄ‰ïé€ëÿÿ¿HzÇ$³²émëÿÿ¿TzÇ$˲éZëÿÿ¿`zÇ$å²éGëÿÿ¿lzÇ$²é4ëÿÿ¿xzÇ$
²é!ëÿÿ¿„zÇ$²éëÿÿ¿-{²éëÿÿ½4{éOÿÿÿ½5{éEÿÿÿ½6{é;ÿÿÿ½7{é1ÿÿÿ½8{é'ÿÿÿ½9{éÿÿÿ½:{éÿÿÿ½;{é	ÿÿÿ½<{éÿþÿÿ½={éõþÿÿ½>{éëþÿÿ½?{éáþÿÿ½@{é×þÿÿ½A{éÍþÿÿ½B{éÃþÿÿ½C{é¹þÿÿ½D{é¯þÿÿ½E{é¥þÿÿ½F{é›þÿÿ½G{é‘þÿÿ½H{é‡þÿÿ½I{é}þÿÿ½J{ésþÿÿ½K{éiþÿÿ½L{é_þÿÿ½M{éUþÿÿ½N{éKþÿÿ½O{éAþÿÿ½P{é7þÿÿ½Q{é-þÿÿ½R{é#þÿÿ½S{éþÿÿ½T{éþÿÿ½U{éþÿÿ½V{éûýÿÿ½W{éñýÿÿ½X{éçýÿÿ½Y{éÝýÿÿ½Z{éÓýÿÿ½[{éÉýÿÿ½\{é¿ýÿÿSƒìè[Ã+……Ét‹=ÿÿÿ?tH‰tƒÄ[É$è!;ƒÄ[АUSWVƒì,è[Ã脍«ìO‰«øOƒ¬üÿ‰ƒìOƒ,üÿ‰ƒðOƒlüÿ‰ƒôO³äB‰³ÄG‹ƒŒC…Àtg‹Hƒù|_ƒ»tCtI1Ґ‹|öGU„B9Ñuíë;‹“ðB‰T$I1Ґ‹|öGU„…B9Ñuàè+<‰ǀ‹9CƒìVè)<ƒÄ‰ƀ£9Cý…ÿtè$<…öˆú‹»ÄGƒ¿u‹GH;ƒÿÿÿu‹ƒÿÿÿ‰GH‹»ÄGƒìjjUèö;ƒÄ‰ƅÀ„ăìVÿ³¼Lÿ·„è$;ƒÄ…Àˆ¤‹=ÿÿÿ?tH‰uƒìVè¢9ƒÄ‹‹ÄG‹€‰L$‹‰¨‰L$1ÿ…ÀtG‹€€…Àuõ½ƒìPèu;ƒÄ‰D$Çÿÿÿÿ‹L$ƒyŒÂ…ÿŽƒl$€¸‹“ÿÿÿ‰T$ “˜Rúÿ‰T$됐‹D$$@‹L$;A†‰D$$‹Dƒìÿ³¼Lÿ°„è;ƒÄ…ÀtˉŃìjPè;ƒÄ‰E	D$u1èl:‹L$…Àu$ƒìÿt$$‹D$,ÿ0èr8‹L$ƒÄ‹E=ÿÿÿ?tH‰EuƒìUèw8‹L$ƒÄ…É„Xÿÿÿ1ö‹l$‹m‹D$‹°ƒúÿ…¼ƒìÿ³¼Lÿµ„èi:ƒÄ…Àt<ƒìj‰D$4Pèc:ƒÄ‰…Àu‰T$èÁ9‹T$…Àt‹L$(‹=ÿÿÿ?u4‹L$ëV1ҋL$ëNƒìÿt$$‹D$,ÿ0è¬7‹T$ ƒÄ‹L$(‹=ÿÿÿ?tÌH‰‰ȋL$uƒìP‰T$ è°7‹T$ ‹L$ƒÄ‹D$‰°ÇD°ÿÿÿÿ9Ê„yþÿÿ…Òt(ƒí€F9÷…ÿÿÿédþÿÿ‹ƒ,ÿÿÿƒì‹_Zúÿÿwé0‹D$‹‹L$‹T$$‹L‘‹“,ÿÿÿ³å=úÿÿqÿpVÿ2èñ8ƒÄÿt$èu9éû½‹ƒÿÿÿ‰D$³˜Rúÿ됐EƒÅþ‹L$;i‰Å}w‹©ƒìÿ³¼Lÿ°„è9ƒÄ…ÀtщǃìjPè9ƒÄ…Àu	èh8…Àt‹=ÿÿÿ?t«H‰u¦ƒìWè6ƒÄ똃ìV‹D$ÿ0èY6ƒÄ‹=ÿÿÿ?uÒéxÿÿÿè³6ƒìÿt$è·8ƒÄÿ³ÄGÿ³øGÿ³PGè=7ƒÄ‰Á1Éy%닃,ÿÿÿ‹îVúÿÿwÿt$Qÿ0èå7ƒÄ¸ÿÿÿÿƒÄ,^_[]Éñè¾úÿÿëꐐUSWVƒìè[Ã؃ì«³VúÿUè>8ƒÄ¾ÿÿÿÿ…À„V‰ǃ썃¹-úÿ‰ù‰êjhÌPè⌃ĉƒpG…À„
‹=ÿÿÿ?tH‰uƒìWèŠ5ƒÄƒìUèÞ7ƒÄ…À„û‰ǃ썃ç>úÿ‰ù‰êjjP芌ƒÄ‰ƒtG…À„²‹=ÿÿÿ?tH‰uƒìWè25ƒÄƒìUè†7ƒÄ…À„£‰ǃ썃¸]úÿ‰ù‰êjjPè2ŒƒÄ‰ƒxG…À„Z‹=ÿÿÿ?tH‰uƒìWèÚ4ƒÄƒì«¾-úÿUè(7ƒÄ…À„E‰ǃ썃Ä-úÿ‰ù‰êjj8PèԋƒÄ‰ƒ|G…À„üƒìƒ5Núÿ‰ù‰êjh$P詋ƒÄ‰ƒ€G…À„у썃MYúÿ‰ù‰êjhPè~‹ƒÄ‰ƒ„G…À„¦ƒìƒ£;úÿ‰ù‰êjj(PèV‹ƒÄ‰ƒˆG…À„~ƒìƒU^úÿ‰ù‰êjjPè.‹ƒÄ‰ƒŒG…À„VƒìƒÙOúÿ‰ù‰êjjP苃ĉƒG…À„.ƒìƒ >úÿ‰ù‰êjjPèފƒÄ‰ƒ”G…À„ƒìƒÀ]úÿ‰ù‰êjjP越ƒÄ‰ƒ˜G…À„ރ썃ƒVúÿ‰ù‰êjjP莊ƒÄ‰ƒœG…À„¶ƒìƒÎ]úÿ‰ù‰êjjPèfŠƒÄ‰ƒ G…À„Žƒìƒì>úÿ‰ù‰êjjPè>ŠƒÄ‰ƒ¤G…À„fƒìƒ[=úÿ‰ù‰êjjP芃ĉƒ¨G…À„>ƒìƒV<úÿ‰ù‰êjjPèĉƒ¬G…À„ƒìƒ¿Rúÿ‰ù‰êjjPèƉƒÄ‰ƒ°G…À„îƒìƒÉRúÿ‰ù‰êjj|P螉ƒÄ‰ƒ´G…À„Æ‹=ÿÿÿ?tH‰uƒìWèF2ƒÄƒì«†ZúÿUè”4ƒÄ…À„±‰ǃ썃@Súÿ‰ù‰êjj0Pè@‰ƒÄ‰ƒ¸G…ÀtlƒìƒB:úÿ‰ù‰êjj P艃ĉƒ¼G…ÀtH‹ˆ„ètˆ‰ƒHP…Àt3ƒìƒ§Aúÿ‰ù‰êjjPè㈃ĉƒÀG…Àt‹1ö=ÿÿÿ?t#1öë‹=ÿÿÿ?t¾ÿÿÿÿH‰uƒìWè{1ƒÄ‰ðƒÄ^_[]АUSWVƒìè[Ã8{ƒ¡Zúÿ‰$èŸ3¾ÿÿÿÿ…À„—‰Ǎ«Ê-úÿ‰l$ƒTG‰$“K@úÿ‰ùèp‰…ÀxV‰l$ƒLP‰$“õ>úÿ‰ùèR‰…Àx8ƒÛTúÿ‰D$ƒPP‰$““Vúÿ‰ùè.‰…Àx‹1ö=ÿÿÿ?t$1öH‰uë‹=ÿÿÿ?t¾ÿÿÿÿH‰u‰<$è›0‰ðƒÄ^_[]ÐUSWVƒìè[Ãhzƒ Kúÿ‰$èÏ2¾ÿÿÿÿ…À„ä‰Ǎ«¸Aúÿ‰l$ƒP‰$“+Púÿ‰ùèЉ…ÀˆŸ‰l$ƒP‰$“‚Súÿ‰ù讉…Àˆ}‰l$ƒ P‰$“#Qúÿ‰ù茉…Àˆ[‰l$ƒ$P‰$“[@úÿ‰ùèj‰…Àˆ9‰l$ƒ(P‰$“«;úÿ‰ùèH‰…Àˆ‰l$ƒP‰$“g@úÿ‰ùè&‰…Àˆõ‰l$ƒP‰$“¶;úÿ‰ù艅ÀˆÓ‰l$ƒP‰$“t8úÿ‰ùè∅Àˆ±‰l$ƒP‰$“+Lúÿ‰ùè…Àˆ‹=ÿÿÿ?t
H‰u‰<$è/ƒ¡Zúÿ‰$èd1…À„~‰Ǎƒj^úÿ‰D$ƒ<P‰$“ðLúÿ‰ùèjˆ…Àˆ9ƒˆTúÿ‰D$ƒ4P‰$“6Lúÿ‰ùèBˆ…ÀˆƒMúÿ‰D$ƒ,P‰$“Vúÿ‰ù舅Àˆéƒ>Núÿ‰D$ƒüO‰$“qMúÿ‰ùèò‡…ÀˆÁƒMLúÿ‰D$ƒ8P‰$“_<úÿ‰ùèʇ…Àˆ™ƒ0Qúÿ‰D$ƒP‰$“›Vúÿ‰ù袇…Àxuƒ?úÿ‰D$ƒ@P‰$“?úÿ‰ùè~‡…ÀxQ«šWúÿ‰l$ƒ0P‰$“¶Zúÿ‰ùèZ‡…Àx-‰l$ƒDP‰$“ÇZúÿ‰ùè<‡…Àx‹1ö=ÿÿÿ?t1öë‹=ÿÿÿ?t¾ÿÿÿÿH‰u‰<$è~-‰ðƒÄ^_[]АUSWVƒì‰Íè[ÃFwƒìQèÂ/ƒÄ…À„­‰Njƒ°M‹O‹IH;‹ÿÿÿ‰l$…¦jjPWè>.ƒÄ‰ŅÀ„
‹ƒÈJ‹M‹IH;‹ÿÿÿ…™jjPUè.ƒÄ‰ƅÀ„¢;³0ÿÿÿt;³4ÿÿÿt;³ÿÿÿtƒìVè@/ƒÄë1À;³0ÿÿÿ”À…ƒ1ɋE=ÿÿÿ?ukëoèE.…À„êèÈ,éàƒì…É„'PWÿуĉŅÀ…Vÿÿÿè"ˆëYƒì…É„PUÿуĉƅÀ…cÿÿÿèÿ‡1ö±‹E=ÿÿÿ?tH‰Et31í„Éu‹=ÿÿÿ?tH‰uƒìVè,ƒÄ…íu*èB,‰øƒÄ^_[]ÃìU‰L$èë+ƒÄ1í€|$tºë֋E=ÿÿÿ?tH‰EuƒìUèÄ+ƒÄ‹=ÿÿÿ?‹l$tH‰uƒìWè¦+ƒÄè..…ÀtB‰ƃìjjPÿ³XGUè$.ƒÄ ‰Nj=ÿÿÿ?„pÿÿÿH‰…gÿÿÿƒìVè`+ƒÄéVÿÿÿ1ÿéOÿÿÿPWè-ƒÄ‰ŅÀ…,þÿÿéÑþÿÿPUè-ƒÄ‰ƅÀ…CþÿÿéÛþÿÿUSWVƒì‰ՉÏè[Ãätè„-…ÀtA‰ƃìÿt$,UPÿ³XGWèy-ƒÄ ‹ùÿÿÿ?tI‰uƒìV‰Æè¼*‰ðƒÄƒÄ^_[]Ã1Àë��USWVƒì‰։Ïè[Ãtt‹A‹@H…Àt‰t$‰<$ÿЅÀtƒÄ^_[]Ét$‰<$è.,…Àu苃ÿÿÿ‹‰$èz*…À„Šè}*‰<$èå,ÇD$…À„’‰$èÝ,…À„‚‹‹ðH‰L$‰D$‰$èÏ,…Àtp‰ljt$‰$è½,…Àt`‰ʼn$èO,‰D$‰éè„îÿÿ‰ùè}îÿÿ‹L$ètîÿÿ‹D$…À…Fÿÿÿ‹ƒÿÿÿ‹‰t$‹ORúÿ‰L$‰$èZ+1Àé!ÿÿÿÇD$1ÿ1í몐USWVƒì,è[ÃXsÇD$(ÇD$$ÇD$ è0,‹P@‹‹ÿÿÿ‰D$됋R…Òt9‹:…ÿtó9Ïtùÿÿÿ?tA‰‹W‹
ùÿÿÿ?tA‰
‰T$‰<$èö+‰D$ëÇD$1ÿÇD$ƒÀ<úÿ‰$è@+…À„Z‰ōƒ	Búÿ‰D$‰,$è¤(‰ƋE=ÿÿÿ?t
H‰E„Ô…ö„(‹F;ƒ8ÿÿÿt=‹ƒÿÿÿ‹‹äTúÿ‰L$‰$èQ(‹=ÿÿÿ?„öH‰…í‰4$èc(éà‰4$ÇD$èŽ*‰ƒP‹ùÿÿÿ?tI‰u‰4$è1(‹ƒP…Àt_ÿ=	ur‹ƒPÿLƒø‡õ‹ƒÿÿÿ‹0‹ƒPÿL‰D$ƒ€8úÿ‰D$‰4$ÇD$
ëW‰,$èÒ'…ö…$ÿÿÿëJ‹ƒÿÿÿ‹‹s@úÿ‰L$‰$è~'ë.‹ƒÿÿÿ‹0‹ƒPÿ‰D$ƒÏRúÿ‰D$‰4$ÇD$	è>)‹ƒ<ÿÿÿ‹‹l$‹M<è„…À„“ƒ–Súÿ‰D$Ç$֍‹ VúÿºhèAD$ ‰D$D$$‰$T$(‰é踅Àxc‹‹èO‹“äNÇ$è‹ÇD$Ø…À„†‰ʼnÁ袋‹E¾’=ÿÿÿ?tH‰Eu‰,$èÕ&‹l$ë¾hÇD$Öë
¾‚ÇD$׋M@‹D$‰D$‰<$‹T$è<¹‹D$(…Àt‹ùÿÿÿ?t
I‰u‰$è}&‹D$$…Àt‹ùÿÿÿ?t
I‰u‰$è^&‹D$ …Àt‹ùÿÿÿ?t
I‰u‰$è?&ƒ–Súÿ‰D$‹D$‰$‹ Vúÿ‰òè!¸ÿÿÿÿƒÄ,^_[]˃PÿHƒø‹L$t…Àus‹ƒÿÿÿ‹‹Búÿé.þÿÿ…Ét‹=ÿÿÿ?t
H‰u‰$èÎ%…ÿt‹=ÿÿÿ?t
H‰u‰<$è´%1T$…ÒtŽ‹
ùÿÿÿ?t„I‰
…{ÿÿÿ‰$è%1Àélÿÿÿ‹ƒÿÿÿ‹‹‰Yúÿé»ýÿÿ¾Žé–þÿÿSVP‰Îè[Ã:oƒìÿqQÿ³XGè=(ƒÄ…Àt‹ùÿÿÿ?tA‰ƒÄ^[ÃèÎ&…Àu‰ñƒÄ^[éÎ1Ä^[АUSWVƒì,‰ՉL$$è[ÃÒnèÂ'‰D$(…í‰\$tIƒ»`G„_‹D$(‹x<Ç@<…ÿ‰l$t-‹w‹=ÿÿÿ?t@‰‹o…ít‹E=ÿÿÿ?t@‰Eë1íé1ö1í‹\$‹ƒ`G‰$è€'‹“ÄI…Àt;‹‹J‰L$‰T$‰$èQ'…ÀtP;ƒ4ÿÿÿto‹\$;ƒ0ÿÿÿtk‰$èQ'…ÀuWë]‹‹`G者Àt‰D$ ‰$è0'…À…¯‹ƒ0ÿÿÿéªè8$‹ƒ`G‹‹ÄI‹“4ÿÿÿ‰T$‰L$‰$èÆ$ÇD$…ÿt	9o…S‹L$(‹A<‰y<…Àt‹ùÿÿÿ?t	I‰„^…öt‹=ÿÿÿ?t	H‰„a…ít‹E=ÿÿÿ?t
H‰E„b‹\$‹l$‰è÷ØCD$@‰D$ …Àt#‹ƒ\P…Àt‹³TP‰ñIˆ¨‹T$ 9Tðü}]‹D$(‹P<Ç@<…҉T$„'‹B‰D$‹=ÿÿÿ?t@‹L$‰‹r…ö„™‹=ÿÿÿ?„@‰‹|$D…í…ÿ醅Ét=‰t$‰l$1ÿ‹\$ 됐‰ñ9÷}3‰Î)þ‰òÁêòÑúú‹lЉÖ9Ýá}!z‰Îë؉t$‰l$‹h1ҋ\$ 1É9ÝœÁÊ;T$‹\$‹l$6ÿÿÿ‹L$ 9LÐ…(ÿÿÿ‹<Ћ=ÿÿÿ?t@‰‹ƒXG‰D$‰|$‹D$(‰$ÇD$è]%‰ƅÀt‹D$@‰F‰4$èX%‹=ÿÿÿ?„sH‰…j‰<$èú!é]ÇD$1ö‹|$D…턌‰l$ƒ=Búÿ‰D$‹D$$‰D$ƒ8Púÿ‰$è%…l$‹T$„á‰D$$‰$èÿ$…À„«‹L$@‰L$‰D$‰<$èó$‰NjL$$‹=ÿÿÿ?t?H‰‹T$u:‰$èc!ë,1ö‹|$D…í…tÿÿÿ‹D$@‰D$‹D$$‰D$‰<$è«$‰Njl$‹T$…ÿ„_…Òt	9r…A‹L$(‹A<‰Q<…Àt‹ùÿÿÿ?t
I‰u‰$è÷ …ít‹E=ÿÿÿ?tH‰Eu‰,$èÛ …öt‹=ÿÿÿ?t
H‰u‰4$èÁ ƒ|$ „gþÿÿ‹ƒ\P…À„‚‹«TP‰éIˆš‰î‹T$ 9TèüŒº…É„‚‰l$1Ò됐‰ڍS‰Ήñ9ò}m‰Í)ՉîÁîîÑþ֋lð‰ó;l$ ß|։ÞëY‰$‹\$è6 …ö…’üÿÿéŸüÿÿ‰4$‹\$è …í…üÿÿéžüÿÿ‰,$‹\$è é‘üÿÿ‰l$‹h1Û1É;l$ œIÞ΋l$9î‹\$}‹L$ 9Lð„3;«XP‰|$u0í‰L$‰$è0#…À„ƒÅ@‰ƒ\P‰«XP‹«TP‰ï)÷~y‰éƒÿrV‰t$$‰ûƒãü‰é)ىê‰Ý÷݉T$4ЃÆø1ҐDÖèLÖøÖDÖðƒÂü9Õuæ9ߋ\$‹l$‹t$$t"‰÷‹TÈø‹tÈü‰tȉȍQÿ‰Ñ9ú‰þä‹L$ ‰Lð‹|$‰<ðE‰«TP‹=ÿÿÿ?…Ÿüÿÿéüÿÿ‹L$$‹=ÿÿÿ?‹T$tH‰u‰$è΋T$…ít‹E=ÿÿÿ?tH‰Eu‰,$讋T$…Òt‹=ÿÿÿ?tH‰t"…öt‹=ÿÿÿ?t
H‰u‰4$è~ƒÄ,^_[]É$éoüÿÿ‰l$‰<$‹\$èî!é˜úÿÿ‹ƒ4ÿÿÿ‹T$ ‹
ùÿÿÿ?u	‹\$éïùÿÿ‰D$I‰
tm‹D$‹\$éÙùÿÿÇ$èº!…Àt2‹L$‰\PǁXP@ǁTP‹L$ ‰H‰ù‰8‹=ÿÿÿ?u3‹\$éŒûÿÿ‰t$‰$è_!‹T$éªüÿÿ‰$‹\$躋D$édùÿÿ@‰‹\$éVûÿÿ‹|$éMûÿÿ‹ð‰ý‰<ð‹=ÿÿÿ?tH‰t‹\$‰ïé,ûÿÿ‰$‹\$èo‰ïéûÿÿSWVìð"è[Ã6gƒÈG‰D$ƒµþõÿ‰D$ÇD$AÇD$ÆD$ÆD$ÆD$ƒÌG‰D$ƒöþõÿ‰D$ÇD$ ÇD$$ÆD$(ÆD$)ÆD$*ƒÐG‰D$,ƒ	ÿõÿ‰D$0ÇD$4&ÇD$8ÆD$<ÆD$=ÆD$>ƒÔG‰D$@ƒ/ÿõÿ‰D$DÇD$HÇD$LÆD$PÆD$QÆD$RƒØG‰D$Tƒ;ÿõÿ‰D$XÇD$\ÇD$`ÆD$dÆD$eÆD$fƒÜG‰D$hƒFÿõÿ‰D$lÇD$p>ÇD$tÆD$xÆD$yÆD$zƒàG‰D$|ƒ„ÿõÿ‰„$€DŽ$„	DŽ$ˆƄ$ŒƄ$Ƅ$ŽƒäG‰„$ƒÿõÿ‰„$”DŽ$˜DŽ$œƄ$ Ƅ$¡Ƅ$¢‹èG‰Œ$¤‰„$¨DŽ$¬DŽ$°Ƅ$´Ƅ$µƄ$¶ƒìG‰„$¸ƒ•ÿõÿ‰„$¼DŽ$À$DŽ$ÄƄ$ÈƄ$ÉƄ$ʍƒðG‰„$̍ƒ¹ÿõÿ‰„$ÐDŽ$ÔDŽ$ØƄ$ÜƄ$ÝƄ$ލƒôG‰„$àƒÇÿõÿ‰„$äDŽ$èËDŽ$ìƄ$ðƄ$ñƄ$òƒøG‰„$ôƒ’öÿ‰„$øDŽ$üDŽ$Ƅ$Ƅ$Ƅ$‹üG‰Œ$‰„$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒH‰„$ƒžöÿ‰„$ DŽ$$!DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒH‰„$0ƒ¿öÿ‰„$4DŽ$8DŽ$<Ƅ$@Ƅ$AƄ$BƒH‰„$DƒÜöÿ‰„$HDŽ$L"DŽ$PƄ$TƄ$UƄ$VƒH‰„$Xƒþöÿ‰„$\DŽ$`DŽ$dƄ$hƄ$iƄ$jƒH‰„$lƒöÿ‰„$pDŽ$t"DŽ$xƄ$|Ƅ$}Ƅ$~ƒH‰„$€ƒ>öÿ‰„$„DŽ$ˆ#DŽ$ŒƄ$Ƅ$‘Ƅ$’ƒH‰„$”ƒaöÿ‰„$˜DŽ$œDŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒH‰„$¨ƒ{öÿ‰„$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒ H‰„$¼ƒ™öÿ‰„$ÀDŽ$Ä"DŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒ$H‰„$Ѝƒ»öÿ‰„$ÔDŽ$ØDŽ$ÜƄ$àƄ$áƄ$⍃(H‰„$䍃Úöÿ‰„$èDŽ$ì'DŽ$ðƄ$ôƄ$õƄ$öƒ,H‰„$øƒöÿ‰„$üDŽ$ DŽ$Ƅ$Ƅ$	Ƅ$
ƒ0H‰„$ƒ!öÿ‰„$DŽ$!DŽ$Ƅ$Ƅ$Ƅ$ƒ4H‰„$ ƒBöÿ‰„$$DŽ$("DŽ$,Ƅ$0Ƅ$1Ƅ$2ƒ8H‰„$4ƒdöÿ‰„$8DŽ$<"DŽ$@Ƅ$DƄ$EƄ$Fƒ<H‰„$Hƒ†öÿ‰„$LDŽ$P$DŽ$TƄ$XƄ$YƄ$Zƒ@H‰„$\ƒªöÿ‰„$`DŽ$d,DŽ$hƄ$lƄ$mƄ$nƒDH‰„$pƒÖöÿ‰„$tDŽ$x*DŽ$|Ƅ$€Ƅ$Ƅ$‚ƒHH‰„$„ƒöÿ‰„$ˆDŽ$Œ-DŽ$Ƅ$”Ƅ$•Ƅ$–ƒLH‰„$˜ƒ-öÿ‰„$œDŽ$ %DŽ$¤Ƅ$¨Ƅ$©Ƅ$ªƒPH‰„$¬ƒRöÿ‰„$°DŽ$´DŽ$¸Ƅ$¼Ƅ$½Ƅ$¾ƒTH‰„$Àƒqöÿ‰„$ÄDŽ$ÈDŽ$ÌƄ$ÐƄ$ÑƄ$ҍƒXH‰„$ԍƒöÿ‰„$ØDŽ$Ü$DŽ$àƄ$äƄ$åƄ$捃\H‰„$荃´öÿ‰„$ìDŽ$ð DŽ$ôƄ$øƄ$ùƄ$úƒ`H‰„$üƒÔöÿ‰„$DŽ$DŽ$Ƅ$Ƅ$
Ƅ$ƒdH‰„$ƒòöÿ‰„$DŽ$DŽ$Ƅ$ Ƅ$!Ƅ$"ƒhH‰„$$ƒöÿ‰„$(DŽ$,DŽ$0Ƅ$4Ƅ$5Ƅ$6ƒlH‰„$8ƒ.öÿ‰„$<DŽ$@DŽ$DƄ$HƄ$IƄ$JƒpH‰„$LƒLöÿ‰„$PDŽ$T(DŽ$XƄ$\Ƅ$]Ƅ$^ƒtH‰„$`ƒtöÿ‰„$dDŽ$h%DŽ$lƄ$pƄ$qƄ$rƒxH‰„$tƒ™öÿ‰„$xDŽ$|!DŽ$€Ƅ$„Ƅ$…Ƅ$†ƒ|H‰„$ˆƒºöÿ‰„$ŒDŽ$DŽ$”Ƅ$˜Ƅ$™Ƅ$šƒ€H‰„$œƒÖöÿ‰„$ DŽ$¤ DŽ$¨Ƅ$¬Ƅ$­Ƅ$®ƒ„H‰„$°ƒööÿ‰„$´DŽ$¸(DŽ$¼Ƅ$ÀƄ$ÁƄ$ƒˆH‰„$čƒöÿ‰„$ÈDŽ$Ì,DŽ$ÐƄ$ÔƄ$ÕƄ$֍ƒŒH‰„$؍ƒJöÿ‰„$ÜDŽ$à'DŽ$äƄ$èƄ$éƄ$ꍃH‰„$썃qöÿ‰„$ðDŽ$ô(DŽ$øƄ$üƄ$ýƄ$þƒ”H‰„$ƒ™öÿ‰„$DŽ$#DŽ$Ƅ$Ƅ$Ƅ$ƒ˜H‰„$ƒ¼öÿ‰„$DŽ$ DŽ$ Ƅ$$Ƅ$%Ƅ$&ƒœH‰„$(ƒÜöÿ‰„$,DŽ$0#DŽ$4Ƅ$8Ƅ$9Ƅ$:ƒ H‰„$<ƒÿöÿ‰„$@DŽ$D DŽ$HƄ$LƄ$MƄ$Nƒ¤H‰„$Pƒöÿ‰„$TDŽ$X!DŽ$\Ƅ$`Ƅ$aƄ$bƒ¨H‰„$dƒ@öÿ‰„$hDŽ$lDŽ$pƄ$tƄ$uƄ$vƒ¬H‰„$xƒ]öÿ‰„$|DŽ$€ DŽ$„Ƅ$ˆƄ$‰Ƅ$Šƒ°H‰„$Œƒ}öÿ‰„$DŽ$”DŽ$˜Ƅ$œƄ$Ƅ$žƒ´H‰„$ ƒšöÿ‰„$¤DŽ$¨DŽ$¬Ƅ$°Ƅ$±Ƅ$²ƒ¸H‰„$´ƒµöÿ‰„$¸DŽ$¼DŽ$ÀƄ$ÄƄ$ÅƄ$ƍƒ¼H‰„$ȍƒÄöÿ‰„$ÌDŽ$Ð	DŽ$ÔƄ$ØƄ$ÙƄ$ڍƒÀH‰„$܍ƒÍöÿ‰„$àDŽ$ä>DŽ$èƄ$ìƄ$íƄ$ÄH‰„$ðƒöÿ‰„$ôDŽ$øDŽ$üƄ$Ƅ$Ƅ$ƒÈH‰„$ƒ
öÿ‰„$DŽ$GDŽ$Ƅ$Ƅ$Ƅ$ƒÌH‰„$ƒTöÿ‰„$DŽ$ LDŽ$$Ƅ$(Ƅ$)Ƅ$*ƒÐH‰„$,ƒ öÿ‰„$0DŽ$4
DŽ$8Ƅ$<Ƅ$=Ƅ$>ƒÔH‰„$@ƒªöÿ‰„$DDŽ$H!DŽ$LƄ$PƄ$QƄ$RƒØH‰„$TƒËöÿ‰„$XDŽ$\DŽ$`Ƅ$dƄ$eƄ$fƒÜH‰„$hƒ×öÿ‰„$lDŽ$pDŽ$tƄ$xƄ$yƄ$zƒàH‰„$|ƒˆþõÿ‰„$€DŽ$„DŽ$ˆƄ$ŒƄ$Ƅ$ŽƒäH‰„$ƒâöÿ‰„$”DŽ$˜DŽ$œƄ$ Ƅ$¡Ƅ$¢ƒèH‰„$¤ƒäöÿ‰„$¨DŽ$¬DŽ$°Ƅ$´Ƅ$µƄ$¶ƒìH‰„$¸ƒæöÿ‰„$¼DŽ$ÀDŽ$ÄƄ$ÈƄ$ÉƄ$ʍƒðH‰„$̍ƒèöÿ‰„$ÐDŽ$ÔDŽ$ØƄ$ÜƄ$ÝƄ$ލƒôH‰„$àƒêöÿ‰„$äDŽ$èDŽ$ìƄ$ðƄ$ñƄ$òƒøH‰„$ôƒìöÿ‰„$øDŽ$üDŽ$Ƅ$Ƅ$Ƅ$‹üH‰Œ$‰„$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒI‰„$ƒîöÿ‰„$ DŽ$$ DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒI‰„$0ƒ	öÿ‰„$4DŽ$80DŽ$<Ƅ$@Ƅ$AƄ$BƒI‰„$Dƒ>	öÿ‰„$HDŽ$LDŽ$PƄ$TƄ$UƄ$VƒI‰„$XƒV	öÿ‰„$\DŽ$`&DŽ$dƄ$hƄ$iƄ$jƒI‰„$lƒ|	öÿ‰„$pDŽ$t5DŽ$xƄ$|Ƅ$}Ƅ$~ƒI‰„$€ƒ±	öÿ‰„$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘Ƅ$’ƒI‰„$”ƒµ	öÿ‰„$˜DŽ$œDŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒI‰„$¨ƒ¹	öÿ‰„$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒ I‰„$¼ƒÁ	öÿ‰„$ÀDŽ$Ä	DŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒ$I‰„$ЍƒÊ	öÿ‰„$ÔDŽ$ØDŽ$ÜƄ$àƄ$áƄ$⍃(I‰„$䍃Ð	öÿ‰„$èDŽ$ìDŽ$ðƄ$ôƄ$õƄ$öƒ,I‰„$øƒÛ	öÿ‰„$üDŽ$DŽ$Ƅ$Ƅ$	Ƅ$
ƒ0I‰„$ƒß	öÿ‰„$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒ4I‰„$ ƒæ	öÿ‰„$$DŽ$(DŽ$,Ƅ$0Ƅ$1Ƅ$2ƒ8I‰„$4ƒë	öÿ‰„$8DŽ$<DŽ$@Ƅ$DƄ$EƄ$Fƒ<I‰„$Hƒñ	öÿ‰„$LDŽ$PDŽ$TƄ$XƄ$YƄ$Zƒ@I‰„$\ƒ
öÿ‰„$`DŽ$dDŽ$hƄ$lƄ$mƄ$nƒDI‰„$pƒ
öÿ‰„$tDŽ$xDŽ$|Ƅ$€Ƅ$Ƅ$‚ƒHI‰„$„ƒ
öÿ‰„$ˆDŽ$ŒDŽ$Ƅ$”Ƅ$•Ƅ$–ƒLI‰„$˜ƒ
öÿ‰„$œDŽ$ DŽ$¤Ƅ$¨Ƅ$©Ƅ$ªƒPI‰„$¬ƒ#
öÿ‰„$°DŽ$´DŽ$¸Ƅ$¼Ƅ$½Ƅ$¾‹TI‰Œ$À‰„$ÄDŽ$ÈDŽ$ÌƄ$ÐƄ$ÑƄ$ҍƒXI‰„$ԍƒ$,øÿ‰„$ØDŽ$ÜDŽ$àƄ$äƄ$åƄ$捋\I‰Œ$艄$ìDŽ$ðDŽ$ôƄ$øƄ$ùƄ$úƒ`I‰„$üƒ%
öÿ‰„$DŽ$DŽ$Ƅ$Ƅ$
Ƅ$ƒdI‰„$ƒ±žùÿ‰„$DŽ$	DŽ$Ƅ$ Ƅ$!Ƅ$"‹hI‰Œ$$‰„$(DŽ$,	DŽ$0Ƅ$4Ƅ$5Ƅ$6ƒlI‰„$8ƒ-
öÿ‰„$<DŽ$@DŽ$DƄ$HƄ$IƄ$JƒpI‰„$Lƒ0öÿ‰„$PDŽ$TDŽ$XƄ$\Ƅ$]Ƅ$^ƒtI‰„$`ƒª-úÿ‰„$dDŽ$hDŽ$lƄ$pƄ$qƄ$rƒxI‰„$tƒ>öÿ‰„$xDŽ$|DŽ$€Ƅ$„Ƅ$…Ƅ$†ƒ|I‰„$ˆƒEöÿ‰„$ŒDŽ$DŽ$”Ƅ$˜Ƅ$™Ƅ$šƒ€I‰„$œƒ[Røÿ‰„$ DŽ$¤DŽ$¨Ƅ$¬Ƅ$­Ƅ$®‹„I‰Œ$°‰„$´DŽ$¸DŽ$¼Ƅ$ÀƄ$ÁƄ$ƒˆI‰„$čƒKöÿ‰„$ÈDŽ$ÌžDŽ$ÐƄ$ÔƄ$ÕƄ$֍ƒŒI‰„$؍ƒéöÿ‰„$ÜDŽ$à(DŽ$äƄ$èƄ$éƄ$ꍃI‰„$썃öÿ‰„$ðDŽ$ôDŽ$øƄ$üƄ$ýƄ$þ‹”I‰Œ$	‰„$	DŽ$	DŽ$	Ƅ$	Ƅ$	Ƅ$	ƒ˜I‰„$	ƒöÿ‰„$	DŽ$	DŽ$ 	Ƅ$$	Ƅ$%	Ƅ$&	ƒœI‰„$(	ƒ!öÿ‰„$,	DŽ$0	DŽ$4	Ƅ$8	Ƅ$9	Ƅ$:	ƒ I‰„$<	ƒ-öÿ‰„$@	DŽ$D	4DŽ$H	Ƅ$L	Ƅ$M	Ƅ$N	ƒ¤I‰„$P	ƒÕøÿ‰„$T	DŽ$X	
DŽ$\	Ƅ$`	Ƅ$a	Ƅ$b	‹¨I‰Œ$d	‰„$h	DŽ$l	
DŽ$p	Ƅ$t	Ƅ$u	Ƅ$v	ƒ¬I‰„$x	ƒaöÿ‰„$|	DŽ$€	6	DŽ$„	Ƅ$ˆ	Ƅ$‰	Ƅ$Š	ƒ°I‰„$Œ	ƒÿTøÿ‰„$	DŽ$”	DŽ$˜	Ƅ$œ	Ƅ$	Ƅ$ž	‹´I‰Œ$ 	‰„$¤	DŽ$¨	DŽ$¬	Ƅ$°	Ƅ$±	Ƅ$²	ƒ¸I‰„$´	ƒ—%öÿ‰„$¸	DŽ$¼	Ï
DŽ$À	Ƅ$Ä	Ƅ$Å	Ƅ$Æ	ƒ¼I‰„$È	ƒf3öÿ‰„$Ì	DŽ$Ð	
DŽ$Ô	Ƅ$Ø	Ƅ$Ù	Ƅ$Ú	ƒÀI‰„$Ü	ƒp3öÿ‰„$à	DŽ$ä	DŽ$è	Ƅ$ì	Ƅ$í	Ƅ$î	ƒÄI‰„$ð	ƒ‚3öÿ‰„$ô	DŽ$ø	DŽ$ü	Ƅ$
Ƅ$
Ƅ$
ƒÈI‰„$
ƒ•3öÿ‰„$
DŽ$
DŽ$
Ƅ$
Ƅ$
Ƅ$
ƒÌI‰„$
ƒ¥3öÿ‰„$
DŽ$ 
DŽ$$
Ƅ$(
Ƅ$)
Ƅ$*
ƒÐI‰„$,
ƒª3öÿ‰„$0
DŽ$4
DŽ$8
Ƅ$<
Ƅ$=
Ƅ$>
ƒÔI‰„$@
ƒ¸3öÿ‰„$D
DŽ$H
DŽ$L
Ƅ$P
Ƅ$Q
Ƅ$R
ƒØI‰„$T
ƒ¼3öÿ‰„$X
DŽ$\
%DŽ$`
Ƅ$d
Ƅ$e
Ƅ$f
ƒÜI‰„$h
ƒá3öÿ‰„$l
DŽ$p
3DŽ$t
Ƅ$x
Ƅ$y
Ƅ$z
ƒàI‰„$|
ƒ4öÿ‰„$€
DŽ$„
DŽ$ˆ
Ƅ$Œ
Ƅ$
Ƅ$Ž
ƒäI‰„$
ƒ4öÿ‰„$”
DŽ$˜
DŽ$œ
Ƅ$ 
Ƅ$¡
Ƅ$¢
‹èI‰Œ$¤
‰„$¨
DŽ$¬
DŽ$°
Ƅ$´
Ƅ$µ
Ƅ$¶
ƒìI‰„$¸
ƒ4öÿ‰„$¼
DŽ$À
DŽ$Ä
Ƅ$È
Ƅ$É
Ƅ$Ê
‹ðI‰Œ$Ì
‰„$Ð
DŽ$Ô
DŽ$Ø
Ƅ$Ü
Ƅ$Ý
Ƅ$Þ
ƒôI‰„$à
ƒ$4öÿ‰„$ä
DŽ$è
DŽ$ì
Ƅ$ð
Ƅ$ñ
Ƅ$ò
‹øI‰Œ$ô
‰„$ø
DŽ$ü
DŽ$Ƅ$Ƅ$Ƅ$ƒüI‰„$ƒ‹úÿ‰„$DŽ$
DŽ$Ƅ$Ƅ$Ƅ$‹J‰Œ$‰„$ DŽ$$
DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒJ‹*4öÿ‰„$0‰Œ$4DŽ$8aDŽ$<Ƅ$@Ƅ$AƄ$BƒJ‹‹@öÿ‰„$D‰Œ$HDŽ$LDŽ$PƄ$TƄ$UƄ$VƒJ‹“@öÿ‰„$X‰Œ$\DŽ$`DŽ$dƄ$hƄ$iƄ$jƒJ‹Ê-úÿ‰„$l‰Œ$pDŽ$tDŽ$xƄ$|Ƅ$}Ƅ$~ƒJ‹Ä-úÿ‰„$€‰Œ$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘Ƅ$’ƒJ‹—@öÿ‰„$”‰Œ$˜DŽ$œDŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒJ‹@öÿ‰„$¨‰Œ$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒ J‹¨@öÿ‰„$¼‰Œ$ÀDŽ$ÄDŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒ$J‹¯@öÿ‰„$ЉŒ$ÔDŽ$Ø
DŽ$ÜƄ$àƄ$áƄ$⍃(J‹¹@öÿ‰„$䉌$èDŽ$ìDŽ$ðƄ$ôƄ$õƄ$öƒ,J‹½@öÿ‰„$ø‰Œ$üDŽ$DŽ$Ƅ$Ƅ$	Ƅ$
ƒ0J‹Ã@öÿ‰„$‰Œ$DŽ$	DŽ$Ƅ$Ƅ$Ƅ$ƒ4J‹ž2øÿ‰„$ ‰Œ$$DŽ$(DŽ$,Ƅ$0Ƅ$1ƒ8JƄ$2‰„$4‰Œ$8DŽ$<DŽ$@Ƅ$DƄ$EƄ$Fƒ<J‹Ì@öÿ‰„$H‰Œ$LDŽ$P•
DŽ$TƄ$XƄ$YƄ$Zƒ@J‹i¹øÿ‰„$\‰Œ$`DŽ$dDŽ$hƄ$lƄ$mƒDJƄ$n‰„$p‰Œ$tDŽ$xDŽ$|Ƅ$€Ƅ$Ƅ$‚ƒHJ‹aKöÿ‰„$„‰Œ$ˆDŽ$ŒDŽ$Ƅ$”Ƅ$•Ƅ$–ƒLJ‹}Yöÿ‰„$˜‰Œ$œDŽ$ DŽ$¤Ƅ$¨Ƅ$©Ƅ$ªƒPJ‹ƒYöÿ‰„$¬‰Œ$°DŽ$´DŽ$¸Ƅ$¼Ƅ$½Ƅ$¾ƒTJ‹‰Yöÿ‰„$À‰Œ$ÄDŽ$ÈDŽ$ÌƄ$ÐƄ$ÑƄ$ÒƒXJ‹‘Yöÿ‰„$Ô‰Œ$ØDŽ$ÜDŽ$àƄ$äƄ$åƄ$æƒ\J‹T­øÿ‰„$è‰Œ$ìDŽ$ðDŽ$ôƄ$øƄ$ùƒ`JƄ$ú‰„$ü‰Œ$
DŽ$
DŽ$
Ƅ$
Ƅ$

Ƅ$
ƒdJ‹˜Yöÿ‰„$
‰Œ$
DŽ$
DŽ$
Ƅ$ 
Ƅ$!
Ƅ$"
ƒhJ‹§eöÿ‰„$$
‰Œ$(
DŽ$,
DŽ$0
Ƅ$4
Ƅ$5
Ƅ$6
ƒlJ‹­eöÿ‰„$8
‰Œ$<
DŽ$@
DŽ$D
Ƅ$H
Ƅ$I
Ƅ$J
ƒpJ‹$Ñùÿ‰„$L
‰Œ$P
DŽ$T

DŽ$X
Ƅ$\
Ƅ$]
ƒtJƄ$^
‰„$`
‰Œ$d
DŽ$h

DŽ$l
Ƅ$p
Ƅ$q
Ƅ$r
ƒxJ‹°eöÿ‰„$t
‰Œ$x
DŽ$|
{DŽ$€
Ƅ$„
Ƅ$…
Ƅ$†
ƒ|J‹+möÿ‰„$ˆ
‰Œ$Œ
DŽ$
DŽ$”
Ƅ$˜
Ƅ$™
Ƅ$š
ƒ€J‹|/úÿ‰„$œ
‰Œ$ 
DŽ$¤
DŽ$¨
Ƅ$¬
Ƅ$­
ƒ„JƄ$®
‰„$°
‰Œ$´
DŽ$¸
DŽ$¼
Ƅ$À
Ƅ$Á
Ƅ$Â
ƒˆJ‹“øÿ‰„$Ä
‰Œ$È
DŽ$Ì

DŽ$Ð
Ƅ$Ô
Ƅ$Õ
ƒŒJƄ$Ö
‰„$Ø
‰Œ$Ü
DŽ$à

DŽ$ä
Ƅ$è
Ƅ$é
Ƅ$ê
ƒJ‹/möÿ‰„$ì
‰Œ$ð
DŽ$ô
uDŽ$ø
Ƅ$ü
Ƅ$ý
Ƅ$þ
ƒ”J‹¤möÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒ˜J‹Mùÿ‰„$‰Œ$DŽ$DŽ$ Ƅ$$Ƅ$%ƒœJƄ$&‰„$(‰Œ$,DŽ$0DŽ$4Ƅ$8Ƅ$9Ƅ$:ƒ J‹¬möÿ‰„$<‰Œ$@DŽ$D!DŽ$HƄ$LƄ$MƄ$Nƒ¤J‹̀öÿ‰„$P‰Œ$TDŽ$X
DŽ$\Ƅ$`Ƅ$aƄ$bƒ¨J‹׀öÿ‰„$d‰Œ$hDŽ$lDŽ$pƄ$tƄ$uƄ$vƒ¬J‹©Øùÿ‰„$x‰Œ$|DŽ$€DŽ$„Ƅ$ˆƄ$‰ƒ°JƄ$Љ„$Œ‰Œ$DŽ$”DŽ$˜Ƅ$œƄ$Ƅ$žƒ´J‹܀öÿ‰„$ ‰Œ$¤DŽ$¨nDŽ$¬Ƅ$°Ƅ$±Ƅ$²ƒ¸J‹J‘öÿ‰„$´‰Œ$¸DŽ$¼DŽ$ÀƄ$ÄƄ$ÅƄ$ƍƒ¼J‹M‘öÿ‰„$ȉŒ$ÌDŽ$ÐDŽ$ÔƄ$ØƄ$ÙƄ$ڍƒÀJ‹T‘öÿ‰„$܉Œ$àDŽ$äDŽ$èƄ$ìƄ$íƄ$ÄJ‹_‘öÿ‰„$ð‰Œ$ôDŽ$øDŽ$üƄ$Ƅ$Ƅ$ƒÈJ‹e‘öÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒÌJ‹s‘öÿ‰„$‰Œ$DŽ$ DŽ$$Ƅ$(Ƅ$)Ƅ$*ƒÐJ‹y‘öÿ‰„$,‰Œ$0DŽ$4DŽ$8Ƅ$<Ƅ$=Ƅ$>ƒÔJ‹‘öÿ‰„$@‰Œ$DDŽ$HDŽ$LƄ$PƄ$QƄ$RƒØJ‹…‘öÿ‰„$T‰Œ$XDŽ$\DŽ$`Ƅ$dƄ$eƄ$fƒÜJ‹Š‘öÿ‰„$h‰Œ$lDŽ$pDŽ$tƄ$xƄ$yƄ$zƒàJ‹‘öÿ‰„$|‰Œ$€DŽ$„
DŽ$ˆƄ$ŒƄ$Ƅ$ŽƒäJ‹™‘öÿ‰„$‰Œ$”DŽ$˜	DŽ$œƄ$ Ƅ$¡Ƅ$¢ƒèJ‹¢‘öÿ‰„$¤‰Œ$¨DŽ$¬DŽ$°Ƅ$´Ƅ$µƄ$¶ƒìJ‹¨‘öÿ‰„$¸‰Œ$¼DŽ$À	DŽ$ÄƄ$ÈƄ$ÉƄ$ʍƒðJ‹±‘öÿ‰„$̉Œ$ÐDŽ$Ô	DŽ$ØƄ$ÜƄ$ÝƄ$ލƒôJ‹º‘öÿ‰„$à‰Œ$äDŽ$èDŽ$ìƄ$ðƄ$ñƄ$òƒøJ‹őöÿ‰„$ô‰Œ$øDŽ$üDŽ$Ƅ$Ƅ$Ƅ$ƒüJ‹ʑöÿ‰„$‰Œ$DŽ$	DŽ$Ƅ$Ƅ$Ƅ$ƒK‹ӑöÿ‰„$‰Œ$ DŽ$$DŽ$(Ƅ$,Ƅ$-ƒKƄ$.‰„$0‰Œ$4DŽ$8DŽ$<Ƅ$@Ƅ$AƄ$BƒK‹ّöÿ‰„$D‰Œ$HDŽ$LDŽ$PƄ$TƄ$UƄ$VƒK‹ݑöÿ‰„$X‰Œ$\DŽ$`DŽ$dƄ$hƄ$iƄ$jƒK‹ä‘öÿ‰„$l‰Œ$pDŽ$tDŽ$xƄ$|Ƅ$}Ƅ$~ƒK‹æ‘öÿ‰„$€‰Œ$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘ƒKƄ$’‰„$”‰Œ$˜DŽ$œDŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒK‹.?ùÿ‰„$¨‰Œ$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹ƒ KƄ$º‰„$¼‰Œ$ÀDŽ$ÄDŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒ$K‹ê‘öÿ‰„$ЉŒ$ÔDŽ$ØÒ
DŽ$ÜƄ$àƄ$áƄ$⍃(K‹¼Ÿöÿ‰„$䉌$èDŽ$ìDŽ$ðƄ$ôƄ$õƄ$öƒ,K‹_öÿ‰„$ø‰Œ$üDŽ$DŽ$Ƅ$Ƅ$	Ƅ$
ƒ0K‹͟öÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒ4K‹۟öÿ‰„$ ‰Œ$$DŽ$(DŽ$,Ƅ$0Ƅ$1Ƅ$2ƒ8K‹âŸöÿ‰„$4‰Œ$8DŽ$<TDŽ$@Ƅ$DƄ$EƄ$Fƒ<K‹6 öÿ‰„$H‰Œ$LDŽ$PDŽ$TƄ$XƄ$YƄ$Zƒ@K‹F öÿ‰„$\‰Œ$`DŽ$dDŽ$hƄ$lƄ$mƄ$nƒDK‹M öÿ‰„$p‰Œ$tDŽ$xDŽ$|Ƅ$€Ƅ$Ƅ$‚ƒHK‹R öÿ‰„$„‰Œ$ˆDŽ$ŒDŽ$Ƅ$”Ƅ$•Ƅ$–ƒLK‹] öÿ‰„$˜‰Œ$œDŽ$ DŽ$¤Ƅ$¨Ƅ$©ƒPKƄ$ª‰„$¬‰Œ$°DŽ$´DŽ$¸Ƅ$¼Ƅ$½Ƅ$¾ƒTK‹a öÿ‰„$À‰Œ$ÄDŽ$ÈDŽ$ÌƄ$ÐƄ$ÑƄ$ҍƒXK‹f öÿ‰„$Ô‰Œ$ØDŽ$ÜDŽ$àƄ$äƄ$åƄ$捃\K‹0`ùÿ‰„$艌$ìDŽ$ð	DŽ$ôƄ$øƄ$ùƒ`KƄ$ú‰„$ü‰Œ$DŽ$	DŽ$Ƅ$Ƅ$
Ƅ$ƒdK‹q öÿ‰„$‰Œ$DŽ$pDŽ$Ƅ$ Ƅ$!Ƅ$"ƒhK‹©lùÿ‰„$$‰Œ$(DŽ$,
DŽ$0Ƅ$4Ƅ$5ƒlKƄ$6‰„$8‰Œ$<DŽ$@
DŽ$DƄ$HƄ$IƄ$JƒpK‹á¬öÿ‰„$L‰Œ$PDŽ$TÎDŽ$XƄ$\Ƅ$]Ƅ$^ƒtK‹&éùÿ‰„$`‰Œ$dDŽ$h
DŽ$lƄ$pƄ$qƒxKƄ$r‰„$t‰Œ$xDŽ$|
DŽ$€Ƅ$„Ƅ$…Ƅ$†ƒ|K‹¯¾öÿ‰„$ˆ‰Œ$ŒDŽ$öDŽ$”Ƅ$˜Ƅ$™Ƅ$šƒ€K‹¥Êöÿ‰„$œ‰Œ$ DŽ$¤DŽ$¨Ƅ$¬Ƅ$­Ƅ$®ƒ„K‹©Êöÿ‰„$°‰Œ$´DŽ$¸	DŽ$¼Ƅ$ÀƄ$ÁƄ$ƒˆK‹²Êöÿ‰„$ĉŒ$ÈDŽ$ÌDŽ$ÐƄ$ÔƄ$ÕƄ$֍ƒŒK‹ÃÊöÿ‰„$؉Œ$ÜDŽ$àDŽ$äƄ$èƄ$鍃KƄ$ꉄ$쉌$ðDŽ$ôDŽ$øƄ$üƄ$ýƄ$þƒ”K‹ÈÊöÿ‰„$‰Œ$DŽ$#DŽ$Ƅ$Ƅ$Ƅ$ƒ˜K‹ëÊöÿ‰„$‰Œ$DŽ$DŽ$ Ƅ$$Ƅ$%Ƅ$&ƒœK‹Ëöÿ‰„$(‰Œ$,DŽ$0DŽ$4Ƅ$8Ƅ$9Ƅ$:ƒ K‹Ëöÿ‰„$<‰Œ$@DŽ$D
DŽ$HƄ$LƄ$MƄ$Nƒ¤K‹Ëöÿ‰„$P‰Œ$TDŽ$X	DŽ$\Ƅ$`Ƅ$aƄ$bƒ¨K‹!Ëöÿ‰„$d‰Œ$hDŽ$lDŽ$pƄ$tƄ$uƒ¬KƄ$v‰„$x‰Œ$|DŽ$€DŽ$„Ƅ$ˆƄ$‰Ƅ$Šƒ°K‹.úÿ‰„$Œ‰Œ$DŽ$”DŽ$˜Ƅ$œƄ$ƒ´KƄ$ž‰„$ ‰Œ$¤DŽ$¨DŽ$¬Ƅ$°Ƅ$±Ƅ$²ƒ¸K‹$Ëöÿ‰„$´‰Œ$¸DŽ$¼QDŽ$ÀƄ$ÄƄ$ÅƄ$ƍƒ¼K‹&õùÿ‰„$ȉŒ$ÌDŽ$ÐDŽ$ÔƄ$ØƄ$ٍƒÀKƄ$Ú‰„$܉Œ$àDŽ$äDŽ$èƄ$ìƄ$íƄ$ÄK‹u×öÿ‰„$ð‰Œ$ôDŽ$øôDŽ$üƄ$Ƅ$Ƅ$ƒÈK‹iíöÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$ƒÌKƄ$‰„$‰Œ$DŽ$ DŽ$$Ƅ$(Ƅ$)Ƅ$*ƒÐK‹kíöÿ‰„$,‰Œ$0DŽ$4	DŽ$8Ƅ$<Ƅ$=Ƅ$>ƒÔK‹tíöÿ‰„$@‰Œ$DDŽ$HDŽ$LƄ$PƄ$QƒØKƄ$R‰„$T‰Œ$XDŽ$\DŽ$`Ƅ$dƄ$eƄ$fƒÜK‹yíöÿ‰„$h‰Œ$lDŽ$pDŽ$tƄ$xƄ$yƄ$zƒàK‹½­ùÿ‰„$|‰Œ$€DŽ$„DŽ$ˆƄ$ŒƄ$ƒäKƄ$މ„$‰Œ$”DŽ$˜DŽ$œƄ$ Ƅ$¡Ƅ$¢ƒèK‹~íöÿ‰„$¤‰Œ$¨DŽ$¬€
DŽ$°Ƅ$´Ƅ$µƄ$¶ƒìK‹þúöÿ‰„$¸‰Œ$¼DŽ$À
DŽ$ÄƄ$ÈƄ$ÉƄ$ʍƒðK‹ûöÿ‰„$̉Œ$ÐDŽ$ÔDŽ$ØƄ$ÜƄ$ݍƒôKƄ$Þ‰„$à‰Œ$äDŽ$èDŽ$ìƄ$ðƄ$ñƄ$òƒøK‹ûöÿ‰„$ô‰Œ$øDŽ$üDŽ$Ƅ$Ƅ$Ƅ$ƒüK‹(ûöÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$ƒLƄ$‰„$‰Œ$ DŽ$$DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒL‹DÞøÿ‰„$0‰Œ$4DŽ$8DŽ$<Ƅ$@Ƅ$AƒLƄ$B‰„$D‰Œ$HDŽ$LDŽ$PƄ$TƄ$UƄ$VƒL‹-ûöÿ‰„$X‰Œ$\DŽ$`DŽ$dƄ$hƄ$iƄ$jƒL‹‡Çøÿ‰„$l‰Œ$pDŽ$t
DŽ$xƄ$|Ƅ$}ƒLƄ$~‰„$€‰Œ$„DŽ$ˆ
DŽ$ŒƄ$fDŽ$‘ƒL‹.÷ÿ‰„$”‰Œ$˜DŽ$œp
DŽ$ fDŽ$¤Ƅ$¦ƒL‹M’øÿ‰„$¨‰Œ$¬DŽ$°DŽ$´fDŽ$¸ƒ LƄ$º‰„$¼‰Œ$ÀDŽ$ÄDŽ$ÈƄ$ÌfDŽ$͍ƒ$L‹ž÷ÿ‰„$ЉŒ$ÔDŽ$ØÒDŽ$ÜfDŽ$àƄ$⍃(L‹p$÷ÿ‰„$䉌$èDŽ$ìDŽ$ðfDŽ$ôƄ$öƒ,L‹s$÷ÿ‰„$ø‰Œ$üDŽ$DŽ$fDŽ$ƒ0LƄ$
‰„$‰Œ$DŽ$DŽ$fDŽ$Ƅ$ƒ4L‹¾-úÿ‰„$ ‰Œ$$DŽ$(DŽ$,fDŽ$0Ƅ$2ƒ8L‹{$÷ÿ‰„$4‰Œ$8DŽ$<'DŽ$@fDŽ$DƄ$Fƒ<L‹¢$÷ÿ‰„$H‰Œ$LDŽ$P"DŽ$TfDŽ$XƄ$Zƒ@L‹Ä$÷ÿ‰„$\‰Œ$`DŽ$d
DŽ$hfDŽ$lƄ$nƒDL‹‰þõÿ‰„$p‰Œ$tDŽ$xDŽ$|fDŽ$€Ƅ$‚ƒHL‹þõÿ‰„$„‰Œ$ˆDŽ$ŒDŽ$fDŽ$”Ƅ$–ƒLL‹Ñ$÷ÿ‰„$˜‰Œ$œDŽ$ DŽ$¤fDŽ$¨Ƅ$ªƒPL‹Ù$÷ÿ‰„$¬‰Œ$°DŽ$´ÂDŽ$¸fDŽ$¼Ƅ$¾ƒTL‹›%÷ÿ‰„$À‰Œ$ÄDŽ$È	DŽ$ÌfDŽ$ÐƄ$ҍƒXL‹¤%÷ÿ‰„$Ô‰Œ$ØDŽ$ÜDŽ$àfDŽ$䍃\LƄ$扄$艌$ìDŽ$ðDŽ$ôfDŽ$øƄ$úƒ`L‹¦%÷ÿ‰„$ü‰Œ$DŽ$DŽ$fDŽ$Ƅ$ƒdL‹Dùÿ‰„$‰Œ$DŽ$DŽ$fDŽ$ ƒhLƄ$"‰„$$‰Œ$(DŽ$,DŽ$0fDŽ$4Ƅ$6ƒlL‹À%÷ÿ‰„$8‰Œ$<DŽ$@÷DŽ$DfDŽ$HƄ$JƒpL‹®(úÿ‰„$L‰Œ$PDŽ$TDŽ$XfDŽ$\ƒtLƄ$^‰„$`‰Œ$dDŽ$hDŽ$lƄ$pfDŽ$qƒxL‹·5÷ÿ‰„$t‰Œ$xDŽ$|ðDŽ$€fDŽ$„Ƅ$†ƒ|L‹§:÷ÿ‰„$ˆ‰Œ$ŒDŽ$DŽ$”fDŽ$˜Ƅ$šƒ€L‹O»ùÿ‰„$œ‰Œ$ DŽ$¤DŽ$¨fDŽ$¬ƒ„LƄ$®‰„$°‰Œ$´DŽ$¸DŽ$¼fDŽ$ÀƄ$ƒˆL‹¯:÷ÿ‰„$ĉŒ$ÈDŽ$Ìÿ	DŽ$ÐfDŽ$ÔƄ$֍ƒŒL‹®D÷ÿ‰„$؉Œ$ÜDŽ$àDŽ$äfDŽ$èƄ$ꍃL‹¿D÷ÿ‰„$쉌$ðDŽ$ôDŽ$øfDŽ$üƄ$þƒ”L‹81ùÿ‰„$‰Œ$DŽ$DŽ$fDŽ$ƒ˜LƄ$‰„$‰Œ$DŽ$DŽ$ fDŽ$$Ƅ$&ƒœL‹ÃD÷ÿ‰„$(‰Œ$,DŽ$0ð
DŽ$4fDŽ$8Ƅ$:ƒ L‹³R÷ÿ‰„$<‰Œ$@DŽ$D#DŽ$HfDŽ$LƄ$Nƒ¤L‹ÖR÷ÿ‰„$P‰Œ$TDŽ$XDŽ$\fDŽ$`Ƅ$bƒ¨L‹ðR÷ÿ‰„$d‰Œ$hDŽ$lDŽ$pfDŽ$tƄ$vƒ¬L‹S÷ÿ‰„$x‰Œ$|DŽ$€DŽ$„fDŽ$ˆƄ$Šƒ°L‹S÷ÿ‰„$Œ‰Œ$DŽ$”DŽ$˜fDŽ$œƒ´LƄ$ž‰„$ ‰Œ$¤DŽ$¨DŽ$¬fDŽ$°Ƅ$²ƒ¸L‹S÷ÿ‰„$´‰Œ$¸DŽ$¼DŽ$ÀfDŽ$ÄƄ$ƍƒ¼L‹6S÷ÿ‰„$ȉŒ$ÌDŽ$ÐDŽ$ÔfDŽ$ØƄ$ڍƒÀL‹ES÷ÿ‰„$܉Œ$àDŽ$äDŽ$èfDŽ$ìƄ$ÄL‹üpøÿ‰„$ð‰Œ$ôDŽ$øDŽ$üfDŽ$ƒÈLƄ$‰„$‰Œ$DŽ$DŽ$fDŽ$Ƅ$ƒÌL‹KS÷ÿ‰„$‰Œ$DŽ$ DŽ$$fDŽ$(Ƅ$*ƒÐL‹QS÷ÿ‰„$,‰Œ$0DŽ$4qDŽ$8fDŽ$<Ƅ$>ƒÔL‹ÝFøÿ‰„$@‰Œ$DDŽ$HDŽ$LfDŽ$PƒØLƄ$R‰„$T‰Œ$XDŽ$\DŽ$`fDŽ$dƄ$fƒÜL‹ÂW÷ÿ‰„$h‰Œ$lDŽ$pvDŽ$tfDŽ$xƄ$zƒàL‹ruøÿ‰„$|‰Œ$€DŽ$„DŽ$ˆfDŽ$ŒƒäLƄ$މ„$‰Œ$”DŽ$˜DŽ$œfDŽ$ Ƅ$¢ƒèL‹8c÷ÿ‰„$¤‰Œ$¨DŽ$¬(	DŽ$°fDŽ$´Ƅ$¶ƒìL‹d+øÿ‰„$¸‰Œ$¼DŽ$ÀDŽ$ÄfDŽ$ȍƒðLƄ$ʉ„$̉Œ$ÐDŽ$ÔDŽ$ØfDŽ$ÜƄ$ލƒôL‹ ~øÿ‰„$à‰Œ$äDŽ$èDŽ$ìfDŽ$ðƒøLƄ$ò‰„$ô‰Œ$øDŽ$üDŽ$fDŽ$Ƅ$ƒüL‹`l÷ÿ‰„$‰Œ$DŽ$DŽ$fDŽ$Ƅ$ƒM‹¢$øÿ‰„$‰Œ$ DŽ$$DŽ$(fDŽ$,ƒMƄ$.‰„$0‰Œ$4DŽ$8DŽ$<fDŽ$@Ƅ$BƒM‹sw÷ÿ‰„$D‰Œ$HDŽ$L´DŽ$PfDŽ$TƄ$VƒM‹'~÷ÿ‰„$X‰Œ$\DŽ$`DŽ$dfDŽ$hƄ$jƒM‹¬5úÿ‰„$l‰Œ$pDŽ$tDŽ$xfDŽ$|ƒMƄ$~‰„$€‰Œ$„DŽ$ˆDŽ$ŒfDŽ$Ƅ$’ƒM‹:~÷ÿ‰„$”‰Œ$˜DŽ$œDŽ$ fDŽ$¤Ƅ$¦ƒM‹@~÷ÿ‰„$¨‰Œ$¬DŽ$°DŽ$´fDŽ$¸Ƅ$ºƒ M‹~ùÿ‰„$¼‰Œ$ÀDŽ$Ä	DŽ$ÈfDŽ$̍ƒ$MƄ$Ή„$ЉŒ$ÔDŽ$Ø	DŽ$ÜfDŽ$àƄ$⍃(M‹F~÷ÿ‰„$䉌$èDŽ$ì 
DŽ$ðfDŽ$ôƄ$öƒ,M‹øÿ‰„$ø‰Œ$üDŽ$DŽ$fDŽ$Ƅ$
ƒ0M‹fˆ÷ÿ‰„$‰Œ$DŽ$DŽ$fDŽ$Ƅ$ƒ4M‹mˆ÷ÿ‰„$ ‰Œ$$DŽ$(DŽ$,fDŽ$0Ƅ$2ƒ8M‹uˆ÷ÿ‰„$4‰Œ$8DŽ$<DŽ$@fDŽ$DƄ$Fƒ<M‹}ˆ÷ÿ‰„$H‰Œ$LDŽ$P
DŽ$TfDŽ$XƄ$Zƒ@M‹Šˆ÷ÿ‰„$\‰Œ$`DŽ$d	DŽ$hfDŽ$lƄ$nƒDM‹“ˆ÷ÿ‰„$p‰Œ$tDŽ$xDŽ$|fDŽ$€ƒHMƄ$‚‰„$„‰Œ$ˆDŽ$ŒDŽ$fDŽ$”Ƅ$–ƒLM‹™ˆ÷ÿ‰„$˜‰Œ$œDŽ$ DŽ$¤fDŽ$¨Ƅ$ªƒPM‹=5úÿ‰„$¬‰Œ$°DŽ$´DŽ$¸fDŽ$¼ƒTMƄ$¾‰„$À‰Œ$ÄDŽ$ÈDŽ$ÌfDŽ$ÐƄ$ҍƒXM‹žˆ÷ÿ‰„$Ô‰Œ$ØDŽ$ÜDŽ$àfDŽ$䍃\MƄ$扄$艌$ìDŽ$ðDŽ$ôfDŽ$øƄ$úƒ`M‹¤ˆ÷ÿ‰„$ü‰Œ$DŽ$
DŽ$fDŽ$Ƅ$ƒdM‹øÿ‰„$‰Œ$DŽ$DŽ$fDŽ$ ƒhMƄ$"‰„$$‰Œ$(DŽ$,DŽ$0fDŽ$4Ƅ$6ƒlM‹±ˆ÷ÿ‰„$8‰Œ$<DŽ$@wDŽ$DfDŽ$HƄ$JƒpM‹t2úÿ‰„$L‰Œ$PDŽ$TDŽ$XfDŽ$\ƒtMƄ$^‰„$`‰Œ$dDŽ$hDŽ$lfDŽ$pƄ$rƒxM‹øÿ‰„$t‰Œ$xDŽ$|
DŽ$€fDŽ$„ƒ|MƄ$†‰„$ˆ‰Œ$ŒDŽ$
DŽ$”fDŽ$˜Ƅ$šƒ€M‹(‹÷ÿ‰„$œ‰Œ$ DŽ$¤@DŽ$¨fDŽ$¬Ƅ$®ƒ„M‹h‹÷ÿ‰„$°‰Œ$´DŽ$¸DŽ$¼fDŽ$ÀƒˆMƄ$‰„$ĉŒ$ÈDŽ$ÌDŽ$ÐfDŽ$ÔƄ$֍ƒŒM‹ö#úÿ‰„$؉Œ$ÜDŽ$àDŽ$äfDŽ$荃MƄ$ꉄ$쉌$ðDŽ$ôDŽ$øfDŽ$üƄ$þƒ”M‹n‹÷ÿ‰„$‰Œ$DŽ$°DŽ$fDŽ$Ƅ$ƒ˜M‹÷ÿ‰„$‰Œ$DŽ$DŽ$ fDŽ$$Ƅ$&ƒœM‹#÷ÿ‰„$(‰Œ$,DŽ$0DŽ$4fDŽ$8ƒ MƄ$:‰„$<‰Œ$@DŽ$DDŽ$HfDŽ$LƄ$Nƒ¤M‹)÷ÿ‰„$P‰Œ$TDŽ$X
DŽ$\fDŽ$`Ƅ$bƒ¨M‹3÷ÿ‰„$d‰Œ$hDŽ$lDŽ$pfDŽ$tƄ$vƒ¬M‹8÷ÿ‰„$x‰Œ$|DŽ$€DŽ$„fDŽ$ˆƄ$Šƒ°M‹=÷ÿ‰„$Œ‰Œ$DŽ$”	DŽ$˜fDŽ$œƄ$žƒ´M‹F÷ÿ‰„$ ‰Œ$¤DŽ$¨DŽ$¬fDŽ$°Ƅ$²ƒ¸M‹K÷ÿ‰„$´‰Œ$¸DŽ$¼DŽ$ÀfDŽ$ÄƄ$ƍƒ¼M‹Zêøÿ‰„$ȉŒ$ÌDŽ$ÐDŽ$ÔfDŽ$؍ƒÀMƄ$Ú‰„$܉Œ$àDŽ$äDŽ$èfDŽ$ìƄ$ÄM‹V÷ÿ‰„$ð‰Œ$ôDŽ$øA
DŽ$üfDŽ$Ƅ$ƒÈM‹?=øÿ‰„$‰Œ$DŽ$DŽ$fDŽ$ƒÌMƄ$‰„$‰Œ$DŽ$ DŽ$$fDŽ$(Ƅ$*ƒÐM‹—š÷ÿ‰„$,‰Œ$0DŽ$46DŽ$8fDŽ$<Ƅ$>ƒÔM‹&¢øÿ‰„$@‰Œ$DDŽ$HDŽ$LfDŽ$PƒØMƄ$R‰„$T‰Œ$XDŽ$\DŽ$`fDŽ$dƄ$fƒÜM‹͞÷ÿ‰„$h‰Œ$lDŽ$pDŽ$tfDŽ$xƄ$zƒàM‹Éøÿ‰„$|‰Œ$€DŽ$„DŽ$ˆfDŽ$ŒƒäMƄ$މ„$‰Œ$”DŽ$˜DŽ$œfDŽ$ Ƅ$¢ƒèM‹ì©÷ÿ‰„$¤‰Œ$¨DŽ$¬zDŽ$°fDŽ$´Ƅ$¶ƒìM‹«ôøÿ‰„$¸‰Œ$¼DŽ$ÀDŽ$ÄfDŽ$ȍƒðMƄ$ʉ„$̉Œ$ÐDŽ$ÔDŽ$ØfDŽ$ÜƄ$ލƒôM‹f²÷ÿ‰„$à‰Œ$äDŽ$è‚DŽ$ìfDŽ$ðƄ$òƒøM‹èÃ÷ÿ‰„$ô‰Œ$øDŽ$üDŽ$fDŽ$ƒüMƄ$‰„$‰Œ$DŽ$DŽ$fDŽ$Ƅ$ƒN‹îÃ÷ÿ‰„$‰Œ$ DŽ$$DŽ$(fDŽ$,Ƅ$.ƒN‹
Ä÷ÿ‰„$0‰Œ$4DŽ$8!DŽ$<fDŽ$@Ƅ$BƒN‹.Ä÷ÿ‰„$D‰Œ$HDŽ$LDŽ$PfDŽ$TƄ$VƒN‹6Ä÷ÿ‰„$X‰Œ$\DŽ$`DŽ$dfDŽ$hƄ$jƒN‹>Ä÷ÿ‰„$l‰Œ$pDŽ$t	DŽ$xfDŽ$|Ƅ$~ƒN‹GÄ÷ÿ‰„$€‰Œ$„DŽ$ˆDŽ$ŒfDŽ$Ƅ$’ƒN‹KÄ÷ÿ‰„$”‰Œ$˜DŽ$œDŽ$ fDŽ$¤Ƅ$¦ƒN‹aÄ÷ÿ‰„$¨‰Œ$¬DŽ$°ØDŽ$´fDŽ$¸Ƅ$ºƒ N‹9Å÷ÿ‰„$¼‰Œ$ÀDŽ$ÄDŽ$ÈfDŽ$ÌƄ$΍ƒ$N‹=Å÷ÿ‰„$ЉŒ$ÔDŽ$ØDŽ$ÜfDŽ$àƄ$⍃(N‹BÅ÷ÿ‰„$䉌$èDŽ$ì	DŽ$ðfDŽ$ôƄ$öƒ,N‹KÅ÷ÿ‰„$ø‰Œ$üDŽ$ DŽ$ fDŽ$ Ƅ$
 ƒ0N‹SÅ÷ÿ‰„$ ‰Œ$ DŽ$ DŽ$ fDŽ$ Ƅ$ ƒ4N‹WÅ÷ÿ‰„$  ‰Œ$$ DŽ$( SDŽ$, fDŽ$0 Ƅ$2 ƒ8N‹”ùÿ‰„$4 ‰Œ$8 DŽ$< DŽ$@ fDŽ$D ƒ<NƄ$F ‰„$H ‰Œ$L DŽ$P DŽ$T fDŽ$X Ƅ$Z ƒ@N‹ªÊ÷ÿ‰„$\ ‰Œ$` DŽ$d Œ
DŽ$h fDŽ$l Ƅ$n ƒDN‹¹-úÿ‰„$p ‰Œ$t DŽ$x DŽ$| fDŽ$€ Ƅ$‚ ƒHN‹6Õ÷ÿ‰„$„ ‰Œ$ˆ DŽ$Œ DŽ$ fDŽ$” Ƅ$– ƒLN‹:Õ÷ÿ‰„$˜ ‰Œ$œ DŽ$  DŽ$¤ fDŽ$¨ Ƅ$ª ƒPN‹AÕ÷ÿ‰„$¬ ‰Œ$° DŽ$´ DŽ$¸ fDŽ$¼ Ƅ$¾ ƒTN‹HÕ÷ÿ‰„$À ‰Œ$Ä DŽ$È DŽ$Ì fDŽ$Ð Ƅ$Ò ƒXN‹OÕ÷ÿ‰„$Ô ‰Œ$Ø DŽ$Ü DŽ$à fDŽ$ä Ƅ$æ ƒ\N‹Õbøÿ‰„$è ‰Œ$ì DŽ$ð DŽ$ô fDŽ$ø ƒ`NƄ$ú ‰„$ü ‰Œ$!DŽ$!DŽ$!fDŽ$!Ƅ$!ƒdN‹UÕ÷ÿ‰„$!‰Œ$!DŽ$!DŽ$!fDŽ$ !Ƅ$"!ƒhN‹tã÷ÿ‰„$$!‰Œ$(!DŽ$,!DŽ$0!fDŽ$4!Ƅ$6!ƒlN‹{ã÷ÿ‰„$8!‰Œ$<!DŽ$@!DŽ$D!fDŽ$H!Ƅ$J!ƒpN‹8ùÿ‰„$L!‰Œ$P!DŽ$T!	DŽ$X!fDŽ$\!ƒtNƄ$^!‰„$`!‰Œ$d!DŽ$h!	DŽ$l!fDŽ$p!Ƅ$r!ƒxN‹‚ã÷ÿ‰„$t!‰Œ$x!DŽ$|!
DŽ$€!fDŽ$„!Ƅ$†!ƒ|N‹ªˆùÿ‰„$ˆ!‰Œ$Œ!DŽ$!DŽ$”!fDŽ$˜!ƒ€NƄ$š!‰„$œ!‰Œ$ !DŽ$¤!DŽ$¨!fDŽ$¬!Ƅ$®!ƒ„N‹…ð÷ÿ‰„$°!‰Œ$´!DŽ$¸!kDŽ$¼!fDŽ$À!Ƅ$Â!ƒˆN‹ðû÷ÿ‰„$Ä!‰Œ$È!DŽ$Ì!DŽ$Ð!fDŽ$Ô!ƒŒNƄ$Ö!‰„$Ø!‰Œ$Ü!DŽ$à!DŽ$ä!fDŽ$è!Ƅ$ê!ƒN‹õû÷ÿ‰„$ì!‰Œ$ð!DŽ$ô!	DŽ$ø!fDŽ$ü!Ƅ$þ!ƒ”N‹B#ùÿ‰„$"‰Œ$"DŽ$"DŽ$"fDŽ$"ƒ˜NƄ$"‰„$"‰Œ$"DŽ$"DŽ$ "fDŽ$$"Ƅ$&"ƒœN‹þû÷ÿ‰„$("‰Œ$,"DŽ$0"î
DŽ$4"fDŽ$8"Ƅ$:"ƒ N‹ì	øÿ‰„$<"‰Œ$@"DŽ$D"
DŽ$H"fDŽ$L"Ƅ$N"ƒ¤N‹ö	øÿ‰„$P"‰Œ$T"DŽ$X"DŽ$\"fDŽ$`"Ƅ$b"ƒ¨N‹ø	øÿ‰„$d"‰Œ$h"DŽ$l"/DŽ$p"fDŽ$t"Ƅ$v"ƒ¬N‹'
øÿ‰„$x"‰Œ$|"DŽ$€"DŽ$„"fDŽ$ˆ"Ƅ$Š"ƒ°N‹=
øÿ‰„$Œ"‰Œ$"DŽ$”"DŽ$˜"fDŽ$œ"Ƅ$ž"ƒ´N‹VÅùÿ‰„$ "‰Œ$¤"DŽ$¨"DŽ$¬"fDŽ$°"ƒ¸NƄ$²"‰„$´"‰Œ$¸"DŽ$¼"DŽ$À"fDŽ$Ä"Ƅ$Æ"ƒ¼N‹C
øÿ‰„$È"‰Œ$Ì"DŽ$Ð"ÉDŽ$Ô"fDŽ$Ø"Ƅ$Ú"WÀ„$Ü"DŽ$ì"‹|$…ÿ„Át$됐‹>ƒÆ…ÿ„¤‹Fð‹Nô¶Vý
Vüt$€~þt>ƒìP腩ƒÄ‰…ÀulëʐIƒìQPèU¦ƒÄ‰…ÀuL몐‹VøI…ÒtjRQPèN©ƒÄ‰…Àu%냃ìQPè)¦ƒÄ‰…À„lÿÿÿƒìPè'©ƒÄéOÿÿÿÄð"^_[АSVP‰Îè[Ã\G‹H‹IH;‹ÿÿÿujjVPè0¦ƒÄ…ÀtƒÄ^[Ãì…Ét@VPÿуÄ…Àuèè¬藦‰Á1Éu֋ƒ(ÿÿÿƒì‹8úÿVQÿ0臦1ăÄ^[ÃVP腦ƒÄ…Àu¥뻐Sƒìè[Ã{î‹A‹@H;ƒÿÿÿujjRQ藥ƒÄ[Ãì…ÀtRQÿЃÄ…ÀtƒÄ[ÃRQè$¦ƒÄ…Àuíè1Ä[ÐUSWVƒìè[Ãîè§‹p<…ö„Á‹‹ÿÿÿ‹‹N9ÑtK‹z‹T÷Çuq‹iƒ}TyX…ÿyT¿@#yTtJöBW@tD‹¹¬…ÿt)‹O…É~v1í9T¯tME9éuõëgÇ@<ëH‹‰€9Ñt3…Éuò1É;“@ÿÿÿ”Áë‰T$‰$‰Æèq§ë‰Æèh‰Ið…Ét$‹p<Ç@<…öt‹=ÿÿÿ?t
H‰u‰4$è\£ƒÄ^_[]АSVPè[Ã,í…ÉtW‹I9Ñt5‹B‹@T©uK‹qƒ~Ty*…Ày&¸@#ATtöBW@tèƒÄ^[øƒÄ^[ÃìRQè̦ƒÄ^[Ã1Ä^[Ã蹃Ä^[АUSWVƒìè[èì‹t$$‹|$ …ÿt9wua‹A<‰y<…Àt‹ùÿÿÿ?tI‰u‰$‰×艢‰ú…Òt‹=ÿÿÿ?t
H‰u‰$èm¢…öt‹=ÿÿÿ?t
H‰u‰4$èS¢ƒÄ^_[]Ét$‰<$‰T$‰Íèɥ‰é‹T$‹A<‰y<…Àu‡렐USWVƒìè[Ãøë‹r1öށ9L‚tv@9Æuõ…ö~z1ÿ‹Dº9Ètc‰T$‹QƒzTyEöAW@t?‹P‹RT…Òy"ö@W@t‰͉Â軅Àu3G1À9þ‹T$‰éu»ë)÷Ât‰͉ÂèëڃìP‰ÍQèi¥ƒÄëɸƒÄ^_[]Ã1Àë��Sƒìè[ÃKë9Ñu
¸ƒÄ[ËAƒxTy1öAW@t+‹B‹@T…ÀyöBW@t
è.ƒÄ[ét
荃Ä[ÃìRQèÄ[АWVè^ÆÝê¸9Ñt&‹¹¬…ÿt.‹O…É~1��9T·tF9ñuõ1À^_Ã1À^_ˉ€9Ñtî…Éuò1À;–@ÿÿÿ”À^_АUSWVƒìèXÀhê‹r…ö~"1ÿ9LºtzG9þuõ…ö~
1ÿ‹€@ÿÿÿ‰$ë1Àëe‹|$G1À9÷tZ‰|$‹Dº‹xƒTyäö@W@tÞ9Èt:‹©¬‰υít%‹]…Û~Ç1ÿ9D½tG9ûuõ볋¿€9Çt	…ÿuò;$u ¸ƒÄ^_[]АWVè^ƽé¸9Ñt&‹¹¬…ÿt.‹O…É~1��9T·tF9ñuõ1À^_Ã1À^_ˉ€9Ñtî…Éuò1À;–@ÿÿÿ”À^_АUSWVƒìè[ÃHé‹t$$‹l$ ‹=ÿÿÿ?t@‰‹E‹ùÿÿÿ?t
I‰u‰$è/Ÿ‰u‹ƒI‹N‹IH…É„‰D$‰4$ÿхÀ„»@Súÿ‰|$‰$‰Æè㢅	t$„*‰|$‰4$衉DžÀu
耠…À…„E‹O‰M E‰E$‹E‰,$ÿP…À„4‹ùÿÿÿ?t
I‰u‰$荞‹ƒTK‹T$$‹J‹IH…É„‰D$‰$ÿхÀ„‹°‹úÿÿÿ?tJ‰u‰$‰ÆèEž‰ퟤ�‹ƒÿÿÿ‹ùÿÿÿ?‹T$t	A‹ƒÿÿÿ‰‹
ùÿÿÿ?tI‰
u‰$‰Æèž‰ðƒÄ^_[]ÉD$‰4$è_…À…âþÿÿ1Éè’bÿÿƒþõÿ‰D$Ç$֍‹Y]úÿºº"èÁxÿÿ1À븋‹ÄO‹“ðNÇ$èµ¾Ù…À„’‰ʼnÁè?‹E¿Ý"=ÿÿÿ?tFH‰Eu@‰,$èrë6¿#¾Ýë*‰D$‰$è(Ÿ…À…ìþÿÿ¿
#¾Þë
¿ï"¾Û1Éèãaÿÿƒþõÿ‰D$‰4$‹Y]úÿ‰úèxÿÿ1T$…Ò…ëþÿÿéÿÿÿ¿Ù"ëՐèXÀÏæ‹L$ÇA(WÀòA,‹€ÿÿÿ‹ùÿÿÿ?tA‰АUSWVƒìè[Èæ‹|$$oÿ…í~~‹D$,‹L$ ƒÁ‰L$¯èl$0÷؉D$OƒìjWÿt$è_ƒÄ‰Æ¯t$,t$0ƒì‹D$,PV‹D$@Pè? ƒÄÿt$,UVè1 ƒÄÿt$,ÿt$<Uè  ƒÄl$ƒÿw¤‹ƒÿÿÿ‹ùÿÿÿ?tA‰ƒÄ^_[]АUSWVƒì‰׉Îè[ÃÄå‹A‹h@…ít9ƒìƒc[úÿPèПƒÄ…Àu?ƒìÿt$$WVÿՃĉÆèğ‰ð…ötƒÄ^_[]Ãìÿt$$WV踟ƒÄëèè.…Àt1Àë؋ƒDÿÿÿƒì‹uLúÿQÿ0è/›ƒÄëАUSWVƒìè[Ã(å‹A‹PT÷Â@u#…ÒyöAW@u+‹ƒ,ÿÿÿƒì‹‚[úÿQÿ0èޚë
ƒìQPèBŸƒÄ^_[]Ãìj‰Íè~›ƒÄ…Àtm‰ǃìjPUè	ŸƒÄ‰Ƌ=ÿÿÿ?tH‰uƒìW轚ƒÄ…öt<‹Fö@W@u‹‹,ÿÿÿ“UúÿPURÿ1èWœë
ƒìVUè˞ƒÄ‹=ÿÿÿ?tH‰tƒÄésÿÿÿƒìVèišébÿÿÿSVPè[Ã<ä‹t$‹Fƒ¸Äuj‰4$艞‹F…ÀtÇF‹ùÿÿÿ?t
I‰u‰$èš‹†°…Àt!dž°‹ùÿÿÿ?t
I‰u‰$è陋F‰4$ÿ ƒÄ^[É4$è/ž…ÀuŠ‹F‹¼üÿ9H…xÿÿÿ‰4$è!ž…ÀuÐégÿÿÿUSWVƒìè[Ãxã‹T$0‹ƒN‹J‹IH…É„­‰D$‰$ÿщƅÀ„°‹F;ƒHÿÿÿ…y‹n…í„n‰ñ‹v‹E=ÿÿÿ?u‹=ÿÿÿ?u‹¿=ÿÿÿ?u ë+@‰E‹=ÿÿÿ?tã@‰‹¿=ÿÿÿ?t
H‰u‰$èõ˜‰l$ÇD$½÷؍ƒÂ‰<$‰ñè‰Džít‹E=ÿÿÿ?tH‰Eu‰,$貘…ÿ„‹=ÿÿÿ?t
H‰u‰4$蔘‹ƒHI‹‹XJ‹P‹RH…Ò„Û‰L$‰$ÿ҉Å1ö…À„Þ‹‹ÀOÇD$T$‹D$0‰D$Ç$€è…À„·‰|$‹M;‹Hÿÿÿ‰D$…O‹}…ÿ„D‰é‹m‹úÿÿÿ?u‹Uúÿÿÿ?u‹¾úÿÿÿ?u#ë2B‰‹Uúÿÿÿ?táB‰U‹¾úÿÿÿ?tJ‰u‰$輗‹D$‰|$‰D$µ÷؍ƒÂF‰4$‰éèÖ
‰ƅÿt‹=ÿÿÿ?t
H‰u‰<$èz—‹L$‹=ÿÿÿ?t
H‰u‰$è`—…ö‹|$„Û‹E=ÿÿÿ?tH‰Eu‰,$è<—‰t$‰<$谛…À„¸‹ùÿÿÿ?tI‰t‹ùÿÿÿ?t-I‰u(‰4$‰Æè—‰ðë‰<$‰÷‰Æèð–‰ð‰þ‹ùÿÿÿ?uӃÄ^_[]Ã1í1ÿéÜýÿÿ1ö1ÿéÿÿÿ‰D$‰$茘‰ƅÀ…PýÿÿºÌ雺à1íëX‰L$‰$èc˜‰Å1ö…À…"þÿÿºäëºæë1öºûëºÿ1í‹=ÿÿÿ?tH‰u‰<$‰÷‰ÖèO–‰ò‰þ…öt‹=ÿÿÿ?tH‰u‰4$‰Öè/–‰ò…ít‹E=ÿÿÿ?tH‰Eu‰,$‰Öè–‰򍃝þõÿ‰D$Ç$À‹RPúÿèñpÿÿ1ÀéÿÿÿUSWVƒìè[øß‹t$0‹ƒ¼I‹N‹IH…É„µ‰D$‰4$ÿщÅÇD$ÅÀ„¸‹ƒÐK‹M‹IH…É„°‰D$‰,$ÿщDžÀ„³‹E=ÿÿÿ?tH‰Eu‰,$è[•‹F‹‹¼I‹P‹RH…Ò„’‰L$‰$ÿ҉ÆÇD$ąÀ„•‹ƒÐK‹N‹IH…É„‰D$‰4$ÿщŅÀ„‹=ÿÿÿ?t
H‰u‰4$è씋ƒäH‰l$‰$èZ™…À„l‰ƋE=ÿÿÿ?tH‰Eu‰,$踔‹ƒèH‰D$‰4$è&™…À„B‰ŋ=ÿÿÿ?t
H‰u‰4$膔‰l$‰<$è
™…À„"‹Mùÿÿÿ?tI‰Mt‹ùÿÿÿ?t)I‰u$‰<$‰ÆèH”‰ðë‰,$‰Æè:”‰ð‹ùÿÿÿ?u׋ùÿÿÿ?tA‰‰Ɓùÿÿÿ?t
I‰u‰$è
”‰ðƒÄ^_[]ÉD$‰4$èĕ‰ÅÇD$ÅÀ…HþÿÿÇD$G 1íë‰D$‰,$蚕‰DžÀ…MþÿÿÇD$I 1ö1ÿël‰L$‰$èv•‰ÆÇD$ąÀ…kþÿÿÇD$V 1íë@‰D$‰4$èL•‰ŅÀ…pþÿÿÇD$X 1íë ÇD$[ ëÇD$^ 1íë
ÇD$a 1ö‰éèïWÿÿ‰ñèèWÿÿƒþõÿ‰D$‹D$‰$‹\úÿ‹T$ènÿÿ…ÿ¸„ÿÿÿ‹1ö‰øùÿÿÿ?…âþÿÿéêþÿÿUSWVƒìè[ÃÈÜ‹|$(‹t$$‹l$ ‹E…ÀtƒìWPÿփÄ…Àu‹…°…ÀtƒìWPÿփÄ…Àu1Ä^_[]АSWVƒìè[ÃiÜ‹|$ ‹G‹³ÿÿÿ‰w‹ùÿÿÿ?tA‰…Àt‹ùÿÿÿ?t
I‰u‰$èF’‹‡°‰·°‹ùÿÿÿ?tA‰…Àt‹ùÿÿÿ?t
I‰u‰$è’1Ä^_[АUSWVƒì<è[ÃØÛ‹T$X‹D$T‹h‹dM‰L$0ÇD$4‹³ÿÿÿ‰t$,…Ò„Â…ítƒý…Æ‹p‰t$,‰$èB–‰Džíu0…ÿ~,‹ƒdM‹H‰L$‰D$‹D$X‰$è{”…À„!‰ƉD$,O…ÿ;³ÿÿÿ„S‹ƒ”I‹HöAW„û‹N‹IH…É„‰D$‰4$ÿхÀ„‹ùÿÿÿ?t
I‰u‰$è‘‹=ÿÿÿ?t@‰‰÷麃ý„Œ…í„æ1í™
‹z>úÿ“.VúÿIы‹,ÿÿÿ‹	³ˆþõÿ»{AúÿIþ‰l$‰|$‰D$‰T$ƒ§Púÿ‰D$ƒ‚>úÿ‰D$‰$èR’º¸ƒþõÿ‰D$Ç$´‹ÇLúÿèqkÿÿ¸ÿÿÿÿéq‹p‰t$,;³ÿÿÿ…üþÿÿëMèý‘…À…!ƒ§Púÿ‰D$‰l$D$,‰D$D$0‰$‹L$X1ÒèÝ…ÀˆÁ‹t$,;³ÿÿÿ…­þÿÿ‹«àG‹ƒXG‹M‰L$‰l$‰$èæ’…À„(‰Ƌ=ÿÿÿ?t@‰‹F1ÿ;ƒHÿÿÿ„B1í‰l$0ÇD$4½÷؍ƒÂ4‰<$‰ñèØ‰Džít‹E=ÿÿÿ?tH‰Eu‰,$èz…ÿ„+‹=ÿÿÿ?„#H‰…‰4$é
ºªé½þÿÿ‹ƒ,ÿÿÿ‹‹°Oúÿ‰L$‰$菹·¿éX‰D$‰4$è吅À…çýÿÿ‰t$8èD‹»àG‹ƒXG‹O‰L$‰|$‰$èå‘…À„î‰Ƌ=ÿÿÿ?t@‰‹F1ÿ;ƒHÿÿÿ„×1í‰l$0ÇD$4½÷؍ƒÂ4‰<$‰ñè׉Džít‹E=ÿÿÿ?tH‰Eu‰,$èyŽ…ÿ„‹=ÿÿÿ?t
H‰u‰4$è[Ž‹ƒ<K‹O‹IH…É„¬‰D$‰<$ÿщƅÀ„¯‹F;ƒHÿÿÿ‰|$(…ñ‹n…í„æ‹N‹E=ÿÿÿ?u‹=ÿÿÿ?u‹¿=ÿÿÿ?u ë'@‰E‹=ÿÿÿ?tã@‰‹¿=ÿÿÿ?t	H‰„Û‰Ήl$0‹D$8‰D$4½÷؍ƒÂ4G‰<$‰ñèá…ít‹Mùÿÿÿ?tI‰Mu‰,$‰Ç肍‰ø…À„‹ùÿÿÿ?‹|$(tI‰u‰4$‰Æè[‰ð‹ùÿÿÿ?t
I‰u‰$èB‹D$P‹H‰|$‰$ÿ…ÀtO‰K1úÿÿÿ?tJ‰u
‰$è1ùÿÿÿ?tI‰u‰<$‰ÆèøŒ‰ðƒÄ<^_[]É4$‰ÎèäŒéÿÿÿ¸½º„‹þõÿ‰L$‰$‹ÇLúÿè½gÿÿ¸ÿÿÿÿë¥èaŽ¿ó…À…Љéè]çÿÿ…9¶„ljƋF1ÿ;ƒHÿÿÿ…¾üÿÿ‹n…í„b‹N‹E=ÿÿÿ?u>‹=ÿÿÿ?uB‹¿=ÿÿÿ?uE‰ÎéŠüÿÿÇD$(º¿¶éÄ1ÿ1íé`þÿÿ@‰E‹=ÿÿÿ?t¾@‰‹¿=ÿÿÿ?t»‰L$(H‰u‰4$èø‹‹t$(é2üÿÿ蚍…À…Ù‰ùè›æÿÿ…?*¹¸…ύƒþõÿ‰D$‰$‹ÇLúÿ‰úé9ûÿÿÇD$(º>¿¸ë/‰D$‰<$è_‰ƅÀ…Qýÿÿ¸¹ºLé¡þÿÿº`¿¹‹=ÿÿÿ?tH‰u‰4$‰ÖèT‹‰򍃝þõÿ‰D$‰<$‹ÇLúÿè:fÿÿ¸ÿÿÿÿ‹|$(…ÿ…þÿÿé.þÿÿº¥éúÿÿ¹¶éGÿÿÿ1ÿéJûÿÿ¿*¹¸é1ÿÿÿ‰ƋF1ÿ;ƒHÿÿÿ…)üÿÿ‹n…ítj‹F‰D$(‹E=ÿÿÿ?u‹D$(‹=ÿÿÿ?u!‹¿=ÿÿÿ?u(ë3@‰E‹D$(‹=ÿÿÿ?tß@‹L$(‰‹¿=ÿÿÿ?t
H‰u‰4$芋t$(éºûÿÿ1ÿé±ûÿÿSVPè[Ã<Ô‹D$ö@VuYƒìjPÿ˜ƒÄ…Àt"‹‹øO‰H‹‹ÿÿÿ‰H‹úÿÿÿ?u‰ˆ°ƒÄ^[Ír‰1‰ˆ°þÿÿÿ?tçƒÂ‰ƒÄ^[ˋ@ÿÿÿƒìjÿ³dGPÿ‘œƒÄ…Àu›뻐USWVƒì‰׉Îè[ÔÓ½ÿÿÿ#l$ tqƒý…Ü‹F;ƒLÿÿÿtƒì‹‹LÿÿÿQPè*ŽƒÄ…À„¶‹F‹HöÁ„§½öÁ u‹n‹?‹pƒìƒc[úÿPèOƒÄ…À…äƒìWUë]‹F;ƒLÿÿÿtƒì‹‹LÿÿÿQP荃ąÀtR‹F‹HöÁtG¿öÁ u‹~‹pƒìƒc[úÿPèñŒƒÄ…À…†ƒìjWÿփĉÆè䌉ð…öteƒÄë*ƒìVèpƒÄ…Àt	jUWVÿÐë…ítjUWVèbƒÄ^_[]Ë»dG‹F‹h@…ít.ƒìƒc[úÿPè{ŒƒÄ…ÀuƒìjWVÿÕë‹èŠ…Àt1À뎃ìjWVèpŒ묋ƒDÿÿÿƒì‹uLúÿQÿ0è÷‡ƒÄëҐé{îÿÿUSWVƒìè[ÃèÑ‹L$(…ɏ^‹L$,…É…†‹D$ ‹‹ˆJ‹P‹RHƒì…Ò„’QPÿ҃ĉDžÀ„•èDЉƅÀ„ƒì‹ƒ4ÿÿÿPÿ³4KVèôˆƒÄ…Àˆˆ‰ø‹»dG‰D$‹@‹h@…í„_ƒìƒc[úÿPèp‹ƒÄ…À…cƒìVW‹|$WÿՃĉÅè_‹…í„S‹=ÿÿÿ?tH‰uƒìWè ‡ƒÄ‹=ÿÿÿ?twH‰urƒìV臃ÄëdºÏ ‹=ÿÿÿ?tH‰uƒìW‰×èㆉúƒÄ…öt‹=ÿÿÿ?tH‰uƒìV‰ÖèF‰òƒÄƒìƒþõÿ‹>\úÿPhÉè¢aÿÿƒÄ1í‰èƒÄ^_[]˃,ÿÿÿƒì“{Aúÿ³X8úÿ»m>úÿ«‚>úÿQRjVWUÿ0è$ˆƒÄ ëy„pþÿÿƒì“m>úÿjèEƒÄ…À…Uþÿÿë™QP舃ĉDžÀ…kþÿÿºË é^ÿÿÿºÍ éÿÿÿƒìVW‹|$Wè1ŠƒÄ‰ŅÀ…½þÿÿëºÐ ‹|$éèþÿÿ菇…Àt
ºÐ éÕþÿÿ‹ƒDÿÿÿƒì‹uLúÿQÿ0芅ƒÄëڐUSWVƒìè[ÈÏ‹L$<‹l$8‹D$4“øM‰T$ÇD$…Ét&¨…í„aƒý…΋(‰l$‹A…À~éƒý…³‹(‰l$‹D$0‹‹xM‹P‹RHƒì…Ò„ˆQPÿ҃ĉƅÀ„‹‹F;ƒHÿÿÿ‰l$…[‹N…É„P‹~‹=ÿÿÿ?u‹=ÿÿÿ?u‹½=ÿÿÿ?uë2@‰‹=ÿÿÿ?tä@‰‹½=ÿÿÿ?tH‰uƒìV‰Î誄‰ñƒÄ‰þ‰L$‹D$‰D$­÷؉ύƒÂEƒì‰ñUèºúÿÿƒÄ…ÿt!‰ú‹ùÿÿÿ?tI‰
uƒìR‰ÇèW„‰øƒÄ…À„‹ùÿÿÿ?t	I‰„ö‹ùÿÿÿ?„I‰…ýƒìP脃Äéì‰T$‹i…í~Z‹“øM1��9T±„ìF9õuñ‰T$1��‰ϋT±ƒì‹L$jèüƒÄ…À…¯F9õ‰ùuÚèU……l$8…O‹ƒ,ÿÿÿƒì‹ˆþõÿ“X8úÿ³÷;úÿ»‚>úÿUQjRVWÿ0è*…ƒÄ º9!ƒìƒþõÿ‹TúÿPhËèH^ÿÿƒÄ1Àë7ƒìV‰Æè6ƒ‰ðƒÄ‹ùÿÿÿ?…úþÿÿ‹ƒÿÿÿ‹ùÿÿÿ?t	A‹ƒÿÿÿ‰ƒÄ^_[]ÉùˆPÿÿÿ‰ê‹D$‹,°‰l$…í„;ÿÿÿ‰ÐH‹T$…Àސýÿÿƒ÷;úÿt$|$Pÿt$<VWè|ƒÄ…Àxu‹l$éfýÿÿ1É1íéþÿÿQPèl„ƒÄ‰ƅÀ…uýÿÿºg!ë$‹º{!=ÿÿÿ?tH‰uƒìVèl‚º{!ƒÄƒìƒþõÿ‹TúÿPhÌéýþÿÿº)!éÞþÿÿº.!éÔþÿÿUSWVƒìLè[ÃÌ‹D$h…Àù‹L$l…É…5‹D$`‹@‹‹,M‹P‹RH…Ò„E‰L$‰$ÿ҉ƅÀ„H‹F;ƒHÿÿÿ…§‹~…ÿ„œ‹n‹=ÿÿÿ?u‹E=ÿÿÿ?u‹¹=ÿÿÿ?u!ë1@‰‹E=ÿÿÿ?tã@‰E‹¹=ÿÿÿ?tH‰u
‰4$èk¹‰î‰|$DÇD$H÷؍ƒÂH‰$‰ñè÷ÿÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰Çè"‰ø…À„±‹ùÿÿÿ?tI‰u‰4$‰Æèÿ€‰ð‹H;‹Pÿÿÿ…Ï‹xƒÿ…
pH‰ʼnƒÂ‹:‹	‹6‹=ÿÿÿ?t@‰‰ʋ=ÿÿÿ?‰é‰Õu‹=ÿÿÿ?u‹=ÿÿÿ?uë&@‰E‹=ÿÿÿ?tè@‰‹=ÿÿÿ?t
H‰u‰$èz€Ç$èށ…À„‹“M‹
ùÿÿÿ?‰l$4‰t$$t	A‰
‹“M‰|$0‹H‰‹³|L‰Ç迂ÇD$8ÇD$@ÑÇD$(B"…	|$,„¾‰ŋƒXG‰|$‰l$‰D$‰4$ÇD$臂‰NjE=ÿÿÿ?tH‰Eu‰,$èÍ…ÿ„x‹L$,‹=ÿÿÿ?‹l$4‹t$$t
H‰u‰$裋“M‰ùèöTÿÿ…À„Z‹úÿÿÿ?‰D$ tJ‰ùÿÿÿ?t‰…Òu‰$èe‹=ÿÿÿ?t
H‰u‰<$èOÇD$Ç$ÇD$,‰é1Ò诅À„‰ÇÇ$è©…À„:‰x‹ùÿÿÿ?tA‰‰D$,‰p‹ƒˆJ‹T$`‹J‹IH…É„$‰D$‰$ÿÑÇD$<ÇD$@҅À„'‰D$8èH…À„-‰Njƒ4K‹‹4ÿÿÿ‰L$‰D$‰<$èò…ÀˆÓ‹³dG‹L$8‹A‹h@…í„þƒc[úÿ‰$èt‚ÇD$(c"…À…‰|$‰t$‹t$8‰4$ÿՉÅè\‚…í„‹=ÿÿÿ?t
H‰u‰4$è~‹=ÿÿÿ?‹t$$t
H‰u‰<$è~Ç$èˆ~…À„­‰‹L$ ‹=ÿÿÿ?t@‰‰J‹D$,‰B‰j‹l$4‹|$0‹=ÿÿÿ?…é(ÇD$(b"‹T$ ‹L$,‹=ÿÿÿ?‰T$ t
H‰u‰$è}‰ò‰è‰ý‹L$<ÇD$,‰΋|$8‰D$4…ɉT$$‹L$ t‹=ÿÿÿ?tH‰u‰4$‰ÎèM}‰ñ…ít‹E=ÿÿÿ?tH‰Eu‰,$‰Îè-}‰ñ…ÿ‹l$4‹t$$t‹=ÿÿÿ?tH‰u‰<$‰Ïè}‰ù‰L$ ‹L$,…Ét‹=ÿÿÿ?t
H‰u‰$èã|ƒþõÿ‰D$‹D$@‰$‹k\úÿ‹T$(èÃWÿÿ1҅ö‹|$0‹L$ t&‹=ÿÿÿ?tH‰u‰4$‰Ήl$4‰Õè—|‰ê‹l$4‰ñ…ít ‹E=ÿÿÿ?tH‰Eu‰,$‰ΉÕèo|‰ê‰ñ…ÿt‹=ÿÿÿ?tH‰u‰<$‰Ή×èM|‰ú‰ñ…Ét‹=ÿÿÿ?tH‰u‰$‰Öè-|‰ò‰ЃÄL^_[]Ã1ÿ1Éé´úÿÿ‹‹,ÿÿÿ‹	‰D$ƒ{Aúÿ‰D$ƒX8úÿ‰D$ƒøÿ‰D$ƒ‚>úÿ‰D$‰$ÇD$è”}1Ò륃y„ÁùÿÿÇ$“øÿè´…À…§ùÿÿ1Òézÿÿÿ‰L$‰$èi}‰ƅÀ…¸ùÿÿƒþõÿ‰D$Ç$ύ‹k\úÿºâ!ènVÿÿ1Òé<ÿÿÿÇD$(ö!ÇD$@Ï1É1í1ÿÇD$,ÇD$0ÇD$4ÇD$$‹=ÿÿÿ?…ÈýÿÿéÔýÿÿ;‹Tÿÿÿ„#‰$‰Æèé…À„ú‹úÿÿÿ?t‰ñJ‰u‰$‰Æèæz‰ð‹H‹yp‰$‰Æÿ׍‹{Aúÿ‰L$,‰D$$…À„Ò‰4$ÿׅÀ„ˉʼn4$ÿ׉D$0…À„ˉ4$ÿ׉zèÐ…Àˆ^‰ò‹=ÿÿÿ?‹t$$‹|$0„÷ùÿÿ‰ÑH‰…ìùÿÿéßùÿÿ¸Ñº="ÇD$ ëF1ÿÇD$<1ҋl$4‹t$$é‰üÿÿÇD$(E"ÇD$@Ñ1ÉÇD$,éöüÿÿ¸ÒºT"‹|$0‹þõÿ‰L$‰$‹k\úÿèïTÿÿ‹L$ 1ҋ=ÿÿÿ?…0ýÿÿéHýÿÿÇD$(V"ÇD$@ҋL$ éŸüÿÿ‰D$‰$è‚{ÇD$<ÇD$@҅À…ÙúÿÿÇD$(^"ÇD$81ÿéÔûÿÿÇD$(`"1ÿéÅûÿÿ‰|$‰t$‰$‰Îè’}‰ŅÀ…$ûÿÿÇD$(c"‹l$4‹t$$é”ûÿÿÇD$(g"ÇD$81ÿ‰l$<‹l$4éuûÿÿèÏz…l$4‹t$$…`ûÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èÅxéAûÿÿ‹xƒÿu‰ŋpNVéøÿÿƒÿ‰D$,|6‹ƒXÿÿÿ‹‹<úÿ‰L$‰$ÇD$èmzÇD$@ÏÇD$("1öëLÇD$@ÏÇD$("1ö…ÿx6‹‹Xÿÿÿ‹	ƒÿ“ˆþõÿ³{AúÿDò‰t$1ö‰|$ƒk=úÿ‰D$‰$è
z1íÇD$0ÇD$81ÿÇD$<1Òéúÿÿ‰t$,ÇD$($"ÇD$@Ï1ɋt$$‹|$0é¾üÿÿ‰t$,ÇD$@ÏÇD$("1öë¢1í1ÿ뿍ƒˆþõÿ‰D$,1íë¿‹=ÿÿÿ?t
H‰u‰4$è»wè¶ÇD$@ÏÇD$(,"…Àu&‹ƒXÿÿÿ‹‹L$,‰L$‰|$‹k=úÿ‰L$‰$è<y1ÀÇD$0ÇD$8ÇD$ ‹L$$1ÒéÔùÿÿUSWVƒì<è[Ã(Á‹L$\‹l$X‹D$T“dM‰T$4ÇD$8‹»ÿÿÿ‰|$,…Ét¨…턬ƒýu&‹8‰|$,‹Aé;…í„;ƒýu‹8‰|$,é+1í™
‹z>úÿ“.VúÿIы‹,ÿÿÿ‹	³ˆþõÿ»{AúÿIþ‰l$‰|$‰D$‰T$ƒøÿ‰D$ƒ‚>úÿ‰D$‰$èBxº©#ƒþõÿ‰D$Ç$䍋˜MúÿèaQÿÿ1À龋A…ÀŽŸ‰T$01ö‹«dM‰D$(9l±t1F9ðuõ1��‰ϋT±Ç$‰éèLÿ…ÀuF9t$(‰ùußë"‰ùx‹D$0‹<°…ÿt‰|$,‹D$(H‹l$X‹T$0ë#‰Îè„w…À…‹»ÿÿÿ‹l$X‰ñ‹T$0‹D$(…À8‰|$(‹D$P‹x‹=ÿÿÿ?t@‰‹«àG‹ƒXG‹M‰L$‰l$‰$èzx…À„‰Ƌ=ÿÿÿ?t@‰‰t$‰<$èHzƒøÿ„‹ùÿÿÿ?tI‰t‹ùÿÿÿ?t)I‰u$‰4$‰Æè'u‰ðë‰<$‰Çèu‰ø‹ùÿÿÿ?uׅÀ„Æ‹D$P‹@‹‹<K‹P‹RH…Ò„î‰L$‰$ÿ҉DžÀ„ñ‹G;ƒHÿÿÿ…N‹O…É„C‹w‹=ÿÿÿ?u‹=ÿÿÿ?u‹½=ÿÿÿ?uë.@‰‹=ÿÿÿ?tä@‰‹½=ÿÿÿ?tH‰u‰<$‰Ïèlt‰ù‰÷‰L$4‹D$(‰D$8­÷؉΍ƒÂ8E‰,$‰ùè€êÿÿ…öt‰ò‹ùÿÿÿ?tI‰
u‰$‰Æè!t‰ð…À„=‹ùÿÿÿ?tI‰t‹ùÿÿÿ?t%I‰u ‰$èñsë‰<$‰Æèås‰ð‹ùÿÿÿ?uۋL$P‹A‰$ÿP…À„0‹ùÿÿÿ?tI‰t!‹ƒÿÿÿ‹ùÿÿÿ?t	A‹ƒÿÿÿ‰ƒÄ<^_[]É$èŒs‹ƒÿÿÿ‹ùÿÿÿ?u×ëÞ1É1íé	ÿÿÿèu1ö…Àu‰éèÎÿÿ…À…)ºÛ#½øë}ºÝ#½øëq‹‹ÈO‹“ôNÇ$è7×ÿÿ½ù…À„å‰ƉÁèÁ×ÿÿ‹ºî#=ÿÿÿ?ty½ùëU‰L$‰$èÀt‰DžÀ…þÿÿº$½úëPº$½ú1ö‹=ÿÿÿ?tH‰u‰<$‰×è¶r‰ú…öt&‹=ÿÿÿ?tH‰u‰4$‰Öè˜r‰òë
º!$½ûƒþõÿ‰D$‰,$éüÿÿƒøÿ‰D$‰l$D$,‰D$D$4‰$èø…Àx	‹|$,é™üÿÿº›#éÂûÿÿº–#é¸ûÿÿºê#뤉ÆéÃüÿÿUSWVƒìLè[Ãø»‹L$l‹l$h‹D$d“4K‰T$DÇD$H‹³0ÿÿÿ‰t$@…Ét¨…턹ƒýu3‹0‰t$@‹Aé;…í„;ƒýu‹0‰t$@‹=ÿÿÿ?…,é*1í™
‹z>úÿ“.VúÿIы‹,ÿÿÿ‹	³ˆþõÿ»{AúÿIþ‰l$‰|$‰D$‰T$ƒ“øÿ‰D$ƒ‚>úÿ‰D$‰$èsºŒ$ƒþõÿ‰D$Ç$ý‹nRúÿè$Lÿÿ1öéM‹A…ÀŽ’1ö‹«4K‰T$<‰D$49l±t1F9ðuõ1��‰ϋT±Ç$‰éèú…ÀuF9t$4‰ùußë"‰ùx‹D$<‹4°…öt‰t$@‹D$4H‹l$h‹T$<ë#‰ÏèTr…À…m‹³0ÿÿÿ‹l$h‰ù‹T$<‹D$4…À>‹=ÿÿÿ?t@‰‹D$`‹@‹‹øM‹P‹RH…Ò„“‰L$‰$ÿ҉DžÀ„–‹G‹“pI;ƒ\ÿÿÿ…–‰ùè*þ‰ŅÀ„›‹“èGÇ$‰éèLù…Àˆ”‹Mùÿÿÿ?t
I‰M„ƒ…	|$<„“;³0ÿÿÿt);³4ÿÿÿt!;³ÿÿÿt‰4$èCr…Àˆ¹…Àuéb1À;³0ÿÿÿ”À„O‰t$0‹³N‹ƒXG‹N‰L$‰t$‰$è|r…À„Љŋ=ÿÿÿ?t@‰E‹ƒˆN‹M‹IH…É„ö‰D$‰,$ÿщÆÇD$8'…À„ù‹E=ÿÿÿ?tH‰Eu‰,$èo‹»øN‹F‹h@…í„ڍƒc[úÿ‰$ès…À…		‰|$‰4$ÇD$ÿՉÅèür…í„		‹=ÿÿÿ?t
H‰u‰4$è¾n‹E=ÿÿÿ?‹|$<tH‰Eu‰,$è¢n‹‹4ÿÿÿ‹=ÿÿÿ?‹T$0‹t$`t@‰‹=ÿÿÿ?‰L$4t3H‰u.‰$ènnë$‰,$‰õ‰Æè`n‰ð‰î…	|$<…mþÿÿ‰t$4‹t$`‹F(‰$è
o…À„Ú‰ŋƒ¤J‰l$‰D$‰<$ès…ÀˆÌ‹E=ÿÿÿ?tH‰Eu‰,$èýmòF,ò$è®n…À„¯‰ŋƒhJ‰l$‰D$‰<$èÎr…Àˆ£‹E=ÿÿÿ?tH‰Eu‰,$è®m‹l$4;«0ÿÿÿ”À;«4ÿÿÿ”Á;«ÿÿÿ”ÂʈT$,€úu
1À;«0ÿÿÿ”Àë‰,$èío…Àˆy…À„›‹n‹E=ÿÿÿ?t@‰E‹»àG‹ƒXG‹O‰L$‰|$‰$è-p…À„X‰Ƌ=ÿÿÿ?t@‰‰t$‰,$èûqƒøÿ„ˆ‰NjE=ÿÿÿ?tH‰Eu‰,$èèl‹=ÿÿÿ?t
H‰u‰4$èÒl…ÿ‹|$<‹l$4„è€|$,t
1À;«0ÿÿÿ”Àë‰,$è&o…Àˆ%…À„ˆ‹G‹“pI;ƒ\ÿÿÿ…<‰ùèzú‰ÆÇD$83…À„A‹G‹“üM;ƒ\ÿÿÿ…[‰ùèLú‰ŅÀ„`‹E‹“K;ƒ\ÿÿÿ…Z‰éè&ú…À„_‰D$,‹E=ÿÿÿ?tH‰Eu‰,$èl‹G‹“üM;ƒ\ÿÿÿ…;‰ùèæù‰ŅÀ„@‹E‹“L;ƒ\ÿÿÿ…:‰éèÀù…À„?‰D$(‹E=ÿÿÿ?tH‰Eu‰,$èœk‹G‹“¤J;ƒ\ÿÿÿ…‰ùè€ù‰ŅÀ„ ‹G‹“hJ;ƒ\ÿÿÿ‰ù‰÷…&èXù…À„-‰ÆÇ$èÒk…À„9‰x‹L$,‰H‹L$(‰H‰h‰p‰Ƌl$4‹|$<‹=ÿÿÿ?uë&‹=ÿÿÿ?u‰þë@‰‰þ=ÿÿÿ?t
H‰u‰<$èèj‹E=ÿÿÿ?tH‰Eu‰,$èÐj‰ðƒÄL^_[]ÉL$‰$èŠl‰DžÀ…júÿÿÇD$$Á$ÇD$8%驉T$‰<$è¿l‰ŅÀ…eúÿÿÇD$8&ÇD$$Í$é~ÇD$8&ÇD$$Ï$ékÇD$8+ÇD$$%ë"ÇD$8+ÇD$$%ë$ÇD$8,ÇD$$%1íëÇD$8,ÇD$$%1öÇD$,ÇD$(ÇD$ ‹D$4‰D$0éTÇD$$&%ÇD$8-ëq‹‹ÄO‹“OÇ$èÒÍÿÿÇD$8.…À„‰ƉÁèYÎÿÿ‹=ÿÿÿ?…º‰è1í1öÇD$,ÇD$(ÇD$ éÄÇD$$U%ÇD$82‰è1í1öÇD$,ÇD$(‰D$0ÇD$ 骍ƒ“øÿ‰D$‰l$D$@‰D$D$D‰$èàî…Àˆß‹t$@‹=ÿÿÿ?…øÿÿéŽøÿÿÇD$8&ÇD$$Ö$1í‰t$01öÇD$,ÇD$(ÇD$ é5èxjÇD$8-…Àu‰ùèuÃÿÿ…À…´1öÇD$,ÇD$(ÇD$ ‹D$4‰D$0‹|$<ÇD$$.%éâÇD$$0%ÇD$8-ÇD$,ÇD$(ÇD$ ‹D$4‰D$0éZ‰T$‰<$èij‰ÆÇD$83…À…¿ûÿÿÇD$$`%‰è1í1öÇD$,ÇD$(ÇD$ ‰D$0é`‰T$‰<$èj‰ŅÀ… ûÿÿÇD$$b%1íéÂýÿÿ‰T$‰,$è÷i…À…¡ûÿÿÇD$$d%é¡ýÿÿ‰T$‰<$èÖi‰ŅÀ…ÀûÿÿÇD$$g%1íé„ýÿÿ‰T$‰,$è±i…À…ÁûÿÿÇD$$i%écýÿÿ‰T$‰<$èi‰ŅÀ…àûÿÿÇD$$t%1íÇD$ ÇD$84é>ýÿÿ‰T$‰$è[i…À…ÓûÿÿÇD$$v%ÇD$ ÇD$84‹D$4‰D$0ëÇD$$€%‹D$4‰D$0‰t$ ‰þ‹|$<éJH‰u‰4$èÕf1í1öÇD$,ÇD$(ÇD$ ‹D$4‰D$0ÇD$$C%éèOhÇD$8'…Àu‰ñèLÁÿÿ…À…’1í1öÇD$,ÇD$(ÇD$ ÇD$$â$éÉD$‰,$èh‰ÆÇD$8'…À…÷ÿÿÇD$$ä$éDýÿÿ‰|$‰4$ÇD$èLj‰ŅÀ…>÷ÿÿÇD$$ï$1íÇD$,ÇD$(ÇD$ éÿÿÿ1íÇD$,ÇD$(ÇD$ ‹|$<ë+èvg…|$<„¢1íÇD$,ÇD$(ÇD$ ÇD$$ï$‰éèA*ÿÿ‰ñè:*ÿÿ‹L$,è1*ÿÿ‹L$(è(*ÿÿ‹L$ è*ÿÿƒþõÿ‰D$‹D$8‰$‹nRúÿ‹T$$èO@ÿÿ‹l$0…ÿ¾…%úÿÿéQúÿÿº~$éïóÿÿºy$éåóÿÿÇD$$?%éùüÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èÎdé?ÿÿÿ‰ÆéÛ÷ÿÿ‰Åé†õÿÿUSWVƒìLè[ø®‹t$l‹|$h‹D$d‹øM‰L$8ÇD$<…öt(‰ñ¸…ÿ„ƒÿ…{‹0‰t$4‹A…À~éfƒÿ…`‹0‰t$4‹F‹@T© …¸©„nÇD$Ç$ÇD$(‰ñ1Òè¸ð…À„«‰ŋ“èGÇ$‰ÁèZí…Àˆœ‰NjE=ÿÿÿ?tH‰Eu‰,$èøc…ÿ…™è{f…À„ç‰ÇÇD$Ç$‰ñ1ÒèIð¹v…À„ωŋƒpI‰l$‰D$‰<$èe…Àˆ|‹E=ÿÿÿ?tH‰Eu‰,$è„cèf…À„H
‰ÅÇD$Ç$‰ñºèÚï…À„<
‰|$ ‹‹K‰D$‰L$‰,$‰Çè–d…ÀˆÒ‹=ÿÿÿ?t
H‰u‰<$ècÇD$Ç$‰ñºè}ï…À„þ	‹‹L‰D$‰L$‰,$‰Çè=d…Àˆ‹=ÿÿÿ?t‰ùH‰u‰$è½b‹ƒüM‰l$‰D$‹|$ ‰<$èd…Àˆ8‹E=ÿÿÿ?tH‰Eu‰,$èƒb‰4$è‹gƒøÿ„%
1ɃøŒÇD$Ç$‰ñºèÌî…À„
‰ŋƒ¤J‰l$‰D$‰<$è,g…Àˆù	‹E=ÿÿÿ?tH‰Eu‰,$èbÇD$Ç$‰ñºèqî…À„Ê	‰ŋƒhJ‰l$‰D$‰<$èÑf…Àˆ»	‹E=ÿÿÿ?tH‰Eu‰,$è±a‹‰ùëK‹ƒpI‰D$‰4$è¹f½l…Àˆý„Ë‹ƒüM‰D$‰4$è”f…Àˆ3„«‹1ɉ÷=ÿÿÿ?t@‰‰L$‹ƒ|J‹O‹IH…É„w‰D$‰<$ÿщŅÀ„z‰|$ ‹³O‹E‹x@…ÿ„uƒc[úÿ‰$èeº6'¹}ÇD$(…À…‰t$‰,$ÇD$ÿ׉Æèód…ö„Z‹E=ÿÿÿ?tH‰Eu‰,$è³`‹F;ƒ`ÿÿÿ„«‰4$èÌeÝ\$@›òL$@阉T$ ‹q…ö~V‹“øM1ÿ9T¹„!G9þuñ‰T$(1ÿ‰͋T¹Ç$‹L$(èzé…À…åG9þ‰éuÛèÖa…|$h…‹ƒ,ÿÿÿ‹‰|$‹ˆþõÿ‰L$‹X8úÿ‰L$‹øÿ‰L$‹‚>úÿ‰L$‰$ÇD$è–aº&ƒþõÿ‰D$Ç$7鉋»ÄO‹³O‹G‹h@…í„덃c[úÿ‰$è£c…À…‰t$‰<$ÇD$ÿՉÇè“c…ÿ„Õ‰ùèÄÿÿ‹½mºe&=ÿÿÿ?tH‰u
‰<$èD_ºe&ƒþõÿ‰D$‰,$‹’=úÿè':ÿÿ1Àé߉l$(ÇD$ºÜ&‰ýÇD$$1ÿ¹véÔòN¸ÿÿÿÿò*Àf.ÈšÀ•ÁÁuòL$(è‚`òL$(…À…ï‹|$`‹=ÿÿÿ?tH‰u‰4$òL$(è¤^òL$(òO,‹ƒ|J‹T$ ‹J‹IH…É„8‰D$‰$ÿхÀ„;‹³O‰D$(‹@‹h@…í„:ƒc[úÿ‰$èZbºF'¹~ÇD$$…À…C‰t$‹t$(‰4$ÇD$ÿՉÅè4b…í„0‹=ÿÿÿ?t
H‰u‰4$èö]‰éè¯ì‰ƃøÿu
è“_…À…k‹E=ÿÿÿ?tH‰Eu‰,$èÃ]‰w(‹G‹‹øM‹P‹RL…Ò„õ‹|$ ‰|$‰L$‰$ÿҋl$…Àˆø‹ƒÿÿÿ‹ùÿÿÿ?„íA‹ƒÿÿÿ‰‹ùÿÿÿ?…äéú‰|$$‰l$(ÇD$ºê&ë‰|$$‰l$(ÇD$ºî&‹l$ 1ÿ¹w‹E=ÿÿÿ?tH‰Eu‰,$‰ΉÕè	]‰ê‰ñ‹t$(…ö‹l$t"‹=ÿÿÿ?tH‰u‰4$‰L$(‰ÖèÝ\‰ò‹L$(‹t$$…öt"‹=ÿÿÿ?tH‰u‰4$‰L$(‰Öè³\‰ò‹L$(ƒþõÿ‰D$‰$‹’=úÿè•7ÿÿ1ÿ„)‹ùÿÿÿ?„I‰…‰<$‰Æèj\‰ðé‰l$(ÇD$ºð&é>ýÿÿ‰éˆüÿÿ‰ò‹D$ ‹4¸‰t$4…ö„üÿÿ‰ÐH‹|$h‹T$ …ÀŽ©÷ÿÿƒøÿ‰D$‰|$D$4‰D$D$8‰$è»á…Àˆy‹t$4év÷ÿÿ‹‹ÈO‹“OÇ$èâ¿ÿÿ½q…À„Þ‰ljÁèlÀÿÿ‹º£&=ÿÿÿ?„küÿÿH‰…büÿÿ‰<$è™[º£&éPüÿÿºO&éFüÿÿ½sºµ&é7üÿÿº·&¹sÇD$$ÇD$鉋‹ÄO‹“OÇ$èO¿ÿÿ½t…À„U‰ljÁèٿÿÿ‹ºÆ&=ÿÿÿ?„ØûÿÿH‰…Ïûÿÿ‰<$è[ºÆ&é½ûÿÿ½vºØ&é®ûÿÿÇD$ºÚ&‰ýÇD$(ÇD$$1ÿé¢ýÿÿ‰D$‰<$è‹\‰ŅÀ…†ùÿÿ¸}º4'‹l$é‰t$‰,$ÇD$èº^‰ƅÀ…µùÿÿº6'¹}éè\…|$ „ÇD$$¹}º6'é$ýÿÿ‰D$‰$è
\…À…Åûÿÿ¸~ºD'‹|$ ‹l$锉t$‹t$(‰4$ÇD$è6^‰ŅÀ…ðûÿÿºF'¹~é"‹|$ ‹l$‹t$(éãüÿÿè‡[…|$ ‹l$„‹t$(¹~ºF'é»üÿÿ‹|$ ‰|$‰L$‰$èZ‹l$…À‰üÿÿ¸ºT'‹þõÿ‰L$‰$‹’=úÿèr4ÿÿ1ùÿÿÿ?…åüÿÿ…ít‹Mùÿÿÿ?tI‰Mu‰,$‰ÆèCY‰ðƒÄL^_[]úU&éðùÿÿÇD$ºæ&‰ýÇD$(ë4‰l$(ÇD$ºè&‰ýëº&é&ùÿÿ‰l$(ÇD$ºì&‹l$ ÇD$$é©ûÿÿº9'¹}ÇD$$‹|$ ‹l$é½ûÿÿ‰t$‰<$ÇD$èÒ\‰DžÀ…-ùÿÿë
èAZ…À„ô½mºa&é;ùÿÿº&韸ÿÿºI'¹~ÇD$(ÇD$$‹|$ é(ûÿÿ1í¸xºü&é²þÿÿ1í¸yº'é¡þÿÿº	'¹yë1í¸zº'é„þÿÿº'¹zÇD$(ÇD$$ÇD$éÂúÿÿºŸ&éžøÿÿºÂ&锸ÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$è‰WéTýÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èjWéÎýÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èKWéíþÿÿUSWVƒìè[ÃH¡‹L$<‹l$8‹T$4ƒ¨M‰D$ÇD$‹ƒÿÿÿ‰D$…Ét4ª…í„¡ƒýu&‹‰D$‹Qé2…í„2ƒýu‹‰D$é"1í™
‹z>úÿ“.VúÿIы‹,ÿÿÿ³ˆþõÿ»{AúÿIþƒì³¢$øÿ«‚>úÿÿt$<WPRVUÿ1èqXƒÄ º¿'ƒìƒþõÿ‹S;úÿPhè1ÿÿƒÄ1Àé‹Q…ÒŽ¡‰t$1��M9D±t<F9òuõ1��‰ՋT±ƒì‰ljÁjè|߃ąÀuF‰ê9õ‹L$<‰øuØë"‹L$<‰êx‹D$‹°…Àt‰D$J‹l$8‹t$ë#‰׉Îè«W…À…狃ÿÿÿ‹l$8‰ñ‹t$‰ú…ҏš‹L$0‹±°‹úÿÿÿ?tB‰ƒÁƒì‹“ÿÿÿ‹»dÿÿÿRVPQWÿ“üOƒÄ ‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè„U‰ðƒÄƒÄ^_[]Áùÿÿÿ?tI‰uƒìVèaUƒÄƒìƒþõÿ‹S;úÿºî'Phµé«þÿÿƒ¢$øÿ‰òt$|$PUVWèæÚƒÄ…Àx	‹D$é=ÿÿÿº±'écþÿÿº¬'éYþÿÿUSWVƒìè[Ã؞‹t$<‹T$8‹D$4‹¨M‰L$ÇD$‹«ÿÿÿ‰l$…öt ‰ñ4…Ò„—ƒúu&‹(‰l$‹Aé…Ò„ƒúu‹(‰l$é
1Ò™
‹z>úÿ“.VúÿIы‹,ÿÿÿ³ˆþõÿ»{AúÿIþƒì³d+øÿ«‚>úÿÿt$<WPRVUÿ1èÿUƒÄ ºY(ƒìƒþõÿ‹Ö]úÿPh·é׋A…ÀŽ“‰t$1��M‰D$9l±t2F9ðuõ1��‰ϋT±ƒì‰éjè݃ąÀuF9t$‰ùuÞë"‰ùx‹D$‹,°…ít‰l$‹D$H‹T$8‹t$ë#‰ÎèSU…À…ù‹«ÿÿÿ‹T$8‰ñ‹t$‹D$…Àr‹D$0‹‹M‹P‹RHƒì…Ò„2QPÿ҃ĉDžÀ„5èÞU‰ƅÀ„-ƒìUÿ³¨MVè”TƒÄ…Àˆ‰‰t$‹³dG‹G‹h@…í„1ƒìƒc[úÿPèWƒÄ…À…=ƒìÿt$VWÿՃĉÅèW…í„‹=ÿÿÿ?tH‰uƒìWèÃRƒÄ‹L$‹=ÿÿÿ?twH‰urƒìQè¥RƒÄëdº‹(‹=ÿÿÿ?tH‰uƒìW‰×è‚R‰úƒÄ…öt‹=ÿÿÿ?tH‰uƒìV‰Öè`R‰òƒÄƒìƒþõÿ‹Ö]úÿPh¾èA-ÿÿƒÄ1í‰èƒÄ^_[]ÃQPèûSƒÄ‰DžÀ…Ëþÿÿº‡(뼺‰(érÿÿÿ»d+øÿ‰ðt$‰ՉÂWUVD$ Pè°×ƒÄ…Àx=‹l$éaþÿÿƒìÿt$VWèVƒÄ‰ŅÀ…ëþÿÿë	ènS…Àt"ºŒ(‹t$éÿÿÿºK(ékýÿÿºF(éaýÿÿ‹ƒDÿÿÿƒì‹uLúÿQÿ0èQQƒÄ됐USWVƒì<è[ÃH›‹L$\‹t$X‹D$TÇD$ÇD$“øH‰T$,“PI‰T$0“¨M‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³|üõÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«øH1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjèàكąÀ…G9þ‹L$\uÜè7R…t$Xt$ºí(麃þ„̃þu‹x‰|$éÁ1þœ
‹.Vúÿ“z>úÿLуð‹‹,ÿÿÿƒì³{Aúÿ»$,øÿ«‚>úÿÿt$\VPRWUÿ1èÖQƒÄ º)éN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹«PI1��9l±„¥F9÷uñ1��‹T±ƒì‰éjèP؃ąÀurF9÷‹L$\uàè«P…À…6‹ƒ,ÿÿÿƒì‹{Aúÿ“.Vúÿ³$,øÿ»‚>úÿjQjRVWÿ0èƒPƒÄ º÷(ƒìƒþõÿ‹7VúÿPhÀè¡)ÿÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjè`׃ąÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#è•O…À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹hÿÿÿRjÿ³àHÿ³ÀNjÿ³TIÿt$8jÿ³üHUjVWPQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèEM‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVè"MƒÄƒìƒþõÿ‹7VúÿºL)PhïéZþÿÿƒ$,øÿ‰õt$|$,‹T$ PUVWè£ÒƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿº)éþÿÿºõ(éøýÿÿºþ(éîýÿÿUSWVƒì,è[Ãx–‹L$L‹|$H‹D$D“XM‰T$ “¨M‰T$$ÇD$(‹“ÄN‰T$‹³ÿÿÿ‰t$…Ét2,¸…ÿ„؃ÿ„ºƒÿuC‰l$‹p‰t$‹‰T$‹Aé䋳ÿÿÿ…ÿ„Þƒÿtƒÿu‹p‰t$‹‰T$鉸÷ÐÁèƒàþ…ÿ‹.Vúÿ“z>úÿHы‹,ÿÿÿƒì³{Aúÿ»ž2øÿ«‚>úÿÿt$LVPRWUÿ1èkMƒÄ ºÅ)ƒìƒþõÿ‹{PúÿPhôè‰&ÿÿƒÄ1Àé׉l$‹‰T$A‹y雋y…ÿŽ0‰l$‰t$A1ö‹«XM‰T$‰D$9l±t2F9÷uõ1��‹T±ƒì‰éjè`ԃąÀuF9÷‹L$Luàë"‹L$Lx‹D$‹°…Àt‰D$O‰‹t$‹D$ëè—L‹L$L…T$‹t$‹D$…¬…ÿŽ˜‰|$‰T$‹8…ÿ~_‹«¨M1ö9l±t2F9÷uõ1��‹T±ƒì‰éjèÐӃąÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#èL…À… ‹³ÿÿÿ‹|$H‹T$‹L$L‹D$…ÀÇ‰t$‰T$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“ÀN‹»àHƒì‹«ÿÿÿ‹‹lÿÿÿUjWRjWRjÿ³\Mÿt$4jVÿt$<PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè­I‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVèŠIƒÄƒìƒþõÿ‹{Púÿºü)Ph;éÚýÿÿƒž2øÿt$‰ý|$ ‹T$PUVWèσąÀx
‹T$‹t$éÿÿÿº´)éŠýÿÿº¯)é€ýÿÿº¨)évýÿÿUSWVƒìè[Ãè’‹L$<‹l$8‹T$4ƒ¨M‰D$ÇD$‹ƒÿÿÿ‰D$…Ét4ª…í„¡ƒýu&‹‰D$‹Qé2…í„2ƒýu‹‰D$é"1í™
‹z>úÿ“.VúÿIы‹,ÿÿÿ³ˆþõÿ»{AúÿIþƒì³?=øÿ«‚>úÿÿt$<WPRVUÿ1èJƒÄ ºg*ƒìƒþõÿ‹LUúÿPhAè/#ÿÿƒÄ1Àé‹Q…ÒŽ¡‰t$1��M9D±t<F9òuõ1��‰ՋT±ƒì‰ljÁjèуąÀuF‰ê9õ‹L$<‰øuØë"‹L$<‰êx‹D$‹°…Àt‰D$J‹l$8‹t$ë#‰׉ÎèKI…À…õ‹ƒÿÿÿ‹l$8‰ñ‹t$‰ú…ҏ¨‹L$0‹±°‹úÿÿÿ?tB‰ƒÁ$ƒì‹»ÿÿÿ‹“pÿÿÿWjWWjWWjWWjVPQRÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèG‰ðƒÄƒÄ^_[]Áùÿÿÿ?tI‰uƒìVèóFƒÄƒìƒþõÿ‹LUúÿºž*Phgéþÿÿƒ?=øÿ‰òt$|$PUVWèx̃ąÀx	‹D$é/ÿÿÿºY*éUþÿÿºT*éKþÿÿUSWVƒìlè[Ãh‹Œ$Œ‹¬$ˆ‹„$„‹´$€“¨M‰T$TÇD$X‹»ÿÿÿ‰|$P…Ét¨…í„¥ƒýu‹(‰l$P‹AéXƒý„ú…í„Õ1í™
‹z>úÿ“.VúÿIы‹,ÿÿÿ‹	³ˆþõÿ»{AúÿIþ‰l$‰|$‰D$‰T$ƒ½[úÿ‰D$ƒ‚>úÿ‰D$‰$èyGº	+ƒþõÿ‰D$Ç$m‹¾>úÿè˜ ÿÿ1ÿé~
‹A…À~M‰T$(‰|$,1��M‰D$49l±tVF9ðuõ1��‰ϋT±Ç$‰éèŒÎ…Àu0F9t$4‰ùußëNÇD$DÇD$@ÇD$8逋(‰l$PëU‰ùx%‹D$(‹°…Àt‰D$P‹T$4J‰ʼnЋ´$€‹T$(ë$‰Îè˜F‰ñ…´$€‹l$,‹T$(‹D$4…}…À?ÇD$DÇD$@ÇD$8;«ÿÿÿ„ÿ‹»(L‹ƒXG‹O‰L$‰|$‰$è€G…À„B
‰Ƌ=ÿÿÿ?t@‰‰t$8‹ƒJ‹N‹IH…É„P
‰D$‰4$ÿщljD$@…À„S
‹=ÿÿÿ?t
H‰u‰4$è%DÇ$è©D‰D$81҅À„L
‰ƋE=ÿÿÿ?t@‰E‰nèƒF‰D$D‰D$(…À„=
‰|$4‹»(L‹ƒXG‹O‰L$‰|$‰$èÀF…À„+
‰ŋ=ÿÿÿ?t@‰E‹ƒÔJ‹M‹IH…É„9
‰D$‰,$ÿщÇÇD$0ž…À„<
‹E=ÿÿÿ?tH‰Eu‰,$èbC‹ƒJ‰|$‰D$‹D$(‰$è¨D…Àˆ7‹=ÿÿÿ?t
H‰u‰<$è*C‹D$4‹@‹x@…ÿ„éƒc[úÿ‰$èG1íÇD$,,…À…‹D$(‰D$‰t$‹l$4‰,$ÿ׉ÇèüF‰ø…ÿ„Ï‹Mùÿÿÿ?‰D$<tI‰Mu‰,$èµB‹D$<ÇD$@‹ùÿÿÿ?‹¬$€tI‰u‰4$è‹B‹D$<ÇD$8‹T$(‹
ùÿÿÿ?tI‰
u‰$èdB‹D$<‹úÿÿÿ?tJ‰ùÿÿÿ?t‰…Òu‰$è;B‹D$<ÇD$D‹H‰L$0‹p‹‹P‹P‰t$‰$ÿ‘x‰D$L…ÀŽ´E‰D$,ÇD$4‹ƒHÿÿÿ‰D$H됐‹D$4@‰D$49D$L„~‹µ°‹«0J‹~‰l$‰<$èòF…À„~‹H‹‰ˆ…Ét-‰|$‰t$‰$ÿщD$(…Œ$€u1éd‹úÿÿÿ?‹Œ$€‰D$(tB‰‹±°‹«$J‹~‰l$‰<$èuF…À„)‹P‹Šˆ…Ét ‰|$‰t$‰$ÿхÀ„‹P됐‹ùÿÿÿ?tA‰ÇD$8;T$H…é‹h‰l$8…í„Ú‹x‹Mùÿÿÿ?u!‹ùÿÿÿ?u%‹¾ùÿÿÿ?u(ë6A‰M‹ùÿÿÿ?tÛA‰‹¾ùÿÿÿ?tI‰u‰$ès@‰ù‰l$TÇD$XµT$X)‰4$‰Ï苶ÿÿ‰ʼnD$D‹D$8…Àt‹ùÿÿÿ?tI‰u‰$è&@ÇD$8…í„,‹=ÿÿÿ?tH‰u‰<$èú?‹D$D‹ùÿÿÿ?‹¬$€tI‰u‰$èÎ?ÇD$DèE‰NjD$,‰$è•Ê‹L$0‹t$4‰Tñ‰ñ‰<$èîD‹³O‹L$(‹A‹x@…ÿ„Œƒc[úÿ‰$èxC…À…™‰t$‹t$(‰4$ÇD$ÿ׉ÇèdC…ÿtp‹=ÿÿÿ?tH‰u‰4$è*?…ÿ„n‹=ÿÿÿ?„+ýÿÿH‰…"ýÿÿ‰<$èú>éýÿÿ1í1ö‰Áé|þÿÿ‰t$‰$ÇD$‰ÎèC‰Çëè{@…Àt1ÿ‹t$(é|ÿÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èr>ëً¶°‹«0J‹~‰l$‰<$èÅC…À„3‹H‹‰ˆ…Ét:‰|$‰t$‰$ÿщD$4…Œ$€u6é‹t$<‹ùÿÿÿ?…‰÷é#‹úÿÿÿ?‹Œ$€‰D$4tB‰‹¹°‹ƒ$J‹o‰D$(‰D$‰,$è?C…À„؉Ƌ@‹ˆˆ…Ét3‰l$‰|$‰4$ÿщD$@…À„‰	‰Ƌ@ÇD$8;ƒHÿÿÿt*é(‹ùÿÿÿ?tA‰‰t$@ÇD$8;ƒHÿÿÿ…‹n‰l$8…í„ô‹~‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‰|$@‹¹=ÿÿÿ?tH‰u
‰4$èE=¹‰þ‰l$TÇD$X÷؍ƒÂX‰$‰ñèY³ÿÿ‰D$D…ít‹Mùÿÿÿ?tI‰Mu‰,$‰Çèö<‰øÇD$8…À„ùÿÿÿ?tI‰u‰4$‰ÆèË<‰ðÇD$@‹ùÿÿÿ?‹¼$€t
I‰u‰$è£<è~?‰D$0‹@@‹«ÿÿÿ됐‹@…Àt7‹0…ötó9îtï‹=ÿÿÿ?t@‰‹N‹=ÿÿÿ?t@‰‰L$L‰4$è8?‰D$HëÇD$L1öÇD$HG‰$èljT$‰$è‰AÇD$D…À„X‰NjD$0‹H@‹‰1…Àt‹ùÿÿÿ?t
I‰u‰$èá;‹L$L…Ét‹=ÿÿÿ?t
H‰u‰$èÃ;‰|$(‹L$H…Ét‹=ÿÿÿ?t
H‰u‰$è¡;‹³O‹l$4‹E‹x@…ÿ„öƒc[úÿ‰$è‹?…À…‰t$‹l$4‰,$ÇD$ÿ׉Æèw?…ö‹|$(„ý‹Mùÿÿÿ?tI‰Mu‰,$è2;…ö„¶‹ùÿÿÿ?t
I‰u‰4$è;‰øƒÄl^_[]Ã1íÇD$,,‹L$(‹1Ò=ÿÿÿ?tH‰u
‰$èã:1ҋD$@…Àt‹ùÿÿÿ?tI‰u‰$‰ÖèÀ:‰ò‹D$8…	Öt‹ùÿÿÿ?t
I‰u‰$è:…ít‹E=ÿÿÿ?tH‰Eu‰,$è:…ÿt‹=ÿÿÿ?t
H‰u‰<$èg:ƒþõÿ‰D$‹D$0‰$‹¾>úÿ‹T$,èGÿÿ…ö„§ôÿÿ‹1ÿéÿÿÿA‰‰÷éÿÿÿ‹ƒÿÿÿ‹‰l$‰$èX>1íÇD$0£ÇD$,8,ël‹ƒÿÿÿ‹‰l$‰$è0>ÇD$,:,1ÿëÇD$,N,‹T$<‹L$(‹1íÇD$0£=ÿÿÿ?„ÜþÿÿH‰…Óþÿÿ‰$è¬9ë1íÇD$0£ÇD$,„,1ÿ‹T$<é¬þÿÿ1í1ÉéFüÿÿƒ½[úÿ‰D$‹„$ˆ‰D$D$P‰D$D$T‰$è¿…Àˆr‹l$Pé‡ôÿÿ‹ƒÿÿÿ‹‰l$‰$èv=ÇD$0›ÇD$,R+1Òép‹ƒÿÿÿ‹‹L$(‰L$‰$èG=ÇD$@ÇD$,T+ëÇD$,h+‹L$4‹1Ò=ÿÿÿ?u
ÇD$0›é"ÇD$0›H‰…‰$è¸81Òé‰l$,ÇD$@ÇD$8»þõÿ‰|$Ç$œ‹¾>úÿ‰L$hº+èxÿÿD$8‰D$D$@‰$T$D‹L$0èLÉ‹L$D…	L$(ˆu‰|$d‹T$@‹D$8‰D$`‰D$‰T$\‰T$‰L$Ç$èP9…À„H‰ÅÇ$‹|$4‰ù‰Âèœÿÿ‰D$<‹=ÿÿÿ?t
H‰u‰<$èè7‹E=ÿÿÿ?tH‰Eu‰,$èÐ7‹|$<…ÿ„þ;»0ÿÿÿ„î;»4ÿÿÿ„â;»ÿÿÿ„Ö‰<$è:éÔ‰t$‰,$ÇD$è¯;‰Ƌ|$(é)üÿÿÇD$0›ÇD$,Ó+1Òé®1ö‹l$4‹|$(éüÿÿèù8…À„E1ö‹l$4éëûÿÿèá8…À…L‰ùèâ‘ÿÿ‰D$8…À…ÝÇD$0žÇD$,ô+1ÒëS‰D$‰4$èÆ8‰ljD$@…À…­òÿÿÇD$,ö+ÇD$0ž1ÿ1í1ҋD$8…	Ö…üÿÿé"üÿÿÇD$0žÇD$,ù+1í1ÿéÅûÿÿÇD$0žÇD$,þ+1í1ÿéªûÿÿè881íÇD$,,…Àu‰ùè3‘ÿÿ…À…91ÿÇD$0žé]ûÿÿ‰D$‰,$è 8‰ÇÇD$0ž…À…Äòÿÿ1ÿÇD$,,é0ûÿÿ‹D$(‰D$‰t$‹l$4‰,$èG:…À…=óÿÿ1íÇD$,,ë˜è®7…À„:1ÿÇD$0ž‹L$(1íéæúÿÿºû*é#ðÿÿÇD$,“+éŽ1À;»0ÿÿÿ”	ŋ=ÿÿÿ?t
H‰u‰<$è§5…íx_„‹L$(èDúþÿÇD$D‹L$\è3úþÿÇD$@‹L$`è"úþÿ‹D$0‹H@‹D$H‰D$‰4$‹T$Lè÷Ç‹l$,é¯ðÿÿºö*éïÿÿÇD$, +‹D$0‹H@‹D$H‰D$‰4$‹T$LèÁÇÇD$0›1í¿º‹L$(…É…úÿÿéúÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$è²4éœýÿÿÇD$8éºýÿÿÇD$,—+ëŠÇD$,œ+뀋ƒDÿÿÿ‹‹uLúÿ‰L$‰$èr4é§þÿÿèH4‹L$`‰L$‹L$\‰$‰KT$(讑ÿÿ‹D$0‹H@‹D$H‰D$‰4$‹T$LèÇ‹D$d‰D$Ç$›‹L$hº¨+é©îÿÿÇD$,T+éLûÿÿ‰ÆéÌïÿÿ‰Åé‚ðÿÿUSWVƒì\è[Ãø}‹l$x‹D$tÇD$8‹€K‰L$H‹¨J‰L$L‹¨M‰L$P‹J‰L$TÇD$X‹“ÿÿÿ‰T$<‰T$@‹»àN‰|$Dƒ|$|„¨ƒý‡‹¨‰L$ ‹Œ«ŒüõÿÙÿá‰T$$‰|$(‹D$|‹p…ö~_ƒÀ‰D$4‹«€K1ÿ‹D$|9l¸„ùG9þuí1ÿ‹D$|‹T¸Ç$‰éèj¼…À…ÃG9þuÝèÈ4…l$x„öº-éNMÿƒù‡à‹«ÿÿÿ‹Œ‹ üõÿىl$$‰l$,ÿá‹x‰|$D‹H‰L$$‰L$@‹H‰L$,‰L$<‹0‰t$8‹=ÿÿÿ?„b@‰‹D$,‹=ÿÿÿ?„_@‹L$,‰‹D$,;ƒÿÿÿ…X‹=ÿÿÿ?t@‰‹ƒÿÿÿ‹ùÿÿÿ?t
I‰u‰$èY2‹ƒÐN‰D$0‹=ÿÿÿ?t@‹L$0‰‹ƒÐN‰D$0‹=ÿÿÿ?t
H‰u‰4$è2‰t$,éð1íŸ
D@‹.Vúÿ“z>úÿNы‹,ÿÿÿ‹	³ˆþõÿ»{AúÿNþ‰l$‰|$‰T$“ÝFøÿ‰T$“‚>úÿ‰T$‰$‰D$èy3º1-ƒþõÿ‰D$Ç$§‹ÿ<úÿè˜ÿÿ1Àé|‹x‰|$D‹H‰L$$‰L$@‹H‰L$,‰L$<‹0‰t$8‹D$|‹Hé‰T$$‹H‰L$,‰L$<‹0‰t$8‹D$|H‹@…À‡éÞ‰|$(‹H‰L$$‰L$@‹H‰L$,‰L$<‹0‰t$8‹D$|H‹@…À‹|$(‹=ÿÿÿ?„¨éAþÿÿ‹0‰t$8‹D$|h‹H…ÉŽ«‰L$0‰t$‰T$$‰|$(‰l$4‹u…öŽÔ‹«¨J1ÿ‹D$|9l¸„‰G9þuí1ÿ‹D$|‹T¸Ç$‰é誹…Àu[G9þuáë|ˆ<ýÿÿ‹D$ ‹¸‰L$8…É„)ýÿÿ‰ȉñI‹|$(‹T$$‰Ƌl$4…ɏUÿÿÿ‹«ÿÿÿ‰l$$‰l$,‹=ÿÿÿ?„Åé^ýÿÿx&‹D$ ‹¸‰D$,…Àt‹D$,‰D$<‹D$0H‹|$(‹t$ë#èŽ1…À…W‹ƒÿÿÿ‰D$,‹|$(‹t$‹D$0‹L$4…ÀŽ\‰D$0‰t$‰|$(‰L$4‹1…ö~o‹«¨M1ÿ‹D$|9l¸t9G9þuñ1ÿ‹D$|‹T¸Ç$‰é蚸…ÀuG9þuáë x‹D$ ‹¸…Àt‰D$$‰D$@‹D$0H‹t$ëèÚ0…À…T‹ƒÿÿÿ‰D$$‹t$‹D$0‹L$4…ÀŽþÿÿ‰D$0‰t$‹1…ö~y‹«J1ÿ‹D$|9l¸t9G9þuñ1ÿ‹D$|‹T¸Ç$‰éèê·…ÀuG9þuáë"x ‹D$ ‹¸…Àt‰D$D‹L$0I‰Njl$x‹t$ëè(0…|$(‹l$x‹t$‹L$0…K…ɏ–‹=ÿÿÿ?…žûÿÿ‹D$,‹=ÿÿÿ?…¡ûÿÿ‹D$,;ƒÿÿÿ„¨ûÿÿ‰t$0‹‹|GÇD$HT$L‰|$LÇ$€èD¤ÿÿ…À„i‰|$(‹“ìJ‹H‹IH…ɉD$„u‰T$‰$ÿщDžÀ„x;»0ÿÿÿt,;»4ÿÿÿt$;»ÿÿÿt‰<$è-0…Àˆe‹ùÿÿÿ?uë1À;»0ÿÿÿ”ùÿÿÿ?t	I‰„s…À…2‹³N‹ƒXG‹N‰L$‰t$‰$èT0…À„E‰Nj=ÿÿÿ?t@‰‹ƒˆN‹O‹IH…É„P‰D$‰<$ÿхÀ„S‹ùÿÿÿ?tI‰u‰<$‰Æè-‰ð‹³O‹H‹y@…ÿ„6‰D$4ƒc[úÿ‰$èè01ÒÇD$ ý…À…X‰t$‹l$4‰,$ÇD$ÿ׉ÇèÊ0…ÿ„_‹E=ÿÿÿ?tH‰Eu‰,$èŠ,‹=ÿÿÿ?t
H‰u‰<$èt,‹ƒìK‹|$‹O‹IH…É„ô‰D$‰<$ÿхÀ„÷‹H;‹Hÿÿÿ…o‹h…í„d‹p‹Mùÿÿÿ?u4‹ùÿÿÿ?u8‹¿ùÿÿÿ?u;ëF‰<$‰Æèþ+‰ð…À…³é|þÿÿA‰M‹ùÿÿÿ?tÈA‰‹¿ùÿÿÿ?t
I‰u‰$èÂ+‰ñ‰l$HÇD$L½÷؍ƒÂL‰<$‰Îèۡÿÿ‰Džít‹E=ÿÿÿ?tH‰Eu‰,$è}+…ÿ„a‹=ÿÿÿ?t
H‰u‰4$è_+‹L$‹=ÿÿÿ?t
H‰u‰$èE+‰|$‹³(L‹ƒXG‹N‰L$‰t$‰$è".…À„ì‰Nj=ÿÿÿ?t@‰‹ƒÐJ‹O‹IH…É„÷‰D$‰<$ÿщŅÀ„ú‹=ÿÿÿ?t
H‰u‰<$èÏ*‰l$‹D$‰$ÇD$è701҅À„Ô‰NjE=ÿÿÿ?tH‰Et4;»0ÿÿÿt<;»4ÿÿÿt4;»ÿÿÿt,‰<$èû,…Àˆ¾‹ùÿÿÿ?u'ë*‰,$è_*;»0ÿÿÿuÄ1À;»0ÿÿÿ”ùÿÿÿ?tI‰tl‹L$p…Àtx‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$$‰D$‹D$,‰D$‹D$0‰$ÇD$ÇD$ÿ“P…À…
ÇD$ ¾.驉<$‰ÆèÇ)‰ð‹L$p…Àuˆ‹»(L‹ƒXG‹O‰L$‰|$‰$èž,…À„ª‹ùÿÿÿ?tA‰‹“ÔJ‹H‹IH…É„¶‰T$‰ʼn$ÿщDž:„¹‹E=ÿÿÿ?tH‰Eu‰,$èC)‰|$‹D$‰$ÇD$è«.1҅À„£‰ŋ=ÿÿÿ?t
H‰u‰<$è	);«0ÿÿÿt5;«4ÿÿÿt-;«ÿÿÿt%‰,$èi+…|$‹L$pˆm‹Uúÿÿÿ?uë$1À;«0ÿÿÿ”L$p‹Uúÿÿÿ?t
J‰U„‚…À„’‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$$‰D$‹D$,‰D$‹D$0‰$ÇD$ÇD$ÿ“P…À…p1Ҿ>.ÇD$ ‰ý‹|$‹E=ÿÿÿ?…5éF‰,$‰Æè(‰ð‹L$p…À…nÿÿÿ‹³(L‹ƒXG‹N‰L$‰t$‰$èï*…À„h‰Nj=ÿÿÿ?t@‰‹ƒÌJ‹O‹IH…É„s‰D$‰<$ÿщŅÀ„v‹=ÿÿÿ?t
H‰u‰<$èœ'‰l$‹D$‰$ÇD$è-1҅À„f‰NjE=ÿÿÿ?tH‰Eu‰,$è`';»0ÿÿÿt0;»4ÿÿÿt(;»ÿÿÿt ‰<$èÀ)…L$pˆT‹úÿÿÿ?uë.1À;»0ÿÿÿ”L$p‹úÿÿÿ?tJ‰u‰<$‰Æè'‰ð‹L$p…Àtd‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$$‰D$‹D$,‰D$‹D$0‰$ÇD$ÇD$ÿ“P…À…Æ	ÇD$ ¾i.éj‹»(L‹ƒXG‹O‰L$‰|$‰$ès)…À„ö‹ùÿÿÿ?tA‰‹“ØJ‹H‹IH…É„‰T$‰ʼn$ÿщDžÀ„!‹E=ÿÿÿ?tH‰Eu‰,$è&‰|$‹D$‰$ÇD$è…+…À„‰ŋ=ÿÿÿ?t
H‰u‰<$èå%;«0ÿÿÿt4;«4ÿÿÿt,;«ÿÿÿt$‰,$èE(…L$py#ÇD$ ¾‡.1ÒéŸ1À;«0ÿÿÿ”L$p‹Uúÿÿÿ?tJ‰Uu‰,$‰Æè%‰ð‹L$p…Àtf‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$$‰D$‹D$,‰D$‹D$0‰$ÇD$ÇD$ÿ“P…À…E1Ҿ”.ÇD$ éÐüÿÿ‹‹(Lè¤ÿþÿ…À„ ‰NjƒTN‹O‹IH…É„‰D$‰<$ÿщŅÀ„‹=ÿÿÿ?t
H‰u‰<$è½$‰l$‹D$‰$ÇD$è%*…À„ø‰NjE=ÿÿÿ?tH‰Eu‰,$èƒ$;»0ÿÿÿt2;»4ÿÿÿt*;»ÿÿÿt"‰<$èã&…L$py!ÇD$ ¾².é!1À;»0ÿÿÿ”L$p‹úÿÿÿ?tJ‰u‰<$‰Æè!$‰ð‹L$p…Àtd‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$$‰D$‹D$,‰D$‹D$0‰$ÇD$ÇD$ÿ“P…À…çÇD$ ¾¿.é‹‹‹(LèHþþÿ…À„!‹“PN‹H‹IH…É„‰T$‰ʼn$ÿщDžÀ„‹E=ÿÿÿ?tH‰Eu‰,$è_#‰|$‹D$‰$ÇD$èÇ(…À„
‰ŋ=ÿÿÿ?t
H‰u‰<$è'#;«0ÿÿÿt2;«4ÿÿÿt*;«ÿÿÿt"‰,$è‡%…L$py!ÇD$ ¾Ý.é=ýÿÿ1À;«0ÿÿÿ”L$p‹Uúÿÿÿ?tJ‰Uu‰,$‰ÆèÃ"‰ð‹L$p…Àtf‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$$‰D$‹D$,‰D$‹D$0‰$ÇD$ÇD$ÿ“P…À…‰1Ҿê.ÇD$ éúÿÿ‹‹(Lèèüþÿ…À„ ‰NjƒLN‹O‹IH…É„‰D$‰<$ÿщŅÀ„‹=ÿÿÿ?t
H‰u‰<$è"‰l$‹D$‰$ÇD$èi'…À„ø‰NjE=ÿÿÿ?tH‰Eu‰,$èÇ!;»0ÿÿÿt2;»4ÿÿÿt*;»ÿÿÿt"‰<$è'$…L$py!ÇD$ ¾/ée1À;»0ÿÿÿ”L$p‹úÿÿÿ?tJ‰u‰<$‰Æèe!‰ð‹L$p…Àtd‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$$‰D$‹D$,‰D$‹D$0‰$ÇD$ÇD$ÿ“ P…À…+ÇD$ ¾/éÏ‹‹(LèŒûþÿ…À„!‹“XN‹H‹IH…É„‰T$‰ʼn$ÿщDžÀ„‹E=ÿÿÿ?tH‰Eu‰,$è£ ‰|$‹D$‰$ÇD$è&…À„
‰ŋ=ÿÿÿ?t
H‰u‰<$èk ;«0ÿÿÿt2;«4ÿÿÿt*;«ÿÿÿt"‰,$èË"…L$py!ÇD$ ¾3/éúÿÿ1À;«0ÿÿÿ”L$p‹Uúÿÿÿ?tJ‰Uu‰,$‰Æè ‰ð‹L$p…À„V‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$$‰D$‹D$,‰D$‹D$0‰$ÇD$ÇD$ÿ“$P…À…É1Ҿ@/ÇD$ éT÷ÿÿƒþõÿ‰D$Ç$ù‹ÿ<úÿº-èrúþÿ1Àé‰T$‰$è/!‰DžÀ…ˆñÿÿ¾ûº›-1í‹|$éóÇD$ û¾-éèÙ …Àu‰ñèÞyÿÿ…À…ì1í‹|$¾ºÿ-é´‰D$‰<$èÅ ‰ŅÀ…ôÿÿÇD$ ¾.é±¾.ÇD$ ‹|$‹E=ÿÿÿ?…ÄéÕÇD$ ¾.é{‹‹(Lè8ùþÿ…À„,
‰Njƒ|I‹O‹IH…É„%
‰D$‰<$ÿщŅÀ„(
‹=ÿÿÿ?t
H‰u‰<$èQ‰l$‹D$‰$ÇD$è¹#…À„
‰NjE=ÿÿÿ?tH‰Eu‰,$è;»0ÿÿÿ„¥;»4ÿÿÿ„™;»ÿÿÿ„‰<$èk …L$p‰ˆÇD$ ¾^/é¥
1í1ÿ‰ÁéòÿÿƒÝFøÿ‰D$‰l$D$8‰D$D$H‰$‹L$|‹T$ èX£…Àˆq‹t$8‹D$<‰D$,‹D$@‰D$$‹|$D‹=ÿÿÿ?„ ïÿÿé¹êÿÿ1À;»0ÿÿÿ”L$p‹úÿÿÿ?tJ‰u‰<$‰Æè>‰ð‹L$p…À„)‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$$‰D$‹D$,‰D$‹D$0‰$ÇD$ÇD$ÿ“(P…À„©‰‹=ÿÿÿ?t	H‰„½‹D$$;ƒÿÿÿ‹|$„É‹=ÿÿÿ?t@‰‰Ћùÿÿÿ?tI‰u‰<$‰ljÖ草ò‰ø…Òt‹
ùÿÿÿ?tI‰
u‰$‰Çèl‰øƒ|$0t'‹L$0‹	ùÿÿÿ?tI‹T$0‰
u‹L$0‰$‰Æè>‰ð‹L$,‹	ùÿÿÿ?tI‹T$,‰
u‹L$,‰$‰Æè‰ðƒÄ\^_[]É<$‰×è‰ú‹D$$;ƒÿÿÿ‹|$…7ÿÿÿ‰T$$‹L$(‹=ÿÿÿ?t@‰‹ƒtÿÿÿ‰D$‰$ÇD$è?!1íÇD$  …À„U‰Æ;ƒ0ÿÿÿt0;³4ÿÿÿt(;³ÿÿÿt ‰4$è…T$$ˆ1‹ùÿÿÿ?uë1À;³0ÿÿÿ”T$$‹ùÿÿÿ?tI‰th…À…¤‹ƒ$ÿÿÿ‰D$‹D$(‰$ÇD$è¯ …À„‰Æ;ƒ0ÿÿÿtF;³4ÿÿÿt>;³ÿÿÿt6‰4$è……T$$ˆ	‹ùÿÿÿ?u1ëD‰4$‰Æèã‰ð‹T$$…Àu0ëŠ1À;³0ÿÿÿ”T$$‹ùÿÿÿ?tI‰u‰4$‰Æè¯‰ð‹T$$‰ƋL$(‹=ÿÿÿ?tH‰u‰$荋T$$…ö„Ëýÿÿ‹»(L‹ƒXG‹O‰L$‰|$‰$èb…À„‹ùÿÿÿ?tA‰‹“8I‹H‹IH…É„*‰T$‰Ɖ$ÿщŅT$$„-‹=ÿÿÿ?tH‰u‰4$è
‹T$$‹E1ö;ƒHÿÿÿ„(1ÿ‰t$H‰T$L½÷؍ƒÂLG‰<$‰éèÿÿ‰Džöt‹=ÿÿÿ?t
H‰u‰4$èµ…ÿ„"‹E=ÿÿÿ?tH‰Eu‰,$è•‹ƒ„M‹O‹IH…É„‰D$‰<$ÿхÀ„‹ùÿÿÿ?tI‰u‰<$‰ÆèW‰ð‹‹dG‰L$‰$ÇD$‰Åè¹…À„è‰NjE=ÿÿÿ?tH‰Eu‰,$è;»0ÿÿÿt0;»4ÿÿÿt(;»ÿÿÿt ‰<$èw…T$$ˆ¸‹ùÿÿÿ?uë.1À;»0ÿÿÿ”T$$‹ùÿÿÿ?tI‰u‰<$‰Æè·‰ð‹T$$…|$„ïûÿÿ‹L$(‹=ÿÿÿ?t@‰‹A1ö;ƒHÿÿÿ„y1ÿ‰t$H‰T$L½÷؍ƒÂLG‰<$‹L$(螎ÿÿ…öt‹ùÿÿÿ?tI‰u‰4$‰ÆèA‰ð…|$„Œ‹L$(‹úÿÿÿ?tJ‰u‰$‰D$(è‹D$(‹T$$é_ûÿÿè²…Àu‰ñè·rÿÿ…À…Ì1í‹|$¾ýº©-鍉D$‰<$èž…À…­êÿÿÇD$ ý¾«-錉t$‰$ÇD$‰ÅèΉDžÀ…òêÿÿ1Ҿ¶-ÇD$ ý‹|$‹E=ÿÿÿ?…}鎋|$ë8‰D$‰<$è,…À…	ëÿÿ¾ºÂ-1íéöèî…|$„1ҋl$4¾¶-‹E=ÿÿÿ?…#é41ÒÇD$ ‹|$‰õ¾Ö-‹E=ÿÿÿ?…ûéè—¾
1í…Àu‰ùè•qÿÿ…À…Díÿÿ‹|$º*.ér‰T$‰ʼn$聉Dž:…Gíÿÿ¾,.ÇD$ 
‹|$‹E=ÿÿÿ?…éžÇD$ 
¾/.éFÇD$ 
¾1.1ÒéR¾/é-‹|$(‰õ¾ž/éèé…Àu‰ùèîpÿÿ…À…
‹l$$‹|$¾!º·/é‰T$‰Ɖ$èщŅT$$…ÓûÿÿÇD$ !‹|$‰õ¾¹/‹E=ÿÿÿ?…Üéí‹u…ö„.‹M‹=ÿÿÿ?…î‹=ÿÿÿ?…ñ‹E¿=ÿÿÿ?…ô‰ÍéÇD$ !¾Î/‹|$é߉D$‰<$è9…À…ñûÿÿ1íÇD$ !¾Ò/‹T$$é%ÇD$ !¾Õ/‹|$é1íÇD$ !¾×/éûº-éaãÿÿº-éWãÿÿ‹D$(‹p…ö„q‹D$(‹h‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‹D$(‹¿=ÿÿÿ?tH‹L$(‰u‹D$(‰$è´‰l$(‹T$$é%üÿÿÇD$ "¾ö/‹l$(‹T$$‹E=ÿÿÿ?…ŽéŸè*1í…Àu‰ñè-oÿÿ…À…P‹|$¾ºU.é‰D$‰<$è‰ŅÀ…ŠìÿÿÇD$ ¾W.1í1Òé¾¥/‹|$(‹T$$éð¾Z.ÇD$ ‹|$‹E=ÿÿÿ?…ÿé‹|$(‰õ¾¦/é¼ÇD$ ¾\.馺-éâÿÿ@‰‹=ÿÿÿ?„þÿÿ@‰‹E¿=ÿÿÿ?„þÿÿ‰L$ H‰Eu‰,$茋l$ ‹T$$éŒùÿÿº-éÁáÿÿè 1í…Àu‰ùè#nÿÿ…À…M‹|$¾º€.ƒþõÿ‰D$‰4$‹ÿ<úÿè5îþÿ‰ê1Àé„öÿÿ‰T$‰ʼn$èî‰DžÀ…ßìÿÿ¾‚.ÇD$ ‹|$1ҋE=ÿÿÿ?…ýéÇD$ ¾….é´¾º«.é‚óÿÿ‰D$‰<$葉ŅÀ…äíÿÿÇD$ ¾­.é}1Ҿ°.ÇD$ ‹|$‹E=ÿÿÿ?…ŽéŸ¾ºÖ.é%óÿÿ‰T$‰ʼn$è2‰DžÀ…áîÿÿ1ҾØ.ÇD$ ‹|$‹E=ÿÿÿ?…AéRÇD$ ¾Û.éø¾º/éÆòÿÿ‰D$‰<$èÕ‰ŅÀ…äïÿÿÇD$ ¾/éÁ1Ҿ/ÇD$ ‹|$‹E=ÿÿÿ?…Òé㾺,/éiòÿÿ‰T$‰ʼn$èv‰DžÀ…áðÿÿ1Ҿ./ÇD$ ‹|$‹E=ÿÿÿ?……é–ÇD$ ¾1/é<¾ºW/é
òÿÿ‰D$‰<$è‰ŅÀ…ØòÿÿÇD$ ¾Y/é1Ҿ\/ÇD$ ‹|$‹E=ÿÿÿ?…é'‹ƒÔH;ƒÿÿÿ„s‹L$‹I;‹xÿÿÿtº#QT…V‹L$‰L$‰$èX‰D$4ƒ|$4„V‹‹ÈOÇD$HT$L‹D$4‰D$LÇ$€èӆÿÿ…À„7‰NjD$4‹=ÿÿÿ?tH‹L$4‰u‹D$4‰$èg‰ùèuÿÿ‹1í=ÿÿÿ?t
H‰u‰<$èH‹|$¾ºŠ/éèüÿÿÇD$ ¾k/1Ò1í‹=ÿÿÿ?tH‰u‰<$‰×è‰ú‹|$‰è…ít ‹E=ÿÿÿ?tH‰Eu‰T$$‰,$èä‹T$$‰T$$ƒþõÿ‰D$‹D$ ‰$‹ÿ<úÿ‰òè¾êþÿ‹T$$1Àéóÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èiébøÿÿ1ö1ÿéüÿÿ1ö1ÿéÒúÿÿ‹L$‰L$‰$è‰D$4ƒ|$4…ªþÿÿ¾ºƒ/é	ðÿÿ1Ҿ…/ÇD$ ‹|$‹l$4‹E=ÿÿÿ?…9ÿÿÿéJÿÿÿ‰Çéäÿÿ‰ÇéÞáÿÿ‰ÁéÈôÿÿ‰Çé5çÿÿ‰Áé©èÿÿUSWVƒì<è[ÃØX‹t$X‹D$T‹@K‰L$0ÇD$4ƒ|$\t*°…ö„ºƒþ…‹‰L$,‹D$\‹x…ÿ~é(ƒþ…ý‹‰L$,计‰Ńøÿ„e‹D$PMÿ}…ÉIù‹‹ÔL‹P‹RH…Ò„‰L$‰$ÿ҅À„‰D$ èÖ‰ÆÇD$$FÇD$(…À„
‰l$8ÁÿG‰<$èÌ…À„ù‰ŋƒ¨M‰l$‰D$‰4$è\…Àˆ½‹E=ÿÿÿ?tH‰Eu‰,$èÜ
‹»(L‹ƒXG‹O‰L$‰|$‰$è½…À„¸‰ŋ=ÿÿÿ?t@‰E‹ƒPN‹M‹IH…É„Á‰D$‰,$ÿщDžÀ„Ä‹E=ÿÿÿ?tH‰Eu‰,$èg
‹ƒJ‰|$‰D$‰4$è±…Àˆ‰t$‹=ÿÿÿ?t
H‰u‰<$è/
‹³ O‹D$ ‹@‹x@…ÿ„nƒc[úÿ‰$è…À…Ê‹D$‰D$‰t$‹t$ ‰4$ÿ׉Åè…í„™‹=ÿÿÿ?t
H‰u‰4$èÇ‹L$‹=ÿÿÿ?t
H‰u‰$è­‹ƒDI‹M‹IH…É„"‰D$‰,$ÿщƅÀ„%‹E=ÿÿÿ?tH‰Eu‰,$èn‹F;ƒHÿÿÿ…P‹~…ÿ„E‰ñ‹v‹=ÿÿÿ?…µ‹=ÿÿÿ?…¸‹½=ÿÿÿ?…·é¿èÉ
…À„Žýÿÿº~0鴉T$ ‹D$\‹x…ÿ~K‹«@K1ö9l°„HF9÷uñ1��‹T°Ç$‰éèþ”…À…F9÷‹D$\uÝèX
…t$X…ý‹ƒ,ÿÿÿ‹‰t$‹ˆþõÿ‰L$‹X8úÿ‰L$‹[Røÿ‰L$‹‚>úÿ‰L$‰$ÇD$è
º‚0ƒþõÿ‰D$Ç$%‹Á9úÿ雿Ô0ë1í‰|$(¿ã0‹L$ ‹=ÿÿÿ?t
H‰u‰$è…öt‹=ÿÿÿ?t
H‰u‰4$èñ
…ít‹E=ÿÿÿ?tH‰Eu‰,$èÕ
‹l$(…í‹t$$t‹E=ÿÿÿ?tH‰Eu‰,$è±
ƒþõÿ‰D$‰4$‹Á9úÿ‰úè—åþÿ1Ä<^_[]Ã@‰‹=ÿÿÿ?„Hþÿÿ@‰‹½=ÿÿÿ?t
H‰u‰$è_
‰|$0‹ƒHN‰D$4­÷؍ƒÂ4E‰,$‰ñèw€ÿÿ‰Ņÿt‹=ÿÿÿ?t
H‰u‰<$è
…í„ì‹=ÿÿÿ?t
H‰u‰4$èý	‹ƒ,N‹M‹IH…ɄɉD$‰,$ÿщƋE…ö„Ì=ÿÿÿ?tH‰Eu‰,$è¾	‹F;ƒHÿÿÿ…©‹~…ÿ„ž‰ñ‹v‹=ÿÿÿ?u‹=ÿÿÿ?u‹½=ÿÿÿ?uë*@‰‹=ÿÿÿ?tä@‰‹½=ÿÿÿ?t
H‰u‰$èS	‰|$0ÇD$4­÷؍ƒÂ4‰,$‰ñènÿÿ‰Ņÿt‹=ÿÿÿ?t
H‰u‰<$è	…í‹T$8„‹=ÿÿÿ?tH‰u‰4$‰Öèî‰ò(ƒüõÿ$‰éèzœ‹M…À„ùÿÿÿ?„.þÿÿI‰M…$þÿÿ‰,$‰Æè¯‰ðéþÿÿ‹D$\ˆñüÿÿ‹L$ ‹±‰L$,…É„ÞüÿÿO‹t$X‹T$ …ÿŽçùÿÿ‰Mƒ[Røÿ‰D$‰t$D$,‰D$D$0‰$莅Àˆ¹‹L$,é²ùÿÿ‰L$‰$è	
…À…âùÿÿ¿Æ0¾Féqýÿÿ¿Ð0ë¿Ò01íéêüÿÿ1ÿ1íé§ýÿÿ1í1ÿéªþÿÿè¨	…Àu‰ùè­bÿÿ…À…y1íÇD$$G¿Þ0é¬üÿÿ‰D$‰,$è•	‰DžÀ…<úÿÿ¿à0ÇD$$Gé„üÿÿ‹D$‰D$‰t$‹t$ ‰4$èÁ‰ŅÀ…ªúÿÿ¿í01í‹t$éRüÿÿ‰D$‰,$è;	‰ƅÀ…Ûúÿÿ¿ù0¾G‹E=ÿÿÿ?„˜üÿÿé…üÿÿèï…À„¬1í‹t$¿í0éüÿÿ¿1ë8‰D$‰,$èä‰ƋE…ö…4ýÿÿ¿1¾G=ÿÿÿ?„Aüÿÿé.üÿÿ¿'1ÇD$$G1íÇD$(‹=ÿÿÿ?…ËûÿÿéÓûÿÿ¿+1¾Gùÿÿÿ?„ýûÿÿI‰M…óûÿÿéæûÿÿºr0éBûÿÿºw0é8ûÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èAé5ÿÿÿ‰Åé¿øÿÿUSWVƒìLè[Ã8P‹L$l‹t$h‹D$dÇD$ “øH‰T$8“¨M‰T$<“4M‰T$@“XL‰T$DÇD$H‹»ÿÿÿ‰|$$‹«0ÿÿÿ‰l$(‰|$,…É„”ƒþ‡Ì°‰T$4‹”³°üõÿÚÿâ‰l$‰|$‹q…ö~SQ‰T$‹«øH1ÿ9l¹„òG9þuñ1ÿ‹T¹ƒì‰éjèƒÄ…À…·G9þ‹L$luÜè…t$htKº›1闍Nÿƒùw9‹«0ÿÿÿ‹»ÿÿÿ‹Œ‹Äüõÿىþÿá‹x‰|$,‹h‰l$(‹p‰t$$‹‰T$ éA1öŸ
L@ƒ.Vúÿ“z>úÿNЋƒ,ÿÿÿ³ˆþõÿ»{AúÿNþƒì³ÿTøÿ«‚>úÿÿt$lWQRVUÿ0è†ƒÄ ºË1ƒìƒþõÿ‹7TúÿPhIè¤ßþÿƒÄ1ÀéÙ‹x‰|$,‹h‰l$(‹p‰t$$‹‰T$ ‹Aé ‹p‰t$$‹‰T$ A‰D$‹Aé'‹h‰l$(‹p‰t$$‹‰T$ A‰D$‹A…Àºé]‹‰T$ A‰D$‹q…öŽˆ‰t$‰T$‰l$‰|$‹D$‹0…öŽŸ‹»¨M1퐐9|©tmE9îuõ1퐐‹T©ƒì‰ùj荃ąÀuFE9î‹L$luàëc‹L$lˆHþÿÿ‹D$4‹¸‰T$ …Ò„5þÿÿN‹|$‹l$…öxÿÿÿ‹»ÿÿÿ‰þé°‹L$lx"‹D$4‹4¨…öt‰t$$‹D$H‹|$‹l$‹T$ë'è…À…ꋳÿÿÿ‹L$l‹|$‹l$‹T$‹D$…ÀŽY‰t$0‰D$‰T$‰|$‹D$‹0…ö~h‹»4M1퐐9|©t2E9îuõ1퐐‹T©ƒì‰ùjè ŒƒÄ…ÀuE9î‹L$luàë$‹L$lx‹D$4‹,¨…ít‰l$(‹D$H‹|$‹T$ë#èU…À…/‹«0ÿÿÿ‹L$l‹|$‹T$‹D$‹t$0…Àލ‰t$0‰D$‰T$‰l$‹D$‹0…ö~g‹»XL1퐐9|©t2E9îuõ1퐐‹T©ƒì‰ùjèp‹ƒÄ…ÀuE9î‹L$luàë$‹L$lx‹D$4‹<¨…ÿt‰|$,‹D$H‹l$‹T$ë襅Àuy‹»ÿÿÿ‹L$l‹l$‹T$‹D$‹t$0…À‹L$`ƒìWUVè䖃ăÄL^_[]̓ÿTøÿt$ |$8‹T$4Pÿt$lVWè[‡ƒÄ…Àx‹T$ ‹t$$‹l$(‹|$,믺µ1éºüÿÿº°1é°üÿÿº©1é¦üÿÿº¢1éœüÿÿUSWVì¬è[Ã%K‹”$ȋ„$苀K‰Œ$ˆ‹¨J‰Œ$Œ‹¨M‰Œ$DŽ$”‹»ÀN‰|$|‹«ÄN‰¬$€‹³ÿÿÿ‰´$„ƒ¼$Ì„“ƒú‡¿‰L$T‹Œ“ÔüõÿÙÿá‰t$\‹Œ$̋q…öŽ~‰|$H‰l$`A1ÿ‹«€K‰D$<9l¹„oG9þuñ1ÿ‹T¹Ç$‰é莉…À…6G9þ‹Œ$ÌuÚéFƒúw0‹³ÿÿÿ‹Œ“äüõÿÙÿá‹p‰´$„‹h‰¬$€‹8‰|$|霉Ð÷ÐÁè…ҍ@‹.Vúÿ‰֍“z>úÿHы‹,ÿÿÿ‹	‰t$³{Aúÿ‰t$‰D$‰T$ƒÕbøÿ‰D$ƒ‚>úÿ‰D$‰$èiºÔ:ƒþõÿ‰D$Ç$‹Û\úÿèˆÚþÿ1Àé‘‹h‰¬$€‹8‰|$|‹Œ$̍Q‹AéJ‹p‰´$„‹h‰¬$€‹8‰|$|‹„$̋@éʉt$\‰l$`‹8‰|$|‹Œ$̍A‹qëF‹t$\鬋Œ$Ìx‹D$T‹¸…Àt
‰D$|N‰NjD$<ëèš‹Œ$̅|$H‹D$<……ö~S‰t$@‰|$H‰D$<‹0…öŽ|‹«¨J1ÿ9l¹tDG9þuõ1ÿ‹T¹Ç$‰éè·…ÀuG9þ‹Œ$ÌuÞë?‹l$`‹t$\鋌$Ìx)‹D$T‹¸…Àt‰„$€‹T$@J‰ʼnЋt$\‹|$H‹T$<ë(èèÿ‹Œ$̅t$\‹l$`‹|$H‹D$@‹T$<…1…ÀŽ©‰D$@‰|$H‰l$`‹2…ö~i‹«¨M1ÿ9l¹t0G9þuõ1ÿ‹T¹Ç$‰é臅ÀuG9þ‹Œ$ÌuÞë*x(‹D$T‹4¸…öt‰´$„‹D$@H‹l$`‹|$H‹”$Èë&è=ÿ…À…—‹³ÿÿÿ‹l$`‹|$H‹”$ȋD$@…À¹	‰t$\‹ƒP‹°Ç$ÿ´f(ƒüõÿf)D$`fD$‰D$‰|$H‰<$ÿօÀ„9	‰Nj=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰<$èøü‹ƒP‹°Ç$ÿ´f(D$`fD$‰D$‰,$ÿօ	|$`‰D$T„ö‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t
‰…À„¡‹GF„©‹»(L‹ƒXG‹O‰L$‰|$‰$èmÿ…À„		‰ŋ=ÿÿÿ?t@‰E‹|$`‹ƒN‹M‹IH…É„ 	‰D$‰,$ÿщƅÀ„#	‹E=ÿÿÿ?tH‰Eu‰,$èü‹F1í;ƒHÿÿÿ„	1ÿ‰¼$ˆ‹D$T‰„$Œ‹D$`‰„$­÷؍ŒƒÍ‰,$‰ñèrÿÿ‰D$<…ÿt‹=ÿÿÿ?t
H‰u‰<$è¦û‹|$<…ÿ„ã‹=ÿÿÿ?t
H‰u‰4$è„û‹=ÿÿÿ?t@‰‹ƒP‰<$ÿ…t$T„¸‰Nj=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰<$è7û‰|$@‹«(L‹ƒXG‹M‰L$‰l$‰$èþ…À„x‰Nj=ÿÿÿ?t@‰‹l$@‹ƒI‹O‹IH…É„}‰D$‰<$ÿы‰D$H…À„€ùÿÿÿ?t
I‰u‰<$èºú‹«(L‹ƒXG‹M‰L$‰l$‰$è›ý…À„…‰Nj=ÿÿÿ?t@‰‹l$@‹ƒäJ‹O‹IH…É„Ÿ‰D$‰<$ÿхÀ„¢‹ùÿÿÿ?tI‰u‰<$‰ÆèCú‰ð‹H1ÿ;‹Hÿÿÿ„Š1ö‰´$ˆ‰¬$Œ½÷ٍŒG‰<$‰D$P‰Áè?pÿÿ‰Džöt‹=ÿÿÿ?t
H‰u‰4$èãù…ÿ„x‹L$P‹=ÿÿÿ?t
H‰u‰$èÁù‹L$H‹A1ö;ƒHÿÿÿ„^1퉬$ˆ‰¼$Œµ÷؍ŒF‰4$‹L$Hè½oÿÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$è_ù‹=ÿÿÿ?t
H‰u‰<$èIù…ö‹¬$À„8‹L$H‹=ÿÿÿ?‹|$`t
H‰u‰$èù;³0ÿÿÿt,;³4ÿÿÿt$;³ÿÿÿt‰4$è|û…Àˆ‹ùÿÿÿ?uë&1À;³0ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰ÆèÄø‰ð…À„þ‹µ°‹=ÿÿÿ?t@‰ƒÅ‹ƒàH‹‹ÀN‹“ÿÿÿ‰T$8‰L$,‰D$0‰D$$‰D$‹D$\‰D$‹D$@‰D$ ‰|$‰t$‰l$‹ƒ|ÿÿÿ‰$ÇD$4ÇD$(ÇD$ÇD$ÿ“P…À„¹‹ùÿÿÿ?u
‹t$T‹l$@é§I‰‹l$@…u‰4$‰Æèþ÷‰ðéd‰4$èï÷‹GF…Wûÿÿ‹D$H‰$èýݜ$ ›ò„$ òD$@f.ƒ46úÿšÀ•ÁÁu
èYù…À…y
‰,$èÉüݜ$˜›ò„$˜òD$Hf.ƒ46úÿšÀ•ÁÁu
èù…À…J
òD$Hò\D$@òD$H‹»(L‹ƒXG‹O‰L$‰|$‰$è2ú…À„ωŋ=ÿÿÿ?t@‰E‹|$`‹ƒäJ‹M‹IH…É„æ‰D$‰,$ÿщƅÀ„é‹E=ÿÿÿ?tH‰Eu‰,$èØöòD$Hò$èˆ÷ÇD$Xƒ…À„Ù‹N1í;‹Hÿÿÿ‰D$<„Ú1ÿ‰¬$ˆ‰„$Œ½÷؍ŒG‰<$‰ñè¶lÿÿ‰Džít‹E=ÿÿÿ?tH‰Eu‰,$èXö‹l$<‹E=ÿÿÿ?tH‰Eu‰,$è<ö…ÿ‹¬$À„®‹=ÿÿÿ?t
H‰u‰4$èö;»0ÿÿÿt,;»4ÿÿÿt$;»ÿÿÿt‰<$èwø…ÀˆŠ‹ùÿÿÿ?uë&1À;»0ÿÿÿ”ùÿÿÿ?tI‰u‰<$‰Æè¿õ‰ð…À„v‹½°‹=ÿÿÿ?t@‰òD$@ò$èSö…À„׉D$@‰îòD$Hò$è5ö…À„܉ѯ‹ƒàH‹‹ÀN‹“ÿÿÿ‰T$8‰L$,‰D$0‰D$$‰D$‹D$\‰D$‰l$H‰l$ ‹D$@‰D$‰|$‰t$‹ƒ|ÿÿÿ‰$ÇD$4ÇD$(ÇD$ÇD$ÿ“P…À„y‹ùÿÿÿ?tI‰u‰<$‰ÇèÒô‰ø‹T$@‹
ùÿÿÿ?‹|$HtI‰
u‰$‰Æè¯ô‰ð‹‰ú1íùÿÿÿ?‹|$`uÇD$<‹t$TëI‰
‹t$Tu‰$‰Åèzô‰è1íÇD$<‹ùÿÿÿ?tI‰u‰<$‰ÇèUô‰ø…öt‹ùÿÿÿ?tI‰u‰4$‰Æè6ô‰ð…í‹|$<t‹Mùÿÿÿ?tI‰Mu‰,$‰Æèô‰ð…ÿt‹ùÿÿÿ?tI‰u‰<$‰Æèòó‰ðĬ^_[]̓þõÿ‰D$Ç$|‹Û\úÿº;é7ôÿÿ¾(;¹}ÇD$<1íé΍ƒÕbøÿ‰D$‰T$D$|‰D$„$ˆ‰$‹Œ$̋T$Tè;y…ÀˆA‹|$|‹¬$€‹´$„éøõÿÿèõ¾Ú;…À…š‰ùèNÿÿÇD$<½…9Œ„L‹|$`‰ÅéÌöÿÿ‰D$‰,$èâô‰ƅÀ…ÝöÿÿºÜ;ÇD$XŒéü‹~…ÿ„O‹N‹=ÿÿÿ?…;‹=ÿÿÿ?…>‹½=ÿÿÿ?…=éAÇD$XŒºñ;é+1í¾<¹é·è?ô¾<…Àu‰éè?Mÿÿ…À…1‹l$@¹‘錉D$‰<$è-ô‹‰D$H…À…€÷ÿÿùÿÿÿ?t
I‰u‰<$è:òƒþõÿ‰D$Ç$‘‹Û\úÿº<èÍþÿ1|$`é ýÿÿè¹óÇD$X‘1ö…Àu‰éè´Lÿÿ…À…±ÇD$P‹|$`‹l$@‹L$Hº<饉D$‰<$è’ó…À…^÷ÿÿ1öÇD$X‘º<éO‹p…ö„‹h‹ùÿÿÿ?…‹Mùÿÿÿ?…‹¿ùÿÿÿ?…é&º3<ÇD$X‘1ö‹|$`ëk‹i…í„·‹Q‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‹L$H‹¾=ÿÿÿ?t	H‰„@‰T$HéX÷ÿÿºJ<ÇD$X‘1öÇD$P‹|$`‹l$@‹L$H鱺N<ÇD$X‘ÇD$P‹l$@鱋‹ØO‹“XOÇ$è´Tÿÿ…À„‰ljÁèCUÿÿ‹¾^<=ÿÿÿ?‹l$@¹’…Šé–1ÉÇD$X“º{<‹l$@éXèò¾b;…À…׉ùèKÿÿÇD$<½…9ƒ„K‹|$`‰Åéùÿÿ‰D$‰,$èáñ‰ƅÀ…ùÿÿºd;ÇD$Xƒ1öÇD$PÇD$<‰é1í鶺g;1íÇD$<1É鯋n…í„`‹V‹Mùÿÿÿ?tA‰M‰l$P‹
ùÿÿÿ?tA‰
‰Ջ¿úÿÿÿ?…|‰î鈺|;1íÇD$<1ɋ|$`ébÇD$Xƒº€;1íÇD$<ÇD$H1öé苋ØO‹“XOÇ$è7SÿÿÇD$<…À„À‰ljÁè¾Sÿÿ‹¾;½=ÿÿÿ?¹„tÇD$<H‰u‰<$‰Ïèßî‰ùƒþõÿ‰D$‰$‹Û\úÿ‰òèÃÉþÿ‹|$`‹t$T1ÀéFúÿÿÇD$X‡º­;ÇD$<ÇD$H1ö1íë:ÇD$Xˆº·;ÇD$<ÇD$HëÇD$X†ºÁ;ÇD$<1í‹t$@‹=ÿÿÿ?tH‰u‰<$‰×è?î‰úÇD$P‹L$H…ɋ|$`t‹=ÿÿÿ?tH‰u‰$‰T$`èî‹T$`…ö‹L$Pt"‹=ÿÿÿ?tH‰u‰4$‰L$P‰Öèçí‰ò‹L$P…Ét‹=ÿÿÿ?tH‰u‰$‰ÖèÅí‰򍃝þõÿ‰D$‹D$X‰$‹Û\úÿè§Èþÿ1Àé
ùÿÿ@‰‹=ÿÿÿ?„Âúÿÿ@‰‹½=ÿÿÿ?t	H‰„œ‰ÎéoñÿÿA‰‹Mùÿÿÿ?„âûÿÿA‰M‹¿ùÿÿÿ?t
I‰u‰$è=í‰è‹l$@éóÿÿºÀ:é„íÿÿ¾E;¹€é_ùÿÿ¾O;¹éPùÿÿJ‰u‰4$èýì‰î‹D$<‹l$PéMöÿÿº»:é@íÿÿº´:é6íÿÿ‰4$‰ÎèÐìéËðÿÿ‰$‰T$Hè¿ìéóÿÿº­:éíÿÿÇD$<1�é¿ýÿÿ1íé“ðÿÿ1ÿ1öéQÿÿÿ1öéÙòÿÿ¾Z<‹l$@¹’é•ýÿÿÇD$<1�éýÿÿ1íé´õÿÿ¾Œ;1�éiýÿÿ‰Njt$Té=ñÿÿ‰Çé¯ñÿÿUSWVƒìè[Ã6‹t$8…ö…Ÿ‹t$4‹=ÿÿÿ?t@‰‹D$0‹N…É„äƒùÿ„§‹‹M‹P‹RH…Ò„¨‰L$‰$ÿ҉DžÀ„«èMî‰ŅÀ„Ћƒ¨M‰t$‰D$‰,$èýì…Àˆ³‰ø‹»dG‰D$‹@‹p@…ö„¿ƒc[úÿ‰$è}ïº=…À…Ήl$‰|$‹|$‰<$ÿ։Æèhï‰ð…ö„¹‹ùÿÿÿ?‹t$4„I‰…‰<$‰Æèë‰ð‹t$4éM‹P‹RH…Ò„ò‰L$‰$ÿ҉ŅÀ„õ‹E;ƒHÿÿÿ…¢‹}…ÿ„—‹u‹=ÿÿÿ?u‹=ÿÿÿ?u‹E¹=ÿÿÿ?u ë1@‰‹=ÿÿÿ?tã@‰‹E¹=ÿÿÿ?tH‰Eu
‰,$è{깉õ‹t$4‰|$ÇD$÷؍ƒÂ‰$‰éè‹`ÿÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰Æè.ê‰ð‹t$4…À„G‹Mùÿÿÿ?tI‰Mu‰,$‰Æèê‰ð‹t$4‹ùÿÿÿ?t{I‰uv‰4$‰Æèæé‰ðëhº=‹=ÿÿÿ?tH‰u‰<$‰×èÅé‰ú¿Ã…ít‹E=ÿÿÿ?tH‰Eu‰,$‰Õè é‰ꍃþõÿ‰D$‰<$‹êKúÿè†Äþÿ1ùÿÿÿ?u…ƒÄ^_[]É4$è
î…À„QýÿÿÇ$“üpøÿ‰ñèNn…À…5ýÿÿ1ÀëȺÕ<¿Àë˜1ÿ1Éé½þÿÿ‰L$‰$èñê‰DžÀ…Uýÿÿº=¿Ãéjÿÿÿ‰L$‰$èÌê‰ŅÀ…þÿÿºá<¿ÁéEÿÿÿº=éüþÿÿºõ<¿Á‹E=ÿÿÿ?…ÿÿÿéÿÿÿ‰l$‰|$‹|$‰<$èØì…À…býÿÿº=‹t$4éµþÿÿ‹t$4‹|$é¨þÿÿè0ê…t$4t
º=é‘þÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$è$èëڐUSWVƒìè[Ã(2‹t$8…ö…Ÿ‹t$4‹=ÿÿÿ?t@‰‹D$0‹N…É„äƒùÿ„§‹‹àM‹P‹RH…Ò„¨‰L$‰$ÿ҉DžÀ„«èmê‰ŅÀ„Ћƒ¨M‰t$‰D$‰,$èé…Àˆ³‰ø‹»dG‰D$‹@‹p@…ö„¿ƒc[úÿ‰$èëº©=…À…Ήl$‰|$‹|$‰<$ÿ։Æèˆë‰ð…ö„¹‹ùÿÿÿ?‹t$4„I‰…‰<$‰Æè9ç‰ð‹t$4éàM‹P‹RH…Ò„ò‰L$‰$ÿ҉ŅÀ„õ‹E;ƒHÿÿÿ…¢‹}…ÿ„—‹u‹=ÿÿÿ?u‹=ÿÿÿ?u‹E¹=ÿÿÿ?u ë1@‰‹=ÿÿÿ?tã@‰‹E¹=ÿÿÿ?tH‰Eu
‰,$è›æ¹‰õ‹t$4‰|$ÇD$÷؍ƒÂ‰$‰éè«\ÿÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰ÆèNæ‰ð‹t$4…À„G‹Mùÿÿÿ?tI‰Mu‰,$‰Æè%æ‰ð‹t$4‹ùÿÿÿ?t{I‰uv‰4$‰Æèæ‰ðëhº¨=‹=ÿÿÿ?tH‰u‰<$‰×èåå‰ú¿…ít‹E=ÿÿÿ?tH‰Eu‰,$‰ÕèÀå‰ꍃþõÿ‰D$‰<$‹ÖXúÿè¦Àþÿ1ùÿÿÿ?u…ƒÄ^_[]É4$è*ê…À„QýÿÿÇ$“ruøÿ‰ñènj…À…5ýÿÿ1ÀëȺj=¿ë˜1ÿ1Éé½þÿÿ‰L$‰$èç‰DžÀ…Uýÿÿº¤=¿éjÿÿÿ‰L$‰$èìæ‰ŅÀ…þÿÿºv=¿éEÿÿÿº¦=éüþÿÿºŠ=¿‹E=ÿÿÿ?…ÿÿÿéÿÿÿ‰l$‰|$‹|$‰<$èøè…À…býÿÿº©=‹t$4éµþÿÿ‹t$4‹|$é¨þÿÿèPæ…t$4t
º©=é‘þÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èDäëڐUSWVƒì\è[ÃH.‹L$|‹l$x‹D$tÇD$@“€K‰T$L“¨J‰T$P“¨M‰T$TÇD$X‹³ÿÿÿ‰t$D‰t$H…É„—ƒý‡º¨‰T$ ‹”«ôüõÿÚÿâ‰t$<‹q…ö~ZQ‰T$$‹«€K1ÿ9l¹„ÞG9þuñ1ÿ‹T¹Ç$‰éèÞl…À…¤G9þ‹L$|uÝè8å…l$xt6º>鎋³ÿÿÿƒý„[ƒýtƒýu‹p‰t$H‹h‰l$Dé@1íŸ
D‹.Vúÿ“z>úÿNы‹,ÿÿÿ‹	³ˆþõÿ»{AúÿNþ‰l$‰|$‰T$“ ~øÿ‰T$“‚>úÿ‰T$‰$‰D$è­äº2>ƒþõÿ‰D$Ç$	‹Oúÿè̽þÿ1Àéû
‹h‰l$D‹‰T$@y‹A…ÀUéõ‹p‰t$H‹h‰l$D‹‰T$@‹AéÑ‹‰T$@y‹A…À޳‰D$,‰T$(‰t$<‰|$$‹7…öŽ×‹«¨J1ÿ9l¹„¤G9þuñ1ÿ‹T¹Ç$‰éè^k…ÀurG9þ‹L$|uá鈉õ‹‰T$@‹=ÿÿÿ?…PéN‹L$|ˆ[þÿÿ‹D$ ‹¸‰T$@…Ò„Hþÿÿ‰ðH‹t$<‹|$$…ÀMÿÿÿ‹³ÿÿÿ‰õ‹=ÿÿÿ?…é‹L$|x‹D$ ‹,¸…ít‰l$D‹D$,H‹t$<‹T$(ë#è/ã…À…/‹«ÿÿÿ‹t$<‹T$(‹L$|‹D$,‹|$$…ÀŽ¥‰D$,‰T$(‰l$$‹7…ö~h‹«¨M1ÿ9l¹t1G9þuõ1ÿ‹T¹Ç$‰éèNj…ÀuG9þ‹L$|uáë$‹L$|x‹D$ ‹4¸…öt‰t$H‹D$,H‹l$$‹T$(ë#è†â…À…‹³ÿÿÿ‹l$$‹T$(‹L$|‹D$,…À¨	‹=ÿÿÿ?t@‰‰T$(‰t$<‹E=ÿÿÿ?t@‰E‹³N‹ƒXG‹N‰L$‰t$‰$èoã‰Ç;«ÿÿÿ„!…ÿ‰l$$„¤‹=ÿÿÿ?t@‰‹ƒˆN‹O‹IH…É„¸‰D$‰<$ÿÑÇD$8…À„»‰D$,‹=ÿÿÿ?t
H‰u‰<$èà‹ƒÌH‹‹XJ‹P‹RH…Ò„¥‰L$‰$ÿҋ|$(…À„¨‰D$0èZâ¾c…À„¤‰ŋƒ€K‰|$‰D$‰,$èá…Àˆ¨‹ƒ¨J‹L$$‰L$‰D$‰,$èãà…Àˆ‹³dG‹L$0‹A‹x@…ÿ„w
ƒc[úÿ‰$èeãÇD$4ß>…À…‰l$‰t$‹t$0‰4$ÿ׉ÇèMã…ÿ„ë
‹=ÿÿÿ?t
H‰u‰4$èß‹E=ÿÿÿ?tH‰Eu‰,$è÷Þ‹L$,‹A1í;ƒHÿÿÿ„:
1ö‰l$L‰|$P‹ƒÔO‰D$Tµ÷؍ƒÂPƒÎ‰4$‹L$,èðTÿÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$è’Þ‹=ÿÿÿ?t
H‰u‰<$è|Þ…ö‹l$$„
‹L$,‹=ÿÿÿ?‹|$(t	H‰„³‹=ÿÿÿ?…»‰|$ éÃ…ÿ„E‹=ÿÿÿ?t@‰‹ƒˆN‹O‹IH…É„‡‰D$‰<$ÿхÀ„ЉD$0‹=ÿÿÿ?t
H‰u‰<$èíÝ‹ƒÈH‹‹XJ‹P‹RH…Ò„‚‰L$‰$ÿ҉DžÀ„…èKà‹«ÿÿÿ¾[1ɅÀ„™‹‹€K‹t$(‰t$‰L$‰D$8‰$èèÞ…Àˆ¶‰l$$‹³dG‹G‹h@…í„]	ƒc[úÿ‰$èjá…À…e	‹D$8‰D$‰t$‰<$ÿՉÅèZá…í„Ø	‹=ÿÿÿ?t
H‰u‰<$èÝ‹L$8‹=ÿÿÿ?t
H‰u‰$èÝ‹L$0‹A1ÿ;ƒHÿÿÿ„
	1ö‰|$L‰l$P‹ƒÔO‰D$Tµ÷؍ƒÂPƒÎ‰4$‹L$0èûRÿÿ‰ƅÿt‹=ÿÿÿ?t
H‰u‰<$èŸÜ‹E=ÿÿÿ?‹T$0tH‰Eu‰,$èƒÜ‹T$0…ö‹|$(„ó‹=ÿÿÿ?t
H‰u‰$è]Ü‹=ÿÿÿ?t
H‰u‰4$èGÜ‹=ÿÿÿ?t@‰‹ƒÿÿÿ‹ùÿÿÿ?t
I‰u‰$èÜ‹‹ÔN‹=ÿÿÿ?t	@‰‹‹ÔN‰L$ ‹=ÿÿÿ?uK‰ýëxÇD$4Ý>ëÇD$4Þ>‰|$ ‰l$8‹l$$‹L$,‹T$0é4ÇD$4€>‰t$ 1ɋT$0¾[éî‰þ‰ýH‰u(ë‰$è›Û‹=ÿÿÿ?„Eýÿÿ‰|$ H‰u‰4$è}Û‰l$$‹D$p‹‹ÔL‹P‹RH…Ò„©‰L$‰$ÿҋt$<‰D$(…À„¬‹L$$‹A;ƒ$ÿÿÿ„Ô‰$èíà…À„c‹H‹»ÔN;‹$ÿÿÿ…Ž‹Pö…Ãú‡Çƒâ¹)щůHA‰$è²Û‰DžÀ„u‰è‹ùÿÿÿ?t
I‰u‰$è¿ÚÇ$èCÛ…À„Y‹T$ ‹
ùÿÿÿ?tA‰
‰P‰D$,‰xèÝ…À„@‰Njƒ¨M‰t$‰D$‰<$èËÛ…Àˆ8‹ƒJ‹‹K‰L$‰D$‰<$è§Û…l$(ˆ0‹E‹p@…ö„ƒc[úÿ‰$è/ÞÇD$4!?…À…ì‰|$‹D$,‰D$‹l$(‰,$ÿ։ÆèÞ‰ð…ö„ì‹Mùÿÿÿ?‹T$ tI‰Mu‰,$‰ÆèÊÙ‰ð‹T$ ‹l$,‹Mùÿÿÿ?tI‰Mu‰,$‰Æè¥Ù‰ð‹T$ ‹ùÿÿÿ?‹l$$„‹I‰…‚‰<$‰׉ÆèxÙ‰ð‰ú‹
ùÿÿÿ?…néz‹=ÿÿÿ?t@‰‹»ÔN‰ȋPö„=þÿÿ‹ùÿÿÿ?„]þÿÿA‰éUþÿÿÇD$4?‹L$,‹T$ ‹l$(‹E=ÿÿÿ?uë0ÇD$4 ?‹L$,‹T$ ‹E=ÿÿÿ?tH‰Eu‰,$‰ÎèáØ‰ñ‹T$ ‰T$ 1ҾfÇD$8…ÿ‹l$$tv‹=ÿÿÿ?tH‰u‰<$‰t$$‰Ή×è¢Ø‰ú‰ñ‹t$$…Òt"‹=ÿÿÿ?tH‰u‰$‰t$$‰Îèz؉ñ‹t$$‹T$8…Òt"‹=ÿÿÿ?tH‰u‰$‰t$$‰ÎèP؉ñ‹t$$‹T$ ‰ׅÉt‹=ÿÿÿ?t
H‰u‰$è*؉úƒþõÿ‰D$‰4$‹Oúÿ‰֋T$4è
³þÿ1	ò…öt‹
ùÿÿÿ?tI‰
u‰$‰Æèé׉ð‹Mùÿÿÿ?tI‰Mu‰,$‰ÆèÌ׉ðƒÄ\^_[]ÃÇD$4?1É1ÿé’þÿÿè\Ù½aÇD$ Ì>…À…͉ñèP2ÿÿ…À„¾‰Njl$$é4÷ÿÿ‰D$‰<$èAÙÇD$8…À…E÷ÿÿ¾aÇD$4Î>‹D$(‰D$ 1ɉúé­þÿÿ‰L$‰$èÙ‹|$(…À…X÷ÿÿ¾cÇD$4Ù>éÉÇD$4Û>‰|$ é-ûÿÿƒ ~øÿ‰D$‹D$x‰D$D$@‰D$D$L‰$‹T$ èž\…Àˆ¢‹T$@‹l$D‹t$H‹=ÿÿÿ?…öÿÿéöÿÿ‰L$‰$è|Ø‹t$<‰D$(…À…Tûÿÿ¾fÇD$4?‹l$$‹T$ éZþÿÿ;‹`ÿÿÿ„¥‰|$‰ʼn$èèÚéûÿÿ1ÿÇD$4?‰éé3ýÿÿÇD$4?1Éé$ýÿÿ1ÿÇD$4?éýÿÿ‰ʼnуá¸)ÈÁê¯Ѓú„oƒúþ…‰é‹E‰ÂÁêÁàE1É÷ØÑé[‰l$$èš×½ZÇD$ o>…Àu‰ñè’0ÿÿ…À…ڍƒþõÿ‰D$‰,$‹Oúÿ‹T$ 记þÿ1l$$‹T$(‹
ùÿÿÿ?…žýÿÿéªýÿÿ‰D$‰<$èU×…À…v÷ÿÿ‹«ÿÿÿÇD$4q>¾Z1ÒÇD$81ɋD$(‰D$ é‘üÿÿ‰L$‰$è׉DžÀ…{÷ÿÿ1ɾ[ÇD$4|>‹«ÿÿÿ‹D$(‰D$ ÇD$8‹T$0éwüÿÿÇD$4~>ÇD$8‹D$(‰D$ ‹T$0é,üÿÿ‰l$‰t$‰$‰Îè
Ù‰DžÀ…«õÿÿÇD$4ß>‹D$(‰D$ ‰l$8‹l$$‹L$,‰ò¾céüÿÿ‹i…í„_‹Q‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‹L$,‹¾=ÿÿÿ?…‰T$,éõÿÿ¾aÇD$4þ>‹|$(‹L$,‹=ÿÿÿ?…üÿÿéüÿÿèåÕ…À„ö‹D$(‰D$ ‰l$8‹l$$‹L$,‹T$0¾céuûÿÿ‹D$8‰D$‰t$‰<$è'؉ŅÀ…»öÿÿÇD$4>雉l$$‹y…ÿ„¹‹i‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‹D$0‹¾=ÿÿÿ?tH‹L$0‰u‹D$0‰$èÓ‰l$0‹l$$é•öÿÿ1ɾZÇD$4 >‹«ÿÿÿ‰|$ ÇD$8éÄúÿÿÇD$4>èýÔ…À„6‹D$(‰D$ ‹l$$év÷ÿÿº>éBðÿÿ‰|$‹D$,‰D$‹l$(‰,$èB×…À…!ùÿÿÇD$4!?éúùÿÿè¨Ô…À…Íùÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$è¦Òé®ùÿÿ¹ò*IÅòX@ò$èwÓéÐ÷ÿÿº>éÀïÿÿ‰ê‹E‰ÁÁéÁàEƒÀƒÑ‰$‰L$èö×éŸ÷ÿÿ‹ƒ$ÿÿÿ‹@0‰|$‰,$ÿéˆ÷ÿÿ‰T$ H‰u‹D$,‰$èUÒ‹D$ ‰D$,éhóÿÿº>éVïÿÿ1íéUóÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èíÑéëýÿÿ1ÿ1öé†þÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èÅÑé«þÿÿ‰Çé½óÿÿUSWVƒìè[ø‹L$<‹l$8‹T$4ƒ¨M‰D$ÇD$‹ƒÿÿÿ‰D$…Ét4ª…í„¡ƒýu&‹‰D$‹Qé2…í„2ƒýu‹‰D$é"1í™
‹z>úÿ“.VúÿIы‹,ÿÿÿ³ˆþõÿ»{AúÿIþƒì³Éøÿ«‚>úÿÿt$<WPRVUÿ1èáÒƒÄ º“?ƒìƒþõÿ‹ç9úÿPhièÿ«þÿƒÄ1Àé‹Q…ÒŽ¡‰t$1��M9D±t<F9òuõ1��‰ՋT±ƒì‰ljÁjèìYƒÄ…ÀuF‰ê9õ‹L$<‰øuØë"‹L$<‰êx‹D$‹°…Àt‰D$J‹l$8‹t$ë#‰׉ÎèÒ…À…õ‹ƒÿÿÿ‹l$8‰ñ‹t$‰ú…ҏ¨‹L$0‹±°‹úÿÿÿ?tB‰ƒÁ$ƒì‹»ÿÿÿ‹“€ÿÿÿWjWWjWWjWWjVPQRÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèæÏ‰ðƒÄƒÄ^_[]Áùÿÿÿ?tI‰uƒìVèÃσă썃þõÿ‹ç9úÿºÊ?Ph¨éþÿÿƒÉøÿ‰òt$|$PUVWèHUƒÄ…Àx	‹D$é/ÿÿÿº…?éUþÿÿº€?éKþÿÿUSWVƒì<è[Ã8‹T$X‹D$T‹LK‰L$,‹XM‰L$0‹¨M‰L$4ÇD$8‹³ÀN‰t$‹«ÄN‰l$‹‹ÿÿÿ‰L$ ƒ|$\„‘ƒú‡¿‰L$‰L$(‹Œ“ýõÿÙÿá‹L$\‹A…ÀŽ	‰l$Q1ÿ‹«LK‰D$‰T$$9l¹„FG9øuñ1ÿ‹T¹ƒì‰éjèÀWƒÄ…À…G9|$‹L$\uÚé#ƒúw2‹‹ÿÿÿ‰L$‹Œ“ýõÿÙÿá‹H‰L$‰L$ ‹h‰l$‹0‰t$éo‰Ð÷ÐÁè…ҍ@ƒ.Vúÿ“z>úÿHЋƒ,ÿÿÿƒì³{Aúÿ»M’øÿ«‚>úÿÿt$\VQRWUÿ0è¨ÏƒÄ ºQ@ƒìƒþõÿ‹ LúÿPh®èƨþÿƒÄ1Àé‹h‰l$‹0‰t$‹L$\Q‹Aé$‹H‰L$‰L$ ‹h‰l$‹0‰t$‹L$\‹A鵉l$‹0‰t$‹L$\Q‹Aë=‹L$\x‹D$(‹¸…Àt‰D$‹T$J‰ƉЋT$$ëèí΋L$\…D$‹T$$…ƒ…À~W‰D$‰t$‰T$$‹2…ö~v‹«XM1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éjè VƒÄ…ÀuG9þ‹L$\uàë1‹l$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$J‰ʼnЋt$‹T$$ë!èH΋L$\…l$‹t$‹D$‹T$$…Ì…À޵‰D$‰t$‰l$‹2…ö~p‹«¨M1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjèpUƒÄ…ÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$ ‹D$H‹l$‹t$‹T$Xë+èÍ…À…+‹ƒÿÿÿ‰D$‹l$‹t$‹T$X‹L$\‹D$…ÀÂ‰t$‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“àHƒì‹»ÿÿÿ‹‹„ÿÿÿWjRÿ³ÀNjÿ³\MUjRÿt$8jVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèBˉðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVè˃ă썃þõÿ‹ Lúÿºˆ@Phé2ýÿÿƒM’øÿt$|$,‰ՋT$(PUVWè PƒÄ…Àx‹t$‹l$‹D$ ‰D$éÿÿÿº=@éÚüÿÿº8@éÐüÿÿº1@éÆüÿÿº*@é¼üÿÿUSWVƒì,è[Ãh‹L$L‹|$H‹D$DÇD$ÇD$“„M‰T$ “¨M‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«„M1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjè®RƒÄ…À…¨F‰ú9÷‹L$LuØèË…|$H…V1ÿŸ
‹.Vúÿ“z>úÿNы‹,ÿÿÿ³ˆþõÿ»{AúÿNþ@ƒì³&¢øÿ«‚>úÿÿt$LWPRVUÿ1è¼ÊƒÄ ºAƒìƒþõÿ‹1OúÿPhèڣþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjèQƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#èÅÉ…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“ÀN‹»àHƒì‹«ÿÿÿ‹‹ˆÿÿÿUjWRjWRjÿ³ˆMÿt$0jVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèqljðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVèNǃă썃þõÿ‹1Oúÿº7APhgéMþÿÿƒ&¢øÿt$‰ý|$ PUVWèÓLƒÄ…Àx‹D$‰D$‹t$éÿÿÿºð@éýýÿÿºä@éóýÿÿºë@ééýÿÿUSWVƒì<è[è‹L$\‹t$X‹D$TÇD$“„M‰T$,“XM‰T$0“¨M‰T$4ÇD$8‹»ÄN‰|$‹«ÿÿÿ‰l$…É„¢ƒþ‡Ë°‰T$(‹”³$ýõÿÚÿâ‰l$$‰|$‹q…ö~aA‹«„M1ÿ‰D$ 9l¹„\G9þuñ1ÿ‹T¹ƒì‰éjè0OƒÄ…À…!G9þ‹L$\uÜè‡Ç…t$Xt<º—A鈋«ÿÿÿƒþtƒþtƒþu‹h‰l$‹x‰|$‹‰D$‰D$éD1öŸ
Lƒ.Vúÿ“z>úÿNЋƒ,ÿÿÿ³ˆþõÿ»{AúÿNþƒì³T­øÿ«‚>úÿÿt$\WQRVUÿ0èÇƒÄ º½Aƒìƒþõÿ‹`OúÿPhmè# þÿƒÄ1ÀéI‹x‰|$‹‰D$‰D$A‹Qé‹h‰l$‹x‰|$‹‰D$‰D$‹A醋‰D$‰D$A‹q…ö;éu‹L$\ˆÞþÿÿ‹D$(‹¸‰D$‰D$…À„ÇþÿÿN‹|$‹l$$‹D$ …öŽ?‰t$‰l$$‰|$‰D$ ‹0…ö~`‹«XM1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjèMƒÄ…ÀuG9þ‹L$\uàë&‹L$\x ‹D$(‹¸…Àt‰D$‹T$J‰Njl$$‹D$ ë!èÃÅ‹L$\…|$‹l$$‹T$‹D$ …´…ÒŽ ‰T$‰|$‹0…ö~g‹«¨M1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjèðLƒÄ…ÀuG9þ‹L$\uàë$‹L$\x‹D$(‹,¸…ít‰l$‹D$H‹t$X‹|$ë#è%Å…À… ‹«ÿÿÿ‹t$X‹|$‹L$\‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹ŒÿÿÿRjÿ³àHÿ³ÀNjÿ³\MWjÿ³ˆMÿt$4jVUPQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèÕ‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVè²ÂƒÄƒìƒþõÿ‹`OúÿºôAPh¼éhýÿÿƒT­øÿ‰õt$|$,‹T$(PUVWè3HƒÄ…Àx‹D$‰D$‹|$‹l$éÿÿÿºªAéýÿÿº¥AéýÿÿºžAéüüÿÿUSWVƒì<è[Ã‹L$\‹t$X‹D$TÇD$ÇD$“ôI‰T$,“ìI‰T$0“¨M‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³4ýõÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«ôI1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjè JƒÄ…À…G9þ‹L$\uÜè÷Â…t$Xt$ºSB麃þ„̃þu‹x‰|$éÁ1þœ
‹.Vúÿ“z>úÿLуð‹‹,ÿÿÿƒì³{Aúÿ»i¹øÿ«‚>úÿÿt$\VPRWUÿ1è–ÂƒÄ º{BéN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹«ìI1��9l±„¥F9÷uñ1��‹T±ƒì‰éjèIƒÄ…ÀurF9÷‹L$\uàèkÁ…À…6‹ƒ,ÿÿÿƒì‹{Aúÿ“.Vúÿ³i¹øÿ»‚>úÿjQjRVWÿ0èCÁƒÄ º]Bƒìƒþõÿ‹;úÿPhÁèašþÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjè HƒÄ…ÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#èUÀ…À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹ÿÿÿRjÿ³àHÿ³ÀNjÿ³ðIÿt$8jÿ³øIUjVWPQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè¾‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVè⽃ă썃þõÿ‹;úÿº²BPhéZþÿÿƒi¹øÿ‰õt$|$,‹T$ PUVWècCƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿºiBéþÿÿº[BéøýÿÿºdBéîýÿÿUSWVƒìLè[Ã8‹L$l‹t$h‹D$dWÀòD$ÇD$ “ôI‰T$8“ìI‰T$<“üK‰T$@“¨M‰T$DÇD$H‹»ÿÿÿ‰|$$…É„™ƒþ‡£°‰T$,‹”³DýõÿÚÿâ‰|$4‹q…ö~\A‹«ôI1ÿ‰D$(9l¹„—G9þuñ1ÿ‹T¹ƒì‰éjèÀEƒÄ…À…\G9þ‹L$luÜè¾…t$ht¾C銃þt`ƒþu	‹x‰|$$ëX1þ
‹.Vúÿ“z>úÿLуÀ‹‹,ÿÿÿƒì³{Aúÿ»‡Çøÿ«‚>úÿÿt$lVPRWUÿ1载ƒÄ ¾HCé%‹»ÿÿÿ‹H‰L$0‰L$ ‹H‰L$‰L$‹(‰l$éú‹x‰|$$‹P‰T$0‰T$ ‹P‰T$‰T$‹(‰l$‹Aélj|$4‹P‰T$‰T$‹‰D$‰D$A‰D$(‹y‰|$…ÿéN‹P‰T$0‰T$ ‹P‰T$‰T$‹(‰l$Q‹A…ÀÑél‰|$4‹‰D$‰D$A‰D$(‹y‰|$…ÿ2ëi‹L$lˆ£þÿÿ‹D$,‹¸‰D$…À„þÿÿ‰D$N‰t$‹D$(‹8…ÿ~9‹«ìI1ö9l±tLF9÷uõ1��‹T±ƒì‰éjèDƒÄ…Àu%F9÷‹L$luàè[¼…À…æ¾C¹鏋L$lxދD$,‹°‰D$…ÀtωD$ÿL$‹D$(‹8…ÿ~Q‹«üK1��9l±„·F9÷uñ1��‹T±ƒì‰éjèpCƒÄ…À…€F9÷‹L$luÜèǻ…À…H¾(C¹‹ƒ,ÿÿÿ‰D$ƒì“{Aúÿ».Vúÿ«‡Çøÿƒ‚>úÿQRjWUP‹D$(ÿ0莻ƒÄ ƒìƒþõÿ‹Núÿ‰òPh诔þÿƒÄ1ÀéS‹L$lxƒ‹D$,‹°‰D$ ‰D$0…À„lÿÿÿ‹D$H‹|$4‹l$‹T$(…ÀŽ ‰D$‰l$‹:…ÿ~g‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjèpBƒÄ…ÀuF9÷‹L$luàë$‹L$lx‹D$,‹<°…ÿt‰|$$‹D$H‹t$h‹l$ë#襺…À…:‹»ÿÿÿ‹t$h‹L$l‹l$‹D$…À½‹D$`‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹”ÿÿÿRjÿ³Lÿt$@jÿ³ðIÿt$(jÿ³øIUjVWPQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèW¸‰ðƒÄƒÄL^_[]Áùÿÿÿ?tI‰uƒìVè4¸ƒÄƒìƒþõÿ‹NúÿºCPhqé^þÿÿƒ‡Çøÿ‰õt$|$8‹T$,PUVWèµ=ƒÄ…Àx‹l$‹D$‰D$‹D$ ‰D$0‹|$$éÿÿÿ¾4Céüýÿÿ¾&Céòýÿÿ¾Céèýÿÿ¾/CéÞýÿÿUSWVƒì,è[Ãx‹L$L‹|$H‹D$DÇD$ÇD$“äI‰T$ “¨M‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«äI1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjè¾?ƒÄ…À…¨F‰ú9÷‹L$LuØè¸…|$H…V1ÿŸ
‹.Vúÿ“z>úÿNы‹,ÿÿÿ³ˆþõÿ»{AúÿNþ@ƒì³Õøÿ«‚>úÿÿt$LWPRVUÿ1è̷ƒÄ º÷Cƒìƒþõÿ‹ý]úÿPhvèêþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjè >ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#èն…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“ÀN‹»àHƒì‹«ÿÿÿ‹‹˜ÿÿÿUjWRjWRjÿ³èIÿt$0jVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æ聴‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVè^´ƒÄƒìƒþõÿ‹ý]úÿº.DPh½éMþÿÿƒÕøÿt$‰ý|$ PUVWèã9ƒÄ…Àx‹D$‰D$‹t$éÿÿÿºçCéýýÿÿºÛCéóýÿÿºâCééýÿÿUSWVƒì<è[øý‹L$\‹t$X‹D$TÇD$ÇD$“äI‰T$,“üK‰T$0“¨M‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³XýõÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«äI1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjèP<ƒÄ…À…G9þ‹L$\uÜ觴…t$Xt$ºD麃þ„̃þu‹x‰|$éÁ1þœ
‹.Vúÿ“z>úÿLуð‹‹,ÿÿÿƒì³{Aúÿ»DÞøÿ«‚>úÿÿt$\VPRWUÿ1èF´ƒÄ ºµDéN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹«üK1��9l±„¥F9÷uñ1��‹T±ƒì‰éjèÀ:ƒÄ…ÀurF9÷‹L$\uàè³…À…6‹ƒ,ÿÿÿƒì‹{Aúÿ“.Vúÿ³DÞøÿ»‚>úÿjQjRVWÿ0èó²ƒÄ º—Dƒìƒþõÿ‹MSúÿPhÂèŒþÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjèÐ9ƒÄ…ÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#è²…À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹œÿÿÿRjÿ³àHÿ³ÀNjÿ³Lÿt$8jÿ³èIUjVWPQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æ赯‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìV蒯ƒÄƒìƒþõÿ‹MSúÿºìDPhéZþÿÿƒDÞøÿ‰õt$|$,‹T$ PUVWè5ƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿº£Déþÿÿº•DéøýÿÿºžDéîýÿÿUSWVƒìè[Ãèø‹L$<‹l$8‹T$4ƒ¨M‰D$ÇD$‹ƒÿÿÿ‰D$…Ét4ª…í„¡ƒýu&‹‰D$‹Qé2…í„2ƒýu‹‰D$é"1í™
‹z>úÿ“.VúÿIы‹,ÿÿÿ³ˆþõÿ»{AúÿIþƒì³Zêøÿ«‚>úÿÿt$<WPRVUÿ1è°ƒÄ ºWEƒìƒþõÿ‹]úÿPhè/‰þÿƒÄ1Àé'‹Q…ÒŽ¡‰t$1��M9D±t<F9òuõ1��‰ՋT±ƒì‰ljÁjè7ƒÄ…ÀuF‰ê9õ‹L$<‰øuØë"‹L$<‰êx‹D$‹°…Àt‰D$J‹l$8‹t$ë#‰׉ÎèK¯…À…‹ƒÿÿÿ‹l$8‰ñ‹t$‰ú…ҏ»‰D$‹L$0‹±°‹úÿÿÿ?tB‰ƒÁ$‹»ÀN‹«àHƒì‹ƒÿÿÿ‹“ ÿÿÿPjUWjUWjUWjVÿt$@QRÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè­‰ðƒÄƒÄ^_[]Áùÿÿÿ?tI‰uƒìVèଃă썃þõÿ‹]úÿºŽEPhcéŠþÿÿƒZêøÿ‰òt$|$PUVWèe2ƒÄ…Àx	‹D$éÿÿÿºIEéBþÿÿºDEé8þÿÿUSWVƒì,è[ÃXö‹L$L‹|$H‹D$DÇD$ÇD$“äI‰T$ “¨M‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«äI1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjèž4ƒÄ…À…¨F‰ú9÷‹L$LuØèó¬…|$H…V1ÿŸ
‹.Vúÿ“z>úÿNы‹,ÿÿÿ³ˆþõÿ»{AúÿNþ@ƒì³«ôøÿ«‚>úÿÿt$LWPRVUÿ1謬ƒÄ ºFƒìƒþõÿ‹:úÿPhfèʅþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjè€3ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#赫…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“ÐN‹»àHƒì‹«ÿÿÿ‹‹¤ÿÿÿUjWRjWRjÿ³èIÿt$0jVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æèa©‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVè>©ƒÄƒìƒþõÿ‹:úÿº=FPhÓéMþÿÿƒ«ôøÿt$‰ý|$ PUVWèÃ.ƒÄ…Àx‹D$‰D$‹t$éÿÿÿºöEéýýÿÿºêEéóýÿÿºñEééýÿÿUSWVƒì<è[Øò‹L$\‹t$X‹D$TÇD$ÇD$“¨K‰T$,“K‰T$0“¨M‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³hýõÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«¨K1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjè01ƒÄ…À…G9þ‹L$\uÜ臩…t$Xt$ºœF麃þ„̃þu‹x‰|$éÁ1þœ
‹.Vúÿ“z>úÿLуð‹‹,ÿÿÿƒì³{Aúÿ»8ùÿ«‚>úÿÿt$\VPRWUÿ1è&©ƒÄ ºÄFéN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹«K1��9l±„¥F9÷uñ1��‹T±ƒì‰éjè /ƒÄ…ÀurF9÷‹L$\uàèû§…À…6‹ƒ,ÿÿÿƒì‹{Aúÿ“.Vúÿ³8ùÿ»‚>úÿjQjRVWÿ0èӧƒÄ º¦Fƒìƒþõÿ‹-<úÿPhÙèñ€þÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjè°.ƒÄ…ÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#è妅À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀƒì‹“ÿÿÿ‹‹¨ÿÿÿRjÿ³àHÿ³ÀNjÿ³Kÿt$8jÿ³¬KUjVWPQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æ蕤‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVèr¤ƒÄƒìƒþõÿ‹-<úÿºûFPh-	éZþÿÿƒ8ùÿ‰õt$|$,‹T$ PUVWèó)ƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿº²Féþÿÿº¤Féøýÿÿº­FéîýÿÿUSWVƒì,è[ÃÈí‹L$L‹|$H‹D$DÇD$ÇD$“øH‰T$ “¨M‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«øH1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjè,ƒÄ…À…¨F‰ú9÷‹L$LuØèc¤…|$H…V1ÿŸ
‹.Vúÿ“z>úÿNы‹,ÿÿÿ³ˆþõÿ»{AúÿNþ@ƒì³Dùÿ«‚>úÿÿt$LWPRVUÿ1è¤ƒÄ ºsGƒìƒþõÿ‹JMúÿPh2	è:}þÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjèð*ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#è%£…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“ÀN‹»àHƒì‹«ÿÿÿ‹‹¬ÿÿÿUjWRjWRjÿ³üHÿt$0jVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèѠ‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìV讠ƒÄƒìƒþõÿ‹JMúÿºªGPh”	éMþÿÿƒDùÿt$‰ý|$ PUVWè3&ƒÄ…Àx‹D$‰D$‹t$éÿÿÿºcGéýýÿÿºWGéóýÿÿº^GééýÿÿUSWVƒì,è[Ãê‹L$L‹|$H‹D$DÇD$ÇD$“øH‰T$ “¨M‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«øH1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjèN(ƒÄ…À…¨F‰ú9÷‹L$LuØ裠…|$H…V1ÿŸ
‹.Vúÿ“z>úÿNы‹,ÿÿÿ³ˆþõÿ»{AúÿNþ@ƒì³B#ùÿ«‚>úÿÿt$LWPRVUÿ1è\ ƒÄ º"Hƒìƒþõÿ‹üXúÿPh™	èzyþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjè0'ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#èeŸ…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“ÀN‹»àHƒì‹«ÿÿÿ‹‹°ÿÿÿUjWRjWRjÿ³üHÿt$0jVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVèă썃þõÿ‹üXúÿºYHPhü	éMþÿÿƒB#ùÿt$‰ý|$ PUVWès"ƒÄ…Àx‹D$‰D$‹t$éÿÿÿºHéýýÿÿºHéóýÿÿº
HééýÿÿUSWVƒì,è[ÃHæ‹L$L‹|$H‹D$DÇD$ÇD$“øH‰T$ “¨M‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«øH1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjèŽ$ƒÄ…À…¨F‰ú9÷‹L$LuØè㜅|$H…V1ÿŸ
‹.Vúÿ“z>úÿNы‹,ÿÿÿ³ˆþõÿ»{AúÿNþ@ƒì³81ùÿ«‚>úÿÿt$LWPRVUÿ1蜜ƒÄ ºÑHƒìƒþõÿ‹3]úÿPh
èºuþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjèp#ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#襛…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“ÀN‹»àHƒì‹«ÿÿÿ‹‹´ÿÿÿUjWRjWRjÿ³üHÿt$0jVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèQ™‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVè.™ƒÄƒìƒþõÿ‹3]úÿºIPhi
éMþÿÿƒ81ùÿt$‰ý|$ PUVW賃ąÀx‹D$‰D$‹t$éÿÿÿºÁHéýýÿÿºµHéóýÿÿº¼HééýÿÿUSWVƒì<è[Èâ‹T$X‹D$T‹LK‰L$,‹XM‰L$0‹¨M‰L$4ÇD$8‹«ÀN‰l$‹»ÄN‰|$‹‹ÿÿÿ‰L$ƒ|$\„ƒú‡½‰L$‰L$(‹Œ“xýõÿÙÿá‹L$\‹q…öŽù‰l$‰|$A1ÿ‹«LK‰D$ 9l¹„DG9þuñ1ÿ‹T¹ƒì‰éjè!ƒÄ…À…
G9þ‹L$\uÜéƒúw2‹‹ÿÿÿ‰L$‹Œ“ˆýõÿÙÿá‹H‰L$‰L$‹x‰|$‹(‰l$éa‰Ð÷ÐÁè…ҍ@ƒ.Vúÿ“z>úÿHЋƒ,ÿÿÿƒì³{Aúÿ».?ùÿ«‚>úÿÿt$\VQRWUÿ0èú˜ƒÄ ºIƒìƒþõÿ‹½MúÿPhn
èrþÿƒÄ1Àén‹x‰|$‹(‰l$‹L$\Q‹Aé‹H‰L$‰L$‹x‰|$‹(‰l$‹L$\‹A駉|$‹(‰l$‹L$\A‹që7‹L$\x‹D$(‹¸…Àt
‰D$N‰ŋD$ ëèE˜‹L$\…l$‹D$ …x…ö~O‰t$$‰l$‰D$ ‹0…ö~n‹«XM1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éj考ąÀuG9þ‹L$\uàë1‹|$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$$J‰ljЋl$‹T$ ë!託‹L$\…|$‹l$‹D$$‹T$ …É…À޵‰D$$‰l$‰|$‹2…ö~p‹«¨M1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjèЃąÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$‹D$$H‹|$‹l$‹T$Xë+èý–…À…(‹ƒÿÿÿ‰D$‹|$‹l$‹T$X‹L$\‹D$$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀƒì‹“ÿÿÿ‹‹¸ÿÿÿRjÿ³àHÿ³ÀNjÿ³\MWjÿ³PKUjVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æ襔‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìV肔ƒÄƒìƒþõÿ‹½MúÿºÆIPhÇ
éCýÿÿƒ.?ùÿt$|$,‰ՋT$(PUVWèƒÄ…Àx‹l$‹|$‹D$‰D$éÿÿÿº{IéëüÿÿºvIéáüÿÿºoIé×üÿÿºhIéÍüÿÿUSWVƒì<è[ÃÈÝ‹T$X‹D$T‹LK‰L$,‹XM‰L$0‹¨M‰L$4ÇD$8‹«ÀN‰l$‹»ÄN‰|$‹‹ÿÿÿ‰L$ƒ|$\„ƒú‡½‰L$‰L$(‹Œ“˜ýõÿÙÿá‹L$\‹q…öŽù‰l$‰|$A1ÿ‹«LK‰D$ 9l¹„DG9þuñ1ÿ‹T¹ƒì‰éjèPƒÄ…À…
G9þ‹L$\uÜéƒúw2‹‹ÿÿÿ‰L$‹Œ“¨ýõÿÙÿá‹H‰L$‰L$‹x‰|$‹(‰l$éa‰Ð÷ÐÁè…ҍ@ƒ.Vúÿ“z>úÿHЋƒ,ÿÿÿƒì³{Aúÿ»Mùÿ«‚>úÿÿt$\VQRWUÿ0è:”ƒÄ ºMJƒìƒþõÿ‹\VúÿPhÌ
èXmþÿƒÄ1Àén‹x‰|$‹(‰l$‹L$\Q‹Aé‹H‰L$‰L$‹x‰|$‹(‰l$‹L$\‹A駉|$‹(‰l$‹L$\A‹që7‹L$\x‹D$(‹¸…Àt
‰D$N‰ŋD$ ë腓‹L$\…l$‹D$ …x…ö~O‰t$$‰l$‰D$ ‹0…ö~n‹«XM1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éjèÀƒÄ…ÀuG9þ‹L$\uàë1‹|$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$$J‰ljЋl$‹T$ ë!èè’‹L$\…|$‹l$‹D$$‹T$ …É…À޵‰D$$‰l$‰|$‹2…ö~p‹«¨M1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjèƒÄ…ÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$‹D$$H‹|$‹l$‹T$Xë+è=’…À…(‹ƒÿÿÿ‰D$‹|$‹l$‹T$X‹L$\‹D$$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀƒì‹“ÿÿÿ‹‹¼ÿÿÿRjÿ³àHÿ³ÀNjÿ³\MWjÿ³PKUjVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè叉ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìV菃ă썃þõÿ‹\Vúÿº„JPhCéCýÿÿƒMùÿt$|$,‰ՋT$(PUVWèCƒÄ…Àx‹l$‹|$‹D$‰D$éÿÿÿº9Jéëüÿÿº4Jéáüÿÿº-Jé×üÿÿº&JéÍüÿÿUSWVƒì<è[ÃÙ‹T$X‹D$T‹LK‰L$,‹XM‰L$0‹¨M‰L$4ÇD$8‹«ÀN‰l$‹»ÄN‰|$‹‹ÿÿÿ‰L$ƒ|$\„ƒú‡½‰L$‰L$(‹Œ“¸ýõÿÙÿá‹L$\‹q…öŽù‰l$‰|$A1ÿ‹«LK‰D$ 9l¹„DG9þuñ1ÿ‹T¹ƒì‰éj萃ąÀ…
G9þ‹L$\uÜéƒúw2‹‹ÿÿÿ‰L$‹Œ“ÈýõÿÙÿá‹H‰L$‰L$‹x‰|$‹(‰l$éa‰Ð÷ÐÁè…ҍ@ƒ.Vúÿ“z>úÿHЋƒ,ÿÿÿƒì³{Aúÿ»0`ùÿ«‚>úÿÿt$\VQRWUÿ0èzƒÄ ºKƒìƒþõÿ‹$YúÿPhHè˜hþÿƒÄ1Àén‹x‰|$‹(‰l$‹L$\Q‹Aé‹H‰L$‰L$‹x‰|$‹(‰l$‹L$\‹A駉|$‹(‰l$‹L$\A‹që7‹L$\x‹D$(‹¸…Àt
‰D$N‰ŋD$ ëèŎ‹L$\…l$‹D$ …x…ö~O‰t$$‰l$‰D$ ‹0…ö~n‹«XM1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éjèƒÄ…ÀuG9þ‹L$\uàë1‹|$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$$J‰ljЋl$‹T$ ë!è(Ž‹L$\…|$‹l$‹D$$‹T$ …É…À޵‰D$$‰l$‰|$‹2…ö~p‹«¨M1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjèPƒÄ…ÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$‹D$$H‹|$‹l$‹T$Xë+è}…À…(‹ƒÿÿÿ‰D$‹|$‹l$‹T$X‹L$\‹D$$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀƒì‹“ÿÿÿ‹‹ÀÿÿÿRjÿ³àHÿ³ÀNjÿ³\MWjÿ³PKUjVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè%‹‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìV苃ă썃þõÿ‹$YúÿºBKPh™éCýÿÿƒ0`ùÿt$|$,‰ՋT$(PUVW胃ąÀx‹l$‹|$‹D$‰D$éÿÿÿº÷JéëüÿÿºòJéáüÿÿºëJé×üÿÿºäJéÍüÿÿUSWVƒì<è[ÃHÔ‹T$X‹D$T‹ŒK‰L$,‹œM‰L$0‹¨M‰L$4ÇD$8‹«ÀN‰l$‹»ÄN‰|$‹‹ÿÿÿ‰L$ƒ|$\„ƒú‡½‰L$‰L$(‹Œ“ØýõÿÙÿá‹L$\‹q…öŽù‰l$‰|$A1ÿ‹«ŒK‰D$ 9l¹„DG9þuñ1ÿ‹T¹ƒì‰éjèЃąÀ…
G9þ‹L$\uÜéƒúw2‹‹ÿÿÿ‰L$‹Œ“èýõÿÙÿá‹H‰L$‰L$‹x‰|$‹(‰l$éa‰Ð÷ÐÁè…ҍ@ƒ.Vúÿ“z>úÿHЋƒ,ÿÿÿƒì³{Aúÿ»©lùÿ«‚>úÿÿt$\VQRWUÿ0躊ƒÄ ºÉKƒìƒþõÿ‹¾@úÿPhžèØcþÿƒÄ1Àén‹x‰|$‹(‰l$‹L$\Q‹Aé‹H‰L$‰L$‹x‰|$‹(‰l$‹L$\‹A駉|$‹(‰l$‹L$\A‹që7‹L$\x‹D$(‹¸…Àt
‰D$N‰ŋD$ ë芋L$\…l$‹D$ …x…ö~O‰t$$‰l$‰D$ ‹0…ö~n‹«œM1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éjè@ƒÄ…ÀuG9þ‹L$\uàë1‹|$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$$J‰ljЋl$‹T$ ë!èh‰‹L$\…|$‹l$‹D$$‹T$ …É…À޵‰D$$‰l$‰|$‹2…ö~p‹«¨M1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éj萃ąÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$‹D$$H‹|$‹l$‹T$Xë+轈…À…(‹ƒÿÿÿ‰D$‹|$‹l$‹T$X‹L$\‹D$$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹ÄÿÿÿRjÿ³àHÿ³ÀNjÿ³ MWjÿ³KUjVÿt$@PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æèe†‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVèB†ƒÄƒìƒþõÿ‹¾@úÿºLPh
éCýÿÿƒ©lùÿt$|$,‰ՋT$(PUVWèÃąÀx‹l$‹|$‹D$‰D$éÿÿÿºµKéëüÿÿº°Kéáüÿÿº©Ké×üÿÿº¢KéÍüÿÿUSWVƒì,è[ÈÏ‹L$L‹|$H‹D$D“XM‰T$ “¨M‰T$$ÇD$(‹“ÄN‰T$‹³ÿÿÿ‰t$…Ét2,¸…ÿ„؃ÿ„ºƒÿuC‰l$‹p‰t$‹‰T$‹Aé䋳ÿÿÿ…ÿ„Þƒÿtƒÿu‹p‰t$‹‰T$鉸÷ÐÁèƒàþ…ÿ‹.Vúÿ“z>úÿHы‹,ÿÿÿƒì³{Aúÿ»~ùÿ«‚>úÿÿt$LVPRWUÿ1è{†ƒÄ ºyLƒìƒþõÿ‹¼=úÿPhè™_þÿƒÄ1Àé׉l$‹‰T$A‹y雋y…ÿŽ0‰l$‰t$A1ö‹«XM‰T$‰D$9l±t2F9÷uõ1��‹T±ƒì‰éjèp
ƒÄ…ÀuF9÷‹L$Luàë"‹L$Lx‹D$‹°…Àt‰D$O‰‹t$‹D$ë觅‹L$L…T$‹t$‹D$…¬…ÿŽ˜‰|$‰T$‹8…ÿ~_‹«¨M1ö9l±t2F9÷uõ1��‹T±ƒì‰éjèàƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#è……À… ‹³ÿÿÿ‹|$H‹T$‹L$L‹D$…ÀÇ‰t$‰T$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ‹“ÀN‹»àHƒì‹«ÿÿÿ‹‹ÈÿÿÿUjWRjWRjÿ³\Mÿt$4jVÿt$<PQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æ轂‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìV蚂ƒÄƒìƒþõÿ‹¼=úÿº°LPhZéÚýÿÿƒ~ùÿt$‰ý|$ ‹T$PUVWèƒÄ…Àx
‹T$‹t$éÿÿÿºhLéŠýÿÿºcLé€ýÿÿº\LévýÿÿUSWVƒì<è[ÃøË‹L$\‹t$X‹D$TÇD$ÇD$“ŒK‰T$,“XM‰T$0“¨M‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³øýõÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«ŒK1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjè
ƒÄ…À…G9þ‹L$\uÜèç‚…t$Xt$ºM麃þ„̃þu‹x‰|$éÁ1þœ
‹.Vúÿ“z>úÿLуð‹‹,ÿÿÿƒì³{Aúÿ»ªˆùÿ«‚>úÿÿt$\VPRWUÿ1膂ƒÄ º7MéN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹«XM1��9l±„¥F9÷uñ1��‹T±ƒì‰éjè	ƒÄ…ÀurF9÷‹L$\uàè[…À…6‹ƒ,ÿÿÿƒì‹{Aúÿ“.Vúÿ³ªˆùÿ»‚>úÿjQjRVWÿ0è3ƒÄ ºMƒìƒþõÿ‹åMúÿPh_èQZþÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjèƒÄ…ÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#èE€…À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹ÌÿÿÿRjÿ³àHÿ³ÀNjÿ³\Mÿt$8jÿ³KUjVWPQÿ“PƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æèõ}‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVèÒ}ƒÄƒìƒþõÿ‹åMúÿºnMPh§éZþÿÿƒªˆùÿ‰õt$|$,‹T$ PUVWèSƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿº%MéþÿÿºMéøýÿÿº MéîýÿÿUSWVì¼è[Ã%Ç‹Œ$܋´$؋„$ÔfWÀòD$tÇD$|“(K‰”$„“œK‰”$ˆ“DM‰”$Œ“¨M‰”$DŽ$”‹«ÿÿÿ‰¬$€…É„Ÿƒþ‡¬°‰T$H‹”³þõÿÚÿâ‰l$p‹q…ö~_A‹«(K1ÿ‰D$T9l¹„±G9þuñ1ÿ‹T¹Ç$‰é莅À…tG9þ‹Œ$ÜuÚèå}…´$Øt ¾ÐM鱃þtoƒþu‹h‰¬$€ëd1þ‹.Vúÿ“z>úÿLѝÀ‹‹,ÿÿÿ‹	‰t$³{Aúÿ‰t$‰T$“”ùÿ‰T$“‚>úÿ‰T$‰$‰D$èv}¾Né=‹«ÿÿÿ‹H‰L$X‰L$|‹H‰L$P‰L$x‹8‰|$té'‹h‰¬$€‹P‰T$X‰T$|‹P‰T$P‰T$x‹8‰|$t‹Aéñ‰l$p‹P‰T$P‰T$x‹‰D$L‰D$tA‰D$T‹y‰|$`…ÿéY‹P‰T$X‰T$|‹P‰T$P‰T$x‹8‰|$tQ‹A…Àìé–‰l$p‹‰D$L‰D$tA‰D$T‹y‰|$`…ÿ5ët‹Œ$܈‹þÿÿ‹D$H‹¸‰D$t‰D$L…À„tþÿÿN‰t$`‹D$T‹8…ÿ~A‹«œK1��9l±tQF9÷uõ1��‹T±Ç$‰éè®…Àu(F9÷‹Œ$ÜuÞè	|…À…D¾ÚM¸鏋Œ$ÜxۋD$H‹°‰D$x‰D$P…ÀtÈÿL$`‹D$T‹8…ÿ~N‹«DM1ö9l±„ÉF9÷uñ1��‹T±Ç$‰éè…À…ŒF9÷‹Œ$ÜuÚèu{…À…¯¾äM¸‹‹,ÿÿÿ‹	‰D$ƒ{Aúÿ‰D$ƒ.Vúÿ‰D$ƒ”ùÿ‰D$ƒ‚>úÿ‰D$‰$ÇD$è/{ƒþõÿ‰D$Ç$¬‹
Núÿ‰òèQTþÿ1Àéï
‹Œ$܈sÿÿÿ‹D$H‹°‰D$|‰D$X…À„\ÿÿÿ‹D$`H‹l$p‹|$L‹T$T…Àޝ‰D$`‰|$L‹:…ÿ~p‹«¨M1��9l±t7F9÷uõ1��‹T±Ç$‰éè…ÀuF9÷‹Œ$ÜuÞë-‹Œ$Üx$‹D$H‹,°…ít‰¬$€‹D$`H‹|$L‹´$Øë)è:z…À…΋«ÿÿÿ‹|$L‹´$؋Œ$܋D$`…À‹ƒP‹°Ç$ÿ´f(ƒüõÿf)D$`fD$‰D$‰<$ÿօÀ„7‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$èúw‰t$H‹ƒP‹°Ç$ÿ´f(D$`fD$‰D$‹D$P‰$ÿօ	D$L„ð‹úÿÿÿ?tJ‰ùÿÿÿ?t‰…Òu‰$è“w‹ƒP‹°Ç$ÿ´f(D$`fD$‰D$‹D$X‰$ÿօÀ„‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$è3w‰t$T‹t$L‹F‹L$H9A‰l$pu
‹L$TA„¾‹»(L‹ƒXG‹O‰L$‰|$‰$èïy…À„F‹ùÿÿÿ?tA‰‹“,I‹H‹IH…É„P‰T$‰lj$ÿхÀ„S‰D$`‹=ÿÿÿ?t
H‰u‰<$è™v‹»(L‹ƒXG‹O‰L$‰|$‰$èzy…À„'‰Ƌ=ÿÿÿ?t@‰‹ƒ”J‹N‹IH…É„=‰D$‰4$ÿщDžÀ„@‹=ÿÿÿ?t
H‰u‰4$è'v‹G1ö;ƒHÿÿÿ„31퉬$„‹D$H‰„$ˆ‹D$L‰„$Œµ÷؍ˆƒÎ‰4$‰ùèìþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$èºu…ö„‹=ÿÿÿ?t
H‰u‰<$èœu‹L$`‹A1í;ƒHÿÿÿ„ø
1ÿ‰¼$„‰´$ˆ­÷؍ˆE‰,$‹L$`è˜ëþÿ‰…ÿt‹=ÿÿÿ?tH‰u‰<$‰×è:u‰ú‹=ÿÿÿ?‹l$HtH‰u‰4$‰Öèu‰ò…ҋ|$`„É
‹=ÿÿÿ?‹t$LtH‰u‰<$‰×èòt‰ú;“0ÿÿÿt0;“4ÿÿÿt(;“ÿÿÿt ‰$‰×èNw‰ú…Àˆ—
‹
ùÿÿÿ?uë&1À;“0ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰Çè”t‰ø…À…l
‹»(L‹ƒXG‹O‰L$‰|$‰$èkw…À„
‹ùÿÿÿ?‰ÇtA‰‹ƒ,I‹O‹IH…É„ƒ
‰D$‰<$ÿхÀ„†
‰D$P‹=ÿÿÿ?t
H‰u‰<$èt‹³(L‹ƒXG‹N‰L$‰t$‰$èöv…À„Y
‰Nj=ÿÿÿ?t@‰‹ƒ”J‹O‹IH…É„f
‰D$‰<$ÿщƅT$P„i
‹=ÿÿÿ?t
H‰u‰<$èŸs‹F1í;ƒHÿÿÿ„`
1ÿ‰¼$„‹D$L‰„$ˆ‹D$T‰„$Œ­÷؍ˆƒÍ‰,$‰ñèéþÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰Çè3s‰ø…l$H„6
‹úÿÿÿ?‹L$PtJ‰u‰4$‰Æès‰ð‹L$P‹Q1ö;“Hÿÿÿ„"
1ÿ‰¼$„‰ʼn„$ˆµ÷؍ˆF‰4$‹L$Pèéþÿ‰ƅÿt‹=ÿÿÿ?t
H‰u‰<$è¤r‹E=ÿÿÿ?tH‰Eu‰,$èŒr…ö„ø	‹L$P‹=ÿÿÿ?‹l$Ht
H‰u‰$èfr;³0ÿÿÿt,;³4ÿÿÿt$;³ÿÿÿt‰4$èÆt…ÀˆÍ	‹ùÿÿÿ?uë&1À;³0ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æèr‰ð…À…¨	‹»(L‹ƒXG‹O‰L$‰|$‰$èåt…t$L„·	‹ùÿÿÿ?tA‰‹“,I‹H‹IH…É„½	‰T$‰lj$ÿхÀ„À	‰D$`‹=ÿÿÿ?t
H‰u‰<$è‹q‹»(L‹ƒXG‹O‰L$‰|$‰$èlt…À„	‰Ƌ=ÿÿÿ?t@‰‹ƒ,J‹N‹IH…É„¢	‰D$‰4$ÿщDžÀ„¥	‹=ÿÿÿ?t
H‰u‰4$èq‹G1ö;ƒHÿÿÿ„”	1퉬$„‹D$H‰„$ˆ‹D$T‰„$Œµ÷؍ˆƒÎ‰4$‰ùè
çþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$è¬p…ö„p	‹=ÿÿÿ?t
H‰u‰<$èŽp‹L$`‹A1í;ƒHÿÿÿ„a	1ÿ‰¼$„‰´$ˆ­÷؍ˆE‰,$‹L$`èŠæþÿ‰…ÿt‹=ÿÿÿ?tH‰u‰<$‰×è,p‰ú‹=ÿÿÿ?‹l$HtH‰u‰4$‰Öèp‰ò…Ò„6	‹L$`‹=ÿÿÿ?‹t$LtH‰u‰$‰î‰Õèâo‰ê‰õ‹t$L;“0ÿÿÿt>;“4ÿÿÿt6;“ÿÿÿt.‰$‰÷‰î‰Õè4r‰ê‰õ‰þ…Œ$Ðy!¿/P¹
é41À;“0ÿÿÿ”Œ$Љ÷‰î‰ŋ=ÿÿÿ?tH‰u‰$èfo‹Œ$Ѕí…¥‹‘°‹=ÿÿÿ?‰õt@‰ƒÁ‹ƒàH‰D$,‰D$ ‰D$‹D$p‰D$‹D$T‰D$(‰|$‰î‰l$‰T$‰L$‹ƒÐÿÿÿ‰$ÇD$0ÇD$$ÇD$‰Õÿ“0P…À„…‹Mùÿÿÿ?tI‰Mu‰,$‰ÅèÀn‰è‰õ‰þ‹Mùÿÿÿ?tI‰Mu‰,$‰ÇèŸn‰ø…öt‹ùÿÿÿ?tI‰u‰4$‰Æè€n‰ð‹L$T…Ét‹úÿÿÿ?tJ‰u‰$‰Æè]n‰ðļ^_[]É<$èxsݜ$°›ò„$°ò„$˜f.ƒ46úÿšÀ•ÁÁu
èÇo…À…e‹D$X‰$è3sݜ$¨›ò„$¨òD$Xf.ƒ46úÿšÀ•ÁÁu
è…o…À…3‹D$P‰$èñrݜ$ ›ò”$ f.“46úÿšÀ•ÁÁòT$`uèCoòT$`…À…û
ò„$˜f/ÂòL$X‡hf/ы”$Ї f.ÁšÀ•ÁÁ„׋º°‹=ÿÿÿ?t@‰ò$èím…À„ü‰ÆòD$`ò$èÓm‰D$`…À„ÿòD$Xò$è·m…À„þ‰ŋ”$ЃÂ‹ƒàH‹‹ÿÿÿ‰L$8‰D$0‰D$$‰D$‹D$p‰D$‰l$P‰l$,‹D$`‰D$ ‰t$‰|$‰T$‹ƒÐÿÿÿ‰$ÇD$4ÇD$(ÇD$ÇD$ÿ“P…À„I	‰ŋ=ÿÿÿ?t
H‰u‰<$èTl‹=ÿÿÿ?t
H‰u‰4$è>l‹L$`‹úÿÿÿ?‰ètJ‰u‰$‰Æèl‰ð‹T$P‹
ùÿÿÿ?‹t$L‹l$H„IýÿÿI‰
…@ýÿÿ‰$‰Çèðk‰øé/ýÿÿƒþõÿ‰D$Ç$ø‹
NúÿºHNéròÿÿ¹ù¾WNë
¹ú¾fNÇD$T‹l$HéG	èLm¾HO…Àu‰ùèLÆþÿ…À…»	‹l$H¹
é	‰T$‰lj$è8m…À…­ôÿÿ¹
‹l$H‰ú¿JOéëèölÇD$XMO…Àu‰ùèóÅþÿ…À…k	‹t$L‹l$H‹|$`1ҹ
鉉D$‰4$è×l‰DžÀ…Àôÿÿ1ÒÇD$XOO¹
1ÿ‹l$Hé‹o…í„£‹O‹E=ÿÿÿ?…׋=ÿÿÿ?…Û‹¾=ÿÿÿ?…ÚéÞ1ÒÇD$XdO¹
éj‹y…ÿ„V‹Q‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‹L$`‹½=ÿÿÿ?t	H‰„Z‰T$`éÀôÿÿ¹
ÇD$X{O1ҋt$L飿O¹
龋‹ÄO‹“\OÇ$èÎþÿ…À„׉ljÁè¥Îþÿ‹¾ŽO¹

éièk¾ O…Àu‰ùèÄþÿ…À…¹
éc‰D$‰<$èk…À…zõÿÿ¹
ÇD$X¢O1Òéè@k…Àu‰ñèEÄþÿ…À…Ï‹t$L‹T$P¿¥O¹
é‰D$‰<$è*k‰ƅT$P…—õÿÿÇD$`ÇD$X§O¹
‹t$Léz‹~…ÿ„‹N‹=ÿÿÿ?…U‹=ÿÿÿ?…X‹½=ÿÿÿ?…Wé[ÇD$`ÇD$X¼O¹
1ÿ‹T$Péñ‹y…ÿ„°‹i‹úÿÿÿ?…&‹Uúÿÿÿ?…)‹¾úÿÿÿ?…)é9¿ÓO¹
‹t$L‹T$P‹l$Hé¿×O¹
‰ò‹t$Léü‹‹ÄO‹“`OÇ$èTÌþÿ…À„/‰ljÁèãÌþÿ‹¾æO¹
é§èÍi¾øO…Àu‰ùèÍÂþÿ…À…^¹
顉T$‰lj$è½i…À…@öÿÿ¹
‰ú¿úOétèiÇD$XýO…Àu‰ùè|Âþÿ…À…‹t$L‹|$`1ҹ
é‰D$‰4$èdi‰DžÀ…[öÿÿ1ÒÇD$XÿO¹
1ÿé–‹o…í„h‹O‹E=ÿÿÿ?…‹=ÿÿÿ?…‹¾=ÿÿÿ?…é1ÒÇD$XP¹
‹l$H‹t$Léd‹y…ÿ„‹Q‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‹L$`‹½=ÿÿÿ?t	H‰„‰T$`éWöÿÿ¹
ÇD$X+P1ҋt$L‹|$`é(‹‹ÄO‹“dOÇ$èªÊþÿ…	õ„‰ljÁè7Ëþÿ‹¾>P¹
=ÿÿÿ?„H‰…
‰<$‰Ïè]f‰ùéü¹
‰ê‰õ‰þ¿[Péፃ”ùÿ‰D$‰t$D$t‰D$„$„‰$‹T$HèØë…Àˆø‹|$t‹D$x‰D$P‹D$|‰D$X‹¬$€é’íÿÿ@‰E‹=ÿÿÿ?„%ûÿÿ@‰‹¾=ÿÿÿ?t	H‰„‰Ïéªïÿÿ@‰‹=ÿÿÿ?„¨üÿÿ@‰‹½=ÿÿÿ?t	H‰„±‰ÎéòÿÿB‰‹Uúÿÿÿ?„×üÿÿB‰U‹¾úÿÿÿ?tJ‰u‰$‰D$`èWe‹D$`‰l$Pé[òÿÿ@‰E‹=ÿÿÿ?„îýÿÿ@‰‹¾=ÿÿÿ?t	H‰„K‰Ïéôÿÿ¾ðMéŸëÿÿ¾âMé•ëÿÿ‹‹ÄO‹“\OÇ$èüÈþÿ…À„ý‰ljÁè‹Éþÿ‹¾³N=ÿÿÿ?…O‹l$H¹
éa‹‹ÄO‹“`OÇ$è³Èþÿ…À„¾‰ljÁèBÉþÿ‹¾ÓN=ÿÿÿ?…
‹l$H¹
é‹‹ÄO‹“dOÇ$èjÈþÿ…À„‰ljÁèùÈþÿ‹¾óN=ÿÿÿ?…Ë‹l$H¹
éÏ1ÒÇD$XO¹
ÇD$`‹t$L‹l$HëTÇD$XO¹	
ÇD$`ë
ÇD$X$O¹

‹l$H1ҋ=ÿÿÿ?tH‰u‰4$‰T$P‰ÎèÂc‰ñ‹T$P…ÿ‹t$Lt"‹=ÿÿÿ?tH‰u‰<$‰T$P‰Ïè˜c‰ù‹T$P‹|$`…ÿt"‹=ÿÿÿ?tH‰u‰<$‰T$P‰Ïènc‰ù‹T$P…ҋ|$Xt‹=ÿÿÿ?tH‰u‰L$`‰$èFc‹L$`ƒþõÿ‰D$‰$‹
Núÿ‰úè(>þÿéçÇD$X.O¹
‹T$Pé!øÿÿ¾ØMé”éÿÿ‰<$‰Ïèùbéàìÿÿ‰$‰T$`èèbé^íÿÿ‰4$‰ÎèÙbéHïÿÿ‰<$‰ÏèÊbé¿ñÿÿ‰$‰T$`è¹bé=òÿÿ¾ëMé;éÿÿ¹ý¾‡N‹l$Hë@¹þ¾‘N‹l$Hë0¹ÿ¾›N‹l$Hë ¹
ë¹
ë¹
H‰‹l$H„óûÿÿƒþõÿ‰D$‰$‹
Núÿ‰òè@=þÿ‹t$L1Àé{óÿÿ1öéìÿÿ1íé ìÿÿ¾ŠO¹

ëÁ1íé†îÿÿ1öéïÿÿ¾âO¹
ë§1öéòðÿÿ1íézñÿÿ¾:P¹
덾¯Néýÿÿ¾ÏNéSýÿÿ¾ïNé’ýÿÿ‹t$Léæêÿÿ‰ÆéUëÿÿ‰Njt$LéZíÿÿ‰ÇéÇíÿÿ‹t$LéÒïÿÿ‰ÆéAðÿÿUSWVì¬è[Ãe«‹Œ$̋¼$ȋ„$ÄÇD$tÇD$p“ÈK‰T$`“XL‰T$d“¨M‰T$hÇD$l‹³ÿÿÿ‰t$x…É„ƒÿ‡²¸‰”$€‹”»þõÿÚÿâ‰t$8‹y…ÿ~ZQ‹³ÈK1í‰T$P9t©„ÛE9ïuñ1퐐‹T©Ç$‰ñèîé…À…žE9$ÌuÚèEb…¼$Èt(ºÀPé`ƒÿ„Oƒÿu‹H‰L$8‰L$xéD1ÿ‹.Vúÿ“z>úÿLÑœð‹‹,ÿÿÿ‹	‰|$³{Aúÿ‰t$‰T$“±žùÿ‰T$“‚>úÿ‰T$‰$‰D$èÎaºèPéä‹P‰T$t‹‰D$$‰D$py‹A‰T$P…ÀŽ ‰D$(‹7…öŽI‹«¨M1ÿ9l¹„G9þuñ1ÿ‹T¹Ç$‰éèÎè…À…ÏG9þ‹Œ$ÌuÚéë‹P‰T$8‰T$x‹P‰T$P‰T$t‹‰D$$‰D$p‹Aéì‰t$8‹‰D$$‰D$pA‰D$P‹q‰t$(…ö[鮋‹ÿÿÿ‰L$8‹h‰l$t‹‰D$$‰D$p鳋Œ$̈aþÿÿ‹„$€‹¨‰D$p‰D$$…À„GþÿÿO‰|$(‹D$P‹0…ö~X‹«XL1ÿ9l¹„ÆG9þuñ1ÿ‹T¹Ç$‰éèÎç…À…‰G9þ‹Œ$ÌuÚè%`…À…ƒ‹ƒ,ÿÿÿ‹‹{Aúÿ‰L$‹.Vúÿ‰L$‹±žùÿ‰L$‹‚>úÿ‰L$‰$ÇD$ÇD$èå_ºÊPƒþõÿ‰D$Ç$
‹ßYúÿè9þÿ1íéô‹Œ$̈vÿÿÿ‹„$€‹¸‰T$t…Ò„`ÿÿÿ‹D$(H‹t$8‹|$P‰T$P…Ààýÿÿ‰t$8‹l$Pëb‹Œ$Ìx$‹„$€‹¸…Àt‰D$8‰D$x‹D$(H‹¼$Èë)è5_…À…Å‹ƒÿÿÿ‰D$8‹¼$ȋŒ$̋D$(…l$PÇÇD$,ÇD$<‹ƒP‹°Ç$ÿ´f(ƒüõÿf)„$€fD$‰D$‰,$ÿ։ƉD$4…	D$(„Å
‰l$P‹=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$èÒ\ÇD$4‹~‹ƒP‹°Ç$ÿ´f(„$€fD$‰D$‹D$$‰$ÿ։D$,…l$8‰„$€„p
‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$èU\ÇD$0ÇD$,ÇD$4…ÿ‹t$(u‹„$€ƒx„‹ƒ\L‰D$‰4$ÇD$ÿ“4Pƒøÿ„
‹ƒÌK‰D$‹„$€‰$ÇD$ÿ“4Pƒøÿ„ø;«ÿÿÿ„?‹³(L‹ƒXG‹N‰L$‰t$‰$èª^…À„^
‰Nj=ÿÿÿ?t@‰‰|$,‹ƒJ‹O‹IH…É„g
‰D$‰<$ÿщƉD$<…À„j
‹=ÿÿÿ?t
H‰u‰<$èO[ÇD$,‹F1ÿ;ƒHÿÿÿ„V
1í‰|$`‹D$8‰D$d‹ƒ$ÿÿÿ‰D$h­÷؍ƒÂdƒÍ‰,$‰ñèBÑþÿ‰D$4…ÿt‹ùÿÿÿ?tI‰u‰<$‰ÇèáZ‰øÇD$,…=‡
„1
‹ùÿÿÿ?tI‰u‰4$‰Æè±Z‰ð‹úÿÿÿ?tJ‰ùÿÿÿ?t‰…Òu‰$‰ÆèˆZ‰ðÇD$4ÇD$$‹t$(ÇD$<‹»P‹H‰ŋP‰L$‰$ÿ—x‰D$8‹ƒP‹Œ$€‰L$‰t$‰l$0‰l$Ç$ÿŒ…À„S‰ljD$,;ƒÿÿÿ„e
‹ƒ„G…À„z‹O9Á„L
‹‘¬…Ò„À‹r…ö~1퐐9Dª„$
E9îuñ‹I‹@‹“,ÿÿÿ‹‰D$‰L$ƒ–\úÿ‰D$‰$èY[º'R½Ž
é˃P‹Œ$€‰L$‰t$Ç$ÿŒ…À„‰D$<‰D$$;ƒÿÿÿ„ˆ‹ƒ„G…À„^‹L$$‹I9Á„k‹‘¬…Ò„Y‹r…ö~1ÿ9Dº„BG9þuñ‹I‹@‹“,ÿÿÿ‹‰D$‰L$ƒ–\úÿ‰D$‰$è™ZºäQ½‰
ÇD$$‹t$(‹D$4…Àt‹ùÿÿÿ?tI‰u‰$‰Öè¢X‰ò‹t$(‹D$,…Àt‹ùÿÿÿ?tI‰u‰$‰Öè{X‰ò‹t$(‹D$<…Àt‹ùÿÿÿ?tI‰u‰$‰ÖèTX‰ò‹t$(ƒþõÿ‰D$‰,$‹ßYúÿè63þÿ‹L$0…É„¾‹1í‹|$$=ÿÿÿ?…¨é°‹D$P‰$è6]ݜ$ ›ò„$ òD$Pf.ƒ46úÿšÀ•ÁÁu
èˆY…À…é‹L$$èÇr‰ǃøÿu
èkY…À…Š‹ƒ\L‰D$òD$Pò$ÇD$ÿ“<Pƒøÿ„‘WÀò*NjƒÌK‰D$ò$ÇD$ÿ“<Pƒøÿ„{‰|$$;«ÿÿÿ„ó‹³(L‹ƒXG‹N‰L$‰t$‰$è+Z…À„}‰Nj=ÿÿÿ?t@‰‰|$,‹ƒJ‹O‹IH…É„†‰D$‰<$ÿщƉD$<…À„‰‹=ÿÿÿ?t
H‰u‰<$èÐV‰l$8ÇD$,‹F1ÿ;ƒHÿÿÿ„e1í‰|$`‹D$8‰D$d‹ƒ$ÿÿÿ‰D$h­÷؍ƒÂdƒÍ‰,$‰ñè¿Ìþÿ‰D$4…ÿ‰D$0t‹ùÿÿÿ?tI‰u‰<$è\V‹D$0ÇD$,…À„\‹ùÿÿÿ?tI‰u‰4$è1V‹D$0‹úÿÿÿ?tJ‰ùÿÿÿ?t‰…Òu‰$èV‹D$0ÇD$4ÇD$<‹³P‹H‰NjP‰L$‰$ÿ–x‰D$8‹G‰D$\‹„$À‹¸°‹«0J‹w‰l$‰4$èìZ…À„Û‹H‹‘ˆ…҉Á„š‰t$‰|$‰$ÿ҉D$D…„$À…‘é·1í‹D$$‰DžÀ…é‹„$À‹°°‹«0J‹~‰l$‰<$èuZ…À„‹H‹‰ˆ…É„à‰|$‰t$‰$ÿщD$@…„$À…Øéù‹=ÿÿÿ?‰L$Dt@‰‹„$À‹¸°‹ƒ$J‹w‰D$@‰D$‰4$èZ…À„‰ŋ@‹ˆˆ…Ét ‰t$‰|$‰,$ÿщD$4…À„‰ŋ@ë‹Mùÿÿÿ?tA‰M‰l$4ÇD$,;ƒHÿÿÿ…¢‹u‰t$,…ö„“‹}‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰|$4‹E¹=ÿÿÿ?tH‰Eu
‰,$èT¹‰ý‰t$`ÇD$d÷؍ƒÂd‰$‰éè,Êþÿ‰D$<…ö‹|$$t‹ùÿÿÿ?tI‰u‰4$‰ÆèÇS‰ðÇD$,…À„>‹Mùÿÿÿ?tI‰Mu‰,$‰ÆèšS‰ðÇD$4‹ùÿÿÿ?t
I‰u‰$èySÇD$<è¼X‰D$Hƒ|$8‹Œ$ÀòD$P‹t$\~ZQ‰T$@ƒÁ41í‰úÁú‰T$L‰L$‹T$L‰T$‰|$òD$‹T$@‰$‰Ïè,DòD$P‰ù‹|$$‰®E9l$8uƋD$H‰$èJX‹³O‹l$D‹E‹x@…ÿ„šƒc[úÿ‰$èÔV…À…¶‰t$‰,$ÇD$ÿ׉ÆèÄV…ö„‹E=ÿÿÿ?‹L$0tH‰Eu‰,$è€R‹L$0…ö„W‹=ÿÿÿ?tH‰u‰4$è^R‹L$0‹=ÿÿÿ?u‰͋t$(é@‰1ÿéÀ
‹ùÿÿÿ?‰D$@tA‰‹„$À‹°°‹ƒ$J‹n‰D$L‰D$‰,$èEW…À„‰Nj@‹ˆˆ…Ét ‰l$‰t$‰<$ÿщD$,…À„‰Nj@닁ùÿÿÿ?tA‰‰|$,ÇD$4;ƒHÿÿÿ…ú‹o‰l$4…í„ë‹w‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‰t$,‹¹=ÿÿÿ?tH‰u
‰<$è^Q¹‰÷‰l$`ÇD$d÷؍ƒÂd‰$‰ùèrÇþÿ‰D$<…í‹t$(t!‹Mùÿÿÿ?tI‰Mu‰,$‰ÆèQ‰ð‹t$(ÇD$4…À„-‹ùÿÿÿ?tI‰u‰<$‰ÆèÜP‰ð‹t$(ÇD$,‹ùÿÿÿ?t
I‰u‰$è·Pè’S‰D$L‹@@‹‹ÿÿÿ‹”$ÀòD$Pë
‹@…ÀtD‹8…ÿtó9Ïtï‹=ÿÿÿ?t@‰‹O‹=ÿÿÿ?t@‰‰L$D‰<$èHS‰D$\‹”$ÀòD$Pë1ÿÇD$DÇD$\B‹l$$‰éÁùƒÂ4‰T$‰L$‰l$òD$‰$è*A‰$èÒP…À„q‰ÅÇD$<‹D$L‹H@‹‰9…Àt‹ùÿÿÿ?t
I‰u‰$èÊO‹L$D…Ét‹=ÿÿÿ?t
H‰u‰$è¬O‹L$\…Ét‹=ÿÿÿ?t
H‰u‰$èŽO‹“OÇ$‹|$@‰ù膳þÿ‰ù‰Nj=ÿÿÿ?t
H‰u‰$è\O…ÿ…úÇD$$º›S½¢
ÇD$0éröÿÿ½~
ºIQÇD$0ÇD$$DŽ$€éoöÿÿÇD$0ºiQ½€
é%öÿÿº“Q½„
ÇD$$éöÿÿºœQ½…
ÇD$$éöÿÿƒ–Súÿ‰D$Ç$‹Lúÿºòè¥)þÿÇD$,º%R½Ž
éËõÿÿƒ±žùÿ‰D$‰|$D$p‰D$D$`‰$‹”$€è%ԅÀˆi‹D$p‰D$$‹l$t‹D$x‰D$8éïðÿÿèïO…À…Õ‰ñèð¨þÿ‰D$,…À…‡º¯Q½‡
éFõÿÿ‰D$‰<$èÙO‰ƉD$<…À…–òÿÿº±QÇD$$‹t$(½‡
éõÿÿ‹~‰|$,…ÿ„|‹N‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰L$<‹½=ÿÿÿ?…’‰ÎéeòÿÿÇD$$ºÆQÇD$0é¸ôÿÿ‹ƒDÿÿÿ‹‹`8úÿ‰L$‰$è5MéÇóÿÿƒ–Súÿ‰D$Ç$	‹ó[úÿºÀè?(þÿÇD$<ºâQ½‰
ÇD$$é]ôÿÿ‰ʅÒtl‹’€9Âuòël‰L$$H‰u‰4$èýL‹t$$éÀñÿÿºÖPéÊîÿÿºÈPéÀîÿÿ‹ƒDÿÿÿ‹‹`8úÿ‰L$‰$è–Léèóÿÿ1ö1Éé§øÿÿºÑPéŽîÿÿ;ƒ@ÿÿÿ…áòÿÿ‹L$$…Ét‹=ÿÿÿ?t
H‰u‰$è„L‹ƒ„M‹O‹IH…É„}‰D$‰<$ÿщƉD$,½
…D$0„n‰D$‰4$ÿ“8P‰D$<…À„c‹ùÿÿÿ?tI‰u‰4$‰ÆèL‰ðÇD$,‹ùÿÿÿ?t
I‰u‰$èýKÇD$<‹„$À‹°°‹ƒ0J‹n‰D$$‰D$‰,$èQ…À„‹H‹‰ˆ…Ét!‰l$‰t$‰$ÿщD$@…„$Àué닁ùÿÿÿ?‰D$@tA‰‹„$À‹€°‹‹$J‰D$$‹h‰L$P‰L$‰,$èžP…À„¯‰Ƌ@‹ˆˆ…Ét7‰l$‹D$$‰D$‰4$ÿщD$,…À„ƒ
‰Ƌ@ÇD$4;ƒHÿÿÿt*鋁ùÿÿÿ?tA‰‰t$,ÇD$4;ƒHÿÿÿ…ï‹N‰L$4…É„à‹n‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‰l$,‹º=ÿÿÿ?tH‰u‰4$‰ÎèžJº‰ñ‰î‰L$`ÇD$d•÷؉ՍƒÂd‰,$‰͉ñè¬Àþÿ‰é‰ʼnD$<…Ét‹=ÿÿÿ?t
H‰u‰$èJJÇD$4…턺‹=ÿÿÿ?t
H‰u‰4$è$JÇD$,‹E=ÿÿÿ?tH‰Eu‰,$èJÇD$<èGO‰D$Lƒ|$8‹”$ÀެB‰D$PƒÂ41ö‰T$$됐F;t$8‹T$$„|‹‡œ‹ ‹€˜ò‹˜‹‰ÁÁù‰T$‰L$‰D$òD$‹D$P‰$è:‹˜‹‰˜‰ÿGƒ~™1Àë%‹ŠŠ˜‹Œ‡˜ÿA@;Gpÿÿÿ‹Œ‡˜ÿA‹”‡˜‹J…ÉtȀºœt‹Š”‹I‹IŠ˜ëPƒùu$‹J;Š˜}^A‰J‹Œ‡˜‹‘‘˜덅Éx‰‹”‡˜‹lŠ;¬Š”|YÇDŠ‹”‡˜‹¬Š”)ª˜Qÿ…ɉÑÇéHÿÿÿÇB‹Œ‡˜ÿA‹Œ‡˜‹‘+‘˜‘˜éÿÿÿE‰lŠ‹”‡˜‹ŒŠŠ˜éûþÿÿ‹D$L‰$è‰M‹³O‹L$@‹A‹h@…턺ƒc[úÿ‰$èL…À…á‰t$‹t$@‰4$ÇD$ÿՉÅèÿK…í„°‹=ÿÿÿ?t
H‰u‰4$èÁG…í„‹E=ÿÿÿ?tH‰Et‹L$0‹=ÿÿÿ?u‰͋t$(ë:‰,$èŒG‹L$0‹=ÿÿÿ?tã@‰‰͋t$(=ÿÿÿ?t
H‰u‰$èbG‰ø‰DžÀt‹=ÿÿÿ?t
H‰u‰<$èDG…öt‹=ÿÿÿ?t
H‰u‰4$è*G‹Œ$€…Ét‹=ÿÿÿ?t
H‰u‰$è	G‰èĬ^_[]Ã1É1Òé^üÿÿ‰D$‰<$è·Hé{úÿÿº2R‰|$$é
îÿÿº4R‰|$$éÿíÿÿ‹ƒÿÿÿ‹‹L$$‰L$‰$èîJºARër‹ƒÿÿÿ‹‹L$P‰L$‰$èÏJÇD$,ºCRëºWR‹L$@‹½
=ÿÿÿ?‹t$(tH‰tQ‰|$$é”íÿÿ‰t$‰$ÇD$‰ÎèqJ‰ÅécþÿÿºµR½
‰|$$é`íÿÿèÒG…À„™1í‹t$@é8þÿÿ‰$‰ÖèF‰ò‹t$(‰|$$é3íÿÿºôR½ž
ÇD$$éíÿÿºýR½Ÿ
ÇD$$éíÿÿ‰ʅÒ„î‹’€9Âuîéë1í1ÉéOôÿÿèQG…À…a‰ñèR þÿ‰D$,…À…÷º¼S½¦
é¨ìÿÿ‰D$‰<$è;G‰ƉD$<…À…wîÿÿº¾SÇD$$ëw‹~‰|$,…ÿ„‹F‰D$0‹=ÿÿÿ?t@‰‹D$0‹=ÿÿÿ?t@‹L$0‰‹D$0‰D$<‹½=ÿÿÿ?t
H‰u‰4$èõD‹t$0é;îÿÿÇD$$ºÓSÇD$0‹t$(½¦
éìÿÿ‹ƒÿÿÿ‹‰l$‰$èõHÇD$$º÷S½ª
é×ëÿÿ‹ƒÿÿÿ‹‹L$@‰L$‰$èÆHÇD$4¾ùSë¾
T‹D$D‹ÇD$$=ÿÿÿ?tH‹L$D‰u‹D$D‰$èHD‰ò‹t$(½ª
éuëÿÿ‰t$‰,$ÇD$èTH‰ÆéñÿÿÇD$$ºPT½ª
é?ëÿÿ1öécñÿÿèªE…À„Î1ö‹l$DéKñÿÿºàR½œ
ÇD$$é
ëÿÿ;ƒ@ÿÿÿ…ÃêÿÿÇD$<‹»(L‹ƒXG‹O‰L$‰|$‰$èF…À„u‰ŋ=ÿÿÿ?t@‰E‰l$4‹ƒJ‹M‹IH…É„…‰D$‰,$ÿщljD$,…T$$„{‹E=ÿÿÿ?tH‰Eu‰,$è;C‹T$$‹ƒ„M‹J‹IH…É„Z‰D$‰$ÿщʼnD$4…À„]‹G1ö;ƒHÿÿÿ„g‰ù1ÿ‰t$`‰l$d‹ƒ$ÿÿÿ‰D$h½÷؍ƒÂdƒÏ‰<$‰Ïè	¹þÿ‰D$<…öt‹ùÿÿÿ?tI‰u‰4$‰Æè¨B‰ð‹Mùÿÿÿ?tI‰Mu‰,$‰Æè‹B‰ðÇD$4…t$(„5‹ùÿÿÿ?tI‰u‰<$‰Çè\B‰ø‹úÿÿÿ?„ÚçÿÿJ‰ùÿÿÿ?„Éçÿÿ‰…Ò…¿çÿÿ‰$‰Çè'B‰øé®çÿÿèËC…À…ʼnùè̜þÿ‰D$4…À…j½Š
ºïQÇD$0éIéÿÿ‰D$‰,$è­CésþÿÿºñQ½Š
ééÿÿ‰D$‰$èC‰ʼnD$4…À…£þÿÿºôQÇD$0‹t$(½Š
éøèÿÿ‹w…ö„H‰ù‹W‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰T$8‰T$,‹¿=ÿÿÿ?t
H‰u‰$èIA‹L$8éIþÿÿº	RÇD$0½Š
éèÿÿºêR½
ÇD$$éOèÿÿ‹ƒÿÿÿ‹‰l$‰$è>EºS½¢
é èÿÿ‹ƒÿÿÿ‹‹L$L‰L$‰$èEÇD$,¾Së¾'S‹D$@‹=ÿÿÿ?tH‹L$@‰u‹D$@‰$è¡@ÇD$$‰ò‹t$(½¢
éÆçÿÿÇD$4ÇD$,ÇD$<ƒþõÿ‰D$Ç$£
‹ßYúÿºFSèPþÿD$4‰D$D$,‰$T$<‹L$Lè$хÀˆÐ‹T$<‹L$,‹D$4‰„$œ‰D$‰Œ$˜‰L$‰”$”‰T$Ç$è#A…À„æ‰ÅÇ$‹t$@‰ñ‰Âèå£þÿ‰D$H‹=ÿÿÿ?tH‹L$@‰u‹D$@‰$è³?‹E=ÿÿÿ?tH‰Eu‰,$è›?ƒ|$H„•‹D$H;ƒ0ÿÿÿt2‹D$H;ƒ4ÿÿÿt&‹D$H;ƒÿÿÿt‹D$H‰$èàA‰Æë¾[Séš1ɋD$H;ƒ0ÿÿÿ”I΋D$H‹=ÿÿÿ?tH‹L$H‰u‹D$H‰$è?…öx^„$‹Œ$”è¹þÿÇD$<‹Œ$˜è¥þÿ‹Œ$œè™þÿÇD$4‹D$L‹H@‹D$\‰D$‰<$‹T$Dèfыl$8ésçÿÿ¾hS‹D$L‹H@‹D$\‰D$‰<$‹T$Dè=ÑÇD$$½¢
ÇD$0‰òéºåÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$è7>éHøÿÿÇD$,é1ðÿÿ1ÿéãÿÿÇD$4éAüÿÿ‰ù1öé?ûÿÿÇD$,饸ÿÿ1ÿéqçÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èÚ=éúÿÿ¾_SéCÿÿÿ¾dSé9ÿÿÿèœ=‹Œ$œ‰L$‹Œ$˜‰$‰K”$”èùšþÿÇD$<ÇD$,ÇD$4¾pSéïþÿÿºCRé"÷ÿÿ‰Çéâÿÿ‰Åé
úÿÿ‰ÇéwæÿÿUSWVƒì<è[ÃX‡‹L$\‹t$X‹D$TÇD$ÇD$“ÈK‰T$,“XL‰T$0“¨M‰T$4ÇD$8‹«ÿÿÿ‰l$…É„¢ƒþ‡³°‰T$$‹”³,þõÿÚÿâ‰l$‹A‰D$…À~eA‰D$(‹«ÈK1ÿ‹D$9l¹„JG9øuñ1ÿ‹T¹ƒì‰éjèàŃÄ…À…G9|$‹L$\uÚè5>…Àt$ºÉT鼃þ„̃þu‹h‰l$éÁ1þœ
‹.Vúÿ“z>úÿLуð‹‹,ÿÿÿƒì³{Aúÿ»½­ùÿ«‚>úÿÿt$\VPRWUÿ1èØ=ƒÄ ºñTéP‹p‰t$‹‰T$y‹A‰t$…À‡é(‹h‰l$‹P‰T$‰T$‹‰T$‹Aé‰l$‹‰D$ ‰D$A‰D$(‹y‰|$…ÿP颋«ÿÿÿ‹H‰L$‰L$‹‰T$éÇ‹L$\ˆòþÿÿ‹D$$‹¸‰D$…À„ßþÿÿ‰D$ ÿL$‹D$(‹8…ÿ~W‹«XL1��9l±„¥F9÷uñ1��‹T±ƒì‰éjèPăÄ…ÀurF9÷‹L$\uàè«<…À…‹ƒ,ÿÿÿƒì‹{Aúÿ“.Vúÿ³½­ùÿ»‚>úÿjQjRVWÿ0èƒ<ƒÄ ºÓTƒìƒþõÿ‹¼VúÿPh±
è¡þÿƒÄ1Àéy‹L$\x‘‹D$$‹4°‰t$…öt‚‹D$H‹l$‹T$ ‹|$(‰t$…Àަ‰D$‰T$ ‹?…ÿ~m‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjè`ÃÄ…ÀuF9÷‹L$\uàë$‹L$\x‹D$$‹,°…ít‰l$‹D$H‹t$X‹T$ ë#è•;…À…‹«ÿÿÿ‹t$X‹L$\‹T$ ‹D$…À‹D$P‹¸°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹‹Ôÿÿÿjÿ³àHÿ³ÀNjÿ³\Lÿt$$jÿ³ÌKRjjWUPQÿ“@PƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWèK9ƒÄ‰ñèÁT…Àt^‹ùÿÿÿ?tI‰uƒìV‰Æè#9‰ðƒÄƒÄ<^_[]Ã=ÿÿÿ?tH‰uƒìWè9ƒÄƒìƒþõÿ‹¼Vúÿº(UPhé9þÿÿƒì»þõÿ‹¼Vúÿº6UWh‰Çè¾þÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒ½­ùÿ‰õt$|$,‹T$$PUVWèL¾ƒÄ…Àx‹T$‹D$‰D$‹l$é±þÿÿºßTé«ýÿÿºÑTé¡ýÿÿºÚTé—ýÿÿUSWVƒì,è[Ã(‚‹L$L‹|$H‹D$D“K‰T$ “¨M‰T$$ÇD$(‹«ÄN‰l$‹“ÿÿÿ‰T$…Ét.4¸…ÿ„Ѓÿ„¶ƒÿu?‹P‰T$‹(‰l$‹Aé‹“ÿÿÿ…ÿ„úƒÿtƒÿu‹P‰T$‹(‰l$éÞ‰ø÷ÐÁèƒàþ…ÿ‹.Vúÿ“z>úÿHы‹,ÿÿÿƒì³{Aúÿ»O»ùÿ«‚>úÿÿt$LVPRWUÿ1è9ƒÄ º¯Uƒìƒþõÿ‹ZúÿPh	è=þÿƒÄ1Àé‹(‰l$A‹y髋y…ÿŽP‰t$‰l$A1ö‹«K‰T$‰D$9l±t2F9÷uõ1��‹T±ƒì‰éjèÀƒÄ…ÀuF9÷‹L$Luàë&‹L$Lx ‹D$‹°…Àt‰D$O‰ŋT$‹t$‹D$ë!èC8‹L$L…l$‹T$‹t$‹D$…
…ÿލ‰|$‰t$‰l$‹8…ÿ~g‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjèp¿ƒÄ…ÀuF9÷‹L$Luàë(‹L$Lx"‹D$‹°…Òt‰T$‹D$H‹|$H‹l$‹t$ë'è¡7…À…r‹“ÿÿÿ‹|$H‹l$‹L$L‹t$‹D$…À‰T$‹D$@‹¸°‹ùÿÿÿ?tA‰ƒÀ‹“ÀN‹³àHƒì‹‹ØÿÿÿjVRjVRj
ÿ³KUjjWÿt$@PQÿ“@PƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWèR5ƒÄ‰ñèÈP…Àt^‹ùÿÿÿ?tI‰uƒìV‰Æè*5‰ðƒÄƒÄ,^_[]Ã=ÿÿÿ?tH‰uƒìWè5ƒÄƒìƒþõÿ‹ZúÿºæUPhUé¤ýÿÿƒì»þõÿ‹ZúÿºôUWhZ‰ÇèÅþÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒO»ùÿ‰òt$‰ý|$ PUVWèUºƒÄ…Àx
‹l$‹T$éºþÿÿºžUé ýÿÿº™Uéýÿÿº’UéýÿÿUSWVƒì,è[Ã8~‹L$L‹|$H‹D$DÇD$ÇD$“øH‰T$ “¨M‰T$$ÇD$(‹«ÿÿÿ‰l$…Ét.¸…ÿtfƒÿt@ƒÿ…׋h‰l$‹‰D$‰D$‹Aéƒÿ„,ƒÿ…¬‹h‰l$é‰T$‹‰D$q‹y‰D$…ÿBéÛ‰l$‰T$‹y…ÿ~_A‰D$‹«øH1��9l±„áF9÷uñ1��‹T±ƒì‰éj耼ƒÄ…À…¦F9÷‹L$LuÜè×4…|$H…ª1ÿŸ
‹.Vúÿ“z>úÿNы‹,ÿÿÿ³ˆþõÿ»{AúÿNþ@ƒì³VÅùÿ«‚>úÿÿt$LWPRVUÿ1è4ƒÄ ºlVƒìƒþõÿ‹“]úÿPh\è®
þÿƒÄ1À郋«ÿÿÿ‹‰D$‰D$éЋL$LˆYÿÿÿ‹D$‹°‰D$…À„FÿÿÿO‹l$‹t$‰D$…ÿŽž‰|$‹>…ÿ~i‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjè`»ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹,°…ít‰l$‹D$H‹|$H‹T$ë#è•3…À…v‹«ÿÿÿ‹|$H‹L$L‹T$‹D$…À‹D$@‹¸°‹ùÿÿÿ?tA‰ƒÀ‹“ÀN‹³àHƒì‹‹ÜÿÿÿjVRjVRjÿ³üHÿt$0jjWUPQÿ“@PƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWèN1ƒÄ‰ñèÄL…Àt^‹ùÿÿÿ?tI‰uƒìV‰Æè&1‰ðƒÄƒÄ,^_[]Ã=ÿÿÿ?tH‰uƒìWè1ƒÄƒìƒþõÿ‹“]úÿº£VPhµé/þÿÿƒì»þõÿ‹“]úÿº±VWhº‰ÇèÁþÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒVÅùÿt$‰ý|$ PUVWèS¶ƒÄ…Àx‹D$‰D$‹l$é¼þÿÿº\Vé©ýÿÿºPVéŸýÿÿºWVé•ýÿÿUSWVƒì,è[Ã(z‹L$L‹|$H‹D$DÇD$ÇD$“XL‰T$ “¨M‰T$$ÇD$(‹«ÿÿÿ‰l$…Ét.¸…ÿtfƒÿt@ƒÿ…׋h‰l$‹‰D$‰D$‹Aéƒÿ„,ƒÿ…¬‹h‰l$é‰T$‹‰D$q‹y‰D$…ÿBéÛ‰l$‰T$‹y…ÿ~_A‰D$‹«XL1��9l±„áF9÷uñ1��‹T±ƒì‰éjèp¸ƒÄ…À…¦F9÷‹L$LuÜèÇ0…|$H…ª1ÿŸ
‹.Vúÿ“z>úÿNы‹,ÿÿÿ³ˆþõÿ»{AúÿNþ@ƒì³$Ñùÿ«‚>úÿÿt$LWPRVUÿ1è€0ƒÄ º)Wƒìƒþõÿ‹^TúÿPh¼èž	þÿƒÄ1À郋«ÿÿÿ‹‰D$‰D$éЋL$LˆYÿÿÿ‹D$‹°‰D$…À„FÿÿÿO‹l$‹t$‰D$…ÿŽž‰|$‹>…ÿ~i‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjèP·ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹,°…ít‰l$‹D$H‹|$H‹T$ë#è…/…À…v‹«ÿÿÿ‹|$H‹L$L‹T$‹D$…À‹D$@‹¸°‹ùÿÿÿ?tA‰ƒÀ‹“ÀN‹³àHƒì‹‹àÿÿÿjVRjVRjÿ³\Lÿt$0jjWUPQÿ“@PƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWè>-ƒÄ‰ñè´H…Àt^‹ùÿÿÿ?tI‰uƒìV‰Æè-‰ðƒÄƒÄ,^_[]Ã=ÿÿÿ?tH‰uƒìWèô,ƒÄƒìƒþõÿ‹^Túÿº`WPhóé/þÿÿƒì»þõÿ‹^TúÿºnWWhø‰Çè±þÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒ$Ñùÿt$‰ý|$ PUVWèC²ƒÄ…Àx‹D$‰D$‹l$é¼þÿÿºWé©ýÿÿº
WéŸýÿÿºWé•ýÿÿUSWVìœè[Ãv‹Œ$¼‹´$¸‹„$´WÀòD$tÇD$|“ðK‰”$„“ÔK‰”$ˆ“,L‰”$Œ“¨M‰”$DŽ$”‹«ÿÿÿ‰¬$€…É„ ƒþ‡­°‰T$`‹”³<þõÿÚÿâ‰l$T‹i…í~`A‰D$X‹³ðK1ÿ9t¹„±G9ýuñ1ÿ‹T¹Ç$‰ñè~´…À…tG9ý‹Œ$¼uÚèÕ,…´$¸t ¾ÐW鱃þtoƒþu‹h‰¬$€ëd1þ‹.Vúÿ“z>úÿLѝÀ‹‹,ÿÿÿ‹	‰t$³{Aúÿ‰t$‰T$“©Øùÿ‰T$“‚>úÿ‰T$‰$‰D$èf,¾Xé=‹«ÿÿÿ‹H‰L$P‰L$|‹H‰L$L‰L$x‹8‰|$té‹h‰¬$€‹P‰T$P‰T$|‹P‰T$L‰T$x‹8‰|$t‹Aéã‰l$T‹P‰T$L‰T$x‹‰D$\‰D$tA‰D$X‹y‰|$H…ÿéY‹P‰T$P‰T$|‹P‰T$L‰T$x‹8‰|$tQ‹A…Àì鈉l$T‹‰D$\‰D$tA‰D$X‹y‰|$H…ÿ5ët‹Œ$¼ˆ‹þÿÿ‹D$`‹¸‰D$t‰D$\…À„tþÿÿM‰l$H‹D$X‹8…ÿ~A‹³ÔK1퐐9t©tQE9ïuõ1퐐‹T©Ç$‰ñ螲…Àu(E9$¼uÞèù*…À…	¾ÚW¸鏋Œ$¼xۋD$`‹¨‰D$x‰D$L…ÀtÈÿL$H‹D$X‹8…ÿ~N‹³,L1í9t©„ÉE9ïuñ1퐐‹T©Ç$‰ñè²…À…ŒE9$¼uÚèe*…À…õ¾äW¸‹‹,ÿÿÿ‹	‰D$ƒ{Aúÿ‰D$ƒ.Vúÿ‰D$ƒ©Øùÿ‰D$ƒ‚>úÿ‰D$‰$ÇD$è*ƒþõÿ‰D$Ç$ú‹0Zúÿ‰òèAþÿ1À鋌$¼ˆsÿÿÿ‹D$`‹¨‰D$|‰D$P…À„\ÿÿÿ‹D$HH‹l$T‹|$\‹T$X…ÀŽ¡‰D$H‰|$\‹2…ö~i‹»¨M1퐐9|©t7E9îuõ1퐐‹T©Ç$‰ùèþ°…ÀuE9$¼uÞë&‹Œ$¼x‹D$`‹,¨…ít‰¬$€‹D$HH‹|$\ë"è1)…À…®‹«ÿÿÿ‹|$\‹Œ$¼‹D$H…ÀY‹ƒP‹°Ç$ÿ´(ƒüõÿ)D$`D$‰D$‰<$ÿօÀ„e‰Ɖ|$\‹=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$è÷&‰t$H‹ƒP‹°Ç$ÿ´(D$`D$‰D$‹D$L‰$ÿօÀ„‰Nj=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰<$è•&‹ƒP‹°Ç$ÿ´(D$`D$‰D$‹D$P‰$ÿօ	|$X„Í
‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$è3&‹G‹L$H9A‰t$p‰l$Tu	F„‹»(L‹ƒXG‹O‰L$‰|$‰$è÷(…À„ƒ
‰Ƌ=ÿÿÿ?t@‰‹ƒ,I‹N‹IH…É„Š
‰D$‰4$ÿхÀ„
‰D$`‹=ÿÿÿ?t
H‰u‰4$è¢%‹»(L‹ƒXG‹O‰L$‰|$‰$èƒ(…À„e
‰ŋ=ÿÿÿ?t@‰E‹ƒDK‹M‹IH…É„y
‰D$‰,$ÿхÀ„|
‰D$L‹E=ÿÿÿ?tH‰Eu‰,$è+%‹³(L‹ƒXG‹N‰L$‰t$‰$è(…À„Ž
‹ùÿÿÿ?‰ÆtA‰‹ƒI‹N‹IH…É„¢
‰D$‰4$ÿщſt…L$`„—
‹=ÿÿÿ?t
H‰u‰4$è¯$‹E1ÿ;ƒHÿÿÿ„‚
1ö‰´$„‹D$H‰„$ˆ‹D$X‰„$Œ½÷؍ˆƒÏ‰<$‰é蠚þÿ‰Džöt‹=ÿÿÿ?t
H‰u‰4$èD$…ÿ„`
‹E=ÿÿÿ?tH‰Eu‰,$è$$‹D$L‹@1ö;ƒHÿÿÿ„B
1퉬$„‰¼$ˆ‹D$p‰„$Œµ÷؍ˆƒÎ‰4$‹t$L‰ñèšþÿ…ít‹Mùÿÿÿ?tI‰Mu‰,$‰Åè²#‰è‹ùÿÿÿ?tI‰u‰<$‰Çè—#‰ø…À„
‹úÿÿÿ?‹L$`tJ‰u‰4$‰Æèp#‰ð‹L$`‹Q1í;“Hÿÿÿ„ï1ÿ‰¼$„‰Ɖ„$ˆ­÷؍ˆE‰,$‰Íèj™þÿ‰D$`…ÿt‹=ÿÿÿ?t
H‰u‰<$è#‹=ÿÿÿ?‰étH‰u
‰4$èô"‰é‹l$`…턾‹=ÿÿÿ?t
H‰u‰$èÐ";«0ÿÿÿ‹t$Ht-;«4ÿÿÿt%;«ÿÿÿt‰,$è,%…Àˆ‹Mùÿÿÿ?uë(1À;«0ÿÿÿ”Mùÿÿÿ?tI‰Mu‰,$‰Çèq"‰ø…À…o‹ƒDI‹N‹IH…É„¨‰D$‰4$ÿхÀ„«‰D$`‹»(L‹ƒXG‹O‰L$‰|$‰$è%…À„‰Ƌ=ÿÿÿ?t@‰‹ƒÔJ‹N‹IH…É„¤‰D$‰4$ÿѿw…L$`„§‹úÿÿÿ?tJ‰u‰4$‰ÆèÂ!‰ð‹L$`‹Q;“Hÿÿÿ…ß‹q…ö„Ô‹y‹úÿÿÿ?u‹úÿÿÿ?u‹½úÿÿÿ?u!ë4B‰‹úÿÿÿ?tâB‰‹½úÿÿÿ?tJ‰u‰$‰D$`èJ!‹D$`‰ù‰´$„‰lj„$ˆ­÷؍ˆE‰,$‰ÍèW—þÿ…öt‹ùÿÿÿ?tI‰u‰4$‰Æèú ‰ð‹ùÿÿÿ?tI‰u‰<$‰Æèß ‰ð…À„µ‹Mùÿÿÿ?t
I‰M„ˉD$P;ƒÿÿÿ„׋ƒˆG…À„É‹L$P‹I9Á„º‹‘¬…Ò„r‹r…ö~1ÿ9Dº„G9þuñ‹I‹@‹“,ÿÿÿ‹‰D$‰L$ƒ–\úÿ‰D$‰$èù!º©Y¿w‹l$P‹E1ö=ÿÿÿ?„é‹L$\è}@‰ՉD$`!Ѓøÿu
è«!…À…
‹L$LèZ@‰D$\‰”$˜!Ѓøÿ‹´$°u
è|!…À…í‹L$Pè+@‰׉Â!øƒøÿu‰ÖèY!‰ò‹´$°…À…ЋD$\D$`‹Œ$˜é9ÐùŒÏ
‰T$P‹Ž°‹=ÿÿÿ?t@‰‰L$L‰l$‹D$`‰$èÃ$…À„ç
‰ŋ„$˜‰D$‹D$\‰$è¢$1ö‰D$`…À„ª‰|$‹D$P‰$è„$…À„¬‰Nj´$°ƒÆ‹ƒôK‹‹ØK‹“0L‰T$4‰L$(‰D$‹D$T‰D$‰|$P‰|$0‹D$`‰D$$‰l$‹|$L‰|$‰t$‹ƒäÿÿÿ‰$ÇD$8ÇD$,ÇD$ ÇD$ÇD$ÿ“@P…À„-‰Ƌ=ÿÿÿ?t
H‰u‰<$èc‹E=ÿÿÿ?tH‰Eu‰,$èK‹L$`‹=ÿÿÿ?‹|$Pt
H‰u‰$è-‹=ÿÿÿ?‹l$pt
H‰u‰<$è‰ñèŒ9…À…W¿rºYéø‰,$‰Æèë‰ð‰D$P;ƒÿÿÿ…)ýÿÿ‹L$H‹=ÿÿÿ?t
H‰u‰$è¿‹ƒDI‹T$X‹J‹IH…É„ü‰D$‰$ÿхÀ„ÿ‰D$`‹»(L‹ƒXG‹O‰L$‰|$‰$ès …À„í‰Ƌ=ÿÿÿ?t@‰‹ƒÔJ‹N‹IH…É„
	‰D$‰4$ÿхL$`„
	‹úÿÿÿ?tJ‰u‰4$‰Æè‰ð‹L$`‹Q;“Hÿÿÿ‰D$H…=‹y…ÿ„2‹q‹úÿÿÿ?u‹úÿÿÿ?u‹½úÿÿÿ?u!ë0B‰‹úÿÿÿ?tâB‰‹½úÿÿÿ?tJ‰u‰$裋D$H‰ñ‰¼$„‰„$ˆ­÷؍ˆE‰,$‰L$`谒þÿ‰ƅÿt‹=ÿÿÿ?t
H‰u‰<$èT‹L$H‹=ÿÿÿ?‹l$pt
H‰u‰$è6…ö„.‹L$`‹=ÿÿÿ?t	H‰„މt$L;³ÿÿÿ„–‹ƒˆG…À„È	‹L$L‹I9Át}‹‘¬…Ò„
‹r…ö~1ÿ9DºtXG9þuõ‹I‹@‹“,ÿÿÿ‹‰D$‰L$ƒ–\úÿ‰D$‰$è]ºÒY¿x‹l$Lée‰$肉t$L;³ÿÿÿ…jÿÿÿ‹L$X‹=ÿÿÿ?t
H‰u‰$èX‹ƒDI‹M‹IH…ɄЉD$‰,$ÿщD$`…À„‹»(L‹ƒXG‹O‰L$‰|$‰$è…À„‡‰Ƌ=ÿÿÿ?t@‰‹ƒÔJ‹N‹IH…É„¬‰D$‰4$ÿѿy…L$`„¯‹úÿÿÿ?tJ‰u‰4$‰Æè³‰ð‹L$`‹Q;“Hÿÿÿ‰D$H…%‹q…ö„‹i‹úÿÿÿ?u‹Uúÿÿÿ?u‹¿úÿÿÿ?u#ë2B‰‹Uúÿÿÿ?táB‰U‹¿úÿÿÿ?tJ‰u‰$è8‹D$H‰鉴$„‰„$ˆ½÷؍ˆG‰<$‰ÏèGþÿ‰Ņöt‹=ÿÿÿ?t
H‰u‰4$èë‹L$H‹=ÿÿÿ?t
H‰u‰$èÑ…í„Ћ=ÿÿÿ?t
H‰u‰<$賉ï;«ÿÿÿ„
‹ƒˆG…À„‹O9Á„÷	‹‘¬…Ò„P	‹r…ö~1퐐9Dª„Ñ	E9îuñ‹I‹@‹“,ÿÿÿ‹‰D$‰L$ƒ–\úÿ‰D$‰$èùºûY‰ý¿y‹D$L‰D$X‹D$P‰D$H‹E1ö=ÿÿÿ?tH‰Eu‰,$‰Öè‰ò1��þõÿ‰D$‰<$‹0Zúÿèåóýÿ‹L$H1l$p…É…&
é@
1í1öé÷ÿÿ1í1ÿéüÿÿ¿aºKXÇD$Hë
¿bºZXÇD$XÇD$p덿cºiXÇD$pévÿÿÿ1ÿ1öé:þÿÿè…Àu‰ùèsþÿ…À…Ë
1ö¿tºYéFÿÿÿ‰D$‰4$è…À…sòÿÿ1íºY¿tÇD$Té@èÁ1ö…Àu‰ùèÄrþÿ…À…z
ÇD$T1í‹L$`¿tºYéã‰D$‰,$装À…„òÿÿ1öÇD$\Y¿tÇD$L‹E=ÿÿÿ?‹L$`tH‰Eu‰,$蘋L$`1íÇD$Tƒ|$L‹T$\…/évè!1í¿t…Àu‰ñèrþÿ…À…Ü	ÇD$T1ö‹L$`º!Yéó‰D$‰4$èéVòÿÿ‰t$T1íº#Y1öéЋu…ö„X	‹M‹=ÿÿÿ?…5‹=ÿÿÿ?…8‹E¿=ÿÿÿ?…7é<ÇD$Tº8YëS‹L$L‹i…í„	‹Q‹E=ÿÿÿ?…‹=ÿÿÿ?…‹¾=ÿÿÿ?…é1íºOYÇD$T1ö‹L$`¿té‹y…ÿ„´‹q‹úÿÿÿ?…鋁úÿÿÿ?…싽úÿÿÿ?…ëéï¿tºfY1öéèºjY¿t‹E1ö=ÿÿÿ?„ýÿÿéçüÿÿ‹‹ÄO‹“hOÇ$èðyþÿ¿u1ö…À„-‰ʼnÁèxzþÿ‹EºyY=ÿÿÿ?„¸üÿÿ¿uéšüÿÿ‰D$‰4$èo…À…Uóÿÿ¿wº‹Yé‰üÿÿè31ö…Àu‰ùè6pþÿ…À…úÇD$T1í‹L$`¿wºYéU‰D$‰4$è¿w…L$`…YóÿÿºYÇD$T1íé$º¥Y1öÇD$T‰é1í¿w鍃©Øùÿ‰D$‹„$¸‰D$D$t‰D$„$„‰$‹T$`蓚…Àˆð‹|$t‹D$x‰D$L‹D$|‰D$P‹¬$€éOíÿÿ‰D$‰$èo…À…÷ÿÿ¿xº´Y1ö‹D$P‰D$Héûÿÿè)1ö…Àu‰ùè,oþÿ…À…÷‹D$P‰D$HÇD$T1í‹L$`¿xº¶YéC‰D$‰4$è…L$`…óöÿÿ‰t$L1�Y¿xÇD$T1ö‹D$P‰D$Hé´¿xºÎY1ö‹D$P‰D$HÇD$T1í‹L$`éÝ‹ƒDÿÿÿ‹‹`8úÿ‰L$‰$èéóÿÿ‰D$‰,$è~‰D$`…À…søÿÿ¿yºÝY1ö‹D$P‰D$H‹D$L‰D$Xé„úÿÿè,1ö…Àu‰ùè/nþÿ…À…‹D$P‰D$H‹D$L‰D$XÇD$T1í‹L$`¿yºßYé>‰D$‰4$èþ¿y…L$`…QøÿÿºáYÇD$T‹D$P‰D$H‹D$L‰D$X1íéýº÷Y1ö‹D$P‰D$H‹D$L‰D$XÇD$T1í‰ù¿yéÐ@‰‹=ÿÿÿ?„Èûÿÿ@‰‹E¿=ÿÿÿ?t
H‰E„œ‰Íéýíÿÿ@‰E‹=ÿÿÿ?„èûÿÿ@‰‹¾=ÿÿÿ?t	H‰„y‰T$LéXîÿÿB‰‹úÿÿÿ?„üÿÿB‰‹½úÿÿÿ?t	J‰„U‰ñéÛîÿÿ‹ƒDÿÿÿ‹‹`8úÿ‰L$‰$èèévöÿÿ‰ʅÒ„ô‹’€9Âuîé!ôÿÿ‹ƒDÿÿÿ‹‹`8úÿ‰L$‰$è°颸ÿÿ¾ðWéréÿÿ‰ʅÒ„‹’€9ÂuîéFöÿÿ¾âWéOéÿÿ‹‹ÄO‹“hOÇ$è¦uþÿ…À„ô‰ʼnƉéè3vþÿ‹E=ÿÿÿ?…Å1ö¿lº¶Xégøÿÿ1íºÒX¿nÇD$T1ö1ɋD$L‹=ÿÿÿ?t?‰|$PH‰D$`‹D$L‹|$`‰8‹D$Lt‹|$Pë ‰$‰T$\‰l$`‰Ïè‰ù‹|$P‹l$`‹T$\…Ét"‹=ÿÿÿ?tH‰u‰$‰l$`‰Õèà‰ê‹l$`…öt‹=ÿÿÿ?tH‰u‰4$‰Ö辉ò‹L$T…Ét‹=ÿÿÿ?tH‰u‰$‰Ö蜉ò…í„“÷ÿÿ‹E=ÿÿÿ?„…÷ÿÿ¾éi÷ÿÿÇD$\ÜX¿oÇD$`鬸ÿÿÇD$\æX¿p隸ÿÿÇD$\ðX‹t$P¿m鄸ÿÿ¾ØWéÏçÿÿ‰ʅÒ„ƒ‹’€9Âuîé€;ƒ@ÿÿÿ„0òÿÿé£ïÿÿ‰,$‰ÍèúéYëÿÿ‰$‰T$Lèéé×ëÿÿ‰$‰t$`‰ÆèÖ‰ð‹L$`étìÿÿ¾ëWébçÿÿ;ƒ@ÿÿÿ„Côÿÿéëóÿÿ¿lº¶Xéÿÿÿ;ƒ@ÿÿÿ…4öÿÿ‹L$p‹=ÿÿÿ?t
H‰u‰$è{‹´$°‹®°‹E=ÿÿÿ?t@‰EƒÆ‹ƒôK‹‹ØK‹“0L‰T$,‰L$ ‰D$‹D$T‰D$‰|$(‹D$L‰D$‹D$P‰D$‰l$‰t$‹ƒäÿÿÿ‰$ÇD$0ÇD$$ÇD$ÿ“DP…À„̉ƋE=ÿÿÿ?tH‰Eu‰,$èÒ‰ñèK*…À„¸‹L$P‰L$H‹T$L‰T$X‰ý…Ét‹T$H‹
ùÿÿÿ?tI‰
u‰$‰Ç萉ø‹T$X…Òt‹
ùÿÿÿ?tI‰
u‰$‰Çèm‰ø…ít‹Mùÿÿÿ?tI‰Mu‰,$‰ÇèL‰ø…öt‹ùÿÿÿ?tI‰u‰4$‰Æè-‰ðĜ^_[]úZ‰ø¿z‰D$péÞôÿÿ‰ù¿ºZ‹D$P‰D$H‹D$L‰D$X‰L$pééôÿÿ¿gºŠXéØôÿÿ¿hº”XéÉôÿÿ¿iºžXéºôÿÿ1ÿééÿÿ1öéœéÿÿ1íéKêÿÿºuYéôÿÿº²X1ö¿léŒôÿÿ‰Æé¡çÿÿ‰Åéèÿÿ‰Æéèÿÿ‰Æédëÿÿ‰Æé	ðÿÿ‰ÆéeòÿÿUSWVƒì,è[Ã(W‹L$L‹|$H‹D$DÇD$ÇD$“XL‰T$ “¨M‰T$$ÇD$(‹«ÿÿÿ‰l$…Ét.¸…ÿtfƒÿt@ƒÿ…׋h‰l$‹‰D$‰D$‹Aéƒÿ„,ƒÿ…¬‹h‰l$é‰T$‹‰D$q‹y‰D$…ÿBéÛ‰l$‰T$‹y…ÿ~_A‰D$‹«XL1��9l±„áF9÷uñ1��‹T±ƒì‰éjèp•ƒÄ…À…¦F9÷‹L$LuÜèÇ
…|$H…ª1ÿŸ
‹.Vúÿ“z>úÿNы‹,ÿÿÿ³ˆþõÿ»{AúÿNþ@ƒì³&éùÿ«‚>úÿÿt$LWPRVUÿ1è€
ƒÄ ºžZƒìƒþõÿ‹}AúÿPhèžæýÿƒÄ1À郋«ÿÿÿ‹‰D$‰D$éЋL$LˆYÿÿÿ‹D$‹°‰D$…À„FÿÿÿO‹l$‹t$‰D$…ÿŽž‰|$‹>…ÿ~i‹«¨M1��9l±t2F9÷uõ1��‹T±ƒì‰éjèP”ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹,°…ít‰l$‹D$H‹|$H‹T$ë#è……À…v‹«ÿÿÿ‹|$H‹L$L‹T$‹D$…À‹D$@‹¸°‹ùÿÿÿ?tA‰ƒÀ‹“ÀN‹³àHƒì‹‹èÿÿÿjVRjVRjÿ³\Lÿt$0jjWUPQÿ“@PƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWè>
ƒÄ‰ñè´%…Àt^‹ùÿÿÿ?tI‰uƒìV‰Æè
‰ðƒÄƒÄ,^_[]Ã=ÿÿÿ?tH‰uƒìWèô	ƒÄƒìƒþõÿ‹}AúÿºÕZPhÒé/þÿÿƒì»þõÿ‹}AúÿºãZWh׉Çè±äýÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒ&éùÿt$‰ý|$ PUVWèCƒÄ…Àx‹D$‰D$‹l$é¼þÿÿºŽZé©ýÿÿº‚ZéŸýÿÿº‰Zé•ýÿÿUSWVìœè[ÃS‹¼$¸‹„$´ÇD$tÇD$p‹ŒK‰Œ$„‹ÔI‰Œ$ˆ‹¨M‰Œ$Œ‹œI‰Œ$‹0N‰Œ$”DŽ$˜‹“ÿÿÿ‰T$x‹«ŒN‰l$|‹‹ÈN‰Œ$€ƒ¼$¼‰L$l„­ƒÿ‡ï¸‰L$@‹Œ»PþõÿÙÿá‰l$P‰T$H‹„$¼‹p…ö~bP‹«ŒK1ÿ‰T$d‹„$¼9l¸„åG9þuê1ÿ‹„$¼‹T¸Ç$‰éèG‘…À…¯G9þuÚè¥	…¼$¸tUºJ[épOþƒùwC‹“ÿÿÿ‹Œ‹hþõÿÙÿá‹H‰L$l‰Œ$€‹h‰l$|‹P‰T$x‰T$H‹H‰L$t‹‰T$péD1ÿ
D@‹.Vúÿ“z>úÿLы‹,ÿÿÿ‹	‰|$³{Aúÿ‰t$‰T$“&õùÿ‰T$“‚>úÿ‰T$‰$‰D$è	º†[鯋h‰l$|‹H‰L$H‰L$x‹H‰L$t‹‰T$p‹„$¼p‹xé…‰T$H‹H‰L$t‹‰T$p‹„$¼p‹@‰D$(…ÀÀé…‰l$P‹H‰L$H‰L$x‹H‰L$t‹‰T$p‹„$¼p‹@‰D$(…ÀŽL‰T$4‰L$L‰t$d‹>…ÿŽê‹«œI1��‹„$¼9l°„ªF9÷uê1��‹„$¼‹T°Ç$‰é臏…Àu|F9÷uÞ阉T$H‰l$P‹‰D$4‰D$p‹„$¼H‰L$d‹x‰|$(…ÿæé;‹H‰L$l‰Œ$€‹H‰ΉL$|‹H‰L$H‰L$x‹H‰L$t‹‰T$p‹„$¼‹héx$‹D$@‹°…Àt‰D$|‹|$(O‰ŋL$L‹T$4‹t$dë!èL…L$L‹l$P‹T$4‹|$(‹t$d…[4‰|$(…ÿŽ#‰T$4‰l$P‰L$L‹>…ÿŽ„‹«0N1��‹„$¼9l°t9F9÷uî1��‹„$¼‹T°Ç$‰éèWŽ…ÀuF9÷uÞë2x0‹D$@‹°…Àt%‰„$€‹l$(M‰D$l‹L$L‹t$P‹T$4‹¼$¸ë$è……L$L‹t$P‹T$4‹¼$¸‹l$(…‡3…í‰õŽ[ƒ&õùÿ‰D$‰|$D$p‰D$„$„‰$‹Œ$¼‹T$@è<Š…Àˆ2‹T$p‹L$t‹D$x‰D$H‹l$|‹„$€‰D$léÿˆPüÿÿ‹D$@‹¸‰D$p…À„=üÿÿ‰D$4N‰t$(‹D$d‹8…ÿ~Z‹«ÔI1��‹„$¼9l°„´F9÷uê1��‹„$¼‹T°Ç$‰é荅À…‚F9÷uÚèu…À…3‹ƒ,ÿÿÿ‹‹{Aúÿ‰L$‹.Vúÿ‰L$‹&õùÿ‰L$‹‚>úÿ‰L$‰$ÇD$ÇD$è5ºT[ƒþõÿ‰D$Ç$ڍ‹'=úÿèTÞýÿ1íéE0x‹D$@‹°‰L$t…É„nÿÿÿ‹D$(H‹l$P‹T$4‹t$d‰D$(…ÀŽÊ‰T$4‰l$P‰L$L‰t$d‹>…ÿ~}‹«¨M1��‹„$¼9l°t9F9÷uî1��‹„$¼‹T°Ç$‰éè÷‹…ÀuF9÷uÞë$x"‹D$@‹°…Àt‰D$H‰D$x‹D$(H‹L$L‹T$4ë#è3…À…)2‹ƒÿÿÿ‰D$H‹L$L‹T$4‹D$(‹t$d‰D$(…À´ûÿÿ‹l$P‹=ÿÿÿ?t@‰‰T$4‹=ÿÿÿ?t@‰‰L$LÇ$è•…À„h‹“ N‹
ùÿÿÿ?‰l$Pt	A‰
‹“ N‹H‰‹³@L‰Åè~ÇD$\Ê[ÇD$<a…	l$(„M‰NjƒXG‰l$‰|$‰D$‰4$ÇD$èN‰Ƌ=ÿÿÿ?t
H‰u‰<$è–…ö„	‹L$(‹=ÿÿÿ?t
H‰u‰$èt‹“ N‰ñèÇÖýÿ‰D$d…À„-‹D$d‹=ÿÿÿ?t'H‹T$d‰
ùÿÿÿ?t‹L$d‰…Àu‹D$d‰$è'‹=ÿÿÿ?t
H‰u‰4$苳(L‹ƒXG‹N‰L$‰t$‰$èò…À„'‹ùÿÿÿ?tA‰‹“8I‹H‹IH…ɉD$(„e‰T$‰$ÿщƅT$4„h‹L$(‹=ÿÿÿ?tH‰u‰$蔋T$4‰÷‹F1í;ƒHÿÿÿ„V1ö‰´$„‰”$ˆ­÷؍ˆE‰,$‰ý‰ùèŽvþÿ‰Džöt‹=ÿÿÿ?t
H‰u‰4$è2…ÿ„D‹E=ÿÿÿ?tH‰Et‹L$4‹=ÿÿÿ?t$H‰u‰$èë‰,$èöÿ‹L$4‹=ÿÿÿ?u܋³(L‹ƒXG‹N‰L$‰t$‰$èÊ…À„ö‰ŋ=ÿÿÿ?t@‰E‹ƒ8I‹M‹IH…É„2‰D$‰,$ÿщD$(…T$L„5‰|$@‹E=ÿÿÿ?tH‰Eu‰,$èjÿ‹T$L‹D$(‹@1ÿ;ƒHÿÿÿ„.1ö‰´$„‰”$ˆ½÷؍ˆG‰<$‹L$(èbuþÿ‰Ņöt‹=ÿÿÿ?t
H‰u‰4$èÿ…í‹|$@„/‹T$(‹=ÿÿÿ?‹L$LtH‰t‹=ÿÿÿ?t$H‰u‰$èÎþë‰$èÄþ‹L$L‹=ÿÿÿ?u܋D$H;ƒÿÿÿtc‹HöAW…Ó‹ƒ”G9Á„Å‹‘¬…Ò„§‹J…É~1��9D²„›F9ñuñ‹L$H‹=ÿÿÿ?t@‰‰L$hé®Ç$è¬ÿ‰D$h…À…–º/\ÇD$h‰l$L½gÇD$HÇD$DÇD$`ÇD$(ÇD$0ÇD$,é­.‹‰€9Át…Éuò;ƒ@ÿÿÿ…jÿÿÿÇ$è/ÿ‰D$h…À„"‹L$H‹=ÿÿÿ?t@‰‹D$h‹@‰‹ƒ„M‹O‹IH…É„è‰D$‰<$ÿщƅÀ„ë‰4$è{ƒøÿ„싁ùÿÿÿ?tI‰u‰4$‰ÆèIý‰ðƒø‰l$8…ñ‹ƒ„M‹M‹IH…É„(‰D$‰,$ÿщƅÀ„+‰4$èƒøÿ„,‹ùÿÿÿ?t	I‰„ƒø‹l$8… ‹ƒ„M‹M‹IH…É„à‰D$‰,$ÿщƅÀ„ãÇD$Ç$‰ñ1Òè#‰…À„ý‹ùÿÿÿ?‰D$(t
I‰u‰4$è€ü‹ƒ„M‹M‹IH…É„L‰D$‰,$ÿщÆÇD$H…À„OÇD$Ç$‰ñº趈…À„EÇD$<o‹ùÿÿÿ?tI‰u‰4$‰Æè
ü‰ð‰ljD$‹l$(‰,$ÇD$èq…À„;‰ƋE=ÿÿÿ?t‰éH‰Eu‰$èÍû‹=ÿÿÿ?t
H‰u‰<$è·û;³0ÿÿÿt0;³4ÿÿÿt(;³ÿÿÿt ‰4$èþ…|$@ˆ,‹ùÿÿÿ?uë*1À;³0ÿÿÿ”|$@‹ùÿÿÿ?tI‰u‰4$‰ÆèWû‰ð…À…‹‹ƒ„M‹O‹IH…É„ï‰D$‰<$ÿщƅÀ„òÇD$Ç$‰ñ1Ò莇…À„ì‰ŋ=ÿÿÿ?t
H‰u‰4$èîú‹ƒ„M‹T$8‹J‹IH…É„‰D$‰$ÿщƅÀ„ ÇD$Ç$‰ñ1Òè+‡…À„&‹ùÿÿÿ?tI‰u‰4$‰ÆèŠú‰ð‰D$(‰D$‰,$ÇD$èðÿ…À„*‰ƋE=ÿÿÿ?tH‰Eu‰,$èNú‹L$(‹=ÿÿÿ?t
H‰u‰$è4ú;³0ÿÿÿ‹l$8t,;³4ÿÿÿt$;³ÿÿÿt‰4$èü…Àˆ‹ùÿÿÿ?uë&1À;³0ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰ÆèØù‰ð…À…(‹D$h‹@‹H8…É„‹I…É„‹ƒüN‰D$‹D$h‰$ÿÑÇD$D…À„L,‰Ƌ@;ƒTÿÿÿ…ƒ>…
‰t$HÇ‹ƒ„M‹O‹IH…É„W‰D$‰<$ÿхÀ„ZÇD$Ç$‰IÅ1Ò諅…À„J‰ƋE=ÿÿÿ?t‰éH‰Eu‰$èù‹L$H‹A‹I9Á~#Ñù9È~‹ùÿÿÿ?tA‰‹T$H‹J‰4@‰Bë‰t$‹D$H‰$è–þƒøÿ„‹¼$°‹=ÿÿÿ?t
H‰u‰4$è ø‹ƒàM‹O‹IH…É„-‰D$‰<$ÿщŅ|$@„0‹E;ƒHÿÿÿ…A‹u…ö„6‰é‹m‹=ÿÿÿ?u‹E=ÿÿÿ?u‹¿=ÿÿÿ?u!ë,@‰‹E=ÿÿÿ?tã@‰E‹¿=ÿÿÿ?t
H‰u‰$èø‰´$„‹D$H‰„$ˆ½÷؍ˆG‰<$‰éènþÿ…öt‹ùÿÿÿ?tI‰u‰4$‰Æè»÷‰ð…|$@„ ‹Mùÿÿÿ?tI‰Mu‰,$‰Æè’÷‰ð‹“8M‹H‹IH…ɉD$(„u‰T$‰$ÿщŅÀ„x‹L$(‹=ÿÿÿ?t
H‰u‰$èK÷‹ƒ„M‹O‹IH…É„÷‰D$‰<$ÿхÀ„úÇD$Ç$‰IÆ1Ò范…À„߉D$(‹=ÿÿÿ?t‰ñH‰u‰$èèö‹E;ƒHÿÿÿ…û‰é‹m…í„C‰ʋq‹E=ÿÿÿ?u‹=ÿÿÿ?u‹¿=ÿÿÿ?u ë+@‰E‹=ÿÿÿ?tã@‰‹¿=ÿÿÿ?t
H‰u‰$èyö‰ñ‰¬$„‹ƒÜN‰„$ˆ‹D$(‰„$Œ½÷؍ˆƒÏ‰<$‰Îèylþÿ‰D$D…ít‹E=ÿÿÿ?tH‰Eu‰,$èö‹L$(‹=ÿÿÿ?‹|$@t
H‰u‰$èûõƒ|$D‰õ„‹E=ÿÿÿ?tH‰Eu‰,$èÖõ‹ƒDI‹T$8‹J‹IH…É„>‰D$‰$ÿщŅÀ„A‹³(L‹ƒXG‹N‰L$‰t$‰$èŒø…À„,‹ùÿÿÿ?tA‰‹“J‹H‹IH…ɉD$X„a‰T$‰$ÿÑÇD$<‹…À„d‰D$(‹L$X‹=ÿÿÿ?t
H‰u‰$è(õ‹E;ƒHÿÿÿ…­‰é‹m…í„¢‰ʋq‹E=ÿÿÿ?u‹=ÿÿÿ?u‹¿=ÿÿÿ?u ë+@‰E‹=ÿÿÿ?tã@‰‹¿=ÿÿÿ?t
H‰u‰$è¹ô‰ñ‰¬$„‹D$(‰„$ˆ½÷؍ˆG‰<$‰ÎèÈjþÿ‰Dží‰D$Lt‹E=ÿÿÿ?tH‰Eu‰,$èfô‹|$L‹L$(‹=ÿÿÿ?tH‰u‰$èHô‹|$L…ÿ‰õ„Ù‹E=ÿÿÿ?tH‰Eu‰,$è"ô‹|$L‹L$8‹=ÿÿÿ?tH‰u‰$èô‹|$L‹D$d‹=ÿÿÿ?t@‹T$d‰‹T$d‹B1ö‰ѽ;ƒHÿÿÿ„‹‰¬$„‰¼$ˆµ÷؍ˆF‰4$‰Ïèåiþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$è‡ó…ö„¦‹=ÿÿÿ?t
H‰u‰<$èió‹F;ƒPÿÿÿ…Á‹Fƒø‹|$@…s FV‰ñƒÁ‹‹‹	‰L$0‰K=ÿÿÿ?…"‹=ÿÿÿ?…%‹D$0‹=ÿÿÿ?t@‹l$0‰E‹=ÿÿÿ?‰T$(‰L$`t
H‰u‰4$èæò‹“¼JÇ$‹t$P‰ñè|…ÀˆÖ„Á‹“ŒNÇ$‰ñèì{½ÇD$,…Àˆ¾t"‹“ÀLÇ$‰ñèÁ{…Àˆ~…¤‹»(L‹ƒXG‹O‰L$‰|$‰$èTõ…À„ƉƋ=ÿÿÿ?t@‰‹ƒ I‹N‹IH…ɄωD$‰4$ÿщD$X…À„Ò‹=ÿÿÿ?t
H‰u‰4$èÿñ‹»(L‹ƒXG‹O‰L$‰|$‰$èàô…À„ЉƋ=ÿÿÿ?t@‰‹|$@‹ƒJ‹N‹IH…É„ø‰D$‰4$ÿщŅÀ„û‹=ÿÿÿ?t
H‰u‰4$è‰ñ‹ƒÄH‹T$0‹J‹IH…É„‰D$‰$ÿщƅD$(„‰D$‰4$è.÷…À„‹ùÿÿÿ?tI‰u‰4$‰Æè-ñ‰ð‹M1ö;‹Hÿÿÿ‰l$8„1퉬$„‰lj„$ˆ‹D$0‰„$Œµ÷؍ˆƒÎ‰4$‹L$8ègþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$èºð‹=ÿÿÿ?t
H‰u‰<$è¤ð…ö‹l$8„â‹E=ÿÿÿ?‹|$@tH‰Eu‰,$è|ðÇ$èñ…À„щʼnp‹L$L‹=ÿÿÿ?t@‰‰MèÛò…À„Ó‰Ɖl$8‹ƒLM‹l$l‰l$‰D$‰4$èƒñÇD$TÇD$<“…Àˆ}‹ƒLI‰l$‰D$‰4$èUñ…Àˆi‹D$X‹@‹x@…ÿ‹l$8„¼ƒc[úÿ‰$èÙóÇD$\N^…À…Ɖt$‰l$‹D$X‰$ÿ׉ÇèÁó‰|$,…ÿ„‹|$X‹=ÿÿÿ?t
H‰u‰<$è{ï‹E=ÿÿÿ?tH‰Eu‰,$ècï‹=ÿÿÿ?‹|$,t
H‰u‰4$èIï;»0ÿÿÿ„;»4ÿÿÿ„;»ÿÿÿ„u‰<$èñ…L$Pˆ+…À…ék@‰‹=ÿÿÿ?„Ûûÿÿ@‰‹D$0‹=ÿÿÿ?…Ôûÿÿé×ûÿÿ‰4$‰ÆèÑî‰ðƒø‹l$8„àñÿÿ‹³ÄO‹»pO‹F‹h@…í„\ƒc[úÿ‰$èªòÇD$H…À…ĉ|$‰4$ÇD$ÿՉÆè’ò…ö„‰ñèSþÿ‹ÇD$H=ÿÿÿ?‹|$@u
ÇD$<pëÇD$<pH‰u‰4$è/îÇD$D1ÉÇD$(ÇD$0ÇD$,‹l$8ºÉ\éZÇD$,‹»(L‹ƒXG‹O‰L$‰|$‰$èØð…À„„‰Ƌ=ÿÿÿ?t@‰‹|$@‹ƒJ‹N‹IH…É„‰‰D$‰4$ÿщŅÀ„Œ‹=ÿÿÿ?t
H‰u‰4$èí‹³(L‹ƒXG‹N‰L$‰t$‰$èbð…À„€‹ùÿÿÿ?tA‰‹“´M‹H‹IH…ɉD$X„›‰T$‰$ÿхL$(„ž‰ljl$8‹T$X‹=ÿÿÿ?tH‰u‰$èí‹L$(‹G1í;ƒHÿÿÿ„‰1ö‰¬$„‰Œ$ˆµ÷؍ˆF‰4$‰ùèþbþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$è ì…ö„z‹=ÿÿÿ?t
H‰u‰<$è‚ì‹“„O‹N‹A4‹I8…É„O‹I…É„D‰T$‰4$ÿщŋ|$@…í„T‹=ÿÿÿ?t
H‰u‰4$è3ì‹D$0‰D$‰,$èò…À„D‰KE=ÿÿÿ?tH‰Eu‰,$‰Îèÿë‰ñ‹D$8‹@1í;ƒHÿÿÿ„D1ö‰´$„‹D$D‰„$ˆ‰ωŒ$Œ­÷؍ˆƒÍ‰,$‹L$8èêaþÿ‰Ņöt‹=ÿÿÿ?t
H‰u‰4$èŽë‹=ÿÿÿ?t
H‰u‰<$èxë…í„*‹L$8‹=ÿÿÿ?‹|$@t
H‰u‰$èRë‹L$D‹=ÿÿÿ?t
H‰u‰$è8ë‰|$‰,$è¼ï‰D$D…À„‹E=ÿÿÿ?tH‰Eu‰,$èë‹D$H‰$èìð…À„í‰Ƌƒ„M‹T$D‹J‹IL…É„â‰t$‰D$‰$ÿхL$`ˆå‹=ÿÿÿ?t
H‰u‰4$è«ê‹t$D‹=ÿÿÿ?t@‰‰t$4‹t$LéÇD$\L^ëÇD$\M^ÇD$,‹D$`‰D$P‰ù‹l$8‹=ÿÿÿ?t	H‰„Љè‹T$(‰ωʼn|$4‹L$P‰T$(…T$\‹t$Tt(‹E=ÿÿÿ?tH‰Eu‰,$‰Չt$T‰Ïèê‰ù‹t$T‰ê‹|$4‹l$X…ít0‹E=ÿÿÿ?t&H‰Eu ‰,$‰Չt$T‰|$@‰ÏèÚé‰ù‹|$@‹t$T‰ê‹l$L…ö„‹=ÿÿÿ?„éê1À;»0ÿÿÿ”L$P…À…¢ûÿÿ‹“ŒNÇ$èÇr…Àˆ7„D‹‹NèÄýÿ…À„z‹“ˆN‹H‹IH…É„y‰T$‰ʼn$ÿщƅÀ„|‹E=ÿÿÿ?tH‰Eu‰,$è%é‹“|OÇ$‰ñè!Mþÿ…À„q‹ùÿÿÿ?tI‰u‰4$‰Æèðè‰ð‹ùÿÿÿ?„éúÿÿI‰…àúÿÿ‰$èÏèéÓúÿÿ‰4$‰ÏèÀè‰è‹T$(éiþÿÿƒþõÿ‰D$Ç$a‹'=úÿºÅ[è”Ãýÿ1í‹t$L‹T$4éK‹|$4ÇD$hÇD$HÇD$DÇD$P1ÒÇD$4ÇD$,1ö1ÀÇD$0ÇD$TÇD$dé
ÇD$TÇD$<aÇD$\Í[ÇD$X1íÇD$,ÇD$0ÇD$(ÇD$PÇD$DÇD$HÇD$hÇD$d‹L$4é]ýÿÿèné½dÇD$h…Àu‰ñèfBþÿ…À…Áæÿÿ‹|$4ÇD$HÇD$DÇD$`ÇD$(ÇD$0ÇD$,ºÛ[é(‰T$‰$è$é‰ƅT$4…˜æÿÿÇD$\Ý[ÇD$<dÇD$h‰×ét‹w…ö„‰ù‹‹=ÿÿÿ?…:‹=ÿÿÿ?…=‹½=ÿÿÿ?„pæÿÿé;ºò[ÇD$<dÇD$hé”èwèÇD$h…Àu‰ñètAþÿ…À…„ÇD$HÇD$DÇD$`ÇD$(ÇD$0ÇD$,½eº\é5‰D$‰,$è1è‰D$(…T$L…Ëæÿÿº\ÇD$<eÇD$h‰|$4ÇD$HÇD$Déq	‹D$(‹p…ö„‹h‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‹L$(‹¿=ÿÿÿ?tH‰u‰$èØå‹T$L‰l$(é|æÿÿÇD$\\ÇD$<eÇD$hÇD$HÇD$DéщD$‰<$èbç‰ƅÀ…èÿÿº}\ÇD$<méÛ	ÇD$TÇD$<mÇD$\\ÇD$X‰ê1í‰T$L靋‹ÄO‹“lOÇ$èAIþÿÇD$H…À„2‰ƉÁèÈIþÿ‹=ÿÿÿ?…zÇD$<n邉D$‰,$èÂæ‰ƅÀ…Õçÿÿº¡\ÇD$<oé¯ÇD$TÇD$<oÇD$\£\ÇD$X1í‹D$8‰D$L‰ùÇD$,é·‹@‹‹,ÿÿÿ‹	‰D$ƒ·Xúÿ‰D$‰$è<æº	]ÇD$<xéω4$èbê…À…3ÇD$TÇD$<xÇD$\]ÇD$X‰l$L‰ù1íÇD$,é?1ö1ÿéìÿÿ…|$@„ýƒx„ó‰ñèÿü‰Ņí…¬÷ÿÿÇD$TÇD$<œÇD$\×^ÇD$Xé\ùÿÿ@‰‹=ÿÿÿ?„Ãüÿÿ@‰‹½=ÿÿÿ?„0ãÿÿH‰…'ãÿÿ‰$èšã‹T$4éãÿÿÇD$<nH‰u‰4$è|ãÇD$D1ÉÇD$(ÇD$0ÇD$,‹l$8º\駉|$‰4$ÇD$èhç‰ƅÀ…ÄôÿÿºÅ\ÇD$<pÇD$HÇD$D1ÉÇD$(ÇD$0ÇD$,‹|$@騉D$‰,$è²ä‰ƅÀ…æÿÿº«\ÇD$<oé+ÇD$D1ÉÇD$(ÇD$0ÇD$,‹|$@ëhÇD$TÇD$<oÇD$\­\ÇD$X‰ê1íÇD$,‰T$Léèä…|$@„{ÇD$D1ÉÇD$(ÇD$0ÇD$,ÇD$<p‹l$8ºÅ\é{
‰D$‰,$èäã‰ÆÇD$H…À…±åÿÿÇD$<oÇD$\°\‰l$Lé>üÿÿÇD$<oÇD$\²\‰l$LÇD$DÇD$P1ÒÇD$4ÇD$,éýÇD$\µ\‹D$8‰D$LÇD$DÇD$P1ÒÇD$4ÇD$,1öÇD$0ÇD$T‰ø‹|$@éÀÇD$\¸\ÇD$<oé]‰D$‰<$èã‰ƅÀ…æÿÿºÛ\ÇD$<qÇD$HéâÇD$TÇD$<qÇD$\Ý\ÇD$X1íÇD$,‹D$8‰D$L‰ùÇD$0ÇD$(ÇD$PÇD$DÇD$HéSöÿÿ‰D$‰$è}â‰ƅÀ…àåÿÿºà\ÇD$<qÇD$H‰|$4‹D$8‰D$LéMúÿÿÇD$TÇD$<qÇD$\â\ÇD$XÇD$,ÇD$0‹D$8‰D$L‰ùé`ÿÿÿÇD$\å\ÇD$<qÇD$H‹D$8‰D$LÇD$DÇD$P‰è1ÒÇD$4éÇD$\è\ÇD$<qÇD$HÇD$DÇD$PÇD$lÇD$4ÇD$,1ÀÇD$0ÇD$Té5‹‹ÄO‹“tOÇ$èžCþÿÇD$H…À„À‰ÆÇD$<r‰ÁèDþÿ‹=ÿÿÿ?t
H‰u‰4$èWßÇD$D1ÉÇD$(ÇD$0ÇD$,‹l$8º÷\é‚
‹ùÿÿÿ?t‰D$(I‰u‰4$èß‹D$(‰D$Hé•åÿÿ‰D$‰<$èÃà…À…¦åÿÿº]ÇD$<y驉l$(ÇD$DÇD$\]ÇD$<yéãÇD$TÇD$<yÇD$\]ÇD$X1í‹D$8‰D$L‰ùÇD$,ÇD$0ÇD$(ÇD$PÇD$Déùóÿÿ‰D$‰<$è#à‰Ņ|$@…Ðåÿÿº']ÇD$<zÇD$D1ÉÇD$(ÇD$0ÇD$,‹l$8éh	º;]é5‰T$‰$èÇ߉ŅÀ…ˆæÿÿÇD$\?]ÇD$<zÇD$D‹D$8‰D$LÇD$P1ÒÇD$4ÇD$,1ö1ÀÇD$0ÇD$T‰T$l‰D$`‹L$(‹=ÿÿÿ?t
H‰u‰$è}Ý‹D$L‰D$8‹D$`‹L$0‰L$X‰ŋL$4‰L$0‹T$l‰T$(‹L$8‰L$L‰ù…ö…ßòÿÿéôòÿÿ‰D$‰<$èß…À…æÿÿºB]ëW‰t$(ÇD$DÇD$\D]ÇD$<z‹D$8‰D$LÇD$P1ÒÇD$4‰èÇD$,1öé/ÿÿÿ1ÿ‰é1íé\æÿÿºZ]ÇD$<zÇD$D‰|$4‹D$8‰D$L1ÉÇD$(ÇD$0ÇD$,ÇD$X1öéWòÿÿ1ÿ1íé	æÿÿ‰D$‰$èDÞ‰ŅÀ…¿æÿÿºh]ÇD$<‹é(þÿÿèÞÇD$<‹…Àu‰ñè7þÿ…À…Áæÿÿ‰|$4‹D$8‰D$LÇD$(ÇD$0ÇD$,ÇD$X1ö1ɺj]éÌñÿÿ‰T$‰$èÂÝÇD$<‹…À…œæÿÿºl]1ɉ|$4‹D$8‰D$LÇD$(ÇD$0ÇD$,1öé~ñÿÿºW\ÇD$<iÇD$hÇD$HÇD$D1ÉÇD$(ÇD$0ÇD$,éljé1í1ÿéªæÿÿº‚]1ɋD$@‰D$4‹D$8‰D$Lé•þÿÿ‹D$d‹h…턊‹@‰D$8‹E=ÿÿÿ?t@‰E‹D$8‹=ÿÿÿ?t@‹L$8‰‹D$d‹¾=ÿÿÿ?tH‹L$d‰u‹D$d‰$èæÚ‹|$L‹L$8é	çÿÿº£]ÇD$<Œ1ɋD$@‰D$4ÇD$(ÇD$0ÇD$,ÇD$X1ö‰ýégðÿÿ;ƒTÿÿÿ„œ‰4$èe߉D$T…À„Ø‹=ÿÿÿ?t
H‰u‰4$ècÚ‹l$T‹E‹xp‰,$ÿ׍³{Aúÿ‰D$`…À„Ô‰,$ÿ׉D$(…À„ω,$ÿ׉D$0…À„Ó‰,$ÿ׉zèOe…Àˆd	‹E=ÿÿÿ?…	‹|$@é
çÿÿºê]½ŽÇD$,é¡
ºô]é—
‹‹ÄO‹“xOÇ$èÇ=þÿ…À„‰ƉÁèV>þÿ‹º
^=ÿÿÿ?…º‹|$@½éN
è1Û…Àu‰ùè64þÿ…À…M‹|$@½“º^é#
‰D$‰4$èÛ‰D$X…À….çÿÿÇD$TÇD$<“ÇD$\^ÇD$X1í‹D$`‰D$P‹L$@ÇD$,é¢îÿÿè³Ú…Àu‰ùè¸3þÿ…À…ÖÇD$,‹|$@‹L$`ÇD$<“º!^1ö‹l$X‹E=ÿÿÿ?…Ëîÿÿéìîÿÿ‰D$‰4$è~Ú‰ŅÀ…çÿÿÇD$\#^ÇD$<“‹D$`‰D$P‹T$(‹D$0‰D$4‰t$(‹D$X‰D$0ÇD$,1ö1Àé¼úÿÿ‰D$‰$è'Ú‰ƅD$(…ïæÿÿº&^éÔÇD$\(^‹D$`‰D$P‹T$(‹D$0‰D$4‰t$(‰è‹L$X‰L$0ÇD$<“ÇD$,1öéWúÿÿ‰D$4‰ï‹m…í„^
‰ù‹‹E=ÿÿÿ?…'‹=ÿÿÿ?…+‹¾=ÿÿÿ?…*é4º>^ÇD$<“ÇD$,‹D$@‰D$4ë@ÇD$TÇD$<“ÇD$\B^1íÇD$,釺J^ÇD$<“ÇD$,‰|$41ö‹L$`éíÿÿè÷Ø…Àu‰ùèü1þÿ…À…!
‹|$@½œº·^éé‰D$‰4$è娉ŅÀ…téÿÿÇD$TÇD$<œÇD$\¹^ÇD$X1í‹D$`‰D$P‰ùétìÿÿè…ØÇD$<œÇD$X…Àu‰ñèz1þÿ…À…eéÿÿ‹D$@‰D$41ö‹L$`º¼^éhìÿÿ‰T$‰$è^Ø…L$(…béÿÿº¾^ÇD$<œ1ö‹D$@‰D$4‹L$`é0ìÿÿ‰ú‹o…í„Ï‹R‹E=ÿÿÿ?…Ï‹=ÿÿÿ?…Ó‹¾=ÿÿÿ?…Ö‰×éæÇD$\Ó^ÇD$<œ‹D$`‰D$P‹T$(‹D$0‰D$4‰|$(‹D$81öÇD$0ÇD$T‹|$@é8øÿÿÇD$\Ú^ÇD$<œ‹D$`‰D$P‹T$(‹D$0‰D$4‰l$(‹D$81öéõ÷ÿÿ‰L$4‹D$8‹p…ö„‹x‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‹L$8‹½=ÿÿÿ?tH‰u‹D$8‰$èSÕ‰|$8‹L$4é`éÿÿºð^ÇD$<œÇD$X‹D$@‰D$41ö‹L$`‹l$8éèêÿÿºþ^‰l$D½éϺ
_½žéÀ‰t$‰D$‰$èØÕ…L$`‰êÿÿº_ÇD$<ž‹=ÿÿÿ?tH‰u‰4$‰T$\‰ý‰Ïè±Ô‰ù‰ï‹T$\‹l$L‰L$`ƒþõÿ‰D$‹D$<‰$‹'=úÿ腯ýÿÇD$4‰î‰úƒ|$dt&‹D$d‹=ÿÿÿ?tH‹L$d‰u‹D$d‰$‰õèNÔ‰ú‹L$h…Ét‹=ÿÿÿ?tH‰u‰$‰÷‰Õè*Ô‰ê‹L$H…ɋl$Dt‹=ÿÿÿ?tH‰u‰$‰÷‰ÖèÔ‰ò‰þ…ít ‹E=ÿÿÿ?tH‰Eu‰,$‰÷‰ÖèÞÓ‰ò‰þ‹L$`…Ét‹=ÿÿÿ?tH‰u‰$‰÷‰Öè¸Ó‰ò‰þ‹L$(…ɋl$4t‹=ÿÿÿ?tH‰u‰$‰÷‰ÖèŽÓ‰ò‰þ‹L$0…Ét‹=ÿÿÿ?tH‰u‰$‰÷‰ÖèhÓ‰ò‰þ‹L$,…Ét‹=ÿÿÿ?tH‰u‰$‰÷‰ÖèBÓ‰ò‰þ…Òt‹=ÿÿÿ?tH‰u
‰$‰÷è"Ó…öt‹=ÿÿÿ?t
H‰u‰4$èÓ‰èĜ^_[]úú]鹋Fƒø‹|$@u‹FPHé˜ßÿÿƒø|k‹ƒXÿÿÿ‹‹<úÿ‰L$‰$ÇD$èpÔÇD$TÇD$<ŒÇD$\­]ÇD$X1íÇD$,‰ùÇD$0ÇD$(ÇD$PéèÿÿÇD$TÇD$<ŒÇD$\­]…Àx4‹‹Xÿÿÿ‹	ƒø“ˆþõÿ»{AúÿDú‰|$‰D$ƒk=úÿ‰D$‰$è×ÓÇD$X1íÇD$,ÇD$0ÇD$(ÇD$P‹L$@é~çÿÿºn[éjÎÿÿÇD$,ÇD$4
^½H‰„t‹|$@é{@‰E‹=ÿÿÿ?„Õùÿÿ@‰‹¾=ÿÿÿ?t‰ÊH‰u‰$è‚щ|$8‹D$4éaàÿÿ@‰E‹=ÿÿÿ?„-ûÿÿ@‰‹¾=ÿÿÿ?„*ûÿÿ‰ù‰T$4H‰u‰<$è<Ñ‹|$4‹L$(éFäÿÿºi[éµÍÿÿºb[é«Íÿÿ‰t$‰l$‹D$X‰$è7Õ‰D$,…À…fáÿÿÇD$\N^ÇD$,épº]^½”‹|$@é›è~Ò…À„RÇD$,‹D$`‰D$P‹L$@éCæÿÿºR[é3ÍÿÿÇD$\Ñ]ÇD$<ŒÇD$P1ÒÇD$4ÇD$,1ö‹|$@‹D$`éËòÿÿ‹L$T‰ÎH‰‹|$@…qÝÿÿédÝÿÿº[[éØÌÿÿºh^½•‹|$@éý‹‹ÄO‹“€OÇ$è-4þÿ…À„À‰ƉÁè¼4þÿ‹=ÿÿÿ?…š‹|$@½™ºš^é´ºr^½–‹|$@顉T$‰ʼn$è›Ñ‰ƅÀ…„æÿÿºt^ÇD$<–‹|$@‹L$`‰î‹=ÿÿÿ?…×úÿÿéïúÿÿÇD$TÇD$<–ÇD$\^ÇD$X1í‹D$`‰D$P‹L$@éÿäÿÿÇD$4š^½™H‰t‹|$@ºš^ë‰4$è@Ï‹|$@‹T$4ƒþõÿ‰D$‰,$‹'=úÿè ªýÿÇD$4é|äÿÿ‰ñèé‰Ņí…¹âÿÿéëÿÿ1íéyÎÿÿ1ÿéžÏÿÿÇD$<nº‹\é¥ðÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$è“ÎéfìÿÿÇD$<rºó\étðÿÿ1ö‰Á1íéÑÚÿÿÇD$TÇD$<ŒÇD$\Ç]ÇD$X1íÇD$,‹L$@éêûÿÿÇD$(1ÿ뿍³ˆþõÿÇD$(ë¿‹D$T‹=ÿÿÿ?tH‹L$T‰u‹D$T‰$è&Îè!Z…Àu"‹ƒXÿÿÿ‹‰t$‰|$‹k=úÿ‰L$‰$è»ÏÇD$PÇD$<ŒÇD$\Ù]ºÇD$4ÇD$,¾ÇD$0ÇD$TÇD$Xƒ|$(‹|$@‹D$`…ÿïÿÿéMãÿÿº^éûóÿÿ1ö1íéüÿÿ1í1öéEüÿÿ1í1öé%øÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$è*Íéüÿÿº–^‹|$@½™é
þÿÿº	]ÇD$<xÇD$Héñÿÿ‰ÅénÍÿÿ‰ÆéÜÚÿÿ‰ÆéIÛÿÿ‰ÆéJßÿÿUSWVìŒè[ÃÕ‹Œ$¬‹´$¨‹„$¤ÇD$\ÇD$X“ÈK‰T$h“°L‰T$l“¨M‰T$pÇD$t‹“ÿÿÿ‰T$`…É„ƒþ‡»‰T$0°‰T$<‹”³xþõÿÚÿâ‹q…ö~]A‹«ÈK1ÿ‰D$@9l¹„BG9þuñ1ÿ‹T¹Ç$‰éè^U…À…G9þ‹Œ$¬uÚèµÍ…´$¨t1º€_éÀ‰T$0ƒþtƒþu‹H‰L$`‹H‰L$\‹‰T$Xé’1þ‹.Vúÿ“z>úÿLÑœð‹‹,ÿÿÿ‹	‰t$³{Aúÿ‰t$‰T$“.úÿ‰T$“‚>úÿ‰T$‰$‰D$è5ͺ¨_é;‹P‰T$\‹‰T$Xq‹A…Àxéò@òD$\‹‰T$X‹Aéó‹‰D$,‰D$XA‰D$@‹i‰l$L…í8釋Œ$¬ˆúþÿÿ‹D$<‹¸‰D$X…À„çþÿÿ‰D$,N‰t$L‹D$@‹(…í~T‹»°L1��9|±„ÆF9õuñ1��‹T±Ç$‰ùèÞS…À…‰F9õ‹Œ$¬uÚè5Ì…À…B‹ƒ,ÿÿÿ‹‹{Aúÿ‰L$‹.Vúÿ‰L$‹.úÿ‰L$‹‚>úÿ‰L$‰$ÇD$ÇD$èõ˺Š_ƒþõÿ‰D$Ç$¡‹ÐUúÿè¥ýÿ1Àé÷‹Œ$¬ˆvÿÿÿ‹D$<‹°‰D$\…À„cÿÿÿ‹D$LH‹T$,‹t$@…ÀŽ¡‰T$,‰D$L‹.…í~h‹»¨M1ö9|±t7F9õuõ1��‹T±Ç$‰ùèÞR…ÀuF9õ‹Œ$¬uÞë*‹Œ$¬x!‹D$<‹°…Àt‰D$`‹D$LH‹´$¨‹T$,ë#è
Ë‹Œ$¬…´$¨‹D$L‹T$,…þ…À?‰Ñè0ä‰ǃøÿu
èÔÊ…À…M‹l$\‹D$`‰D$,ÇD$4ÇD$D‹ƒP‹°Ç$ÿ´f(ƒlüõÿfD$‰D$‰,$ÿ։ƉD$HÇD$@…À„¯‹=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$è–ÈÇD$HÇD$4‹F…	t$(„{‰l$L‹‹P‹V‰D$‰$ÿ‘x‰ŋF‰D$<‹ƒ´L‰D$‰4$ÇD$ÿ“4Pƒøÿ„‘…í‹L$<t|Eÿ‰D$‰$ÿ“,Pݜ$€›ò„$€ò‹Ä6úÿòX‹Ì6úÿf/ÁvE‹l$L‹U‹ƒˆG9„‹Š¬…É„ô‹Q…ÒŽ_1ö9D±„ìF9òuñéH‹D$,;ƒÿÿÿ‰|$x‰l$LtVèsʉD$T‹@@‹L$0ë
‹@…Àtw‹8…ÿtó9Ïtï‹=ÿÿÿ?t@‰‹O‹=ÿÿÿ?t@‰‰L$8‰<$è8ʉD$$ëR‰,$è
ȉD$4…À„s‰ÆÇ$è°Ç‰D$D…À„k‰ʼnpÇD$4éºÇD$81ÿÇD$$‹³TL‹ƒXG‹N‰L$‰t$‰$èÑÉ…À„‰ŋ=ÿÿÿ?t@‰E‰l$4‹ƒÄJ‹M‹IH…É„
‰D$‰,$ÿщƉD$H…À„‹E=ÿÿÿ?tH‰Eu‰,$èsÆÇD$4‹F1É;ƒHÿÿÿ„ò1í‰L$h‹D$,‰D$l­÷؍ƒÂlE‰,$‰͉ñèp<þÿ‰é‰ʼnD$D…Ét‹=ÿÿÿ?t
H‰u‰$èÆÇD$4…í„á‹=ÿÿÿ?t
H‰u‰4$èèÅ‹D$L‰$è¬Æ…À„ƉÆÇ$èVÆ…À„ë‰h‰pÇD$DÇD$HÇD$4‹L$8…ɉÅt‹=ÿÿÿ?t
H‰u‰$è€Å…ÿt‹=ÿÿÿ?t
H‰u‰<$èfÅ‹L$$…Ét‹=ÿÿÿ?t
H‰u‰$èHÅ‹³(L‹ƒXG‹N‰L$‰t$‰$è)È…	l$8„«‰Nj=ÿÿÿ?t@‰‰|$D‹t$(‹ƒ°N‹O‹IH…É„½‰D$‰<$ÿщD$HÇD$0…À„À‰D$,‹=ÿÿÿ?t
H‰u‰<$è¼ÄÇ$è@ʼnD$D…À„˜‰NjE=ÿÿÿ?t@‰E‰oèljD$4…À„~‰ŋƒJ‹‹$ÿÿÿ‰L$‰D$‰,$èÂÅ…Àˆ*‰|$$‹|$,‹G‹p@…ö„@ƒc[úÿ‰$èFÈ…À…q‰l$‹D$$‰D$‹|$,‰<$ÿ։Æè2È…ö„@‹=ÿÿÿ?t
H‰u‰<$èôÃÇD$H‹L$$‹=ÿÿÿ?t
H‰u‰$èÒÃÇD$D‹E=ÿÿÿ?tH‰Eu‰,$è²ÃÇD$4‹=ÿÿÿ?‹|$xt@‰‹n‹F‹‹P‰t$$‹V‰D$‰$ÿ‘x‰Æò*NjƒÌK‰D$ò$ÇD$ÿ“<Pƒøÿ„r‰l$P‹¼$ ‹L$L…Ét)‰ð™÷ù‰D$Të&½Äa1ÒÇD$ 1ÿÇD$$éHÇD$T‹·°‹«0J‹~‰l$‰<$è/È…À„L‹H‹‰ˆ…Ét!‰|$‰t$‰$ÿщD$ …„$ ué2‹ùÿÿÿ?‰D$ tA‰‹„$ ‹€°‹‹$J‰ŋx‰L$,‰L$‰<$èÀÇ…À„ø‰Ƌ@‹ˆˆ…Ét3‰|$‰l$‰4$ÿщD$4…À„ð‰Ƌ@ÇD$D;ƒHÿÿÿt*é»	‹ùÿÿÿ?tA‰‰t$4ÇD$D;ƒHÿÿÿ…–	‹~‰|$D…ÿ„‡	‹V‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰T$4‹¹=ÿÿÿ?t	H‰„Ô‰։|$hÇD$l÷؍ƒÂl‰$‰ñèå7þÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰ÇèˆÁ‰øÇD$D…À„‹ùÿÿÿ?tI‰u‰4$‰Æè]Á‰ð‹t$PÇD$4‹ùÿÿÿ?t
I‰u‰$è8ÁèƒÆ‰D$|‹D$T…L$x‹|$<‹¬$ ~cU‰T$0ƒÅ4‰l$,‹T$LÁâ‰T$@‹T$,‰T$‹T$L‰T$‰|$‰t$‰L$‹T$0‰$‰ʼnÏèô¹‰ù‹|$<‰èt$@HuŋD$|‰$è	Æ‹³O‹l$ ‹E‹x@…ÿ„i
ƒc[úÿ‰$è“Ä…À…¡
‰t$‹l$ ‰,$ÇD$ÿ׉ÆèÄ…ö„p
‹E=ÿÿÿ?tH‰Eu‰,$è?À…ö„*
‹=ÿÿÿ?‹l$8t
H‰u‰4$èÀ‹L$$‹1ÿ=ÿÿÿ?t@‰‰ȋt$(…ö…>éT‰4$‰Öèéþÿÿ‹’€9Ât…Òuò;ƒ@ÿÿÿ…f‹³(L‹ƒXG‹N‰L$‰t$‰$è«Â…À„r
‰Nj=ÿÿÿ?t@‰‰|$H‹ƒôJ‹O‹IH…É„~
‰D$‰<$ÿщƉD$DÇD$0…À„p
‹=ÿÿÿ?t
H‰u‰<$èH¿‹ƒJ‹M‹IH…É„P
‰D$‰,$ÿщljD$H…À„S
‰t$<‹F1ö;ƒHÿÿÿ„H
1í‰t$h‰|$l‹ƒ¤G‰D$p­÷؍ƒÂlƒÍ‰,$‹L$<è5þÿ‰ʼnD$4…öt‹=ÿÿÿ?t
H‰u‰4$趾‹=ÿÿÿ?t
H‰u‰<$蠾ÇD$H…í‹L$<„:
‹=ÿÿÿ?t
H‰u‰$èv¾ÇD$D;«0ÿÿÿt-;«4ÿÿÿt%;«ÿÿÿt‰,$èÎÀ…Àˆþ‹Mùÿÿÿ?uë(1À;«0ÿÿÿ”Mùÿÿÿ?tI‰Mu‰,$‰Æè¾‰ð…l$L„¡‹ƒJ‹M‹IH…É„Ã‰D$‰,$ÿщljD$4ÇD$0	…À„µ‹ƒ`ÿÿÿ‰D$‰<$ÇD$è8ÉD$D…À„–‰Ƌ=ÿÿÿ?t
H‰u‰<$蔽ÇD$4;³0ÿÿÿt&;³4ÿÿÿt;³ÿÿÿt‰4$èì¿…Ày½‹`ée1À;³0ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æè:½‰ðÇD$D…À„Ä‹ƒN‹M‹IH…É„‰D$‰,$ÿщljD$4ÇD$0
…À„÷ÇD$H‹G;ƒHÿÿÿ…§‹o‰l$H…턘‹w‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‰t$4‹¹=ÿÿÿ?tH‰u
‰<$蓼¹‰÷‰l$hÇD$l÷؍ƒÂl‰$‰ùè§2þÿ‰ƉD$D…ít‹E=ÿÿÿ?tH‰Eu‰,$èE¼ÇD$H…ö„i‰õ‹=ÿÿÿ?t
H‰u‰<$輋ƒÌN‰D$‰,$ÇD$èƒÁ‰D$41҅À„O‰ƋE=ÿÿÿ?tH‰Eu‰,$èۻÇD$D;³0ÿÿÿt&;³4ÿÿÿt;³ÿÿÿt‰4$è3¾…Ày½´`é¬
1À;³0ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æ聻‰ð…Àt‹»N‹=ÿÿÿ?t"‹Në‹»N‹=ÿÿÿ?t‹N@‰‹9‹‹ÄOÇD$hT$l‰|$lÇ$€èh1þÿ‰D$4ÇD$0…À„O‰ƉÁè»þÿ‹=ÿÿÿ?t
H‰u‰4$èõºÇD$4½î`1ÒÇD$ ÇD$8ÇD$$‹t$(‹D$H…Àt#‹ùÿÿÿ?tI‰u‰$‰l$<‰Õ襺‰ê‹l$<‹D$4…Àt#‹ùÿÿÿ?tI‰u‰$‰l$<‰Õèzº‰ê‹l$<‹D$D…Àt#‹ùÿÿÿ?tI‰u‰$‰l$<‰ÕèOº‰ê‹l$<‹L$@…Ét"‹=ÿÿÿ?tH‰u‰$‰l$<‰Õè%º‰ê‹l$<…Òt‹=ÿÿÿ?t
H‰u‰$躋L$ …Ét‹=ÿÿÿ?t
H‰u‰$è繍ƒþõÿ‰D$‹D$0‰$‹ÐUúÿ‰êèɔýÿ1l$8…öt‹ùÿÿÿ?tI‰u‰4$‰Æ覹‰ð‹T$$…Òt‹
ùÿÿÿ?tI‰
u‰$‰Æ胹‰ð‹T$$…ÿt‹ùÿÿÿ?tI‰u‰<$‰Æè`¹‰ð‹T$$…ít!‹Mùÿÿÿ?tI‰Mu‰,$‰Æè;¹‰ð‹T$$…Òt‹
ùÿÿÿ?tI‰
u‰$‰Æè¹‰ðČ^_[]ýð_ÇD$0üëj‹‹ÈO‹“ˆOÇ$èôþÿ‰D$4…À„š‰ÆÇD$0ÿ‰Áèwþÿ‹=ÿÿÿ?t
H‰u‰4$豸ÇD$4½
`éà½1`ÇD$01ÒÇD$ ÇD$8éZõÿÿ1ÿ1Éé¨öÿÿ躅À…9‰ñèþÿ‰D$D…À…–½¸aÇD$01ÒÇD$ 鉉D$‰<$èú¹‰D$HÇD$0…À…@óÿÿ½ºaéáôÿÿ½½aé×ôÿÿ½ÂaéÍôÿÿƒ.úÿ‰D$‰t$D$X‰D$D$h‰$‹T$<è’=…Àˆ3‹T$XéŠîÿÿèl¹…À…•‰ñèmþÿ‰D$4…:6a„è‰Åéßðÿÿ‰D$‰,$èY¹‰ƉD$H…À…ððÿÿÇD$Hº8a‹t$,ës‹N‰L$4…É„D‹V‹=ÿÿÿ?t@‰‰L$0‹=ÿÿÿ?t@‰‰T$H‹½=ÿÿÿ?…ˉÖéÙ‹t$HºMa…öuBëZ‹l$4ÇD$HºQa…í‹t$,tM‹E=ÿÿÿ?tC‰T$,H‰Eu‰,$èٶ‹T$,ë+ºSa‹=ÿÿÿ?t‰ÕH‰u‰4$趶‰êÇD$H‹t$,ÇD$4‹D$D…Àt‹ùÿÿÿ?tI‰u‰$‰Õ趉êÇD$Dƒþõÿ‰D$Ç$‹ÐUúÿèY‘ýÿD$D‰D$D$H‰$T$4‹L$Tè-G…Àx)‹F;ƒPÿÿÿ…“‹=ÿÿÿ?… ÇD$ éžÇD$ ½yaÇD$01À1҉D$,‹D$T‹H@‹‰9…Àt‹ùÿÿÿ?tI‰u‰$‰Öè˵‰ò‹L$8…ɋt$$t‹=ÿÿÿ?tH‰u‰$‰×襵‰úÇD$8…öt
‹=ÿÿÿ?…ý‹D$,‰D$@éÐÇD$ @‰‰t$,‹D$L‰$è2¶ÇD$0‰D$P…À„áÇ$èҵ…À„Ö‰ƋD$P‰F‰t$‹D$,‰$衹…À„ljŋL$,‹=ÿÿÿ?t
H‰u‰$èý´‹=ÿÿÿ?t
H‰u‰4$èç´‹D$4…Àt‹ùÿÿÿ?t
I‰u‰$èȴÇD$4‹D$H…Àt‹ùÿÿÿ?t
I‰u‰$衴ÇD$H‹D$D…Àt‹ùÿÿÿ?t
I‰u‰$èz´ÇD$D‹D$T‹H@‹‰9…Àt‹ùÿÿÿ?t
I‰u‰$èL´‹L$8…ɋt$$t‹=ÿÿÿ?t
H‰u‰$è*´…ö„Úîÿÿ‹=ÿÿÿ?„ÍîÿÿH‰…Äîÿÿ‰4$é·îÿÿ‰l$‹D$$‰D$‰<$è ¸‰ƅÀ…Üïÿÿ½Åaé—ûÿÿ½ûaÇD$0éÒèuµ…À„¯1ÒÇD$ 1ÿÇD$$‹t$(½ÅaéÑøÿÿ‹ƒÿÿÿ‹‰l$‰$èǷ½bëx‹ƒÿÿÿ‹‹L$,‰L$‰$訷ÇD$4½bë½3b‹L$ ‹ÇD$0#ÇD$@=ÿÿÿ?t?H‰u:‰$è*³ë0‰t$‰,$ÇD$èD·‰Æé¶òÿÿ½bÇD$0#ÇD$@1ÒÇD$ 1ÿéøÿÿ蒴…À„ë1ö‹l$ éxòÿÿº¢_é•èÿÿ½ê`éÓ÷ÿÿÇD$0½
aéêÇD$0½aéØº–_é]èÿÿ‰T$PH‰u‹D$$‰$èx²‹D$,‰D$@1ÿÇD$$‹t$(‹T$Pé÷ÿÿ‰T$ H‰u‰4$èH²‹t$ ‹L$0éãëÿÿºˆ_éèÿÿèܳ…À…T‰ñèÝþÿ‰D$H…À…d½Z`ÇD$0é@‰D$‰<$èóézòÿÿ½\`é%‰D$‰,$訳‰ljD$H…À…­òÿÿ½_`é‹D$<‹p…ö„î‹D$<‹@‰D$,‹=ÿÿÿ?t@‰‹L$,‹=ÿÿÿ?t@‰‰L$D‹D$<‹½=ÿÿÿ?tH‹L$<‰u‹D$<‰$è_±‹D$,‰D$<éLòÿÿ½t`遽x`ëzº‘_éçÿÿ1í1Éé¢ôÿÿ‰D$‰,$èò²é5óÿÿ½‡`뽉`ë‰D$‰,$èӲéóóÿÿ½š`ÇD$@ÇD$ ÇD$81ÿÇD$$‹t$(1Òéöÿÿ½®`ÇD$@1ÒÇD$ ÇD$81ÿéÐõÿÿ½²`ÇD$@ëÚÇD$ ‰4$藶…À…ݽ…aÇD$0érúÿÿ½‡a1Ò뽉a‹D$,‹T$Pé[úÿÿ½Ža1҉t$ ‹D$,éGúÿÿÇD$0ÿ½	`émÿÿÿÇD$DéÍ÷ÿÿº6aéaùÿÿ1Éé´éÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èįé2üÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$襯éöüÿÿÇD$Hé²ýÿÿ1öé´ðÿÿ‰Njt$(‹l$8é¦êÿÿ‰Njl$Léðÿÿ‰Æé)úÿÿUSWVìœè[Ãeù‹Œ$¼‹¬$¸‹„$´ÇD$lÇD$h“$I‰T$\“¨M‰T$`ÇD$d‹»ÿÿÿ‰|$l…Ét2¨…í„˃ýt@ƒý…<‹x‰|$l‹‰D$0‰D$h‹AéDƒý„œƒý…‹x‰|$l鍉T$$‹0‰t$hQ‹i‰t$0…íޱ‰l$(‹:…ÿŽÓ‹«¨M1��9l±„—F9÷uñ1��‹T±Ç$‰éè®7…À…^F9÷‹Œ$¼uÚéw‰T$$‰|$0‹i…í~\Q‹»$I1ö‰T$(9|±„ðF9õuñ1��‹T±Ç$‰ùè>7…À…³F9õ‹Œ$¼uÚ蕯…¬$¸…ë1퍓.Vúÿ‹z>úÿNÊŸ“,ÿÿÿ‹³ˆþõÿ»{AúÿNþ@‰l$‰|$‰L$‹‹úÿ‰L$‹‚>úÿ‰L$‰$‰D$è<¯ºcƒþõÿ‰D$Ç$*‹†Oúÿè[ˆýÿ1Àé.
‹»ÿÿÿ‹0‰t$h隋Œ$¼ˆLÿÿÿ‹D$$‹4°‰t$h…ö„9ÿÿÿM‹|$0‹T$(‰t$0…íOþÿÿ‹t$0ë_‹Œ$¼x!‹D$$‹<°…ÿt‰|$l‹D$(H‹¬$¸‹T$$ë)艮…À…ð‹»ÿÿÿ‹¬$¸‹Œ$¼‹T$$‹D$(…t$0uÇD$,ÇD$<ÇD$@‰4$虱ÇD$ ƒøÿ„h‰õ‰D$(‹ƒP‹°Ç$ÿ´f(ƒÜûõÿfD$‰D$‰,$ÿ։D$,…À„5‰Ɖ|$0‹=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$è¬‰t$LÇD$<‹«(L‹ƒXG‹M‰L$‰l$‰$èá®…À„‰Ƌ=ÿÿÿ?t@‰‰t$,‹ƒ,I‹N‹IH…É„‰D$‰4$ÿщD$@ÇD$$ž…À„‹=ÿÿÿ?t
H‰u‰4$耫ÇD$,‹«(L‹ƒXG‹M‰L$‰l$‰$èY®…À„à‰Ƌ=ÿÿÿ?t@‰‹ƒHK‹N‹IH…É„ú‰D$‰4$ÿщŅÀ„ý‹=ÿÿÿ?t
H‰u‰4$è«‹E1ÿ;ƒHÿÿÿ„è1ö‰t$\‹D$L‰D$`‹ƒÐN‰D$d½÷؍ƒÂ`ƒÏ‰<$‰éè!þÿ‰D$,…öt‹ùÿÿÿ?tI‰u‰4$‰Æ蠪‰ð…À„Ë‹E=ÿÿÿ?tH‰Eu‰,$è~ª‹L$@‹A1í;ƒHÿÿÿ„´1ÿ‰|$\‹t$,‰t$`­÷؍ƒÂ`E‰,$‰L$ è þÿ‰ʼnD$<…ÿt‹=ÿÿÿ?t
H‰u‰<$誋=ÿÿÿ?‹L$ tH‰u‰4$誋L$ ÇD$,…턈‹=ÿÿÿ?t
H‰u‰$è۩ÇD$@;«0ÿÿÿ‹t$Lt1;«4ÿÿÿt);«ÿÿÿt!‰,$è/¬…L$(ˆL‹Uúÿÿÿ?uë01À;«0ÿÿÿ”L$(‹Uúÿÿÿ?tJ‰Uu‰,$‰Çèl©‰ø‹L$(…À…‹F‰„$„‹l$0;«ÿÿÿtZè#¬‰D$t‹@@‹‹ÿÿÿ됐‹@…À„‡‹0…ötï9Îtë‹=ÿÿÿ?t@‰‹N‹=ÿÿÿ?t@‰‰L$X‰4$è䫉D$Pëb‰$趩‰D$<ÇD$$£…À„©‰ÆÇ$èT©‰D$@…À„ž‰ʼnpÇD$<ÇD$@éÎÇD$X1öÇD$P‰t$ ‹»TL‹ƒXG‹O‰L$‰|$‰$èi«…À„d
‰Ƌ=ÿÿÿ?t@‰‰t$<‹ƒÄJ‹N‹IH…É„l
‰D$‰4$ÿщD$,…À„o
‹ùÿÿÿ?tI‰u‰4$‰Æè
¨‰ðÇD$<‹H1ö;‹Hÿÿÿ„M
‰Å1ÿ‰t$\‹D$0‰D$`½÷؍ƒÂ`G‰<$‰éèþÿ‰ljD$@…öt‹=ÿÿÿ?t
H‰u‰4$訧ÇD$<‰|$$…ÿ‹|$ „F
‹E=ÿÿÿ?‹L$(tH‰Eu‰,$èt§‹L$(‰$è8¨…À„)
‰ÆÇ$èâ§…À„D
‰ŋD$$‰E‰uÇD$@ÇD$,ÇD$<‹L$X…Ét‹=ÿÿÿ?t
H‰u‰$è§…ÿ‹t$Pt‹=ÿÿÿ?t
H‰u‰<$èꦅöt‹=ÿÿÿ?t
H‰u‰4$èЦ‹»(L‹ƒXG‹O‰L$‰|$‰$豩…À„ɉƋ=ÿÿÿ?t@‰‰t$,‹ƒ°N‹N‹IH…Ʉ݉D$‰4$ÿщD$<ÇD$$ª…À„à‰ï‰D$0‹=ÿÿÿ?t
H‰u‰4$èJ¦‹«(L‹ƒXG‹M‰L$‰l$‰$è+©…À„¬‰Ƌ=ÿÿÿ?t@‰‰t$,‰ý‹ƒTJ‹N‹IH…É„¶‰D$‰4$ÿхL$0„¹‹úÿÿÿ?tJ‰u‰4$‰Æèͥ‰ð‹L$0ÇD$,‹Q1ö;“Hÿÿÿ‰l$D‰D$ „£1ÿ‰t$\‰l$`‰D$d½÷؍ƒÂ`ƒÏ‰<$‰Íè¼þÿ‰ljD$@…öt‹=ÿÿÿ?t
H‰u‰4$è\¥ÇD$,‹t$ ‹=ÿÿÿ?‰étH‰u
‰4$è8¥‰é…ÿ„Š‹=ÿÿÿ?t
H‰u‰$襋„$°‰D$PÇD$<‹=ÿÿÿ?t@‰ÇD$@‹G‰D$$‹G‹‹P‰|$T‹W‰D$‰$ÿ‘x‰Nj„$°‹°°‹ƒ0J‹n‰D$0‰D$‰,$èå©…À„‹H‹‰ˆ…Ét!‰l$‰t$‰$ÿщD$H…„$°u鋁ùÿÿÿ?‰D$HtA‰‹„$°‹°°‹ƒ$J‹n‰D$0‰D$‰,$èx©…À„ú‹P‹Šˆ…Ét)‰l$‰t$‰$ÿщD$<…À„ô‹P;“Hÿÿÿt"éß‹ùÿÿÿ?tA‰‰D$<;“Hÿÿÿ…‹p…ö„·‹h‹ùÿÿÿ?tA‰‹Mùÿÿÿ?tA‰M‰l$<‹ºùÿÿÿ?tI‰u
‰$蓣º‰é‰t$\ÇD$`•÷؉ՍƒÂ`‰,$‰Íè¥þÿ‰D$@…öt‹ùÿÿÿ?tI‰u‰4$‰ÆèD£‰ð…À„3‹Mùÿÿÿ?tI‰Mu‰,$‰Æè£‰ðÇD$<‹ùÿÿÿ?‹t$$t
I‰u‰$èú¢ÇD$@è=¨‰D$x…ÿ‹L$(Ž‹…ÉŽ]ƒD$P$‰̓å‰È%üÿÿ‰„$€͉D$|1ÀòƒÄ6úÿò„$ˆ‰|$X‰l$t됐‹D$ Ðt$|9ø,‰t$$‰D$ WÉ1ö‹¬$„‹|$PòL$0òDõòD$‰<$è&zòL$0‹T$(ݜ$›ò„$‹D$$òðòXÈF9òu¹1Àò„$ˆò^Cú‹t$$‹Œ$€rO1òÆòYÈòÆòLÆòYÈòLÆòLÆòYÈòLÆòLÆòYÈòLƃÀ9Áu»‹l$t…í‹|$X„ÿÿÿÆ1ɐòÈòYÈòÈA9Íuíéèþÿÿ1ÀfWÀò‹Ä6úÿf(Ñò^ÐÈ9ø|ò‹D$x‰$覦‹³O‹l$H‹E‹x@…ÿ„‡ƒc[úÿ‰$è0¥…À…ĉt$‹l$H‰,$ÇD$ÿ׉Æè¥…ö‹|$T„¤‹E=ÿÿÿ?tH‰Eu‰,$èؠ…ö„H‹=ÿÿÿ?‹l$Dt
H‰u‰4$趠‹=ÿÿÿ?t@‰‰ø‹t$L…öt‹ùÿÿÿ?tI‰u‰4$‰Æ臠‰ð…ÿt‹ùÿÿÿ?tI‰u‰<$‰Æèh ‰ð…ít‹Mùÿÿÿ?tI‰Mu‰,$‰ÆèG ‰ð…ÿt‹ùÿÿÿ?tI‰u‰<$‰Æè( ‰ðĜ^_[]Ã1Ò1ö‰Áé„üÿÿºZcÇD$$šë
ºdcÇD$$›ÇD$01ö1ÿ1íÇD$L‹D$,…À…Ûéõèx¡…À…?
‰éèyúýÿ‰D$,…À…Ë
ºscÇD$$žéމD$‰4$è_¡‰D$@ÇD$$ž…À…åóÿÿºucédè¡…Àu‰éè!úýÿ…À…~
ÇD$01ö1ÿ1íºxc‹D$,…À…Cé]‰D$‰4$èù ‰ŅÀ…ôÿÿºzcÇD$0é
‹u…ö„Ž	‰é‹m‹=ÿÿÿ?…Š‹E=ÿÿÿ?…‹¿=ÿÿÿ?„Ýóÿÿ錉l$0ºcÇD$ é°‹y…ÿ„=	‹q‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰t$@‹½=ÿÿÿ?t
H‰u‰$èpž‰ñéôÿÿº¦cÇD$ éJºªcÇD$ é8‹‹ÄO‹“ŒOÇ$è=þÿ‰D$<ÇD$$Ÿ…À„³‰ÆÇD$ ‰Áè¸þÿ‹=ÿÿÿ?t
H‰u‰4$èòÇD$<º¹céÓ苟…À…‰ùèŒøýÿ‰D$,…À…캍dÇD$$ªÇD$ 醉D$‰4$èjŸ‰D$<ÇD$$ª…À… ÷ÿÿÇD$ ºdëWè"Ÿ…À…#ÇD$ ‰éèøýÿ‰D$,º’d…	ýt,‰Æé6÷ÿÿ‰D$‰4$è	Ÿ…L$0…G÷ÿÿÇD$ º”dÇD$01ö1ÿ‹D$,…À…é+‹Q‰T$,…Ò„á‹i‰֋úÿÿÿ?tB‰‹Uúÿÿÿ?tB‰U‰l$<‹¿úÿÿÿ?tJ‰u‰$賜‹D$ ‰é‹l$Dé÷ÿÿºªdÇD$ ÇD$01ö1ÿ鋃ÿÿÿ‹‹L$0‰L$‰$讠ºàdÇD$$°ÇD$ ÇD$01ö‹l$D‹|$T‹D$,…À…Dé^‹ƒÿÿÿ‹‹L$0‰L$‰$è^ ÇD$<ºâd‹l$D‹L$Hë
ºöd‹L$H‹l$D‹ÇD$ =ÿÿÿ?‹|$Tu
ÇD$$°ëÇD$$°H‰u‰$‰Öèě‰òÇD$01ö‹D$,…À…µéωt$‰,$ÇD$è߉Ƌ|$Té˜úÿÿºeÇD$$°ÇD$ ÇD$01ö‹l$D‹D$,…À…bé|1ö‹|$Tëè÷œ…À„51ö‹l$HéDúÿÿƒ‹úÿ‰D$‰l$D$h‰D$D$\‰$èÒ …Àˆ‹t$h‹|$léTîÿÿ‰þ覜¿
d…À…‰ñè¢õýÿ‰D$<…À„ï‰Æé€òÿÿ‰D$‰4$蓜‰D$,…À…‘òÿÿÇD$,¿d釋p‰t$<…ö„«‹h‹ùÿÿÿ?tA‰‹Mùÿÿÿ?tA‰M‰l$,‹¿ùÿÿÿ?„ròÿÿI‰…iòÿÿ‰$èOšé\òÿÿ‹t$,¿!d…ö‹l$0u<ëP‹t$<ÇD$,¿%d…ö‹l$0t?‹=ÿÿÿ?t6H‰u1‰4$èšë'¿'d‹l$0‹=ÿÿÿ?t
H‰u‰4$èç™ÇD$,ÇD$<‹D$@…Àt‹ùÿÿÿ?t
I‰u‰$踙ÇD$@ƒþõÿ‰D$Ç$¦‹†Oúÿ‰úè’týÿD$@‰D$D$,‰$T$<‹L$tèf*1ö…Àˆk‹E;ƒPÿÿÿ…†‹E=ÿÿÿ?‹L$(t@‰E‰$èšÇD$$¨‰D$0…À„}Ç$賙…À„x‰NjD$0‰G‰|$‰,$膝‰é…À„l‰ŋ=ÿÿÿ?t
H‰u‰$è䘋=ÿÿÿ?‹t$Pt
H‰u‰<$èʘ‹D$<…Àt‹ùÿÿÿ?t
I‰u‰$諘ÇD$<‹D$,…|$ t‹ùÿÿÿ?t
I‰u‰$耘ÇD$,‹D$@…Àt‹ùÿÿÿ?t
I‰u‰$èY˜ÇD$@‹D$t‹H@‹‰9…Àt‹ùÿÿÿ?t
I‰u‰$è+˜‹L$X…É„5ñÿÿ‹=ÿÿÿ?„(ñÿÿH‰…ñÿÿ‰$éñÿÿÇD$(NdÇD$$§1ÿ1í‹D$t‹H@‹‹T$ ‰…Àt‹ùÿÿÿ?t
I‰u‰$è׉|$ ‹L$X…Ét‹=ÿÿÿ?t
H‰u‰$街1ÿ‹L$P…ɋT$(t‹=ÿÿÿ?tH‰u‰$è}—‹T$(‰l$01í‹D$,…ÀutéŽ@‰‹E=ÿÿÿ?„søÿÿ@‰E‹¿=ÿÿÿ?„LìÿÿH‰…Cìÿÿ‰$è.—é6ìÿÿÇD$ ºÞcë
ÇD$ ºàcÇD$01ö1ÿ1í‹D$,…Àt‹ùÿÿÿ?tI‰u‰$‰T$(èܖ‹T$(‹D$<…Àt‹ùÿÿÿ?tI‰u‰$‰T$(赖‹T$(‹D$@…Àt‹ùÿÿÿ?tI‰u‰$‰T$(莖‹T$(…öt‹=ÿÿÿ?tH‰u‰4$‰Öèn–‰ò‹L$0…Ét‹=ÿÿÿ?tH‰u‰$‰ÖèL–‰ò‹L$ …ɋt$Lt‹=ÿÿÿ?tH‰u‰$‰T$(è$–‹T$(ƒþõÿ‰D$‹D$$‰$‹†Oúÿèqýÿ1ö…Zõÿÿépõÿÿºcétèÿÿºøbéjèÿÿºÿbé`èÿÿ‰,$èߛ…À…úÇD$(ZdÇD$$¨éÁýÿÿÇD$(\d1ÿé¶ýÿÿÇD$(^d1ÿ‹t$0é£ýÿÿÇD$(cd‰Íé”ýÿÿÇD$,éÇõÿÿ1ÿéxêÿÿ1íéýêÿÿÇD$ ºµcéGþÿÿÇD$,é‡÷ÿÿÇD$ ÇD$,º’dÇD$01ö‰ý1ÿ‹D$,…À…!þÿÿé;þÿÿ1ö1ÿé]øÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èé¬ùÿÿ‰Å1öéòìÿÿ‰Æééÿÿ‰Æé‘éÿÿ‰Æé6îÿÿ‰ŋL$(éwûÿÿUSWVƒìè[ØÞ‹T$<‹l$8‹D$4‹¤N‰L$ÇD$…Òt$‰э4¨…ít8ƒý…œ‹‰T$‹A…À~éƒý…‹‰T$‹L$0菵éÉt$‹i…í~Q‹“¤N1��9T±„«F9õuñ‰T$1��‰ϋT±ƒì‹L$jè<ƒÄ…ÀuvF9õ‰ùuÞ處…l$8…±‹ƒ,ÿÿÿƒì‹ˆþõÿ“X8úÿ³ö#úÿ»‚>úÿUQjRVWÿ0èn•ƒÄ ºfƒìƒþõÿ‹è@úÿPh¿èŒnýÿƒÄ1Ä^_[]Éùx‹D$‹°‰T$…Ò„zÿÿÿ‰èH‹l$8‹t$…ÀŽýþÿÿƒö#úÿ‰òt$|$PUVWèüƒÄ…Àx‹T$éÔþÿÿºóeé|ÿÿÿºøeérÿÿÿUSWVƒìLè[ÃèÜ‹t$l‹|$h‹D$d‹¤N‰L$<ÇD$@…öt(‰ñ¸…ÿ„ƒÿ…}‹‰D$H‹i…í~éуÿ…b‹‰D$H‰D$$‹HöAW…‹ƒ”G9Á„‹‘¬…Ò„ç‹J…É~1��9D²„ÖF9ñuñ‹«(L‹ƒXG‹M‰L$‰l$‰$è2•…À„®‹ùÿÿÿ?tA‰‹“@I‹H‹IH…ɄΉT$‰Ɖ$ÿщŅÀ„Ñ‹=ÿÿÿ?t
H‰u‰4$èޑ‹E1ÿ;ƒHÿÿÿ„Ì1ö‹D$$‰t$<‰D$@½÷؍ƒÂ@G‰<$‰éèåþÿ‰Džöt‹=ÿÿÿ?t
H‰u‰4$艑…ÿ„ЋE=ÿÿÿ?tH‰Eu‰,$èi‘‹ƒÜK‹O‹IH…ɄĉD$‰<$ÿщŅÀ„Ç‹ƒÔN‰D$‰,$ÇD$訖…À„¶‰‹E=ÿÿÿ?tH‰Eu‰,$‰Ö葉ò;“0ÿÿÿ„;“4ÿÿÿ„;“ÿÿÿ„‰$‰ÖèT“‰ò…Àˆz‹
ùÿÿÿ?…õé‰T$ ‹i…í~S‹ƒ¤N1��9D±„F9õuñ1��‹T±Ç$‰ljÁ謅À…TF9õ‹L$l‰øuÙè’…|$h…Â
‹ƒ,ÿÿÿ‹‰|$‹ˆþõÿ‰L$‹X8úÿ‰L$‹®(úÿ‰L$‹‚>úÿ‰L$‰$ÇD$èđºêjƒþõÿ‰D$Ç$<‹tKúÿèãjýÿ1öéÂ1À;“0ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰Æ踏‰ð…À…p‹ƒÜK‹O‹IH…É„¬‰D$‰<$ÿщŅÀ„¯‹ƒÔN9ʼn|$ t'‹M;‹$ÿÿÿ…­‹Eƒàú1Ƀøu1Ƀ}”Á빉ϋE=ÿÿÿ?tH‰Eu‰,$è3‹³(L‹ƒXG‹N‰L$‰t$‰$è’‰Ņÿ„4…í‹|$ „„‹E=ÿÿÿ?t@‰E‹ƒˆK‹M‹IH…É„‹‰D$‰,$ÿхÀ„Ž‹Mùÿÿÿ?tI‰Mu‰,$‰Æ谎‰ð‹H1í;‹Hÿÿÿ„†1ö‰t$<‰|$@‹L$$‰L$D­÷ٍƒÂ@ƒÍ‰,$‰D$$‰Áè«þÿ‰…öt‹=ÿÿÿ?tH‰u‰4$‰ÖèMމò…ҋl$`„i‹L$$‹=ÿÿÿ?tH‰u‰$‰Öè#މò;“0ÿÿÿ„;“4ÿÿÿ„;“ÿÿÿ„ü‰$‰Öès‰ò…Àˆ5‹
ùÿÿÿ?…ïéû…í‹|$ „u‹E=ÿÿÿ?t@‰E‹ƒ0I‹M‹IH…É„|‰D$‰,$ÿщƅÀ„‹E=ÿÿÿ?tH‰Eu‰,$è}‹ƒ„M‹O‹IH…É„q‰D$‰<$ÿщt$4…À„tÇD$Ç$‰IÆ1Ò躅À„|‰D$$‹=ÿÿÿ?t
H‰u‰4$èÇ$蜍…À„xÇD$0}‰D$8‹L$$‰Hè|ÇD$,‰D$$…À„x‹«(L‹ƒXG‹M‰L$‰l$‰$蹏…À„b‰Ƌ=ÿÿÿ?t@‰‹ƒÜJ‹N‹IH…É„v‰D$‰4$ÿхL$$„y‹úÿÿÿ?tJ‰u‰4$‰ÆèaŒ‰ð‹L$$‹“J‰D$‰T$‰$‰Æ裍…Àˆ§‹=ÿÿÿ?t‰ñH‰u‰$è#Œ‹D$4‹@‹p@…ö„ƒc[úÿ‰$萅À…Ö‹D$$‰D$‹D$8‰D$‹l$4‰,$ÿ։Æèû‰t$(…ö„‹E=ÿÿÿ?‹L$$tH‰Eu‰,$賋‹L$$‹T$8‹=ÿÿÿ?tH‰u‰$蕋‹L$$‹=ÿÿÿ?‹t$`t
H‰u‰$èw‹‹ƒŒM‹N‹IH…É„
‰D$‰4$ÿхÀ„‹H;‹Hÿÿÿ…‹p…ö„‹x‹ùÿÿÿ?…¶‹ùÿÿÿ?…¹‹½ùÿÿÿ?…¸éÀ1À;“0ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰Æè݊‰ð…À„û‹³(L‹ƒXG‹N‰L$‰t$‰$贍…À„„‹ùÿÿÿ?tA‰‹“8I‹H‹IH…É„Œ‰T$‰Ɖ$ÿщŅÀ„‹=ÿÿÿ?t
H‰u‰4$è`Š‹E1ö;ƒHÿÿÿ„ˆ1ÿ‰|$<‹D$ ‰D$@µ÷؍ƒÂ@F‰4$‰éègþÿ‰ƅÿt‹=ÿÿÿ?t
H‰u‰<$芅ö„„‹E=ÿÿÿ?‹|$ tH‰Eu‰,$è牋=ÿÿÿ?u
‹l$`ë‰þëH‰‹l$`u‰<$èÉ‹ƒŒM‹M‹IH…É„-
‰D$‰,$ÿщŅÀ„0
‹E;ƒHÿÿÿ…þ‹M…É„ó‹U‹=ÿÿÿ?u‹=ÿÿÿ?u‹E¿=ÿÿÿ?u ë(@‰‹=ÿÿÿ?tã@‰‹E¿=ÿÿÿ?t
H‰E„ª‰ՉL$ ‰L$<‰t$@½÷؍ƒÂ@G‰<$‰éèLÿýÿ‹T$ …Òt‹
ùÿÿÿ?tI‰
u‰$‰Çè눉ø…À„ˆ	‹Mùÿÿÿ?tI‰Mu‰,$‰Çèƈ‰ø‹ùÿÿÿ?t
I‰u‰$譈‹=ÿÿÿ?„†@‰1í‰÷é'‰t$(¾‚l‹l$4‹L$$‹T$8‹E=ÿÿÿ?tH‰Eu‰,$‰t$ ‰ΉÕè_ˆ‰ê‰ñ‹t$ ‰ՅҋT$(t(‹E=ÿÿÿ?tH‰Eu‰,$‰t$ ‰ΉÕè-ˆ‰ê‰ñ‹t$ 1í…Ét"‹=ÿÿÿ?tH‰u‰$‰t$ ‰Ö舉ò‹t$ ‹L$,…Ét"‹=ÿÿÿ?tH‰u‰$‰t$ ‰Öèه‰ò‹t$ …Òt‹=ÿÿÿ?t
H‰u‰$蹇ƒþõÿ‰D$‹D$0‰$‹tKúÿ‰òè›býÿ1ö…ÿ„8‹é‰,$‰͉T$ è|‡‰é‹l$ é?þÿÿA‰‹ùÿÿÿ?„GüÿÿA‰‹½ùÿÿÿ?t
I‰u‰$èA‡‰ø‰t$<‹L$(‰L$@­÷ٍƒÂ@E‰,$‰ʼnÁèWýýÿ…ö‹|$ t‹ùÿÿÿ?tI‰u‰4$‰Æèö†‰ð…À„å
‹Mùÿÿÿ?tI‰Mu‰,$‰Æèц‰ð‹ùÿÿÿ?t
I‰u‰$踆‰ù‹l$(‰êè۞…À„¾
‰Ƌé-‹‰€9Át…Éuò;ƒ@ÿÿÿ…/ôÿÿ‹»(L‹ƒXG‹O‰L$‰|$‰$èa‰…À„³‰ŋ=ÿÿÿ?t@‰E‹ƒ0I‹M‹IH…É„À‰D$‰,$ÿхÀ„ËMùÿÿÿ?tI‰Mu‰,$‰Æè
†‰ð‹H1í;‹Hÿÿÿ„©1ö‰t$<‹L$$‰L$@­÷ٍƒÂ@E‰,$‰ʼnÁè
üýÿ‰Džöt‹=ÿÿÿ?t
H‰u‰4$豅…ÿ‹t$`„‹E=ÿÿÿ?tH‰Eu‰,$荅‹ƒŒM‹N‹IH…É„r‰D$‰4$ÿхÀ„u‹H;‹Hÿÿÿ…ª‹p…ö„Ÿ‰|$ ‹x‹ùÿÿÿ?u‹ùÿÿÿ?u‹½ùÿÿÿ?u!ë,A‰‹ùÿÿÿ?tâA‰‹½ùÿÿÿ?t
I‰u‰$èö„‰ø‹|$ ‰t$<‰|$@­÷ٍƒÂ@E‰,$‰ʼnÁèûýÿ…öt‹ùÿÿÿ?tI‰u‰4$‰Æ评‰ð…À„ËMùÿÿÿ?tI‰MtY‹ùÿÿÿ?teI‰u`‰$è}„‹=ÿÿÿ?tX@‰1í‰þ=ÿÿÿ?t
H‰u‰<$èY„…ít;‹E=ÿÿÿ?t1H‰Eu+‰,$è=„ë!‰,$‰Æè1„‰ð‹ùÿÿÿ?u›‹=ÿÿÿ?u¨‰þ‰ðƒÄL^_[]ËL$lˆ­óÿÿ‹D$ ‹°‰D$H…À„šóÿÿM‹|$h‹T$ …íŽ>ñÿÿƒ®(úÿ‰D$‰|$D$H‰D$D$<‰$è€	…Àˆñ‹D$Héñÿÿ1í1öé¶þÿÿèQ…ÇD$ 0k¾l…À…5‰ùèEÞýÿ…À„&‰Åé,ýÿÿ‰D$‰,$è:……À…=ýÿÿ1ÒÇD$0l¾2k鬋p…ö„È‹x‹ùÿÿÿ?ut‹ùÿÿÿ?uw‹½ùÿÿÿ?uz邾GkÇD$0l1ÿë2‰D$‰4$è˄…À…‹ýÿÿºUk¹m1íé¾ikÇD$0mÇD$,1҉é1íé£úÿÿA‰‹ùÿÿÿ?t‰A‰‹½ùÿÿÿ?t
I‰u‰$薂‰øéšüÿÿ1ÿ1ÉéTùÿÿºÚjé}òÿÿè'„ÇD$ ‹k¾p…Àu‰éèÝýÿ…À…-ƒþõÿ‰D$‰4$‹tKúÿ‹T$ éSòÿÿ‰T$‰Ɖ$èýƒ‰ŅÀ…/ðÿÿÇD$0p1ÿ1íÇD$,1҉ñ¾kéâùÿÿ‹u…ö„‚‹M‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰L$ ‹E¿=ÿÿÿ?tH‰Eu‰,$躁‹l$ éæïÿÿ1ÒÇD$0p¾¢kÇD$,1É1ÿéDùÿÿ‰D$‰<$èUƒ‰ŅÀ…9ðÿÿº°k¹q1íéÇD$(ÇD$0q¾²ké(¾´kÇD$0qé—‹‹äO‹“œOÇ$è6åýÿ…À„±‰ƉÁèÅåýÿ‹=ÿÿÿ?t
H‰u‰4$èÿ€1í¹rºÃké‰D$‰<$貂‰ŅÀ…QñÿÿºÕk¹u1íéìºßjé¾ðÿÿ;‹`ÿÿÿ„‰D$‰,$ÇD$膉Áè™…À‰r1ÒÇD$0u¾×késè%‚…Àu‰ñè*Ûýÿ…À…?1í¹wºâkév‰D$‰,$è‚…À…rñÿÿÇD$(ÇD$0w¾äkÇD$,1É1Òé˜÷ÿÿ‰Kp…ö„«‹y‹=ÿÿÿ?…‹=ÿÿÿ?…‹½=ÿÿÿ?…é¾ùkÇD$0w1íÇD$,1ҋL$$é•÷ÿÿ¾ýkÇD$0w1ÉÇD$,ÇD$(‰ՅҋT$(…:÷ÿÿé]÷ÿÿ‰D$‰,$èF‰ŅÀ…Ðõÿÿº6l¹y1í‰÷é~ÇD$(ÇD$0yÇD$,1É1҉÷¾Jlé²öÿÿ1í1öéé÷ÿÿèӀ…Àu‰ñèØÙýÿ…À…û1í¹xºlé$‰T$‰Ɖ$è@‰ŅÀ…qôÿÿÇD$0x1íÇD$,1҉ñ¾
lé¨öÿÿ‹}…ÿ„l‹E‰D$$‹=ÿÿÿ?…ì‹D$$‹=ÿÿÿ?…ï‹E¾=ÿÿÿ?…òéûÇD$(ÇD$0x¾lÇD$,1É1ҋ|$ éÖõÿÿ者Àu‰ñèÙýÿ…À…/1í¹}ºlléQ‰D$‰,$èð‰ƅÀ…ðÿÿ1ÒÇD$0}¾nlÇD$,1Éé«õÿÿ‰D$‰<$載t$4…À…ŒðÿÿÇD$0}ÇD$(¾qlÇD$,1É1ҋl$4é7õÿÿÇD$(ÇD$0}ÇD$,1ɋl$4‰ò¾slé
õÿÿÇD$0}ÇD$(¾vlÇD$,1ҋl$4‹L$$éáôÿÿ¾{lÇD$(1Éë_èú~…Àu‰éèÿ×ýÿ…À…0ÇD$(‹l$4‹L$$‹T$8¾}léšôÿÿ‰D$‰4$èÝ~…L$$…‡ðÿÿÇD$(‰t$,¾l‹l$4édôÿÿ@‰‹=ÿÿÿ?„êüÿÿ@‰‹½=ÿÿÿ?t
H‰u‰$è¹|‰ø‹|$ éîÿÿ¸ò*Àf.E›À”Á Á¶ÉéCíÿÿ‹D$$‰D$‹D$8‰D$‹l$4‰,$褀‰D$(…À…™ðÿÿ¾„lÇD$(éÏóÿÿ‰D$‰4$è~…À…ððÿÿº“l¹~‹l$(ëWèÝ}…À„ÜÇD$(‹l$4‹L$$‹T$8¾„léˆóÿÿ¾§lÇD$0~ÇD$,1҉é‹l$(éÆóÿÿºµl¹ƒþõÿ‰D$‰$‹tKúÿèÃVýÿ1öé+ôÿÿ@‰‹D$$‹=ÿÿÿ?„ýÿÿ@‹L$$‰‹E¾=ÿÿÿ?tH‰Eu‰,$è„{‹l$$é.ñÿÿ1íé}õÿÿ1ÿé éÿÿº¿k1í¹rë„1í1ö‹|$ ‰Èéµìÿÿ1öéúðÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èÿzéÿÿÿ‰Áééÿÿ‰Åé,ìÿÿ‰ÁéÈëÿÿ‰Áéoðÿÿ‰ÅéKíÿÿ‰Æé]îÿÿUSWVƒìè[ÃØÄ‹t$ Ç$ÇD$‹Aö@Wt8¸…öu'ƒyt!‹I‰$‹ƒ,ÿÿÿ³Æ[úÿQRVÿ0èf|ƒÄ1Ä^_[]ÉT$|$jD$PW‰ÍQ血ƒÄ…Àt$‹$‹@ö@W‰éuۋƒ,ÿÿÿƒì‹Ý<úÿÿt$Q멸…ö‹T$u¨‹$…Ét¡ë„USWVƒì‰T$è[ÃÄ‹l$8Ç$ÇD$ÇD$‰L$‹A‹@T‰D$‹t$0­‰D$‹$…Àt*‹ùÿÿÿ?t I‰uƒìPèÒyƒÄÇ$‹D$…|$t‹ùÿÿÿ?tI‰tOÇD$÷D$uND$PD$PD$PW艃ąÀ„I‹®‹$…ÉuR鯃ìPèFyƒÄÇD$÷D$t³‹D$;G‹L‡‰$‹L$‹‰L$@‰D$‹®‹$…Étb‹T$9t‹LƒÂ…Éuñë?‹D$‹L$4‰Ç$ÇD$1À…Âþÿÿéçþÿÿ‹ùÿÿÿ?u&‹D$‹ùÿÿÿ?u)‹$‹@ö@Wu0顐A‰‹D$‹ùÿÿÿ?t×A‰‹$‹@ö@W„v‹®…ÀtU‹|$ëèêy…À…ǐ‹D>ƒÇ…Àt5‹‹P‹$;QuèƒìQPè>~ƒÄ…ÀxÈuՋD$‹L$4‰9ƒ<>…ÿýÿÿ÷Åÿÿÿ?t_Áå1ÿëèŒy…ÀumƒÇ9ýt@‹>‹‹$9Èt‹P;QuåƒìQPèÛ}ƒÄ…ÀxÃuҋ$‹‹,ÿÿÿ“O:úÿPÿt$@Rÿ1닃,ÿÿÿ‹Æ[úÿÿ4$ÿt$@Qÿ0è.yƒÄ‹$…Àt‹ùÿÿÿ?tI‰uƒìPèLwƒÄ‹L$¸ÿÿÿÿ…Ét‹úÿÿÿ?tJ‰uƒìQ‰Æè"w‰ðƒÄƒÄ^_[]Ë$…Àt‹ùÿÿÿ?tI‰uƒìPèövƒÄ‹L$1Ét̋úÿÿÿ?tÂ1ÀJ‰u»멋ƒ,ÿÿÿƒì‹Ý<úÿéHÿÿÿUSWVƒì‰Îè[ÖÀ‹L$ 9Ö„‹F‹z;ƒxÿÿÿua;»xÿÿÿuY‹F;B…t‹zƒÿÿt‹nƒýÿt9ý…\‹~‰|$Áïƒç‹j‰l$Áíƒå9ï…:öD$ …Å‹né͋«xÿÿÿ1ï1苫ÿÿÿ‰ñ1é	ù‹L$ ”D$1Õ	Å„þ€|$…óƒìQRVèq{ƒÄ…Àt9;ƒ0ÿÿÿt;;ƒ4ÿÿÿt3;ƒÿÿÿt+ƒìP‰ÆèGxƒÄ‰‰ð‹ùÿÿÿ?u(é°ºÿÿÿÿé¦1Ò;ƒ0ÿÿÿ”‹ùÿÿÿ?„I‰…„ƒìP‰Öèzu‰òƒÄër1ÉöD$@”M,΃Å‹L$öÁ u‹Rë‰ÎöÁ@¹”Mʃƒÿ‰l$tƒÿu¶m¶
ë·m·
ë‹m‹
9͋L$ uƒøu1҃ùë1҃ù”‰ЃÄ^_[]ïøƒìWRÿt$‰Îè${ƒÄ1Ò1ɅÀ”•CþDʶÑëɐSVƒìè[Ú¾…Éuè†w‰ƋH<1Ét‹I…ÉuIƒÄ^[Ë=ÿÿÿ?tH‰u‰$‰Öèvt‰ò‹ƒXÿÿÿ‹‰T$‹<úÿ‰L$‰$èv¸ÿÿÿÿƒÄ^[˃ìÿÿÿ‹èÎÒýÿ…Àtä‹N<ÇF<…ɸt“‹úÿÿÿ?t‰J‰u„‰$èt1Ä^[АSVPè[ÃܽèÌv‰ƋH<1Ét‹I…ÉuƒÄ^[˃ìÿÿÿ‹èWÒýÿ…Àt2‹N<ÇF<…ɸt֋úÿÿÿ?tÌJ‰ulj$è™s1Ä^[øÿÿÿÿƒÄ^[АUSWVƒìè[ÃX½‹t$$‹D$ ‹y;»Tÿÿÿt_;»Pÿÿÿ„‹w4‹8…ÿtuƒto‰͉$èäx…À„‰ƉD$‰,$ÿW‹ùÿÿÿ?„ŒI‰…ƒ‰4$‰Æèÿr‰ðëu‰ׅÒy‰ׅÀt‹yׅöt;ysc‹A‹¸‹ùÿÿÿ?uHëI…ötMƒ~tG…Òy…Àuk‰T$‰$ÿVë+‰ׅÒy‰ׅÀt‹yׅöt;ys‹D¹‹ùÿÿÿ?tA‰ƒÄ^_[]Éω$è$x…Àt^‰ƉD$‰<$è’t‹ùÿÿÿ?…Bÿÿÿë̉Չϋ…Àt-‰<$ÿЅÀx‰ê‰ùéwÿÿÿ‹ƒðÿÿÿ‹‰$èTr…Àtè[r‰ù‰êéUÿÿÿ1À눐SWVƒì‰Öè[Ã׻‰T$‰$è0x…Àt‹ùÿÿÿ?tA‰ƒÄ^_[ÉÇèqs‰Iø…Éuê‹Fö@Wu‹ƒôÿÿÿ‹‰t$‰$èÜu‰øëɉt$Ç$è¸r‰ƅ	øt±‹ƒôÿÿÿ‹‰t$‰$è¬u‰ø‹ùÿÿÿ?t‘I‰uŒ‰4$èSq‰ø뀐SVPè[Ã»‹Aö@Wt*‹Qƒúv‰$èxwƒÄ^[Ãâ¸)ЯAƒÄ^[Ãè9…Àt*‰ƉÁè¬ÿÿÿ‹ùÿÿÿ?tÊI‰uʼn4$‰ÆèÓp‰ðƒÄ^[øÿÿÿÿƒÄ^[ÃSƒì‰Èè[Ùº‹IöAWt‹ùÿÿÿ?tA‰ƒÄ[ËI0…Ét-‹I@…Ét&‰$ÿхÀt‹H;‹$ÿÿÿtٍ“ýNúÿ‰Áè4ƒÄ[Ãè
r…Àu‹ƒ,ÿÿÿ‹‹)@úÿ‰L$‰$èp1Ä[АSWV‰Îè[Ã
º‹I‹AöAWu‹‹,ÿÿÿƒì»*;úÿPRRWÿ1è¹qƒÄ ë‹‹øÿÿÿ“‚:úÿPRjÿ1èMvƒÄ…Àt‹1ùÿÿÿ?tI‰t
^_[Éð^_[ÃìVè²oƒÄ1À^_[АUSWVƒìè[Ãx¹‹t$$‹|$ ‹«ÿÿÿ됐‹I…Ét5‹…Àtó9ètùÿÿÿ?tA‰‹H‰
‹úÿÿÿ?tB‰‰$è&rëÇÇ1	ƒÄ^_[]АUSWVƒì‰׉Îè[Ãä¸ÇD$ÇD$‹A<‰D$ÇA<…Àt ‹H‰L$‹úÿÿÿ?tB‰‰$è«q‰D$‹l$0D$‰D$D$‰D$D$‰$èuƒ~<…æ‹D$…Àt-‹L$‰D$‰$èr…ÀˆÆ‹D$…Àt
‹ùÿÿÿ?tA‰‹D$…Àt
‹ùÿÿÿ?tA‰‹D$…Àt‹ùÿÿÿ?tA‰‹D$ë1L$‰‰E‹L$‹T$4‰
‹N@‹1‰‹D$…Àt‹ùÿÿÿ?t
I‰u‰$èím‹D$…Àt‹ùÿÿÿ?t
I‰u‰$èÎm1öt‹ùÿÿÿ?tI‰u
‰4$è±m1Ä^_[]ÃÇÇE‹D$4NjL$è72ýÿ‹L$è.2ýÿ‹L$è%2ýÿ¸ÿÿÿÿ뿐SVPè[Ã<·‹t$‹‰1…Àt‹ùÿÿÿ?tI‰u‰$‰Öè,m‰ò‹t$…Òt‹=ÿÿÿ?t
H‰u‰$èm…öt‹=ÿÿÿ?tH‰tƒÄ^[É4$èìlƒÄ^[АSVPè[ü¶‹Aö@Wt*‹Qƒúv‰$èsƒÄ^[Ãâ¸)ЯAƒÄ^[ÃèÙûÿÿ…Àt*‰ƉÁè¬ÿÿÿ‹ùÿÿÿ?tÊI‰uʼn4$‰Æèsl‰ðƒÄ^[øÿÿÿÿƒÄ^[ÃUSWVƒìè[Ã8¶‹q‹n8…í„,‹E…À„!‹t$4…öt‹‰T$‰$ÿЃÄ^_[]ÉL$ƒ|$8t*Ç$‰Öè°q‰ò‰D$…À„‹L$0…Ét‹	1öëGÇD$‹ƒÿÿÿ‹L$0…Éuäƒ|$<t"‰$‰Æèmq‰Ið‰΅Éu‹L$èZ0ýÿé³1ö‹‹ÿÿÿ‹“ÿÿÿ‰T$‰L$‰$èÇl‰NjL$…Ét‹=ÿÿÿ?t
H‰u‰$ègk…öt‹=ÿÿÿ?t
H‰u‰4$èMk…ÿtW‰|$‹D$‰$ÿU‹ùÿÿÿ?„ÿÿÿI‰…ÿÿÿ‰<$‰Æèk‰ðéòþÿÿ‹F‹‹,ÿÿÿ‹	‰D$ƒ·Xúÿ‰D$‰$è²l1ÀéÊþÿÿUSWVì¬è[õ´‹„$ÀDŽ$”ÇD$DÇD$,ÇD$H‹2þÿÿÿ?tF‰2‹¬$ȋ0þÿÿÿ?tF‰0‰T$‰Œ$˜‹E=ÿÿÿ?t@‰E‹³(L‹ƒXG‹N‰L$‰t$‰$èGm…	l$d„CL‰Nj=ÿÿÿ?t@‰‰|$D‹ƒ8I‹O‹IH…É„vL‰D$‰<$ÿщƽ©…À„yL‹=ÿÿÿ?t
H‰u‰<$èçiÇ$èkj‰D$D…	t$p„aL‹T$‹
ùÿÿÿ?tA‰
‰PèBl‰D$,…À„FL‰NjƒÌI‹‹4ÿÿÿ‰L$`‰L$‰D$‰<$èäj…Àˆ7‹t$D‹D$p‹@‹h@…í„"Lƒc[úÿ‰$èhm…À…bL‰|$‰t$‹t$p‰4$ÿՉÇèXm…ÿ„5L‰|$H‹=ÿÿÿ?¿t
H‰u‰4$èi‹D$D‹ùÿÿÿ?t
I‰u‰$èöhÇD$D‹D$,‹ùÿÿÿ?‹t$t
I‰u‰$èÏhÇD$,‹L$H‹=ÿÿÿ?‰L$ tH‰u‰4$è©h‹L$ ÇD$H‹ƒÜK‰ʋI‹IH…É„eK‰D$‰$ÿщD$H½ª…À„hK‹‹ÐN9È„¡‹P;“$ÿÿÿ…P‹pƒæ錾.2ÇD$$ÇD$0ÇD$TÇD$LÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$hDŽ$„1ÿé3F¾‹ùÿÿÿ?t	I‰„;ÇD$H…ö„Cèqj‰D$8‹@@‹‹ÿÿÿë	‹@…Àt;‹…Òtó9Êtï‹=ÿÿÿ?t@‰‰T$$‹r‹=ÿÿÿ?t@‰‹D$$‰$è4j‰D$ë1öÇD$$ÇD$‰t$p‹»TL‹ƒXG‹O‰L$‰|$‰$è	j…À„yO‰ŋ=ÿÿÿ?t@‰E‰l$,‹ƒÄJ‹M‹IH…É„~O‰D$‰,$ÿщD$D…L$ „O‹E=ÿÿÿ?tH‰Eu‰,$è©f‹L$ ÇD$,‹ƒøJ‰ʋI‹IH…É„YO‰D$‰$ÿщƅÀ„\O‹F;ƒHÿÿÿ…I‹~…ÿ„I‹n‹=ÿÿÿ?u‹E=ÿÿÿ?u‹¹=ÿÿÿ?u!ë1@‰‹E=ÿÿÿ?tã@‰E‹¹=ÿÿÿ?tH‰u
‰4$èf¹‰$ˆDŽ$Œ÷؍Œ‰$‰ñèÜýÿ‰D$,…ÿt‹ùÿÿÿ?tI‰u‰<$è´e‹D$,…À„™N‹=ÿÿÿ?t
H‰u‰4$è’e‹D$D‹H1í¿;‹Hÿÿÿ‹t$p„lN‰¼$ˆ‹D$,‰„$Œ‹L$D­÷؍ŒE‰,$èƒÛýÿ‰D$H…ÿt‹=ÿÿÿ?t
H‰u‰<$è%e‹D$,‹ùÿÿÿ?t
I‰u‰$è
eÇD$,ƒ|$H‹|$„CN‹D$D‹ùÿÿÿ?t
I‰u‰$èØdÇD$D‹L$HÇD$H…öt‹=ÿÿÿ?tH‰u‰4$‰Îè¨d‰ñ‹T$$…Òt‹=ÿÿÿ?tH‰u‰$‰Îè†d‰ñ…ÿt‹=ÿÿÿ?tH‰u‰<$‰Îèhd‰ñ‹ƒÐN‰D$‰Œ$„‰$ÇD$èÅi‰D$,1ÿ½°…À„¤N;ƒ0ÿÿÿt2;ƒ4ÿÿÿt*;ƒÿÿÿt"‰$è’f…Àˆ†N‰‹D$,‹ùÿÿÿ?uë1Ò;ƒ0ÿÿÿ”‹ùÿÿÿ?t	I‰„bÇD$,…Ò„n‹³(L‹ƒXG‹N‰L$‰t$‰$è«f…À„tZ‹ùÿÿÿ?tA‰‰D$D‹‹¬L‹P‹RH…Ò„[‰L$‰$ÿ҉D$H…À„[‹D$D‹ùÿÿÿ?t
I‰u‰$èNcÇD$D‹D$H‹H1ö;‹Hÿÿÿ„U[‹D$D‰„$ˆ‹„$À‰„$Œ‹L$Hµ÷؍ŒF‰4$è9Ùýÿ‰D$,‹L$D…Ét‹=ÿÿÿ?t
H‰u‰$è×b‹D$,ÇD$D…À„@[‹D$H‹ùÿÿÿ?t
I‰u‰$è¨bÇD$H‹D$,‹‹ÐN9ȋ¼$È„¥‹P;“$ÿÿÿ…ñd‹p÷փæ鋉$ècbÇD$H…ö…½úÿÿ‹ƒÜK‹T$ ‹J‹IH…É„o\‰D$‰$ÿщD$,½²…À„r\‹‹ÔN9È„¹‹P;“$ÿÿÿ…Xe‹Hƒáúºƒù…˜1҃x•ÂéŠ1ö‹ùÿÿÿ?t
I‰u‰$èÉaÇD$,…ö„«‹‹ÄO‹“(OÇ$è±Åýÿ‰D$,1ÿ½±…À„Ót‰Áè7Æýÿ‹D$,‹ùÿÿÿ?t
I‰u‰$èlaÇD$,¾3éùX1ҋùÿÿÿ?tI‰u‰$‰Öè?a‰òÇD$,…Ò…[‹ƒ„M‹T$ ‹J‹IH…É„_\‰D$‰$ÿщƉD$,½µ…À„T\ÇD$Ç$ÇD$$‰ñ1ÒèYíÿÿ‰D$H…À„\\‹=ÿÿÿ?t
H‰u‰4$è·`ÇD$,‹D$HÇD$H;ƒÐN‹¼$È„¸‰„$„‹ƒÿÿÿ9Ç„‰‰<$èƒeÇD$0ƒøÿ„èJ‰Nj³(L‹ƒXG‹N‰L$‰t$‰$èAc…À„ËJ‹ùÿÿÿ?tA‰‰D$D‹‹´M‹P‹RH…Ò„ÿJ‰L$‰$ÿ҉D$,½¼…À„K‹D$D‹ùÿÿÿ?t
I‰u‰$èß_ÇD$D‹«(L‹ƒXG‹M‰L$‰l$‰$è¸b…À„ÔJ‰Ƌ=ÿÿÿ?t@‰½¼‹ƒLJ‹N‹IH…É„K‰D$‰4$ÿхÀ„K‰D$$‹=ÿÿÿ?t
H‰u‰4$è^_‹«(L‹ƒXG‹M‰L$‰l$‰$è?b…À„ûJ‰Ƌ=ÿÿÿ?t@‰‹ƒTJ‹N‹IH…É„-K‰D$‰4$ÿщŅD$ ‹L$$„#K‰|$8‹=ÿÿÿ?tH‰u‰4$èà^‹L$$‹A1ÿ;ƒHÿÿÿ„(K1ö‰´$ˆ‰¬$Œ½÷؍ŒG‰<$‰L$$èÜÔýÿ‰D$D…öt‹=ÿÿÿ?t
H‰u‰4$è~^‹E=ÿÿÿ?tH‰Eu‰,$èf^ƒ|$D„ùJ‹L$$‹=ÿÿÿ?½¼t
H‰u‰$è<^‹D$D‹‹(J‹P‹RH…Ò„KK‰L$‰$ÿ҉ƅÀ„NK‹D$D‹ùÿÿÿ?t
I‰u‰$èö]ÇD$D‹D$,‹H1ÿ;‹Hÿÿÿ„%K‹D$D‰„$ˆ‰´$Œ‹L$,½÷؍ŒG‰<$èèÓýÿ‰D$H‹D$D…Àt‹ùÿÿÿ?t
I‰u‰$è…]ÇD$D‹=ÿÿÿ?t
H‰u‰4$èg]ƒ|$H„K‹D$,‹ùÿÿÿ?t
I‰u‰$èA]ÇD$,‹l$HÇD$H‹¼$ȋO‹ƒˆG9Á„L‹‘¬…Ò„.‹J…É~1��9D²„F9ñuñ‰l$hé׉„$„‹»(L‹ƒXG‹O‰L$‰|$‰$è²_…À„sg‰Ƌ=ÿÿÿ?t@‰‰t$,‹ƒ¬L‹N‹IH…É„Žg‰D$‰4$ÿщD$D½¶…À„‘g‹=ÿÿÿ?t
H‰u‰4$èT\ÇD$,‹D$D‹H1ö;‹Hÿÿÿ„jg‹D$,‰„$ˆ‹„$À‰„$Œ‹L$Dµ÷؍ŒF‰4$è?Òýÿ‰D$H‹L$,…Ét‹=ÿÿÿ?t
H‰u‰$èÝ[‹D$HÇD$,…À„Ug‹D$D‹ùÿÿÿ?t
I‰u‰$è®[ÇD$D‹D$H‹‹ÐN9ȋ¼$ÈtZ‹P;“$ÿÿÿ…Ui‹p÷փæëC‰$‰Öèn[‰òÇD$,…Ò…’÷ÿÿ‹„$„‹¼$ȉ„$„‹ƒÿÿÿ9Ç…¾úÿÿëE1ö‹ùÿÿÿ?t
I‰u‰$è[ÇD$H…ö…)Q‹„$„‰„$„‹ƒÿÿÿ9Ç…wúÿÿÇD$h‰Æéê‹‰€9Át…Éuò;ƒ@ÿÿÿ…èýÿÿ‹³(L‹ƒXG‹N‰L$‰t$‰$èª]…	l$„îV‹ùÿÿÿ?tA‰‰D$,‹‹ôJ‹P‹RH…Ò„:W‰L$‰$ÿҽ¾‰D$$…À„=W‹D$,‹ùÿÿÿ?t
I‰u‰$èDZÇD$,‹ƒJ‹”$ȋJ‹IH…É„WÇD$p‰D$‰$ÿщD$,…t$$„WÇD$D‹F1í;ƒHÿÿÿ„W‹D$D‰„$ˆ‹D$,‰„$Œ‹ƒ¤G‰„$­÷؍ŒƒÍ‰,$‰ñèåÏýÿ‰D$H‹D$D…Àt‹ùÿÿÿ?t
I‰u‰$è‚YÇD$D‹D$,‹ùÿÿÿ?‹l$t
I‰u‰$è[YÇD$,ƒ|$H„ÁV‹=ÿÿÿ?t
H‰u‰4$è2Y‹T$H;“0ÿÿÿt0;“4ÿÿÿt(;“ÿÿÿt ‰$èŽ[…Àˆ”V‹T$H‹
ùÿÿÿ?uë&1À;“0ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰ÆèÒX‰ðÇD$H…À„Ü‹‹(LèU3ýÿ½¿…À„É\‹“´M‹H‹IH…ɉD$$„À\‰T$‰$ÿщD$,…À„Ã\‹L$$‹=ÿÿÿ?t
H‰u‰$èaX‹‹(Lèö2ýÿ‰D$D…À„Î\‹‹LJ‹P‹RH…Ò„î\‰L$‰$ÿ҉ŅÀ„ñ\‹D$D‹ùÿÿÿ?t
I‰u‰$èXÇD$D‹ƒJ‹”$ȋJ‹IH…É„Ä\‰D$‰$ÿщD$D…À„Ç\‹E1ÿ;ƒHÿÿÿ„ê\1ö‰´$ˆ‹D$D‰„$Œ½÷؍ŒG‰<$‰éèÎÍýÿ‰D$$‰ñè3ýÿ‹D$D‹ùÿÿÿ?t
I‰u‰$èhWÇD$D‹L$$…É„Ï\‹E=ÿÿÿ?tH‰Eu‰,$è<W‹L$$‹ƒ(J‰ʋI‹IH…É„É\‰D$‰$ÿщƅÀ„Ì\‹L$$‹=ÿÿÿ?t
H‰u‰$èõV‹D$,‹H1ÿ½;‹Hÿÿÿ„Ì\‰¬$ˆ‰´$Œ‹L$,½÷؍ŒG‰<$èîÌýÿ‰D$H‰éèSýÿ‹=ÿÿÿ?t
H‰u‰4$èVƒ|$H‹¼$ȋl$„Â\‹D$,‹ùÿÿÿ?t
I‰u‰$è\VÇD$,‹E=ÿÿÿ?t@‰E‰l$,‹D$H‰l$‰$ÇD$èª[…À„²\‰Á;ƒ0ÿÿÿtD;‹4ÿÿÿt<;‹ÿÿÿt4‰$‰L$$è|X‹L$$…Àˆ½\‹úÿÿÿ?u'ë6‰l$h‹¼$ÈéÓ1À;‹0ÿÿÿ”úÿÿÿ?tJ‰u‰$‰Æè°U‰ð…À„»‹D$H‹L$Húÿÿÿ?tB‰‹1‹D$,‹ùÿÿÿ?t
I‰u‰$ètUÇD$,‹D$H‹ùÿÿÿ?t
I‰u‰$èQU‰t$H‹=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$è)U‹D$H‰D$h‹E=ÿÿÿ?tH‰Eu‰,$è	UÇD$H‹ƒP‹°Ç$ÿ´f(ƒ,üõÿfD$‰D$‰<$ÿ։D$HÇD$$…À„©B‰Ƌ=ÿÿÿ?t@‰‹D$H‹ùÿÿÿ?t	I‰„uÇD$H‹=ÿÿÿ?t	H‰„¯;³ÿÿÿt‹“ˆG‰ñèk…À„ðL‹N‹~‹ƒÜK‹IH…É„_B‰D$‰4$ÿѽÅ…À„bB‹‹ÔN9Èt4‹P;“$ÿÿÿ…áL‹Hƒáúºƒùu1҃x•‹ùÿÿÿ?uë1ҋùÿÿÿ?tI‰u‰$‰ÕèÛS‰ê…҉t$…	B‹ƒ¨M‹N‹IH…É„ÅB‰D$‰4$ÿщÆÇD$$½Ç…„$„„¯B‰D$‰4$ÇD$èþX‰D$H…À„™B‹=ÿÿÿ?t
H‰u‰4$è\S‹T$H;“0ÿÿÿt0;“4ÿÿÿt(;“ÿÿÿt ‰$è¸U…ÀˆcB‹T$H‹
ùÿÿÿ?uë&1À;“0ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰ÆèüR‰ðÇD$H…À…'B‹D$8‰D$‰<$ÿ“,Pݜ$ ›ò„$ f)D$p‹»(L‹ƒXG‹O‰L$‰|$‰$è£U…À„5B‰Ƌ=ÿÿÿ?t@‰‹ƒèJ‹N‹IH…É„´B‰D$‰4$ÿщD$,½Ê…D$ „§B‹=ÿÿÿ?t
H‰u‰4$èERf(D$pò$èõR…À„æB‰ƋD$,‹H1í¿;‹Hÿÿÿ„zC‰¼$ˆ‰´$Œ‹L$,­÷؍ŒE‰,$è$Èýÿ‰D$H…ÿt‹=ÿÿÿ?t
H‰u‰<$èÆQ‹=ÿÿÿ?½Êt
H‰u‰4$è«Qƒ|$H„aC‹D$,‹ùÿÿÿ?t
I‰u‰$è…QÇD$,‹T$H;“0ÿÿÿt0;“4ÿÿÿt(;“ÿÿÿt ‰$èÙS…Àˆ=C‹T$H‹
ùÿÿÿ?uë&1À;“0ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰ÆèQ‰ðÇD$H…À…¤C‹‹(Lè +ýÿ‰D$,½Ì…À„QD‹‹XK‹P‹RH…Ò„ÙD‰L$‰$ÿ҉DžÀ„ÜD‹D$,‹ùÿÿÿ?t
I‰u‰$è­PÇD$,‹ƒ0M‹O‹IH…É„ÁD‰D$‰<$ÿщD$,…D$ „ÄD‹=ÿÿÿ?t
H‰u‰<$èbP‹ƒÐN‰D$‹t$‰4$ÇD$èÄU…À„ºD‰NjD$,‹H;‹Hÿÿÿ…Ú2‹p…ö„Ï2‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹½=ÿÿÿ?t
H‰u‰$èÜO‰´$ˆ‰¼$Œ‹L$,­÷؍ŒE‰,$èïÅýÿ‰D$H‰ñèTýÿ‹=ÿÿÿ?t
H‰u‰<$èŽOƒ|$H½Ì„D‹D$,‹ùÿÿÿ?t
I‰u‰$ècOÇD$,‹T$H;“0ÿÿÿt0;“4ÿÿÿt(;“ÿÿÿt ‰$è·Q…ÀˆÚC‹T$H‹
ùÿÿÿ?uë&1À;“0ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰ÆèûN‰ðÇD$H…À…èCf(D$pò\ƒÄ6úÿfTƒìûõÿf$è‰O‰D$H1ÿ½Î…À„D‹L$h‰L$‰$ÇD$èT‰D$,…À„
D‹D$H‹ùÿÿÿ?t
I‰u‰$èwNÇD$H‹T$,;“0ÿÿÿ‹t$t0;“4ÿÿÿt(;“ÿÿÿt ‰$èÇP…ÀˆÉC‹T$,‹
ùÿÿÿ?uë&1À;“0ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰ÅèN‰èÇD$,…À…¯C‹¼$À;»ÿÿÿ‹L$`‰t$d‰¼$œ„º‹=ÿÿÿ?t@‰ÇD$,‹‰ù=ÿÿÿ?t
@‰‹Œ$À‰L$\‹³(L‹ƒXG‹N‰L$‰t$‰$è‹P…À„ã=‹ùÿÿÿ?tA‰‰D$,‹‹¬L‹P‹RH…Ò„›>‰L$‰$ÿ҉D$H½Ö…À„ž>‹D$,‹ùÿÿÿ?t
I‰u‰$è)MÇD$,Ç$è¥M‰D$,…À„Ù>‹T$\‹
ùÿÿÿ?tA‰
‹D$,‰Pè|O…À„?‰D$l‹«(L‹ƒXG‹M‰L$‰l$‰$èÁO…À„¹?‰Nj=ÿÿÿ?t@‰½Ö‹ƒÜJ‹O‹IH…É„@‰D$‰<$ÿщD$D…D$ „	@‹=ÿÿÿ?t
H‰u‰<$ècL‹ƒJ‹L$D‰L$‰D$‹|$l‰<$è¥M…Àˆ
ÇD$p‹D$D‹ùÿÿÿ?t
I‰u‰$èLÇD$D‹|$H‹t$,‹G‹h@…í„‚Eƒc[úÿ‰$èþO…À…ŸE‹D$l‰D$‰t$‰<$ÿՉÇèîO…ÿ„rE‰|$D‹|$\‹D$H‹ùÿÿÿ?‹t$dt
I‰u‰$èŸKÇD$H‹D$,‹ùÿÿÿ?t
I‰u‰$è|KÇD$,‹L$l‹=ÿÿÿ?t
H‰u‰$èZK‹„$À‹L$D‰Œ$À‹ùÿÿÿ?t
I‰u‰$è1KÇD$D‹ƒ4ÿÿÿ‰D$`ës‹‹0ÿÿÿ‹=ÿÿÿ?t@‰ÇD$,‹»dG‹=ÿÿÿ?‰L$`t	@‰‹»dG‹ƒÔN‹ùÿÿÿ?t	A‰‹ƒÔN‹Œ$À‰„$À‹=ÿÿÿ?t
H‰u‰$èªJ‰|$\‹Œ$Ä;‹0ÿÿÿ„Å;‹4ÿÿÿ„¹;‹ÿÿÿ„­‰$èóL…Àˆ0…À„¨;³ÿÿÿ„f‹ƒàI‹N‹IH…É„¦H‰D$‰4$ÿѽÞ…À„©HÇD$,‹H1ÿ;‹Hÿÿÿ…Ž@‹H‰L$,…É„@‹p‹úÿÿÿ?…µ‹ùÿÿÿ?…¸‹¿ùÿÿÿ?…·é¿1À;‹0ÿÿÿ”À…Xÿÿÿ‹„$À‹Œ$„‰L$‰$ÇD$èO‰D$D½è…À„ÿIÇD$$;ƒ0ÿÿÿ„¸	;ƒ4ÿÿÿ„¬	;ƒÿÿÿ„ 	‰$èÔK…ÀˆÕI‰‹D$D‹ùÿÿÿ?…‘	é	ÇD$p¾é5ÇD$$ÇD$0ÇD$TÇD$LÇD$8‹D$ ‰D$陋ƒÔL‹”$˜‹J‹IH…É„yP‰D$‰$ÿщD$,‹‹ÿÿÿ‰L$dÇD$T½æ…À„^PÇ$è.I‰D$H…À„PP‹‹ÐN‹úÿÿÿ?t
B‰‹D$H‹‹ÐN‰H‹Œ$„‹=ÿÿÿ?t@‰‹D$H‰HèãJ…À„P‰Njƒ¨M‹L$\‰L$‰D$‰<$èI…Àˆc‹L$,‹T$H‰<$è'¬ýÿ‰D$D…À„T‹D$,‹ùÿÿÿ?t
I‰u‰$èðGÇD$,‹D$H‹ùÿÿÿ?t
I‰u‰$èÍGÇD$H‹=ÿÿÿ?t
H‰u‰<$è¯G‹|$DÇD$D‹ƒÿÿÿ‰D$dÇD$LÇD$TÇD$8ÇD$(ÇD$PÇD$XÇD$<1í‹L$ ‹„$œ;ƒÿÿÿ„I‰|$4ét!B‰‹ùÿÿÿ?„HýÿÿA‰‹¿ùÿÿÿ?t
I‰u‰$èG‹D$,‰„$ˆDŽ$Œ½÷؍Œ‰<$‰ñè½ýÿ‰D$D‹L$,…Ét‹=ÿÿÿ?t
H‰u‰$è»F‹D$DÇD$,…À„5E‹=ÿÿÿ?t
H‰u‰4$è‘F‹t$DÇD$DÇD$Ç$‰ñºÿÿÿÿèêÒÿÿ‰D$DÇD$0½ß…	t$@„ïD‰D$‰4$èÑL…´$˜„0E‰ŋD$D‹ùÿÿÿ?t
I‰u‰$èFÇD$D‹L$@‹=ÿÿÿ?t
H‰u‰$èóE‹ƒM‹N‹IH…É„FE‰D$‰4$ÿщD$D…À„IEÇD$,‹H1ö;‹HÿÿÿuK‹H‰L$,…Ét@‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$D‰D$D‹¾=ÿÿÿ?t
H‰u‰$èjE‹D$,‰„$ˆ‹D$\‰„$Œ‹L$Dµ÷؍ŒF‰4$èu»ýÿ‰ƋL$,èÚ	ýÿÇD$,‰t$<…ö„ÚD‹D$D‹ùÿÿÿ?t
I‰u‰$èûDÇD$D‹ƒ`M‹M‹IH…É„E‰D$‰,$ÿщÇÇD$0…À„EÇ$èHE‰D$D…À„E‹T$<‹
ùÿÿÿ?tA‰
‹D$D‰PèG‰D$,…À„ðD‹‹˜M‹“HM‰T$‰L$‰$èÇE…Àˆ©‹T$D‹D$,‰$‰ùè]¨ýÿ‰D$H…À„šK‹=ÿÿÿ?t
H‰u‰<$è+D‹D$D‹ùÿÿÿ?t
I‰u‰$èDÇD$D‹D$,‹ùÿÿÿ?t
I‰u‰$èíCÇD$,‹D$H‰D$4ÇD$H‹‹(Lèjýÿ‰D$H…À„!K‹‹8I‹P‹RH…Ò„K‰L$‰$ÿ҉D$,…À„K‹D$H‹ùÿÿÿ?t
I‰u‰$èzCÇD$HÇ$èöC‰D$H…À„éJ‹T$4‹
ùÿÿÿ?tA‰
‹D$H‰PèÍE‰D$D…À„ÊJ‹‹ÌI‹“4ÿÿÿ‰T$‰L$‰$èuD…Àˆ=‹L$,‹T$H‹D$D‰$è	§ýÿ…À„¹N‰NjD$,‹ùÿÿÿ?t
I‰u‰$èÔBÇD$,‹D$H‹ùÿÿÿ?t
I‰u‰$è±BÇD$H‹D$D‹ùÿÿÿ?t
I‰u‰$èŽBÇD$D‹ƒDI‹O‹IH…É„DN‰D$‰<$ÿщD$D…À„GN‹=ÿÿÿ?t
H‰u‰<$èGBÇ$èËB…À„'N‰Njƒ$ÿÿÿ‹ùÿÿÿ?tA‰‰Gè¦D‰D$H…À„N‹‹˜I‹“lN‰T$‰L$‰$èNC…Àˆ_‹L$D‹D$H‰$‰úèä¥ýÿ‰D$,…À„[P‹D$D‹ùÿÿÿ?t
I‰u‰$è­AÇD$D‹=ÿÿÿ?t
H‰u‰<$èA‹D$H‹ùÿÿÿ?t
I‰u‰$ètAÇD$H‹|$,‹L$4‹=ÿÿÿ?t
H‰u‰$èNAÇD$,ÇD$LÇD$TÇD$8ÇD$(ÇD$PÇD$X‹L$ ‹„$œ;ƒÿÿÿ…·ùÿÿ‹w‹“ˆG‰ñè¡ýÿ…À„‹ƒøJ‹NH…É„sO‰D$‰<$ÿщD$H…À„vOÇD$,‹H1ö;‹HÿÿÿuK‹H‰L$,…Ét@‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$H‰D$H‹¾=ÿÿÿ?t
H‰u‰$èa@‹D$,‰„$ˆ‹ƒÐN‰„$Œ‹L$Hµ÷؍ŒF‰4$èj¶ýÿ‰D$D‹L$,èÍýÿÇD$,ƒ|$D„ÆN‹D$H‹ùÿÿÿ?t
I‰u‰$èï?ÇD$H‹D$D‰D$4‹=ÿÿÿ?t
H‰u‰<$èÉ?ÇD$Déí1Ò;ƒ0ÿÿÿ”‹ùÿÿÿ?tI‰u‰$‰Öè˜?‰òÇD$D…Ò…@‹„$À‹‹ÐN‰L$‰$ÇD$èåD‰D$D½ë…À„¦@;ƒ0ÿÿÿt6;ƒ4ÿÿÿt.;ƒÿÿÿt&‰$è´A…Àˆˆ@‰‹D$D‹ùÿÿÿ?‹t$duë*1Ò;ƒ0ÿÿÿ”‹ùÿÿÿ?‹t$dtI‰u‰$‰×èî>‰úÇD$D…Ò…B@;³ÿÿÿ„}‹»(L‹ƒXG‹O‰L$‰|$‰$è±A…À„{F‰Ƌ=ÿÿÿ?t@‰‹ƒÐI‹N‹IH…É„âF‰D$‰4$ÿщD$H½ï…À„åF‹=ÿÿÿ?t
H‰u‰4$èW>‹ƒÐN‰D$‹D$d‰$ÇD$è¹C…À„µF‰ÆÇD$,‹D$H‹H1ÿ;‹Hÿÿÿ„ F‹D$,‰„$ˆ‰´$Œ‹L$H½÷؍ŒG‰<$è!´ýÿ‰D$D‹D$,…Àt‹ùÿÿÿ?t
I‰u‰$è¾=ÇD$,‹=ÿÿÿ?t
H‰u‰4$è =ƒ|$D„|F‹D$H‹ùÿÿÿ?t
I‰u‰$èz=ÇD$H‹D$D‹Œ$À‰L$‰$ÇD$èÓB‰D$H1ÿ…À„>F‹D$D‹ùÿÿÿ?t
I‰u‰$è*=ÇD$D‹T$H;“0ÿÿÿ„Î;“4ÿÿÿ„Â;“ÿÿÿ„¶‰$èr?…ÀˆõE‹T$H‹
ùÿÿÿ?‹t$d…©éµ‰<$èÇ<;³ÿÿÿ…EèÿÿéUèÿÿ¾‹6ÇD$$ÇD$pÇD$T‰l$@‹D$ ‰D$ÇD$LÇD$8ÇD$(ÇD$PÇD$XÇD$4½áéÈ‹ƒpL‹”$˜‹J‹IH…É„I‰D$‰$ÿщD$D‹‹ÿÿÿ‰L$d½…À„
IÇD$,‹H1ö;‹HÿÿÿuK‹H‰L$,…Ét@‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$D‰D$D‹¾=ÿÿÿ?t
H‰u‰$è´;‹D$,‰„$ˆ‹„$„‰„$Œ‹L$Dµ÷؍ŒF‰4$輱ýÿ‰D$H‹L$,èýÿÇD$,ƒ|$H„vH‹D$D‹ùÿÿÿ?t
I‰u‰$èA;ÇD$D‹L$H„$À‰$ÇD$ÇD$ÇD$1Òè¬Îÿÿ‰D$D…À„nH‹D$H‹ùÿÿÿ?t
I‰u‰$èå:ÇD$H‹|$DÇD$D‹ƒ„M‹O‹IL…ɋT$\„;H‰T$‰D$‰<$ÿы‹ÿÿÿ‰L$dÇD$L…L$ ˆbÇD$TÇD$8ÇD$(ÇD$PÇD$XÇD$<1틄$œ;ƒÿÿÿ…óÿÿéEùÿÿ1À;“0ÿÿÿ”
ùÿÿÿ?‹t$dtI‰
u‰$‰Åè:‰èÇD$H…À…'C‹ƒÐN‹ùÿÿÿ?t	A‰‹ƒÐN‰„$”‹ƒÌI‹N‹IH…É„ºC‰D$‰4$ÿщD$D½ò…À„½C‹H;‹Hÿÿÿ…È7‹p…ö„½7‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$D‰D$D‹¿=ÿÿÿ?t
H‰u‰$èb9‰´$ˆDŽ$Œ‹L$D½÷؍Œ‰<$èr¯ýÿ‰D$H‰ñè×ýüÿƒ|$H„/C‹D$D‹ùÿÿÿ?t
I‰u‰$è9ÇD$D‹D$H‰D$l‹L$d‹=ÿÿÿ?t
H‰u‰$è×8ÇD$H‹‹(Lèdýÿ‰D$HÇD$T½ó…À„
C‹‹°N‹P‹RH…Ò„ýB‰L$‰$ÿ҉D$D…À„C‹D$H‹ùÿÿÿ?t
I‰u‰$èg8ÇD$HÇ$èã8‰D$H…À„ÌB‹T$\‹
ùÿÿÿ?tA‰
‹D$H‰Pèº:…À„®B‰NjƒJ‹‹$ÿÿÿ‰L$‰D$‰<$èd9…Àˆg‹L$D‹T$H‰<$èü›ýÿ‰D$,…À„òC‹D$D‹ùÿÿÿ?t
I‰u‰$èÅ7ÇD$D‹D$H‹ùÿÿÿ?t
I‰u‰$è¢7ÇD$H‹=ÿÿÿ?t
H‰u‰<$è„7‹T$,ÇD$,‹ƒM‹J‹IH…ɉT$X„|C‰D$‰$ÿѽô…À„CÇD$H‹H1ÿ;‹Hÿÿÿ…ƒ>‹H‰L$H…É„t>‹p‹úÿÿÿ?…‹ùÿÿÿ?…‹¿ùÿÿÿ?…é‹D$,‹L$,úÿÿÿ?…Aáÿÿé?áÿÿ¾§61ÿéB¾Þ6ÇD$$ÇD$pÇD$0ÇD$L‹D$ ‰D$ë5¾Á7ÇD$$ÇD$pÇD$0‹D$l‰D$d‹D$ ‰D$ÇD$LÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@阉$è6ÇD$H‹=ÿÿÿ?„ˆáÿÿézáÿÿB‰‹ùÿÿÿ?„íþÿÿA‰‹¿ùÿÿÿ?t
I‰u‰$èÑ5‹D$H‰„$ˆDŽ$Œ½÷؍Œ‰<$‰ñè߫ýÿ‰D$,‹L$HèBúüÿÇD$Hƒ|$,„B‹=ÿÿÿ?t
H‰u‰4$èi5‹D$,‰D$PÇD$,‹„$”‹Œ$À‰L$‰$ÇD$è·:‰D$,½õ¾ô7…À„ÒÇD$@‹‹0ÿÿÿ‰L$$1ÿÇD$81É1öëIÇD$H‹„$”‹Œ$À‰L$‰$ÇD$èF:‰D$,…L$p„‰t$T‰L$L‰|$(;D$$tD;ƒ4ÿÿÿt<;ƒÿÿÿt4‰$è7…´$˜ˆ#‰‹D$,‹ùÿÿÿ?u'ë;1Ò;D$$”‹´$˜‹ùÿÿÿ?tI‰u‰$‰×è74‰úÇD$,…Ò„¡‹ƒÄL‹N‹IH…É„†‰D$‰4$ÿщDžÀ„®‹„$À‹Œ$”‰L$‰$è:‰D$H…À„žÇD$D‹G1í;ƒHÿÿÿ…-‹G‰D$D…À„‹w‹ùÿÿÿ?u‹=ÿÿÿ?u!‹½=ÿÿÿ?u$ë5A‰‹=ÿÿÿ?tß@‰‹½=ÿÿÿ?tH‰u‰<$èV3‹D$D‰„$ˆ‹D$H‰„$Œ­”$Œ)ÂE‰,$‰ñè_©ýÿ‰D$,‹L$DèÂ÷üÿÇD$D‹D$H‹ùÿÿÿ?tI‰u‰$èï2ÇD$Hƒ|$,„Ï‹=ÿÿÿ?tH‰u‰4$è·2‹|$,‹L$(èS÷üÿÇD$,‹„$”‹‹ÐN‰L$‰$ÇD$èú7‰D$,…À„‘;D$$t8;ƒ4ÿÿÿt0;ƒÿÿÿt(‰$èÐ4…Àˆz‰‹D$,‹ùÿÿÿ?uë"1Ò;D$$”‹ùÿÿÿ?t	I‰„b	ÇD$,…҉|$„Œ„$”‰$ÇD$ÇD$ÇD$ÇD$<‹L$P1ÒèkÅÿÿ‰D$,…À„@(‹‹ÐN‰L$‰D$‹D$l‰$è¥6…Àˆ%(‹D$,‹ùÿÿÿ?tI‰u
‰$è‚1ÇD$,‹|$‹‹(Lè	ýÿ…À„ª‰ƋƒàI‹N‹IH…É„à‰D$‰4$ÿщD$H…À„–‹=ÿÿÿ?t
H‰u‰4$è 1‹D$H‹H1ö¿;‹Hÿÿÿ„¸‰´$ˆ‹D$l‰„$Œ‹L$H½”$Œ)ÂG‰<$è§ýÿ‰D$,‰ñè|õüÿƒ|$,„<‹D$H‹ùÿÿÿ?tI‰u‰$è¦0ÇD$H‹t$,‹L$@è;õüÿÇD$,ÇD$Ç$‰ñºÿÿÿÿèè¼ÿÿ‰D$,…À„ð‰D$‰4$èà6‰D$H…À„ý‹D$,‹ùÿÿÿ?tI‰u‰$è)0ÇD$,‹L$H‹=ÿÿÿ?tH‰u‰4$‰Îèü/‰񐐐ÇD$H‹ƒ`M‰ʋI‹IH…ɉT$@„؉D$‰$ÿщD$H…À„—Ç$è=0‰D$,…À„Ž‹|$‹ùÿÿÿ?tA‰‹D$,‰xè2…À„މƋƒ˜M‹‹HM‰L$‰D$‰4$è¾0…Àˆ
‹L$H‹T$,‰4$èV“ýÿ‰D$D…À„g‹D$H‹ùÿÿÿ?tI‰u‰$è/ÇD$H‹D$,‹ùÿÿÿ?tI‰u‰$èí.ÇD$,‹=ÿÿÿ?tH‰u
‰4$èÂ.‹|$D‹L$8ècóüÿÇD$D‹‹(Lè@	ýÿ‰D$D…À„Ü‹‹hN‹P‹RH…Ò„§‰L$‰$ÿ҉ƅÀ„Ä‹D$D‹ùÿÿÿ?tI‰u
‰$èR.ÇD$DÇ$èÌ.‰D$D…À„¤‹ùÿÿÿ?tA‰‹D$D‰xè§0‰D$,…À„˜‹‹<M‹T$$‰T$‰L$‰$èQ/…ÀˆÞ‹T$D‹D$,‰$‰ñèç‘ýÿ‰D$H…À„ˆ‹=ÿÿÿ?tH‰u
‰4$èµ-‹D$D‹ùÿÿÿ?tI‰u
‰$è•-ÇD$D‹D$,‹ùÿÿÿ?tI‰u‰$èm-ÇD$,‹D$H‹H;‹Pÿÿÿ…‡‹Hƒù…‹H‰L$,ƒÀ‹‰D$D‹úÿÿÿ?u‹ùÿÿÿ?u&‹D$H‹ùÿÿÿ?u)ë5B‰‹D$D‹ùÿÿÿ?tÚA‰‹D$H‹ùÿÿÿ?tI‰u	‰$èÑ,ÇD$H‹D$,‰D$p‹L$LègñüÿÇD$,‹t$D‹L$TèRñüÿÇD$D‹ƒ¬M‹N‹IH…É„q‰D$‰4$ÿщD$D…À„ÇD$,‹H1í;‹HÿÿÿuL‹H‰L$,…ÉtA‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$D‰D$D‹½=ÿÿÿ?tH‰u	‰$è,‹D$,‰„$ˆDŽ$Œ‹L$D­”$Œ)‰,$è¢ýÿ‰D$H‹L$,èðüÿÇD$,ƒ|$H„‹D$D‹ùÿÿÿ?tI‰u‰$è£+ÇD$D‹D$H‹ùÿÿÿ?tI‰u‰$è}+ÇD$H‹ƒ$N‹O‹IH…É„\‰D$‰<$ÿщD$D…À„ÛÇD$,‹H1í;‹HÿÿÿuZ‹H‰L$,…ÉtO‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$D‰D$D‹½=ÿÿÿ?tH‰u‰$èß*‹D$,‰„$ˆ‰´$Œ‹L$D­”$Œ)ÂE‰,$èá ýÿ‰D$H‹L$,èDïüÿÇD$,ƒ|$H„\‹D$D‹ùÿÿÿ?tI‰u‰$èf*ÇD$D‹L$H‹=ÿÿÿ?½õ‰L$8tH‰u
‰<$è5*‹L$8ÇD$H‹ƒ¨M‰ʋI‹IH…É„7‰D$‰$ÿы|$‰D$HÇD$4…À„‹Œ$”‰D$‰$è^.‰D$D…À„ÿ‹D$H‹ùÿÿÿ?tI‰u‰$è·)ÇD$HD$D‰D$„$”‰$‹L$P‹T$8èé@…Àˆª‹D$D‹ùÿÿÿ?tI‰u‰$èf)ÇD$D‹ƒ¨M‹T$8‹J‹IH…É„v‰D$‰$ÿщD$D…À„k‹Œ$”‰D$‰$è¨-‰D$H…À„_‹D$D‹ùÿÿÿ?tI‰u	‰$èñ(ÇD$D‹„$”‹L$H‰Œ$”‹ùÿÿÿ?„ØóÿÿI‰…Ïóÿÿ‰$è·(éÂóÿÿ‰$‰Öè¨(‰òÇD$,…҉|$…’öÿÿé÷ÿÿ‰þé6õÿÿ‰D$‰4$èJ*‰DžÀ…wôÿÿé ‰D$‰4$è/*‰D$H…À…÷ÿÿé®‹p…ö„³‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$H‰D$H‹¿=ÿÿÿ?„÷ÿÿH‰…ýöÿÿ‰$èû'éðöÿÿ‰D$‰$èº)‰D$H…À…%øÿÿé·‰L$‰$è)‰ƅÀ…Vùÿÿé
;‹Tÿÿÿ„‰$èŠ,…À„ƒ;‰ƋD$H‹ùÿÿÿ?t
I‰u‰$è…'ÇD$H‹F‹hp‰4$ÿՉD$,‰D$p…À„?;‰4$ÿՉD$D…À„D;‰4$ÿՉz耲ÿÿ…Àˆ‚7‹=ÿÿÿ?„cúÿÿH‰…Zúÿÿ‰4$è'éMúÿÿ‰D$‰4$èÙ(‰D$D…À…Œúÿÿé
‰D$‰<$è¼(‰D$D…À…¡ûÿÿéw
‰D$‰$èŸ(éÁüÿÿ‰D$‰$èŽ(‰D$D…À…‡ýÿÿéí
‹Hƒù…w‹@‹‰L$,ƒÀéaùÿÿ1ö1ÿéõÿÿ¾·6ÇD$$ÇD$pÇD$T‰l$@‹D$ ‰D$ÇD$LÇD$8ÇD$(ÇD$PÇD$X½ä顉|$4½¾{91ÿÇD$$ÇD$pÇD$0‰L$ÇD$TÇD$8ÇD$(ÇD$PÇD$Xé›ïÿÿ‰|$4‹L$ ‹ƒÜK‰ʋI‹IH…ɋ¼$œ„Ó'‰D$‰$ÿщD$D…À„Ö'‹“ÐNÇ$‰Áè•;…ÀˆÁ'‹L$D‹úÿÿÿ?tJ‰u‰$‰Æè`%‰ðÇD$D…Àt@‹|$4‹=ÿÿÿ?‹Œ$„t@‰ÇD$0‰l$@‹D$ ‰D$…ɋt$d‹l$\…né;»ÿÿÿ„M‹ƒÜK‹T$4‹J‹IH…É„ã3‰D$‰$ÿщD$D…À„æ3‹“ÐNÇ$‰ÁèÕ:…ÀˆÑ3‹L$D‹úÿÿÿ?tJ‰u‰$‰Æè $‰ðÇD$D…À„Õ‹‹(Lè#ÿüÿ‰D$D…À„ñ3‹‹J‹P‹RH…Ò„ç3‰L$‰$ÿ҉D$H…À„ê3‹D$D‹ùÿÿÿ?t
I‰u‰$è3$ÇD$Dè¶&‰D$D…À„À3‹ƒJ‹T$ ‹J‹IH…É„²3‰D$‰$ÿщD$,…À„µ3‹L$D‹“J‰D$‰T$‰$è3%…ÀˆG‹D$,‹ùÿÿÿ?t
I‰u‰$è°#ÇD$,‹L$H‹“TO‹D$D‰$袇ýÿ‰D$,…À„s3‹D$H‹ùÿÿÿ?t
I‰u‰$èk#ÇD$H‹D$D‹ùÿÿÿ?t
I‰u‰$èH#ÇD$D‹|$,ÇD$,‹L$ ‹T$4èW;‰D$,…À„3‹‹dG‰D$‰L$‰<$è(…Àˆû2‹D$,‹ùÿÿÿ?t
I‰u‰$èâ"ÇD$,‹=ÿÿÿ?t@‰‰|$0‰l$@‹D$ ‰D$éý‹t$ ‰ñ‹T$4èÚ:‰D$,…À„ç1‰ÇÇD$,ÇD$0‰l$@‰t$éË|$X‹ÇD$<=ÿÿÿ?t@‰‹l$@‹D$l‰D$d‹L$ ‹„$œ;ƒÿÿÿ…üÚÿÿé@áÿÿÇD$4½û‰ø‰÷¾ƒ8ÇD$$‰D$(‹D$l‰D$d‹D$ ‰D$ëhÇD$4½ü‰ð¾Ÿ8‰|$8‰NjD$‰D$(‹D$l‰D$d‹D$ ‰D$ë,½ÿ‰t$T¾'9‹D$p‰D$L‰|$(‹D$l‰D$d‹D$ ‰D$1ÿÇD$$ÇD$pÇD$0ÇD$<‹D$D…Àt‹ùÿÿÿ?t
I‰u‰$èl!‹L$p…Ét‹=ÿÿÿ?t
H‰u‰$èN!‹D$,…Àt‹ùÿÿÿ?t
I‰u‰$è/!‹D$H…Àt‹ùÿÿÿ?t
I‰u‰$è!‹L$$…Ét‹=ÿÿÿ?t
H‰u‰$èò …ÿt‹=ÿÿÿ?t
H‰u‰<$èØ ƒþõÿ‰D$‰,$‹7Túÿ‰òè¾ûüÿ1ÿ‹Œ$„…ɋt$d‹l$\t‹=ÿÿÿ?t
H‰u‰$è“ ‹L$h…Ét‹=ÿÿÿ?t
H‰u‰$èu ‹L$`…Ét‹=ÿÿÿ?t
H‰u‰$èW …ít‹E=ÿÿÿ?tH‰Eu‰,$è; ‹L$@…Ét‹=ÿÿÿ?t
H‰u‰$è ‹L$<…ɋl$4t‹=ÿÿÿ?t
H‰u‰$èû…ít‹E=ÿÿÿ?tH‰Eu‰,$èß‹„$”…Àt‹ùÿÿÿ?t
I‰u‰$轋L$X…Ét‹=ÿÿÿ?t
H‰u‰$蟋L$P…Ét‹=ÿÿÿ?t
H‰u‰$聋L$(…Ét‹=ÿÿÿ?t
H‰u‰$èc‹L$8…Ét‹=ÿÿÿ?t
H‰u‰$èE‹L$L…Ét‹=ÿÿÿ?t
H‰u‰$è'‹L$T…Ét‹=ÿÿÿ?t
H‰u‰$è	‹L$0…Ét‹=ÿÿÿ?t
H‰u‰$èë‹L$…Ét‹=ÿÿÿ?t
H‰u‰$èÍ‹„$À…Àt‹ùÿÿÿ?t
I‰u‰$è«…öt‹=ÿÿÿ?t
H‰u‰4$葉øĬ^_[]þ:1ÿÇD$$ÇD$pÇD$0‰l$@‹D$ ‰D$½éÄüÿÿÇD$41ÿÇD$$ÇD$pÇD$0‹D$l‰D$d‹D$ ‰D$ÇD$TÇD$LÇD$8ÇD$(éÀçÿÿ装À…È0‰ñè¤xýÿ‰D$D…À…T3ÇD$L½©¾"21ÿÇD$$ÇD$pÇD$0ÇD$Té]‰D$‰<$èc‰ƽ©…À…‡³ÿÿ¾$2ÇD$$ÇD$pé2µÿÿ¾'2é µÿÿ¾,2éµÿÿ1É1ÿéL·ÿÿ1í1öéhÍÿÿ‰|$‰t$‹t$p‰4$è`!‰D$H…À…ø³ÿÿë<‰D$‰$èæ‰D$H½ª…À…˜´ÿÿ¾>2éQ覅À„0ÇD$H¾/2ÇD$$ÇD$0ÇD$TÇD$LÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$hDŽ$„½©1ÿéÏúÿÿÇD$4¾õ7ëÇD$4¾8½ö1ÿëÇD$4¾8½öÇD$$ÇD$p‹D$l‰D$d‹D$ ‰D$écúÿÿÇD$4½ö‰÷¾8ÇD$$éÀùÿÿÇD$4¾%8ë
ÇD$4¾&8½÷éÛÇD$4¾F8½ùéÄÇD$4½ù‰ø‰÷¾H8é\ùÿÿÇD$4¾]8½ù1ÿé{ùÿÿÇD$4½ú1ÿ‹D$‰D$(‰t$@¾k8é^ùÿÿÇD$4½ú1ÿ‹D$‰D$(‰t$@¾m8é9ùÿÿÇD$4¾z8ë
ÇD$4¾|8½û1ÿÇD$$‹D$éÍøÿÿÇD$4¾8½û‰ø1ÿéªøÿÿÇD$4½û‰ø‰÷¾„8éøÿÿÇD$4¾“8ë
ÇD$4¾•8½ü‰|$81ÿ雸ÿÿÇD$4½ü‰ð¾˜8é|øÿÿÇD$4½ü‰ð¾8écøÿÿÇD$(½Ü¾6éÕ
ÇD$4½ü‰ð¾ 8é3øÿÿÇD$4ƒùŒä‹ƒXÿÿÿ‹‹<úÿ‰L$‰$ÇD$è·¾«8½ü‰|$81ÿéñ÷ÿÿÇD$4‰t$T¾ß8‹D$p‰D$L‰|$8‹D$‰D$(‹D$l‰D$d‹D$ ‰D$½ýéö÷ÿÿÇD$4‰t$T‹D$p‰D$L‰|$8‹D$‰D$(‹D$l‰D$d‹D$ ‰D$¾ó8½ýé·÷ÿÿÇD$4‰t$T‹D$p‰D$L‰|$8‹D$‰D$(‹D$l‰D$d‹D$ ‰D$¾9½þéx÷ÿÿÇD$4‰t$T‹D$p‰D$L‰|$8‹D$‰D$(‹D$l‰D$d‹D$ ‰D$¾9½þé9÷ÿÿ½ÿ‰t$T¾"9é
÷ÿÿ½ÿ‰t$T¾$9é÷öÿÿ½‰t$T¾19éäöÿÿ½‰t$T¾39éÑöÿÿ‰ø1ÿÇD$$‰t$T‰L$L‰D$(‹D$l‰D$d‹D$ ‰D$ÇD$pÇD$0ÇD$<¾ô7éÅöÿÿ;“`ÿÿÿ„}‰L$‰lj$ÇD$讉Áè§0…À‰Å-ÇD$$ÇD$pÇD$0ÇD$TÇD$LÇD$8‹D$ ‰D$ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$hDŽ$„¾@21ÿéýõÿÿè3…À…Ê*‰ùè4rýÿ‰D$,…À…ë,1ö¿[2鳉D$‰,$è ‰D$D…L$ …°ÿÿÇD$D¿]2鯉D$‰$èò‰ƅÀ…¤°ÿÿ1ö¿`2ëf¿t2ë_‹x…ÿ„Y*‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$D‰D$D‹½=ÿÿÿ?„R±ÿÿH‰…I±ÿÿ‰$èµé<±ÿÿ1ö¿‹2‹D$D…Àt‹ùÿÿÿ?t
I‰u‰$èŠÇD$D…öt‹=ÿÿÿ?t
H‰u‰4$èh‹D$,…Àt‹ùÿÿÿ?t
I‰u‰$èIÇD$,‹D$H…Àt‹ùÿÿÿ?t
I‰u‰$è"ÇD$H‹D$8‹@<½­…Àtu‹“ÈO‹H9Ñ„š&‹B‹@T©…w&‹qƒ~T‰\&…À‰T&¸@#AT„F&öBW@„<&‹¬…À„æ%‹H…É~1ö9T°„;&F9ñuñ‰þéû&¾Ú2é#
¾Û2é
½º¾­3ë*è…À…Æ(‰ñèpýÿ‰D$D…À…&µÿÿ½¼¾·31ÿÇD$$ÇD$pÇD$T‹D$ ‰D$ÇD$Léä‰L$‰$èÙ‰D$,½¼…À…þ´ÿÿ¾¹31ÿÇD$$ÇD$pé“臾¼3…Àu‰éè‡oýÿ…À…I*1ÿÇD$$ÇD$pÇD$TÇD$LÇD$8‹D$ ‰D$é]‰D$‰4$èL…À…ü´ÿÿ‰t$p¾¾31ÿÇD$$ÇD$TÇD$LÇD$8‹D$ ‰D$éèç¾Á3…Àu‰éèçnýÿ…À…°)1ÿÇD$pÇD$TÇD$LÇD$8ÇD$(‹D$ ‰D$éʼnD$‰4$è¬é˴ÿÿ‰t$p¾Ã31ÿÇD$TÇD$LÇD$8ÇD$(‰D$逋q…ö„
'‹Q‹=ÿÿÿ?…¬‹=ÿÿÿ?…¯‹¿=ÿÿÿ?…²‰Ñ陴ÿÿÇD$L¾Ù31ÿÇD$pÇD$0ÇD$T‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$h½¼éNñÿÿ‰L$‰$蝉ƅÀ…²´ÿÿÇD$8¾Ý3ëi‹H‰L$D…É„̴ÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹¿=ÿÿÿ?„•´ÿÿH‰…Œ´ÿÿ‰$è]é´ÿÿÇD$8¾ó31ÿÇD$$ÇD$pÇD$0‹D$ ‰D$ÇD$TÇD$Léë	½Á¾ž41ÿÇD$pÇD$0ÇD$TéˉD$‰4$诽ŅÀ…ž½ÿÿ‰ð¾·41ÿé]‹‹ÄO‹“4OÇ$è¼uýÿÇD$$½Æ…À„%‰ƉÁè>výÿ‹=ÿÿÿ?t
H‰u‰4$èx1ÿÇD$pÇD$0ÇD$TÇD$L‹D$‰D$d‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`¾È4éiïÿÿ‰D$‰4$è¸é3½ÿÿ¾Ú4é—‰÷¾Ü4鍾Þ4運‹ÄO‹“8OÇ$è»týÿ‰D$H½È…À„$‰ÁèCuýÿ‹D$H‹ùÿÿÿ?t
I‰u‰$èxÇD$H¾í4é$è½Ê…Àu‰ùèkýÿ…À…á%1ÿÇD$pÇD$0ÇD$TÇD$L‹D$‰D$d‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`¾5é:îÿÿ‰D$‰4$è‰éD½ÿÿ‰÷¾
5ÇD$péèK…À… #‰ñèLjýÿ‰D$,…À…ÂÿÿÇD$(½Ö¾Ø51ÿÇD$$ÇD$p‹D$ ‰D$ÇD$0鉾
51ÿÇD$pÇD$0ÇD$T‹D$‰D$d‹D$ ‰D$ÇD$LÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`é8íÿÿ‰L$‰$臉D$H½Ö…À…bÁÿÿÇD$p¾Ú5ët‹x…ÿ„&"‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹½=ÿÿÿ?„D¼ÿÿH‰…;¼ÿÿ‰$èDé.¼ÿÿÇD$8¾"5ë)ÇD$p¾Ý51ÿÇD$$éÇD$8¾&51ÿÇD$$ÇD$p‹D$‰D$d‹D$ ‰D$é„
ÇD$p¾â51ÿÇD$$ÇD$0ÇD$TÇD$L‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@½ÖéÜëÿÿ‹‹ÄO‹“<OÇ$è_qýÿ‰D$H1ÿ½Ë…À„ß ‰Áèåqýÿ‹D$H‹ùÿÿÿ?t
I‰u‰$è
ÇD$H¾55ÇD$$éÀýÿÿÇD$p裾ä5…Àu‰éè£gýÿ…À…z"ÇD$$ÇD$0ÇD$TÇD$LÇD$8ÇD$(‹D$ ‰D$éœÇD$p¾G5魉D$‰<$èP‰D$D…D$ …÷¿ÿÿÇD$p¾æ5‰|$$ÇD$0ÇD$TÇD$LÇD$8‰D$ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@‹|$léwêÿÿ‰L$‰$èÆ
‰DžÀ…$»ÿÿÇD$p¾I51ÿÇD$$é˜üÿÿ‰D$‰<$è”
‰D$,…D$ …<»ÿÿÇD$p¾L5ÇD$$ÇD$0ÇD$T‹L$‰L$défüÿÿÇD$p‰ð¾O51ÿÇD$$éÇD$(¾c5ë
ÇD$(¾g51ÿÇD$$ÇD$p‹D$‰D$d‹D$ ‰D$ÇD$0ÇD$TÇD$LÇD$8éüÿÿ‹‹ÄO‹“@OÇ$èùnýÿ‰D$H1ÿ½Í…À„‹‰Áèoýÿ‹D$H‹ùÿÿÿ?t
I‰u‰$è´
ÇD$H¾v5ÇD$$éZûÿÿ¾ˆ5ÇD$$éHûÿÿ¾Š5ÇD$$é6ûÿÿ‰ð¾Œ5ÇD$$ÇD$pÇD$0ÇD$Té&ûÿÿ‹‹ÄO‹“DOÇ$èBnýÿ‰D$,½Ï…À„è‰ÁèÊnýÿ‹D$,‹ùÿÿÿ?t
I‰u‰$èÿ	ÇD$,¾›5ÇD$$é¥úÿÿ‹‹ÄO‹“0OÇ$èÝmýÿ‰D$H1ÿ½·…À„‰Áècnýÿ‹D$H‹ùÿÿÿ?t
I‰u‰$è˜	ÇD$H¾3é%‰ÆépÂÿÿ¾18ë¾38½ø1ÿÇD$$‹D$‰D$(‹D$l‰D$d‹D$ ‰D$ÇD$pÇD$0ÇD$4é¤çÿÿèÚ
…À…ĉñèÛcýÿ‰D$D¾â2…À…»ÇD$$ÇD$pÇD$0ÇD$TÇD$LÇD$8‹D$ ‰D$ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$h½°1ÿéóæÿÿ‰L$‰$èB
‰D$H…À…ý¤ÿÿ¾ä2ÇD$$ÇD$pÇD$0ÇD$TÇD$L‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$héQæÿÿ‹H‰L$D…É„œ¤ÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$H‰D$H‹¾=ÿÿÿ?t
H‰u‰$荽°éR¤ÿÿÇD$L¾ù2é
½Ã‰ð¾­41ÿÇD$pÇD$0‰D$d‹D$ ‰D$ÇD$Té"øÿÿ‰õ;“`ÿÿÿ„ĉL$‰Ɖ$ÇD$è–‰Á菅À‰ÄÇD$8‰÷¾¹4ÇD$$ÇD$p‰l$d‹D$ ‰D$ÇD$0ÇD$TÇD$LÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`½Åéïäÿÿ‹D$l‰D$‰t$‰<$è–
‰D$D…|$\…˜ºÿÿëèÿ…À„3ÇD$D¾ë5ÇD$$ÇD$0ÇD$TÇD$LÇD$8‹D$ ‰D$ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@½Ö‹|$léAäÿÿ‰D$‰$萉D$,½²…À…Ž£ÿÿ¾*3ÇD$$é3‹‹ÄO‹“,OÇ$è•iýÿ‰D$,…À„„‰ƉÁè jýÿ‹=ÿÿÿ?t
H‰u‰4$èZÇD$,¾;3ÇD$$ÇD$pÇD$0ÇD$TÇD$L‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$hDŽ$„½³1ÿé+ãÿÿ‰D$‰$èz陣ÿÿÇD$L¾N31ÿÇD$$ÇD$pÇD$0‹D$ ‰D$éÅæÿÿ¾P31ÿÇD$pÇD$0ÇD$TÇD$L‹D$ ‰D$ÇD$8麅Éx4‹ƒXÿÿÿ‹ƒù“ˆþõÿ³{AúÿDò‰t$‰L$‹k=úÿ‰L$‰$è½½üÇD$$‰|$81ÿ‹D$‰D$(‹D$l‰D$d‹D$ ‰D$ÇD$pÇD$0ÇD$<¾«8é%âÿÿè[…À…¸‰ñè\^ýÿ‰D$,…À…©ÿÿÇD$8½¾¾41ÿÇD$$‹D$‰D$h‹D$ ‰D$ÇD$pÇD$0ÇD$TÇD$Lé7ôÿÿ‰L$‰$è½¾‰D$$…À…èÿÿÇD$p¾
4é¡ÇD$p‰D$‰$è̉D$,…t$$…ì¨ÿÿ¾4é7‹F‰D$D…À„ì¨ÿÿ‹v‹ùÿÿÿ?tA‰‹=ÿÿÿ?t@‰‹L$$‹½=ÿÿÿ?„º¨ÿÿH‰…±¨ÿÿ‹D$$‰$èŒ頨ÿÿÇD$81ÿ‰t$$¾%4ëÇD$8¾)41ÿÇD$$ÇD$p‰l$h‹D$ ‰D$ÇD$0ÇD$TÇD$LÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`½¾éZàÿÿ1ö1ÿézÈÿÿ@‰‹=ÿÿÿ?„Qîÿÿ@‰‹¿=ÿÿÿ?„Nîÿÿ‰T$$H‰u‰$見L$$éԢÿÿ‰D$‰4$èa½Þ…À…W·ÿÿÇD$(¾/6é’ÇD$(‰÷¾C6逾Q61ÿÇD$$ÇD$pÇD$TÇD$L‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4éoßÿÿ¾S61ÿÇD$$ÇD$pÇD$TÇD$L‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<½ßéßÿÿ‰D$‰4$è]‰D$D…À…·ºÿÿ¾`61ÿÇD$$ÇD$pÇD$T‰l$@‹D$ ‰D$ÇD$LÇD$8ÇD$(ëKÇD$(¾t61ÿÇD$$ÇD$p‰l$@‹D$ ‰D$ÇD$0ÇD$TÇD$LÇD$8ÇD$PÇD$XÇD$4ÇD$<½àé<Þÿÿ‰D$‰,$苉ÇÇD$0…À…åºÿÿ¾‚61ÿéìÂÿÿ¾„6éâÂÿÿ¾‰6éØÂÿÿÇD$$¾û6ér¾ü6éh‹‹ÄO‹“HOÇ$èecýÿ‰D$D…À„k‰Áèòcýÿ‹D$D‹ùÿÿÿ?t
I‰u‰$è'ÿÇD$D¾71ÿÇD$pÇD$0ÇD$TÇD$L‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@½éé#Ýÿÿ¾7韾7é•‹‹ÄO‹“LOÇ$è’býÿ‰D$D…À„¢‰Áècýÿ‹D$D‹ùÿÿÿ?t
I‰u‰$èTþÇD$D¾-71ÿÇD$pÇD$0ÇD$TÇD$L‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@½ìéPÜÿÿ‰D$‰$èŸÿ‰D$D…À…*Øÿÿ¾Å9ë¾Ç91ÿÇD$$ÇD$pÇD$0‰l$@‹D$ ‰D$½éüÛÿÿ;“`ÿÿÿ„‰L$‰$ÇD$èç‰Áèà…À‰%ÇD$L¾ý21ÿÇD$$ÇD$pÇD$0‹D$ ‰D$ÇD$TÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$h½°é<Ûÿÿ1Éò*Áf.@›Á” Ê¶òéó”ÿÿ;“`ÿÿÿ„R
‰L$‰Ɖ$ÇD$è
‰Áè…À‰ZÇD$L¾,31ÿÇD$$ÇD$pÇD$0‹D$ ‰D$ÇD$TÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$hDŽ$„½²éTÚÿÿÇD$p¾44ëa‰T$‰$è”ý‰D$,…À…=£ÿÿÇD$p¾641ÿÇD$0ÇD$TÇD$L‹D$‰D$h‹D$ ‰D$élìÿÿÇD$p¾941ÿÇD$$ÇD$0ÇD$T‹D$‰D$hé(ìÿÿ‰L$‰$èý‰ŅÀ…£ÿÿÇD$p¾;41ÿë'‰D$‰$èåü‰D$D…À…9£ÿÿÇD$p¾>4‰ïÇD$$ÇD$0ÇD$T‹D$‰D$h鐋u…ö„‹M‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰L$$‹E¿=ÿÿÿ?tH‰Eu‰,$èŽú‹l$$éȢÿÿÇD$8¾S4‰ïÇD$$ÇD$p‹D$‰D$héljD$‰$èü‰ƅÀ…4£ÿÿÇD$8¾W41ÿÇD$pÇD$0‹D$‰D$h‹D$ ‰D$鍋h…í„A‹@‹Mùÿÿÿ?tA‰M‹ùÿÿÿ?tA‰‹L$,‰D$,‹¿=ÿÿÿ?„ð¢ÿÿH‰…ç¢ÿÿ‰$èºùéڢÿÿÇD$8¾m41ÿÇD$$ÇD$p‰l$h‹D$ ‰D$ÇD$0ÇD$TÇD$LëxÇD$p¾s41ÿÇD$$ÇD$0ÇD$T‰l$h‹D$ ‰D$ÇD$Lë3ÇD$p¾t41ÿÇD$0ÇD$TÇD$L‰l$h‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`½¿é#×ÿÿ‰ÆéÖÂÿÿ¾Œ6éì»ÿÿ¾›6éÈÁÿÿ‰L$‰$èWú‰D$,…À…æ´ÿÿ¾6é¦Áÿÿ¾ 6éœÁÿÿ¾¥6é’Áÿÿ‰D$‰$è!úé¯ÿÿ¾Ò6é½¾Ô6é³¾Ü6é©èÙù…Àu‰ùèÞRýÿ…À…Ü
1ÿÇD$pÇD$0ÇD$TÇD$LÇD$8‹D$ ‰D$ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@½ï¾I7éÖÿÿ‰D$‰4$èiù‰D$H½ï…À…¹ÿÿ‰÷¾K7éy¾N7ém‹H‰L$,…É„Q¹ÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$H‰D$H‹¿=ÿÿÿ?t
H‰u‰$è#÷½ïé¹ÿÿÇD$(¾b7é'¾f7ÇD$$éò¾h7ÇD$$éà‹‹ÄO‹“POÇ$èÛZýÿ‰D$H…À„‰Áèh[ýÿ‹D$H‹ùÿÿÿ?t
I‰u‰$èöÇD$H¾w7ÇD$$ÇD$pÇD$0ÇD$TÇD$L‹D$ ‰D$ÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@½ð1ÿé‘Ôÿÿ‰D$‰4$èà÷‰D$D½ò…À…C¼ÿÿ¾“7ÇD$$éêÇD$(¾§71ÿÇD$$ÇD$pÇD$0‹D$ ‰D$ÇD$TÇD$LÇD$8éQ¿ÿÿ¾µ7ë+‰L$‰$è^÷‰D$D…À…½ÿÿ¾·7ë¾º7뾿71ÿéؾÿÿ¹WÀò*Áf.@šÁ•Âʶ҉ùÿÿÿ?…R¡ÿÿé^¡ÿÿèâö…À…z
‰ùèãOýÿ‰D$,…À…ÿ
½¶¾c31ÿÇD$pÇD$0éÄßÿÿ‰D$‰4$èºö‰D$D½¶…À…o˜ÿÿ¾e31ÿétìÿÿ‹H‰L$,…É„‡˜ÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$D‰D$D‹¾=ÿÿÿ?t
H‰u‰$è~ô½¶é=˜ÿÿÇD$L¾z31ÿÇD$$ÇD$pÇD$0‹D$ ‰D$ÇD$Téìÿÿ¾¨6éc½ÿÿ‰D$‰<$èòõ‰D$D…À…¹±ÿÿ¾­6éŠÍÿÿ¾°6é7½ÿÿ¾µ6évÍÿÿ¾ß6é/½ÿÿ¾Â7éT½ÿÿ‰D$‰$è¨õ½ô…À…¼ÿÿ¾Ñ71ÿÇD$$ÇD$pÇD$0‹D$l‰D$d‹D$ ‰D$ÇD$LÇD$8ÇD$(ÇD$Pé7½ÿÿÇD$P‰÷¾å7ÇD$$ÇD$p‹D$l‰D$d‹D$ ‰D$ÇD$0ÇD$TÇD$LÇD$8ÇD$(éۼÿÿ‰D$‰$èßôé۶ÿÿ¾V91ÿÇD$pÇD$0ÇD$Té?¼ÿÿÇD$P¾j91ÿÇD$$ÇD$pÇD$0‹D$ ‰D$ÇD$TÇD$LÇD$8ÇD$(éJ¼ÿÿÇD$T¾n91ÿ鿻ÿÿ‰T$‰D$‰<$è^ó齷ÿÿ1Éò*Áf.@šÁ•Âʶòénÿÿ¹WÀò*Áf.@šÁ•ÂʶÒéՐÿÿ;“`ÿÿÿ„ó‰L$‰$ÇD$è÷‰Áè†
…À‰íÇD$L¾~31ÿÇD$$ÇD$pÇD$0‹D$ ‰D$ÇD$TÇD$8ÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$h½¶éâÏÿÿ¾¸6éáÊÿÿ‰D$‰<$è'ó‰D$H…À…аÿÿ¾š9ë¾®9ÇD$$ÇD$p‰|$41ÿ‰l$@‹D$ ‰D$ÇD$0½é€Ïÿÿ‰D$‰$èÏò‰D$D…À…Ìÿÿ¾î9ë¾ð91ÿÇD$$ÇD$pÇD$0‰l$@‹D$ ‰D$½é,Ïÿÿ1ÿÇD$$ÇD$p‰l$@½‰t$¾8:ÇD$0éûÎÿÿ¾ý9éýÑÿÿ‰L$‰$è@ò‰D$H…À…Ìÿÿ¾ÿ9éÛÑÿÿ¾:éÑÑÿÿ‰D$‰$èò‰D$,…À…KÌÿÿ¾:é¯Ñÿÿ1Éò*Áf.@šÁ•Âʶòéޔÿÿ¾:éŠÑÿÿ¾:ë¾:ÇD$$ÇD$p‰|$01ÿ‰l$@‹D$ ‰D$½éFÎÿÿ‹‰€9Ñth…Éuò1À;“@ÿÿÿ”ÀëJÇD$4‰ð¾È8‰|$8‰NjD$‰D$(‹D$l‰D$d‹D$ ‰D$½üéÔÍÿÿ‰T$‰$èSóëèLMýÿ…=­„ÊÙÿÿƒþõÿ‰D$Ç$­‹7Túÿ‰úèAÊüÿD$,‰D$D$D‰$T$H‹L$8è€ÿÿ…Àˆ€‹³ÄO‹»$O‹F‹h@…í„퍃c[úÿ‰$èó…À…‰|$‰4$ÇD$ÿՉÅèõò…í„׉éèvSýÿ‹E¾¿2=ÿÿÿ?¿tH‰Eu‰,$è¤î½¯ë½®¾¯21ÿ‹D$8‹H@‹‹T$$‰…Àt‹ùÿÿÿ?t
I‰u‰$ègî‹L$p…Ét‹=ÿÿÿ?t
H‰u‰$èIî‹T$…ÒtH‹=ÿÿÿ?‹L$ tH‰tpÇD$$ÇD$pÇD$0ÇD$TÇD$LÇD$8‰L$ë~ÇD$$ÇD$pÇD$0ÇD$TÇD$LÇD$8‹D$ ‰D$ëD‰$‰÷‰Îè³íÇD$$ÇD$pÇD$0ÇD$TÇD$LÇD$8‰t$‰þ1ÿÇD$(ÇD$PÇD$XÇD$4ÇD$<ÇD$@ÇD$\ÇD$`ÇD$hDŽ$„é˜ËÿÿÇD$Dé>Ïÿÿ‰|$‰4$ÇD$è2ñ‰ŅÀ…+þÿÿë
è¡î…À„F½¯¾»2éGþÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èìéÍÏÿÿ¾
3éPäÿÿÇD$,é<Õÿÿ1í1ÿé'‡ÿÿÇD$Dé@×ÿÿ1ÿ鼍ÿÿ¾Ä4é;Ýÿÿ¾é4é1ÝÿÿÇD$,éæÜÿÿ1í1ÿéLšÿÿ¾15ÇD$$éÝÿÿ¾r5ÇD$$éùÜÿÿ‰ð¾—5é¾áÿÿ¾‹3éÂãÿÿ1íëÇD$4¾À8éqÑÿÿ½‹=ÿÿÿ?t
H‰u‰4$èòëèíwÿÿÇD$4…Àu6ƒ|$p‹ƒXÿÿÿ‹‹{Aúÿ“ˆþõÿDщT$‰l$‹k=úÿ‰L$‰$èkí½üÇD$$‰|$81ÿ‹D$‰D$(‹D$l‰D$d‹D$ ‰D$ÇD$pÇD$0ÇD$<¾Ð8éÓÉÿÿÇD$D¾â2ÇD$$ÇD$pÇD$0ÇD$TÇD$L‹D$ ‰D$ÇD$8éBâÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èÊêé®äÿÿ¾73éžåÿÿÇD$,éNçÿÿ¾7éºëÿÿ¾)7éƒìÿÿ1ÿé“ÿÿ1ÿ1íéߓÿÿ¾s7é ôÿÿÇD$,éŒõÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èYêé›ýÿÿ‰ÇéT€ÿÿ‰Å鈃ÿÿ‰Æé͊ÿÿ‰Æé?‹ÿÿ‰Æéԗÿÿ‰Ç鯝ÿÿ‰Ɖø1ÿ閂ÿÿ½°1ÿ鱆ÿÿ‰‰ðéîôÿÿ‰Æ阫ÿÿ‰ƋD$,‹¼$ÈéAˆÿÿ‰‰ðéÿÿ‰Æéyÿÿ‰ƋD$H‹¼$ÈéʎÿÿSVPè[ÃÌ39Ñt/‹D$‹q;³$ÿÿÿu6‹Q…Àt$ƒâú1úu	1y”Ä^[øƒÄ^[Ãâ‰ЃÄ^[Ã;³`ÿÿÿtƒìjRQèïƒÄ‰CÄ^[éõò*Àf.A›À”Á Á¶CÄ^[АUSWVƒìè[Ã(3…Òt[‹I¸9ÑtG‹±¬…öt^‹~…ÿ~1퐐9T®t$E9ïuõ‹ƒ,ÿÿÿ³–\úÿÿrÿqVÿ0è«êƒÄ1Ä^_[]˃Dÿÿÿƒì‹`8úÿQÿ0è—èëډ΅öt‹¶€9ÖuòëÍ;“@ÿÿÿtÅ뤐USWVƒìè[Ãx2‹A‹x8…ÿtqƒtk‰ΉT$‹T$$‹l$ ‹‹ÿÿÿ‰ȅít‹E‰ͅÒt‹*ƒìQUPèéƒÄ…Àt`‰Ńìÿt$PVÿWƒÄ‹Mùÿÿÿ?tII‰MuCƒìU‰Æèè‰ðƒÄë1‹‹,ÿÿÿ…ҍ“.Túÿ³@@úÿD򍓁UúÿVÿpRÿ1è©éƒÄ¸ÿÿÿÿƒÄ^_[]АSVPè[ì1‹q‹F4‹v8…öt‹v…öt
ƒìRQÿփÄ^[ÅÀtƒxt葃Ä^[Ãè–ƒÄ^[ÃSVPè[Ã\1…Ét^‰Î;‹0ÿÿÿt(;³4ÿÿÿt ;³ÿÿÿt‰4$èË鋁ùÿÿÿ?uƒÄ^[Ã1À;³0ÿÿÿ”ùÿÿÿ?tåI‰uà‰4$‰Æèç‰ðƒÄ^[øÿÿÿÿƒÄ^[АUSWVƒì‰Öè[ÃÖ0‹B;ƒ$ÿÿÿuM‹Fƒø‡Ãƒàº)¯Vƒúÿu‰Ïèjè‰ùºÿÿÿÿ…ÀuVÇD$Ç$èsÿÿƒÄ^_[]É4$‰Íè9í‰é…Àt‰lj$è9퉋=ÿÿÿ?tH‰u‰<$‰×è_æ‰ú‰é듋‹ðÿÿÿ‹	‰L$‰$è%ê…Àt)‹F‹pèv拃üÿÿÿ‹‰t$‹Ž@úÿ‰L$‰$èØç1Àévÿÿÿ‰4$‰ÏèÇì‰ù‰Âé8ÿÿÿUSWVƒì‰Îè[ÃÆ/‹IƒyT‰‰׋ƒÀI‹IH;‹ÿÿÿuYjjPVèÐæƒÄ‰ŅÀt^ÇD$T$‰|$ƒì‰éh€èÈ[ýÿƒÄ‹Mùÿÿÿ?tXI‰MuRƒìU‰Æèiå‰ðƒÄë@ƒì…ÉtAPVÿуĉŅÀu§è	Aýÿè„å‹N‹ƒ,ÿÿÿƒì“¶\úÿÿqRÿ0èçæƒÄ1Ä^_[]ÃPVèãæƒÄ‰ŅÀ…_ÿÿÿ붐SVPè[ÃÜ.‹Aö@Wt*‹Qƒúv‰$è8ëƒÄ^[Ãâ¸)ЯAƒÄ^[Ãèùsÿÿ…Àt*‰ƉÁè¬ÿÿÿ‹ùÿÿÿ?tÊI‰uʼn4$‰Æè“ä‰ðƒÄ^[øÿÿÿÿƒÄ^[ÃUSWVƒì‰Ïè[ÃV.‹³(L‹ƒXG‹N‰L$‰t$‰$èLç…À„ɉŋ=ÿÿÿ?t@‰E‹ƒðJ‹M‹IH…Ʉ҉D$‰,$ÿщƋE…ö„Õ=ÿÿÿ?tH‰Eu‰,$èöã‰|$‹F1í;ƒHÿÿÿ„È1ÿ‰|$‹D$‰D$­÷؍ƒÂE‰,$‰ñèùYýÿ‰Ņÿt‹=ÿÿÿ?t
H‰u‰<$èã…í„»‹=ÿÿÿ?tH‰t9;«0ÿÿÿ‹t$tA;«4ÿÿÿt9;«ÿÿÿt1‰,$èãå…Àˆ ‹Mùÿÿÿ?u,ë0‰4$èFã;«0ÿÿÿ‹t$u¿1À;«0ÿÿÿ”Mùÿÿÿ?tI‰Mt9…ÀtE‰ñ胉Æ!ƒúÿu
èµä…À…í‰4$èÅã…À„FƒÄ^_[]É,$‰ÇèÛâ‰ø…Àu»‹ƒDI‹N‹IH…É„}‰D$‰4$ÿщŅÀ„€è9åÇD$u…À„}‰Ƌƒ˜I‹‹lN‰L$‰D$‰4$èÛã…Àˆ–‹‹ìN‹E‹x@…ÿ„a‰L$ƒc[úÿ‰$è]æº\…Àul‰t$‹D$‰D$‰,$ÿ׉ÇèLæ‰ø…ÿ„>‹Mùÿÿÿ?tI‰Mu‰,$‰Çèâ‰ø‹ùÿÿÿ?„
ÿÿÿI‰…ÿÿÿ‰4$‰Æèäá‰ðéðþÿÿº[‹E=ÿÿÿ?tH‰Eu‰,$‰×è¾á‰ú…öt‹=ÿÿÿ?tH‰u‰4$‰Öè á‰򍃝þõÿ‰D$‹D$‰$‹®Uúÿ肼üÿ1ÀéŽþÿÿè&ãÇD$r…À…¤‰ñè<ýÿ…:t¸‰Åéýÿÿ‰D$‰,$èã‰ƋE…ö…+ýÿÿº=ÿÿÿ?…‘ÇD$ré{ÿÿÿ‹~…ÿ„V‹N‹=ÿÿÿ?…‹=ÿÿÿ?…‹½=ÿÿÿ?…éÇD$rº&‹=ÿÿÿ?…ÿÿÿéÿÿÿ1öÇD$rº*éÏþÿÿÇD$tº@é÷þÿÿÇD$rH‰E…åþÿÿ‰,$è{àºéÓþÿÿ@‰‹=ÿÿÿ?„pÿÿÿ@‰‹½=ÿÿÿ?tH‰tz‰Îéeüÿÿ‰D$‰4$èâ‰ŅÀ…€ýÿÿÇD$uºWé~þÿÿ1öºYé8þÿÿÇD$sº5é`þÿÿ‰t$‰L$‰,$èä…À…Äýÿÿë	èá…Àt*º\éùýÿÿ‰4$‰ÎèÇßéãûÿÿºéþÿÿ1íéÐûÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$ègß뺐SWVƒìè[Ãi)‹Aö@Wtn‹Qƒúv2‰Ѓà¾)ÆÁê¯փút0ƒúþu;‹A‰ÆÁîÁàA1Ò÷Øòë-ƒâ¸)ЯA‰ÂÁúë‹A‰ÂÁêÁàAë‰$èÞåƒÄ^_[ÃèBnÿÿ…Àt*‰ƉÁèeÿÿÿ‹ùÿÿÿ?tÝI‰u؉4$‰Ɖ×èÚމú‰ðëƸÿÿÿÿºÿÿÿÿ뺐USWVƒìl‰ՉÎè[Ô(ÇD$,ÇD$ÇD$ ÇD$ÇD$@ÇD$DÇD$H‰$èyãÇD$‰D$LƒøÿtH‰t$0‹E‹‹ˆG9ȉl$$tb‹¬…Òt:‹r…öŽ@1ÿ9Lºt9G9þuõé"ºFf¿í1öéÄ'‰…Òt‹’€9Êuòë;‹@ÿÿÿ…ó‹‹PJ‹@H…À„c‰L$‰,$ÿЉʼnD$,…À„f‹ƒ N‹M‹IH…É„a‰D$‰,$ÿщƉD$¿ñ…À„V‹E=ÿÿÿ?tH‰Eu‰,$èqÝÇD$,;³0ÿÿÿt0;³4ÿÿÿt(;³ÿÿÿt ‰4$èÉ߅l$$ˆ‹ùÿÿÿ?uë*1À;³0ÿÿÿ”l$$‹ùÿÿÿ?tI‰u‰4$‰Æè	݉ðÇD$…À„'‹E‹‹ˆG9È„‘‹‹ˆG9È„&‹¬…Ò„«‹r…ö~1ÿ9Lº„G9þu񋻼H‹ƒXG‹O‰L$‰|$‰$è’ß…À„ø‰Ƌ=ÿÿÿ?t@‰‰t$‹|$0‰t$‰,$èXáƒøÿ„ô‹ùÿÿÿ?t	I‰„¬ÇD$…À…‹»N‹ƒXG‹O‰L$‰|$‰$è߅À„b‰Ƌ=ÿÿÿ?t@‰‰t$‹ƒˆN‹N‹IH…É„f‰D$‰4$ÿщD$¿&‰D$X…À„Y‹=ÿÿÿ?t
H‰u‰4$è»ÛÇ$è?܉D$…À„7‰Ƌƒ¬N‹ùÿÿÿ?t	A‰‹ƒ¬N‰F‹E‹‹ÐK‹P‹RH…Ò„	‰L$‰$ÿ҉D$ …À„‹H;‹xÿÿÿ‰t$(…
‹¹ÿÿÿ?úÿÿÿ?tB‰‰щD$,‰Ɓùÿÿÿ?t
I‰u‰$èÛÇD$ ‹F¿¨@u"Áèƒà1Ƀø•ÁÁáÉÿÿƒø¿ÿEù‹F‹L$(‰q‰΋‹PL‹úÿÿÿ?t	B‰‹‹PL։N‰|$‰$èˆá…À„Î
1Ɂÿ“AÿL	ºCэJÿ‰T$4ƒúºEщT$P‹Pö ‰D$8…Þ‹@é䋃ÜK‹IH…É„‰
‰D$‰,$ÿщD$¿ô…À„Œ
‹‹ÔN9Èt'‹P;“$ÿÿÿ…P‹Hƒáú1҃ùu1҃x”Â뺋ùÿÿÿ?tI‰u‰$‰ÖèÛىòÇD$‹E…Ò„àüÿÿ‹‹¨M‹@H…À„1‰L$‰,$ÿЉƉD$…À„4;³0ÿÿÿt,;³4ÿÿÿt$;³ÿÿÿt‰4$èþۅÀˆ‹ùÿÿÿ?uë&1À;³0ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰ÆèFىðÇD$…À„Œ;«ÿÿÿ„	‹ƒˆG…À„6‹M9Á„‹‘¬…Ò„ß‹r…ö~1ÿ9Dº„rG9þuñ‹I‹@‹“,ÿÿÿ‹‰D$‰L$ƒ–\úÿ‰D$‰$èyÚºf¿ø1öém"‹Eéºûÿÿ‰4$‰Æè–؉ðÇD$…À…IéCüÿÿ1ÉöÂ@”MȃÀ‰D$<ºÿÿÿ‹L$PÓê‹F‹h…턆9êˆF‰׋P‰ÑÁéƒáö u3‹P;L$4‹t$(tA‰l$‰D$‹D$8‰$ÇD$ÇD$èùÞë7öÂ@º”ЃÂ;L$4‹t$(u¿‰è‹L$PÓà‰T$‹L$<‰$‰D$èÐۉú‹F‹x…ÿ„Œ‰Ñ)ù9錮
‰T$T‹P‰ÑÁéƒáö u+‹P;L$4t9‰|$‰D$‰l$‹D$8‰$ÇD$ègÞë7öÂ@º”ЃÂ;L$4uljè‹L$PÓàD$<‰þÓæ‰T$‰t$‰$è>ۋt$(ý‹T$T‹~‹w…ötu)ò9êŒ
‹G‰ÂÁêƒâ¨ u+‹G;T$4t5‰t$‰|$‰l$‹D$8‰$ÇD$èØÝë11ɨ@”MσÀ;T$4uˋL$PÓå‹T$<êÓæ‰D$‰t$‰$èµÚ‹D$8‰D$,‹L$(‹=ÿÿÿ?t
H‰u‰$è“ÖÇ$è׉D$…l$X„r‰ƋD$8‰F‹ƒÜO‹ùÿÿÿ?tA‰‰FèãØ‰D$,…À„S‹“¸M‹‹ÔN‰L$‰T$‰D$(‰$è‡×…Àˆ‹E‹x@…ÿ„jƒc[úÿ‰$èڅÀ…‡‹D$(‰D$‰t$‰,$ÿ׉Çèڅÿ„Z‰ø‰|$ ‹|$0‹Uúÿÿÿ?‹L$(tJ‰Uu‰,$‰Åè²Õ‰è‹L$(ÇD$‹úÿÿÿ?tJ‰u‰4$‰Æè‹Õ‰ð‹L$(ÇD$‹úÿÿÿ?tJ‰u‰$‰ÆèdՉðÇD$,‹ùÿÿÿ?t
I‰u‰$èCÕÇD$ ‹·°‹«0J‹~‰l$‰<$è`څÀ„¾‹H‹‰ˆ…Ét‰|$‰t$‰$ÿщD$(…D$0ué§‹ùÿÿÿ?‰D$(tA‰‹D$0‹¸°‹ƒ$J‹o‰D$8‰D$‰,$èùمÀ„|‰Ƌ@‹ˆˆ…Ét3‰l$‰|$‰4$ÿщD$,…À„t‰Ƌ@ÇD$;ƒHÿÿÿt*éù‹ùÿÿÿ?tA‰‰t$,ÇD$;ƒHÿÿÿ…Ô‹~‰|$…ÿ„Å‹n‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‰l$,‹¹=ÿÿÿ?tH‰u
‰4$èÿÓ¹‰î‰|$\ÇD$`÷؍ƒÂ`‰$‰ñèJýÿ‰D$ …ÿt‹ùÿÿÿ?tI‰u‰<$‰Çè²Ó‰øÇD$…À„’‹ùÿÿÿ?tI‰u‰4$‰Æè‡Ó‰ðÇD$,‹ùÿÿÿ?‹|$0t
I‰u‰$èbÓè=։D$T‹@@‹‹ÿÿÿ‹t$L됐‹@…Àt?‹…Òtó9Êtï‰T$D‹=ÿÿÿ?t@‰‹J‰L$@‹=ÿÿÿ?t@‰‰L$4‰T$8‰$èìÕë"ÇD$DÇD$@ÇD$8ÇD$41	D$‰D$HN…öŽÂƒÇ‰t$‰<$ÇD$èP•ÇD$Ç$‹l$$‰é‰D$<‰Âè_ÿÿ1ɉD$P…À„0ÇD$Ç$‰é‰òèê^ÿÿ‰D$X…À„‹l$P‰,$‹L$$‰òèL'…Àˆ‹E=ÿÿÿ?‹t$XtH‰Eu‰,$è(҉4$‹L$$‹T$<è'…Àˆ‹=ÿÿÿ?t
H‰u‰4$èúыt$LƒÆþ„è‰|$0됐uÿƒý‹|$0ŽË‰t$‰<$ÇD$è\”ÇD$Ç$‹l$$‰é‰D$L‰Âè^ÿÿ…À„¬‰ÇÇD$Ç$‰é‰òèú]ÿÿ…À„•‰ò‰Ɖ<$‰é‰Õèb&…Àˆˆ‹=ÿÿÿ?tH‰u‰<$èDѐ‰4$‹L$$‹T$Lè0&…Àˆ7‹=ÿÿÿ?„;ÿÿÿH‰…2ÿÿÿ‰4$è
Ñé%ÿÿÿÇD$ ÇD$,‹L$4…Ét‹=ÿÿÿ?t
H‰u‰$è×ÐÇD$@‹L$8…ɋt$t‹=ÿÿÿ?t
H‰u‰$è­ÐÇD$D…öt‹=ÿÿÿ?t
H‰u‰4$è‹Ð‹“OÇ$‹t$(‰ñèƒ4ýÿ‰D$H‹ùÿÿÿ?tI‰u‰4$‰ÆèVЉð…À„u‹ùÿÿÿ?t
I‰u‰$è5ÐÇD$H1틃ÿÿÿ‹ùÿÿÿ?…¤!é¨!‹E阺wi¿,ÇD$1öé¶¿Ýi1Éë1ö¿×i1Éë1ö‰ù¿Ùië‰ù¿Ûi‰L$ 1Éèp”üÿÇD$‰ñèa”üÿÇD$,‹L$èP”üÿÇD$‹L$ è?”üÿÇD$ ƒþõÿ‰D$Ç$1‹è@úÿ‰úèiªüÿD$‰D$D$ ‰$T$,‹L$Tè=`ÿÿ…Àˆ°‹l$,‹L$ ‹D$‰D$$‰D$‰L$0‰L$‰l$Ç$èIЉD$…À„º!‰ÇÇ$‹t$(‰ñ‰Âè3ýÿ‰ñ‰Ƌ=ÿÿÿ?t
H‰u‰$èÝ΋=ÿÿÿ?t
H‰u‰<$èÇÎÇD$…ö„n!;³0ÿÿÿt$;³4ÿÿÿt;³ÿÿÿt‰4$èÑë½õiéŠ1À;³0ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰ÆègΉð…Àx[„!‰éè“üÿÇD$,‹L$0èó’üÿÇD$ ‹L$$èâ’üÿÇD$‹T$@‹D$D‹L$T‹I@‹t$‰t$‰$è«`ÿÿéÙýÿÿ½j‹T$@‹D$D‹t$H‹L$T‹I@‰t$‰$è‚`ÿÿ¿.ÇD$ét
‹‹ÄO‹“OÇ$èÈ1ýÿ‰D$¿ò…À„ú ‰ƉÁèN2ýÿ‹=ÿÿÿ?t
H‰u‰4$èˆÍÇD$ºmfévýÿÿ1ÿ1Ééuùÿÿ‰L$‰,$è1ωʼnD$,…À…šïÿÿ¿ñºVf鶉D$‰,$èÏé—ïÿÿºXfé)ýÿÿº[féýÿÿ‰…Ò„W‹’€9ÊuîéT‹ƒðÿÿÿ‹‹'^úÿ‰L$‰$è¼Ì‹L$8‹=ÿÿÿ?t
H‰u‰$èÒÌÇD$,¿'ºZié-‰D$‰,$èΉD$¿ô…À…tòÿÿº…f1öéWè=΅À…î‰ùè>'ýÿ‰D$…À…ç º)iëº+i¿$1ö鋃ÿÿÿ‹‰l$‰$è†Ðº˜i¿.1öéú‹ƒÿÿÿ‹‹L$8‰L$‰$è]ÐÇD$,ºši뺮i‹L$(‹¿.=ÿÿÿ?„hH‰…_‰$‰Öèàˉò1öéœ1öº$j¿.ÇD$éƒ;‹@ÿÿÿ…ïÿÿ‹‹¨M‹@H…À„N‰L$‰,$ÿЉD$ ¿
…À„Q‹‹ÐN9Èt‹P;“$ÿÿÿ…k‹pƒæë¾‹ùÿÿÿ?tI‰t&…öt.‹ƒÿÿÿ‹ùÿÿÿ?„ñA‹ƒÿÿÿ‰éã‰$è$˅öuҋƒÜK‹M‹IH…É„æ‰D$‰,$ÿщD$ ¿…À„é‹‹ÔN9Èt'‹P;“$ÿÿÿ…‹Hƒáú1҃ùu1҃x”Â뺋ùÿÿÿ?tI‰u‰$‰Öè£Ê‰òÇD$ …Ò„¦‹ƒJ‹M‹IH…É„ø
‰D$‰,$ÿщƉD$ …À„û
‹ƒDN‹N‹IH…É„ó
‰D$‰4$ÿщD$‰D$(…À„ö
‹=ÿÿÿ?t
H‰u‰4$è#ʋ»(L‹ƒXG‹O‰L$‰|$‰$èͅÀ„Å
‰Ƌ=ÿÿÿ?t@‰‰t$ ‹ƒLL‹N‹IH…É„Ð
‰D$‰4$ÿщʼnD$…L$(„Æ
‹=ÿÿÿ?tH‰u‰4$è¥É‹L$(ÇD$ ‹=ÿÿÿ?tH‰u‰$èƒÉ‹L$(ÇD$‹E=ÿÿÿ?tH‰Eu‰,$è_ɋL$(9é‹l$$…d‹»N‹ƒXG‹O‰L$‰|$‰$è0̅À„L‰Ƌ=ÿÿÿ?t@‰‰t$‹ƒˆN‹N‹IH…É„W‰D$‰4$ÿщʼnD$¿…À„L‹=ÿÿÿ?t
H‰u‰4$èÐÈè[ˉD$…À„1‰Ƌƒ¸M‹‹ÔN‰L$‰D$‰4$èʅÀˆ‹»”O‰l$(‹E‹h@…턍ƒc[úÿ‰$èƒÌ…À…!‰t$‰|$‹D$(‰$ÿՉÅès̅í„ô‰l$ ‹L$(‹=ÿÿÿ?t
H‰u‰$è-ÈÇD$‹=ÿÿÿ?t
H‰u‰4$èȋE=ÿÿÿ?tH‰Eu‰,$è÷ÇÇD$ ‹l$$‹»(L‹ƒXG‹O‰L$‰|$‰$èÌʅÀ„ljƋ=ÿÿÿ?t@‰‰t$‹ƒJ‹N‹IH…Ʉ҉D$‰4$ÿщD$¿‰D$(…À„Å‹=ÿÿÿ?t
H‰u‰4$èjNj“˜O‹M‹A4‹I8…É„)‹I…É„‰T$‰,$ÿщƉD$…L$(„~ÇD$,‹A1ÿ;ƒHÿÿÿ„q1í‰|$\‰t$`­÷؍ƒÂ`E‰,$‰Íè0=ýÿ‰D$‰D$ …ÿt‹=ÿÿÿ?t
H‰u‰<$èÎÆÇD$,‹=ÿÿÿ?‰étH‰u
‰4$è®Æ‰éÇD$ƒ|$‹t$0„=‹=ÿÿÿ?t
H‰u‰$èÆÇD$ÇD$ ‹¶°‹«0J‹~‰l$‰<$è”Ë…À„
‹H‹‰ˆ…Ét‰|$‰t$‰$ÿщD$8…D$0uéö‹ùÿÿÿ?‰D$8tA‰‹D$0‹¸°‹ƒ$J‹o‰D$(‰D$‰,$è-˅À„ˉƋ@‹ˆˆ…Ét3‰l$‰|$‰4$ÿщD$…À„ÉƋ@ÇD$;ƒHÿÿÿt*é—‹ùÿÿÿ?tA‰‰t$ÇD$;ƒHÿÿÿ…r‹~‰|$…ÿ„c‹n‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‰l$‹¹=ÿÿÿ?tH‰u
‰4$è3ʉî‰|$\ÇD$`÷؍ƒÂ`‰$‰ñèG;ýÿ‰D$ …ÿt‹ùÿÿÿ?tI‰u‰<$‰ÇèæÄ‰øÇD$…À„዁ùÿÿÿ?‹|$0tI‰u‰4$‰Æè·Ä‰ðÇD$‹ùÿÿÿ?t
I‰u‰$è–ÄèqljD$4‹H@D$@‰D$D$D‰$T$HèÒTÿÿ‹t$L‰ðH…ÀŽ"ƒÇ‹ƒ ÿÿÿ‰D$(‰|$0ë+‹D$‰$‹L$$‹t$L‰òè:…|$0ˆâƒþŽäN‰t$‰<$ÇD$谆9Ætމʼnt$LÇD$Ç$‹L$$‰ÂèlPÿÿ1ÿ…À„`‰ƉD$‹D$(‰D$‹D$‰$èÈȅÀˆJ‹=ÿÿÿ?tH‰u‰4$èªÃÇD$Ç$‹|$$‰ù‹T$LèPÿÿ…À„‰Ɖ$‰ù‰êèl…Àˆ
‹=ÿÿÿ?„ÿÿÿH‰…þþÿÿ‰4$èFÃéñþÿÿÇD$ ‹L$Hèà‡üÿÇD$H‹L$DèχüÿÇD$D‹L$@辇üÿ‹“OÇ$‹t$8‰ñè'ýÿ‰D$@‹ùÿÿÿ?tI‰u‰4$‰ÆèÙ‰ð…À„‹ùÿÿÿ?t
I‰u‰$è¸ÂÇD$@‹l$‹ƒÿÿÿ‹ùÿÿÿ?…%é)ºh¿1öéG½©h¾ë6½«h‰÷¾ë(½µh1ÿ¾ ë½·h‰÷¾ ë½Áh¾!1ÿ1Éèé†üÿÇD$‹L$,è؆üÿÇD$,1ÉèɆüÿÇD$‰ù躆üÿÇD$ ƒþõÿ‰D$‰4$‹è@úÿ‰êèèœüÿD$‰D$D$‰$T$ ‹L$4è¼Rÿÿ…Àˆ°‹l$ ‹L$‹D$‰D$$‰D$‰L$0‰L$‰l$Ç$èȉD$,…À„Œ‰ÇÇ$‹t$8‰ñ‰Âè†%ýÿ‰ñ‰Ƌ=ÿÿÿ?t
H‰u‰$è\Á‹=ÿÿÿ?t
H‰u‰<$èFÁÇD$,…ö„@;³0ÿÿÿt$;³4ÿÿÿt;³ÿÿÿt‰4$è–Ãë½ÙhéŠ1À;³0ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰ÆèæÀ‰ð…Àx[„î‰é胅üÿÇD$ ‹L$0èr…üÿÇD$‹L$$èa…üÿÇD$‹T$H‹D$D‹t$@‹L$4‹I@‰t$‰$è*SÿÿéÕýÿÿ½æh‹T$H‹D$D‹t$@‹L$4‹I@‰t$‰$èSÿÿ¿1ö‰êé
‰L$‰,$è‰D$ ¿
…À…¯ôÿÿºµg1öéï	…À„ƒx„u‰éèÙÿÿéÍøÿÿ1ÿ1Éé×úÿÿ;“`ÿÿÿ„‰L$‰lj$ÇD$èaʼnÁèZØÿÿº·g…À‰I1ö¿
é†	;“`ÿÿÿ„ð‰L$‰Ɖ$ÇD$èʼnÁèØÿÿº‡f…À‰1öéI	‰L$‰,$èHÁ‰ƉD$…À…ÌåÿÿºŽf1öé#	ºf1öé	1ö¿×ié{ïÿÿ1ö‹L$P¿Ùiékïÿÿ‰é¿Ûi‹t$Xé[ïÿÿ‰D$‰,$èêÀ‰D$ ¿…À…ôÿÿºÖg1öéÂè¨À…À…f‰ùè©ýÿ‰D$…À…fº%h¿1ö鑉D$‰4$èÀé&÷ÿÿº'h1öétº*h1öéh‹y‰|$,…ÿ„‹Q‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰T$‹L$(‹½=ÿÿÿ?…‰ÑéF÷ÿÿ1öº?hÇD$¿é‹ƒÿÿÿ‹‰l$‰$èkÂ1öºNh¿éß‹ƒÿÿÿ‹‹L$(‰L$‰$èBÂÇD$ºPhëºdh‹L$8‹1ö¿=ÿÿÿ?„›‰ÕH‰„–‰êé‰1öºi¿éxè^¿…À…0‰ùè_ýÿ‰D$…À…6º7ié*‰D$‰4$èM¿é’áÿÿº9i1öé1ºDië‰L$‰$è)¿‰D$ …À…ôáÿÿºLi¿'1öé;‹$ÿÿÿ…Ç‹‹$ÿÿÿ‰lj$ÿQ,‰ƉD$,…À…¿'ºNiéwºei1ö¿&鹿,ºuiéW1ÉWÀò*Áf.@›Á” Ê¶òéfñÿÿ‰Æ;“`ÿÿÿ„¶‰L$‰4$ÇD$è%‰ÁèÕÿÿ…À‰n1ö¿ºØgéJ‰D$‰,$èI¾‰ƉD$ …À…òÿÿºßg1öé$‰D$‰4$è#¾‰D$‰D$(…À…
òÿÿºág1öéüè⽅À…à‰ùèãýÿ‰D$ …À…Ú1ö¿ºägéˉD$‰4$èʽé(òÿÿºæg1ö¿é©‹ƒDÿÿÿ‹‹`8úÿ‰L$‰$蚻éãÿÿ¹ò*Áf.@›Á” Ê¶Òé³áÿÿ‹D$(‰D$‰t$‰,$èÿ‰D$ …|$0…²åÿÿëè,½…À„IÇD$ º€iÇD$¿&1öé‰T$H‰u‹D$(‰$è>»‹L$é#ôÿÿ‹D$8‰$è)»‰êéç‰ʅÒ„”‹’€9Âuî‰ȋl$$鑸WÀò*	ðf.F›Á” Ê¶ҋl$$é ðÿÿ臼…À…‰ùèˆýÿ‰D$…À…¦º÷g¿1öép‰D$‰4$èo¼é¡ñÿÿºùg1öéSºhéö÷ÿÿ;ƒ@ÿÿÿ‹l$$…“áÿÿ‰ȋM‰L$(‹‹N‹@H…À„ü‰L$‰,$ÿЉljD$…À„ÿÇD$Ç$‰ù1Òè«Fÿÿ‰D$,…À„ì‰Ƌ=ÿÿÿ?t
H‰u‰<$èºÇD$‰ñèMÿÿ‰ǃøÿu
蜻…À…F‹=ÿÿÿ?t
H‰u‰4$è鋃J‹M‹IH…É„“‰D$‰,$ÿщʼnD$,…À„–‹ƒüJ‹M‹IH…ɉ|$8„‘‰D$‰,$ÿщƉD$¿ú…À„†‹E=ÿÿÿ?tH‰Eu‰,$èW¹ÇD$,‰ñèhLÿÿ‰D$Pƒøÿu
è꺅À…­‹=ÿÿÿ?t
H‰u‰4$蹋»(L‹ƒXG‹O‰L$‰|$‰$èý»…À„‰Ƌ=ÿÿÿ?t@‰‰t$‹ƒJ‹N‹IH…É„‰D$‰4$ÿщD$,…À„"‰D$4‹=ÿÿÿ?t
H‰u‰4$蠸‹D$P‰$èd¹‰D$ÇD$¿ÿ…À„ö‰ÆÇ$èý¸‰D$ …À„è‰ʼnpè纉D$‰D$$…À„Ú‹³(L‹ƒXG‹N‰L$‰t$‰$è(»…À„¿‹ùÿÿÿ?‰ÂtA‰
‹ƒØJ‹J‹IH…ɄʼnD$‰׉$ÿщƉD$…À„È‹=ÿÿÿ?t
H‰u‰<$è狃J‰t$‰D$‹D$$‰$è¹…Àˆe‹=ÿÿÿ?¿ÿt
H‰u‰4$葷‹D$4‹@‹p@…ö„oƒc[úÿ‰$聻…À…˜‹D$$‰D$‰l$‹D$4‰$ÿ։Æèm»…ö„g‰t$<‰t$‹L$4‹=ÿÿÿ?‹t$$t
H‰u‰$è·ÇD$,‹E=ÿÿÿ?tH‰Eu‰,$èÿ¶ÇD$ ‹=ÿÿÿ?t
H‰u‰4$èá¶ÇD$ÇD$‹l$<;«ÿÿÿ„®‹ƒˆG…À„ö‹M9Á„•‹‘¬…Ò„i‹r…ö~1ÿ9Dº„sG9þuñ‹I‹@‹“,ÿÿÿ‹‰D$‰L$ƒ–\úÿ‰D$‰$踺ëf¿1ö‰l$ëºÚf1ö¿ÿ‹D$,…Àt‹ùÿÿÿ?tI‰u‰$‰Õ趉ê‹l$‹D$…Àt#‹ùÿÿÿ?tI‰u‰$‰t$$‰Öè﵉ò‹t$$‹D$ …Àt#‹ùÿÿÿ?tI‰u‰$‰t$$‰Öèĵ‰ò‹t$$…öt‹=ÿÿÿ?tH‰u‰4$‰Ö袵‰ò‹D$…Àt‹ùÿÿÿ?tI‰u‰$‰Ö赉򍃝þõÿ‰D$‰<$‹è@úÿèeüÿ1Àéô‰L$‰,$è"·‰ljD$…À…ûÿÿº§f¿ù1öéøþÿÿ¿ùº©fë$‰D$‰,$è붉ʼnD$,…À…jûÿÿ¿úº·f1ö1íéæþÿÿ‰D$‰,$辶égûÿÿº¹féßäÿÿ芶…À…š‰ùè‹ýÿ‰D$…À…‰	ºÇf¿ÿé°äÿÿ‰D$‰4$èt¶‰D$,…À…Þûÿÿ¿ÿºÉf1í1öéqþÿÿºÌf1öé>þÿÿºÎf1öé2þÿÿºÓf1öé&þÿÿè¶…Àu‰ñèýÿ…À…	1ö¿ÿºÕféýýÿÿ‰D$‰׉$èúµ‰ƉD$…À…8üÿÿº×f‰þéÐýÿÿ‹D$$‰D$‰l$‹D$4‰$è(¸‰D$‰D$<…À…«üÿÿºÜféœýÿÿ艵…À„ÅÇD$ºÜf1öé‚ýÿÿ‹ƒDÿÿÿ‹‹`8úÿ‰L$‰$ès³éEýÿÿ1öº¬f¿ùÇD$éJýÿÿº¼fé{ãÿÿ‰t$‰|$‹D$(‰$藷‰ʼnD$ …À…ëÿÿëèµ…À„‰ÇD$ ºh1ö¿éöüÿÿ‰ʅÒt‹’€9Âuòë;ƒ@ÿÿÿ…’üÿÿ‹E‰D$$‹D$0‹°°‹«0J‹~‰l$‰<$è-¸…À„­‹H‹‰ˆ…Ét‰|$‰t$‰$ÿщD$4…D$0ué–‹ùÿÿÿ?‰D$4tA‰‹D$0‹°°‹ƒ$J‹~‰D$‰D$‰<$èƷ…À„s‰ŋ@‹ˆˆ…Ét ‰|$‰t$‰,$ÿщD$…À„k‰ŋ@ë‹Mùÿÿÿ?tA‰M‰l$ÇD$ ;ƒHÿÿÿ…ç‹}‰|$ …ÿ„Ø‹u‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰t$‹E¹=ÿÿÿ?tH‰Eu
‰,$èݱ¹‰õ‰|$\ÇD$`÷؍ƒÂ`‰$‰éèñ'ýÿ‰ƉD$…ÿt‹=ÿÿÿ?t
H‰u‰<$葱ÇD$ …ö„‹E=ÿÿÿ?tH‰Eu‰,$èi±ÇD$‹=ÿÿÿ?t
H‰u‰4$èK±ÇD$è´‹@@‹“ÿÿÿ‹t$L‰T$d됐‹@…Àt?‹…Étó9Ñtï‰L$D‹=ÿÿÿ?t@‰‹Q‰T$@‹=ÿÿÿ?t@‰‰T$T‰L$X‰$è̳ë"ÇD$DÇD$@ÇD$XÇD$T1	D$h‰D$H‰÷O‹l$Pƒýud…ÿ‹D$(‹l$$ŽáƒD$0‹L$8¯ùÇ÷ىL$N‰t$‹D$0‰$ÇD$ès‹T$(¯D$8‹‰M‹‰‹E‰|$ƒþwÅ鍅ÿŽ…ƒD$0‹D$8¯ø|$(÷؉D$N‰t$L‰t$‹D$0‰$ÇD$è£r‰Æ¯t$8t$(‰l$‰t$‹D$$‰$è䳉l$‰|$‰4$‹t$Lèг‰l$‹D$$‰D$‰<$輳|$ƒþw“‹T$d‹=ÿÿÿ?tH‰
ùÿÿÿ?t‰…Àu‰$苯ÇD$‹L$T…ɋl$<t‹=ÿÿÿ?t
H‰u‰$èa¯ÇD$@‹L$X…Ét‹=ÿÿÿ?t
H‰u‰$è;¯ÇD$D‹L$h…Ét‹=ÿÿÿ?t
H‰u‰$诋»O‹D$4‹@‹p@…ö„Vƒc[úÿ‰$èÿ²…À…t‰|$‹|$4‰<$ÇD$ÿ։Æè벅ö„T‰t$H‹=ÿÿÿ?t
H‰u‰<$詮…ö„‹=ÿÿÿ?t
H‰u‰4$苮ÇD$H‹ƒÿÿÿ‹ùÿÿÿ?t	A‹ƒÿÿÿ‰…ít‹Mùÿÿÿ?tI‰Mu‰,$‰ÆèK®‰ðƒÄl^_[]Ã1ÿ1Éébüÿÿ‹ƒÿÿÿ‹‰l$‰$èd²ºöf¿1ö‹D$<‰D$éÐ÷ÿÿ‹ƒÿÿÿ‹‹L$‰L$‰$è3²ÇD$½øfë½g‹D$4‹=ÿÿÿ?tH‹L$4‰u‹D$4‰$轭1ö‹D$<‰D$¿‰êél÷ÿÿ‰|$‹|$4‰<$ÇD$迱‰ÆéÅþÿÿ1öº‹g¿‰l$é8÷ÿÿ1öë诅À„u1ö‹l$<‹|$4éþÿÿ½ùiéHßÿÿ½þié>ßÿÿèꬋL$$‰L$‹L$0‰$‰IêèR
ýÿÇD$,ÇD$ ÇD$½
jéÿÞÿÿ½Ýhévìÿÿ½âhélìÿÿ藬‹L$$‰L$‹L$0‰$‰Iêèÿ	ýÿÇD$ ÇD$ÇD$½îhé-ìÿÿºifé£Üÿÿ‰éè¬ÆÿÿéXåÿÿÇD$éàÿÿÇD$é íÿÿ1ÿébåÿÿÇD$éÖîÿÿ‰Ç;‹`ÿÿÿ…¹‹ƒ`ÿÿÿ‰<$ÿP,é(ïÿÿÇD$ ºägéHðÿÿÇD$él÷ÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èá«é˜ðÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$è«éøÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$裫élþÿÿÇD$éñÿÿ‹ƒDÿÿÿ‹‹uLúÿ‰L$‰$èw«éXøÿÿ‹ƒlG‰D$‰<$萲éiîÿÿ‰ÆéÏÿÿ‰Ɖø‹l$$éàÿÿ‰Ƌl$$éºãÿÿ‰Ið‹l$$‰ÊéiÑÿÿ‰Ƌl$$éOÏÿÿ‰ø‹ùÿÿÿ?…Ðÿÿé&Ðÿÿ‰ÆéLáÿÿ‰ÆéLòÿÿ‰Âéóÿÿ‰‰ð‹l$$¿éZàÿÿ‰ÆéùáÿÿUSWVƒìè[ÃØô‹|$0‹q;³Tÿÿÿto‹F4‹n8…ítKƒ}tE‰L$‰$èr°…À„½‰Ɖ|$‰D$‹D$‰$ÿU‹ùÿÿÿ?tgI‰ub‰4$‰Æ荪‰ðëT…ÀtX‹@…ÀtQ‰|$‰T$‰$ÿÐë:‹A‹4‹/ýÿÿÿ?tE‰/‹A‰<‹¸ùÿÿÿ?tI‰u
‰4$è:ª¸ƒÄ^_[]É͉$èӯ…Àt"‰Ɖ|$‰D$‰,$è
¯‹ùÿÿÿ?…cÿÿÿëȸÿÿÿÿëP‹L$‹A‹úÿÿÿ?tB‰‹AАSWVƒìè[éó‹|$$‹t$ …ÿt‹=ÿÿÿ?u‹F‹ùÿÿÿ?u!ë,‹»ÿÿÿ‹=ÿÿÿ?tâ@‰‹F‹ùÿÿÿ?t
I‰u‰$èn©‰~1Ä^_[АSWVƒìè[Ã9󋃼L‰D$‰$èl«…Àt^‰Ɖ$ÇD$èf«…Àu+‰Çè˪‰Iø…Éu‹ƒÿÿÿ‹‹˜Rúÿ‰L$‰$èɨ‰ø‹ùÿÿÿ?tI‰u‰4$‰Æèި‰ðë1Ä^_[ÐUSWVì̉Õè[ãò‹´$àƒìVQ臨ƒÄ‰Ç1ÿ„™‹GƒxTx‹ƒ,ÿÿÿ‹üUúÿVUQÿ0è9ªƒÄëY‹Œ$ä‹G‰$‹G…ÀtlƒáºEыŒ$ä9ÐOЋ$Â9ÊsW‹ƒXÿÿÿ‰$ƒìƒ°PúÿRQVUP‹D$ÿ0èީƒÄ ‹=ÿÿÿ?tH‰uƒìW訃Ä1ÄÌ^_[]Ã1ҋ$Â9Êr©ƒ¼$èu79Èv3ƒì‰ƒAúÿRQVUPhȍt$ Vè,¨ƒÄjVjè/¨ƒÄ…Àx‰ø륐USWVƒì‰׉Îè[Ãtñƒìƒ]^úÿPQèY§ƒÄ½ÿÿÿÿ…À„çƒìW‰D$Pèk¨ƒÄ…ÀtG‰Ńìÿt$,Pè5«ƒÄ…ÀtY‹t$ ƒìÿt$,Uèm©ƒÄ‰…Àt‹L$‹1í=ÿÿÿ?„1íëz‹ƒÿÿÿ‹(ƒìV謩ƒÄ‹WYúÿWPQU誨ƒÄë@‹ƒ,ÿÿÿ‹‰D$ƒìV耩ƒÄ‰ƃìUèҭƒÄ‹àOúÿPÿt$0WVQÿt$$èh¨ƒÄ ‹L$‹=ÿÿÿ?½ÿÿÿÿtH‰uƒìQ腦ƒÄ‰èƒÄ^_[]АUSWVƒì‰׉Îè[ÃDðƒìƒ]^úÿPQè)¦ƒÄ½ÿÿÿÿ…À„çƒìW‰D$Pè;§ƒÄ…ÀtG‰Ńìÿt$,P誃ąÀtY‹t$ ƒìÿt$,Uè=¨ƒÄ‰…Àt‹L$‹1í=ÿÿÿ?„1íëz‹ƒÿÿÿ‹(ƒìVè|¨ƒÄ‹(>úÿWPQUèz§ƒÄë@‹ƒ,ÿÿÿ‹‰D$ƒìVèP¨ƒÄ‰ƃìU袬ƒÄ‹u<úÿPÿt$0WVQÿt$$è8§ƒÄ ‹L$‹=ÿÿÿ?½ÿÿÿÿtH‰uƒìQèU¥ƒÄ‰èƒÄ^_[]АUSWVƒì<è[Ãï‹L$\‹l$X‹D$T“dM‰T$0ÇD$4‹»ÿÿÿ‰|$,…Ét¨…턬ƒýu&‹8‰|$,‹Aé;…í„;ƒýu‹8‰|$,é+1í™
‹z>úÿ“.VúÿIы‹,ÿÿÿ‹	³ˆþõÿ»{AúÿIþ‰l$‰|$‰D$‰T$ƒøÿ‰D$ƒ‚>úÿ‰D$‰$è2¦ºŠmƒþõÿ‰D$Ç$³‹ÞZúÿèQüÿ1ÀéÌ‹A…ÀŽŸ‰T$ 1ö‹«dM‰D$(9l±t1F9ðuõ1��‰ϋT±Ç$‰éè<-ÿÿ…ÀuF9t$(‰ùußë"‰ùx‹D$ ‹<°…ÿt‰|$,‹D$(H‹l$X‹T$ ë#‰Îèt¥…À…}‹»ÿÿÿ‹l$X‰ñ‹T$ ‹D$(…Àx‰|$(‹³ÌL‹ƒXG‹N‰L$‰t$‰$è}¦…À„¼‰ŋ=ÿÿÿ?t@‰E‹ƒtI‹M‹IH…ɄщD$‰,$ÿщÇÇD$ ÅÇD$8…À„¿‹E=ÿÿÿ?tH‰Eu‰,$裋³àG‹ƒXG‹N‰L$‰t$‰$èø¥…À„Љŋ=ÿÿÿ?t@‰E‰l$‰<$èŧƒøÿ„š‰Ƌ=ÿÿÿ?tH‰t‹E=ÿÿÿ?t"H‰Eu‰,$褢ë‰<$蚢‹E=ÿÿÿ?uދ«ÌL‹ƒXG‹M‰L$‰l$‰$èq¥‰Džö„Ð…ÿ„j‹=ÿÿÿ?t@‰‹ƒdM‹O‹IH…É„‚‰D$‰<$ÿщƅÀ„…‹=ÿÿÿ?t
H‰u‰<$袋F1ÿ;ƒHÿÿÿ„z1í‰|$0‹D$(‰D$4­÷؍ƒÂ4E‰,$‰ñèýÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰Çè!‰ø…À„j‹ùÿÿÿ?„*I‰…!‰4$é…ÿ„]‹=ÿÿÿ?t@‰‹l$(‹ƒtI‹O‹IH…É„q‰D$‰<$ÿхÀ„t‹ùÿÿÿ?tI‰u‰<$‰ÆèA¡‰ð‹x‹ùÿÿÿ?tA‰‹x‹ùÿÿÿ?t
I‰u‰$è¡ÇD$0T$4‰l$4Ç$€‰ùè7ýÿ…	|$$„#‰ƋƒøM‹N‹IH…É„‰D$‰4$ÿщŅÀ„"‹=ÿÿÿ?t
H‰u‰4$謠‹»ÌL‹ƒXG‹O‰L$‰|$‰$荣…À„÷‰Ƌ=ÿÿÿ?t@‰‹ƒtI‹N‹IH…É„þ‰D$‰4$ÿщÇÇD$ É…À„‹=ÿÿÿ?t
H‰u‰4$è2 ‹ƒøM‹O‹IL…É„ä‰l$‰D$‰<$ÿхÀˆç‹E=ÿÿÿ?tH‰Eu‰,$èñŸ‹=ÿÿÿ?t
H‰u‰<$è۟‹ƒÿÿÿ‹ùÿÿÿ?„&A‹ƒÿÿÿ‰éèd¡ÇD$ ÅÇD$$…À…v‰ñèUúüÿ…:ºm„ɉÅéüÿÿ‰D$‰,$èE¡é'üÿÿº¼méè¡ÇD$$…Àu‰ñèúüÿ…À…E1íÇD$ ź¿mé9ºÁméSƒøÿ‰D$‰l$D$,‰D$D$0‰$èÆ$ÿÿ…Àˆµ‹|$,éUûÿÿ蠠ÇD$ ÆÇD$$…À…¼‰éè‘ùüÿ…:Îm„‰Çéjüÿÿ‰D$‰<$聠‰ƅÀ…{üÿÿºÐmÇD$ Æ1íÇD$$é’‹~…ÿ„n‹N‹=ÿÿÿ?…ú‹=ÿÿÿ?…ý‹½=ÿÿÿ?…üéüÇD$ ƺåmÇD$$éYèݟÇD$ ÈÇD$$…À…
‰éèÎøüÿ…:þm„B‰Çéwüÿÿ‰D$‰<$辟…À…ŒüÿÿºnÇD$ ȉý1ÿÇD$$é«ÇD$ ɺné÷‰D$‰4$èzŸ‰ŅÀ…ÞüÿÿÇD$ ɺnéµè9ŸÇD$ É…Àu‰ùè6øüÿ…À…t1ÿºnëH‰D$‰4$è)Ÿ‰ÇÇD$ É…À…ÿüÿÿºn1ÿ‰t$8ë‰l$‰D$‰<$èž…À‰ýÿÿºn‹E=ÿÿÿ?tH‰Eu‰,$‰Ö蝉ò…ÿ‹l$8t‹=ÿÿÿ?tH‰u‰<$‰Öèᜉò‰î…ít‹=ÿÿÿ?tH‰u‰4$‰Öè\‰򍃝þõÿ‰D$‹D$ ‰$‹ÞZúÿè£wüÿ1T$$…Òt‹
ùÿÿÿ?tI‰
u‰$‰Æ耜‰ðƒÄ<^_[]Ã@‰‹=ÿÿÿ?„þÿÿ@‰‹½=ÿÿÿ?tH‰t‰ÎéFúÿÿº|méÒ÷ÿÿºwméÈ÷ÿÿ‰4$‰Îè+œé#úÿÿººmé]ÿÿÿºÎméSÿÿÿ1ÿéúÿÿºþméBÿÿÿ‰Åéùÿÿ‰Æé|ûÿÿUSWVƒìè[ÃÈ勫ÌLƒìÿuUÿ³XGèŞƒÄ…ÀtS‰Ƌ=ÿÿÿ?t@‰‹ƒtI‹N‹IHƒì…ÉtQPVÿуÄ…ÀtT‹ùÿÿÿ?tI‰uƒìV‰Æèx›‰ðƒÄƒÄ^_[]Ã蝿`n1ö…Àu"‰éèöüÿ…Àt‰ÆëœPV蝃ąÀu¬¿bn‰ñèâ_üÿƒìƒþõÿ‹Â;úÿ‰úPhãèvüÿƒÄ1À뜐USWVƒìè[ÃØä‹L$<‹l$8‹D$4“xI‰T$ÇD$…Ét&¨…턃ý…j‹(‰l$‹A…À~éÛƒý…O‹(‰l$‹»ÌLƒìÿwWÿ³XGè~ƒÄ…	l$„Ó‰Ƌ=ÿÿÿ?t@‰;³ÿÿÿ„>‹ƒÄG…À„Ü‹N9Á„%‹‘¬…Ò„ï‹z…ÿ~1퐐9Dª„ÿE9ïuñ‹“,ÿÿÿ»–\úÿÿpÿqWÿ2跛ƒÄ‹=ÿÿÿ?tH‰uƒìVèݙƒÄƒìƒþõÿ‹SúÿºùnPhþ麉T$‹i…í~R‹“xI1��9T±„¨F9õuñ‰T$1��‰ϋT±ƒì‹L$jè¬"ÿÿƒÄ…ÀusF9õ‰ùuÞè	›…l$8… ‹ƒ,ÿÿÿƒì‹ˆþõÿ“X8úÿ³t2úÿ»‚>úÿUQjRVWÿ0èޚƒÄ ºËnƒìƒþõÿ‹SúÿPhåèüsüÿƒÄ1ÀéB‰ùx‰ê‹D$‹,°‰l$…í„{ÿÿÿ‰ÐH‹T$…ÀŽ4þÿÿƒt2úÿt$|$Pÿt$<VWèpÿÿƒÄ…Àˆ-‹l$éþÿÿèGš…Àu‰ùèLóüÿ…À…ƒìƒþõÿ‹Súÿº÷né¥þÿÿ‹ƒDÿÿÿƒì‹`8úÿQÿ0è$˜ƒÄ‹=ÿÿÿ?…Yþÿÿéeþÿÿ‰ʅÒt‹’€9Âuò뺻né
ÿÿÿ;ƒ@ÿÿÿ…þÿÿ‹Fƒìÿt$VÿƒÄ…Àt[‹ùÿÿÿ?tI‰uƒìPè뗃Ä‹ƒÿÿÿ‹ùÿÿÿ?t	A‹ƒÿÿÿ‰‹ùÿÿÿ?tI‰uƒìV‰Æ赗‰ðƒÄƒÄ^_[]Ã썃þõÿ‹SúÿºoPhÿè‰rüÿƒÄ1ùÿÿÿ?uµëȺÀnéXþÿÿ‰Æ;³ÿÿÿ…ýÿÿéDÿÿÿUSWVƒìè[Ã(á‹|$8…ÿ…ˆ輙…À„§‰D$‹L$4‹=ÿÿÿ?t@‰‹³ÌL‹ƒXG‹N‰L$‰t$‰$èñ™…À„p‰Nj=ÿÿÿ?t@‰‹ƒM‹O‹IH…É„y‰D$‰<$ÿщŅÀ„|‹=ÿÿÿ?t
H‰u‰<$螖‹D$‰$貝…À„[‰NjE‹p@…ö„Tƒc[úÿ‰$è|š…À…g‰|$‹D$4‰D$‰,$ÿ։Æèlš…ö„>‹E=ÿÿÿ?tH‰Et‹=ÿÿÿ?u%‹l$4‹E=ÿÿÿ?‹|$u*ëN‰,$è–‹=ÿÿÿ?tÛH‰‹l$4t‹E=ÿÿÿ?‹|$t&H‰Eu ‰,$èá•ë‰<$èו‹E=ÿÿÿ?‹|$uڋ=ÿÿÿ?t
H‰u‰<$賕‰ðƒÄ^_[]ÃÇ$“=5úÿ‰ùè•ÿÿ1ö…Àt܉<$觜…À…[þÿÿëÊ1öëÆè$—1ÿ…À…¥‰ñè#ðüÿ½…>`ot]‰Çésþÿÿ‰D$‰<$è—‰ŅÀ…„þÿÿ¾bo1íë7¾eo1ÿë.‰|$‹D$4‰D$‰,$èB™‰ƅÀ…Äþÿÿë	豖…ÀtA¾go‰ùè¡Yüÿ‰éèšYüÿƒþõÿ‰D$Ç$‹}Múÿ‰òèÌoüÿ1öéšþÿÿ1í¾`oëċƒDÿÿÿ‹‹uLúÿ‰L$‰$èr”ë£USWVƒìè[Ãxދ|$8…ÿ…ˆè—…À„§‰D$‹L$4‹=ÿÿÿ?t@‰‹³ÌL‹ƒXG‹N‰L$‰t$‰$èA—…À„p‰Nj=ÿÿÿ?t@‰‹ƒM‹O‹IH…É„y‰D$‰<$ÿщŅÀ„|‹=ÿÿÿ?t
H‰u‰<$èD$‰$è›…À„[‰NjE‹p@…ö„Tƒc[úÿ‰$è̗…À…g‰|$‹D$4‰D$‰,$ÿ։Æ輗…ö„>‹E=ÿÿÿ?tH‰Et‹=ÿÿÿ?u%‹l$4‹E=ÿÿÿ?‹|$u*ëN‰,$è_“‹=ÿÿÿ?tÛH‰‹l$4t‹E=ÿÿÿ?‹|$t&H‰Eu ‰,$è1“ë‰<$è'“‹E=ÿÿÿ?‹|$uڋ=ÿÿÿ?t
H‰u‰<$蓉ðƒÄ^_[]ÃÇ$“¬5úÿ‰ùèåÿÿ1ö…Àt܉<$è÷™…À…[þÿÿëÊ1öëÆèt”1ÿ…À…¥‰ñèsíüÿ½…>Æot]‰Çésþÿÿ‰D$‰<$èb”‰ŅÀ…„þÿÿ¾Èo1íë7¾Ëo1ÿë.‰|$‹D$4‰D$‰,$蒖‰ƅÀ…Äþÿÿë	è”…ÀtA¾Ío‰ùèñVüÿ‰éèêVüÿƒþõÿ‰D$Ç$‹¨9úÿ‰òèmüÿ1öéšþÿÿ1í¾ÆoëċƒDÿÿÿ‹‹uLúÿ‰L$‰$è‘ë£Sƒìè[ÃËۋD$‹‰$ÿPÁèó*ÀóYƒÌ^úÿóD$ÙD$›ƒÄ[АSƒìè[ËۋD$‹‰$ÿPƒÄ[АUSWVƒìè[ÃXۋ|$$…ÿ~+‹l$ 1��‹E‰$ÿU‹L$(Ýñ›F9÷uêƒÄ^_[]АUSWVƒìè[Ãۋ|$$…ÿ~<‹l$ 1öóƒÌ^úÿóD$‹E‰$ÿUÁèWÀó*ÀóYD$‹L$(ó±F9÷uكÄ^_[]ÐSWVì€è[æÚ‹´$f(ƒ<üõÿf)D$p‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿ‚…„É„Šò”ÃԚúÿòŒÃܚúÿòL$ò\ÑòT$‹‰$f)D$`ÿVÝ\$H›òD$òYD$HòXD$òD$(D$`WD$p$è—Ý\$@›òD$@f/D$f(D$`†#ÿÿÿòD$ ÝD$ ›ëA‹‰$ÿVÝ\$8›òD$8Wƒ<üõÿ$èӖÝ\$0›òƒÔ6úÿò\D$0òD$(ÝD$(›Ā^_[АUSWVƒì|è[Ã8ك¼$”ŽY‹¬$1ÿ(ƒ<üõÿ)D$`òƒÔ6úÿòD$ ëZ‹E‰$ÿUÝ\$8›òD$8WD$`$è8–Ý\$0›òD$ ò\D$0f)D$‹„$˜f(D$òøG;¼$”„ې‹E‰$ÿU‰Ñ¤Á‰ÖÁî¤ÂfnÆfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ´Ãàfúÿf)D$r„„É„Cÿÿÿò”ÃԚúÿòŒÃܚúÿòL$(ò\ÑòT$‹E‰$ÿUÝ\$H›òD$òYD$HòXD$(òD$(D$WD$`$è2•Ý\$@›òD$@f/D$†+ÿÿÿéÿÿÿƒÄ|^_[]АSVƒìDè[ê׋t$PóƒÌ^úÿóD$(ƒLüõÿ)D$0‹‰$ÿV‰ÁÑé‰ÂÁê	WÀó*¶ÉóY„‹Ünúÿ;”‹Ürúÿ‚‹©þ„‘ó”‹آúÿóŒ‹ܢúÿóL$ó\ÑóT$‹‰$)D$ ÿVÁèWÀó*ÀóYD$óYD$óXD$óD$(D$ WD$0ó$èO”Ù\$›óD$/D$(D$ †DÿÿÿóD$ÙD$›ƒÄD^[ˉ$ÿVÁèWÀó*ÀóYƒÌ^úÿWƒLüõÿó$è”Ù\$›óƒÔ^úÿó\D$óD$ÙD$›ƒÄD^[АUSWVƒìLè[ÃX֋t$d…öŽK‹l$`1ÿóƒÌ^úÿóD$(ƒLüõÿ)D$0óƒÔ^úÿóD$ëa‹E‰$ÿUÁèWÀó*ÀóYD$WD$0ó$èi“Ù\$›óD$ó\D$)D$ ‹D$h(D$ ó¸G9÷„Ɛ‹E‰$ÿU‰ÁÑé‰ÂÁê	WÀó*¶ÉóY„‹Ünúÿ;”‹Ürúÿ)D$ rª©þ„aÿÿÿó”‹آúÿóŒ‹ܢúÿóL$ó\ÑóT$‹E‰$ÿUÁèWÀó*ÀóYD$óYD$óXD$óD$(D$ WD$0ó$聒Ù\$›óD$/D$†Kÿÿÿé#ÿÿÿƒÄL^_[]АUSWVƒì<è[ÃØÔ‹|$T…ÿ~T‹l$P1ö(ƒ<üõÿ)D$ ‹E‰$ÿUÝ\$›òD$WD$ $èî‘Ý\$›òD$WD$ ‹L$XñF9÷uCÄ<^_[]АUSWVƒìLè[ÃXԋ|$d…ÿŽ‹l$`1öóƒÌ^úÿóD$(ƒLüõÿ)D$0(ƒ<üõÿ)D$ ‹E‰$ÿUÁèWÀó*ÀóYD$WD$0óZÀò$èD‘Ý\$›òD$WD$ òZL$hó±F9÷u²ƒÄL^_[]АUSWVì¬è[åӋ´$À(ƒ<üõÿ)„$òƒ7úÿòD$@‹‰$ÿV¶è‰Ñ¤ÂÁé	fnáÿÿfnÉfbÁfք$ˆ߬$ˆݜ$€›ò„$€òY„ëÜvúÿ‰ǩt	fW„$;”ëÜ~úÿŒëà~úÿf)D$0‚L…턁ò”ëԆúÿòŒë܆úÿòL$(ò\ÑòT$‹‰$ÿVÝ\$x›òD$òYD$xòXD$(òD$f(L$0f(ÁòYD$@òYÁò$è׏Ý\$p›òD$pf/D$†ÿÿÿéÃ(ƒ<üõÿ)D$òƒŒ6úÿòD$(‹‰$ÿVÝ\$h›òD$hWD$$菏Ý\$`›òD$`òYD$(f)D$0‹‰$ÿVÝ\$X›òD$XWD$$èWf(T$0Ý\$P›òD$Pf(ÈfWL$ò\Èf(ÂòYÂf/ȆvÿÿÿòX“t6úÿ÷ÇtfW“<üõÿf)T$0(D$0òD$HÝD$H›Ĭ^_[]АUSWVƒìè[Ãxы|$$…ÿ~*‹l$ 1��‰,$è˜ýÿÿ‹L$(Ýñ›F9÷uëƒÄ^_[]АSWVƒì`è[Ã)ыt$p(ƒLüõÿ)D$@óƒÌ^úÿóD$òƒ7úÿòD$P‹‰$ÿV‰ÁÁé	WÀó*Á¶ÐóY„“܎úÿ©tWD$@;Œ“ܒúÿ)D$0‚^…Ò„Œó”“ؖúÿóŒ“ܖúÿóL$ó\ÑóT$ ‹‰$ÿVÁèWÀó*ÀóYD$óYD$ óXD$óZÀòD$(D$0óZÀ(ÈòYL$PòYÈò$芍Ý\$X›òD$Xf/D$†3ÿÿÿéʉÇóƒÈ^úÿóD$‹‰$ÿVÁèWÀó*ÀóYD$WD$@ó$èYÙ\$,›óD$,óYD$)D$0‹‰$ÿVÁèWÀó*ÀóYD$WD$@ó$è(T$0Ù\$(›óD$((ÈWL$@ó\È(ÂóYÂ/ȆpÿÿÿóX“¸^úÿ÷ÇtW“Lüõÿ)T$0(D$0óD$$ÙD$$›ƒÄ`^_[АUSWVƒìè[Ã(ϋ|$$…ÿ~*‹l$ 1��‰,$èÈýÿÿ‹L$(Ù±›F9÷uëƒÄ^_[]АUSWVì|è[ÃÕÎò„$”f.ƒÄ6úÿ‹´$šÀ•ÁÁ…f(ƒ<üõÿf)D$P‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈf֌$¸߬$¸ݜ$°›òŒ$°¶ÁòYŒÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿ‚¥„É„wò”ÃԚúÿò„ÃܚúÿòD$`ò\ÐòT$‹‰$f)L$ ÿVݜ$¨›òD$òY„$¨òXD$`òD$(D$ WD$P$è‹f(L$ ݜ$ ›ò„$ f/D$†ÿÿÿëfWÉf.Á›À”DÁtòŒ$€݄$€›Ä|^_[]ÃòƒÄ6úÿò”$”f/ÂòD$H†õ¸WÀò*ÀòD$p(ƒ<üõÿ)D$PòƒÔ6úÿòD$8ëEf(Ãò^ÁòD$ò$舊ݜ$À›òŒ$Àf(D$ f/ÁƒPÿÿÿ‹‰$ÿVݜ$›ò„$òD$@‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈf֌$߬$ݜ$ø›ò„$ø¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿf)D$ ‚Ú„É„Žò”ÃԚúÿòŒÃܚúÿòL$`ò\ÑòT$‹‰$ÿVݜ$ð›òD$òY„$ðòXD$`òD$(D$ WD$P$è.‰ݜ$è›ò„$èf/D$†ÿÿÿëS‹‰$ÿVݜ$à›ò„$àWD$P$èéˆݜ$؛òD$8ò\„$Øf)D$ ò\$Hf(ÃòŒ$”ò\ÁòT$@f/ƒ5þÿÿòD$pò\Âò^Áò$è͈ݜ$țò„$Èf)D$fWD$Pò\$Hf(Ëò”$”ò\ÊòYÂòXÁf(Ëò^ÊòL$ò$èiˆݜ$ЛòŒ$Ðf(D$ ò\D$f/Á‚Ûýÿÿé&ýÿÿ‹‰$ÿVݜ$˜›ò„$˜Wƒ<üõÿ$èä‡ݜ$›òƒÔ6úÿò\„$ò„$ˆ݄$ˆ›éßüÿÿf(Øò^ƒ,7úÿ¸	WÉò*Èò\ÐòT$8òYÊWÀòQÁò^Øò\$P(ƒ<üõÿ)D$`òƒ¬6úÿòD$x‹‰$ÿV¶è‰Ñ¤ÂÁé	fnáÿÿfnÉfbÁfք$p߬$pݜ$h›ò”$hòY”ëÜvúÿ‰ǩtfWT$`;”ëÜ~úÿŒëà~úÿ‚}…í„¥òŒëԆúÿò„ë܆úÿòD$@ò\ÈòL$‹‰$f)T$ ÿVݜ$`›òD$òY„$`òXD$@òD$òƒ7úÿòYD$ òYD$ ò$èd†f(T$ ݜ$X›ò„$Xf/D$†ñþÿÿéܐ‹‰$ÿVݜ$P›ò„$P(‹<üõÿ)L$WÁ$è†ݜ$H›òƒŒ6úÿòY„$Hf)D$ ‹‰$ÿVݜ$@›ò„$@WD$$èɅf(T$ ݜ$8›ò„$8f(L$fWÈò\Èf(ÂòYÂf/ȆRÿÿÿòX“t6úÿ÷ÇtfWT$`òD$PòYÂòXD$HfWÉf/ȃòýÿÿf(ÈòYÈòYÈòL$‹‰$f)T$ ÿVf(L$ ݜ$0›ò„$0òYÉf(ÑòYT$xfWT$`òYÑòL$HòXÑf/Ї¨ò$è%…ݜ$ ›òƒ7úÿòYD$ òD$@òL$HòD$ò\ÈòL$pò$èé„ݜ$(›òD$pòX„$(òYD$8f(ÈòD$@òYD$ òXÁf/„$ †	ýÿÿòD$8òYD$ò„$݄$›éqùÿÿòD$8òYD$ò„$݄$›éOùÿÿSWVì°è[öÆó”$Ä.“´^úÿ‹´$ÀšÀ•ÁÁ…âóƒÌ^úÿóD$(ƒLüõÿ)D$P‹‰$ÿV‰ÁÑé‰ÂÁê	WÀó*¶ÉóY„‹Ünúÿ;”‹Ürúÿ)D$ ‚©þ„ó”‹آúÿóŒ‹ܢúÿóL$0ó\ÑóT$‹‰$ÿVÁèWÀó*ÀóYD$óYD$óXD$0óD$0(D$ WD$Pó$è/ƒÙ\$t›óD$t/D$0†Iÿÿÿé‹óZÊfWÀf.ÈšÀ•ÁÁuòZÀóD$xÙD$x›éóƒ´^úÿ/ÂóD$†­óƒÌ^úÿóD$(ƒLüõÿ)D$PóƒÔ^úÿóD$Lë>(Ãó^ÁóD$ó$èɂÙ\$|›óL$|(D$0)L$ /Áƒâ‹‰$ÿVÁèWÀó*ÀóYD$óD$‹‰$ÿV‰ÁÑé‰ÂÁê	WÀó*¶ÉóY„‹Ünúÿ;”‹Ürúÿ)D$0‚Í©þ„ó”‹آúÿóŒ‹ܢúÿóL$ ó\ÑóT$‹‰$ÿVÁèWÀó*ÀóYD$óYD$óXD$ óD$ (D$0WD$Pó$蟁ٜ$Œ›ó„$Œ/D$ †CÿÿÿëD‹‰$ÿVÁèWÀó*ÀóYD$WD$Pó$èiٜ$ˆ›óD$Ló\„$ˆ)D$0ó\$(ÃóŒ$Äó\ÁóT$/ƒxþÿÿ(Ãó\Âó^Áó$èSٜ$€›ó„$€)D$ WD$Pó\$(Ëó”$Äó\ÊóYÂóXÁ(Ëó^ÊóL$ó$èó€ٜ$„›óŒ$„(D$0ó\D$ )L$ /Á‚þÿÿ(D$ óD$hÙD$h›é‹‰$ÿVÁèWÀó*ÀóYƒÌ^úÿWƒLüõÿó$èY€Ù\$p›óƒÔ^úÿó\D$póD$lÙD$l›éO(Èó^ƒÐ^úÿó\ÐóƒÄ^úÿóT$HóYÂóQÀó^ÈóL$(ƒLüõÿ)D$0óƒÌ^úÿóD$óƒ¼^úÿóD$d‹‰$ÿV‰ÁÁé	WÒó*ѶÐóY”“܎úÿ©tWT$0;Œ“ܒúÿ‚w…Ò„ŸóŒ“ؖúÿó„“ܖúÿóD$Pó\ÈóL$‹‰$)T$ ÿVÁèWÀó*ÀóYD$óYD$óXD$PóZÀòD$P(D$ óZÀò‹7úÿòYÈòYÈò$èç~(T$ ݜ$¨›ò„$¨f/D$P†%ÿÿÿéЉǐ‹‰$ÿVÁèWÀó*ÀóYD$WD$0ó$è¹~ٜ$¤›óƒÈ^úÿóY„$¤)D$ ‹‰$ÿVÁèWÀó*ÀóYD$WD$0ó$èt~(T$ ٜ$ ›ó„$ (ÈWL$0ó\È(ÂóYÂ/ȆbÿÿÿóX“¸^úÿ÷ÇtWT$0óD$óYÂóXD$fWÉ/ȃ3þÿÿ(ÈóYÈóYÈóL$P‹‰$)T$ ÿV(L$ ÁèWÀó*ÀóYD$óYÉ(ÑóYT$dWT$0óYÑóL$óXÑ/Ї£ó$èÝ}ٜ$˜›óƒÀ^úÿóYD$ óD$óL$óD$Pó\ÈóL$Ló$è¡}ٜ$œ›óD$LóX„$œóYD$H(ÈóD$óYD$ óXÁ/„$˜†SýÿÿóD$HóYD$Pó„$”ل$”›ëóD$HóYD$Pó„$ل$›İ^_[АSƒìè[ÃK¿‹D$‹‰$ÿP¬ÐÑêƒÄ[АSƒìè[Ã¿‹D$‹‰$ÿPÑèƒÄ[АSƒìè[Ã뾋D$‹‰$ÿPÑè1҃Ä[АSƒìè[û¾‹D$‹‰$ÿP1҃Ä[АSWVƒìPè[É¾òL$`f.‹Ä6úÿ›À”ÁfW҄Á…–f.‹\6úÿ›À”DÁ…€1öòƒ7úÿòD$(f/Áv¸WÀò*Àò\Áò,ðWÀò*ÆòXÁò‹Ä6úÿòL$0ò^Èf(ÐòYÉòƒ$7úÿòYÁòXƒD7úÿòYÁòXƒ„7úÿòYÁòXƒì7úÿòYÁòXƒ<7úÿòYÁòXƒ<6úÿòYÁòXƒ¤6úÿòYÁòXƒÜ6úÿòYÁòXƒŒ7úÿòYÁòXƒ”7úÿò^Âò‹7úÿò›Ì7úÿòYÙòXØò\$ òT$f(Âò\ÁòD$ò$èåzòT$òD$Ý\$H›òYT$HòXT$ ò\ÐòL$(f/L$`vN…ö~J¿òT$ò\D$0òD$ò$è„zòT$òD$Ý\$@›ò\T$@G9÷~ÈòT$8ÝD$8›ƒÄP^_[АSƒìè[ë¼‹D$ ‰$èäèÿÿÝ\$›òD$,òYD$òXD$$òD$ÝD$›ƒÄ[АSWVƒìpè[ÃY¼‹´$€f(ƒ<üõÿf)D$`‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿf)D$‚³„Étsò”ÃԚúÿòŒÃܚúÿòL$ ò\ÑòT$‹‰$ÿVÝ\$H›òD$òYD$HòXD$ òD$(D$WD$`$èÄxÝ\$@›òD$@f/D$†-ÿÿÿë<‹‰$ÿVÝ\$8›òD$8Wƒ<üõÿ$è˜xÝ\$0›òƒÔ6úÿò\D$0f)D$ò„$„òYD$òD$(ÝD$(›ƒÄp^_[АSƒìè[Ã뺋D$ ‹‰$ÿPÝ\$›òD$,òYD$òXD$$òD$ÝD$›ƒÄ[АSƒì(è[Ûº‹D$0òD$4òD$‰$è˜ëÿÿÝ\$ ›òD$<òYD$ òD$ÝD$›ƒÄ([АSƒìè[ÃKº‹D$ óD$$óD$‰$èhóÿÿÙ\$›óD$(óYD$óD$ÙD$›ƒÄ[АSVì´è[Ã÷¹òŒ$̋´$ÀòƒÄ6úÿf/„$Ä‚’f/Á‚ˆòD$òƒô6úÿf/„$Ävbf/Áv\‹‰$ÿVÝ\$@›ò„$ÄòŒ$ÌòXÈòYL$@1Àf/Á—ÀWÀò*ÀòD$8ÝD$8›Ĵ^[А‹‰$ÿVݜ$›ò„$òD$(‹‰$ÿVݜ$ˆ›ò„$ˆòD$ òD$ò^„$ÄòD$òD$(ò$èmvÝ\$x›òD$xòD$0òD$ò^„$ÌòD$òD$ ò$è7vòd$0ò\$(ݜ$€›ò„$€òXÄòL$f/È‚6ÿÿÿf(ËòXL$ fWÒf/ʆÿÿÿ1ÀWÉò*Èf/Á†–ò^àòd$HÝD$H›Ĵ^[Ãò„$ÄòD$‰4$è<éÿÿݜ$¨›ò„$¨òD$ò„$ÌòD$‰4$èéÿÿݜ$ ›ò„$ òL$òXÁò^ÈòŒ$˜݄$˜›Ĵ^[Ãò$èKuÝ\$P›òD$Pò^„$ÄòD$òD$ ò$è!uÝ\$X›òT$Xò^”$ÌòD$f/Âf(Èwf(Âò\ÈòL$ò\ÐòT$ ò$è‹tÝ\$h›òD$hòD$(òD$ ò$èjtÝ\$`›òD$(òXD$`ò$èŸtÝ\$p›òD$ò\D$pò$è4tĴ^[АSƒì(è[Ã˶‹D$0òD$4ò‹\6úÿòL$ò^ÁòD$‰$è¶çÿÿÝ\$ ›òD$òYD$ òD$ÝD$›ƒÄ([АSVƒìDè[Ãj¶‹t$PòD$Tò‹\6úÿòL$ò^ÁòD$‰4$èUçÿÿÝ\$8›òT$8òD$òYÐòL$\òYÑòT$ ò^ÈòL$‰4$èçÿÿÝ\$0›òD$òYD$0òYD$TòL$ ò^ÈòL$(ÝD$(›ƒÄD^[АSVƒì4è[úµ‹t$@‰4$èóáÿÿÝ\$(›òD$(òD$‰4$èÚáÿÿÝ\$ ›òD$ò^D$ òD$ÝD$›ƒÄ4^[АSWVƒìpè[ÃYµ‹´$€f(ƒ<üõÿf)D$`‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿf)D$‚³„Étsò”ÃԚúÿòŒÃܚúÿòL$(ò\ÑòT$‹‰$ÿVÝ\$H›òD$òYD$HòXD$(òD$(D$WD$`$èÄqÝ\$@›òD$@f/D$†-ÿÿÿë<‹‰$ÿVÝ\$8›òD$8Wƒ<üõÿ$è˜qÝ\$0›òƒÔ6úÿò\D$0f)D$f(D$ò^„$„ò$èÖqƒÄp^_[АSWVì€è[Ãæ³fWÀf.„$”›À”DÁtÙîéU‹´$f(ƒ<üõÿf)D$p‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$hßl$hÝ\$`›òD$`¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿf)D$ ‚³„Étsò”ÃԚúÿòŒÃܚúÿòL$8ò\ÑòT$‹‰$ÿVÝ\$X›òD$òYD$XòXD$8òD$(D$ WD$p$è4pÝ\$P›òD$Pf/D$†-ÿÿÿë<‹‰$ÿVÝ\$H›òD$HWƒ<üõÿ$èpÝ\$@›òƒÔ6úÿò\D$@f)D$ òƒÄ6úÿò^„$”òD$f(D$ ò$èøoĀ^_[АSWVì€è[ÃF²‹´$f(ƒ<üõÿf)D$p‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$hßl$hÝ\$`›òD$`¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿf)D$ ‚³„Étsò”ÃԚúÿòŒÃܚúÿòL$0ò\ÑòT$‹‰$ÿVÝ\$X›òD$òYD$XòXD$0òD$(D$ WD$p$è´nÝ\$P›òD$Pf/D$†-ÿÿÿë<‹‰$ÿVÝ\$H›òD$HWƒ<üõÿ$èˆnÝ\$@›òƒÔ6úÿò\D$@f)D$ (‹<üõÿ)L$(D$ WÁ$èÂnÝ\$8›òD$8WD$ò‹Ä6úÿò^Œ$”òL$$èRnĀ^_[АSVƒìDè[ê°‹t$Pòƒ7úÿòD$‹‰$ÿVÝ\$8›òD$8f/D$s@fWÉf/ÁvÛòXÀò$èímÝ\$(›òD$\òYD$(òXD$TòD$0ÝD$0›ƒÄD^[Ãò‹\6úÿò\Èò\Èò$è«mÝ\$›òD$\fWƒ<üõÿòYD$òXD$TòD$ ÝD$ ›ƒÄD^[АSVƒìDè[Ãʯ‹t$PòƒÄ6úÿòD$‹‰$ÿVÝ\$8›òL$f(Áò\D$8f/ÈvÝò$èmÝ\$ ›(‹<üõÿ)L$òD$ WÁ$èðlÝ\$(›òD$\fWD$òYD$(òXD$TòD$0ÝD$0›ƒÄD^[АSVƒì$è[Ã¯‹t$0‹‰$ÿVÝ\$›òD$fWÉf/Ávãò‹Ä6úÿò\Èò^Áò$èilÝ\$›òD$<òYD$òXD$4òD$ÝD$›ƒÄ$^[ÐSƒìè[Û®‹D$ ‰$èÔÚÿÿÝ\$›òD$,òYD$òXD$$ò$è³kƒÄ[АSWVƒìpè[ÃI®‹´$€f(ƒ<üõÿf)D$`‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿf)D$‚³„Étsò”ÃԚúÿòŒÃܚúÿòL$ ò\ÑòT$‹‰$ÿVÝ\$H›òD$òYD$HòXD$ òD$(D$WD$`$è´jÝ\$@›òD$@f/D$†-ÿÿÿë<‹‰$ÿVÝ\$8›òD$8Wƒ<üõÿ$èˆjÝ\$0›òƒÔ6úÿò\D$0f)D$f(D$òYƒ\6úÿòQÀòŒ$„òYÈòL$(ÝD$(›ƒÄp^_[АSVƒì4è[Ãʬ‹t$@‰4$èÙÿÿÝ\$(›¸ò*ÈòL$òD$Dò^ÁòD$‰4$è§ÝÿÿÝ\$ ›òD$ òL$Dò^L$òQÉòYL$(òQÀò^ÈòL$ÝD$›ƒÄ4^[АUSWVì<è[Ã5¬òŒ$T‹¼$P¸
ò*Àf/È‚þWÀòQÁòD$8ò$èiòL$8òY‹´6úÿòX‹œ6úÿòƒô7úÿòYÁòXƒd6úÿòD$Pݜ$ø›f(Áf(Ñò\ƒ„6úÿò‹œ7úÿò^ÈòX‹Ü7úÿòŒ$€ò„$øòD$x¸WÉò*ÈòT$8f(ÂòŒ$°ò\Áò‹L7úÿò^Èòƒü7úÿò\Áò„$ˆf(ƒ<üõÿòŒ$TfWÁf)„$òƒ7úÿòD$@(ƒìûõÿ)„$ òƒ6úÿò„$¨òƒT7úÿò„$ òƒ|6úÿò„$òƒÄ6úÿòD$Hòƒ\6úÿòD$pë,ò„$˜ò\Ãf/D$‹¼$Pƒþ‹‰$ÿWݜ$ð›ò„$ðò\D$@f)D$ ‹‰$ÿWݜ$è›f(L$ f(ÁfT„$ òT$@ò\ÐòT$ò„$°òYD$Pò^ÂòXD$8òYÁòŒ$èòL$ òŒ$TòXÁòX„$¨ò$è¼gòT$ òL$ݜ$à›ò,´$àf/Œ$ rò„$ˆf/ƒ…öˆÿÿÿò„$f/Áv
f/чÿÿÿò$ègݜ$țò„$ÈòD$ò„$€ò$èìfݜ$ЛòD$òX„$ÐòD$òL$òYÉòD$Pò^ÁòXD$8ò$è«fݜ$؛òD$ò\„$ØòD$WÀò*ÆòYD$xòX„$ò„$˜FWÒò*ÐòL$Hf.Ñ›À”ÁfWۄÁ…	þÿÿf.T$p›À”DÁ…õýÿÿ1íòƒ7úÿòD$hf/Âv¸WÀò*Àò\Âò,èWÀò*ÅòXÂò^Èf(ØòYÉòƒ$7úÿòYÁòXƒD7úÿòYÁòXƒ„7úÿòYÁòXƒì7úÿòYÁòXƒ<7úÿòYÁòXƒ<6úÿòYÁòXƒ¤6úÿòYÁòXƒÜ6úÿòYÁòXƒŒ7úÿòYÁòXƒ”7úÿò^Ãò£Ì7úÿòL$@òYáòXàòd$`ò\$f(Ãò\ÁòD$ ò$òT$Xè<eò\$ òL$ݜ$À›òYœ$ÀòX\$`ò\ÙòD$hf/D$X†Ãüÿÿ…펻üÿÿ¿òD$Hò\$ ò\ÈòL$ò$èÖdò\$ òL$òD$Hݜ$¸›ò\œ$¸G9ï~¾éiüÿÿ1öWÀò*Æf.È›À”DÁupf(ÑfW“<üõÿf$è,dݜ$›òƒÄ6úÿ¾ÿÿÿÿòŒ$òL$ òD$‹‰$ÿWòD$ݜ$›òY„$Ff/D$ w҉ðÄ<^_[]АSVƒì$è[Ãj¦‹t$0òD$4òL$<¸ò*Ðò\Ñò^ÑòT$òD$‰4$èJ×ÿÿÝ\$›òD$òYD$òD$‰4$èËùÿÿƒÄ$^[АUSWVìlè[Ãõ¥‹´$òŒ$ˆ‹”$„ƒ>ò*âòd$pt9Vuf.N›À”DÁ…
‰VòNÇò“Ä6úÿf(Âò\Áf/Áf(Áwf(Âò\ÁòD$(òFf(Êò\ÈòL$ òNòYàòXàòd$òf ò$$òT$ècݜ$X›ò,¬$X‰n(òD$pòYD$(òT$ òYÂòQÀò‹D6úÿòYÊòYƒ´7úÿò\Áò$èËbݜ$`›ò£7úÿòŒ$`WÀò*ÅòXÌf)Œ$€òXàf(Üò\Ùf)œ$°òXƒt7úÿò«\7úÿò^èòT$f(Âò\Ãf(‹<üõÿfWËòYL$(òXÊò^Áò»\6úÿf(ðò^÷òXt$òYðf(ÜòXœ$€f(Óò\T$òX«d7úÿf(ËòD$ òYÈò^Ñf(Âò^ÇòL$òXÁòYÂòYýòXùf(”$€òV,òd$@òf4òd$pf(Œ$°òN<òœ$ ò^DònLòvTòF\òYúò~df(Õòt$Pò^Öò|$hòX×òVlò¬$¨f(Ýòl$(òD$Hò^ØòT$XòXÚò\$`ò^tf(Äòl$(òYÅòYD$ òD$‹´$€‹‰$ÿVݜ$P›ò„$PòYD$`òD$‹‰$ÿVòd$ݜ$H›òœ$Hf(”$€f/â†û‹„$„HU‰T$0‰L$4)é‰L$|)è‰D$x鄐f/ê†øòD$pòYD$(òYD$ òD$‹´$€‹‰$ÿVݜ$›ò„$òYD$`òD$‹‰$ÿVòd$ݜ$ø›òœ$øf(”$€f/â†Qf/d$h†´ò\$ò$òd$è¾_òD$f/D$Xݜ$8›ò„$8†ûò^D$HòŒ$ ò\Èò$è¾_ݜ$(›ò,¼$(;¼$„òl$òL$þþÿÿfWÀf.è›À”DÁ…èþÿÿò\L$XòYéòYl$Héùò\âò„$¨ò^àòX¤$°òYØòƒÄ6úÿòXØWÉò*Íò\ÌòX‹7úÿfT‹ìûõÿò^Êò\Ùf/؇sþÿÿò$$ò\$èù^òl$ݜ$@›ò,¼$@ëpò^D$PòX„$°ò$èÇ^ݜ$0›ò,¼$0…ÿòl$òL$ˆþÿÿfWÀf.èšÀ•ÁÁ„öýÿÿò\L$hòYéòYl$P‰þ)î‰ð÷ØHƃøŒÜWÀò*ÀòL$ò^‹\6úÿ¸WÒò*Ðò\Êf/Ȇ­f(ÈòT$ò^Êf(Øò^›,7úÿòX›¼7úÿòYØòX›8úÿò^ÚòX›7úÿòYÙò\$‰ð¯Æ÷ØWÉò*ȸWÀò*ÀòYÂò^ÈòL$ò,$èw]ò\$òT$ݜ$ ›òŒ$ f(Ãò\Âf/Á‡êòXÚf/ˇäüÿÿGWÒò*Ðò”$˜Wíò*l$0ò*d$|ò¤$‹D$4)øWÀò*ÀòD$f(ÚòYÚòœ$Øòl$f(ÝòYÝòœ$ÈòYäò¤$ÐòYÀò„$àf(Åò^Âò$òŒ$èèŸ\ݜ$›WÀò*D$xòXƒ7úÿòD$ò„$ò^D$ò$èg\ݜ$›òL$òYŒ$ò„$òYD$@òXÁòD$8òD$òYD$(òŒ$˜òYL$ ò^ÁWÉò*ÎòL$ò$è\ݜ$›òD$òY„$òXD$8òD$òƒ|7úÿf(Èf(øò„$Èò^Èò£¼6úÿòd$8ò\áò^àò›Ä7úÿf(Ëò\Ìò^Èò“,6úÿf(êò\éò^èò‹ä7úÿf(ñò\õò^t$òƒ¤7úÿòD$ò^ðòXt$f(ïò¼$Àò¤$Ðò^üòD$8ò\Çò^Äf(ûò\øò^üf(Âò\Çò^Äf(ùò\øò^¼$ò^|$òXþf(Åò¤$Øò^Äòl$8f(õò\ðò^ôf(Ãò\Æò^Äf(ôf(âò\àò^æf(ñò\ôò^´$˜ò^t$òX÷ò„$àò¼$Àò^øò\ïò^èò\Ýò^Øò\Óò^Ðò\Êò^L$ò^L$òXÎò„$èf/Á‡õùÿÿé萐òD$(ò^D$ WÉò*L$4òYÈ9ï~D‹D$0ò“Ä6úÿ9ø¯ùÿÿWÛò*Øf(áò^ãò\àòYÔ@9ø~äéùÿÿò“Ä6úÿqùÿÿG9èfùÿÿò“Ä6úÿWÛò*Øf(áò^ãò\àò^Ô@9è~äé/ùÿÿfW“<üõÿòYÓòXT$@òXÔò$è¯Yݜ$ð›ò,¼$ð‹„$„)øò„$ˆf/ƒ7úÿFǁÄl^_[]ÃònòFòD$ ‹n(òF,)„$€ò^4ò\$@ò^<)œ$°òVDò”$ ò^Lòœ$¨ò^Tò\$PòF\òD$Hò^dò\$hòFlòD$XòFtòD$`é¤÷ÿÿUSWVƒìLè[Ãøš‹t$p‹T$d‹|$`ƒ>t9VuòD$hf.F›À”DÁ…†‰VòD$hòFÇò‹Ä6úÿò\ÈòL$òNWÀò*ÂòD$ ò$èXÝ\$8›òD$8òYD$ ò$è±Wò\$Ý\$@›òD$@òD$òFòd$ f(ÄòYD$h¸WÉò*Èf(ÐòYÓòXÑòQÒòY“7úÿòFLòXÐf/Ôvf(Ôëf(ÐòYÓòXÑòQÒòY“7úÿòXÐò,ê‰n(‹‰$ÿWÝ\$0›òD$01Àf/D$‹t$dvx1ÉòL$ëD‰ò)ÊWÒò*Òò\ÁòYT$hWÛò*ØòYÑòY\$ò^Óf(Êf/IÁv*A9è~ˉ$ÿWÝ\$(›1ÀòD$(òL$f/IÁwփÄL^_[]ÃòFòD$òFòD$‹n(éAÿÿÿSWVƒì@è[Ã	™‹|$`‹t$\‰ð	ø„‡òD$TWÉóZÉf.Á›Á”Å1:„Í…‹L$d‹D$Pò‹7úÿf/ÈrTfnÎfn×fbÊfÖL$(ßl$(Ý\$ ›òL$ òYÈò“$6úÿf/Ñrx‰L$òD$‰t$‰$ègýÿÿëv1À1Òé—ò‹Ä6úÿò\ÈfnÆfn×fbÂfÖD$8ßl$8Ý\$0›òD$0òYÁò“$6úÿf/Ðr5‰L$òL$‰t$‰$èýÿÿë3‰L$òD$‰t$‰$èïñÿÿ‰ÂÁúë#‰L$òL$‰t$‰$èÒñÿÿ‰ÁÁù)Æωð‰úƒÄ@^_[АSVƒìdè[ê—òL$|òL$¸ÿÿÿ#D$ƒ|$ð|óƒØ^úÿóZÀòD$ ÝD$ ›ƒÄd^[ÃòT$t1Àò*Àf.ȋt$pšÀ•ÁÁuBòƒ\6úÿòD$ò^ÐòT$‰4$èCÈÿÿÝ\$0›òD$òYD$0òD$(ÝD$(›ƒÄd^[øWÀò*Àf/Ðvsò\Ðòƒ\6úÿòD$ò^ÐòT$‰4$èëÇÿÿÝ\$H›òD$òYD$HòD$‰4$èüÂÿÿÝ\$@›òD$|òQÀòXD$@òYÀòXD$òD$8ÝD$8›ƒÄd^[Ãòƒ\6úÿòD$ò^ÈòL$‰4$èêÿÿÀWÀò*ÀòL$tòXÈò^L$òL$‰4$èUÇÿÿÝ\$X›òD$òYD$XòD$PÝD$P›ƒÄd^[АSVƒìDè[Ã
–‹t$PòL$TòD$dòD$òL$‰4$è+þÿÿÝ\$8›òL$8òD$\òYÈòL$ ò‹\6úÿòL$ò^ÁòD$‰4$èÀÆÿÿÝ\$0›òD$òYD$0òYD$Tf(ÈòD$ ò^ÁòD$(ÝD$(›ƒÄD^[АSVƒì4è[ÃZ•òT$D‹t$@¸ò*ÀòYD$Lò^ÐòT$‰4$ètÁÿÿÝ\$(›òD$(òT$Df(ÚòYØòYظWÀò*ÀòYD$Lf(ËòYËòYÃòXÁòQÀò\ØòY\$òXÚò\$‹‰$ÿVò\$òT$DÝ\$ ›f(ÂòXÃf(Êò^Èf/L$ rò\$ÝD$›ƒÄ4^[ÃòYÒò^ÓòT$ÝD$›ƒÄ4^[АSVìÔè[Ãg”ò¤$ìòd$8¸ÿÿÿ#D$<ƒ|$8ð| óƒØ^úÿóZÀòD$`ÝD$`›ÄÔ^[Ë´$àòƒÔ7úÿf/ÄvW¸WÀò*ÀòD$‹‰$ÿV¸WÀò*ÀÝ\$p›òL$òYL$pò\ÈòY‹8úÿòL$hÝD$h›ÄÔ^[Ãòƒl7úÿf/ÄvòƒÄ6úÿò^ÄòXÄòD$(ëzòƒ¬7úÿf/Ä‚„¸WÀò*8ò*ÈòYÌòYÌòXÈòQÉòXȸò*Ðf(ÚòYÙòQÛò\Ëf(ÚòYÜò^Ëf(ÙòYÙòXØòYÊò^Ùò\$(¸WÀò*ÀòD$@¸WÀò*ÀòD$Xòƒ8úÿòD$ 1ÀWÀò*ÀòD$0‹‰$ÿVݜ$¸›ò„$¸òYD$ ò$è‡Pݜ$¨›ò„$¨òL$(f(ÑòYÐòXT$@òXÁò^ÐòT$Pò\ÊòYŒ$ìòL$‹‰$ÿVݜ$°›ò„$°òL$Xò\$ò\ËòYËò\Èf/L$0s;f(Ëò^Èò$è¦Oݜ$ ›ò„$ òXD$@ò\D$f/D$0‚ÿÿÿ‹‰$ÿVݜ$˜›òD$Pò$è½Oݜ$›òŒ$òƒ7úÿf/„$˜vfW‹<üõÿ1ÀWÀò*ÀòD$òXŒ$äf)L$@f(ƒìûõÿfTÁòT$ òX¸WÉò*ÈòYÊòL$ò$èMOòD$f/D$@ݜ$ˆ›òŒ$ˆò\L$ †Ì¸ÿÿÿÿWÀò*ÀòYÈòL$xÝD$x›ÄÔ^[ÃòƒÄ6úÿò^ÄòQÀòD$‰4$è"½ÿÿòL$ݜ$țòYŒ$ÈòXŒ$äòƒä6úÿf/Áv¸WÀò*ÀòYƒ8úÿòXÈf/‹8úÿv:¸WÀò*ÀfWƒ<üõÿòYƒ8úÿòXÁò„$À݄$À›ÄÔ^[ÃòŒ$€݄$€›ÄÔ^[АSVì”è[ÃòŒ$¤‹´$ (ƒ<üõÿWÁ$èIMÝ\$h›òD$hòD$(‹‰$ÿVÝ\$`›òL$`1Ҹò„$¤f/ȃ)(ƒ<üõÿ)D$pWÀò*ÀòD$ ë&‹‰$ÿVÝ\$8›òL$8ò„$¤f/ȃòL$‹‰$ÿVÝ\$X›òD$XòYD$(ò$èMòL$Ý\$P›òT$PfWT$pf(ÂòYÂf/Á‚Ÿò$f)”$€è¥LÝ\$@›òD$@òD$0(„$€ò$è‚LÝ\$H›òD$0ò^D$HòXD$ ò$è¡LÝ\$ÝD$ÝL$›‹D$‹T$ƒø‰уÙŒÿÿÿfWÀòL$f.ÈšÁ•ÅÍ„òþÿÿĔ^[Ã1Òf/ʸƒÐĔ^[ø1ҁĔ^[АSƒìè[ÃKŽ‹D$ òƒÄ6úÿò\D$$òD$‹‰$ÿPò\$òT$$Ý\$›òD$¸f/Âvf(ʐòYÓòXÊ@f/ÁwñƒÄ[АSWVìè[Ãƍ‹´$ f(ƒ<üõÿf)„$€‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$xßl$xÝ\$p›òD$p¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿf)D$ ‚¶„Étvò”ÃԚúÿòŒÃܚúÿòL$8ò\ÑòT$‹‰$ÿVÝ\$h›òD$òYD$hòXD$8òD$(D$ W„$€$è1JÝ\$`›òD$`f/D$†*ÿÿÿë<‹‰$ÿVÝ\$X›òD$XWƒ<üõÿ$èJÝ\$P›òƒÔ6úÿò\D$Pf)D$ (ƒ<üõÿ(L$ WÈ)L$ òŒ$¤WÈ$èÃIÝ\$H›f(D$ ò^D$Hò$èhJÝ\$@›òD$@f/ƒü6úÿr¸ÿÿÿÿºÿÿÿëòD$ÝD$ÝL$›‹D$‹T$Đ^_[АSWVìè[Ãö‹ò„$¤‹´$ f/ƒ”6úÿrjò‹Ä6úÿò\ÈòL$‹‰$ÿVò\$ò”$¤Ý\$8›òD$8¸f/Âv!f(ʐòYÓòXÊ@f/Áwñ‰ÂÁúé­f(ƒ<üõÿf)„$€‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$xßl$xÝ\$p›òD$p¶ÁòY„ÃÜ^úÿ;”ÃÜfúÿ¼Ãàfúÿf)D$ ‚¶„Étvò”ÃԚúÿòŒÃܚúÿòL$0ò\ÑòT$‹‰$ÿVÝ\$h›òD$òYD$hòXD$0òD$(D$ W„$€$èáGÝ\$`›òD$`f/D$†*ÿÿÿë<‹‰$ÿVÝ\$X›òD$XWƒ<üõÿ$èµGÝ\$P›òƒÔ6úÿò\D$Pf)D$ f(ƒ<üõÿf(L$ fWÈf)L$ òŒ$¤fWÈf$èmGÝ\$H›f(D$ ò^D$Hò$èHÝ\$@›òD$@f/ƒü6úÿrºÿÿÿ¸ÿÿÿÿëòD$ÝD$ÝL$›‹D$‹T$Đ^_[ÃSVƒìtè[ê‰‹´$€ò„$„ò\ƒÄ6úÿòD$ òD$òƒ\6úÿò$èùFÝ\$h›òD$hòD$(òƒÄ6úÿòD$òƒ46úÿòD$8¸ÿÿÿWÀò*ÀòD$0‹‰$ÿVÝ\$`›òD$ò\D$`òD$‹‰$ÿVÝ\$X›òD$XòD$@òD$8ò^D$ òD$òD$ò$èVFÝ$›èFÝ\$P›òT$Pf/T$0wŠòD$f/‡zÿÿÿòL$f(Áò^ÂòXÁòL$ òL$ò$òT$èüEòd$Ý\$H›òD$HòT$@òYÔf(Èòl$ò\ÍòYÊò\$(f(Óò\Õò^Êò^Ãf/Á‚ÿþÿÿò,ăÄt^[АSƒì8è[ÃˆòT$Tò\$D‹D$@òD$Lf(Êò\Ëò\Ðò\Ãf(Øò^Ùò\$òYÁòD$òYÑòT$‹‰$ÿPÝ\$0›òD$0òL$f/Èr$òYD$òQÀòL$DòXÈòL$ ÝD$ ›ƒÄ8[Ãò‹Ä6úÿò\ÈòYL$WÀòQÁòL$Tò\ÈòL$(ÝD$(›ƒÄ8[АUSWVƒìè[Ã8‡‹t$(‹|$$1҉ø	ð„“‰ð¤ø‰ñÑé	ø	ñ‰ÊÁê	ʉΤÆ	ƉÑÁé	Ѥò	ò‰͉ȤÐÁí	Í	ЉîÁî	î¤Å‹|$ 	Å	õ‹D$(…Àu%‹t$$‹‰$ÿW!è9ƋL$(ƒÙrë1Òë#‹‰$ÿW!ò!è9D$$‹L$(Ñrèë1Ä^_[]АUSWVƒì,è[Ãh†‹|$P‹t$L‹l$H‹L$D‰ð	ø„;‹T$T¶D$\‰ñ…ÿu ÷Ñ	ÏuX‹L$@‹‰$ÿQ‹L$DCÕé!ùƒùÿtq„À„‚‹l$@‹E‰$ÿU#T$X#D$T9ƉùÑrç‹L$DKl$HÕé΄À„¢‹|$@‹‰$‰ÕÿW‰ê!è9ðwî‹L$DKl$HƒÕ锋L$@‹‰$ÿQ‹L$DÁÕé{‰õƒÅ‰øƒÐ‰D$‹L$@‹‰$ÿQ‰é‰ʼnT$÷á‰D$‰l$¯l$ê‹l$¯éÕ;t$‰ø‰l$ èsm‹|$‹l$鿉L$~‹L$@‹‰$ÿQ÷ç9ðw9‰KD$‰Õ1Ò÷÷‰Љê‹l$H9Èv!‰þ‰NjL$@‹‰$ÿQ÷æ9ljøwê‹L$DуÕéÄ÷×÷֋l$‰l$‰L$‰4$‰|$‰Îèv9‰ñ9D$T$ ‰ï‹l$sV‰L$‰T$(‰D$$‹t$‹L$@‹‰$ÿQ‰ʼn׉Á¯L$÷æʉù¯ÎыT$(;D$$Ñr҉|$‹L$‹|$‰è÷á‰T$‹t$‰ð÷á‰ӉIè÷ç‰Չú‰ljð÷âD$DT$HL$؃ÒùèƒÒ‰IՉȉêƒÄ,^_[]АUSWVƒìè[Ã胋|$(‹t$$…ÿ„–‹l$ ƒÿÿu‹E‰$ÿUÆé}€|$0t$‹t$,‹E‰$ÿU!ð9øwñ‹t$$ÆëRG‰D$‹E‰$ÿU÷d$9øw8‰Á÷׉ø‰Ö1Ò÷t$‰Љò‹t$$9Èv‹|$‰ƋE‰$ÿU÷ç9Ɖðwí‹t$$։ðƒÄ^_[]АUSWVƒìè[Ãƒ·|$8·l$4…ÿ„‹T$H‹L$Dÿÿÿuƒ9„|·B‰‹H鉀|$@tH·t$<‹ë·B‰‹L$D‹H‰·
f!ñf9ùv:…Àuâ‹L$0‹‰$ÿQ‹T$H‰¸‹L$DëҍG‰D$ƒ9t5·B‰‰΋	IëAé‰Íë}‹L$0‹‰$ÿQ‹L$D‹T$H‰¸‰f*ë[‹T$0‹‰$‰ÎÿR‹T$H‰¹‰‹2·î·D$¯è·ՉD$‰T$9Âs÷׉ø1Òf÷t$·ú‹T$H9|$rDÁí·D$4è‰ʼnèƒÄ^_[]АÁî‰2‹D$D‹I‰‹2·î¯l$·Å9øs¼…Éu݋L$0‹‰$ÿQ‹T$H‰¹‹D$DëÌUSWVƒìè[È¶T$8¶D$4…Ò„û‹t$H‹|$D‹l$0úÿuƒ?tn‰ÁÁ.‹Hëy€|$@‰T$t;Šl$<‹ëÁ.‹H‰Š é8Ñv3…Àuì‹E‰$ÿUŠl$<‹T$‰¸ë؉Ðþ?ˆD$t.Á.‹/Më;¶D$4Èët‹E‰$ÿU¶L$4‰¸‰‰ÈëW‹E‰$ÿU‰¶D$½‰/‹¶Ê¶	D$¯È¶ID$‹D$9D$s‹D$öжÀöt$¶ĉD$9D$r3l$4ˆèƒÄ^_[]АÁꉋ/M‰/‹¶Ê¯L$¶Á;D$sͅíuߋL$0‹‰$ÿQ‰½ëҐSWVƒìè[Ã€€|$(t‹t$8‹|$4ƒ?tÑ.‹Hë¶D$$ë‹D$ ‹‰$ÿP‰¸‰¶$ƒÄ^_[АUSWVƒì<è[ø‹t$`‹l$\‹|$X‹T$T‰è	ð‹L$dt[¶D$h‰é…ö…Å÷щL$$	ñ…tƒ|$d‹|$lŽ;‰Õ1��‹L$P‹‰$ÿQè‹L$XƒÑ‰÷‰L÷F9t$duÝé…ɋt$lŽ1ùrU‰È%üÿÿfnÂfnÏfbÁfpÀD1ɐóÎóD΃Á9Èuî‹L$d9ȋ|$X‹T$T„®‰Ɖ|Æ@9Áuôé“!ñƒùÿ„[„D$d„–…ÀŽt‰ð‹L$\¤È‰òÑê	È	ò‰ÑÁé	щÖ¤Æ	ƉÊÁê	ʤñ	ñ‰ÐÁè	ФÊ	ʉƉǤ×Áî	Æ	×	÷1‰D$‹l$P‹E‰$ÿU!ò!ø9D$\‹L$`ÑrçD$TT$X‹L$l‹l$‰é‰è‰Té@;D$du·éÖ„D$d„C…ÀŽÂ‰ð‹L$\¤È‰òÑê	È	ò‰ÑÁé	щÖ¤Æ	ƉÊÁê	ʤñ	ñ‰ÐÁè	ФÊ	ʉƉÁ¤ÑÁî	Æ	Ñ	Î1	D$‹l$P‹|$\‹E‰$ÿU!ð9øwñD$T‹L$XƒÑ‹T$l‹|$‰ú‰ø‰Lú@;D$du¾é-ƒ|$d‹l$lމù1��‹D$P‰ωK‰$ÿQ‰ù‹|$TøʉDõ‰TõF9t$du×éæ…ÀŽÞ‹D$\‰CÁ‰L$‹L$`‰̓Õ÷ЉD$0÷щL$,1	l$$ëb‹t$(‰ø÷á‰T$ ‰ð÷á‰Ål$ ƒÒ‰T$ ‰ø‹L$$÷á‰×è‰̓׉ð÷áD$TT$XD$ ƒÒøƒÒ‹L$l‹t$4‰ñ‰TñF;t$d‰ð„R‰D$4‹L$P‹‰$ÿQ‰ljT$(‹L$÷á‰Ɖø¯Å‹l$(¯éՉt$ 9t$\‹D$`è‚\ÿÿÿ‹D$$‰D$‰L$‹D$,‰D$‹D$0‰$èä0‹L$‰ƉЉò9t$ ‰D$ ŋt$(ƒ"ÿÿÿ‰T$8‹L$P‹‰$ÿQ‰ljՉÁ¯L$$‹t$÷æʉé¯ÎыT$89ÐL$ r΋L$‰îé×þÿÿ…ÀŽ‹D$\h1öëT$T‹D$XƒÐ‹L$l‰ñ‰DñF;t$dtW‹L$P‹‰$ÿQ÷å;D$\wωKD$$‰T$1Ò÷õ‰׋T$9Ïv·‰t$‹t$P‹‰$ÿV÷å9Çwò‹t$댃Ä<^_[]АUSWVƒìè[Ã{‹T$D‹L$<‹D$8‹l$4…Àt6‹t$0ƒøÿ…‰…ÉŽt1ÿ‹‰$ÿVè‹L$D‰¹G9|$<uèéS…ÉŽK‰î1ùrB‰È%øÿÿfnÆfpÀ1ÉóŠóDŠƒÁ9Èuî‹L$<9ȋt$4„‰4‚@9Áuøéó€|$@tt…ÉŽä‹L$8‰ÈÑè	ȉÁÁé	IÈÁè	ȉÁÁé	IÏÁï	Ï1‰D$‹l$8‹‰$ÿV!ø9èwòD$4‹L$D‹T$‰‘‰Ð@;D$<uÊëx…É~th÷ЉD$1É됐‹L$T$4‹D$D‰ˆA;L$<tJ‰L$‹‰$ÿV÷å;D$8w։KD$‰T$1Ò÷õ‰׋T$9ϋL$v¾‹‰$ÿV÷å9Çwò렃Ä^_[]АUSWVƒìèXÀXy‰D$·t$8‹T$D…ötaþÿÿ…Ń|$<Ž)1ö1É1\$ë'ÁèI·T$4‹|$Df‰wF9t$<„ö…ÉuދL$0‹‰$ÿQ¹ëσ|$<ŽÔ1|$<rG‹D$<%ðÿÿ·L$4fnÁòpÀfpÀ1ɐóJóDJƒÁ9Èuî;D$<„ˆ·L$4f‰B@9D$<uðéo€|$@t~ƒ|$<Ž]·ƉÁÑé	IÈÁè	ȉÁÁé	IÏÁï	Ï1í1É1Àë!‹L$0‹‰$‹\$ÿQ¹‰Â!úf9òv…ÉtÞÁèI‰Â!úf9òwï·\$4ڋ\$Df‰kE;l$<uÙéêƒ|$<ŽßF‰D$·Ø÷Ö1Ò1É1	\$ë.‹D$‹\$Áï·T$4׋T$D‹l$f‰<j‰êB;T$<„™‰T$…Ét
ÁèIë ‹L$0‹‰$‹\$ÿQ‹\$¹·ø¯û‰Ú·ß9Ósœ‰D$‰ð1Òf÷t$·ê9ës„‹D$‹\$됐ÁèI·ø¯û·×9êƒcÿÿÿ…Éuç‹L$0‹‰$‹\$ÿQ‹\$¹ëЃÄ^_[]АUSWVƒìèXÀèv‰D$¶D$8‹\$<…ÀtU‰ǁÿÿuu…ÛŽÈ1ÿ1É1À됐ÁèI‰ÂT$4‹t$Dˆ>G9û„¤…Éuâ‹L$0‹‰$‹\$ÿQ‹\$<¹ë˅ÛŽ}‰\$¶D$4‰D$‹D$D‰$‹\$è‚4é[€|$@„…ÛŽH‰ø¶	ÁÑé	IÈÁè	ȉÅÁí	Å1Ò1É1Àë%T$4‹t$D‹\$ˆ‰ÚB;T$<„‰T$됐ÁèI‰‰ë ډû8ÚvÉuì‹L$0‹‰$‹\$ÿQ¹ëمÛŽ»‰ù‰ÈþÀ¶øöÑ1Ò¶Áf‰D$1É1Àë"‹D$t$4‹t$D‹\$ˆ4‰ÚB;T$<„~‰T$…ÉtÁèI됐‹L$0‹‰$‹\$ÿQ¹¶Ð¯×¶ò9þs²‰û‰D$·D$öó¶ì9îsš‹D$됐ÁèI¶Љþ¯×¶ò9îs…Éué‹L$0‹‰$‹\$ÿQ¹ëփÄ^_[]АUSWVƒìè[ÃØt‹t$,…ö~?‹|$4€|$(t91í1É1À됐ÑèI‰€âˆ/E9ît…Éuìƒì‹D$,ÿ0ÿPƒÄ¹ëكÄë¶D$$ƒì¶ÀVPWèž2ƒÄ^_[]АUSWVƒì,è[ÃXt‹D$P‹l$DH‰D$…À~s‹t$Lò‹Ä6úÿ1ÿòL$ òþò^IèÁø‹L$T‰L$‰D$‰l$òD$‹D$@‰$èÚÚÿÿòL$ ‹L$H‰¹)Ņí~ò\þG9|$u«ë…í~‹D$P‹L$H‰lüƒÄ,^_[]ÃÌSVƒìTè[ês‹t$`ƒ~tÇFÝF›WÀòFƒÄT^[Ãò‹\6úÿò“46úÿòƒÄ6úÿòL$òT$òD$(‹‹‰$ÿPÝ\$H›òD$HòYD$òXD$òD$ ‹‹‰$ÿPòT$òL$Ý\$@›òd$@òYáòXâf(ÄòYÄòl$ òYíòXèòD$(f/èsŽfWÛf.ë›À”DÁ…xÿÿÿò,$òd$òl$èR0Ý\$0›òƒì6úÿòYD$0ò^D$òQÀòL$ òYÈòNÇFòL$òYÈòL$8ÝD$8›ƒÄT^[АSƒì(è[Ã[r‹D$0‹‹‰$ÿPÝ\$ ›òƒÄ6úÿò\D$ ò$èÅ/Ý\$›òD$Wƒ<üõÿD$ÝD$›ƒÄ([АSVì$è[Ã÷qòŒ$4f.‹Ä6úÿ‹´$0šÀ•ÁÁuH‹‹‰$ÿPݜ$˜›òƒÄ6úÿò\„$˜ò$è=/ݜ$›ò„$fWƒ<üõÿëfWÀf.È›À”DÁtò„$ˆ݄$ˆ›Ä$^[Ãò“Ä6úÿf/ÑòT$†(ƒ<üõÿ)D$P¸WÀò*ÀòD$ëGf(Âò^ÁòD$ò$èˆ.ݜ$ ›ò„$ f(L$ f/ȃgÿÿÿ‹‹‰$ÿPݜ$țò„$ÈòD$@‹‹‰$ÿPݜ$À›òD$ò\„$Àò$è+.ò\$@ݜ$¸›ò„$¸WD$P)D$ òT$f(ÂòŒ$4ò\Áf/Ã9ÿÿÿòD$ò\Ãò^Áò$èÑ-ݜ$¨›ò„$¨f)D$@fWD$Pò\$f(Ëò”$4ò\ÊòYÂòXÁf(Ëò^ÊòL$ò$èm-ݜ$°›ò„$°f(L$ ò\L$@f/È‚ßþÿÿéAþÿÿf(Âò^ƒ,7úÿò\ȸ	WÀò*ÀòYÁòQÀf(Úò^Øòœ$€òƒ\6úÿòD$@òƒ46úÿòD$Pòƒì6úÿòD$xòƒ¬6úÿòD$hf(ƒ<üõÿf)„$òL$`‹FëAò^ÇFfWÀòF1Àò„$€òYÃòXÂfWÉf/È‚ú…ÀuƐ‹‹‰$ÿPݜ$›ò„$òYD$@òXD$PòD$ ‹‹‰$ÿPݜ$›òŒ$òYL$@òXL$Pf(ÁòYÁòT$ òYÒòXÐf/T$sŽfWÀf.ЛÀ”DÁ…xÿÿÿò$òL$òT$8èÒ+ò\$òT$ݜ$ø›ò„$øòYD$xò^D$8òQÀòL$ òYÈòNÇFòYظéèþÿÿf(ÈòYÈòYÈòL$ ‹‹‰$ò\$ÿPòL$ݜ$ð›ò„$ðòYÉf(ÑòYT$hfW”$òYÑòXT$f/Ї°ò$è+ݜ$à›òƒ7úÿòYD$òD$8òL$òD$ ò\ÈòL$pò$èÖ*òT$ݜ$è›òD$pòX„$èòL$`òYÁf(ØòD$8òYD$òXÃf/„$à†ÌýÿÿòYL$ òŒ$Ø݄$؛Ä$^[ÃòD$`òYD$ ò„$Ð݄$ЛÄ$^[АSƒì(è[Ûl‹D$0òD$4òD$‰$èxúÿÿÝ\$ ›òD$<òYD$ òD$ÝD$›ƒÄ([АSƒì(è[ÃKl‹D$0‹‹‰$ÿPÝ\$ ›òƒÄ6úÿò\D$ ò$èµ)Ý\$›òD$fWƒ<üõÿò^D$4ò$èB)Ý\$›¸WÀò*ÀòL$ò\ÈòL$ÝD$›ƒÄ([АSƒì(è[ûkfWÀf.D$4›À”DÁtÙîƒÄ([ËD$0‹‹‰$ÿPÝ\$ ›òƒÄ6úÿòD$ò\D$ ò$è)Ý\$›òD$Wƒ<üõÿòL$ò^L$4òL$$èÇ(ƒÄ([АSƒì8è[Ã+k‹D$@¹ò*ÁòD$ ‹‹‰$ÿPÝ\$0›òƒÄ6úÿòD$ò\D$0ò$è€(Ý$›è'(Ý\$(›òD$ ò\D$(òL$ò^L$DòL$ò$è:(ƒÄ8[АSƒì(è[Ûj‹D$0òD$4ò‹\6úÿòL$ò^ÁòD$‰$èføÿÿÝ\$ ›òD$òYD$ òD$ÝD$›ƒÄ([АSƒì(è[Ã;j‹D$0‹‰$ÿPÝ\$ ›òD$ Wƒ<üõÿ$èi'Ý\$›òƒì6úÿòYD$òQÀòYD$4òD$ÝD$›ƒÄ([АSWVìè[ÃÆiòŒ$¬ò”$¤1Àò*Àf.K´$ šÀ•ÁÁuAòƒ\6úÿòD$ò^ÐòT$‰4$èn÷ÿÿÝ\$H›òD$òYD$HòD$@ÝD$@›éJ¸WÀò*Àf/Ðv]ò\Ðòƒ\6úÿòD$ò^ÐòT$‰4$è÷ÿÿòD$Ý\$p›òL$pòYȃ~„ÌòVÇFfWÀòFé·‹òL$(òƒ\6úÿòD$ò^ȋ|$(òL$‰$èr¼ÿÿÀWÀò*ÀòŒ$¤òXÈò^L$òL$‰4$èˆöÿÿòD$ݜ$ˆ›òY„$ˆ¸ÿÿÿ#D$,ƒÿð|óƒØ^úÿóZÀòD$xÝD$x›é?ò„$€݄$€›é)òL$0ò“46úÿòƒÄ6úÿòT$òD$8‹‹‰$ÿPÝ\$h›òD$hòYD$òXD$òD$ ‹‹‰$ÿPòT$Ý\$`›òL$`òYL$òXÊf(ÁòYÁòd$ òYäòXàòD$8f/às’fWÛf.ã›À”DÁu€ò$$òL$òd$è
%òT$Ý\$X›òƒì6úÿòYD$Xò^D$òQÀòL$ òYÈòNÇFòYÐòL$0ò„$¬òQÀòXÂòYÀòXÁòD$PÝD$P›Đ^_[АSVƒìDè[Ãêf‹t$PòL$TòD$dòD$òL$‰4$èëüÿÿÝ\$8›òL$8òD$\òYÈòL$ ò‹\6úÿòL$ò^ÁòD$‰4$è€ôÿÿÝ\$0›òD$òYD$0òYD$Tf(ÈòD$ ò^ÁòD$(ÝD$(›ƒÄD^[АSVƒìdè[Ã:fòT$|òL$t‹t$p¸ò*ÀòYÂf(Ùò^؃~tòfÇFfWÀòFé'ò\$ò“\6úÿò›46úÿòƒÄ6úÿòT$ò\$òD$(‹‹‰$ÿPÝ\$X›òD$XòYD$òXD$òD$ ‹‹‰$ÿPò\$òT$Ý\$P›òL$PòYÊòXËf(ÁòYÁòl$ òYíòXèòD$(f/èsŽfWäf.ì›À”DÁ…xÿÿÿò,$òL$òl$è²"òd$Ý\$H›òƒì6úÿòYD$Hò^D$òQÀòL$ òYÈòNÇFòYàòL$tò\$òT$|f(ÁòYĸWÉò*ÈòYÄòYÊf(ÐòYÐòYÈòXÊòQÉò\ÁòYØòX\$tò\$‹‹‰$ÿPò\$òT$tÝ\$@›f(ÂòXÃf(Êò^Èf/L$@rò\$0ÝD$0›ƒÄd^[ÃòYÒò^ÓòT$8ÝD$8›ƒÄd^[АSVƒìTè[ÃdòL$lòT$d‹t$`ƒ~tò^ÇFfWÀòFéò“\6úÿò›46úÿòƒÄ6úÿòT$ò\$òD$(‹‹‰$ÿPÝ\$H›òD$HòYD$òXD$òD$ ‹‹‰$ÿPò\$òT$Ý\$@›òL$@òYÊòXËf(ÁòYÁòl$ òYíòXèòD$(f/èsŽfWäf.ì›À”DÁ…xÿÿÿò,$òL$òl$è² ò\$Ý\$8›òƒì6úÿòYD$8ò^D$òQÀòL$ òYÈòNÇFòYØòL$lòT$dòYËòXÊòL$0ÝD$0›ƒÄT^[ÃSVƒìDè[êbòL$\òT$T‹t$Pƒ~tò^ÇFfWÀòFéò“\6úÿò›46úÿòƒÄ6úÿòT$ò\$òD$ ‹‹‰$ÿPÝ\$8›òD$8òYD$òXD$òD$‹‹‰$ÿPò\$òT$Ý\$0›òL$0òYÊòXËf(ÁòYÁòl$òYíòXèòD$ f/èsŽfWäf.ì›À”DÁ…xÿÿÿò,$òL$òl$èBò\$Ý\$(›òƒì6úÿòYD$(ò^D$òQÀòL$òYÈòNÇFòYØòL$\òT$TòYËòXÊò$è—ƒÄD^[ÐSVƒìdè[Ã:aòL$t‹t$pƒ~t òFòD$ÇFfWÀòFéò“\6úÿò›46úÿòƒÄ6úÿòT$ò\$ òD$0‹‹‰$ÿPÝ\$X›òD$XòYD$òXD$ òD$(‹‹‰$ÿPò\$ òT$Ý\$P›òL$PòYÊòXËf(ÁòYÁòl$(òYíòXèòD$0f/èsŽfWäf.ì›À”DÁ…xÿÿÿò,$òL$òl$ èÒÝ\$H›òƒì6úÿòYD$Hò^D$ òQÀòL$(òYÈòNÇFòL$òYÈòL$òL$t¸WÒò*ÐòT$(f(Áò^ÂòD$‰4$èÁíÿÿÝ\$@›òD$@òL$tò^L$(òQÉòYL$òQÀò^ÈòL$8ÝD$8›ƒÄd^[АSVƒì$è[Ãz_‹t$0òD$4òL$<¸ò*Ðò\Ñò^ÑòT$òD$‰4$è:íÿÿÝ\$›òD$òYD$‹òD$‰$èٲÿÿ‰ÂÁúƒÄ$^[АSVƒìtè[Ãú^‹´$€ƒ~„4òFòD$(ÇFfWÀòFò“\6úÿò›46úÿò£Ä6úÿòT$ò\$òd$0‹‹‰$ÿPÝ\$h›òD$hòYD$òXD$òD$ ‹‹‰$ÿPòd$0ò\$òT$Ý\$`›òL$`òYÊòXËf(ÁòYÁòl$ òYíòXèf/ìsŽfWÀf.è›À”DÁ…xÿÿÿò,$òL$òl$è’òT$Ý\$X›òƒì6úÿòYD$Xò^D$òQÀòL$ òYÈòNÇFòYÐòL$(é	ò›\6úÿò£46úÿòƒÄ6úÿò\$ òd$òD$0‹‹‰$ÿPÝ\$P›òD$PòYD$ òXD$òD$‹‹‰$ÿPòd$ò\$ òt$Ý\$H›òL$HòYËòXÌf(ÁòYÁòYöòXðòD$0f/ðsŽfWíf.õ›À”DÁ…xÿÿÿò4$òL$(òt$ è‚òT$òL$(Ý\$@›òƒì6úÿòYD$@ò^D$ òQÀòYÐòYÈÇFfWÀòFò^ÊòL$8ÝD$8›ƒÄt^[АSVì¤è[Ãw\òŒ$´‹´$°ò“Ä6úÿf/Ñ‚f/”$¼‚òT$‹‹‰$ÿPݜ$€›ò„$€òD$(‹‹‰$ÿPÝ\$x›òD$xòD$ òD$ò^„$´òD$òD$(ò$è_Ý\$h›òD$hòD$0òD$ò^„$¼òD$òD$ ò$è)òd$0òT$Ý\$p›òD$pf(ÌòXÈf/Ñ‚@ÿÿÿò\$(f(ÌòXÈ1ÀWÒò*Ðf/ʆ‘òXÄò^àòd$8ÝD$8›Ĥ^[ÃòL$‰4$è%éÿÿݜ$˜›ò„$˜òD$ò„$¼òD$‰4$è÷èÿÿݜ$›ò„$òL$òXÁò^ÈòŒ$ˆ݄$ˆ›Ĥ^[Ãò$èTÝ\$@›òD$@ò^„$´òD$òD$ ò$è*Ý\$H›òT$Hò^”$¼òD$f/Âf(Èwf(Âò\ÈòL$ò\ÐòT$ ò$è”Ý\$X›òD$XòD$(òD$ ò$èsÝ\$P›òD$(òXD$Pò$è¨Ý\$`›òD$ò\D$`ò$è=Ĥ^[АSVƒìDè[ÃÚY‹t$PòD$Tò‹\6úÿòL$ò^ÁòD$‰4$è¥çÿÿÝ\$8›òT$8òD$òYÐòL$\òYÑòT$ ò^ÈòL$‰4$ènçÿÿÝ\$0›òD$òYD$0òYD$TòL$ ò^ÈòL$(ÝD$(›ƒÄD^[АSƒì(è[Ã+Y‹D$0‹‹‰$ÿPÝ\$ ›òƒÄ6úÿò\D$ ò$è•Ý\$›òD$fWƒ<üõÿòYD$4òD$ÝD$›ƒÄ([АSVƒìè[úX‹T$4òD$$‹D$ ‹L$,ò‹7úÿf/Èr1WÉò*ÉòYÈò“$6úÿf/ÑrW‰T$òD$‰L$‰$è`½ÿÿëuò‹Ä6úÿò\ÈWÀò*ÁòYÁò“$6úÿf/Ðr2‰T$òL$‰L$‰$‰Îè!½ÿÿë0‰T$òD$‰L$‰$è	²ÿÿë‰T$òL$‰L$‰$‰Îèï±ÿÿ‰Ið)ȉÂÁúƒÄ^[АUSWVìè[ÃÅW‹¬$ ‹´$$‹¼$,‹Œ$4ƒùŒi9þ‰øLƉ‰D$7O¼$$‰|$$‰Æ)Î9Ήωt$PLþò*Âò*Èò^Áò‹Ä6úÿòL$ò\Èò*×òYÐò£7úÿòXÔòT$H)ø‰|$<WÒò*Ðò*ÙòYÚòYØòYًŒ$$‹”$,D
ÿWÀò*Àò^Øòd$xòXÜòQÛò\$@G‰D$0WÀò*
D
WÉò*ȋD$pWÒò*ÖòYÐòƒL6úÿòYÃòXƒ47úÿòD$pò^Ñò$èqݜ$țò,¼$ȍGWÀò*Àò$èܗÿÿݜ$ð›ò„$ðòD$(‰t$T)þWÀò*Æò$讗ÿÿݜ$è›òD$(òX„$èòD$(‹D$0)øWÀò*Àò$èz—ÿÿݜ$à›òD$(òX„$àòD$(‹D$$‹t$<)ð‰D$$ø@WÀò*Àò$è;—ÿÿݜ$؛òD$(òX„$ØòD$(‹D$9ÆLÆWÒò*иWÉò*ÈòD$òT$0òXÂòD$òL$f(ÁòYD$@òXD$Hò$è<ݜ$Лò„$Ðf/D$†ÙòD$0òXƒÄ6úÿéó…ÉŽ9÷‰ðLÇò*Àþ‰ÏòD$f(ȐfWÀf/Èva‹E‰$òL$ÿUݜ$›WÀò*ÆòL$ò^ÈòXŒ$ò$è›òL$ݜ$ø›ò,„$øWÀò*Àò\ÈNOu•òD$ò\Áò,Œ$4)K”$,;”$$MȉÈé[òD$òYD$@òXD$Hò$è*ݜ$À›ò„$ÀòD$0ÿD$$òƒT6úÿòD$@òƒl6úÿòD$h¸WÀò*ÀòD$`òƒ\6úÿòD$X‹E‰$ÿUݜ$¸›ò„$¸òD$‹E‰$ÿUòL$ݜ$°›ò„$°ò\D$xòYD$pò^ÁòXD$HfWÉf/Èw f/D$0s˜ò$è^ݜ$ˆ›ò,¼$ˆGWÀò*Àò$èɔÿÿݜ$¨›ò„$¨òD$‹D$T)øWÀò*Àò$蛔ÿÿݜ$ ›òD$òX„$ òD$‹t$<)þFWÀò*Àò$èd”ÿÿݜ$˜›òD$òX„$˜òD$‹D$$øWÀò*Àò$è0”ÿÿòL$ݜ$›òD$òX„$òT$(ò\ÐòD$@ò\ÁòYÁòXD$hf/ÐsOf(Áò\ÂòYÁf/D$`ƒwþÿÿò$òT$è÷ݜ$€›ò„$€òYD$XòL$f/È‚@þÿÿ‹„$$;„$,Oþ)ø‹L$P;Œ$4MÇë1	ÂÁúÄ^_[]АSƒìè[ÃëQ‹D$ òD$$òD$‰$舥ÿÿ‰ÂÁúƒÄ[АSƒìè[ëQ‹D$ òD$$òD$‰$èØÇÿÿ‰ÂÁúƒÄ[АSƒì8è[ÃkQòD$D‹D$@f/ƒ”6úÿròD$‰$èîÂÿÿëv‹‰$ÿPÝ\$0›òD$0Wƒ<üõÿ$èyÝ\$(›òD$(òD$¸WÀò*Àò\D$Dò$èŒÝ\$›òD$ò^D$ò$èñÝ\$ ›ò,D$ ‰ÂÁúƒÄ8[АSƒìè[ëP(D$ ‹D$0‹L$4‰L$‰D$$è"ÜÿÿƒÄ[АSVìÄè[ÃgPò¤$Üòd$8¸ÿÿÿ#D$<ƒ|$8ð| óƒØ^úÿóZÀòD$`ÝD$`›ÄÄ^[Ë´$ÐòƒÔ7úÿf/ÄvW¸WÀò*ÀòD$‹‰$ÿV¸WÀò*ÀÝ\$p›òL$òYL$pò\ÈòY‹8úÿòL$hÝD$h›ÄÄ^[Ãòƒl7úÿf/ÄvòƒÄ6úÿò^ÄòXÄòD$(ëh¸WÀò*8ò*ÈòYÌòYÌòXÈòQÉòXȸò*Ðf(ÚòYÙòQÛò\Ëf(ÚòYÜò^Ëf(ÙòYÙòXØòYÊò^Ùò\$(¸WÀò*ÀòD$@¸WÀò*ÀòD$Xòƒ8úÿòD$ 1ÀWÀò*ÀòD$0‹‰$ÿVݜ$¸›ò„$¸òYD$ ò$è—ݜ$¨›ò„$¨òL$(f(ÑòYÐòXT$@òXÁò^ÐòT$Pò\ÊòYŒ$ÜòL$‹‰$ÿVݜ$°›ò„$°òL$Xò\$ò\ËòYËò\Èf/L$0s;f(Ëò^Èò$è¶ݜ$ ›ò„$ òXD$@ò\D$f/D$0‚ÿÿÿ‹‰$ÿVݜ$˜›òD$Pò$èÍݜ$›òŒ$òƒ7úÿf/„$˜vfW‹<üõÿ1ÀWÀò*ÀòD$òXŒ$Ôf)L$@f(ƒìûõÿfTÁòT$ òX¸WÉò*ÈòYÊòL$ò$è]òD$f/D$@ݜ$ˆ›ò„$ˆò\D$ v$¸ÿÿÿÿWÉò*ÈòYÁòD$xÝD$x›ÄÄ^[Ãò„$€݄$€›ÄÄ^[АSWVì€è[ÃÖL‹¼$òƒÄ6úÿòD$(ò\„$”ò$èC
Ý\$p›òD$pòD$ ‹‰$ÿWÝ\$x›òL$x1ö¸f/Œ$”ƒ%WÀò*ÀòD$ë,‹‰$ÿWÝ\$@›òL$@f/Œ$”ƒåòL$‹‰$ÿWÝ\$h›òD$hòYD$ ò$èU	òL$Ý\$`›òT$(ò\T$`f(ÂòYÂf/Á‚ƒò$òT$0èl	Ý\$H›òD$HòD$8òD$0ò$èK	Ý\$P›òD$8ò^D$PòXD$ò$èj	Ý\$X›ò,D$X…ÀŽ'ÿÿÿfWÀòL$f.ÈšÁ•ÂÊ„ÿÿÿë1öf/ʸƒÐ븉òĀ^_[ÃS‹\$½Ë„‹‹D$ÓèÑè÷ÑÓã	ËT$‹D$9Ús5÷óW÷ÑÑèÓè‰Ç÷d$‹\$‹L$)ÃыD$¯Ç)Ás\$L$‰؉Ê_[Ã)Ú÷óW÷ÑÑè
€Óè‰Ç÷d$‹\$‹L$)ÃыD$¯Ç)Ás\$L$‰؉Ê_[ËD$‹L$1Ò÷ñ‰ËD$÷ñ‰Ð[1ÒÃÌÿ³ÿ£ÿ£héàÿÿÿÿ£héÐÿÿÿÿ£héÀÿÿÿÿ£hé°ÿÿÿÿ£h é ÿÿÿÿ£ h(éÿÿÿÿ£$h0é€ÿÿÿÿ£(h8épÿÿÿÿ£,h@é`ÿÿÿÿ£0hHéPÿÿÿÿ£4hPé@ÿÿÿÿ£8hXé0ÿÿÿÿ£<h`é ÿÿÿÿ£@hhéÿÿÿÿ£Dhpéÿÿÿÿ£Hhxéðþÿÿÿ£Lh€éàþÿÿÿ£PhˆéÐþÿÿÿ£ThéÀþÿÿÿ£Xh˜é°þÿÿÿ£\h é þÿÿÿ£`h¨éþÿÿÿ£dh°é€þÿÿÿ£hh¸épþÿÿÿ£lhÀé`þÿÿÿ£phÈéPþÿÿÿ£thÐé@þÿÿÿ£xhØé0þÿÿÿ£|hàé þÿÿÿ£€hèéþÿÿÿ£„hðéþÿÿÿ£ˆhøéðýÿÿÿ£Œhéàýÿÿÿ£héÐýÿÿÿ£”héÀýÿÿÿ£˜hé°ýÿÿÿ£œh é ýÿÿÿ£ h(éýÿÿÿ£¤h0é€ýÿÿÿ£¨h8épýÿÿÿ£¬h@é`ýÿÿÿ£°hHéPýÿÿÿ£´hPé@ýÿÿÿ£¸hXé0ýÿÿÿ£¼h`é ýÿÿÿ£Àhhéýÿÿÿ£Ähpéýÿÿÿ£Èhxéðüÿÿÿ£Ìh€éàüÿÿÿ£ÐhˆéÐüÿÿÿ£ÔhéÀüÿÿÿ£Øh˜é°üÿÿÿ£Üh é üÿÿÿ£àh¨éüÿÿÿ£äh°é€üÿÿÿ£èh¸épüÿÿÿ£ìhÀé`üÿÿÿ£ðhÈéPüÿÿÿ£ôhÐé@üÿÿÿ£øhØé0üÿÿÿ£ühàé üÿÿÿ£hèéüÿÿÿ£hðéüÿÿÿ£høéðûÿÿÿ£héàûÿÿÿ£héÐûÿÿÿ£héÀûÿÿÿ£hé°ûÿÿÿ£h é ûÿÿÿ£ h(éûÿÿÿ£$h0é€ûÿÿÿ£(h8épûÿÿÿ£,h@é`ûÿÿÿ£0hHéPûÿÿÿ£4hPé@ûÿÿÿ£8hXé0ûÿÿÿ£<h`é ûÿÿÿ£@hhéûÿÿÿ£Dhpéûÿÿÿ£Hhxéðúÿÿÿ£Lh€éàúÿÿÿ£PhˆéÐúÿÿÿ£ThéÀúÿÿÿ£Xh˜é°úÿÿÿ£\h é úÿÿÿ£`h¨éúÿÿÿ£dh°é€úÿÿÿ£hh¸épúÿÿÿ£lhÀé`úÿÿÿ£phÈéPúÿÿÿ£thÐé@úÿÿÿ£xhØé0úÿÿÿ£|hàé úÿÿÿ£€hèéúÿÿÿ£„hðéúÿÿÿ£ˆhøéðùÿÿÿ£Œhéàùÿÿÿ£héÐùÿÿÿ£”héÀùÿÿÿ£˜hé°ùÿÿÿ£œh é ùÿÿÿ£ h(éùÿÿÿ£¤h0é€ùÿÿÿ£¨h8épùÿÿÿ£¬h@é`ùÿÿÿ£°hHéPùÿÿÿ£´hPé@ùÿÿÿ£¸hXé0ùÿÿÿ£¼h`é ùÿÿÿ£Àhhéùÿÿÿ£Ähpéùÿÿÿ£Èhxéðøÿÿÿ£Ìh€éàøÿÿÿ£ÐhˆéÐøÿÿÿ£ÔhéÀøÿÿÿ£Øh˜é°øÿÿÿ£Üh é øÿÿÿ£àh¨鐸ÿÿÿ£äh°逸ÿÿÿ£èh¸épøÿÿÿ£ìhÀé`øÿÿÿ£ðhÈéPøÿÿÿ£ôhÐé@øÿÿÿ£øhØé0øÿÿÿ£ühàé øÿÿÿ£hèéøÿÿÿ£hðéøÿÿÿ£høéð÷ÿÿÿ£héà÷ÿÿÿ£héÐ÷ÿÿÿ£héÀ÷ÿÿÿ£hé°÷ÿÿÿ£h é ÷ÿÿÿ£ h(é÷ÿÿÿ£$h0é€÷ÿÿÿ£(h8ép÷ÿÿÿ£,h@é`÷ÿÿÿ£0hHéP÷ÿÿÿ£4hPé@÷ÿÿP(
àK Kûÿÿo¤ðúÿÿoà”!X*
t
.õþÿoXT(
ðÿÿoÀþÿÿoÿÿÿo°N	Í	àÐ	°·	 o	`¶	ðÅ	¸	p½	0Ð	 Ã	p¿	@À	Ë	ÐÈ	 Ù	=	P¾	à¾	`y	@z	ðz	`Ç	п	ÐÃ	¢	Ê	 Ø	`Ø	 Ø	@Ò	0Ý	\(
¦ß	¶ß	Æß	Öß	æß	öß	à	à	&à	6à	Fà	Và	fà	và	†à	–à	¦à	¶à	Æà	Öà	æà	öà	á	á	&á	6á	Fá	Vá	fá	vá	†á	–á	¦á	¶á	Æá	Öá	æá	öá	â	â	&â	6â	Fâ	Vâ	fâ	vâ	†â	–â	¦â	¶â	Æâ	Öâ	æâ	öâ	ã	ã	&ã	6ã	Fã	Vã	fã	vã	†ã	–ã	¦ã	¶ã	Æã	Öã	æã	öã	ä	ä	&ä	6ä	Fä	Vä	fä	vä	†ä	–ä	¦ä	¶ä	Æä	Öä	æä	öä	å	å	&å	6å	Få	Vå	få	vå	†å	–å	¦å	¶å	Æå	Öå	æå	öå	æ	æ	&æ	6æ	Fæ	Væ	fæ	væ	†æ	–æ	¦æ	¶æ	Ææ	Öæ	ææ	öæ	ç	ç	&ç	6ç	Fç	Vç	fç	vç	†ç	–ç	¦ç	¶ç	Æç	Öç	æç	öç	è	è	&è	6è	Fè	#†Tq
„l
 LÐOÿÿÿÿÿÿÿÿ+@ð:	‚åWY@D	¢Yˆ\0E	‚š\Q_àH	X_À_K	Å_Lb´ÐEFPJDl@M MÈm
(q
0NÐUUwXDh X‚f€Z‚ @^‚+@àh‚0@§Bn‚±B¡GP{‚«G¶N‚ÄNxU0‹‚U8V‚=V²\“‚¾\Sg —‚hgх ™‚žkñp¬‚ùpo|0Ñ‚u|ÐÙ‚éŒàÞ‚ñŒ›ô›†Ÿà÷ŒŸ´¨Àû‚Ĩ׳P‚ç³a¼Ð‚h¼:Ì ‚IÌh×`‚n×}ã‚ã›ñÐ"‚¨ñÿ(‚"ÿXP,‚mn 1‚~¿°3‚ÊL0p7‚U0X=@<‚_=VM@‚^ML[ÀC‚R[Bi€G‚Jiw@L‚#wDŠQ‚Mн–ÀU‚ǖ•¨€Z‚ž¨¾²^‚ò.¾àb‚9¾ÅÈ ~‚ÎÈÑ×°¢‚ã×cåà§‚kåjïЫ‚oï8ûூBû½ð³‚Ì:àÒ‚D:ðÖ‚NB50‚N5ŸA 0‚©A
NpK‚NÂR M‚ÎR¾W@6	`6	Linker: LLD 18.0.3Android (12470979, +pgo, +bolt, +lto, +mlgo, based on r522817c) clang version 18.0.3 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262).fini_array.text.got.comment.note.android.ident.got.plt.rel.plt.bss.dynstr.eh_frame_hdr.gnu.version_r.data.rel.ro.rel.dyn.gnu.version.dynsym.gnu.hash.relro_padding.eh_frame.note.gnu.build-id.dynamic.shstrtab.rodata.data!TT˜¿ìì$”°
‡ÿÿÿoÀÀVbþÿÿo@œöÿÿoXXLtt.~	¤¤ð>	B”!”!Xå2ð%ð%«TðÐðÐ<µ,Ø,Øps
 K Kì“Bß	ß	ÀqP(
Pè	T(
Tè	Ò\(
\è	À)
é	ø5*
ê	8¦L,
Lì	´íPl
Pì	GPq
Pñ	$	0Pñ	ÌÛò	ó