Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / mtrand.cpython-312-iphonesimulator.so
Size: Mime:
ÏúíþX…(__TEXT		__text__TEXT8K`þ8K€__stubs__TEXT˜I<˜I€__stub_helper__TEXTÔOTÔO€__const__TEXT(V€(V__cstring__TEXT@ÖÒ&@Ö__unwind_info__TEXTýèý˜__DATA_CONST	@	@__got__DATA_CONST		…ˆ__DATA@	@@	@__la_symbol_ptr__DATA@	(@	¥__data__DATA(D	ø	(D	__common__DATA N	__bss__DATA(N	@H__LINKEDIT€	@€	x	
Pnumpy/random/mtrand.cpython-312-iphonesimulator.so"€0€	  €	xƒ	Øð	  ‘	è
ø[Pttu¥@
*n±Z8W1±†Ži]–ã342 þ*0@/usr/lib/libc++.1.dylib8>8/usr/lib/libSystem.B.dylib&	) ‘	às
˜€À‘,ø_¼©öW©ôO©ý{©ýÑôª‘”@ù”ˆ	eBù?±@T?ë`Th!@ù@ùA°!”‘Ãÿ”±eù±ÀTˆ°™GùÓ´h@¹1¢
Th¹kA°!‘àª@”´õª
”óª¨@ùÈø7ñ¨ùaT઼”“´àªüÿ” ´õªA°!0‘àª,”À´öªA°!L‘àªâª}ÿ”÷ªÈ@ùÈø7ñÈùaTત”—ø7A°!x‘ઔ 
´öªA°!”‘àªâªiÿ”÷ªÈ@ùÈø7ñÈùaTઐ”
ø7A°!¸‘ઔ€	´öªA°!Ô‘àªâªUÿ”÷ªÈ@ùÈø7ñÈùaTàª|”—
ø7A°!‘àªðÿ”`´ôªhq@ùë@TA°!p‘àªâª=ÿ”õªˆ@ù¨ø6€Rˆ@ùˆø7ñˆùTUø7àªý{C©ôOB©öWA©ø_ĨÀ_ÖàªY”ÿÿ60€Ò.h@ù@ù+ÿ” 4&ÿ”A°!x‘àªÄÿ” õÿµh@ù@ù ÿ”À4ÿ”A°!¸‘હÿ”Àöÿµh@ù@ùÿ”`4ÿ”A°!‘મÿ”à÷ÿµh@ù@ù
ÿ”4ÿ”àªý{C©ôOB©öWA©ø_ĨÀ_Öàª
”€Òàªý{C©ôOB©öWA©ø_ĨÀ_ÖÿÑüo©úg©ø_©öW©ôO©ý{©ýÑhy@ù@ù¨ƒø—°èšGùh´ëÀÁTh5@ù@ùA°!‘ôþ”€8àšù@¹1BT¹Cÿ”˜'ùÀÍ´@¹1BT¹@°L‘ÿ”ˆ>´	@¹)1BT	¹)ù@°p‘üþ” ¾´@¹1BT¹–ÖB9‘ÀùàšGùÂ@ùA°!¬‘sÿ” ½ù7he@ù@ù	=p’Ša R?
ëàT	ýXÓ]SJ°Jñ‘°k±‘ë+©Š€Rk€Rë+©é#©B°B¸‘àC‘€R+ÿ”5€RáC‘€Ò"€R±þ”àÀù7€Òqÿ”ˆ1ùàÇ´¬‘€Òbþ”hð5ù`Ç´¬‘€҇ÿ”hð9ùàÆ´”ä/¯þ”ˆùÀ´nªþ”ˆ‘ù ´H‡‘ÒF¼òÈ1Ïò¨Èçògž¡þ”ˆ•ùÁ´(Ž•Òhq»ò
Àòþçògž˜þ”ˆ™ùà¿´€ÒÀþ”ˆù@¿´5€R €Rºþ”ˆ¡ù@´@, ‘€Ò€R¸þ”ˆ¥ù€½´€’­þ”ˆ©ù༴hð!N¹4àšGùˆ‘M@ù@ùÿ” ¶ù7„þ”€¿´óª!°‘+þ”àµâšGù!°‘àª4þ” Ðù7Ó^CùÀ@ù@ùI@ùYð9[@ùáª끽T€Ò#€RGÿ”€½´ˆ¡ùӂAùÀ@ù@ùI@ùáªë!½T€Ò#€R:ÿ” ½´ˆ¥ùÓvAùÀ@ù@ùI@ùáª롽T€Ò#€R-ÿ” ½´ˆ©ùÓ^AùÀ@ù@ùI@ùáªë!½T€Ò#€R ÿ” ½´”€®ùӾEùÀ@ù@ùI@ùáª롼T€Ò#€Rÿ” ¼´ˆ±ùÓr@ùÀ@ù@ùI@ùáªë!¼T€Ò#€Rÿ” ¼´š@·ùӖ@ùÀ@ù@ùI@ùáª롻T€Ò#€Rùþ” »´ˆ¹ùÓ~AùÀ@ù@ùI@ùáª끻T€Ò#€Rìþ”€»´• ¾ùÓæEùÀ@ù@ùI@ùáªë»T€Ò#€Rßþ”»´ˆÁùÓ~@ùÀ@ù@ùI@ù›áªëaºT€Ò#€RÑþ”`º´`ÇùÓz@ùÀ@ù@ùI@ù–áª롺T€Ò#€RÄþ” º´ÀÊù–Ö" ‘È@ùèù3€R €Rþ”.ù »´–ÖB ‘È@ùèù3€R €Rvþ”.ù £´–Öâ‘È@ùèù3€R €Rmþ”ÀÞù€¢´vðÖB=‘È@ùèù3€R €Rdþ”Àù`¡´–ÖÂ
‘È@ùèù3€R €R[þ”Àjù@ ´“sâ‘h@ù‰®Gùè'©@€RRþ”`jù@ ´–Ö"‘È@ùèù3€R €RIþ”ÀÊùž´–Öb.‘È@ùèù3€R €R@þ”Àùàœ´–ւ.‘È@ùèù3€R €R7þ”Àù´–Öb*‘È@ùèù3€R €R.þ”ù š´“s¢‘h@ùiZDùè'©@€R%þ”`ªù š´“s‚‘h@ùi.Dùè'©@€Rþ”`rù€™´Hðq@ù裩èù`€Rþ”ˆåù`˜´sðs>‘h@ùI·Gùè'©@€R
þ”`*ù@—´–Öâ4‘È@ùÉ
@ùè'©@€Rþ”ÀRù –´™9Ñ(@ùèù3€R €Røý” ùà“´™9ã‘(@ùèù3€R €Rïý” ù´™9£‘(@ùèù3€R €Ræý” 'ù ‘´™9ƒ‘(@ùèù3€R €RÝý” /ù€´™9c!‘(@ùèù3€R €RÔý” ×ù`´™9c‘(@ùèù3€R €RËý” ;ù@Ž´™9ƒ#‘(@ùèù3€R €RÂý” ›ù ´™9c#‘(@ùèù3€R €R¹ý” £ùŒ´™9£#‘(@ùèù3€R €R°ý” ŸùàŠ´yð9£<‘(@ùèù3€R €R§ý” ƒù	´yð9Ã=‘(@ùèù3€R €Ržý” cù ˆ´yð9ã<‘(@ùèù3€R €R•ý” ƒù€‡´yð9ƒ9‘(@ùèù3€R €RŒý” óù`†´šZ‘H@ùèù3€R €Rƒý”@§ù@…´šZÑH@ùèù3€R €Rzý”@3ù „´šZc‘H@ùèù3€R €Rqý”@Ãùƒ´šZã‘H@ùèù3€R €Rhý”@7ùà´šZ#‘H@ùèù3€R €R_ý”@sù´šZ#‘H@ùèù3€R €RVý”@×ù ´šZ#
‘H@ùèù3€R €RMý”@›ù€~´šZ‘H@ùèù3€R €RDý”@ãù`}´Sðsr@ùàªáªâª0ý”ˆÉù`}´›{c‘h@ùèù:€R €R2ý”`Ûùà‘´šZC
‘H@ù‰®Gùè'©@€R)ý”@£ù {´H@ùèù4€R €R"ý”@§ù`´””B6‘ˆ@ùèO©@€Rý”€Šù@y´””"$‘ˆ@ùèù3€R €Rý”€Òùw´””¢‘ˆ@ùèù3€R €Rý”€fùàu´””B‘ˆ@ùèù3€R €Rÿü”€VùÀt´“sb‘h@ù©¾Gùè'©@€Röü”`ÖùÀt´È@ùIð)i@ùè'©@€Rîü”ÀÊùÀs´””¢3‘ˆ@ùèù3€R €Råü”€öù€q´“sb	‘hDùi@ùè'©@€RÜü”`Bù€q´öª5S@©:çDù;Fù¬‘€ÒÇû”€k´óªô©hV‚Rè;¹ûï©õë©öשõù €R€R€RC€R€Re€Ræªçªêü”ôªh@ùÈø7ñhùaTàªý”ˆyùôl´5S@©6çDù:Cù¬‘€ңû” h´óªô©hY‚Rè;¹úë©õÛ©õשõù€R€R€R€R€Re€RæªçªÆü”ôªh@ùÈø7ñhùaTàªßü”ˆ}ùth´“s"
‘h@ùi.Dùè'©@€RŠü”`.ù@g´öª5S@©:çDù;Fù¬‘€Òuû” b´óªô©¨\‚Rè;¹ûï©õë©öשõù €R€R€RC€R€Re€Ræªçª˜ü”ôªh@ùÈø7ñhùaT઱ü”ˆù´b´“s‘h@ùiÚAùè'©@€R\ü”`vù€a´öª5S@©:çDù;ïEù¬‘€ÒGû” ]´óªô©h`‚Rè;¹ûï©õë©öשõù€R€R€RC€R€Rå€Ræªçªjü”ôªh@ùÈø7ñhùaTઃü”ˆ…ùô\´5S@©6GHù:çDù;¯Eù¬‘€Ò"û”ÀX´óªô©Ha‚Rè;¹ûï©õë©öשõù€R€R€RC€R€Rå€RæªçªEü”ôªh@ùÈø7ñhùaTàª^ü”ˆ‰ùTX´F”`qù7s” qù7­”àqù7ì” rù7ˆ!Dù¹” r´ôªuðµ"9‘ @ù¡þDùâªû” Sù7ˆ@ùÈø7ñˆùaTàª@ü”ˆ]Fù¦” p´ôª @ù¡:Gùâªû”Rù7ˆ@ùÈø7ñˆùaTàª/ü”3€R €RTû”€o´ôª–Ȋ@ù	@¹)1bT	¹Ȋ@ù‰@ù(ùˆ•Aù᪀R”óªÀm´ˆ@ùÈø7ñˆùaTàªü”J@ùàª9”Àl´ôª @ù¡fAùâªØú”@Mù7ˆ@ùÈø7ñˆùaTàªü”h@ùÈø7ñhùaTàªûû”ˆDùa” j´óª @ù¡ÒDùâªÀú” Jù7h@ùÈø7ñhùaTàªêû”4€R €Rû”€i´óªvðȲGù	@¹)1bT	¹ȲGùi@ù(ùˆqCùáª"€R×”h´ôªh@ùÈø7ñhùaTàªÎû”rGùàªô”óªÀf´ @ù¡Š@ù⪓ú”àEù7h@ùÈø7ñhùaTઽû”ˆ@ùÈø7ñˆùaTશû”0”1ÀdThðGù@ý³ú” d´ôªsÐs‚<‘h@ù…@ùaÊDùâªtú” Cù7ˆ@ùÈø7ñˆùaTઞû”hБGùVû”HÐQ@ù	@¹)1BT	¹hù`@ùÿ©èC‘!‘ðÒ*-”€a´ôª @ù¡vEùâªVú”à?ù7ˆ@ùÈø7ñˆùaT઀û”vðDù”@`´ôªhð%Aù@ùI@ù`´àª?Öóª`´ˆ@ùÈø7ñˆùaTàªkû” @ù¡Bùâª5ú”@<ù7h@ùÈø7ñhùaTàª_û”Dùò” ^´óªhð1Aù@ùI@ùè]´àª?Öôªà]´h@ùÈø7ñhùaTàªKû” @ù¡Bùâªú” 8ù7ˆ@ùÈø7ñˆùaTàª?û”DùÒ”à[´ôªhðMAù@ùI@ù¨[´àª?Öóª [´ˆ@ùÈø7ñˆùaTàª+û” @ù¡*Bùâªõù” @ù7h@ùÈø7ñhùaTàªû”Dù²”ÀY´óªhðqAù@ùI@ùˆY´àª?Öôª€Y´h@ùÈø7ñhùaTàªû” @ù¡NBùâªÕù”@Dù7ˆ@ùÈø7ñˆùaTàªÿú”Dù’”€W´ôªhð}Aù@ùI@ùHW´àª?Öóª@W´ˆ@ùÈø7ñˆùaTàªëú” @ù¡ZBù⪵ù”À@ù7h@ùÈø7ñhùaTàªßú”Dùr”€Y´óªhðÉAù@ùI@ùHY´àª?Öôª@Y´h@ùÈø7ñhùaTàªËú” @ù¡¦Bù⪕ù” =ù7ˆ@ùÈø7ñˆùaTિú”DùR”@W´ôªhðBù@ùI@ùW´àª?ÖóªW´ˆ@ùÈø7ñˆùaTફú” @ù¡ÞBùâªuù” :ù7h@ùÈø7ñhùaTટú”Dù2” U´óªhð
Bù@ùI@ùèT´àª?ÖôªàT´h@ùÈø7ñhùaTઋú” @ù¡êBùâªUù”€6ù7ˆ@ùÈø7ñˆùaTàªú”Dù”àR´ôªhð)Bù@ùI@ù¨R´àª?Öóª R´ˆ@ùÈø7ñˆùaTàªkú” @ù¡Cùâª5ù”€5ù7h@ùÈø7ñhùaTàª_ú”Dùò”ÀP´óªhðUBù@ùI@ùˆP´àª?Öôª€P´h@ùÈø7ñhùaTàªKú” @ù¡2Cùâªù”`2ù7ˆ@ùÈø7ñˆùaTàª?ú”DùÒ”€N´ôªhð=Bù@ùI@ùHN´àª?Öóª@N´ˆ@ùÈø7ñˆùaTàª+ú” @ù¡Cùâªõø” 0ù7h@ùÈø7ñhùaTàªú”Dù²”`L´óªhðeBù@ùI@ù(L´àª?Öôª L´h@ùÈø7ñhùaTàªú” @ù¡BCùâªÕø”-ù7ˆ@ùÈø7ñˆùaTàªÿù”Dù’” J´ôªhðyBù@ùI@ùèI´àª?ÖóªàI´ˆ@ùÈø7ñˆùaTàªëù” @ù¡VCù⪵ø”À*ù7h@ùÈø7ñhùaTàªßù”Dùr”H´óªhðéBù@ùI@ùÈG´àª?ÖôªÀG´h@ùÈø7ñhùaTàªËù” @ù¡ÆCù⪕ø” (ù7ˆ@ùÈø7ñˆùaTિù”DùR”ÀE´ôªhð)Cù@ùI@ùˆE´àª?Öóª€E´ˆ@ùÈø7ñˆùaTફù” @ù¡Dùâªuø” %ù7h@ùÈø7ñhùaTટù”Dù2” C´óªhð5Cù@ùI@ùhC´àª?Öôª`C´h@ùÈø7ñhùaTઋù” @ù¡DùâªUø”à"ù7ˆ@ùÈø7ñˆùaTàªù”Dù”`A´ôªhðACù@ùI@ù(A´àª?Öóª A´ˆ@ùÈø7ñˆùaTàªkù” @ù¡Dùâª5ø”À ù7h@ùÈø7ñhùaTàª_ù”Dùò”@?´óªhð}Cù@ùI@ù?´àª?Öôª?´h@ùÈø7ñhùaTàªKù” @ù¡ZDùâªø”€ù7ˆ@ùÈø7ñˆùaTàª?ù”DùÒ”=´ôªhð‰Cù@ùI@ùÈ<´àª?ÖóªÀ<´ˆ@ùÈø7ñˆùaTàª+ù” @ù¡fDùâªõ÷”`ù7h@ùÈø7ñhùaTàªù”Dù²”à:´óªhð­Cù@ùI@ù¨:´àª?Öôª :´h@ùÈø7ñhùaTàªù” @ù¡ŠDùâªÕ÷”@ù7ˆ@ùÈø7ñˆùaTàªÿø”Dù’” 8´ôªhðÑCù@ùI@ùh8´àª?Öóª`8´ˆ@ùÈø7ñˆùaTàªëø” @ù¡®Dù⪵÷” ù7h@ùÈø7ñhùaTàªßø”Dùr”€6´óªhðÝCù@ùI@ùH6´àª?Öôª@6´h@ùÈø7ñhùaTàªËø” @ù¡ºDù⪕÷”àù7ˆ@ùÈø7ñˆùaTિø”DùR”@4´ôªhðéCù@ùI@ù4´àª?Öóª4´ˆ@ùÈø7ñˆùaTફø” @ù¡ÆDùâªu÷”Àù7h@ùÈø7ñhùaTટø”Dù2” 2´óªhð1Dù@ùI@ùè1´àª?Öôªà1´h@ùÈø7ñhùaTઋø” @ù¡EùâªU÷”€ù7ˆ@ùÈø7ñˆùaTàªø”Dù”à/´ôªhð=Dù@ùI@ù¨/´àª?Öóª /´ˆ@ùÈø7ñˆùaTàªkø” @ù¡Eùâª5÷”`ù7h@ùÈø7ñhùaTàª_ø”Dùò”À-´óªhðMDù@ùI@ùˆ-´àª?Öôª€-´h@ùÈø7ñhùaTàªKø” @ù¡*Eùâª÷” ù7ˆ@ùÈø7ñˆùaTàª?ø”DùÒ”€+´ôªhðaDù@ùI@ùH+´àª?Öóª@+´ˆ@ùÈø7ñˆùaTàª+ø” @ù¡>Eùâªõö”ù7h@ùÈø7ñhùaTàªø”Dù²”`)´óªhð‘Dù@ùI@ù()´àª?Öôª )´h@ùÈø7ñhùaTàªø” @ù¡nEùâªÕö”Àù7ˆ@ùÈø7ñˆùaTàªÿ÷”Dù’” '´ôªhð¡Dù@ùI@ùè&´àª?Öóªà&´ˆ@ùÈø7ñˆùaTàªë÷” @ù¡~Eù⪵ö” 
ù7h@ùÈø7ñhùaTàªß÷”Dùr”%´óªhð­Dù@ùI@ùÈ$´àª?ÖôªÀ$´h@ùÈø7ñhùaTàªË÷” @ù¡ŠEù⪕ö”`ù7ˆ@ùÈø7ñˆùaTિ÷”DùR”À"´ôªhйDù@ùI@ùˆ"´àª?Öóª€"´ˆ@ùÈø7ñˆùaTફ÷” @ù¡–Eùâªuö”@ù7h@ùÈø7ñhùaTટ÷”Dù2”  ´óªhÐÁDù@ùI@ùh ´àª?Öôª` ´h@ùÈø7ñhùaTઋ÷” @ù¡žEùâªUö”ù7ˆ@ùÈø7ñˆùaTàª÷”Dù”`´ôªhÐÍDù@ùI@ù(´àª?Öóª ´ˆ@ùÈø7ñˆùaTàªk÷” @ù¡ªEùâª5ö”àù7h@ùÈø7ñhùaTàª_÷”Dùò” ´óªhÐíDù@ùI@ùè´àª?Öôªà´h@ùÈø7ñhùaTàªK÷” @ù¡ÊEùâªö” ÿø7ˆ@ùÈø7ñˆùaTàª?÷”DùÒ”à´ôªhÐEEù@ùI@ù¨´àª?Öóª ´ˆ@ùÈø7ñˆùaTàª+÷” @ù¡"Fùâªõõ”€ýø7h@ùÈø7ñhùaTàª÷”Dù²” ´óªhÐYEù@ùI@ùh´àª?Öôª`´h@ùÈø7ñhùaTàª÷” @ù¡6FùâªÕõ”@ûø7ˆ@ùÈø7ñˆùaTàªÿö”Dù’”`´ôªhЉEù@ùI@ù(´àª?Öóª ´ˆ@ùÈø7ñˆùaTàªëö” @ù¡fFù⪵õ” ùø7h@ùÈø7ñhùaTàªßö”Dùr” ´óªhЕEù@ùI@ùè´àª?Öôªà´h@ùÈø7ñhùaTàªËö” @ù¡rFù⪕õ”àöø7ˆ@ùÈø7ñˆùaTિö”DùR”à´ôªhСEù@ùI@ù¨´àª?Öóª ´ˆ@ùÈø7ñˆùaTફö” @ù¡~Fùâªuõ”Àôø7h@ùÈø7ñhùaTટö”Dù2” ´óªhЭEù@ùI@ùh´àª?Öôª`´h@ùÈø7ñhùaTઋö” @ù¡ŠFùâªUõ”€òø7ˆ@ùÈø7ñˆùaTàªö”Dù”`´ôªhйEù@ùI@ù(´àª?Öóª ´ˆ@ùÈø7ñˆùaTàªkö” @ù¡–Fùâª5õ”`ðø7h@ùÈø7ñhùaTàª_ö”Dùò” 
´óªhÐFù@ùI@ùè	´àª?Öôªà	´h@ùÈø7ñhùaTàªKö” @ù¡âFùâªõ” îø7ˆ@ùÈø7ñˆùaTàª?ö”DùÒ”à´ôªhÐ)Fù@ùI@ù¨´àª?Öóª ´ˆ@ùÈø7ñˆùaTàª+ö” @ù¡Gùâªõô”ìø7h@ùÈø7ñhùaTàªö”Dù²” ´óªhÐ=Fù@ùI@ùh´àª?Öôª`´h@ùÈø7ñhùaTàªö” @ù¡GùâªÕô”Àéø7ˆ@ùÈø7ñˆùaTàªÿõ”Dù’”`´ôªhÐIFù@ùI@ù(´àª?Öóª ´ˆ@ùÈø7ñˆùaTàªëõ” @ù¡&Gù⪵ô” çø7h@ùÈø7ñhùaTàªßõ”Dùr” ´óªhÐaFù@ùI@ùè´àª?Öôªà´h@ùÈø7ñhùaTàªËõ” @ù¡>Gù⪕ô”`åø7ˆ@ùÈø7ñˆùaTિõ”DùR”àþ´ôªhЁFù@ùI@ù¨þ´àª?Öóª þ´ˆ@ùÈø7ñˆùaTફõ” @ù¡^Gùâªuô”@ãø7h@ùÈø7ñhùaTટõ”tЂDù`°6‘€Ò€ÒEô”þ´óª @ù¡Fùâª`ô”`âø7h@ùÈø7ñhùaTઊõ”‚Dù`°€6‘€Ò€Ò1ô”`ü´óª @ù¡*CùâªLô” áø7h@ùÈø7ñhùaTàªvõ”‚Dù`°7‘€Ò€Òô”Àú´óª @ù¡Fùâª8ô”ààø7h@ùÈø7ñhùaTàªbõ”‚Dù`°€7‘€Ò€Ò	ô” ù´óª @ù¡úEùâª$ô” àø7h@ùÈø7ñhùaTàªNõ”‚Dù`°8‘€Ò€Òõó”€÷´óª @ù¡ºEùâªô”`ßø7h@ùÈø7ñhùaTàª:õ” €R`ô”`ö´óªhÐ	)Aù*@¹J1bT*¹	)Aùèª
AøIùjÐI5Aù+@¹k1bT+¹I5Aù
@ùIùjÐIQAù+@¹k1bT+¹IQAù
@ùI	ùjÐIuAù+@¹k1bT+¹IuAù
@ùI
ùjÐIAù+@¹k1bT+¹IAù
@ùIùjÐIÍAù+@¹k1bT+¹IÍAù
@ùIùjÐIBù+@¹k1bT+¹IBù
@ùIùjÐIBù+@¹k1bT+¹IBù
@ùIùjÐI-Bù+@¹k1bT+¹I-Bù
@ùI!ùjÐIABù+@¹k1bT+¹IABù
@ùI%ùjÐIQBù+@¹k1bT+¹IQBù
@ùI)ùjÐIYBù+@¹k1bT+¹IYBù
@ùI-ùjÐIiBù+@¹k1bT+¹IiBù
@ùI1ùjÐI}Bù+@¹k1bT+¹I}Bù
@ùI5ùjÐIíBù+@¹k1bT+¹IíBù
@ùI9ùjÐI-Cù+@¹k1bT+¹I-Cù
@ùI=ùjÐI9Cù+@¹k1bT+¹I9Cù
@ùIAùjÐIECù+@¹k1bT+¹IECù
@ùIEùjÐICù+@¹k1bT+¹ICù
@ùIIùjÐICù+@¹k1bT+¹ICù
@ùIMùjÐI±Cù+@¹k1bT+¹I±Cù
@ùIQùjÐIÕCù+@¹k1bT+¹IÕCù
@ùIUùjÐIáCù+@¹k1bT+¹IáCù
@ùIYùjÐIíCù+@¹k1bT+¹IíCù
@ùI]ùjÐI5Dù+@¹k1bT+¹I5Dù
@ùIaùjÐIADù+@¹k1bT+¹IADù
@ùIeùjÐIQDù+@¹k1bT+¹IQDù
@ùIiùjÐIeDù+@¹k1bT+¹IeDù
@ùImùjÐI•Dù+@¹k1bT+¹I•Dù
@ùIqùjÐI¥Dù+@¹k1bT+¹I¥Dù
@ùIuùjÐI±Dù+@¹k1bT+¹I±Dù
@ùIyùjÐI½Dù+@¹k1bT+¹I½Dù
@ùI}ùjÐIÅDù+@¹k1bT+¹IÅDù
@ùIùjÐIÑDù+@¹k1bT+¹IÑDù
@ùI…ùjÐIáDù+@¹k1bT+¹IáDù
@ùI‰ùjÐIñDù+@¹k1bT+¹IñDù
@ùIùjÐI!Eù+@¹k1bT+¹I!Eù
@ùI‘ùjÐI5Eù+@¹k1bT+¹I5Eù
@ùI•ùjÐIAEù+@¹k1bT+¹IAEù
@ùI™ùjÐIIEù+@¹k1bT+¹IIEù
@ùIùjÐI]Eù+@¹k1bT+¹I]Eù
@ùI¡ùjÐIEù+@¹k1bT+¹IEù
@ùI¥ùj°I™Eù+@¹k1bT+¹I™Eù
@ùI©ùj°I¥Eù+@¹k1bT+¹I¥Eù
@ùI­ùj°I±Eù+@¹k1bT+¹I±Eù
@ùI±ùj°I½Eù+@¹k1bT+¹I½Eù
@ùIµùj°I	Fù+@¹k1bT+¹I	Fù
@ùI¹ùj°I-Fù+@¹k1bT+¹I-Fù
@ùI½ùj°IAFù+@¹k1bT+¹IAFù
@ùIÁùj°IMFù+@¹k1bT+¹IMFù
@ùIÅùj°IeFù+@¹k1bT+¹IeFù
@ùIÉùj°I…Fù+@¹k1bT+¹I…Fù@ù	Íùi(ÉGù
@¹J1bT
¹(ÉGùi@ù(Ñù @ù¡ÆAùâª"ò”`£ø7h@ùÈø7ñhùaTàªLó” €R8󔀹´óªh°A‘@ùñDùò”£ø7h°‘@ù•Dùàª
ò”à£ø7h?‘@ù)Bùàªò”$ø7h°¡‘@ùIEùàªüñ” ¥ø7h°!‘@ùEùàªõñ”€¦ø7h°¡‘@ùuDùàªîñ”`§ø7h>‘@ù…Aùàªçñ”@¨ø7hÁ>‘@ù­Aùàªàñ” ©ø7h°a‘@ùÅEùàªÙñ”¬ø7h°‘@ùmDùàªÒñ”¬ø7h°Á‘@ù}DùàªËñ”¬ø7h°á‘@ùDùàªÄñ”¬ø7h°á‘@ùYEùઽñ”¬ø7h°á‘@ùÕCùશñ”¬ø7h°Á‘@ùQEùયñ”¬ø7hA?‘@ùIBùનñ”¬ø7h!?‘@ù1Bùડñ”€«ø7h°Á‘@ùÍCùચñ”«ø7h¡>‘@ù¥Aùઓñ”€ªø7h°¡‘@ùÅCùઌñ”ªø7h°‘@ùAEùઅñ”€©ø7h°‘@ùaEùàª~ñ”©ø7h°‘@ùÕEùàªwñ”€¨ø7h°‘@ùDùàªpñ”¨ø7h°Á‘@ùñEùàªiñ”€§ø7h°a‘@ù=Dùàªbñ”§ø7hÁ?‘@ùùBùàª[ñ”€¦ø7h?‘@ù}BùàªTñ”¦ø7há?‘@ù5CùàªMñ”€¥ø7h°‘@ù=CùàªFñ”¥ø7h°!‘@ù±Dùàª?ñ”€¤ø7h°¡‘@ùÝEùàª8ñ”¤ø7h°A‘@ù¥Eùàª1ñ”€£ø7ha>‘@ùmAùàª*ñ”£ø7h°‘@ù¥Cùàª#ñ”€¢ø7h°A‘@ù-Dùàªñ”¢ø7h°á‘@ù
Fùàªñ”€¡ø7ha?‘@ùYBùàªñ”¡ø7h¡?‘@ùBùàªñ”€ ø7h°!‘@ùECùàªñ” ø7h°a‘@ù…Cùàªù𔀟ø7h°A‘@ù}Cùàªòð”Ÿø7há>‘@ùõAùàªë𔀞ø7h°a‘@ùEùàªäð”žø7h°!‘@ù!DùàªÝ𔀝ø7 @ù¡ÒFùâªØð”@ø7h@ùÈø7ñhùaTàªò”0€R1€R)ùö֎R€Rh-ù׎R€R6׎R5€RàšGù´'GùñèŸiR(*H7 °à‘ã°c‘áªâª”
”àšGù ´ÿšù@ùÈø7ñùaTÛñ”	¿ð”àµH!@ù@ù!°!à‘¾ð”èšGùñàŸZ¨ƒZøI)y@ù)@ù?ëa$Tý{W©ôOV©öWU©ø_T©úgS©üoR©ÿ‘À_Ö‚R5€RVݎR3€RÉÿÿ€R–؎RÆÿÿ‚R‚R‚R‚R(‹ù5€RöގR3€R¹ÿÿ€ÒÖáŽRu€Rì€ÒVãŽR•€RèöގRõª®ÿÿÖåŽRµ€RâvçŽRõ€Rç5€RöގRóª¤ÿÿöéŽRu€RØ€Rv܎Rÿÿ€R¶֎Ršÿÿ€ÒU€R¶ìŽR΀Ò5P‚R¶ïŽRÊuP‚R–ñŽRÏ€ҕP‚RvóŽRÀRَRˆÿÿ€R6َR…ÿÿ€RVَR‚ÿÿ€Rv܎R€ÿÿ5€RÖݎR3€R|ÿÿ'´?ÖàBþµ¾”Oð”t°”=‘`´Ÿùq(&´?Ö@Cþµ´”Eð”t°”"=‘àþÿµH-@ù@ùóù!°!X ‘2ð”Ÿù`h$´?ÖÀBþµ£”4ð”t°”B=‘Àüÿµïÿÿ¨#´?Ö@Cþµš”+ð”t°”b=‘ ûÿµæÿÿè"´?ÖÀCþµ‘”"ð”t°”‚=‘€úÿµÝÿÿ("´?Ö@Dþµˆ”ð”t°”¢=‘`ùÿµÔÿÿh!´?ÖÀDþµ”ð”t°”Â=‘@øÿµËÿÿµP‚RVõŽRpH ´?ÖàDþµs”ð”t°”â=‘Àöÿµ¿ÿÿˆ´?Ö`Eþµj”ûï”t°”>‘ õÿµ¶ÿÿÈ´?ÖFþµa”òH-@ù@ùóù!°!X ‘áï”ÇùH´?ÖÀEþµR”ãH-@ù@ùóù!°!X ‘Òï”ßÊù5€R¶ގR3€RþþÿöގRõªûþÿöގRõªóª÷þÿöގRõªóªóþÿ€ÒÕP‚R6÷ŽR&õP‚RùŽR+5€RގR3€Rèþÿ€ÒQ‚RöúŽR5Q‚RÖüŽR €ÒUQ‚R¶þŽR5€R–ߎRóªÙþÿ5€R¶ߎRóªÕþÿ5€RÖߎRóªÑþÿ5€RöߎRóªÍþÿ3€R–áŽRu€RÉþÿuQ‚R–R3€RãŽR•€RÂþÿ€ҕQ‚RvRõ–äŽRµ€R»þÿ6åŽRµ€Rï–åŽRµ€Rô©ð”µQ‚RVRð3€R6çŽRõ€R­þÿ€ÒÕQ‚R6Rà¶èŽRu€Róª¥þÿVéŽRu€Rá¶éŽRu€RÖõQ‚RRÛ3€RVëŽR5
€R˜þÿ3€RU€RvìŽR”þÿ€ÒR‚Rö	RÇ3€R5P‚RvïŽRŒþÿ5R‚R֏RÈ3€RuP‚RöðŽR…þÿàªëï”óª@ þµuP‚R6ñŽRµ€ÒUR‚R¶
R±3€R•P‚RÖòŽRvþÿàªÜï”ôª`¢þµ•P‚RóŽR®uR‚R–R«3€RµP‚R¶ôŽRhþÿàªÎï”óª ¤þµµP‚RöôŽR˜€ҕR‚RvR”3€RÕP‚R–öŽRYþÿિï”ôª&þµÕP‚RÖöŽR‘µR‚RVRŽ3€RõP‚RvøŽRKþÿ઱ï”óª©þµõP‚R¶øŽR{«ï”þµÉþÿ¨ï”@þµÐþÿ¥ï”€þµÞþÿ¢ï”ÀþµäþÿŸï”!þµêþÿœï”@"þµðþÿ™ï”€#þµöþÿ–ï”À$þµÿþÿ“ï”&þµÿÿï”`'þµÿÿï” (þµÿÿ€ÒÕR‚R6RV3€RQ‚RVúŽRþÿઁï”ôª§þµQ‚R–úŽRSõR‚RRP3€R5Q‚R6üŽR
þÿàªsï”óª@©þµ5Q‚RvüŽR=€ÒS‚RöR93€RUQ‚RþŽRþýÿàªdï”ôª`«þµUQ‚RVþŽR65S‚R֏R33€RuQ‚RöÿŽRðýÿàªVï”óª ­þµuQ‚R6R €ÒUS‚R¶R3€R•Q‚R֏RáýÿàªGï”ôª/þµ•Q‚RRuS‚R–R3€RµQ‚R¶RÓýÿàª9ï”óª²þµµQ‚RöR€ҕS‚Rv Rÿ3€RÕQ‚R–RÄýÿàª*ï”ôª ´þµÕQ‚R֏RüµS‚RV"Rù3€RõQ‚RvR¶ýÿàªï”óª`¶þµõQ‚R¶Ræ€ÒÕS‚R6$Râ3€RR‚RV	R§ýÿàª
ï”ôª€¸þµR‚R–	RßõS‚R&RÜ3€R5R‚R6R™ýÿàªÿî”óª:þµ5R‚RvRÉ€ÒT‚Rö'RÅ3€RUR‚R
RŠýÿàªðî”ôªà¼þµUR‚RV
RÂ5T‚RÖ)R¿3€RuR‚RöR|ýÿàªâî”óª ¿þµuR‚R6R¬€ÒUT‚R¶+R¨3€R•R‚R֏RmýÿàªÓî”ôª@Áþµ•R‚RR¥uT‚R–-R¢3€RµR‚R¶R_ýÿàªÅî”óª€ÃþµµR‚RöR€ҕT‚Rv/R‹3€RÕR‚R–RPýÿશî”ôª ÅþµÕR‚R֏RˆµT‚RV1R…3€RõR‚RvRBýÿનî”óªàÇþµõR‚R¶Rr€ÒÕT‚R63Rn3€RS‚RVR3ýÿઙî”ôªÊþµS‚R–RkõT‚R5Rh3€R5S‚R6R%ýÿઋî”óª@Ìþµ5S‚RvRU€ÒU‚Rö6RQ3€RUS‚RRýÿàª|î”ôª`ÎþµUS‚RVRN5U‚RÖ8RK3€RuS‚RöRýÿàªnî”óª ÐþµuS‚R6R8€ÒUU‚R¶:R43€R•S‚R֏Rùüÿàª_î”ôªÀÒþµ•S‚R R1uU‚R–<R.3€RµS‚R¶!RëüÿàªQî”óªÕþµµS‚Rö!R€ҕU‚Rv>R3€RÕS‚R–#RÜüÿàªBî”ôª ×þµÕS‚RÖ#RµU‚RV@R3€RõS‚Rv%RÎüÿàª4î”óª`ÙþµõS‚R¶%Rþ€ÒÕU‚R6BRú3€RT‚RV'R¿üÿàª%î”ôª€ÛþµT‚R–'R÷õU‚RDRô3€R5T‚R6)R±üÿàªî”óªÀÝþµ5T‚Rv)Rá€ÒV‚RöERÝ3€RUT‚R+R¢üÿàªî”ôªàßþµUT‚RV+RÚ5V‚RÖGR×3€RuT‚Rö,R”üÿàªúí”óª âþµuT‚R6-RÄuV‚RVIRÉ3€R•T‚RÖ.R†üÿàªìí”ôª`äþµ•T‚R/R¾uY‚RÖJR»3€RµT‚R¶0RxüÿàªÞí”óª æþµµT‚Rö0R¨µ\‚RVLR­3€RÕT‚R–2RjüÿàªÐí”ôªàèþµÕT‚RÖ2R¢u`‚RÖMRŸ3€RõT‚Rv4R\üÿàªÂí”óª ëþµõT‚R¶4RŒUa‚RVOR‘3€RU‚RV6RNüÿ઴í”ôª`íþµU‚R–6R†5b‚R¶dRƒ3€R5U‚R68R@üÿદí”óª ïþµ5U‚Rv8Rp5€RöeRu3€RUU‚R:R2üÿઘí”ôªàñþµUU‚RV:Rj5€RfRg3€RuU‚Rö;R$üÿઊí”óª ôþµuU‚R6<RT5€R6fRY3€R•U‚RÖ=Rüÿàª|í”ôª`öþµ•U‚R>RN5€RVfRK3€RµU‚R¶?Rüÿàªní”óª øþµµU‚Rö?R85€RvfR=3€RÕU‚R–ARúûÿàª`í”ôªàúþµÕU‚RÖAR25€R–fR/3€RõU‚RvCRìûÿàªRí”óª ýþµõU‚R¶CR5€R¶fR!3€RV‚RVERÞûÿàªDí”ôª`ÿþµV‚R–ER5€RÖfR3€R5V‚R6GRÐûÿàª6í”óª ÿµ5V‚RvGRˆ@ùÈø7ñˆùaTવ픴h@ùÈø7ñhùaTભí”3€R¹ûÿ5€RöfRõÿÿ3€RuV‚RIR²ûÿ5€RgRîÿÿ3€RuY‚R–JR«ûÿ5€R6gRçÿÿ3€Rµ\‚RLR¤ûÿ5€RVgRàÿÿ3€Ru`‚R–MRûÿ5€RvgRÙÿÿ3€RUa‚ROR–ûÿ5€R–gRÒÿÿ3€R5b‚R–PRûÿ5€R¶gRËÿÿ3€R5€R¶eRˆûÿ5€RÖgRÄÿÿ5€RögRÁÿÿ5€RhR¾ÿÿ5€R6hR»ÿÿ5€RVhR¸ÿÿ5€RvhRµÿÿ5€R–hR²ÿÿ5€R¶hR¯ÿÿ5€RÖhR¬ÿÿ5€RöhR©ÿÿ5€RiR¦ÿÿ5€R6iR£ÿÿ5€RViR ÿÿ5€RviRÿÿ5€R–iRšÿÿ5€R¶iR—ÿÿ5€RÖiR”ÿÿ5€RöiR‘ÿÿ5€RjRŽÿÿ5€R6jR‹ÿÿ5€RVjRˆÿÿ5€RvjR…ÿÿ5€R–jR‚ÿÿ5€R¶jRÿÿ5€RÖjR|ÿÿ5€RöjRyÿÿ5€RkRvÿÿ5€R6kRsÿÿ5€RVkRpÿÿ5€RvkRmÿÿ5€R–kRjÿÿÀ´@ùˆø7ñù@TÀ_ÖíÿÑüo©úg©ø_©öW©ôO©ý{©ýÑha>‘)Ð);‘êªIø
ù)ð)q‘*ðJ!‘	)©SðsB‘VðӒùiª@ù‰´*	@ù_	ñ+THðùBùH´(‘IÑ@ùj¥B9Š6!‘)ñaÿÿT
HðuBù)‘JÑ+@ùl¥B9,6l‘@ù̵)!‘Jñ!ÿÿTéë”õªhV@ùx²hVùગì”ôªhV@ùùv’hVùU4à딴ø7ԒGùˆ’@ùµ‰J@ù(ðY@ù?ëaTˆJùԒGù`°@‘€Ò€Ò|딠´óª€†@ùx‹Dù⪊ë”h@ùÀø7ˆø7ñhù@TԒGù™ª@ùˆ‚@ùˆ´€Rµ@ùÈÿÿµh
@ù)ð)A@ù @ùèù!°!¤=‘¯àª£ì”ԒGù™ª@ùˆ‚@ùÈýÿµ€R¨}}“Âì”󪀒ù(@ù	ñkT¿qT‰‘(c‘é#©´~}Ó<€Rˆ}@“(@ùëÍTè@ùy|ø…@ù‹Dùÿë”Àþÿ´öª€Ò2ë”õª µbë”àµ(ð5@ù@ù!Ð!Ü‘aë”È@ùÈø7ñÈùaTàªnì”5üÿ´€Òè@ù@ùvj{øß±T@‡@ù‹Dùàë”´÷ª€Òë”öª`µC딠´è@ùø7ñèù¡TàªU씀Òh‹	€’%©ßë@øÿTö´H‘{#‘ŸëáûÿT¼ÿÿ(ð5@ù@ù!Ð!Ü‘.ë”è@ùèüÿ6íÿÿè'A©@ù
@ù)y|ø)
@ù*ðJA@ù@@ùè'©!Ð!ð‘ë”àªIì”;6c‘7€R:ðZ7@ù4ДÞ‘è}@“(@ùëMTÈzwø…@ù‹Dùœë”àþÿ´õª€ÒÏê”`µë” ´¨@ùèýÿ7ñ¨ùýÿTàªì”éÿÿ@@ùáªúꔨ@ùˆüÿ7õÿÿáê”ઠì”h™GùHð<‘5@ù@ù’ë”`ø7€R
i
@ù*ðJA@ù@@ùè'©!°!@>‘Óꔀý{G©ôOF©öWE©ø_D©úgC©üoB©ÿ‘À_Öèþÿ7ñhùþÿTàªçë”ñÿÿôO¾©ý{©ýC‘ L‘ùê”%´óª!!L‘âðBp‘s€R$€RD͔Hð=ù`"´h@ùÈø7ñhùaTàªÍë” L‘ãê”@"´óª!!L‘"ÐBx‘€R$€R.͔HðAù ´h@ùÈø7ñhùaTષë”ðL‘Íꔀ´óªð!L‘"°BŒ‘€R$€R͔HÐEùà´h@ùÈø7ñhùaTડë”àЄ‘·ê”À´óªáÐ!„‘âÐBœ‘€RD€R͔HÐIù ´áÐ!„‘"°B¬‘àªIRD€R÷̔HÐMùÀ´áÐ!„‘"°BБàªF€RD€Rì̔HÐQù`´áÐ!„‘"°Bø‘àª
€RD€Rá̔HÐUù´áÐ!„‘"°B‘઀R$€RÖ̔HÐYù ´áÐ!„‘"°B8‘઀R$€RË̔HÐ]ù@´áÐ!„‘"°BT‘઀R$€RÀ̔HÐaùà´áÐ!„‘"°Bt‘઀R$€RµÌ”HÐeù€´áÐ!„‘"°B¬‘઀R$€RªÌ”HÐiù ´áÐ!„‘"°Bì‘઀R$€RŸÌ”HÐmùÀ
´áÐ!„‘"°B‘઀R$€R”Ì”HÐqù`´áÐ!„‘"°B0‘઀R$€R‰Ì”HÐuù´áÐ!„‘"°Bp‘઀R$€R~̔HÐyù 	´áÐ!„‘"°B”‘઀R$€Rs̔HÐ}ù@´áÐ!„‘"°B¼‘઀RD€Rh̔HЁùà´h@ùÈø7ñhùaTàªñê” °Ô‘ê”À´óª!°!Ô‘ðB¼ ‘€R$€RR̔HЅù ´!°!Ô‘"°B@‘઀R$€RG̔HЉùÀ´„@ù̔Hðù ´!°!Ô‘"°Bt‘઀R$€R7̔HЍùÀ´h@ùø7€R€Rh@ù(ø7€€ñhùTý{A©ôO¨À_րý{A©ôO¨À_Öલê”àªý{A©ôO¨À_րRý{A©ôO¨À_ÖôO¾©ý{©ýC‘ °¼	‘½é”`´óª!°!
‘BðBà<‘ãÐc´‘^̔ø7!°!P
‘bBà‘ãÐc´‘àªU̔àø7!°!¬
‘bB‘#°cÌ
‘àªL̔Àø7h@ùHø7€R€RñhùÁTàªê”àªý{A©ôO¨À_Öh@ù(ø7€€ñhù€þÿTý{A©ôO¨À_րý{A©ôO¨À_րRý{A©ôO¨À_ÖôO¾©ý{©ýC‘ °
‘|锠´óª!°!”
‘BðB`?‘#°cÈ
‘{̔@ø7!°!‘BðB€?‘#°cÈ
‘àªr̔ ø7!°!@‘BðB ?‘#°cÈ
‘àªi̔ø7!°!t‘BðBÀ?‘#°cÈ
‘àª`̔àø7!°!¤‘BðBà?‘#°cÈ
‘àªW̔Àø7!°!БBðB?‘#°cÈ
‘àªN̔ ø7!°!‘BðBà>‘#°cÈ
‘àªE̔€ø7!°!0‘BðB ?‘#°cÈ
‘àª<̔`
ø7!°!`‘BðB@?‘#°cÈ
‘àª3̔@ø7h@ùÈø7ñhùaTàª
ê” °¼	‘ é” ´óª!°!Œ‘bB€‘#°cБ̔À	ø7!°!ø‘bB@‘#°cT‘àª̔ ø7!°! ‘bB‘#°cÈ‘àª
̔€ø7!°!8‘BðB€>‘#°ch‘àª̔`ø7!°!t‘bB`‘#°cÌ‘àªû˔@ø7!°!l‘BðB >‘#°c€‘àªò˔ ø7!°!ü‘bB ‘#°c‘àªé˔ø7!°!p‘bB ‘#°c´‘àªà˔àø7!°!($‘bBÀ‘#°c´‘àª×˔Àø7h@ùø7€R€Rh@ù(ø7€€ñhùTý{A©ôO¨À_րý{A©ôO¨À_Öઠé”àªý{A©ôO¨À_րRý{A©ôO¨À_Öø_¼©öW©ôO©ý{©ýÑôª¤è”à´óªHð}Eù@ùI@ù6ÐÖZ@ùëAT€Ò#€Rué”õª@´Hð•Bù¨@ùI@ùë¡T7€R઀Ò#€Rhé”öª€´(Ðu@ùßë€T)Ð)m@ùß	ëT)Ð)q@ùß	ë€Tàªïè”ßëàŸ`5€R¨@ùÈø7ñ¨ùaTàª[é”W7€ÒÈ@ùÈø7ñÈùaTàªR锕µ'è”àªý{C©ôOB©öWA©ø_ĨÀ_Ö/è” ´è”¨´?Öõª øÿµ•”ðÿÿàªH´?ÖöªàøÿµŽ”7€R¨@ùûÿ6Üÿÿ¨@ùÈø7ñ¨ùaTàª/é”h@ùÈø7ñhùaTàª(é”ïç”à´õªHÐ%Gùàªâª€Ò€R:è”óª¨@ùˆùÿ7ñ¨ù!ùÿTàªé”àªý{C©ôOB©öWA©ø_ĨÀ_Ö€Òàªý{C©ôOB©öWA©ø_ĨÀ_Ö~è”õª ðÿµÄÿÿzè”öªÀñÿµÇÿÿöW½©ôO©ý{©ýƒ‘ôªõªöªÁç”`´óªHÐ%Gùàªâªãªäªè”ôªh@ùˆø7ñhùÀTàªý{B©ôOA©öWèÀ_Öàªãè”àªý{B©ôOA©öWèÀ_Ö€Òàªý{B©ôOA©öWèÀ_ÖÿCÑø_©öW©ôO©ý{©ý‘óªôª@ùI@ù¨´àªáª?Öõª ´àªý{D©ôOC©öWB©ø_A©ÿC‘À_Öàªáª4è”õª þÿµ(Ð@ù@ù’ç” 4ç”àªúç”@´…è”ôª@´Hð½@ùàªsè”öª´àªáªnè”÷ªÀ´àª¶ç”õªàª„ûÿ—ંûÿ—઀ûÿ—•úÿµ(Ð!@ù@ùóù!°!x&‘q甀ÒËÿÿ€Ò€Ò€Ò€Ò€Òêÿÿ€Ò€Òçÿÿ€ÒåÿÿÿÑúg©ø_©öW©ôO©ý{©ýÑÿ©ÿùsè”õª4@ù)Ð)q@ù@ùñdIúaT@ùhÿÿµ€Ò€Ò€Ò °'‘…ç”@µ\h@¹1BTh¹v@ùÈ@¹1BTȹàªZç”ôª °'‘t甀	´øª!°!'‘Ïç”÷ª@ùˆø7ñùàT7´è@ù)Ð)
@ù	ë T(Ð5@ù@ù!°!¼'‘0ç”è@ùˆø7ñèù!Tàª=è”(Ð@ù@ù 2@ùÒ”à5]àª€Òææ”XðÛùè@ùèø7ñèùTàª*è”ÛGù`´9€R  r@ù?ÖkáTÛGùMCù?Ö0qˆT(Ð5@ù@ùÛGùMCù?֨€Rè©!°!à)‘pàªè”7øÿµ(Ð@ù@ù 2@ù¤”4 °Ð&‘ðcD‘mƒRÂz€R²”ᣑ⃑ãc‘àª9”€ø7HðÉGùHð±Fù€ÒÏ”´÷ª”è@ùÈø7ñèùaTàªìç”WrƒR{€RWpƒRøz€R(Ð5@ù@ù!°!H(‘Ìæ”(Ð@ù@ù 2@ùu”@úÿ5mƒRØz€R 6@ùáªâªãª‰”à@ùà´@ù¨ø7ñùATËç”à@ùà´@ù¨ø7ñùATÃç”à@ùà´@ù¨ø7ñùAT»ç” Ð&‘ÐcD‘áªâªd”€ý{G©ôOF©öWE©ø_D©úgC©ÿ‘À_Ö(°5@ù@ùÛGù@ù?Öù©!!´(‘àª~æ”(°@ù@ù 2@ù6”`òÿ5ÁÿÿÛGùICù?ÖqT(°5@ù 5@ù!!€.‘®ÿÿ´È@ùÈø7ñÈùaTઆ甴h@ùÈø7ñhùaTàª~ç”Ô´ˆ@ùˆø7ñˆùàT€RÄÿÿ@ù!!$/‘’ÿÿàªp甀R¼ÿÿ×qƒR‚ÿÿôO¾©ý{©ýC‘óªH°%Gùb@ùáªNç”´@¹1BT¹ý{A©ôO¨À_Ö@攠µàªý{A©ôO¨g€Òý{A©ôO¨À_ÖÿÑüo©úg©ø_©öW©ôO©ý{©ýÑõªóª÷ªöª;ç”ôªw4[°h/Gù´š2@ùŸ2ùº´Y@ù(@¹1BT(¹X@ù´@¹1¢T¹€Ò€Ò\°œc9‘€@ù甁gBù´@ù"@ùç” ´(°m@ùë`T(°u@ùëT¦æ” 5`/GùT”`´ûªŸæ”(°m@ù)°)u@ùq ˆšh@ù(ýÿ7üªñhùaTàªç”àªáÿÿÚ唀@ùgBù"°Bl@ùæ”€Rš´H@ùëÁ$T€2@ùš2ùà´@ù¨ø7ñùATðæ”´(@ùÈø7ñ(ùaTàªèæ”´@ùÈø7ñùaTàªàæ”ÿq{—Z\ðIÐ[4ˆ'@ù´)!O¹+qT
Q+‹J	@¹_k
Tš2@ùŸ2ùº
´Y@ù(@¹1BT(¹X@ù¸´@¹1BT¹—4(
3‘èß©öù à2‘Œæ”à´öªz攠´áªàªâªpå”õªÈ@ùè
ø7ñÈù
Tબæ”Q‹4
€R!‘Mïªëªÿ
kÍTj
K_qJ¥ŠªŠN}|“Žin¸ï
ªßk¬þÿTKþÿT
€R	@¹ßkJ¥Š_	k
øÿT	Ñ*‹)	@¹?k÷ÿTI}@“)í|Óiiø¨@¹1BT¨¹H°%Gùàªáª€҇唸ª€´+¹àª*攨@ùˆø7ñ¨ùTX´@ùø7ñù¡Tàªý{G©ôOF©öWE©ø_D©úgC©üoB©ÿ‘gæàªeæ”þÿµˆ€Ò€Ò×óÿ5àªáªâªå”õªÕ
´š´H@ùëáT€2@ùš2ùà´@ù¨ø7ñùATMæ”´(@ùÈø7ñ(ùaTàªEæ”´@ùÈø7ñùaTàª=æ”ûöÿ4€'@ùXР
´#O¹	qDT
P)‹J	@¹öª_këT‰4€R
 ‘é
ª¿k
T,KŸqŒ¥ŒvŒÌ~|“Lil¸íªŸk¬þÿT
TËí	ªñÿÿ€R@¹Ÿk֦–ßkªT	Ð6‹)	@¹?k`TIÐ))O¹	kATá~|“Iå”Àðÿ´HЁ<‘•ù	¹@¹kMT
}@“É~@“Ð(‹JÑ`ß<`Ÿ<_	ëŒÿÿTÉ~@“		‹;	¹5ù#¹kÿÿÈ@ùÈø7ñÈùaTàªíå”´(@ùÈø7ñ(ùaTàªåå”´H@ùÈø7ñHùaTàªÝå”íÿµý{G©ôOF©öWE©ø_D©úgC©üoB©ÿ‘À_ÖàªáªÏ䔀2@ùš2ù ÛÿµÞþÿ€€R唠èÿ´HЁ<‘•ù	€R		¹)€R	¹¹ù7ÿÿàªáª»ä”€2@ùš2ùíÿµmÿÿÈ~@“	í|Óhiøh)ø	@ùÉåÿ7)ñ	ùaåÿTમå”(ÿÿüoº©úg©ø_©öW©ôO©ý{©ýC‘ÿ@ÑÿÃÑ(°y@ù@ù¨øJ°J¡<‘ÈÐa‘꣩ô#‘‚Rš‹(€Rèÿ©)€RéSyÿ«9ÈÐe‘K!‘ë#©h€Rè© €Rë£yéK9HA‘ÌЌ±‘賩܀Rüÿ©éóyÿë9Ha‘ÌЌI‘è3©–€Rö	©ëCyé‹9H‘ÌЌy‘è³
©n€Rîÿ©ë“yé+9H¡‘ÌЌ¥‘è3
©È€Rè©éãyÿË9HÁ‘ÌЌ‘賩-€Ríÿ©ë3yék9Há‘ÏÐïÁ‘è?©€Rì©ëƒyé9H‘è¿©ìÿ©éÓyé«9ÈÐá‘O!‘ï#©€Rð©é#yÿK9HA‘ÏÐïq‘è¿©Æ€Ræÿ©ësyéë9Ha‘ÏÐï©‘è?©h€Rè©éÃyÿ‹9ÈÐÕ"‘O‘öÿ©ëyé+9O¡‘ïùèùöùÿùécyéË9HÁ‘èùÈÐ#‘è#ù(€Rè'ù!€Rÿ+ùé³yÿk	9Há‘è3ùÈЉ#‘è7ù§€Rç;ùÿ?ùéyÿ
9H‘èGùÈÐý#‘èKùW€R÷OùÿSùéSyÿ«
9H!‘è[ùÈÐ…$‘è_ùÓ€Rócùÿgùé£yÿK9HA‘èoùÈÐý$‘èsù÷wùÿ{ùéóyÿë9Ha‘ÑÐ1†%‘èƒùñ‡ùo€Rï‹ùÿùéCyÿ‹9H‘è—ùÈÐ&‘è›ùH€RèŸùÿ£ùé“yÿ+
9H¡‘è«ùÈÐy&‘è¯ùó³ùÿ·ùéãyÿË
9HÁ‘è¿ùÈÐñ&‘èÃù÷ÇùÿËùé3yÿk9Há‘èÓùÈÐy'‘è×ùñ€RñÛùÿßùéƒyÿ9H‘ÀÐô'‘èçùàëùè€Rèïùã€RÿóùéÓyÿ«9H!‘èûùÈБ(‘èÿù€Rèùÿùé#yÿK9@A‘àùÀÐ)‘àùáùÿùésyÿë9@a‘à#ùÀД)‘à'ù÷+ùÿ/ùéÃyÿ‹9@‘à7ùÀÐ*‘à;ù÷?ùÿCùé	yÿ+9@¡‘àKùÀФ*‘àOùðSùÿWùéc	yÿË9@Á‘à_ùÀÐ4+‘àcù€€Ràgùÿkùé³	yÿk9Aá‘ÂÐBä+‘ásùâwùA€Rá{ùÿùé
yÿ9A‘á‡ùÁÐ!Œ,‘á‹ù¡€Ráùÿ“ùéS
yÿ«9A!‘á›ùÁÐ!@-‘áŸù¾€Rþ£ùÿ§ùé£
yÿK9AA‘ÂÐBÔ-‘á¯ùâ³ùñ·ùÿ»ùéó
yÿë9Aa‘áÃùÁÐ!P.‘áÇùñËùÿÏùéCyÿ‹9A‘ÂÐBÌ.‘á×ùâÛùðßùÿãùé“yÿ+9P¡‘ðëùÐÐ^/‘ðïùèóùÿ÷ùéãyÿË9PÁ‘ÁÐ!Ü/‘ðÿùáùóùÿùé3yÿk9Pá‘ðùÐÐV0‘ðùçùÿùéƒyÿ9P‘ÁÐ!È0‘ð'ùá+ùñ/ùÿ3ùéÓyÿ«9P!‘ð;ùÐÐF1‘ð?ùóCùÿGùé#
yÿK9PA‘ÁÐ!¼1‘ðOùáSù€RõWùÿ[ùés
yÿë9Pa‘ðcùÐÐ^2‘ðgùþkùÿoùéÃ
yÿ‹9P‘ðwùÐÐò2‘ð{ù!€Ráùÿƒùéyÿ+9P¡‘ð‹ùÐÐv3‘ðù€Rð“ùÿ—ùécyÿË9PÁ‘ðŸùÐÐæ3‘ð£ùè§ùÿ«ùé³yÿk9Pá‘ð³ùÐÐf4‘ð·ùõ»ùÿ¿ùéyÿ9P‘ðÇùÐÐ5‘ðËùàÏùÿÓùéSyÿ«9P!‘ðÛùÐж5‘ðßùããùÿçùé£yÿK9PA‘ðïùÐÐR6‘ðóùõ÷ùÿûùéóyÿë9Pa‘ðùÐÐò6‘ðùïùÿùéCyÿ‹ 9P‘ðùÐÐ~7‘ðùèùÿ#ùé“yÿ+!9P¡‘ð+ùаþ7‘ð/ùï3ùÿ7ùéãyÿË!9PÁ‘ð?ùаŠ8‘ðCùèGùÿKùé3yÿk"9Pá‘ðSùа
9‘ðWùá[ùÿ_ùéƒyÿ#9P‘ðgùаŽ9‘ðkùçoùÿsùéÓyÿ«#9P!‘ð{ùа:‘ðùèƒùÿ‡ùé#yÿK$9PA‘ðùа‚:‘ð“ùç—ùÿ›ùésyÿë$9Pa‘ð£ùаö:‘ð§ùP‘ð·ùаb;‘ð»ùå€RP¡‘ðËùаž;‘ðÏùPÁ‘ðßùаÂ;‘ðãùÐ'€RðçùPá‘ðóùÐк‘ð÷ùP‘ðùÐБðùð€RðùP!‘ðùÐÐÞ‘ðù	€Rð#ùPA‘ð/ùÐБð3ùP€R@a‘àCùÀÐ4‘àGù@‘àWùÀи‘à[ù@¡‘àkùÀÐè‘àoù@Á‘àùÀ°¬‘àƒù@á‘à“ùÀБà—ù@!	‘à»ù@A	‘àÏù@a	‘àãù@¡	‘àù@Á	‘àùÀÐD‘à#ù@á	‘à3ùÀÐÄ‘à7ù€Rà;ù@!
‘à[ùÀÐä‘à_ù@A
‘àoùÀÐ|‘àsù €Ràwù@a
‘àƒùÀÐP‘à‡ù‚€R@
‘à—ùÀÐ`‘à›ù@¡
‘à«ùÀÐp‘à¯ù@Á
‘ÁÐ!‘à¿ùáÃù@á
‘àÓùÀд‘à×ùÀ€RA‘áçùÁÐ!Ì‘áëùA!‘áûùÁÐ!ø‘áÿùAA‘áùÁÐ!‘áùã€RAa‘á#ùÁÐ!$‘á'ù¡€RD‘ä7ùÄЄ8‘ä;ùD¡‘äKùÄЄP‘äOùDÁ‘ä_ùÄЄœ‘äcùDá‘ÙÐ9¿‘äsùùwùD‘ä‡ùÄЄØ‘ä‹ùY!‘õãù¤ð„0‘és:yù›ùUA‘õùä“ùå—ùÿ›ùÕе	‘åƒùÿ‡ùë#:yIë39õŸùUA‘IK39Y!‘ù{ùäùõ¯ùÄð„Ø‘áoùÿsùëÓ9yI«29U‘°9ë#‘õgùùkù°µÂ#‘õWùð[ùÿ_ùéƒ9yUÁ‘õ?ùé39y_29Uá‘õSù5d‚R9?‘ùCùõGùÿKùuе®‘ã3ùÿ7ùéã8yIk19ÿ#ùë“8yY¡‘IË09ù+ùõ/ùY‘ùùY!‘I+09õùãùµ‘õùìùÿùëC8yUA‘õï
ùéó7y_‹/9Ua‘õùµJ‘õó
ùµ€Rõ÷
ùÿû
ùùÛ
ùäß
ùðã
ùÿç
ùé£7yIë.9Ua‘Yá‘ðÏ
ùÿÓ
ùëS7yIK.9ù³
ùY‘ùÇ
ù[€RI«-9äË
ù䐄|‘ä·
ùû»
ùÿ¿
ùé7yõÃùU‘û§
ùÿ«
ùë³6yI-9õ×ùUÁ‘õŸ
ùU‘Ik,9ä£
ù„8‘ä
ùâ“
ùÿ—
ùëc6yI++9õw
ùé6y_Ë+9D¡‘ä‹
ùdï€RõðµN7‘õ{
ùä
ùÿƒ
ùÄð„¸‘_K9ðk
ùÿo
ùéÃ5yUÁ
‘äËùÄS€RäÏùÿÓùéS#yDá
‘ä³ùé#yI«9D‘äÇùäЄø)‘I9ä·ùà»ùÿ¿ùõŸùUÁ‘ä£ùà§ùÿ«ùë³"yD
‘äwùIË9ÿ—ùëc"yIk9D¡
‘ä‹ùÄð„ ‘äùà“ùÄð„„‘ä{ùãùÿƒùë"yD!
‘ä;ùI‹9ÿoùëÃ!yI+9Da
‘äcù䐄4‘ägùåkùÄð„L‘äSùæWùÿ[ùés!yDA
‘äOùÄЄ@	‘é#!y_ë9ä?ùdàRäCù™ð9S‘ÿGùõÿùù+ùí/ùÿ3ùéÓ yIK9D
‘ä'ùDá‘ÿùëƒ yI«9äùd€Rä«ùI9ùùíùÕе"	‘õùìùÿùë3 yU¡‘õëùáóùÿ÷ùéãy‰ª?9õµ‘õÛùë“y‰
?9õïùÕе	‘õ³ù‰j>9áßùÿãùõÇùY€Réë=9ùËùÿÏùéCyÿ¯ùéÃyéK=9ù·ùÿ»ùëóyÿ‹%9å¿ùÿ«<9á£ùÿ§ùë£yÿÃùëyé<9îùÿ“ùéSyé+&9íÓùék;9ã{ùÿùëyÿ×ùëcyÿË:9ìgùÿkùë³yéË&9ÿëùé+:9x€RøSùÿWùécyé³yÿk'9é‹99à?ùÿCùëyùûùÿÿùéë89á+ùÿ/ùëÃyëyé(9éK89ãùÿùësyÿùéSyÿ«79âùÿùë#yÿ«(9ÿ'ùé79îïùÿóùéÓyé£yÿK)9ék69àÛùÿßùëƒyð7ùÿ;ùéË59íÇùÿËùë3yëóyéë)9é+59ì³ùÿ·ùëãy5€RõKùÿOùé‹49âŸùÿ£ùë“yéCyÿ‹*9ÿë39â‹ùÿùëCyö_ùÿcùë“yÿK39ÿ{ùéóyé++9îsùÿ«29ücùÿgùé£yÿ?ùéyÿ29U
‘ÿSùéSyõGùÕ冑õKù€RüOùÿwùëãyéË+9é‡ùé³yÿk19ÿ‹ùè'ùÈÐ=‘éË09ÿ+ùé3yé+09èùùùÿùécyÿk,9èûùH	‘ùÿùÿùëyè÷ùÈÐ5‘ÿïùëÃyé‹/9ù›ùèçùÈÐ-‘ÿë.9ùëùèÓùÈÐ%‘ù×ùÿÛùésyÿŸùè¿ùùÃùÿÇùë#yéK.9éƒyÿ-9H	‘ÿ³ùéÓyÿ«-9è§ùÈБè«ùù¯ùH!‘èÛùÈð1‘èßù_ë9HA‘èïùHa‘è	ùÈðÑ‘èóùI‹9è	ùH‘è	ùÈðñ‘I+9è	ùH¡‘è+	ùÈð‘IË9è/	ùHÁ‘è?	ùÈðA‘Ik	9èC	ùˆ€RèG	ù_
9Há‘èS	ùH‘èg	ù(Н4‘èW	ùI«
9èk	ùH!‘è{	ùÈð‘IK9è	ùÈ&Rèƒ	ùé#&y_ë9HA‘è	ùHa‘è£	ùèЉ4‘è“	ùã—	ùÿ›	ùës&yI‹9è§	ùã«	ùÿ¯	ùéÃ&yI+
9H‘è·	ùÈðé6‘è»	ù蹁Rè¿	ùÿÃ	ùé'y_Ë
9H¡‘èË	ùè%.‘èÏ	ùðÓ	ùÿ×	ùëc'yIk9HÁ‘èß	ùèM.‘èã	ùûç	ùÿë	ùë³'yI9Há‘èó	ù萕.‘è÷	ùøû	ùx€Rÿÿ	ùë(yI«9H‘è
ùèá.‘è
ùIK9H!‘è
ùè!/‘è
ùIë9HA‘è/
ùè5/‘è3
ùI‹9Ha‘èC
ùèm/‘èG
ùI+9H‘èW
ùè}/‘è[
ùþ_
ù_Ë9H¡‘èk
ùè0‘èo
ùh€Rès
ù_k9HÁ‘è
ùèÝ0‘èƒ
ùI9Há‘è“
ùèù0‘è—
ùU‘õ§
ùu€RI«9è«
ùH!‘è»
ùHA‘èÏ
ùè1‘IK9è¿
ùIë9èÓ
ùI‹9Ha‘èã
ùH‘è÷
ùè1‘èç
ùI+9èû
ùIË9H¡‘èùHÁ‘èùÈй>‘èùIk9è#ùð'ùÿ+ùé³,yI9Há‘è3ùè51‘è7ù(ŒRè;ùÿ?ùé-y_«9H‘èGùè°¹"‘èKùìOùÿSùéS-y_K9H!‘è[ùè°Ù"‘è_ùâcùÿgùë£-yIë9HA‘èoù萵‘èsùãwùÿ{ùëó-yI‹9Ha‘èƒù萝‘è‡ùà‹ùÿùëC.yI+9H‘è—ùè°é"‘è›ùàŸùÿ£ùë“.yIË9H¡‘è«ùè°#‘è¯ùî³ùÿ·ùëã.yIk9HÁ‘è¿ùè°-#‘èÃùãÇùÿËùé3/y_9Há‘èÓùè°I#‘è×ùðÛùÿßùI«9H‘èçùè°q#‘èëùâïùëÓ/yH!‘èûù谁#‘IK9èÿùàùÿùë#0yIë9HA‘èùè°™#‘èùíùÿùës0yI‹ 9Ha‘è#ùH‘è7ùè+‘è'ùö+ùÿ/ùëÃ0yI+!9è;ùö?ùH¡‘èKùè°½#‘èOù¨RRèSùHÁ‘è_ùHá‘èsù(°1‘ècùèwùH‘è‡ùèБè‹ùˆÁRèùH!‘è›ùèЁ‘èŸùHA‘è¯ùèЙ‘è³ùHa‘èÃùèб‘èÇùH‘è×ùèÐÑ‘èÛùH¡‘èëùHá‘è
ùèÐí‘è
ù聁Rè
ùH‘è'
ùèÐ)7‘è+
ùH!‘è;
ùèÐA7‘è?
ùHA‘èO
ùHa‘èc
ù¨°%‘èS
ùèg
ùHa‘è£ùý#‘è§ùÈ
‚Rè«ùH‘è·ù°µ%‘ÿ
ùè»ùH¡‘èËù°Á%‘éƒ4yèÏùHÁ‘èßù°Ý%‘à/
ùèãùHá‘èóù°	&‘éÓ4yè÷ùH‘èù°!&‘õC
ùèùH!‘èù°Y&‘é#5yèùHA‘è/ù°q&‘ðW
ùè3ùHa‘èCù°‰&‘ës5yèGùH‘èWù°¡&‘I‹*9è[ùH¡‘èkù°µ&‘èoùásùHÁ‘èù°É&‘ÿ[
ùèƒùHá‘è“ù°ñ&‘_ë)9è—ùH‘è§ù°'‘ÿG
ùè«ùH!‘è»ù°-'‘IK)9è¿ùHA‘èÏù°Q'‘ÿ3
ùèÓùHa‘èãù°u'‘_«(9èçùH‘è÷ù°¡'‘ÿCùèûùðÞß‘é34yI(9IË!9þïùàóùÿ÷ùëã3yIk'9ÿWùéc1yãßùÿãùë“3yIË&9_k"9ùgùìËùÿÏùëC3yI+&9ÿkùë³1yà·ùÿ»ùëó2yI‹%9I#9ù{ùà£ùÿ§ùë£2yIë$9ÿùé2yI«#9ÿ“ùéS2y_K$9I‹49_+59IË59Ik69I79I«79IK89Ië89I‹99I+:9IË:9Ik;9_<9I«<9IK=9Ië=9I‹>9I+?9KãyIË?9H¡‘èù°µ'‘é1yèùHÁ‘èÿùHÁ‘èùHá‘è3ù°Ù'‘è#ùè7ùH‘èGù°ñ'‘èKùH!‘è[ù°(‘è_ùHA‘èoù°(‘èsùHa‘èƒùH‘è—ù°%(‘è‡ùè›ùH¡‘è«ùHÁ‘è¿ùhE‘è¯ùèÃùHá‘èÓù°5(‘è×ùHºRèÛùH‘èçùÐ}‘ÿóùèëùH!‘èûùБ‘ëƒ/yèÿùHA‘èùÐÁ‘èùHa‘è#ùÐù‘è'ùH‘è7ùÐ ‘è;ùˆ
€Rè?ùH¡‘èKùÐe!‘èOùHÁ‘è_ùÐ¥!‘ècùHá‘èsùÐÁ!‘èwùH‘è‡ùÐÕ!‘è‹ùH!‘è›ùHA‘è¯ùÐ"‘èŸùè³ùHa‘èÃùÐ"‘èÇùH‘è×ùÐ%"‘èÛùH¡‘èëùHÁ‘èÿùhÐM!‘èïùèùHá‘èùÐQ"‘èùށRèùH‘è'ùH!‘è;ùhð1‘è+ùè?ùHA‘èOùð‘èSùÈ9‚RèWùHa‘ècùH‘èwù¨ð%‘ègùè{ùH¡‘è‹ù(I‘èùÈ~Rè“ùHÁ‘èŸù(°!‘è£ùHá‘è³ù(°1‘è·ùH‘èÇù(°U‘èËùH!‘èÛùHA‘èïù(°™‘èßùèóùHa‘èù(°­‘èùH‘èù(°9‘èù€Rÿùëc,yè
ùÿ
ùëS(yÿùé,yðùá#
ùÿ'
ùë£(yÿï
ùëÃ+yàÿ
ùæ7
ùÿ;
ùëó(yÿÛ
ùés+yàë
ùâK
ùÿO
ùëC)yÿÇ
ùë#+yà×
ùÿc
ùé“)yÿw
ùÿ³
ùéÓ*yàÃ
ùéã)yã‡
ùÿ‹
ùõ›
ùÿŸ
ùõ¯
ùëƒ*yäùD¡‘ä+ù$°„¤‘ë3*yä/ùDÁ‘ä?ù$°„¸‘äCùDá‘äSù$°„ì‘äWùD‘ägùD!‘ä{ù$°„
‘äkùäùDA‘äùDa‘ä£ùİ„D
‘ä“ùä§ùD‘ä·ù$°„
‘ä»ù$ЁRä¿ùD¡‘äËùDÁ‘äßù¤ð„$5‘äÏùäãùDá‘äóù$°„`>‘ä÷ù„¾‚RäûùD ‘äùD! ‘äù$ð„0‘äùäùDA ‘ä/ù$ð„8‘ä3ùDa ‘äCùD ‘äWù$ð„\‘äGùä[ùD¡ ‘äkù$ð„p‘äoùDÁ ‘äùDá ‘ä“ù„ð„€‘äƒùä—ùD!‘ä§ù$ð„„‘ä«ù°Rä¯ùD!!‘ä»ùD„„‘ä¿ùDA!‘äÏùDa!‘äãùD„¸‘äÓùäçùD!‘ä÷ùD„Ð‘äûùä€RäÿùD¡!‘äùDÁ!‘äùD„,
‘äùä#ùDá!‘ä3ùD"‘äGù$Єœ‘ä7ùäKùD!"‘ä[ùD„@
‘ä_ù$€RäcùDA"‘äoùDa"‘äƒù$c…R‹j$x$„¨>‘äsùä‡ùD"‘ä—ùD„D=‘ä›ù®RäŸùD¡"‘ä«ùDÁ"‘ä¿ù$r…R‹j$x°„À)‘ä¯ùäÃùDá"‘äÓùD°„3‘ä×ùDúRäÛùD#‘äçùDЄL2‘äëùÿçùé£#yì÷ùéÓ%yÿ‡	ùÿûùëó#yì	ùëƒ%yðo	ùÿs	ùÿ	ùéC$yì	ùé3%yð[	ùÿ_	ùÿ#	ùë“$yö3	ùÿ7	ùëã$yÿK	ùÿ¯ùéÃ:yõ¿ùÿÃùë;yãÓùÿ×ùéc;yîçùÿëùë³;yàûùÿÿùë<yæùÿùëS<yà#ùÿ'ùë£<yà7ùÿ;ùëó<yàKùÿOùëC=yá_ùÿcùë“=yõoùõƒùõïùÿóùD!#‘äûùDA#‘äùDЄX2‘äÿùäùDa#‘ä#ùÄð„„‘ä'ùD#‘ä7ùDЄx2‘ä;ùä€Rä?ùD¡#‘äKùDЄ3‘äOù÷SùDЄœ3‘UÁ#‘õ_ùäcùDá#‘Րµ²‘äsùõwù„€RäÓùäçùä{ùD$‘ä‡ùĐ„‘ä‹ù„R„‹üùU!$‘õ›ùUеÒ3‘õŸùUA$‘õ¯ùUеò3‘õ³ùU€Rõ·ùUa$‘õÃùUеú6‘‹yõÇùU$‘õ×ùU¡$‘õëùUе7‘õÛùõïùUÁ$‘õÿùUе&7‘õùUá$‘õùU%‘õ'ùU°µž-‘õùõ+ùU!%‘õ;ùUеŽ7‘õ?ùõþRõCùUA%‘õOùUa%‘õcùÕðµF‘öùõSùõgù·€Rö—ùö«ù‰(+9÷‹ùÿù‰À+9ÿ£ù‰0yŸh,9ã³ùÿ·ù‹€y‰-9ãÇùöWùökù5ۅR‹j5xU%‘õwùUðµj7‘õ{ùž€RõùU¡%‘õ‹ùuµ*‘õùUÁ%‘õŸùUá%‘õ³ùµµÊ
‘õ£ùõ·ùU&‘õÇùuµJ‘õËùõ?RõÏùU!&‘õÛùuµF3‘‰9õßù5€R÷wùÿ{ù‹yõÏù‰è)9ÿgù‰@yŸˆ*9õãùUA&‘õïùuµŠ3‘õóùUa&‘õù¶€R‰H)9öOùÿSù‰ðy‹Py‰¨9‰¨(9ö;ùÿ?ù‹ y‰ y‰H9‰(9á'ùÿ+ù‰Py‰ðy‰è9Ÿh'9áùÿù‹y‹@y‰ˆ9‰y‰È&9ÿù‰°y‰(9‹ày‰(&9àëùÿïù‰`y‰È9‰0y‰ˆ%9à×ùÿÛù‹y‰h9‹€yŸè$9÷ÃùÿÇù‹Ày‰9‰Ðy‰¨9‰H$9ÿ³ù‰py‰ yŸH9‰¨#9û›ùÿŸù‰ y‹py‰è9‰#9û‡ùÿ‹ù‹Ðy‰ÀyŸˆ9‰h"9ásùÿwù‹€y‰yŸ(9‰È!9á_ùÿcù‰0y‹`y‰È9‰(!9áKùÿOù‹ày‰°yŸh	9‰ˆ 9í7ùÿ;ù‹y‹y‰
9‰è9ù#ùÿ'ù‰@y‹Py‰¨
9ŸH9ùùÿù‹ðy‹ y‰H9‹ðy‰¨9ÿÿù‰ y‰è9‹@y‰ˆ9‰9ÿëù‰Py‰y‰(
9‹àyŸh9ÿ×ù‹y‰È
9îßùÿãù‰È9ÿÃù‰°y‹0y‰h9íóù‰(9ÿ¯ù‰`yÿ÷ù‹€y‰9‰ˆ9ÿ›ù‹yíùÿù‰Ðy‰è9ÿ‡ù‰À
y‰¨9ÿù‰ y‰H9ÿsù‹p
yŸH9ð/ùŸ¨9í[ùÿ_ù‹ 
yÿ3ù‹py‰9÷GùÿKù‰Ðy‰è9ðCùŸh9á3ùÿ7ù‹€yÿGù‰Ày‰ˆ9ŸÈ9ÿ#ù‰0yÿ[ù‰	y‰(9ïùÿù‰àyŸ(9ðkù‰ˆ9á÷ùÿûù‰yÿoù‹`	y‰è9áãùÿçù‹@y‰È9ðùÿƒù‰H9ÿÓù‹ð
y‰°	y‰h9‰¨9í»ùÿ¿ù‹ 
yÿ—ù‰
yŸ9â§ùÿ«ù‹P
y‰ -9‰ yŸH.9‹py‰è.9‹Ày‰ˆ/9‰y‰(09‹`y‰È09‰°yŸh19‰yŸ29‹Py‰¨29‹ y‰H39‹ðyŸè39‹@y‰ˆ49‰yŸ(59‹ày‰È59‹0y‰h69‰€y‰79‰ÐyŸ¨79‹ y‰H89‰py‰è89‰ÀyŸˆ99‹y‰(:9‰À:9‰°yŸh;9‹y‰<9‹Py‰¨<9‰ y‰H=9‰ðyŸè=9‹@y‰ˆ>9‰y‰(?9‹ày‰È?9D&‘äùDЄl%‘äùäùáËùÿÏùþ
ùD¡&‘ä+ùDð„˜3‘ä/ù¾Rä3ùDÁ&‘ä?ùd„X+‘äCùâ·ùÿ»ùïGùDá&‘äSùd„ä+‘äWùÿ“ùâ£ùÿ§ùO€Rïùï[ùD'‘ägùd„L,‘äkùãgùÿkùá{ùÿùîùóoùD!'‘ä{ùd„Ä,‘äùDA'‘äùDa'‘ä£ùd„Ø,‘ä“ùä§ùD'‘ä·ùd„ð,‘ä»ùÿ£ùì³ùÿ·ùèSùÿWùìÇùÿËùÿßùáïùÿóùÿCùÿùæùÿùã+ùÿ/ùç¿ùD¡'‘äËùd„d-‘äÏùDÁ'‘äßùd„ -‘äãùDá'‘äóùD(‘äùäЄ|$‘ä÷ùäùD!(‘äùd„¸-‘äùDA(‘ä/ùd„Ð-‘ä3ù$Ž€Rä7ùDa(‘äCùD(‘äWùÄð„<‘äGùä[ùD¡(‘äkùd„”?‘äoùÄnRäsùDÁ(‘äùDá(‘ä“ùäЄT6‘äƒùä—ùD)‘ä§ùd°„l-‘ä«ù%Rä¯ùD!)‘ä»ùDA)‘äÏùÄЄ‘ä¿ùäÓùDa)‘äãùD)‘ä÷ùäð„‘äçùäûùD¡)‘äùdЄ‘äùdbRäùDÁ)‘äùDá)‘ä3ùİ„3‘ä#ùä7ù†R‡‹ÿwùÿùâŸùëã=yð‡ùÿ‹ùé3>yÿ{ùâ‹ùí›ùÿŸùëƒ>yà¯ùÿgùùwùÿ³ùëÓ>yíÃùÿÇùÿSùãcù‹?yí×ùÿÛù‹b?yÿ?ùâOùîëùÿïù‹²?yáÿùÿ+ùà;ùÿùíùÿùà'ùÿËùæ'ùæ;ùD*‘äGùdЄX>‘äKù„րRäOùD!*‘ä[ùdð„(‘ÿßùä_ùøcùDA*‘ÆÐÆ<7‘äoùæsùDa*‘äƒùæ‡ùD*‘fðÆt‘ä—ùæ›ùdð„Œ‘F¡*‘æ«ùä¯ùDÁ*‘fðƐ‘ä¿ùæÃùDá*‘äÓùæ×ùD+‘äçùDRfðƤ‘æëùäïùD!+‘ƐƼ8‘äûùæÿùDA+‘†Æ$‘äùæù„„@‘Fa+‘æ#ùä'ùD+‘†Æ`‘ä7ùæ;ùD¡+‘†ƀ‘äKùæOùDÁ+‘†ƴ‘ä_ùæcùDá+‘†ÆØ‘äsùæwùD,‘ä‡ùæ‹ùD!,‘†Æð‘ä›ùæŸùDA,‘ÆÐƀ5‘ä¯ùæ³ùDa,‘äÃùæÇùD,‘†Æ‘ä×ùæÛùD¡,‘äëùæïùDÁ,‘†Æ‘äÿùæùĐ„è8‘Fá,‘æùäùF-‘æ'ùä+ùD!-‘ä;ù„„P‘ä?ùé0yD¡/‘äËùD0‘äùDA0‘ä/ù„°„è
‘ä3ùDa0‘äCùDa2‘†ðƨ1‘äƒùÿùë°yéh;9D!2‘æ‡ù†ðƄ1‘éÈ:9â‹ùæsù†ðÆd1‘íwùÿ{ùë`yä[ùÿgùëyé(:9DA2‘äoùDá1‘æ_ù†ðÆD1‘éˆ99ìcùä3ùæKùD2‘ìOùÿSùëÀyäGù„ð„À0‘ÿ?ùépyÿè89ä7ùDÁ1‘/€Rï;ùðïE0‘ÿH89äùï#ùO1‘ñ'ùÿ+ùé yQ¡1‘ñùàùÿùéÐyé¨79‘ð1.0‘ÿùë€yé79ñùï÷ùO1‘ñûùQA1‘ÿh69àÿùñÏùéàyQ0‚Rñëùÿïùé0yQa1‘éÈ59ñãù‘Ð1&*‘ñçù1Ð1:3‘é(59ñÓùî×ùÿÛùï§ùO¡0‘ñ¿ùîÃùÿÇùëyQ!1‘ñ»ù‘Ð1>‘é@yÿˆ49ñ«ùQRñ¯ù1š‘ÿ³ùïkùñ—ùè›ùÿŸùéðyéè39Oá0‘ï“ùOÁ0‘ÿ‹ùë yéH39ïùñƒù°ïÁ‘ÿ¨29è‡ùåÓùïoùïcRïsùÿwùéPyO0‘ïWùå_ùÿcùéyé29°ï%)‘ÿOùë°yéh19ï[ùèëùïGùϰïe0‘ÿÈ09åKùц€Rñ7ùÑð1Š‘ÿ;ùé`yèÿùñùö#ùÿ'ùéyé(09ñùÿùëÀyQ!0‘éˆ/9ñù‘12!‘öù„„ä!‘ÿè.9ä÷ù$HRäûùDÁ/‘ÿÿùépyäßùÿëùé yDá/‘éH.9äóù$Єô	‘ëÐyé¨-9äãùèçùäÏù„„¤!‘é-9èÓùÿ×ùHa/‘è£ùë0yî¿ùÿÃùë€yéh,9H/‘è·ùˆ¹!‘è»ùèN€Rä§ù„„€!‘á«ùÿ¯ùèCùä“ùí—ùÿ›ùëàyéÈ+9éˆ*9HA/‘èùH!/‘ëyé(+9è{ùˆm!‘èùáƒùÿ‡ùHá.‘èSùëðyáoùÿsùë@yéè)9H/‘ègùˆY!‘èkùHA-‘ñWù‘1!‘ð[ùÿ_ùèOùñCùàGùÿKùé yéH)9HÁ.‘è?ùH¡.‘ÿ7ùëPyé¨(9è+ùˆ!‘é(9ñ/ùà3ùQ.‘ñùèùáùÿ#ùëyHa.‘‘1F‘ÿùé°yÿh'9èùñù–€RèùHA.‘éÈ&9é(&9èïùïóùì÷ùÿûùé`yHá-‘ïßùO.‘ìãùÿçùëyïÇùÿÓùéÀyéˆ%9O!.‘ïÛùï-‘ëpyéè$9ïËùàÏùè³ùHa-‘ÿH$9ï·ùà»ùÿ¿ùO¡-‘ï‹ùOÁ-‘é¨#9ÿ«ùé yïŸùï-
‘ï£ù€Rï§ùϰïÁ‘ïùð“ùÿ—ùéÐyècùï{ùðùÿƒùë€yé#9ûWùûkùÿoùéh"9H-‘èwùÈÐ]*‘ÿ[ùëàyéÈ!9ègùèSù÷gù÷SùÿGùéyÿ(!9ãËùÿÏùá/ùÿ3ùé@yéˆ 9àßùÿãùáùÿùëðyéè9àóùÿ÷ùéPyé¨9ë yéH9÷ùÿùH2‘è—ùˆð¹1‘è›ùH¡2‘è«ùˆð2‘è¯ù€Rè³ùHÁ2‘è¿ùˆðq5‘é9èÃùHá2‘èÓùˆð5‘ëyè×ùH3‘èçùˆð•5‘éh9èëùH!3‘èûùˆð¹5‘é°yèÿùHA3‘è ùˆðÙ5‘è ùéyã·ùÿ»ùë`yéÈ9é9éPyá£ùÿ§ùëyé(9ÿ¨9é yàùÿ“ùéÀ
yéˆ9ÿH9éðyà{ùÿùëp
yéè9ÿè9é@yígùÿkùë 
yéH9ÿˆ9ëyé(9ÿWùëÐyé¨9ëàyéÈ9ì?ùÿCùë€yé9é0yéh9ì+ùÿ/ùë0yéh9é€yÿ9ãùÿùëàyéÈ9ëÐyé¨9îùÿùëyé(9é yéH9ëpyÿóùé@yÿˆ9éè9éÀyíÛùÿßùéð
yéè9éˆ9ëyíÇùÿËùë 
yéH9é(9é`yà³ùÿ·ùëP
yé¨9ÿÈ9ë°yàŸùÿ£ùë
yé9éh	9éyá‹ùÿùé°	yéh9é
9éPyáwùÿ{ùë`	yéÈ9ÿ¨
9ë yéH9ÿgùë	yé(9éðyéè9é@yÿSùéÀyÿˆ9ÿˆ9ãÃùÿÇùÿ?ùépyéè9ëyé(
9ã×ùÿ+ùë yéH9ÿÛùéàyéÈ
9ÿùéÐyÿ¨9ÿïùë0yéh9ÿùé€yé9éyÿ<9éPyÿ¨<9ë yéH=9ëðyéè=9ë@yéˆ>9ëyé(?9ëàyéÈ?9Ha3‘è# ùˆÐé5‘è' ùhª€Rè+ ùH3‘è7 ùH¡3‘èK ùhðõ0‘è; ùèO ùÿ³ùà›ùÿŸùî? ùîS ùHÁ3‘è_ ùˆð5‘èc ùˆQRèg ùHá3‘ès ùȰq‘èw ùH4‘è‡ ùˆðe5‘è‹ ùãùà‡ùÿ‹ùã/ùâ÷ùà«ùÿ¯ùÿÃùÿwùÿ×ùàçùÿëùáûùì_ùÿcùÿÿùáùÿùà#ùìKùÿOùÿ'ùÿ;ùâÇùâ ù⏠ùH!4‘è› ùˆðu5‘èŸ ù㣠ùHA4‘è¯ ùˆð‘5‘è³ ùã· ùHa4‘èà ùˆð­5‘èÇ ùãË ùH4‘è× ùˆðÉ5‘èÛ ùH¡4‘èë ùHÁ4‘èÿ ùèá+‘èï ùè!ùHá4‘è!ùˆðá5‘è!ùèÁRè!ùH5‘è'!ù¨].‘è+!ùã/!ùH!5‘è;!ù¨y.‘è?!ùãC!ùHA5‘.ÐÎm9‘èO!ùîS!ùHa5‘èc!ùîg!ùH5‘èw!ùh R®Ε.‘î{!ùè!ùhð5‘N¡5‘î‹!ùè!ùNÁ5‘îŸ!ùè£!ùHá5‘è³!ùhmR®°Ρ"‘î·!ùè»!ùH6‘®ÐÎM‘èÇ!ùîË!ùH!6‘èÛ!ùîß!ùHA6‘®ÐÎa‘èï!ùîó!ùíËùáƒùà—ùÿ›ùÿ‡ùíïùíW!ùík!ùí÷!ùHa6‘è"ùH6‘è"ùH•-‘è"ùè"ùìùìùì£ùì“ùÿsùì§ùì»ùÿ_ùì ùìó ùì!ùì"ùì"ùH¡6‘è+"ù¨Ð…‘ÿKùè/"ùȽRè3"ùHÁ6‘è?"ù¨ð=‘èC"ùùßùùóùÿ7ùÿûùàùÿùàùÿ#ùðG"ùHá6‘èS"ù¨ðe‘èW"ùÈ€Rù["ùL7‘ìg"ù¬ðŒm‘ìk"ùì€Rìo"ùL!7‘ì{"ù¬ðŒ)	‘èŸùì"ùèƒ"ùHA7‘¬ðŒ	‘è"ùì“"ùà+ùà
ùàß ùà—"ùHa7‘è£"ùˆRˆ‹ÿ—ùÿçùÿ«ùÿ¿ùÿÓùQyAyáy1yyÑy!yy±y¡y‘y1yyqyÁy±	y
yK7‘ë·"ù‹Ðkå5‘ë§"ùë»"ùÿƒùáÛùá{ ùá“!ùá§!ùáÏ!ùáã!ùá«"ùá¿"ùÿoùJ¡7‘êË"ùªðJ™	‘êÏ"ù*yRêÓ"ùÿÏùÿãùÿ÷ùÿùÿ[ùÿùÿ3ùÿGù	y	©9	¡y	I9	ñy	‰9	‘y	É9	i9		9	©9	I9	qy	é9	Áy	)9	ay	É9	i	9	y		
9	Qy	I9	ñy	é9	Ay	)
9	áy	É
9	i9		9	Ñy	©9	!y	é9	‰9		y	a	y	i9		9	Q
y	©9	¡
yÿùÿ»ùÿùÿ/ùÿCùÿWùÿkùÿ§ùÿùÿ“ùÿ£ùÿ·ùÿËùÿßùÿóùÿ ùÿ ùÿ/ ù	9ÿC ùÿW ùÿk ùé9ÿ ùÿ“ ù)9ÿ§ ùÿ» ùÿÏ ùÿã ùÿ÷ ùÿ!ùÿ!ù‰9ÿ3!ùÿG!ùÿ[!ùÿo!ùÿƒ!ù©
9ÿ—!ùÿ«!ùÿ¿!ù‰9ÿÓ!ùÿç!ùÿû!ùÿ"ùÿ#"ùÿ7"ùI9ÿK"ùÿ_"ùÿs"ù)9ÿ‡"ùÉ9ÿ›"ùÿ¯"ùÿÃ"ùI9ó@ùÿ×"ùÿ
ùÿï"ùäoè@‘%‘ñ<è@‘å‘ñ<S´”¢‘“†BøÓ´€"~©‰‚_8Š’_8I	*é4‰¢_8I4íՔ`ù@µôÿÿѹԔ`ù µïÿÿ‚_øÑ´€ÒÑՔ`ù µçÿÿÙՔ`ù€üÿ´‚Õ”âÿÿ¨Zø	°)y@ù)@ù?ëATÿ@‘ÿÑý{E©ôOD©öWC©ø_B©úgA©üoƨÀ_ÖòՔÿÃÑôO©ý{©ýƒ‘óª(°)Gù@ùI@ù	°)Y@ùáª	ë!T€Ò#€RÏՔ ´ý{B©ôOA©ÿÑÀ_ÖH´?Ö@ÿÿµ)”ºÔ”µ°-@ù@ùóùáÐ!X ‘©Ô”€Òý{B©ôOA©ÿÑÀ_Ö<Ք ýÿµïÿÿý{¿©ý‘@ùI@ù	°)Y@ù	ë¡T€Ò#€Rý{h©Õ¨´?֠´ý{hÀ_Ö(Ք ÿÿµ”€Òý{hÀ_ÖôO¾©ý{©ýC‘ Õ”óª0@ùÀ´°@ù@ù@ùë T)@ù)U@ùiÐ7
@ùJ­B9ê86
­B9ª06‰ø6)¬B9I06	­@ù)´(	@ùñT)a‘*@ù_ë T)!‘ñaÿÿT2ù@ùë€T¨ÿÿµ°@ù?ëàŸ 5àªZԔ 4`2@ù2ùÀ´@ùˆø7ñù€Tý{A©ôO¨À_Öý{A©ôO¨kÕàªL”þÿ5÷ÿÿ ´@ùë T(@ùU@ù¨Ð7	@ù)­B9)86	¬B9é06Èø6(¬B9ˆ06Ú €RÀ_Ö4Ô6öW½©ôO©ý{©ýƒ‘óªõªôªöª‚´¨@ùëaTÀ2@ùÕ2ùà´@ù¨ø7ñùAT>ՔԴˆ@ùˆø7ñˆù`TÓ´h@ùˆø7ñhù Tý{B©ôOA©öWèÀ_Öàª,Ք³þÿµùÿÿàªý{B©ôOA©öWè%Õàªáª ԔÀ2@ùÕ2ù€ûÿµáÿÿÿÃÑý{©ýƒ‘)@ù?ñ‹T€Ò*`‘Kyhøë@T‘?ëaÿÿT€Ò°c@ùAybø?ë T@ù­B9¨86¬B9h06(@ùU@ù¨ø6+¬B9k06¬@ùëªì´ˆ	@ùñT‹a‘l@ùŸë Tk!‘ñaÿÿT€RB‘_	ëaüÿT[k@ù(€Rëà'@©ê@ù¢ƒ_ø€
Tà'©êù¢ƒøËþÿµ°@ù?ëèŸhÐ6+@ùñýÿTìªðªî
ªï	ªíª€Ò1`‘)zhø?
ëàT‘ëaÿÿT€Ò¢ƒøé«©àù§Ó”èªà'@©ê@ù¢ƒ_ø°c@ùÈùÿ4&!‘?ëà
ªéªêªâªãª øÿT)zaø(@ù­B9¨þ?6(­B9hþ76?
ëÀTê
ª ­@ù´@ùñkýÿT
`‘@@ù	ë€TJ!‘ñaÿÿTãÿÿJ@ù(€R_	ë@TŠÿÿµ?ëûÿT(€Ràªý{B©ÿÑÀ_Ö€Ràªý{B©ÿÑÀ_ÖëaT €RÀ_Ö@ù­B9h86¬B9(06(@ùU@ùˆø6)¬B9I06HÐ6 ^ÓëTèª	¬@ùé´(	@ùñT)a‘*@ù_ëÀT)!‘ñaÿÿT€RÀ_Ö €RÀ_Ö €R¨´@ùë¡ÿÿT°@ù?ëàŸÀ_Ö)@ù?ñT€Ò*`‘Kyhøë T‘?ëaÿÿT€Ò°Œ@ù€Rk‘	ë@TMykø¨@ù­B9(ÿ?6¨­B9èþ76¿ëÀT¬@ùè	@ùñëýÿTîa‘Ï@ùÿ
ë€TÎ!‘ñaÿÿTçÿÿ΁@ù(€Rß
ëTŽÿÿµ¿ëüÿT €RÀ_րRÀ_ÖàªÀ_ÖëTèª	¬@ùé´(	@ùñT)a‘*@ù_ëÀT)!‘ñaÿÿT€RÀ_Ö €RÀ_Ö €R¨´@ùë¡ÿÿT°@ù?ëàŸÀ_ÖöW½©ôO©ý{©ýƒ‘õªôª(@¹1BT¨¹€@ù@ù¨ø7ñùATûӔ•ù(Ð]Aù¨@ùI@ù(
´àª?Öóª 
´áÐ!¼ ‘ણҔ`4áÐ!¼ ‘છҔöª`µËҔµˆ‚‘À@­É@ù€­‰"©ˆ
@ù@ùàª?ր´@ù¨ø7ñùATÔӔ(Ð!Cù¨@ùI@ùˆ
´àª?Öõª€
´€v@ù@ùˆø7ñù T•vù°”r@ùˆ@¹1BTˆ¹h@ùˆø7ñhùÀTàªý{B©ôOA©öWèÀ_ÖલӔàªý{B©ôOA©öWèÀ_֬Ӕ•vù”r@ùˆ@¹1ýÿTèÿÿàªӔóª öÿµ€҃æÿ—à°ð ‘£°c‘AW„R€RHìÿ—€Òàªý{B©ôOA©öWèÀ_Ö(°¥Gù(°½Fù€Òe”€´ôª—”ˆ@ùÈø7ñˆùaTંӔ´[„R5€R
T`„Rµ€R
àªðҔõªÀõÿµ´a„RÕ€Rô]„Ru€R€ÒUæÿ—à°ð ‘£°c‘áªâªìÿ—€ҫÿÿ4[„RæÿÿP¹,ùq@ù	@¹)1BT	¹p@ùÀ_Öüoº©úg©ø_©öW©ôO©ý{©ýC‘7ÑÿñkTóªôªõªöª€‘y›ûËàªáª÷ǔP›àªáªâªoӔàªáªâªkӔàªáªâªgӔ9‹÷ñÁýÿTq@ù	@¹)1BT	¹p@ùý{E©ôOD©öWC©ø_B©úgA©üoƨÀ_ÖöW½©ôO©ý{©ýƒ‘óªôªõª@ùA@ù6´à°Ø!‘Ó”À5àªáªâªÀ?ÖóªüҔ³´àªý{B©ôOA©öWèÀ_Öàªáªâªý{B©ôOA©öWènÒìєà´€Òàªý{B©ôOA©öWèÀ_֐=@ù@ùá°!T"‘åє€Òàªý{B©ôOA©öWèÀ_ÖÿÑöW©ôO©ý{©ýÑóª@ùT@ùÈð7hø6h®B9(07A@ù@ùá°!$‘ý{C©ôOB©öWA©ÿ‘ÉÑáªý{C©ôOB©öWA©ÿ‘ÀÑ€҇Ҕ€´õªàªáª€Ò6Ҕôª¨@ùÈø7ñ¨ùaTàªÇҔÔ´ˆ@ù	­B9i07	)A@ù @ùó#©á°!#‘™Ñ”ˆ@ùèø6	àªáªŸÑ”ˆ@ùˆø7ñˆùÀTý{C©ôOB©öWA©ÿ‘À_Öàªý{C©ôOB©öWA©ÿ‘¦ÒôO¾©ý{©ýC‘óª@ùÅ@ù(µàªҔ`@ù´ù@ù¨ø7ñùAT”Ò”`v@ùà´vù@ùˆø7ñùàTh@ù¡@ùàªý{A©ôO¨ օҔh@ù¡@ùàªý{A©ôO¨ ÖàªíєÀûÿ5h@ù@ù	)q‘	ëûÿTàªÞє úÿ4ý{A©ôO¨À_ÖÿƒÑø_©öW©ôO©ý{©ýC‘öªy@ù@ùèù(°ÕEù@ùI@ùh´àª?Öôª`´ˆ@ù÷V@ùëT•@ù•´“
@ù¨@¹1ãTh@¹1Tˆ@ù(ø6
¨¹h@¹1BÿÿTh¹ˆ@ùÈø7ñˆùaTàª?Ҕ"€Rôªè#‘!‘õÿ©
ËàªÓ”óª´¨@ùÈø7ñ¨ùaTàª.Ҕ3´ˆ@ùÈø7ñˆùaTàª&Ҕ(°¡‘@ùAù@ùI@ù´?Öõª´(°¡Gùè#‘!‘ÿÛ©âA²±”`´öª¨@ùëAT·@ù·´´
@ùè@¹1ãTˆ@¹1T¨@ù(ø6
蹈@¹1BÿÿTˆ¹¨@ùÈø7ñ¨ùaTàªøÑ”(€Rõªé#‘)!‘÷Û©!M(Ëઋ”ôª´è@ùÈø7ñèùaTàªæÑ”È@ùÈø7ñÈùaTàªßєt	´¨@ùÈø7ñ¨ùaTàª×єàªáª єõª`´h@ùˆø7ñhùàTˆ@ù(ø7ñˆùÁTàªÆÑ”è@ù	)y@ù)@ù?ë€TVઽєˆ@ù(þÿ6è@ù	)y@ù)@ù?ë	Tàªý{E©ôOD©öWC©ø_B©ÿƒ‘À_Öàª"єôªàéÿµ–ùƒR1€Ò€Òiÿÿ€ÒüƒR€Òdÿÿєõª@ðÿµ€ҖüƒR€ÒÖüƒR	€R€ҟÿÿvÿƒR€R›ÿÿöÿƒRh@ùÈø7ñhùaTઈє´ˆ@ùÈø7ñˆùaT઀є´¨@ùÈø7ñ¨ùaTàªxєàÐ`	‘£°c‘᪀R!êÿ—€Òè@ù	)y@ù)@ù?ëÀöÿTlєø_¼©öW©ôO©ý{©ýÑõª6°JAù@ùI@ùˆ´àª?Öôª€´7°ážCùˆ@ùI@ù¨´àª?Öóª ´ˆ@ùÈø7ñˆùaTàªJє @ùJAù@ùI@ùˆ´?Öõª€´ážCù¨@ùI@ù´àª?Öôª´¨@ùÈø7ñ¨ùaTàª3є(°±@ùáª{ДÀ
´õªˆ@ùÈø7ñˆùaTàª&є(°µ@ùàªnД`´ôª¨@ùÈø7ñ¨ùaTàªєàªáªeД
´õªˆ@ùˆø7ñˆù Th@ùhø7ñhùTàªєàªєh@ùèþÿ6¨@¹1BT¨¹óªh@ùˆø7ñhùàTàªý{C©ôOB©öWA©ø_ĨÀ_ÖàªñДàªý{C©ôOB©öWA©ø_ĨÀ_Öàª_ДôªÀñÿµàÐ
‘£°c‘á„Rb€Réÿ—€Òàªý{C©ôOB©öWA©ø_ĨÀ_ÖàªMДóª ðÿµ5	„Rv€R'GДõªÀñÿµàÐ
‘£°c‘Á
„R‚€Rxéÿ—Êÿÿàª;Дôª@ñÿµ„Ru„RÔ„R¨@ùÈø7ñ¨ùaTષДàÐ
‘£°c‘᪂€R`éÿ—€ұÿÿ5„R–€Rˆ@ùÈø7ñˆùaTથДàÐ
‘£°c‘áªâªNéÿ—€Òóóÿµ£ÿÿöW½©ôO©ý{©ýƒ‘ôªóªõª@ù´áª`?֠4ý{B©ôOA©öWèÀ_֠v@ù€´áª`?Öÿÿ5€Rý{B©ôOA©öWèÀ_ÖôO¾©ý{©ýC‘óª@ù”r@ùtùˆ@¹1BTˆ¹À´@ùˆø7ñù T`v@ùtvùˆ@¹1BTˆ¹À´@ùˆø7ñù€T€Rý{A©ôO¨À_Ö^Д`v@ùtvùˆ@¹1þÿTðÿÿWД€Rý{A©ôO¨À_ÖÿCÑø_©öW©ôO©ý{©ý‘óªy@ù@ù¨ƒø(°)‘4@ùèÿ©÷r@ù÷ùb´õª´´ŸñAT6@ùöùàªϔt´5ŸñÀ	T4
´è4ªýÓéÐ)y‘êÐJU‘ŸñI±‰š
JA@ù@@ùª°J­‘ëÐk©‘j±Ššêө飩èÐ9<‘èùáÐ!¸‘øÎ”׃RàÐ\<‘£°c‘‚€RÄèÿ—€Ör@ùàªâΔ”µñKT(°1Eù"@ùàªñϔÀ	´öªàùàªñj	Tßë€T(°aAù(@ù­B9h
 6È@ùI@ù¨´àª?֠´@ù¨ø7ñùATíϔÈ@¹1BTȹôªÂ6@ùöùßëÁüÿT(!9‘‰@ù@ù‚@ùáªÇϔ´õª@¹1BT¨¹¨@ù	)U@ù	ëàT€Ò€Òèã‘!‘öÿ©
Ëàªe”ôª´È@ùÈø7ñÈùaTàªÀϔ4´¨@ùø7ñ¨ù¡T઒Î” #µå°¥8<‘âã‘ãÑ઀Ò䪾q” ø7ö@ùßë¡õÿTÇÿÿAՃRŽÿÿèðA@ù@ùá°!=‘Î”â€RáãƒRà°\<‘£c‘†ÿÿàªϔ ôÿµmΔð!9‘‰@ù@ù‚@ùáªzϔ@´õª@¹1BT¨¹¨@ùøðW@ùë T€Ò€Òèã‘!‘÷ÿ©
Ëઔôª´è@ùÈø7ñèùaTàªsϔt´¨@ùÈø7ñ¨ùaTàªkϔ(	Cùˆ@ùI@ùH´àª?Öõª@´¨@ùëAT·@ù×´¸
@ùè@¹1ãT@¹1T¨@ù(ø6
è¹@¹1BÿÿT¹¨@ùÈø7ñ¨ùaTàªGϔ(€Rõªéã‘)!‘÷Û©!M(ËàªÚ”öª´è@ùÈø7ñèùaTàª5ϔV´¨@ùÈø7ñ¨ùaTàª-ϔÈ@ùÈø7ñÈùaTàª&ϔh
@ù@ùàªáª?ր´@ù¨ø7ñùATϔ€Rˆ@ùÈø7ñˆùaTàªϔ¨ƒ\øéð)y@ù)@ù?ëTàªý{H©ôOG©öWF©ø_E©ÿC‘À_֢€RðƒRà°\<‘£c‘®çÿ—€äÿÿá͔ µàª
ùÿ—õª äÿµÂ€RaރRUÿÿ¶@ùÖ´´
@ùÈ@¹1CTˆ@¹1cT¨@ùˆø6óàƒRÖ€R4ȹˆ@¹1âþÿTˆ¹¨@ùÈø7ñ¨ùaTàªØÎ”"€RõªÿÿºÍ” µàªãøÿ—õªàèÿµ€RAåƒR.ÿÿ·@ù7´´
@ùè@¹1cTˆ@¹1ƒT¨@ù¨ø61ÓçƒR€R
àª1Δõªëÿµ"€RéƒR´ÿÿ€R€ÒoÿÿìƒR6€R¨@ùÈø7ñ¨ùaTપΔà°\<‘£c‘áªâªSçÿ—€4ñÿµÿÿ€RZÿÿ¡ԃRƒþÿ蹈@¹1ÂúÿTˆ¹¨@ùÈø7ñ¨ùaTઐΔ"€RõªÿÿÎ”€Ҽþÿ€Òÿÿý{¿©ý‘¨B9è 7˜@ù€Ò?Ö ´(	ÍGùèðq@ù	 ©	@¹*1ƒTtùý{hÀ_Ö
¹tù)	1@T	¹ý{hÀ_Öèð@ù@ù	ð!1Gù€Ò?ÖàüÿµöÿÿöW½©ôO©ý{©ýƒ‘ôªóªUø@ò@T¿ñáT`@ùèð	@ùë Táð!@ùΔÀ4h
@ù	@¹i6‰(7s@ù3`@ùèð	@ùë Táð!@ùü͔à4h
@ù	@¹‰6	(7s@ùàªΔ@´äªàªáªâª€Òý{B©ôOA©öWè€Ö´àªáªâª€Òý{B©ôOA©öWèÅÍ€Ò@ùàØ!‘Δ€5઀Ҁ?ÖóªΔóµ#€Ҕ@ù@ùàØ!‘ú͔À5àªáª ?Öóª÷͔Ó´àªý{B©ôOA©öWèÀ_Öð1Gùh@ùA@ù•´àØ!‘æÍ”@5àªáª€Ҡ?Öóªâ͔“ýÿµÞ̔À´€Òàªý{B©ôOA©öWèÀ_Öàªáª€Òý{B©ôOA©öWèQÍèð=@ù@ùá!T"‘Ð̔€Òàªý{B©ôOA©öWèÀ_ÖnûÿÿƒÑöW©ôO©ý{©ýC‘_ñ
TóªÃ
µ(UBùh@ùI@ùH´àª?Öôª@´’Ì”óª ´(CùâðBl@ùઐ̔`ø7ð1Gùˆ@ùA@ùö´àØ!‘žÍ”€
5àªáªâªÀ?ÖõªšÍ”u´ˆ@ùˆø7ñˆù€Th@ùÈø7ñhùaTથ͔àªý{E©ôOD©öWC©ÿƒ‘À_Öõ„Rˆ@ùÈø7ñˆùaTગ͔´h@ùÈø7ñhùaTએ͔à°ì
‘£c‘áª"€R8æÿ—€Òàªý{E©ôOD©öWC©ÿƒ‘À_Öàª͔h@ùˆúÿ6àªý{E©ôOD©öWC©ÿƒ‘À_ÖèðA@ù@ùè°©‘è‹©è°™‘é°)É
‘èÿ©éùá°!¸‘E̔àÿÿh@ùHòÿ´á°!È
‘઀R;o”€ñÿ5×ÿÿàªÒ̔ôªòÿµu„RÊÿÿµ„R¹ÿÿàªáªâª¹Ì”õªôÿµ4̔`´„R®ÿÿèð=@ù@ùá!T"‘1̔øÿÿÿÃÑüo©úg©ø_©öW©ôO	©ý{
©ýƒ‘ôªóªèðy@ù@ùè'ù(!.‘èÿ©C´õª6‹4´Ÿñ!T7@ù÷ù¸
@ùBŸñaT7@ù÷ù(EEùh@ùI@ùµµº
@ùXñ‹T€Ò(ÅEù»b‘h{yøë`T9‘_ëaÿÿT€Òa{yøàªB€Røo” 59‘_ë!ÿÿTî˔`´!%„RèðA@ù@ù¨­‘*€RèÓ©è°™‘é°)ý
‘è«©éùá°!¸‘Ò˔!'„Rà° ‘£c‘b€Ržåÿ—€ÒW`üÿ7×zyø÷ùüÿ´ñª
T(EEùh@ùI@ùè´àª?Öóªà´h@ùéð)U@ù	ë!
Tt@ùt´u
@ùˆ@¹1ãT¨@¹1Th@ù(ø6
ˆ¹¨@¹1BÿÿT¨¹h@ùÈø7ñhùaTàªÀ̔(€Róªéã‘)!‘ôß©!M(ËàªSþÿ—õª´ˆ@ùÈø7ñˆùaTમ̔5´h@ùˆø7ñhù T¨@ùhø7ñ¨ùTડ̔ઞ̔¨@ùèþÿ6àðp@ù@¹1BT¹è'@ùéð)y@ù)@ù?ëaTý{J©ôOI©öWH©ø_G©úgF©üoE©ÿÑÀ_Ö€Ò€RÈÿÿh@ùÈø7ñhùaTàª~̔a/„R€R½ÿÿå°¥ü
‘âã‘ãÑàªáªäª‚n”@ø7÷@ù(EEùh@ùI@ùhñÿµàªß˔óª`ñÿµá,„Rà° ‘£c‘‚€RrÿÿÁ%„Rkÿÿ`̔ÿƒÑüo©úg©ø_©öW©ôO©ý{	©ýC‘èðy@ù@ùèù_ñŠ,Tùªc.µ @ù(ùDù@ùI@ùè.´?Öüªà.´ˆ@ùéð)U@ù	ëa/T“@ù³0´”@ùh@¹1ãTˆ@¹1Tˆ@ù(ø6
h¹ˆ@¹1BÿÿTˆ¹ˆ@ùÈø7ñˆùaTàª'̔"€Rüªè£‘!‘óÿ©
Ë઻ýÿ—øª´h@ùÈø7ñhùaTàª̔˜*´ˆ@ùÈø7ñˆùaTàª̔@ùéð)]@ù	ëa*T@ù
ñ¡8Tc‘	ƒ‘
£‘T@ù3@ù@ù¨@¹1BT¨¹h@¹1ãTˆ@¹1T@ù(ø6
h¹ˆ@¹1BÿÿTˆ¹@ùÈø7ñùaTàªç˔ €R
˔à*´øª:HÛDù	@¹)1bT	¹HÛDù	@ù(ù(IDùŸÊ”öª€)´ð%Gùàªâªãª$€Rêʔ÷ªÈ@ùÈø7ñÈùaTàªÆË”(´@ùÈø7ñùaTા˔AÛDùàªäâÿ—öª@'´È@¹1BTȹÈ@ùˆø7ñÈù Tè@ùhø7ñèùT઩˔દ˔è@ùèþÿ6઀ҀR€Rjo”`$´÷ª@€RM˔@%´øªù¨@¹1BT¨¹ùðUBù(@ùI@ùH$´àª?Ö÷ª@$´Qʔûª€$´ðCùâÐBl@ùàªOʔ€ø7Ð1Gùè@ùA@ùš#´ÀðØ!‘]˔ $5àªáªâª@?ÖüªY˔#´è@ùÈø7ñèùaTàªi˔h@ùÈø7ñhùaTàªb˔`€R˔÷ª€!´È@¹1BTȹöâ©üù¨@ùèø6C€ÒY€RZL„R@ùÈø7ñùaTàªK˔àªáªóªõª€Òøªóªõª´ˆ@ùÈø7ñˆùaTàª;˔´@ùÈø7ñùaTàª3˔´è@ùÈø7ñèùaTàª+˔´h@ùÈø7ñhùaTàª#˔à ‘ƒðc‘áªâªÌãÿ—€Ò´¨@ùÈø7ñ¨ùaTàª˔´h@ùÈø7ñhùaTàª˔´ˆ@ùÈø7ñˆùaTàª˔´È@ùÈø7ñÈùaTàªûʔè@ùéÐ)y@ù)@ù?ëTàªý{I©ôOH©öWG©ø_F©úgE©üoD©ÿƒ‘À_ÖèÐA@ù@ù萩‘苩萙‘©)½8‘èÿ©éùá!¸‘ºÉ”€Òáÿÿh@ù¨Ñÿ´¡!¼8‘઀R¯l”àÐÿ5€Ò×ÿÿFʔüª`Ñÿµà ‘ƒðc‘A<„Râ€Rwãÿ—€ÒËÿÿ€Ò€Ҟþÿ€Ò€Ò€Ò€Ò€Ò€ÒÚ>„Rù€Rxÿÿ€ғþÿéÐ)M@ù	ë Tàª0ʔûª`´@ùÈø7ñùaTનʔh@ùq@ùàªÀ?Öõªà´àªÀ?Öóª´àªÀ?Ö ´ôªàªÀ?Öa€Rn”Àø7h@ù¨Õÿ7øªñhù!ÕÿT¦þÿ€Ò"€R¡G„R€Ò€Ò€Ò€Ò€Ò€Ò9€RZH„R/ÿÿ€ҺH„R9€RKÿÿB€RJ„Rà ‘ƒðc‘%ãÿ—€Ҩ@ùhëÿ6_ÿÿ€ÒÚJ„RY€R<ÿÿàªáɔ÷ªÜÿµ€Ò€ÒY€RÚK„Rÿÿ€ÒY€RL„RÿÿàªáªâªÃɔüª`Ýÿµ>ɔÀ´€ÒY€RzL„Rÿÿ€ÒY€RúL„Rþþÿ@ù
ñaT@ù	!‘
A‘T@ù3@ù@ù¨@¹1ãÈÿTGþÿñ+TèÐE@ù@ùh€Rèùá!Ì‘Èø·éÐ)E@ù @ùé)©‘ŠðJ­‘ñI‰šè'©á!p‘ɔ€Ò€Ò€Ò€Ò€Ò€Ò€Òù€R@„RÏþÿ€ҚD„Rù€Rüªøª÷ª€Ò€Ò€ÒÕþÿʔ€Ò€Ò€Ò€Ò€Ò€Òù€RZC„R»þÿ€Ò€Òô”ª‘”ð”®‘6€Rô”ª‘V€Rh@ùÈø7ñhùaTàªùɔ¥m”5èÐE@ù@ùöS©á!p‘ÍȔ€Ò€Ò€Ò€Ò€Òù€RšE„R€Òüªøªóªõª\Ôÿµ¨þÿèÐ=@ù@ùÁð!T"‘ÈȔ…ÿÿÿÃÑüo©úg©ø_©öW©ôO	©ý{
©ýƒ‘õªôªèÐy@ù@ù	ð))‘è'ùéÿ©óÐsr@ùóùC´öª7‹U´¿ñáT8@ùøùÙ
@ùTU´¿ñT8@ùøù•@ù¨@¹1#
TQè5ªýÓé)y‘êJU‘¿ñI±‰šêÐJA@ù@@ùŠðJ­‘ëk©‘j±Ššêש飩¨é8‘èùá!¸‘xȔ!u„Rà‘ƒðc‘‚€RDâÿ—€ҭÙ
@ù:ñ«T€Òð1EùÜb‘ˆ{{øëÀT{‘?ëaÿÿT€ҁ{{øàªB€Rkl”€5{‘?ë!ÿÿTøÐs@ù•@ù¨@¹1CTÀø7øz{ø˜´øùùªSȔµøÐs@ù?ñJT•@ù¨@¹1BT¨¹Ð!9‘‰@ù@ùâ@ùáªGɔ@´öª@¹1BTȹàªáªØÈ”1àT÷ª¨@ùˆø7ñ¨ù TÈ@ùhø7ñÈùTàªDɔàªAɔÈ@ùèþÿ674€@ùð	Cù@ùI@ù(´?Öõª ´¨@ùéÐ)U@ù	ëáT¶@ùv´·
@ùÈ@¹1ãTè@¹1T¨@ù(ø6
ȹè@¹1BÿÿT蹨@ùÈø7ñ¨ùaTàªɔ(€Rõªéã‘)!‘öã©!M(Ëફúÿ—÷ª´È@ùÈø7ñÈùaTàªɔ÷
´¨@ùˆø7ñ¨ù Tè@ùhø7ñèùTàªùȔàªöȔè@ùèþÿ6ˆ
@ù@ùàª?ÖÀ
´@ùˆø7ñù€Th@¹1BTh¹è'@ùéÐ)y@ù)@ù?ëÁTàªý{J©ôOI©öWH©ø_G©úgF©üoE©ÿÑÀ_ÖÖȔh@¹1£ýÿTíÿÿ·Ç”à
µàªàòÿ—öªàîÿµS³{„R€R¨@ùÈø6"ð©GùðÁFù€ҙõÿ—€	´öªËõÿ—È@ùˆø7Ó}„R4€R-Ȕõª ðÿµ€„RT€R-€Ò€Ršÿÿ€ғ‚„RT€R¨@ùÈø7ñ¨ùaTથȔö´È@ù¨ø7ñÈùATઝȔ€R…ÿÿ3„„Rt€R¥¥è8‘âã‘ãÑàªáªäªŸj”ø7ø@ù•@ù¨@¹1ÃäÿT&ÿÿÓ}„R4€Rà‘ƒðc‘áªâªëþÿas„RäþÿÁr„Râþÿ}Ȕ€Òs{„R€R¨@ùˆùÿ6ÐÿÿS}„RìÿÿÿÃÑüo©úg©ø_©öW©ôO	©ý{
©ýƒ‘ôª÷ªèÐy@ù@ù	ð)‘è'ù驸Ðw@ùø#ùC´õª6‹4´ŸñÁT3@ùó#ù¹
@ùR4´ŸñáT3@ùó#ùh@¹1ã	TOè4ªýÓé)y‘êJU‘ŸñI±‰šêÐJA@ù@@ùŠðJ­‘ëk©‘j±Ššêө飩¨°Ù‘èùá!¸‘ǔ‘„Rà ‘ƒðc‘¢€RÜàÿ—€Ò}¹
@ù:ñ«T€ÒðCù¼b‘ˆ{{øë T{‘?ëaÿÿT€ҁ{{øàªB€Rk”`5{‘?ë!ÿÿT
óÐsv@ùh@¹1#TÀø7Óz{ø“´ó#ùùªìÆ”@JµóÐsv@ù?ñJ>Th@¹1BTh¹à@ùðÅEù@ùI@ù(+´?Öôª +´ˆ@ùùÐ9@ùð?Aùàªë!+T5l”öª +´ÐµGùàªb€RÏj” +ø7õªÈ@ùÈø7ñÈùaTàªÛǔûÐ{o@ùúÐZs@ùÐÖ"9‘54ë€Të@TëTàªTǔ`?ø7à
4Õ:GùøªÀ@ù¢@ù᪯ǔ@:´öª@¹1BTȹðUFùÈ@ùI@ùè9´àª?Öõªà9´È@ùÈø7ñÈùaTમǔÐÅFù¨@ùA@ù<9´ÀÐØ!‘‹Ç”À95àªáª€Ҁ?Ööª‡Ç”¶8´¨@ùÈø7ñ¨ùaTગǔÈ@ùÐÈø7ñÈùaTએǔh@¹1BTh¹h@ùÈø7ñhùaT઄ǔó°sn@ùàR€¹±Æ”öªµ€Ò€Ò€Ò€Òڡ„R{%€R®ëàŸ`õÿ5øªàR€¹¢Æ”öª@þÿ´ÐqBùàªâªǔ ø7È@ùÈø7ñÈùaTàªbǔà.@ýdƔöª ´Ð5BùàªâªðƔ@ø7È@ùÈø7ñÈùaTàªQǔëdZúè°u@ùdHúûŸTëàŸàªÍƔ`(ø7À4ö@ùÈ@¹1BTȹ‹@ù@ùâ@ùáª$ǔ ´õª@¹1BT¨¹àªáªµÆ”1ÀT÷ªÈ@ùÈø7ñÈùaTàª&ǔ¨@ùÈø7ñ¨ùaTàªǔ—4Û4è°u@ùëàŸàªžÆ”€#ø7€
4ˆ@ù?AùàªëÁTXk”õªÀ´ˆ@ùÐËEùàªëáTOk”öªà´È@ù	Ð!ÕBùàªëáTFk”÷ªà´È@ùÈø7ñÈùaTàªóƔˆ@ùËEùàªëT7k”öª´È@ù	Ð!]DùàªëáT.k”øªà´È@ùÈø7ñÈùaTàªÛƔˆ@ù	Ð!qBùàªëÁTk”öªÀ´ˆ@ù	Ð!5BùàªëTk”ùª€´ €RyƔ€´úªÜ©Ø©ùˆ@¹1BTˆ¹úªˆ@ùÈø7ñˆùaTવƔh@ùÈø7ñhùaTમƔè'@ùé°)y@ù)@ù?ëáTàªý{J©ôOI©öWH©ø_G©úgF©üoE©ÿÑÀ_ÖƔôª Õÿµ€Ò€Ò€Ò€Ò€Ò:˜„R»$€RËƔöª Õÿµ€Ò€Ò€Ò€Һ™„RÁ€Ò€Ò€Ò€Òú™„R»€Ò€Ò€Ò€Ò¢„R{%€Rµ€Ò€Ò€Ò€ÒZ£„R›%€R®€Ò€Ò€Ò€Қ£„R›%€R§UŔÀµàª~ðÿ—õªçÿµº€Ò€Ò€Ò¦„R»%€RšÐ¥GùÐÍFù€Ò6óÿ—õª@´àªgóÿ—¨@ùÈø7ñ¨ùaTàªRƔ€Ò€Ò€Ò€Ò€Òz¨„RÛ%€RÅŔõª€çÿµ€Ò€Ò€Ò€Ò¬„R{&€Rw»Å”öª`çÿµ€Ò€Ò€ÒZ¬„R{&€Rn²Å”÷ª`çÿµ€Ò€Қ¬„R{&€RfªÅ”öª@èÿµ€Ò€Òú¬„R{&€R^¢Å”øª`èÿµ€Ò:­„R{&€RW›Å”öª€éÿµ€Қ®„R›&€RP”Å”ùªÀéÿµڮ„R›&€RJ°„R{&€RG¥¥Ø‘âÑã‘àªáªäªh”@
ø7ó#@ùh@¹1ÃÀÿTþÿ€Ò€Ò€Ò€Ò€Òڤ„R»%€R1€Ò€Ò€Ò€Ò€Һª„R[&€R)×ĔÀ	µàªðÿ—öªàÅÿµJàª_Ŕõª`Æÿµ€Ò€Ò€Қœ„Rû$€Ràªáª€ÒDŔöªÀÇÿµ¿Ä”À´€Ò€Ò€Ò€Òú„Rû$€R€Ò€Ò€Ò€Ò€Òښ„RÛ$€RબØÿ—પØÿ—નØÿ—દØÿ—તØÿ—À𠑃Ðc‘áªâªiÞÿ—€ҔßÿµÿÿO„Rƒýÿ!„Rýÿ´Å”€Ò€Ò€Ò€Òڥ„R»%€Ráÿÿ€Ò€Ò€Ò€Òú§„RÛ%€RÚÿÿ€Ò€Ò€Ò€Ò€ÒZœ„Rû$€RÒÿÿè°=@ù@ùÁÐ!T"‘Ä”½ÿÿÿÑé#müo©úg©ø_©öW	©ôO
©ý{©ýÑóªõªè°y@ù@ùè'ùÐ!.‘è©C´öª7‹“	´ñT4@ùô#ùØ
@ùíñÁT4@ùô#ùˆ@ùU@ùhè6Ð=Aùàª
Ŕà8ø7@
4ÐÉEùàªŔHø7€4ˆ@¹€Ò1BTˆ¹ÐáJBùˆ@ùI@ùè5´àª?Öùªà5´ÐÝFù(@ùA@ùX<´ÀÐØ!‘4Ŕà<5àªáª€Ò?Ööª0ŔÖ;´(@ùÈø7ñ(ùaTàª@ŔÈ@ùé°)I@ù	ëÀTàª:Ĕ@`€b!`€T]Ú
@ùXñ‹T€ÒÐÅEùÛb‘h{yøë`T9‘_ëaÿÿT€Òa{yøàªB€Rh” 59‘_ë!ÿÿTĔ`´!Rè°A@ù@ùˆÐ­‘*€RèÏ©È𙑩)Á‘è«©éùÁð!¸‘æÃ”!„RÀðH‘ƒÐc‘â&€R"Ð¥GùÐÑFùh@ùA@ùU?´ÀÐØ!‘ÝĔà?5àªáª€Ҡ?ÖóªÙĔÓ>´àªüñÿ—h@ùÈø7ñhùaTàªçĔ¢-€R¡̄RÀðH‘ƒÐc‘Ýÿ—€ҨÈ
@ý€b!`aT¾Ã” :µÈ@ùÈø7ñÈùaTàªÐĔ¨.ýáJBùˆ@ùI@ùH-´àª?Ööª@-´ÐáFùÈ@ùA@ù-´ÀÐØ!‘¤Ä” -5àªáª€Ò?Öùª Ä”™,´È@ùÈø7ñÈùaTરĔàª.i”öª1aTÃ”À6µ(@ùÈø7ñ(ùaTઢĔ¶R¹ @ùÐÅEù@ùM@ùè)´âª?Öà)ø7õ°µr@ù¨@¹1BT¨¹÷ªÑ`îÿ7ôzyøô#ùîÿ´ñŠ!Tˆ@ùU@ùèâï7gò -T઀ҀR#€RKh” ´ùª°µGùb€Reg”@ø7óª(@ùÈø7ñ(ùaTàªqĔ57Ô ´÷ªàª€Ò€R#€R3h”öª€´Ð=Aùàªâª/Ԁø7È@ùÈø7ñÈùaTàªYĔ Ôöª`&´àª!€R€R#€Rh”øª&´ÐÕBùàªâªÔ@ø7@ùÈø7ñùaTàªBĔàªA€R€R#€Rh”øª@&´Ð]DùàªâªÔ 
ø7@ùÈø7ñùaTàª.ĔÐÉEùàªâª÷” ø7È@ùÈø7ñÈùaTàª!ĔહÔ±&Tñ
Tàªa€R€R#€Rág”€%´ùªÐqBùàªâª¦Ã” %ø7(@ùÈø7ñ(ùaTàªĔઁ€R€R#€RÍg”@$´ùªÐ5Bùàªâª’Ôà#ø7(@ùÈø7ñ(ùaTàªóÔè@¹1BTè¹óª;€Ò€ҕۄRÚ.€R€ÒU݄R€ÒÕ݄Rú.€Rùª€Ò(@ùÈø7ñ(ùaTàªÙÔ´È@ùÈø7ñÈùaTàªÑÔ´@ùÈø7ñùaTàªÉÔÀðH‘ƒÐc‘áªâªrÜÿ—€ÒW´è@ùø7ñèù¡TહÔz€Ò€ÒބRËÿÿ€Òôª°áJBùˆ@ùI@ùhÊÿµàª!Ôùª`Êÿµ¢/€Ræ„R_‚-€RáɄR¿þÿb.€R¡քR¼þÿ€Ò€Ò€Ò€ÒõքRz.€Rºÿÿ°¥Gù°ÙFù€Òlðÿ—À´óªžðÿ—h@ùÈø7ñhùaTઉÔ‚.€RÁ؄R¢þÿÂ.€RۄRŸþÿ€Ò€ÒUۄR–ÿÿ…ð¥À‘âÑã‘àªáªäª‡e” ø7ô#@ùˆ@ùU@ùˆÝï6þÿàªáª€ÒÔ”öª ÄÿµO”à´€Ò€ÒÕæ„Rº/€R÷ªƒÿÿàªÖ”öªÓÿµÂ/€Rè„Ràªáª€Ҿ”ùªàÓÿµ9”´€ÒÕè„RÚ/€R÷ªvÿÿâªÜ”`Öÿ6â/€Rê„R÷ªÀÐH‘ƒ°c‘òÛÿ—€Òè@ùHðÿ6´h@ùÈø7ñhùaTàª7Ôè'@ùé)y@ù)@ù?ëTàªý{K©ôOJ©öWI©ø_H©úgG©üoF©é#Emÿ‘À_ւ-€R¡ʄR@þÿ€Ò€ÒÕ܄R>ÿÿ€Ò݄R;ÿÿ°©Gù°ÕFù€Òðïÿ—`
´óª"ðÿ—h@ùÈø7ñhùaTàª
Ô".€RaԄR&þÿ€ҕ݄R%ÿÿ€Ò5ç„Rº/€R÷ª+ÿÿàªáª€Òe”óª ÁÿµàÁ” ´¢-€R!̄RþÿÁRíýÿ€Ò€Ò5é„RÚ/€R÷ªÿÿ€Ò/€R߄R¤ÿÿ€Ò"/€Ráà„R ÿÿ€Ò€Ò€Ò5á„R:/€Rÿÿ€ÒB/€Raâ„R–ÿÿ€Ò€Ò€ҵâ„RZ/€R÷þÿØÂ”‚.€RA؄Rîýÿè=@ù@ùÁ°!T"‘¸Á”dÿÿè=@ù@ùÁ°!T"‘±Á”sÿÿ".€RáӄRÝýÿè=@ù@ùÁ°!T"‘§Á”ÂÿÿÿÃÑüo©úg©ø_©öW©ôO	©ý{
©ýƒ‘ôªóªèy@ù@ù	°)¡+‘è'ùé©èq@ùè#ùC´õª6‹4´ŸñÁT"@ùâ#ù¸
@ùS4´ŸñáT"@ùtv@ùˆ@¹1#
TQè4ªýÓÉÐ)y‘ÊÐJU‘ŸñI±‰šêJA@ù@@ùаJ­‘ËÐk©‘j±Ššêө飩ˆð3‘èùÁÐ!¸‘XÁ”á÷„RÀÐ(‘ƒ°c‘"0€R$Ûÿ—€ÒB¸
@ùñ«T€Ò°uEù»b‘h{zøëÀTZ‘ëaÿÿT€Òa{zøàªB€RKe”€5Z‘ë!ÿÿTâBp@ùtv@ùˆ@¹1CTÀø7Âzzø‚´â#ùøª3Á” 	µâBp@ùñŠTtv@ùˆ@¹1BTˆ¹°ÑGùa‚‘@Ðà2‘䐄p@ùãª?ֈ@ùà´óªÈø7ñˆùaTàª1”è'@ùé)y@ù)@ù?ëATàªý{J©ôOI©öWH©ø_G©úgF©üoE©ÿÑÀ_ÖÈø7ñˆùaTઔÀÐ(‘ƒ°c‘Áý„R¢6€R¡ÿÿ…ð¥3‘âÑã‘àªáªäªd”àø7â#@ùtv@ùˆ@¹1ƒøÿTÄÿÿ!ö„R‹ÿÿõ„R‰ÿÿ”ÿÃÑüo©úg©ø_©öW©ôO	©ý{
©ýƒ‘ôªóªèy@ù@ù	°)¡+‘è'ùé©èq@ùè#ùC´õª6‹´ŸñáT7@ù÷#ù¸
@ùX´ŸñT7@ù°ÍDùh@ùI@ùÈ
µ>è4ªýÓÉÐ)y‘ÊÐJU‘ŸñI±‰šêJA@ù@@ùаJ­‘ËÐk©‘j±Ššêө飩¨‘èùÁÐ!¸‘žÀ”!…RÀÐà‘ƒ°c‘â6€Rx¸
@ùñ«T€Ò°uEù»b‘h{zøë€TZ‘ëaÿÿT€Òa{zøàªB€R“d”@5Z‘ë!ÿÿT÷÷r@ù°ÍDùh@ùI@ùµàªÁ”ôªµõ…RNÀø7×zzø—´÷#ùøªuÀ”€µ÷÷r@ùñÊT°ÍDùh@ùI@ùHýÿ´àª?Öôª@ýÿ´HÀ”óª 	´°uEùàªâªGÀ”ø71Gùˆ@ùA@ù–´À°Ø!‘UÁ” 	5àªáªâªÀ?ÖõªQÁ”´ˆ@ùÈø7ñˆùaTàªaÁ”h@ùèø7ñhùTàªZÁ”u…Rˆ@ùÈø7ñˆùaTàªQÁ”´h@ùÈø7ñhùaTàªIÁ”ÀÐà‘ƒ°c‘áªÂ7€RòÙÿ—€Òè'@ùé)y@ù)@ù?ëaTàªý{J©ôOI©öWH©ø_G©úgF©üoE©ÿÑÀ_Ö5…RÙÿÿàªáªâª“À”õª`øÿµÀ”´•…RÎÿÿ¥¥‘âÑã‘àªáªäª-c”ø7÷#@ù°ÍDùh@ùI@ùHòÿµzÿÿa	…RTÿÿÁ…RRÿÿÁ”è=@ù@ùÁ°!T"‘ö¿”ãÿÿÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘ôªóªèy@ù@ù¨ƒøÿ©°!‘	Á‘è'©%‘è©ù9s@ùùCùã´ŸñhTõª<‹ˆ°¡‘‰
it8)	
‹ ÖûªxAøñè#ù‹T€Ò°Å@ùºb‘H{vøë TÖ‘ëaÿÿT€ÒA{vøàªB€R½c”`5Ö‘ë!ÿÿT³¿” ´¡…RƒŸ
ñ@	TŸñaT"@ùHH€RÉÐ)y‘ÊÐJU‘Ÿ
ñI±‰šµˆšêJA@ù@@ùÊÐJ©‘êө飩¨‘èùÁÐ!¸‘Œ¿”¡"…Rf7@ù÷;ùûªvAøös©ßñ
TJü'ù7h@©÷k©ûª|Aøˆñ
Tè#ùv@ùßñKT€Ò°uEù¹b‘({{øë T{‘ßëaÿÿT€Ò!{{øàªB€Rvc”`5{‘ßë!ÿÿT^ü'ù:ˆ@©ú‹©7@ù÷;ù¼
@ù]âBp@ù7h@©tv@ùˆ@¹1ƒT\ õÿ7—{vø÷;ù×ôÿ´ü'ùv@ùßñ‹T€Ò°Aù¼b‘ˆ{zøë@TZ‘ßëaÿÿT€ҁ{zøàªB€RKc”5Z‘ßë!ÿÿTA¿”@µèA@ù@ù*€RÈЩ‘K€Rè«©ÈÐU‘©)‘诩éùÁÐ!¸‘&¿”á…RÀÐ|‘ƒ°c‘8€RòØÿ—€ÒD€üÿ7è'@ùyzøú?ùüÿ´è#@ùшñJóÿTâBp@ùtv@ùˆ@¹1£Tàø7è'@ùy{ø‚´âCùü#@ù¿” µâBp@ùù9s@ùŸñ*Ttv@ùˆ@¹1BTˆ¹°ÕGùa"‘	°)a‘&@ù*u@ù+áEù)@ùùùÿ+¹ë§©I€Ré¹ú+©€p‘ãªD€RåªG€R?ֈ@ùà´óªÈø7ñˆùaTàªý¿”¨ƒZøé)y@ù)@ù?ë¡Tàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñˆùaTàªè¿”ÀÐ|‘ƒ°c‘)…Râ=€RŸÿÿ¥¥‘âC‘ãÑàªá'@ùäªéa”€ø7÷kG©âC@ùtv@ùˆ@¹1ÃöÿT¶ÿÿ¡…RˆÿÿÁ…R†ÿÿa …R„ÿÿͿ”ÿƒÑüo©úg	©ø_
©öW©ôO©ý{
©ýC‘ôªóªèy@ù@ù¨ƒø!)‘	‘è'©ÿ3ùmAùÙð9s@ùõç©£´öª(‹ô´ŸñÀ	TŸ
ñTè'ù5@©õ‹©Ú
@ùƒÂðBp@ùT´Ÿñ€TŸ
ñT"@ù5@ùtv@ùˆ@¹1ƒT|ˆþ~Óè(*ɰ)y‘ʰJU‘’ŸñI±‰šÊðJA@ù@@ùʰJ©‘‹ðk+‘ë'©êÓ©èùÁ°!¸‘_¾”¡8…RÀ°‘ƒc‘‚>€R+Øÿ—€ÒzûªzAøIñTé#©€Ò%Eù×b‘èz|øë Tœ‘_ëaÿÿT€Òáz|øàªB€RPb”`5œ‘_ë!ÿÿTè'ù5@ùõ7ùûªzAøø7è'@ùy|ø¨´è7ùõªú#@ù7¾”µHñ+Tè#ùw@ùÿñkT€ÒuEùÜb‘ˆ{{øëÀT{‘ÿëaÿÿT€ҁ{{øàªB€R&b”€5{‘ÿë!ÿÿTÂðBp@ùtv@ùˆ@¹1cTàø7è'@ùy{ø‚´â;ùú#@ù
¾”@
µÂðBp@ù_ñêTtv@ùˆ@¹1BTˆ¹ÕGùa"‘	)a‘&}Dù*áEù)@ùùùÿ+¹ê§©ÿ¹ê'©`ð`‘ãª$€Råª'€R?ֈ@ùà´óªÈø7ñˆùaTિ”¨ƒZøÉð)y@ù)@ù?ëTàªý{M©ôOL©öWK©ø_J©úgI©üoH©ÿƒ‘À_ÖÈø7ñˆùaTàªë¾”À°‘ƒc‘?…RbG€Riÿÿ…ð¥+‘âC‘㣑àªá'@ùäªì`” ø7õ‹F©tv@ùˆ@¹1#÷ÿT¹ÿÿá5…RSÿÿ6…RQÿÿ5…ROÿÿѾ”ÿÑüo©úg©ø_©öW	©ôO
©ý{©ýÑõªôªÈðy@ù@ù	)¡+‘è/ùé©Óðsr@ùó+ùC´öª7‹5´¿ñÁT"@ùâ+ùÙ
@ùS5´¿ñáT"@ù•v@ù¨@¹1#
TQè5ªýÓɰ)y‘ʰJU‘¿ñI±‰šÊðJA@ù@@ùАJ­‘˰k©‘j±Ššêש飩¨‰‘èùÁ°!¸‘l½”áL…RÀ°À‘ƒc‘"H€R8×ÿ—€ÒIÙ
@ù:ñ«T€ÒuEùÜb‘ˆ{{øëÀT{‘?ëaÿÿT€ҁ{{øàªB€R_a”€5{‘?ë!ÿÿTÂðBp@ù•v@ù¨@¹1CTÀø7âz{ø‚´â+ùùªG½”
µÂðBp@ù?ñjT•v@ù¨@¹1BT¨¹ÕGù"‘óùÿ+¹óÏ©ÿ¹óO©`Р‘ãª€Råªæª€R?֨@ùà´óªÈø7ñ¨ùaTàª>¾”è/@ùÉð)y@ù)@ù?ëATàªý{K©ôOJ©öWI©ø_H©úgG©üoF©ÿ‘À_ÖÈø7ñ¨ùaTàª)¾”À°À‘ƒc‘ÁS…RâL€Ršÿÿ¥¥ˆ‘â‘ãC‘àªáªäª*`”àø7â+@ù•v@ù¨@¹1£÷ÿT½ÿÿ!K…R„ÿÿJ…R‚ÿÿ¾”ÿCÑüo©úg©ø_	©öW
©ôO©ý{©ý‘ôªóªÈðy@ù@ù	)¡+‘¨ƒøéÿ©Üðœs@ùü+ùC´õª6‹t´ŸñT7@ù÷+ù¸
@ùPŸñ T4´è4ªýÓɰ)y‘ʰJU‘ŸñI±‰šÊðJA@ù@@ùАJ­‘˰k©‘j±Ššêө飩Ȱ1‘èùÁ°!¸‘²¼”!a…RÀ°”‘ƒc‘¢M€R~Öÿ—€Ұ¸
@ùñ­T€ÒuEùºb‘H{yøë T9‘ëaÿÿT€ÒA{yøàªB€R¥`”à59‘ë!ÿÿTÿ©ÿùÐ7@ù÷+ùÿ©ÿùÿëATÉÀø7×zyø—´÷+ùÑм”`mµ×ð÷r@ùñê5Tÿ©ÿùÿë 7TöðÖ"9‘ÕÒDùÀ@ù¢@ù᪽”À]´ôª@¹1BTˆ¹ôùåAùˆ@ùI@ù¨]´àª?Öøªà#ù ]´ˆ@ùÈø7ñˆùaTàª|½” €R,½”àù@]´ùªè@¹1BTè¹7ù9¼”à'ùà\´÷ªÔÒDùÀ@ù‚@ùáªT½”À\´öª@¹1BTȹ¡BùÈ@ùI@ùh\´àª?Öõª`\´È@ùˆø7ñÈù  TáAùàªâª¼”à ø7¨@ùÈø7ñ¨ùaTàªH½”@ùA@ù\´ÀØ!‘'½” \5àªáªâª€?Öôª#½””[´@ùÈø7ñùaTàª3½”ÿ#ù(@ùÈø7ñ(ùaTàª+½”ÿùè@ùÈø7ñèùaTàª#½”ˆ@¹1BTˆ¹ˆ@ùÈø7ñˆùaTઽ”ÿ'ù骔
@ùÙGùyBù @ùéù!@¹?Öñ«Töªèc‘!‘w‚‘”"‘Öñ Tuv@ùýAù»@ùàªáª÷¼” ´úª@ù‰@ù´àªáªâª?ÖúªÀµãH@¹1BTH¹{v@ùñAù|@ùàªáªà¼”õª€´¨@ù	‰@ù)´àªáªâª ?Öõª´¨@ù©@¹)1BT©¹Éð)U@ù	ëÁT»@ùûù›´¹
@ùh@¹1ãT(@¹1T¨@ù(ø6
h¹(@¹1BÿÿT(¹¨@ùÈø7ñ¨ùaTસ¼”õª"€Rûÿ©ËàªNîÿ—üªà'ù´h@ùÈø7ñhùaTન¼”ÿù¼´¨@ùˆø7ñ¨ù Tà'@ù@ùhø7ñùTš¼”ગ¼”à'@ù@ùèþÿ6ÿ'ùŠ»”õªàªƒ¨”€ùઁ»”åFùH@ùA@ùù´ÀØ!‘i¼”`5àªáª€Ò ?Öõªe¼”U´H@ùÈø7ñHùaTàªu¼”õ´¨@ùˆíÿ7ñ¨ù!íÿTàªm¼”fÿÿ€Ò€Ҵÿÿàªáª€Ò̻”õªèÿÿH»”`´€ÒäÿÿÈð=@ù@ùÁ!T"‘E»”øÿÿô@ùˆ@¹1BTˆ¹÷ª.àªO¼”áAùàªâª»”`ßÿ6€ÒØS€R³€…Rè@ùÈø7ñèùaTàª?¼”€Òà#@ùà´@ù¨ø7ñùAT6¼”à@ùà´@ù¨ø7ñùAT.¼”´È@ùÈø7ñÈùaTàª&¼”´¨@ùÈø7ñ¨ùaT઼”À°”‘ƒc‘áªâªÇÔÿ—€ÒTµøÈð@ù@ùáªøº”€Ò€ÒxT€R‡…Rô@ùÌÿÿÈð@ù@ùáªíº”S‡…RӉ…RH@ùô@ùÈø7ñHùaTàªù»”€ÒxT€R¹ÿÿ€ÒxT€R“…Rô@ù´ÿÿŰ¥0‘âc‘ãC‘àªáªäªù]”`2ø7÷+@ùÿ©ÿùÿë!ÉÿTtv@ùýAù–@ùàªáªֻ”õª ´¨@ù‰@ù´àªáªâª?ÖõªÀµÔ¨@¹1BT¨¹vv@ùñAù×@ùàªáª¿»” ´ôª@ù	‰@ùi´àªáªâª ?Öà#ù ´ôª@ùÉÐ)U@ù	ëT–@ùöùö´—
@ùÈ@¹1Tè@¹1#T÷#ùˆ@ùHø6ȹè@¹1"ÿÿTè¹÷#ùˆ@ùÈø7ñˆùaTઙ»”"€Rôªèc‘!‘öÿ©
Ëàª-íÿ—÷ªà'ù´È@ùÈø7ñÈùaTઇ»”ÿù×´ˆ@ùÈø7ñˆùaTàª~»”ÿ#ùè@ùÈø7ñèùaTàªv»”l»”øª4@ù@ù?ñ$\úáT@ùhÿÿµ€Ò€Ò€Ò
(@¹1BT(¹6@ùÈ@¹1BTȹàªYº”ôª`‚‘O§”‹º”ÿ'ù´÷ª7@ù@ùùà´@ù¨ø7ñùATM»”´È@ùÈø7ñÈùaTàªE»”´ˆ@ùÈø7ñˆùaTàª=»”´èðåFù¨@ùA@ùt´ ðØ!‘»”€5àªáª€Ҁ?Öôª»”t´¨@ùÈø7ñ¨ùaTàª%»”Ô´ˆ@ùÈø7ñˆùaT઻”¨ƒZøÉÐ)y@ù)@ù?ë¡Tàªý{L©ôOK©öWJ©ø_I©úgH©üoG©ÿC‘À_։@¹)1BT‰¹ô#ùÉÐ)U@ù	ë@êÿT€Ò€ÒlÿÿÈÐ@ù@ùáªæ¹”€Ò€ÒxS€RSj…R»þÿÈÐ@ù@ùáªܹ”ÿ#ù“j…Rm…R¨@ùÈø7ñ¨ùaTàªèº”€Ò€Ò€ÒxS€R¦þÿ€ÒKÿÿÿÿ©À”‘cðc‘áo…R‚S€R‰Óÿ—á#‘â‘ãã‘àª`”÷'@ù`ø7è§C©é£©é£©÷ù`€Rº”À´èªàªûªáª€Ҟçÿ—úª¨@ùÈø7ñ¨ùaTઽº”h@ùÈø7ñhùaTશº”Z´õªÈÐu@ù_ë TÉÐ)m@ù¿	ë T¿ëà
Tàª0º”úªU‹¹”`µàª´äÿ—ôªàù`¢ÿµ€Ò€Òw઺”øªà#ù ¢ÿµ€Ò€Ò€ÒÓ~…RØS€Rà@ù Ëÿµbþÿ€Ò€Ò€ÒØS€R3…RLþÿ€Ò€Ò€ÒØS€RÓ…RFþÿh¹”àµàª‘äÿ—öª`£ÿµ[àªð¹”õªà£ÿµØS€RS€…R0þÿàªáª€Òع”ôªDÿÿ€Ò€ÒxS€Rsz…R-þÿO¹”à	´€Ò;ÿÿàªáªâªɹ”ôªà¤ÿµD¹”`	´€Ò€ÒØS€Ró€…Rþÿsr…R!a_…Rüÿ¿ëúŸ¨@ùÈø7ñ¨ùaTàªKº”šø7Ú4àª+Íÿ—ÿ'ùà@ù(Íÿ—ÿ#ùà@ù%Íÿ—7@ùáªâªãªò_”×Ð÷r@ùŸüÿÁ^…Rdüÿt…R7@ùáªâªãªç_”€Ò€Ò€ÒxS€R÷¼ÿµîýÿ-º”€Ò€Ò€ÒÿùØS€R“~…Ræýÿ€Ò€ÒØS€R€…RÙýÿór…Rçÿÿ“s…RåÿÿÈÐ=@ù@ù¡ð!T"‘¹”¬ÿÿÈÐ=@ù@ù¡ð!T"‘ù¸”°ÿÿ·¹”áªâB©¶äÿ—7@ùáªâªãª¹_”À”‘cðc‘u…RbS€R.üÿÿÑüo
©úg©ø_©öW
©ôO©ý{©ýÑôªøªÈÐy@ù@ù¨øèð‘	a‘
¡‘é«©	¡‘飩ÛÐ{s@ùÿÿ©ûï©ÍDùúGù´ŸñhTõª(‹èùh𱑉
it8)	
‹ ÖöªûªxAøñ‹T€ÒèðMCù¹b‘({wøëÀT÷‘ëaÿÿT€Ò!{wøàªB€R¬\”€5÷‘ë!ÿÿT¢¸”´! …R/ˆÑ
ñhTÜМs@ùið)Å‘ª+ih8J	‹öª@Ö:@ùúGù<@ùüCù6@ùö?ù9@ùù;ùàȐy‘ɐ)U‘Š€RŸñ(±ˆšI¥ŸšÊÐJA@ù@@ùʐJ©‘kðk­‘j±ŠšêÓ©è§©‰ð)<‘éùÁ!¸‘i¸”!¦…RÀ8‘cðc‘âT€R5Òÿ—€Ò÷(hA©èk©÷ª9X@©ù[©¼
@ù‰ú#ù9X@©ù[©ûª|Aø—ñ‹Töã©z@ù_ñK	T€ÒèðuEù¶b‘Èzsøë€Ts‘_ëaÿÿT€ÒÁzsøàªB€RM\”@5s‘_ë!ÿÿT66 @©÷ªö£©9@ùù;ùûª|AøˆñªTÛÐ{s@ùüªŒú#ù9@ùù;ùûª|AøˆñË
Tèù÷ªz@ù_ñ‹T€ÒèðuBù¶b‘ÈzxøëàT‘_ëaÿÿT€ÒÁzxøàªB€R \” 5‘_ë!ÿÿT`ø7è@ùysø¨´üª÷ªèCù
¸”€Ëµ×Ð÷r@ùöãB©ú#@ùˆñ«ùÿTèã©ú#ùøªz@ù_ñT€ÒèðáAù¶b‘ÈzsøëàTs‘_ëaÿÿT€ÒÁzsøàªB€Rö[” 5s‘_ë!ÿÿT`ø7è@ùysø´èGùúªöªÛÐ{s@ùüãB©ුöªú#@ùÛÐ{s@ùø@ù>µŸñüª«T…ð¥<‘â#‘ãÑàªá@ùäªùZ”Äø7ù[G©ükH©!åÿ7è@ùywøù;ù™äÿ´ú#ùøªˆñŠòÿTÜМs@ùöªàø7è@ùyxø–´ö?ùü@ù¶·” ÃµÖÐÖr@ùøª—ñÊêÿTÜМs@ùú#@ùÛÐ{s@ù(@¹1TÈ@¹1#Tßë@Tóª#(¹È@¹1"ÿÿTȹßëÿÿT(@¹1BT(¹h@ùèø7ñhùTÀÐp@ù¨¸”èðFùi@¹)1bTi¹Fù(@ùÈø7ñ(ùaTચ¸”öªèÐIGùè#‘!‘ÿë©âA².êÿ—€k´õªú#ùèð¹Bù@ùI@ùÈk´àª?ÖúªÀk´ÔДv@ù_ë×Ð÷n@ùDWúD[úT_ëùŸàª¸”ùª€sø7H@ùˆø7ñHù@TèÐ!9‘Y59Gù@ù"@ùáªU¸”´úª@¹1BTH¹èðUFùH@ùI@ùȚ´àª?Öùª´ôªøªH@ùÈø7ñHùaTàªR¸”èðéFù(@ùA@ù“™´ ðØ!‘/¸”5àªáª€Ò`?Öúª+¸”Z›´(@ùÈø7ñ(ùaTàª;¸”H@ùóªÈø7ñHùaTàª3¸”èð¹Cù¨@ùI@ùH—´àª?Öùª@—´(@ùÉÐ)U@ù	ëXT:@ùZœ´3@ùH@¹1£Th@¹1ÃT(@ùèø6સ”èÐ!9‘ù5¥ÿÿH¹h@¹1‚þÿTh¹(@ùˆø7ñ(ù T÷ª"€Rùªóªè#‘!‘úÿ©
Ëછéÿ—ûªøª´H@ùÈø7ñHùaTàªõ·”ÔДv@ùû’´(@ùÈø7ñ(ùaTàªë·”¨@ùÈø7ñ¨ùaTàªä·”õªûª×Ð÷n@ùèÐ!9‘ÑDù@ù"@ùáªķ”€V´úª@¹1BTH¹èðBùH@ùI@ùˆV´àª?Öùª€V´H@ùÈø7ñHùaTàª÷”àªáªB€RM·”€U´úª(@ùˆø7ñ(ùÀT_ëT_ëÀT_ë€Tàª8·”ùª[ø7H@ùHø6઩·”_ëAþÿT_ëùŸH@ùˆø7ñHùàT94w@ùH@¹1BTH¹èÐÝGùƒ‘àªáªâª#€R€Ræª?Ö÷ª[µ€Ҕa€R{…R›àªˆ·”9ýÿ5è°!9‘ÑDù@ùB@ùáªk·”@…´ùª@¹1BT(¹èСBù(@ùI@ùH…´àª?Öúª@…´(@ùÈø7ñ(ùaTàªj·”àªáªB€Rô¶”ùª´H@ùÈø7ñHùaTàª]·”?ë€T?ë@T?ëTàªݶ”úª ‰ø7(@ùÈø6?ëúŸ(@ùˆø7ñ(ù Tú4w@ùH@¹1BTH¹èÐáGùƒ‘àªáªâª#€R€Ræª?Ö÷ª PµÛDžRÔa€RùªH@ù¨©ø6Q÷ªàª.·”&ÿÿàª+·”züÿ5è°!9‘ÑDù@ù"@ù᪷”`‡´úª@¹1BTH¹èЙBùH@ùI@ù¨‡´àª?Öùª ‡´H@ùÈø7ñHùaTàª
·”àªáªB€R—¶” †´úª(@ùÈø7ñ(ùaTષ”_ë€T_ë@T_ëT઀¶”ùªàŠø7H@ùÈø6
_ëùŸH@ùÈø7ñHùaTàªê¶”Ù4w@ùH@¹1BTH¹èÐåGùƒ‘àªáªâª#€R€Ræª?Ö÷ª@Dµ€Òb€R;ͅRåè°!9‘ÑDù@ùB@ù᪸¶” †´ùª@¹1BT(¹èÐ¥Bù(@ùI@ù膴àª?Öúªà†´(@ùÈø7ñ(ùaTષ¶”àªáªB€RA¶”ùª†´H@ùÈø7ñHùaTપ¶”?ëÀT?ë€T?ë@Tàª*¶”úªø6€Ò4b€RûЅR¹–µ»?ëúŸ(@ùÈø7ñ(ùaT઒¶”4w@ùH@¹1BTH¹èÐéGùƒ‘àªáªâª#€R€Ræª?Ö÷ª@9µ›҅RTb€RùªH@ùȒø6šèÐõCùÏÿ— ´úªèÐ!Fù@ùI@ùè~´àª?Öùªà~´H@ùÈø7ñHùaTàªe¶”àªáªB€Rﵔà}´úª(@ùÈø7ñ(ùaTàªX¶”_ëÀT_ë€T_ë@Tàªص”ùªø6€Ò€Òtb€R[օRZ_ëùŸH@ùÈø7ñHùaTàª@¶”Ù4w@ùH@¹1BTH¹èÐíGùƒ‘àªáªâª#€R€Ræª?Ö÷ª/µ€Ҕb€RûׅR;èÐõCù¼Îÿ—`w´ùªèÐFù@ùI@ù(w´àª?Öúª w´(@ùÈø7ñ(ùaTશ”àªáªB€RŸµ”ùª@v´H@ùÈø7ñHùaTશ”?ëÀT?ë€T?ë@Tઈµ”úªø6€Ҵb€R»ۅRy‚µ?ëúŸ(@ùÈø7ñ(ùaTàªðµ”4w@ùH@¹1BTH¹èÐñGùƒ‘àªáªâª#€R€Ræª?Ö÷ª%µ[݅RÔb€RùªH@ùˆ~ø6øèÐõCùjÎÿ—`o´úªèÐFù@ùI@ù(o´àª?Öùª o´H@ùÈø7ñHùaTàªõ”àªáªB€RMµ” n´úª(@ùÈø7ñ(ùaTશµ”_ëÀT_ë€T_ë@Tàª6µ”ùªø6€Ò€Òôb€Rá…R¸_ëùŸH@ùÈø7ñHùaTઞµ”Ù4w@ùH@¹1BTH¹èÐõGùƒ‘àªáªâª#€R€Ræª?Ö÷ªÀµ€Òc€R»â…R™èÐõCùÎÿ—Àg´ùªèÐ%Fù@ùI@ùˆg´àª?Öúª€g´(@ùÈø7ñ(ùaTàªsµ”àªáªB€Rý´”ùª f´H@ùÈø7ñHùaTàªfµ”?ëÀT?ë€T?ë@Tàªæ´”úªø6€Ò4c€R{æ…R9nµw?ëúŸ(@ùÈø7ñ(ùaTàªNµ”:4w@ùH@¹1BTH¹èÐùGùƒ‘àªáªâª#€R€Ræª?Ö÷ªÀµè…RTc€RùªH@ùHjø6V ð8‘cÐc‘᱅R"_€RßÍÿ—€Ғડ´”úª€”ÿµ€Òb_€Ra³…R¸
´” µàª3ßÿ—úª ©ÿµ€Òba€R῅R®àª´”ùª)ÿµ€Òta€R;R$€қRta€R(@ù(eø6-èÐõCùŸÍÿ— Z´úªèÐIAù@ùI@ùhZ´àª?Öùª`Z´H@ùÈø7ñHùaTàªø´”àªáªB€R‚´”`Y´úª(@ùÈø7ñ(ùaTàªë´”_ëT_ëÀT_ë€Tàªk´”ùª@ø6€Ò€Òtc€RÛë…Rí€Ò€Òt_€R»³…Rè€Ò€Òta€RÛRã_ëùŸH@ùÈø7ñHùaTàªɴ”ÙT4w@ùH@¹1BTH¹èÐýGùƒ‘àªáªâª#€R€Ræª?Ö÷ª X´H@ùˆø7ñHù TŸëàTè@¹1BTè¹øª¨@ùÈø7ñ¨ùaTત´”´è@ùÈø7ñèùaTજ´”´h@ùÈø7ñhùaTઔ´”È@ùÈø7ñÈùaTઍ´”¨ZøÉ°)y@ù)@ù?ëHTàªý{O©ôON©öWM©ø_L©úgK©üoJ©ÿ‘À_Öàª|´”ŸëaùÿTú#@ùH@¹1BTH¹Á°!@ùàªB€Rþ³”ùª€&´?ëÀTȰm@ù?ë@T?ëTàªì³”øª ,ø7(@ùÈø6?ëøŸ(@ùˆø7ñ(ùT˜5Á°!P@ùàªB€R೔ùª`0´?ë@TȰm@ù?ëÀT?ë€Tàªγ”øª@5ø7(@ùHø6àª?´”x5çÿÿ?ëøŸ(@ùÈø7ñ(ùaTàª4´”H@ùÈø7ñHùaTàª-´”¸ïÿ4è°!9‘ÑDù@ù@ù᪴” ´ùª@¹1BT(¹èÐAù(@ùI@ùˆ´àª?Öüª€´(@ùÈø7ñ(ùaT઴”ˆ@ùɰ)U@ù	ë T€Ò€Ré#‘)!‘øß©!M(Ëઝåÿ—úª´@ùÈø7ñùaTàªø³”ú´ˆ@ùÈø7ñˆùaTàªð³”èÐQEùH@ùI@ù(´àª?Öùª ´H@ùÈø7ñHùaTàªà³”è°1GùàªB€Ri³”à´úª(@ùÈø7ñ(ùaTàªҳ”_ëÀTȰm@ù_ë@T_ëTàªP³”øª"ø7H@ùÈø6
_ëøŸH@ùÈø7ñHùaT઺³”Xáÿ4ú#@ùH@¹1BTH¹H@ùɐ)U@ù	ë`T€Ò€Ré#‘)!‘ùß©!M(ËàªBåÿ—øª´(@ùÈø7ñ(ùaTઝ³”ø´H@ùÞÿ7ñHù¡ÝÿTક³”êþÿy²” µàª¢Ýÿ—úª`eÿµ€Ң_€R!µ…Ràªþ²”ùª€eÿµ€Ҵ_€R{µ…R“àªáª€Ò岔úª`gÿµ€Ò۶…R´_€Róª(@ù(2ø6•àªé²”ùªiÿµ€ÒB`€RA¸…R Ð8‘c°c‘N²”óªà1´€Ò۶…R´_€R(@ùˆ/ø6€÷ª€Ò€ÒXûÿ€Òۺ…RT`€R(@ùH.ø6v;²” µàªdÝÿ—ùªàzÿµ€Ңa€RAŅRßÿÿàª2”úª{ÿµ€қŅR´a€R(@ùÈ+ø6b÷ª€Ò;ûÿ€Ҵa€RûŅRLd€R»ó…RI²” µàªFÝÿ—ùª€âÿµ"d€Ráö…RÂÿÿણ²”üªÀâÿµ;÷…R4d€R(@ùH(ø6Fùª˜@ùx*´“@ù@¹1#Th@¹1CTˆ@ùhø6_4d€RÛù…Rùªˆ@ùè%ø63ઇ²”ùª åÿµ4d€R[ú…R4d€R»ú…R(@ùh$ø6'€Ҵa€R;ƅR™#µ"d€RÛó…Rb…RsùÿôªY@ù™%´è#@ù	@ù(@¹1£TH@¹1ÃTè#@ù@ùèø6LTd€RÛþ…RùªH@ùˆ ø6ͱ”àµàªöÜÿ—úª×÷n@ù€xÿµ€Òâa€R¡ʅRoÿÿàªP²”ùª xÿµ€Òôa€RûʅRå€Ò[˅Rôa€R(@ùHø6îd€R»ô…RÜᡅR?ùÿa£…R=ùÿ¹h@¹1õÿTh¹ˆ@ùÈø7ñˆùaT઻²”(€Rüªóª°þÿ€Ò4d€Rûú…RÄ¡…R'ùÿ(¹H@¹1‚÷ÿTH¹è#@ù@ùèø7ñé#@ù(ùaTà#@ù£²”(€Róªôþÿ€Ò€Òôa€R›˅R¬d€RÛô…R©}±”àµàª¦Üÿ—ùª×÷n@ù@yÿµ€Ò"b€RЅRÿÿલ”úª`yÿµ€Ò[ЅR4b€R(@ùÈø6¢€Ò4b€R»ЅR€Òbb€RaՅR
ÿÿàªî±”ùª`ÿµ€Òtb€R»ՅRƒ€ÒօRtb€R(@ùø6Œ€Ңb€RÁڅRûþÿàªܱ”úª ‰ÿµ€ÒۅR´b€R(@ùHø6~€Ҵb€R{ۅRk€Òâb€R!à…Réþÿàªʱ”ùª ‘ÿµ€Òôb€R{à…R_€ÒÛà…Rôb€R(@ùˆø6hJ²”€Ò"c€Rå…RÖþÿષ±”úªÿµ€ÒÛå…R4c€R(@ù¨
ø6Y€Ò4c€R;æ…RF€Òbc€Ráê…RÄþÿથ±”ùªà¥ÿµ€Òtc€R;ë…R:€қë…Rtc€R(@ùèø6Cøªóªè°¡@ùë`
T¨@ù	­B9© 6ɐ)a@ù	ë	Táªá±”ùª€	´è°©Gùè#‘!‘ÿç©âA²§ãÿ—	´öª(@ùÈø7ñ(ùaTલ”àªßÿ—È@ùÈø7ñÈùaTàªù±”€ÒÂc€RAñ…Röªóª†þÿ€Ҕc€R{í…RH@ùÈø7ñHùaTàªé±”´(@ùÈø7ñ(ùaTàªá±” Ð8‘c°c‘áªâªŠÊÿ—€Ò.ýÿȐ=@ù@ù¡°!T"‘¾°”lþÿ€Rÿÿ€Róªú#@ùþÿáª'±”ùªÀöÿµ€ÒÂc€Rað…RÎÿÿ€һð…RÔc€Röªóª(@ùèúÿ6ÛÿÿÿÃÑüo©úg©ø_©öW©ôO	©ý{
©ýƒ‘ôªóªÈy@ù@ùè'ùè°a‘èÿ©C´õª6‹´ŸñT @ùàù¸
@ù:ŸñAT @ùàùvW”ôª±T›º
@ùXñ‹T€Òè°
Cù»b‘h{yøë€T9‘_ëaÿÿT€Òa{yøàªB€RpT”@59‘_ë!ÿÿTf°”`´A†R„ȐA@ù@ùh°­‘*€RèÓ©¨Ð™‘‰Ð)ù)‘è«©éù¡Ð!¸‘J°”A†Rr@ýÿ7Àzyøàùàüÿ´ñj+T?W”ôª± ,Tˆщ
‘ñ5±ˆšè°¡Dùh@ùI@ùH&´àª?Ööª@&´°”óª@&´¨þB“‘‚°”÷ª &´è°uEùàªâª°”à
ø7è@ùÈø7ñèùaTàª?±”è!9‘ÑDù@ù¢@ùáª#±”à#´÷ª@¹1BTè¹è°Fùè@ùI@ùˆ#´àª?Öõª€#´è@ùˆø7ñèù Tè°áAùàªâªí¯”àø7¨@ùÈø7ñ¨ùaT઱”è°íFùÈ@ùA@ù÷%´ °Ø!‘ô°”À&5àªáªâªà?Öõªð°”µ%´È@ùÈø7ñÈùaT઱”h@ùÈø7ñhùaTàªù°”è°Aù¨@ùI@ù$´àª?Öóª$´¨@ùÈø7ñ¨ùaTàªé°”h@ùא÷V@ùë!#Tv@ù¶#´u
@ùÈ@¹1CT¨@¹1cTh@ùˆø6€Ҕ†RˆÈ¹¨@¹1âþÿT¨¹h@ùÈø7ñhùaTàªɰ”(€Róªéã‘)!‘ê°JFùö«©!M(ËàªZâÿ—õª´È@ùÈø7ñÈùaTવ°”•´h@ùÈø7ñhùaTભ°”è°ùEù¨@ùI@ù¨´àª?Öóª¨@ù ´Èø7ñ¨ùaTઝ°”h@ùëaTv@ùV´u
@ùÈ@¹1ãT¨@¹1Th@ù(ø6
ȹ¨@¹1BÿÿT¨¹h@ùÈø7ñhùaTં°”"€Róªèã‘!‘öÿ©
Ëàªâÿ—õª´È@ùÈø7ñÈùaTàªq°”•´h@ùÈø7ñhùaTàªi°”àªáª€Ò€Ò€R%€R|V”¨@ù€´óªˆ
ø7ñ¨ù!
TàªY°”fàªV°”è°áAùàªâª¯”`æÿ6€Òt†RØh€RÈ@ùÈø7ñÈùaTàªF°”´h@ùÈø7ñhùaTàª>°”´è@ùÈø7ñèùaTàª6°”´¨@ùÈø7ñ¨ùaTàª.°” ÐØ‘c°c‘áªâª3છ¯”öªÚÿµÔ†RØh€Róÿÿ€Ò€Ò†RÏÿÿ€ÒT†RÌÿÿþ®”@µàª'Úÿ—÷ª@Üÿµnઆ¯”õªÀÜÿµ†Røh€R¿ÿÿ…Хø)‘âã‘ãÑàªáªäªR”@ø7à@ùÛU”ôª±¡ÓÿT⮔`Óÿ´Á†R ÐØ‘c°c‘¢d€R¤Èÿ—€Òè'@ùɐ)y@ù)@ù?ëáTàªý{J©ôOI©öWH©ø_G©úgF©üoE©ÿÑÀ_ÖàªáªâªG¯”õªÛÿµ€Ҵ†RŽÿÿ.” ´€Ò€Ҵ†RˆÿÿàªI¯”óª@Üÿµ4†Røh€R¨@ùhóÿ6Ÿÿÿ€Ò€Rÿÿ€ÒÔ!†R€Rþþÿàª8¯”óª¨@ù ãÿµT"†Rhø7øh€Rñ¨ùñÿT‰ÿÿ€Ò€Ò6ÿÿ€Òô$†Røh€Rh@ùÈíÿ6rÿÿ€Ò.ÿÿt%†Rèýÿ6øh€R|ÿÿá†R®ÿÿ©¯”€Ò€ÒÔ†Røh€RUÿÿ¨ð=@ù@ù¡!T"‘‡®”ÂÿÿÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘ôªóª¨ðy@ù@ù¨ƒøè!‘	%‘è'©	á!‘‘é#©ÿ3ù¨ðq@ùÿ£©©ð)u@ù飩㴟ñTõª(‹èùhÕ‘‰
it8)	
‹ ÖúªVAøÛñ‹T€ÒèÅ@ù¹b‘({xøë T‘ßëaÿÿT€Ò!{xøàªB€RJR”à
5‘ßë!ÿÿT@®”À´a3†R-ˆÑ
ñ(T¹ð9w@ù¤ð„p@ùi)鑪+ih8J	‹øª@Ö$@ù9@ù8@ù7@ùÀ¨°y‘©°)U‘Š€RŸñ(±ˆšI¥ŸšªðJA@ù@@ùª°J©‘kk­‘j±ŠšêÓ©è§©‰°)‰4‘éù¡°!¸‘	®”a9†R °ì‘cc‘"i€RÕÇÿ—€Ҥ7@ù÷7ùúª[Aø7`@©÷ã©úª[AøB8ä@©øg©7@ù÷7ùúª[AøhñêT¤ð„p@ùŠ9A©ù“©7`@©÷ã©»
@ù‚ õÿ7è@ùyxø÷7ù7õÿ´hñ+TèùV@ùßñKT€ÒèuEù¹b‘({|øë Tœ‘ßëaÿÿT€Ò!{|øàªB€RÙQ”`5œ‘ßë!ÿÿT¹ð9w@ù¤ð„p@ùøª_àø7è@ùy|ø˜´ø;ùû@ùm”`µ¸ðs@ùhñ+TèÏ©\@ùŸñ+T€ÒèEù³b‘hzvøë€TÖ‘ŸëaÿÿT€ÒazvøàªB€R®Q”@5Ö‘Ÿë!ÿÿT
¹ð9w@ù¤ð„p@ù5àø7è@ùyvø™´ù?ùû@ù—­” 	µ¹ð9w@ùó@ùhñkóÿTèÏ©\@ùŸñ‹T€Òè%Dù³b‘hzvøëàTÖ‘ŸëaÿÿT€ÒazvøàªB€RƒQ” 5Ö‘Ÿë!ÿÿTàø7è@ùyvø„´äCùû@ùq­” µ¤ð„p@ùó@ùñŠTàªáªâªãªU”¨ƒZø©ð)y@ù)@ù?ë¡Tý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_օ°¥ˆ4‘â‘㣑àªá@ùäªzP”ø7÷ãF©ù“G©âÿÿ6†R:ÿÿ!5†R8ÿÿ¡6†R6ÿÿA4†R4ÿÿ`®”ÿƒÑë+
mé#müo©úg
©ø_©öW©ôO©ý{©ýC‘óªõª¨ðy@ù@ù¨øè¡‘	Á‘飩	‘éÿ©DùDùøÛ©·ð÷r@ù÷Gù_ñƒ´hTôª(‹è+ùhù‘‰
is8)	
‹ ÖûªzAø\ñTõ'ù€ÒèMCù™b‘({uøë 	Tµ‘_ëaÿÿT€Ò!{uøàªB€RQ”`5µ‘_ë!ÿÿTJT»ð{s@ùh	‘‰
is8)	
‹ Ö;@ùûGù6@ùöCù8@ùø?ù–h€Rñ賈š©°)y‘ª°JU‘I±‰šªðJA@ù@@ùª°J©‘êϩ飩ˆÐá+‘èù¡°!¸‘Ԭ”Z‡R °°!‘cc‘Bƒ€R Æÿ—€ҋ8@ùø?ùûªzAø8X@©øÛ©ûªzAø@6ì@©öo©8@ùø?ùš
@ùf`ø7è+@ùyuø´è?ùøªúªõ'@ù·ð÷r@ù¸¬”õ'@ù·ð÷r@ù €µHñkTèW©y@ù?ñëT€ÒèuBùœb‘ˆ{uøëàTµ‘?ëaÿÿT€ҁ{uøàªB€R¤P” 5µ‘?ë!ÿÿT@ø7è+@ùyuøè´èCùöªúWD©·ð÷r@ù¬”õ'@ù·ð÷r@ù@{µHñKTè'ùüªy@ù?ñëT€ÒèuEù›b‘h{uøë@Tµ‘?ëaÿÿT€Òa{uøàªB€RzP”5µ‘?ë!ÿÿT»ð{s@ùàø7è+@ùyuø›´ûGùú'@ùe¬”àuµ»ð{s@ùõª·ð÷r@ù_ñÊaTüˆÛGùAùµ@ù€€R?Öáªàª€R€R €R€Ò`?ÖàB´óª@¹1BTh¹h@ùÈø7ñhùaTàª]­”ˆÛGùAùµ@ù€€R?Öáªàª€R€R €R€Ҁ?Öôª€@´ˆ@¹1BTˆ¹ˆ@ùˆø7ñˆù@"Tˆ@¹i@¹(*ˆ"4û+ùÛð{#9‘vÓDù`@ùÂ@ùáª%­”`>´úª@¹1BTH¹èÝEùH@ùI@ùˆ>´àª?Öùª€>´H@ùÈø7ñHùaTàª$­”(@ù·ð÷V@ùëÀ=T€R€Òéc‘)!‘øÓ©ó7ù!M(Ë2઱Þÿ—öª´@ùÈø7ñùaTàª­”ö<´(@ùÈø7ñ(ùaTભ”È@¹1BTȹˆÛGùAùàª?Öøª`;´@¹1BT¹@ùÈø7ñùaTàªï¬”zÓDù`@ùB@ùáªլ” 9´ùª@¹1BT(¹èå@ù(@ùI@ùˆ9´àª?Öúª(@ù€9´Èø7ñ(ùaTàªԬ”yÓDù`@ù"@ù᪺¬” 9´üª@¹1BTˆ¹è±Bùˆ@ùI@ù¨9´àª?Öûª 9´ˆ@ùÈø7ñˆùaTહ¬”h@ùëà8T€R€Òéc‘)!‘ùã©!M(ËàªIÞÿ—üª´(@ùÈø7ñ(ùaTત¬”<8´h@ùÈø7ñhùaTજ¬”H@ùë@7T€R€Òéc‘)!‘ûó©!M(Ëàª,Þÿ—ùª·ð÷r@ù´h@ùÈø7ñhùaTઅ¬”ˆ@ùÈø7ñˆùaTàª~¬”û+@ùY5´H@ùÈø7ñHùaTàªu¬”¨ðu@ù?ëÀT©ð)m@ù?	ë@T?ëTàªñ«”úª@Eø7(@ùÈø6
?ëúŸ(@ùÈø7ñ(ùaTàª[¬”š14¹v@ù(@¹1BT(¹èÕGù¡‚‘é)a‘&@ù)áEù÷ùÿ+¹é›©ÿ¹ø© ð‘âªãªD€R媀R?Ö0´õª(@ùhø7ñ(ùTàª8¬”h@ùÈø6ºàª3¬”ˆ@¹i@¹(*ÈÝÿ5àª.«”@`
~ jaT«” @µàª&«”	@` jaT«”à?µ)9hÈð!9‘ÑDù@ùÂ@ù᪬”`+´úª@¹1BTH¹è±BùH@ùI@ùˆ+´àª?Öùª€+´H@ùÈø7ñHùaTબ” A`«”öªà*´(@ù©ð)U@ù	ëà*T€Ò€Réc‘)!‘øÛ©!M(ËઌÝÿ—üª´@ùÈø7ñùaTàªç«”È@ùÈø7ñÈùaTàªà«”|)´(@ùÈø7ñ(ùaTàªث”¨ðu@ùŸëÀT©ð)m@ùŸ	ë@TŸëTàªT«”öªÀ5ø7ˆ@ùÈø6
ŸëöŸˆ@ùÈø7ñˆùaTા«”ö%4¼v@ùˆ@¹1BTˆ¹A`ºª”ùª`'´ A`¶ª”úª '´ÈðÕGù¡‚‘Éð)a‘&@ù)áEù÷ùÿ+¹é›©ÿ¹ú© БâªãªD€R媀R?֠%´õªˆ@ùÈø7ñˆùaTઓ«”(@ùÈø7ñ(ùaTઌ«”H@ùÈø7ñHùaTઅ«”€Ò€Òh@ùÈø7ñhùaTàª|«”´ˆ@ùÈø7ñˆùaTàªt«”´@ùÈø7ñùaTàªl«”´È@ùÈø7ñÈùaTàªd«”¨Xø©Ð)y@ù)@ù?ëá2Tàªý{Q©ôOP©öWO©ø_N©úgM©üoL©é#Kmë+Jmÿƒ‘À_֠°!‘Cðc‘!c‡R‚€R\ýÿ€Ò€Òe‡R·€Rm,ª” µàªUÕÿ—úªÀÁÿµ€Ò€ÒU{‡R—‘€Rbરª”ùªÀÁÿµ€Ò€Ò€җ{‡R•‘€R%öª8@ù8-´5@ù@¹1ÃT¨@¹1ãT(@ùø6Ô€Ò€ҕ‘€R7~‡R‡R’€RCª” µàª+Õÿ—ùª€Æÿµõ‚‡R7’€R:ઈª”úª(@ùÀÆÿµÈø7ñ(ùaTàª	«” °!‘Cðc‘!ƒ‡R"’€R.穔 µàªÕÿ—üª€Æÿµ€Ò€җƒ‡R(àªlª”ûª Æÿµ€Ò5’€R׃‡RÚüªy@ù9%´u@ù(@¹1ƒT¨@¹1£Th@ùÈø6¢€Òw†‡R÷ª[@ù{#´U@ùh@¹1T¨@¹1#TH@ùHø6¦€ÒW‰‡R5’€RÂÈð¹GùÈð%Gù€Ң×ÿ—!´ùªÔ×ÿ—(@ùhø7Ջ‡RW’€RB€Òu’€Rw‡R¸¢©” µàªËÔÿ—úªÀÔÿµ€Ò€ÒUl‡Rw€RØàª&ª”ùªÀÔÿµ€Ò€Ò€җl‡Ru€R›€Ò€Òu€R÷l‡Ržúª÷ª8@ùX´5@ù@¹1ƒT¨@¹1£T(@ùÈø6²€Ò€Ò€Òu€R—o‡RŠÈð¹GùÈð%Gù€Òb×ÿ— ´ùª”×ÿ—(@ùÈø7€Ò€Òr‡R—€Rñ(ùaTàª{ª” €Ò€Ò€Òõ€R·u‡R^€Ò€Ò‘€R÷v‡RY€Ò€ÒՐ€R7x‡RT…°¥à+‘âc‘ãã‘àªá+@ùäªrL”€ø7øÛG©ûG@ùèüÿ¹¨@¹1bæÿT¨¹(@ùÈø7ñ(ùaTàªRª”(€Rùªõª2ýÿ(¹¨@¹1¢ìÿT¨¹h@ùÈø7ñhùaTàªBª”(€Rûªõª‹ýÿ€Ò׉‡R5’€R4h¹¨@¹1"ìÿT¨¹H@ùÈø7ñHùaTàª.ª”(€Rúªõª”ýÿՋ‡RW’€RM€Ò€ҵh‡R€RH€Ò€Òõi‡R7€RC€Ò€Ò€Ò€Òu€Rp‡Rˆ@ùÈø7ñˆùaTપ”€Ò´H@ùÈø7ñHùaTપ”´(@ùÈø7ñ(ùaTàªÿ©”´h@ùÈø7ñhùaTàª÷©” °!‘Cðc‘áªâª¹¨@¹1¢êÿT¨¹(@ùÈø7ñ(ùaTàªä©”(€Rùªõª÷ªéýÿ€Ò€Òr‡R—€R °!‘Cðc‘áªâª„Âÿ—€Òh@ù(Êÿ6UþÿaW‡RÙûÿX‡R×ûÿV‡RÕûÿ¡U‡RÓûÿʩ”€Rvÿÿ€R„ÿÿ€R–ÿÿU‹‡RW’€Räÿÿ€RÛÿÿ€Ò€ҕq‡RÝÿÿÿƒÑø_©öW©ôO©ý{©ýC‘óªôª¨Ðy@ù@ùèùµh@¹1BTh¹h
@ù¨´±@TÈðÍDùˆ@ùI@ù´àª?Öõª´a¨”ôªà´ÈðuEùàªâª`¨”Àø7ÈÐ1Gù¨@ùA@ù´€ðØ!‘n©” 5àªáªâªà?Ööªj©”–´¨@ùèø7ñ¨ùTàªz©”9ÈðÍDùˆ@ùI@ù¨´àª?Öôª ´ˆ@ù©Ð)U@ù	ë¡T•@ùu´–
@ù¨@¹1ãTÈ@¹1Tˆ@ù(ø6
¨¹È@¹1BÿÿTȹˆ@ùÈø7ñˆùaTàªS©”"€Rôªè#‘!‘õÿ©
ËàªçÚÿ—öª´¨@ùÈø7ñ¨ùaTàªB©”Ö´ˆ@ùÈø7ñˆùaTàª:©”h@ùø7ñhù¡Tàª3©”è@ù©Ð)y@ù)@ù?ë`T:v¢‡R¨@ùÈø7ñ¨ùaTàª$©”u˜€R´ˆ@ùÈø7ñˆùaT઩” P"‘Cðc‘áªâªÄÁÿ—€Òh@ùHûÿ6è@ù©Ð)y@ù)@ù?ë!Tàªý{E©ôOD©öWC©ø_B©ÿƒ‘À_Öõªàªէ”Àêÿ´Ð!|$‘઀RÖJ”êÿ5€Òè@ù©Ð)y@ù)@ù?ë ýÿTõ¨”¶š‡R˜€RÕÿÿàªc¨”õª@êÿµö¡‡Ru˜€RÎÿÿàª\¨”ôª îÿµ6œ‡R5˜€RÇÿÿ6¢‡Rµÿÿ€Ò€Ҍÿÿ¶ž‡R5˜€Rˆ@ù(÷ÿ6½ÿÿ€҅ÿÿàªáªâª8¨”öªàéÿµ³§”`´–¢‡R ÿÿ¨Ð=@ù@ùð!T"‘°§”øÿÿÿƒÑø_©öW©ôO©ý{©ýC‘óªôª¨Ðy@ù@ùèùµh@¹1BTh¹h
@ù¨´±@TÈð­Eùˆ@ùI@ù´àª?Öõª´l§”ôªà´ÈðuEùàªâªk§”Àø7ÈÐ1Gù¨@ùA@ù´€ðØ!‘y¨” 5àªáªâªà?Ööªu¨”–´¨@ùèø7ñ¨ùTઅ¨”9Èð­Eùˆ@ùI@ù¨´àª?Öôª ´ˆ@ù©Ð)U@ù	ë¡T•@ùu´–
@ù¨@¹1ãTÈ@¹1Tˆ@ù(ø6
¨¹È@¹1BÿÿTȹˆ@ùÈø7ñˆùaTàª^¨”"€Rôªè#‘!‘õÿ©
ËàªòÙÿ—öª´¨@ùÈø7ñ¨ùaTàªM¨”Ö´ˆ@ùÈø7ñˆùaTàªE¨”h@ùø7ñhù¡Tàª>¨”è@ù©Ð)y@ù)@ù?ë`T:µ‡R¨@ùÈø7ñ¨ùaTàª/¨”õ €R´ˆ@ùÈø7ñˆùaTàª&¨” ä"‘Cðc‘áªâªÏÀÿ—€Òh@ùHûÿ6è@ù©Ð)y@ù)@ù?ë!Tàªý{E©ôOD©öWC©ø_B©ÿƒ‘À_Öõªàªà¦”Àêÿ´Ð!T6‘઀RáI”êÿ5€Òè@ù©Ð)y@ù)@ù?ë ýÿT¨”V­‡R• €RÕÿÿàªn§”õª@êÿµ–´‡Rõ €RÎÿÿàªg§”ôª îÿµ֮‡Rµ €RÇÿÿִ‡Rµÿÿ€Ò€ҌÿÿV±‡Rµ €Rˆ@ù(÷ÿ6½ÿÿ€҅ÿÿàªáªâªC§”öªàéÿµ¾¦”`´6µ‡R ÿÿ¨Ð=@ù@ùð!T"‘»¦”øÿÿÿƒÑüo©úg	©ø_
©öW©ôO©ý{
©ýC‘÷ªüª¨Ðy@ù@ùÉð)¡‘¨ƒø(Á‘è'©(‘詺°Zs@ùÿk©ú;ùã´ÿñHTøª(‹èùHБ‰
iw8)	
‹ ÖöªÕAø»ñ‹T€ÒÈÐMCùc‘({tøëàT”‘¿ëaÿÿT€Ò!{tøàªB€R‚J” 5”‘¿ë!ÿÿTx¦”´GR'¶°Ör@ùÿñ€
Tÿ
ñ TÿñÁT6@ùö;ù3@ùó7ùLˆðy‘‰ð)U‘j€Rÿñ(±ˆšI¥Ÿšª°JA@ù@@ùŠðJ©‘KÐk­‘j±Ššêߩ觩‰Ð)
‘éùð!¸‘G¦”AƇR€ð|#‘CÐc‘"¡€RÀÿ—€Òj4@ùô3ùöªÛAøH4L@©ôO©öªÛAøhñË
Tèó©Ù@ù?ñËT€ÒÈÐuEùc‘ˆ{uøë Tµ‘?ëaÿÿT€ҁ{uøàªB€R.J”à5µ‘?ë!ÿÿT3Ø@©óÛ©4@ùô3ù@ùóª4@ùô3ùNàø7è@ùyuø–´ö;ùû@ù¦”À^µ¶°Ör@ùü@ùñT…Х‘â‘パàªá@ùäª.I”`^ø7ôOF©ö;@ù4àðÿ7è@ùytøô3ùtðÿ´hñ+Tèó©Ù@ù?ñT€ÒÈÐuBùc‘ˆ{uøë`Tµ‘?ëaÿÿT€ҁ{uøàªB€RëI” 5µ‘?ë!ÿÿT¶°Ör@ùóªàø7è@ùyuø“´ó7ùû@ùե” Zµ³°sr@ùü@ùhñŠòÿT¶°Ör@ùˆ@¹1BTˆ¹h@¹1BTh¹È°!9‘9Gù@ùâ@ùáªæ”øªë`T>´@¹1BT¹ÈÐUFù@ùI@ù>´àª?Ö÷ª>´@ùÈø7ñùaTàª&”ÈÐÁ‘@ùAù@ùI@ùè<´?Öùªà<´}¥”úªà<´ÈÐMCùàªâª|¥”ø7ÈÐuBùàªâªv¥” ø7Ȱ1Gù(@ùA@ùÕD´€ÐØ!‘„¦”`E5àªáªâª ?Öøª€¦”XD´(@ùÈø7ñ(ùaTઐ¦”H@ùÈø7ñHùaTઉ¦”è@ù©°)U@ù	ë€BT€Ò€Ré‘)!‘ùc©ÊÐJµGùê+ù!M(Ë2àªØÿ—úª´(@ùÈø7ñ(ùaTàªo¦”@ùÈø7ñùaTàªh¦”z@´è@ùˆø7ñèù TH@ùhø7ûªñHùT“85´@¹1BT¹ÈÐUFù@ùI@ùè5´àª?Öùªà5´@ùÈø7ñùaTàªF¦”ÈС‘@ù‘Aù@ùI@ù5´?Öøª5´¥”úª€5´ÈÐMCùàªâª¥”³°sr@ù@ø7Ȱ1Gù@ùA@ùu9´€ÐØ!‘¦”:5àªáªâª ?Ö÷ª
¦”÷8´@ùÈø7ñùaTદ”H@ùÈø7ñHùaTદ”(@ù©°)U@ù	ë€7T€Ò€Ré‘)!‘ø_©ÊÐJµGùê+ù!M(Ë2ઞ×ÿ—úª´@ùÈø7ñùaTàªù¥”è@ùÈø7ñèùaTàªò¥”z5´(@ùÈø7ñ(ùaTàªê¥”H@ùÈø7ñHùaTàªã¥”ˆ@¹1BTˆ¹h@ùèø7ñhùT °p@ùץ”ÈСFùi@¹)1bTi¹¡Fùˆ@ùhø7úªóªñˆù¡Tàªǥ”v¬€RµۇR™v¬€RÕۇR–€ÒЇRv«€RŠóªàª¸¥”H@ùèêÿ6ûªÈСDùˆ@ùI@ùè´àª?Öôªà´h@ùµ°µR@ùëTàªý¤”÷ª€#´è@ùÉÐ8¡FùëA#Tè
@ùÈ
7=ñˆTé@¹@’(¥›‘Ƥ”øª ´è@ùÈø7ñèùaTઌ¥”@€R<¥”÷ª´h@¹1BTh¹ûâ©J¤”øª ´ÈÐuEùàªâªI¤” ø7ÈБ@ùý@ùàªB¤”€ø7ˆ@ùA@ù&´€ÐØ!‘R¥” &5àªáªâª ?ÖõªN¥”•%´ˆ@ùÈø7ñˆùaTàª^¥”è@ùÈø7ñèùaTàªW¥”@ùˆø7ñù@
TôªKh@¹1BTh¹ÈСFù÷ªh
@ùˆõ6@¹1BöÿT¹°ÿÿõã‡Rä‡Rˆ@ùÈø7ñˆùaTàª8¥”֬€R˜´€Ò€Òôª@ùÈø7ñùaTàª,¥”´(@ùÈø7ñ(ùaTàª$¥”Z´H@ùø7ñHù¡Tથ”ôªûª7´è@ùÈø7ñèùaTથ”ûª€ð|#‘CÐc‘áªâª¹½ÿ—€Òôª´ˆ@ùÈø7ñˆùaTàªÿ¤”h@ùÈø7ñhùaTàªø¤”¨ƒZø©°)y@ù)@ù?ëTàªý{M©ôOL©öWK©ø_J©úgI©üoH©ÿƒ‘À_Öàªç¤”ôªàÿÿʣ” µàªóÎÿ—øªÂÿµ"¬€RهR3àªP¤”÷ª@Âÿµ€Ò6¬€RÕهRùª©ÿÿH¤”ùª`Ãÿµv¬€R5ۇR¶ÿÿv¬€RuۇR ÿÿàª>¤”ôª`ãÿµ֬€RÕá‡R´ÿÿUâ‡Rƒÿÿµâ‡Rÿÿ	@’ýCÓ¡	›	ñàT	±Té"C)(yªèËÿÿµã‡Rtÿÿ—£” µàªÀÎÿ—øªàÊÿµB«€Rá͇R€ð|#‘CÐc‘U½ÿ—€Ҟÿÿત”ùª`Êÿµ€Ò€ҳ°sr@ù5·RV«€Rfÿÿ
¤”øª@Ëÿµ€Ò€Òv«€R•χR³°sr@ùdÿÿ€ҳ°sr@ùÕχRv«€RVÿÿ€Òâ‡RGÿÿ©°)I@ù	ë Tàªáªʣ”éþÿàªáªâªà£”øª ¼ÿµ[£”`´v¬€RõۇRGÿÿù@ù¹½ÿ´õ
@ù(@¹1cT¨@¹1ƒTè@ù¨ø6I6¬€RÕ߇RKÿÿàªáªâªţ”÷ª€Çÿµ@£”à´€ҳ°sr@ù5ЇRv«€R!ÿÿ8@ù¸Èÿ´5@ù@¹1ÃT¨@¹1ãT(@ùø6<€ÒV«€RԇR³°sr@ùÿÿàªáªâª¤£”õªàÚÿµ£” ´5ä‡RøþÿAÇRÌüÿé"C)(yª›þÿ¨2@ù@ùàªáª?֗þÿáÇRÁüÿ(¹¨@¹1Â÷ÿT¨¹è@ùÈø7ñèùaTત”(€R÷ª™ýÿa‡R°üÿ¹¨@¹1bùÿT¨¹(@ùÈø7ñ(ùaTàª¤”(€Rùªþýÿà
@ý(€Rbž(a£”oþÿ¤”¨°=@ù@ùÐ!T"‘袔ˆÿÿ¨°=@ù@ùÐ!T"‘ᢔœÿÿ¨°=@ù@ùÐ!T"‘ڢ”¶ÿÿÿÑüo©úg©ø_©öW	©ôO
©ý{©ýÑõªôª¨°y@ù@ùÉÐ)¡+‘è/ù驳°sr@ùó+ùC´öª7‹5´¿ñÁT"@ùâ+ùÙ
@ùS5´¿ñáT"@ù•v@ù¨@¹1#
TQè5ªýӉð)y‘ŠðJU‘¿ñI±‰šª°JA@ù@@ùJ°J­‘‹Ðk©‘j±Ššêש飩ˆÐ™‘èùÐ!¸‘‹¢”aò‡R€Ð<$‘C°c‘"­€RW¼ÿ—€ÒIÙ
@ù:ñ«T€ÒȰuEùÜb‘ˆ{{øëÀT{‘?ëaÿÿT€ҁ{{øàªB€R~F”€5{‘?ë!ÿÿT¢Bp@ù•v@ù¨@¹1CTÀø7âz{ø‚´â+ùùªf¢”
µ¢Bp@ù?ñjT•v@ù¨@¹1BT¨¹È°ÕGù"‘óùÿ+¹óÏ©ÿ¹óO© ð@‘㪀Råªæª€R?֨@ùà´óªÈø7ñ¨ùaTàª]£”è/@ù©)y@ù)@ù?ëATàªý{K©ôOJ©öWI©ø_H©úgG©üoF©ÿ‘À_ÖÈø7ñ¨ùaTàªH£”€Ð<$‘C°c‘Aù‡Rµ€Ršÿÿ…՘‘â‘ãC‘àªáªäªIE”àø7â+@ù•v@ù¨@¹1£÷ÿT½ÿÿ¡ð‡R„ÿÿð‡R‚ÿÿ0£”ÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘õªóª¨y@ù@ù¨ƒøÈ°Á‘	a‘è'©	á‘é©uCùyCùôk©·÷r@ù÷Cù_ñƒ´ˆTöª(‹è'ùH°)‘‰
iu8)	
‹ Öüª›Aøiñ«
T€ÒȰCùÙb‘é#ù({wøë 
T÷‘ëaÿÿT€Ò!{wøàªB€RÞE”`	5÷‘ë!ÿÿTO(T¢Bp@ùH°9‘‰
iu8)	
‹ Ö"@ù:@ù4@ùuv@ù¨@¹1ÃTžh€R¿ñ賈š‰Ð)y‘ŠÐJU‘I±‰šªJA@ù@@ùŠÐJ©‘êש飩ˆÐÁ)‘èùÐ!¸‘¥¡”!
ˆR€Ðü$‘C°c‘µ€Rq»ÿ—€Ҟ4@ùô;ùüª›Aø4h@©ôk©üª›Aø=:ˆ@©ú‹©4@ùô;ùÛ
@ùi¢Bp@ùuv@ù¨@¹1#
Tiø7è'@ùywø¨´è;ùôªû#@ù…¡”àµhñëTèÏ©™@ù?ñ«T€ÒȰ%EùÓb‘hzwøëàT÷‘?ëaÿÿT€ÒazwøàªB€RtE” 5÷‘?ë!ÿÿT	ø7è'@ùywø¨´è?ùúªûÏC©a¡”ó#@ùµhñKTè#ù÷ª™@ù?ñ«T€ÒȰuEùÓb‘hz|øëTœ‘?ëaÿÿT€Òaz|øàªB€RNE”À5œ‘?ë!ÿÿT¢Bp@ù·÷r@ùuv@ù¨@¹1ÃTàø7è'@ùy|ø‚´âCùû#@ù3¡”à
µ¢Bp@ù󪷐÷r@ùñ
Tuv@ù¨@¹1BT¨¹È°ÕGùa"‘ɰ)a‘&@ù*}Dù)áEù÷ùÿ+¹é›©)€Ré¹ú+© ð /‘ãªD€R媀R?֨@ùà´óªÈø7ñ¨ùaTàª"¢”¨ƒZø©)y@ù)@ù?ëáTàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñ¨ùaTàª
¢”€Ðü$‘C°c‘ˆR¢€REÿÿ…ХÀ)‘âC‘ãÑàªá'@ùäªD”@ø7ôkG©âC@ùuv@ù¨@¹1ãöÿT·ÿÿˆR.ÿÿ¡ˆR,ÿÿ!ˆR*ÿÿAˆR(ÿÿð¡”ÿƒÑüo©úg	©ø_
©öW©ôO©ý{
©ýC‘ôªóª¨y@ù@ù¨ƒøÈ°*‘	!‘è'©ÿ3ù¹9s@ùÿç©Ã´õª(‹4´Ÿñ€	TŸ
ñ!T7@©÷‹©º
@ù_ñëTÄŸñ	TŸ
ñáT"@ùFè'ùøªAøšñ‹T€ÒȰQEù¶b‘Èz{øë T{‘ŸëaÿÿT€ÒÁz{øàªB€RšD”à5{‘Ÿë!ÿÿT ”`´ˆRˆÐy‘‰Ð)U‘*€RŸñ(±ˆšIµŠšªJA@ù@@ùŠÐJ©‘K°k­‘j±ŠšêÓ©è§©‰ð)%)‘éùÐ!¸‘l ” ˆR€И%‘C°c‘bÀR8ºÿ—€Òeè'ù7@ù÷7ùøªAø¢Bp@ù7@ùtv@ùˆ@¹1CT: ùÿ7è'@ùy{ø÷7ù7ùÿ´Hñ+Tè#ù@ùñkT€ÒȰuEù¶b‘Èz|øëÀTœ‘ëaÿÿT€ÒÁz|øàªB€RID”€5œ‘ë!ÿÿT¢Bp@ùtv@ùˆ@¹1ƒTàø7è'@ùy|ø‚´â;ùú#@ù0 ” 
µ¢Bp@ùè'@ù_ñêTtv@ùˆ@¹1BTˆ¹È°ÕGùa"‘ɰ)a‘&©Dù*áEù)@ùùùÿ+¹ê§©ÿ¹ê'© ð`‘ãª$€Råª'€R?ֈ@ùà´óªÈø7ñˆùaTàª"¡”¨ƒZø©)y@ù)@ù?ëATàªý{M©ôOL©öWK©ø_J©úgI©üoH©ÿƒ‘À_ÖÈø7ñˆùaTàª
¡”€И%‘C°c‘á&ˆRầR~ÿÿ…ð¥$)‘âC‘㣑àªáªäªC”àø7÷‹F©tv@ùˆ@¹1#÷ÿT¹ÿÿˆRhÿÿaˆRfÿÿõ ”ÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘ôªóª¨y@ù@ù¨ƒøÈ°!)‘	a‘é#©	‘é©mAùÿk©»{s@ùûCù´ŸñÈTõª(‹è'ùH°I‘‰
it8)	
‹ Öüª˜Aøñè#ù‹T€ÒȰQEù¹b‘({vøë 
TÖ‘ëaÿÿT€Ò!{vøàªB€R¤C”`	5Ö‘ë!ÿÿTšŸ”`´á2ˆR*¢Bp@ùŸñàTŸ
ñ€TŸñ!T"@ù:@ù7@ùtv@ùˆ@¹1CTšˆÐy‘‰Ð)U‘j€RŸñ(±ˆšI¥ŸšªJA@ù@@ùŠÐJ©‘K°k­‘j±ŠšêÓ©è§©©)Ý‘éùÐ!¸‘fŸ”¡7ˆR€ÐT&‘C°c‘¢̀R2¹ÿ—€Ҙ7@ù÷;ùüªˆAø	ñªTV7h@©÷k©üªˆAø6:ˆ@©ú‹©7@ù÷;ù¨
@ù` ÷ÿ7è'@ùyvø÷;ù·öÿ´è#@ù	ñkT飩™@ù?ñëT€ÒȰ%Eù»b‘h{vøëàTÖ‘?ëaÿÿT€Òa{vøàªB€R>C” 5Ö‘?ë!ÿÿT@ø7è'@ùyvøè´è?ùúªè@ù»{s@ù)Ÿ”»{s@ùè#@ùàµ	ñKT飩öª™@ù?ñ‹T€ÒȰuEù»b‘h{|øëÀTœ‘?ëaÿÿT€Òa{|øàªB€RC”€5œ‘?ë!ÿÿT¢Bp@ùtv@ùˆ@¹1ÃTø7è'@ùy|ø¢´âCùè@ùûªúž”à
µ¢Bp@ùûªè#@ùñ*Ttv@ùˆ@¹1BTˆ¹È°ÕGùa"‘ɰ)a‘&©Dù*}Dù+áEù)@ùûùÿ+¹ë§©)€Ré¹ú+© ð‘ãªD€Råª'€R?ֈ@ùà´óªÈø7ñˆùaTàªéŸ”¨ƒZø©)y@ù)@ù?ë¡Tàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñˆùaTàªԟ”€ÐT&‘C°c‘>ˆR‚׀RKÿÿ¥¥Ü‘âC‘ãÑàªá'@ùäªÕA”@ø7÷kG©âC@ùtv@ùˆ@¹1ÃöÿT¶ÿÿ¡4ˆR4ÿÿA5ˆR2ÿÿÁ3ˆR0ÿÿ¹Ÿ”ÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘ôªóªˆðy@ù@ù¨ƒøÿ©ÈÁ
‘	A‘é#©á‘è©™ð9s@ùùCùã´ŸñhTõª<‹HY‘‰
it8)	
‹ ÖûªxAøñè#ù‹T€ÒȐÁAùºb‘H{vøë TÖ‘ëaÿÿT€ÒA{vøàªB€RjB”`5Ö‘ë!ÿÿT`ž” ´aJˆRƒŸ
ñ@	TŸñaT"@ùHH€R‰°)y‘аJU‘Ÿ
ñI±‰šµˆšŠðJA@ù@@ùаJ©‘êө飩¨1‘èù°!¸‘9ž”aOˆRf7@ù÷;ùûªvAøös©ßñ
TJü'ù7h@©÷k©ûª|Aøˆñ
Tè#ùv@ùßñKT€ÒȐuEù¹b‘({{øë T{‘ßëaÿÿT€Ò!{{øàªB€R#B”`5{‘ßë!ÿÿT^ü'ù:ˆ@©ú‹©7@ù÷;ù¼
@ù]‚ðBp@ù7h@©tv@ùˆ@¹1ƒT\ õÿ7—{vø÷;ù×ôÿ´ü'ùv@ùßñ‹T€ÒȐ¹Aù¼b‘ˆ{zøë@TZ‘ßëaÿÿT€ҁ{zøàªB€RøA”5Z‘ßë!ÿÿT@µˆðA@ù@ù*€Rˆ°©‘K€Rè«©ˆ°U‘©)1‘诩éù°!¸‘ӝ”¡KˆR€°ì&‘Cc‘"؀RŸ·ÿ—€ÒD€üÿ7è'@ùyzøú?ùüÿ´è#@ùшñJóÿT‚ðBp@ùtv@ùˆ@¹1£Tàø7è'@ùy{ø‚´âCùü#@ù»” µ‚ðBp@ù™ð9s@ùŸñ*Ttv@ùˆ@¹1BTˆ¹ÈÕGùa"‘ɐ)a‘&Aù*Aù+áEù)@ùùùÿ+¹ë§©I€Ré¹ú+© ðà‘ãªD€RåªG€R?ֈ@ùà´óªÈø7ñˆùaTપž”¨ƒZø‰ð)y@ù)@ù?ë¡Tàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñˆùaTકž”€°ì&‘Cc‘AVˆRBã€RŸÿÿ¥¥0‘âC‘ãÑàªá'@ù䪖@”€ø7÷kG©âC@ùtv@ùˆ@¹1ÃöÿT¶ÿÿaKˆRˆÿÿLˆR†ÿÿ!MˆR„ÿÿzž”ÿCÑüo©úg©ø_
©öW©ôO©ý{©ý‘ôªóªˆðy@ù@ù¨øÿ©ÈÁ
‘	A‘飩	‘á‘飩ÿ?ù˜ðs@ùÿc	©ã´ŸñhTõª(‹è+ùHi‘‰
it8)	
‹ ÖûªxAøñ‹T€ÒȐÁAù¹b‘({vøëÀ
TÖ‘ëaÿÿT€Ò!{vøàªB€R)A”€5Ö‘ë!ÿÿT” ´“bˆR®Ÿñ€TŸñaT"@ùh€R‰°)y‘аJU‘ŸñI±‰šµˆšŠðJA@ù@@ùаJ©‘êө飩¨©>‘èù°!¸‘øœ”iˆR‘‚ðBp@ù:ð@©7@ùtv@ùˆ@¹1T¸7@ù÷CùûªvAøüªßñ
TJ7h@©÷k©ûª|Aøü'ùŸñJ
Td:ð@©úó©7@ù÷CùûªvAøÈñ‹TèO©y@ù?ñËT€ÒȐuEù³b‘hz{øë T{‘?ëaÿÿT€Òaz{øàªB€RÐ@”à5{‘?ë!ÿÿTz<A©ü	©7h@©÷k©¶
@ù{ôÿ7è+@ùyvø÷Cù—óÿ´v@ùßñ‹T€ÒȐ¹Aù¹b‘({zøë`TZ‘ßëaÿÿT€Ò!{zøàªB€R®@” 5Z‘ßë!ÿÿT¤œ”@µÓcˆR(€R"`ÿÿ7è+@ùyzøúGùúþÿ´ˆÑè'ù|@ùŸñ‹T€ÒȐÉCù¹b‘({vøë`TÖ‘ŸëaÿÿT€Ò!{vøàªB€RŒ@” 5Ö‘Ÿë!ÿÿT‚œ”ÀµeˆRH€R‰ð)A@ù @ùèùˆ°©‘i€Ré#©ˆ°U‘©)©>‘é#©°!¸‘fœ”€°t'‘Cc‘áªâã€R2¶ÿ—€ÒG`üÿ7è+@ùyvøüKùüûÿ´è'@ùјðs@ùÈñÊïÿT‚ðBp@ùtv@ùˆ@¹1ÃTàø7è+@ùy{ø‚´âOùö#@ùLœ”€µ‚ðBp@ùó'@ù˜ðs@ùßñ*Ttv@ùˆ@¹1BTˆ¹ÈÕGùa"‘ɐ)á
‘&	@ù*@ù)Bùøù+€Rë+¹ü§©I€Ré¹ú+© Ð)‘ãªd€RåªG€R?ֈ@ùà´óªÈø7ñˆùaTàª:”¨Zø‰ð)y@ù)@ù?ëáTàªý{P©ôOO©öWN©ø_M©úgL©üoK©ÿC‘À_ÖÈø7ñˆùaTàª%”€°t'‘Cc‘áoˆR"î€Rœÿÿ¥¥¨>‘âc‘ã‘àªá+@ùäª&?”Àø7÷kH©üI©tv@ùˆ@¹1ÃöÿT¶ÿÿÓdˆR„ÿÿ“cˆR‚ÿÿóeˆR€ÿÿ“fˆR~ÿÿ”ÿƒÑüo©úg	©ø_
©öW©ôO©ý{
©ýC‘ôªóªˆðy@ù@ù¨ƒøÈ
‘	!‘è'©ÿ3ù™ð9s@ùÿç©Ã´õª(‹4´Ÿñ€	TŸ
ñ!T7@©÷‹©º
@ù_ñëTÄŸñ	TŸ
ñáT"@ùFè'ùøªAøšñ‹T€ÒȐ±Aù¶b‘Èz{øë T{‘ŸëaÿÿT€ÒÁz{øàªB€R²?”à5{‘Ÿë!ÿÿT¨›”`´a{ˆRˆ°y‘‰°)U‘*€RŸñ(±ˆšIµŠšŠðJA@ù@@ùаJ©‘Kk­‘j±ŠšêÓ©è§©©°)4‘éù°!¸‘„›”á~ˆR€°((‘Cc‘Âî€RPµÿ—€Òeè'ù7@ù÷7ùøªAø‚ðBp@ù7@ùtv@ùˆ@¹1CT: ùÿ7è'@ùy{ø÷7ù7ùÿ´Hñ+Tè#ù@ùñkT€ÒȐuEù¶b‘Èz|øëÀTœ‘ëaÿÿT€ÒÁz|øàªB€Ra?”€5œ‘ë!ÿÿT‚ðBp@ùtv@ùˆ@¹1ƒTàø7è'@ùy|ø‚´â;ùú#@ùH›” 
µ‚ðBp@ùè'@ù_ñêTtv@ùˆ@¹1BTˆ¹ÈÕGùa"‘ɐ)a‘&	Aù*áEù)@ùùùÿ+¹ê§©ÿ¹ê'© А!‘ãª$€RåªG€R?ֈ@ùà´óªÈø7ñˆùaTàª:œ”¨ƒZø‰ð)y@ù)@ù?ëATàªý{M©ôOL©öWK©ø_J©úgI©üoH©ÿƒ‘À_ÖÈø7ñˆùaTàª%œ”€°((‘Cc‘EˆR¢÷€R~ÿÿ¥°¥œ4‘âC‘㣑àªáªäª&>”àø7÷‹F©tv@ùˆ@¹1#÷ÿT¹ÿÿá|ˆRhÿÿA|ˆRfÿÿ
œ”ÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘ôªóªˆðy@ù@ù¨ƒøÿ©È
‘	Á‘è'©!‘è©™ð9s@ùùCùã´ŸñhTõª<‹H}‘‰
it8)	
‹ ÖûªxAøñè#ù‹T€ÒȐ±Aùºb‘H{vøë TÖ‘ëaÿÿT€ÒA{vøàªB€R¾>”`5Ö‘ë!ÿÿT´š” ´¡‘ˆRƒŸ
ñ@	TŸñaT"@ùHH€R‰°)y‘аJU‘Ÿ
ñI±‰šµˆšŠÐJA@ù@@ùАJ©‘êө飩¨°‘èù!¸‘š”¡–ˆRf7@ù÷;ùûªvAøös©ßñ
TJü'ù7h@©÷k©ûª|Aøˆñ
Tè#ùv@ùßñKT€ҨðuEù¹b‘({{øë T{‘ßëaÿÿT€Ò!{{øàªB€Rw>”`5{‘ßë!ÿÿT^ü'ù:ˆ@©ú‹©7@ù÷;ù¼
@ù]‚ÐBp@ù7h@©tv@ùˆ@¹1ƒT\ õÿ7—{vø÷;ù×ôÿ´ü'ùv@ùßñ‹T€ҨðÉCù¼b‘ˆ{zøë@TZ‘ßëaÿÿT€ҁ{zøàªB€RL>”5Z‘ßë!ÿÿTBš”@µˆÐA@ù@ù*€Rˆ©‘K€Rè«©ˆU‘©°)‘诩éù!¸‘'š”ᒈR€Ð(‘#ðc‘Bø€Ró³ÿ—€ÒD€üÿ7è'@ùyzøú?ùüÿ´è#@ùшñJóÿT‚ÐBp@ùtv@ùˆ@¹1£Tàø7è'@ùy{ø‚´âCùü#@ùš” µ‚ÐBp@ù™Ð9s@ùŸñ*Ttv@ùˆ@¹1BTˆ¹¨ðÕGùa"‘©ð)a‘&	Aù*!Cù+áEù)@ùùùÿ+¹ë§©)€Ré¹ú+© °@#‘ãªD€RåªG€R?ֈ@ùà´óªÈø7ñˆùaTàªþš”¨ƒZø‰Ð)y@ù)@ù?ë¡Tàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñˆùaTàªé𔀐Ð(‘#ðc‘ˆRRŸÿÿ¥°¥œ‘âC‘ãÑàªá'@ùäªê<”€ø7÷kG©âC@ùtv@ùˆ@¹1ÃöÿT¶ÿÿ¡’ˆRˆÿÿSˆR†ÿÿa”ˆR„ÿÿΚ”ÿÑüo©úg©ø_©öW	©ôO
©ý{©ýÑôªóªˆÐy@ù@ù©ð)¡+‘è/ù驘Ðs@ùø+ùC´õª6‹4´ŸñÁT"@ùâ+ù¹
@ùS4´ŸñáT"@ùtv@ùˆ@¹1#
TQè4ªýӉ)y‘АJU‘ŸñI±‰šŠÐJA@ù@@ù*ðJ­‘‹k©‘j±Ššêө飩¨Ðõ	‘èù!¸‘i™”᪈R€¤)‘#ðc‘bR5³ÿ—€ÒK¹
@ù:ñ«T€ҨðuEù¼b‘ˆ{{øëÀT{‘?ëaÿÿT€ҁ{{øàªB€R\=”€5{‘?ë!ÿÿT‚ÐBp@ùtv@ùˆ@¹1CTÀø7Âz{ø‚´â+ùùªD™”@
µ‚ÐBp@ù?ñªTtv@ùˆ@¹1BTˆ¹¨ðÕGùa"‘©ð)a‘%áEù&@ùøùÿ+¹å›©ÿ¹å© °`;‘㪀R€R?ֈ@ùà´óªÈø7ñˆùaTàª9š”è/@ù‰Ð)y@ù)@ù?ëATàªý{K©ôOJ©öWI©ø_H©úgG©üoF©ÿ‘À_ÖÈø7ñˆùaTàª$𔀐¤)‘#ðc‘qˆRbR˜ÿÿ¥Хô	‘â‘ãC‘àªáªäª%<”àø7â+@ùtv@ùˆ@¹1c÷ÿT»ÿÿ!©ˆR‚ÿÿ¨ˆR€ÿÿš”ÿƒÑüo©úg	©ø_
©öW©ôO©ý{
©ýC‘ôªóªˆÐy@ù@ù¨ƒø¨ð
‘	!‘è'©ÿ3ù™Ð9s@ùÿç©Ã´õª(‹4´Ÿñ€	TŸ
ñ!T7@©÷‹©º
@ù_ñëTÄŸñ	TŸ
ñáT"@ùFè'ùøªAøšñ‹T€Ҩð±Aù¶b‘Èz{øë T{‘ŸëaÿÿT€ÒÁz{øàªB€R¶<”à5{‘Ÿë!ÿÿT¬˜”`´A½ˆRˆy‘‰)U‘*€RŸñ(±ˆšIµŠšŠÐJA@ù@@ùАJ©‘+ðk­‘j±ŠšêÓ©è§©©Ð)93‘éù!¸‘ˆ˜”ÁR€d*‘#ðc‘ÂRT²ÿ—€Òeè'ù7@ù÷7ùøªAø‚ÐBp@ù7@ùtv@ùˆ@¹1CT: ùÿ7è'@ùy{ø÷7ù7ùÿ´Hñ+Tè#ù@ùñkT€ҨðuEù¶b‘Èz|øëÀTœ‘ëaÿÿT€ÒÁz|øàªB€Re<”€5œ‘ë!ÿÿT‚ÐBp@ùtv@ùˆ@¹1ƒTàø7è'@ùy|ø‚´â;ùú#@ùL˜” 
µ‚ÐBp@ùè'@ù_ñêTtv@ùˆ@¹1BTˆ¹¨ðÕGùa"‘©ð)a‘&	Aù*ñEù)@ùùùÿ+¹ê§©ÿ¹ê'© °p6‘ãª$€RåªG€R?ֈ@ùà´óªÈø7ñˆùaTàª>™”¨ƒZø‰Ð)y@ù)@ù?ëATàªý{M©ôOL©öWK©ø_J©úgI©üoH©ÿƒ‘À_ÖÈø7ñˆùaTàª)™”€d*‘#ðc‘¡LjRbR~ÿÿ¥Х83‘âC‘㣑àªáªäª*;”àø7÷‹F©tv@ùˆ@¹1#÷ÿT¹ÿÿ~ˆRhÿÿ!¾ˆRfÿÿ™”ÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘ôªóªˆÐy@ù@ù¨ƒøÿ©¨ða‘	A‘é#©A‘è©™Ð9s@ùùCùã´ŸñhTõª<‹(ð‘‰
it8)	
‹ ÖûªxAøñè#ù‹T€ҨðuCùºb‘H{vøë TÖ‘ëaÿÿT€ÒA{vøàªB€RÂ;”`5Ö‘ë!ÿÿT¸—” ´ӈRƒŸ
ñ@	TŸñaT"@ùHH€R‰)y‘АJU‘Ÿ
ñI±‰šµˆšŠÐJA@ù@@ùАJ©‘êө飩¨ðm9‘èù!¸‘‘—”؈Rf7@ù÷;ùûªvAøös©ßñ
TJü'ù7h@©÷k©ûª|Aøˆñ
Tè#ùv@ùßñKT€ҨðuEù¹b‘({{øë T{‘ßëaÿÿT€Ò!{{øàªB€R{;”`5{‘ßë!ÿÿT^ü'ù:ˆ@©ú‹©7@ù÷;ù¼
@ù]‚ÐBp@ù7h@©tv@ùˆ@¹1ƒT\ õÿ7—{vø÷;ù×ôÿ´ü'ùv@ùßñ‹T€ҨðÍBù¼b‘ˆ{zøë@TZ‘ßëaÿÿT€ҁ{zøàªB€RP;”5Z‘ßë!ÿÿTF—”@µˆÐA@ù@ù*€Rˆ©‘K€Rè«©ˆU‘©ð)m9‘诩éù!¸‘+—”ÁԈR€+‘#ðc‘"R÷°ÿ—€ÒD€üÿ7è'@ùyzøú?ùüÿ´è#@ùшñJóÿT‚ÐBp@ùtv@ùˆ@¹1£Tàø7è'@ùy{ø‚´âCùü#@ù—” µ‚ÐBp@ù™Ð9s@ùŸñ*Ttv@ùˆ@¹1BTˆ¹¨ðÕGùa‚‘©ð)a‘&ÍBù*%Bù+áEù)@ùùùÿ+¹ë§©)€Ré¹ú+© Р‘ãªD€R媀R?ֈ@ùà´óªÈø7ñˆùaTઘ”¨ƒZø‰Ð)y@ù)@ù?ë¡Tàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñˆùaTàªí—”€+‘#ðc‘a߈R¢%RŸÿÿ¥ð¥l9‘âC‘ãÑàªá'@ùäªî9”€ø7÷kG©âC@ùtv@ùˆ@¹1ÃöÿT¶ÿÿԈRˆÿÿ¡ՈR†ÿÿAֈR„ÿÿҗ”ÿƒÑüo©úg	©ø_
©öW©ôO©ý{
©ýC‘ôªóªˆÐy@ù@ù¨ƒø¨ð!‘	%‘è'©ÿ3ù™°9s@ùÿç©Ã´õª(‹4´Ÿñ€	TŸ
ñ!T7@©÷‹©º
@ù_ñëTÄŸñ	TŸ
ñáT"@ùFè'ùøªAøšñ‹T€ҨÐÅ@ù¶b‘Èz{øë T{‘ŸëaÿÿT€ÒÁz{øàªB€R|:”à5{‘Ÿë!ÿÿTr–”`´áêˆRhðy‘ið)U‘*€RŸñ(±ˆšIµŠšŠ°JA@ù@@ùjðJ©‘+Ðk­‘j±ŠšêÓ©è§©©ð)-‘éùað!¸‘N–”aîˆR`ð´+‘#Ðc‘B&R°ÿ—€Òeè'ù7@ù÷7ùøªAø‚°Bp@ù7@ùtv@ùˆ@¹1CT: ùÿ7è'@ùy{ø÷7ù7ùÿ´Hñ+Tè#ù@ùñkT€ҨÐuEù¶b‘Èz|øëÀTœ‘ëaÿÿT€ÒÁz|øàªB€R+:”€5œ‘ë!ÿÿT‚°Bp@ùtv@ùˆ@¹1ƒTàø7è'@ùy|ø‚´â;ùú#@ù–” 
µ‚°Bp@ùè'@ù_ñêTtv@ùˆ@¹1BTˆ¹¨ÐÕGùa"‘©Ð)a‘&@ù*áEù)@ùùùÿ+¹ê§©ÿ¹ê'©  ‘ãª$€RåªG€R?ֈ@ùà´óªÈø7ñˆùaTગ”¨ƒZø‰°)y@ù)@ù?ëATàªý{M©ôOL©öWK©ø_J©úgI©üoH©ÿƒ‘À_ÖÈø7ñˆùaTàªï–”`ð´+‘#Ðc‘AõˆR‚2R~ÿÿ¥ð¥œ-‘âC‘㣑àªáªäªð8”àø7÷‹F©tv@ùˆ@¹1#÷ÿT¹ÿÿaìˆRhÿÿÁëˆRfÿÿז”ÿƒÑüo©úg	©ø_
©öW©ôO©ý{
©ýC‘ôªóªˆ°y@ù@ù¨ƒø¨Ð!‘	%‘è'©ÿ3ù™°9s@ùÿç©Ã´õª(‹4´Ÿñ€	TŸ
ñ!T7@©÷‹©º
@ù_ñëTÄŸñ	TŸ
ñáT"@ùFè'ùøªAøšñ‹T€ҨÐÅ@ù¶b‘Èz{øë T{‘ŸëaÿÿT€ÒÁz{øàªB€R9”à5{‘Ÿë!ÿÿTw•”`´Á‰Rhðy‘ið)U‘*€RŸñ(±ˆšIµŠšŠ°JA@ù@@ùjðJ©‘+Ðk­‘j±Ššêө觩ɐ)•-‘éùað!¸‘S•”A‰R`ðP,‘#Ðc‘"3R¯ÿ—€Òeè'ù7@ù÷7ùøªAø‚°Bp@ù7@ùtv@ùˆ@¹1CT: ùÿ7è'@ùy{ø÷7ù7ùÿ´Hñ+Tè#ù@ùñkT€ҨÐuEù¶b‘Èz|øëÀTœ‘ëaÿÿT€ÒÁz|øàªB€R09”€5œ‘ë!ÿÿT‚°Bp@ùtv@ùˆ@¹1ƒTàø7è'@ùy|ø‚´â;ùú#@ù•” 
µ‚°Bp@ùè'@ù_ñêTtv@ùˆ@¹1BTˆ¹¨ÐÕGùa"‘©Ð)a‘&@ù*áEù)@ùùùÿ+¹ê§©ÿ¹ê'© à‘ãª$€Råª'€R?ֈ@ùà´óªÈø7ñˆùaTàª	–”¨ƒZø‰°)y@ù)@ù?ëATàªý{M©ôOL©öWK©ø_J©úgI©üoH©ÿƒ‘À_ÖÈø7ñˆùaTàªô•”`ðP,‘#Ðc‘!‰R‚?R~ÿÿŐ¥”-‘âC‘㣑àªáªäªõ7”àø7÷‹F©tv@ùˆ@¹1#÷ÿT¹ÿÿA‰Rhÿÿ¡‰Rfÿÿܕ”ÿƒÑüo©úg	©ø_
©öW©ôO©ý{
©ýC‘ôªóªˆ°y@ù@ù¨ƒø¨Ð!‘	%‘è'©ÿ3ù™°9s@ùÿç©Ã´õª(‹4´Ÿñ€	TŸ
ñ!T7@©÷‹©º
@ù_ñëTÄŸñ	TŸ
ñáT"@ùFè'ùøªAøšñ‹T€ҨÐÅ@ù¶b‘Èz{øë T{‘ŸëaÿÿT€ÒÁz{øàªB€R†8”à5{‘Ÿë!ÿÿT|””`´¡‰Rhðy‘ið)U‘*€RŸñ(±ˆšIµŠšŠ°JA@ù@@ùjðJ©‘+Ðk­‘j±Ššêө觩ɰ)m%‘éùað!¸‘X””!‰R`ðð,‘#Ðc‘"@R$®ÿ—€Òeè'ù7@ù÷7ùøªAø‚°Bp@ù7@ùtv@ùˆ@¹1CT: ùÿ7è'@ùy{ø÷7ù7ùÿ´Hñ+Tè#ù@ùñkT€ҨÐuEù¶b‘Èz|øëÀTœ‘ëaÿÿT€ÒÁz|øàªB€R58”€5œ‘ë!ÿÿT‚°Bp@ùtv@ùˆ@¹1ƒTàø7è'@ùy|ø‚´â;ùú#@ù”” 
µ‚°Bp@ùè'@ù_ñêTtv@ùˆ@¹1BTˆ¹¨ÐÕGùa"‘©Ð)a‘&@ù*áEù)@ùùùÿ+¹ê§©ÿ¹ê'© 0 ‘ãª$€RåªG€R?ֈ@ùà´óªÈø7ñˆùaTક”¨ƒZø‰°)y@ù)@ù?ëATàªý{M©ôOL©öWK©ø_J©úgI©üoH©ÿƒ‘À_ÖÈø7ñˆùaTàªù””`ðð,‘#Ðc‘!‰R"MR~ÿÿŰ¥l%‘âC‘㣑àªáªäªú6”àø7÷‹F©tv@ùˆ@¹1#÷ÿT¹ÿÿ!‰Rhÿÿ‰RfÿÿᔔÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘õªóªˆ°y@ù@ù¨ƒø¨ÐÁ‘	a‘è'©	á‘é©uCùyCùôk©—°÷r@ù÷Cù_ñƒ´ˆTöª(‹è'ù(Н‘‰
iu8)	
‹ Öüª›Aøiñ«
T€ҨÐCùÙb‘é#ù({wøë 
T÷‘ëaÿÿT€Ò!{wøàªB€R7”`	5÷‘ë!ÿÿTO(T‚°Bp@ù(Э‘‰
iu8)	
‹ Ö"@ù:@ù4@ùuv@ù¨@¹1ÃTžh€R¿ñ賈šið)y‘jðJU‘I±‰šŠ°JA@ù@@ùjðJ©‘êש飩ÈÐE‘èùað!¸‘V“”á1‰R`ðˆ-‘#Ðc‘ÂMR"­ÿ—€ҟ4@ùô;ùüª›Aø4h@©ôk©üª›Aø=:ˆ@©ú‹©4@ùô;ùÛ
@ùi‚°Bp@ùuv@ù¨@¹1#
Tiø7è'@ùywø¨´è;ùôªû#@ù6“”µhñëTèÏ©™@ù?ñ«T€ҨÐ%EùÓb‘hzwøëàT÷‘?ëaÿÿT€ÒazwøàªB€R%7” 5÷‘?ë!ÿÿT	ø7è'@ùywø¨´è?ùúªûÏC©“”ó#@ù µhñKTè#ù÷ª™@ù?ñ«T€ҨÐuEùÓb‘hz|øëTœ‘?ëaÿÿT€Òaz|øàªB€Rÿ6”À5œ‘?ë!ÿÿT‚°Bp@ù—°÷r@ùuv@ù¨@¹1ÃTàø7è'@ùy|ø‚´âCùû#@ù䒔µ‚°Bp@ùóª—°÷r@ùñ*Tuv@ù¨@¹1BT¨¹¨ÐÕGùa‚‘©Ð)a‘&qBù*}Dù+áEù)@ù÷ùÿ+¹ë§©)€Ré¹ú+©° ‘ãªD€R媀R?֨@ùà´óªÈø7ñ¨ùaTàªғ”¨ƒZø‰°)y@ù)@ù?ëáTàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñ¨ùaTઽ“”`Ј-‘#°c‘Á8‰RâXRDÿÿŰ¥D‘âC‘ãÑàªá'@ù䪾5”@ø7ôkG©âC@ùuv@ù¨@¹1ÃöÿT¶ÿÿÁ.‰R-ÿÿa/‰R+ÿÿá-‰R)ÿÿ-‰R'ÿÿ “”ÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘õªóªˆy@ù@ù¨ƒø¨°Á‘	a‘è'©	á‘é©uCùyCùôk©—÷r@ù÷Cù_ñƒ´ˆTöª(‹è'ù(°½‘‰
iu8)	
‹ Öüª›Aøiñ«
T€Ҩ°CùÙb‘é#ù({wøë 
T÷‘ëaÿÿT€Ò!{wøàªB€RN6”`	5÷‘ë!ÿÿTO(T‚Bp@ù(°Í‘‰
iu8)	
‹ Ö"@ù:@ù4@ùuv@ù¨@¹1ÃTžh€R¿ñ賈šiÐ)y‘jÐJU‘I±‰šŠJA@ù@@ùjÐJ©‘êש飩ÈЭ‘èùaÐ!¸‘’”¡I‰R`Ð(.‘#°c‘‚YRá«ÿ—€ҟ4@ùô;ùüª›Aø4h@©ôk©üª›Aø=:ˆ@©ú‹©4@ùô;ùÛ
@ùi‚Bp@ùuv@ù¨@¹1#
Tiø7è'@ùywø¨´è;ùôªû#@ùõ‘”µhñëTèÏ©™@ù?ñ«T€Ҩ°%EùÓb‘hzwøëàT÷‘?ëaÿÿT€ÒazwøàªB€Rä5” 5÷‘?ë!ÿÿT	ø7è'@ùywø¨´è?ùúªûÏC©ё”ó#@ù µhñKTè#ù÷ª™@ù?ñ«T€Ҩ°uEùÓb‘hz|øëTœ‘?ëaÿÿT€Òaz|øàªB€R¾5”À5œ‘?ë!ÿÿT‚Bp@ù—÷r@ùuv@ù¨@¹1ÃTàø7è'@ùy|ø‚´âCùû#@ù£‘”µ‚Bp@ù󪗐÷r@ùñ*Tuv@ù¨@¹1BT¨¹¨°ÕGùa‚‘©°)a‘&qBù*}Dù+áEù)@ù÷ùÿ+¹ë§©)€Ré¹ú+© "‘ãªD€R媀R?֨@ùà´óªÈø7ñ¨ùaTઑ’”¨ƒZø‰)y@ù)@ù?ëáTàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñ¨ùaTàª|’”`Ð(.‘#°c‘P‰RbhRDÿÿÅХ¬‘âC‘ãÑàªá'@ùäª}4”@ø7ôkG©âC@ùuv@ù¨@¹1ÃöÿT¶ÿÿF‰R-ÿÿ!G‰R+ÿÿ¡E‰R)ÿÿÁD‰R'ÿÿ_’”ÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘õªóªˆy@ù@ù¨ƒø¨°Á‘	a‘è'©	á‘é©uCùyCùôk©—÷r@ù÷Cù_ñƒ´ˆTöª(‹è'ù(°Ý‘‰
iu8)	
‹ Öüª›Aøiñ«
T€Ҩ°CùÙb‘é#ù({wøë 
T÷‘ëaÿÿT€Ò!{wøàªB€R
5”`	5÷‘ë!ÿÿTO(T‚Bp@ù(°í‘‰
iu8)	
‹ Ö"@ù:@ù4@ùuv@ù¨@¹1ÃTžh€R¿ñ賈šiÐ)y‘jÐJU‘I±‰šŠJA@ù@@ùjÐJ©‘êש飩ÈðM!‘èùaÐ!¸‘Ԑ”aa‰R`ÐÄ.‘#°c‘iR ªÿ—€ҟ4@ùô;ùüª›Aø4h@©ôk©üª›Aø=:ˆ@©ú‹©4@ùô;ùÛ
@ùi‚Bp@ùuv@ù¨@¹1#
Tiø7è'@ùywø¨´è;ùôªû#@ù´”µhñëTèÏ©™@ù?ñ«T€Ҩ°%EùÓb‘hzwøëàT÷‘?ëaÿÿT€ÒazwøàªB€R£4” 5÷‘?ë!ÿÿT	ø7è'@ùywø¨´è?ùúªûÏC©”ó#@ù µhñKTè#ù÷ª™@ù?ñ«T€Ҩ°uEùÓb‘hz|øëTœ‘?ëaÿÿT€Òaz|øàªB€R}4”À5œ‘?ë!ÿÿT‚Bp@ù—÷r@ùuv@ù¨@¹1ÃTàø7è'@ùy|ø‚´âCùû#@ùb”µ‚Bp@ù󪗐÷r@ùñ*Tuv@ù¨@¹1BT¨¹¨°ÕGùa‚‘©°)a‘&qBù*}Dù+áEù)@ù÷ùÿ+¹ë§©)€Ré¹ú+© #‘ãªD€R媀R?֨@ùà´óªÈø7ñ¨ùaTàªP‘”¨ƒZø‰)y@ù)@ù?ëáTàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñ¨ùaTàª;‘”`ÐÄ.‘#°c‘Ah‰R"sRDÿÿÅð¥L!‘âC‘ãÑàªá'@ùäª<3”@ø7ôkG©âC@ùuv@ù¨@¹1ÃöÿT¶ÿÿA^‰R-ÿÿá^‰R+ÿÿa]‰R)ÿÿ\‰R'ÿÿ‘”ÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘õªóªˆy@ù@ù¨ƒø¨°Á‘	‘è'©	á‘é©5Cù9Cùôk©—÷r@ù÷Cù_ñƒ´ˆTöª(‹è'ù(°ý‘‰
iu8)	
‹ Öüª›Aøiñ«
T€Ҩ°YCùÙb‘é#ù({wøë 
T÷‘ëaÿÿT€Ò!{wøàªB€RÌ3”`	5÷‘ë!ÿÿTO(T‚Bp@ù(°
‘‰
iu8)	
‹ Ö"@ù:@ù4@ùuv@ù¨@¹1ÃTžh€R¿ñ賈šiÐ)y‘jÐJU‘I±‰šŠJA@ù@@ùjÐJ©‘êש飩è1‘èùaÐ!¸‘“”!y‰R`Ðh/‘#°c‘ÂsR_©ÿ—€ҟ4@ùô;ùüª›Aø4h@©ôk©üª›Aø=:ˆ@©ú‹©4@ùô;ùÛ
@ùi‚Bp@ùuv@ù¨@¹1#
Tiø7è'@ùywø¨´è;ùôªû#@ùs”µhñëTèÏ©™@ù?ñ«T€Ҩ°iEùÓb‘hzwøëàT÷‘?ëaÿÿT€ÒazwøàªB€Rb3” 5÷‘?ë!ÿÿT	ø7è'@ùywø¨´è?ùúªûÏC©O”ó#@ù µhñKTè#ù÷ª™@ù?ñ«T€Ҩ°uEùÓb‘hz|øëTœ‘?ëaÿÿT€Òaz|øàªB€R<3”À5œ‘?ë!ÿÿT‚Bp@ù—÷r@ùuv@ù¨@¹1ÃTàø7è'@ùy|ø‚´âCùû#@ù!”µ‚Bp@ù󪗐÷r@ùñ*Tuv@ù¨@¹1BT¨¹¨°ÕGùa"‘©°)a‘&±Bù*ÁDù+áEù)@ù÷ùÿ+¹ë§©)€Ré¹ú+©ð3‘ãªD€R媀R?֨@ùà´óªÈø7ñ¨ùaTઐ”¨ƒZø‰)y@ù)@ù?ëáTàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñ¨ùaTàªú”`Ðh/‘#°c‘€‰R¢RDÿÿ吥0‘âC‘ãÑàªá'@ùäªû1”@ø7ôkG©âC@ùuv@ù¨@¹1ÃöÿT¶ÿÿv‰R-ÿÿ¡v‰R+ÿÿ!u‰R)ÿÿAt‰R'ÿÿݏ”ÿƒÑüo©úg	©ø_
©öW©ôO©ý{
©ýC‘ôªóªˆy@ù@ù¨ƒø¨°!)‘	‘è'©ÿ3ùmAù™9s@ùõç©£´öª(‹ô´ŸñÀ	TŸ
ñTè'ù5@©õ‹©Ú
@ùƒbðBp@ùT´Ÿñ€TŸ
ñT"@ù5@ùtv@ùˆ@¹1ƒT|ˆþ~Óè(*i°)y‘j°JU‘’ŸñI±‰šjðJA@ù@@ùj°J©‘ëk‘‘ë'©êÓ©èùa°!¸‘oŽ”!‰R`°0‘#c‘B‚R;¨ÿ—€ÒzûªzAøIñTé#©€Ҩ%Eù×b‘èz|øë Tœ‘_ëaÿÿT€Òáz|øàªB€R`2”`5œ‘_ë!ÿÿTè'ù5@ùõ7ùûªzAøø7è'@ùy|ø¨´è7ùõªú#@ùGŽ”µHñ+Tè#ùw@ùÿñkT€ҨuEùÜb‘ˆ{{øëÀT{‘ÿëaÿÿT€ҁ{{øàªB€R62”€5{‘ÿë!ÿÿTbðBp@ùtv@ùˆ@¹1cTàø7è'@ùy{ø‚´â;ùú#@ùŽ”@
µbðBp@ù_ñêTtv@ùˆ@¹1BTˆ¹¨ÕGùa‚‘©)a‘&}Dù*áEù)@ùùùÿ+¹ê§©ÿ¹ê'©Ð0"‘ãª$€Råª'€R?ֈ@ùà´óªÈø7ñˆùaTએ”¨ƒZøið)y@ù)@ù?ëTàªý{M©ôOL©öWK©ø_J©úgI©üoH©ÿƒ‘À_ÖÈø7ñˆùaTàªûŽ”`°0‘#c‘–‰RB‹Riÿÿ吥‘âC‘㣑àªá'@ùäªü0” ø7õ‹F©tv@ùˆ@¹1#÷ÿT¹ÿÿaŒ‰RSÿÿ‰RQÿÿ‹‰ROÿÿ᎔ÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘ôªóªhðy@ù@ù¨ƒøÿ©¨Á‘	a‘è'©á‘è©yð9s@ùùCùã´ŸñhTõª<‹(‘‰
it8)	
‹ ÖûªxAøñè#ù‹T€ҨYCùºb‘H{vøë TÖ‘ëaÿÿT€ÒA{vøàªB€R’1”`5Ö‘ë!ÿÿTˆ” ´ᡉRƒŸ
ñ@	TŸñaT"@ùHH€Ri°)y‘j°JU‘Ÿ
ñI±‰šµˆšjðJA@ù@@ùj°J©‘êө飩è°5‘èùa°!¸‘a”ᦉRf7@ù÷;ùûªvAøös©ßñ
TJü'ù7h@©÷k©ûª|Aøˆñ
Tè#ùv@ùßñKT€ҨuEù¹b‘({{øë T{‘ßëaÿÿT€Ò!{{øàªB€RK1”`5{‘ßë!ÿÿT^ü'ù:ˆ@©ú‹©7@ù÷;ù¼
@ù]bðBp@ù7h@©tv@ùˆ@¹1ƒT\ õÿ7—{vø÷;ù×ôÿ´ü'ùv@ùßñ‹T€Ҩ%Eù¼b‘ˆ{zøë@TZ‘ßëaÿÿT€ҁ{zøàªB€R 1”5Z‘ßë!ÿÿT”@µhðA@ù@ù*€Rh°©‘K€Rè«©h°U‘é°)5‘诩éùa°!¸‘ûŒ”!£‰R`°´0‘#c‘⋁RǦÿ—€ÒD€üÿ7è'@ùyzøú?ùüÿ´è#@ùшñJóÿTbðBp@ùtv@ùˆ@¹1£Tàø7è'@ùy{ø‚´âCùü#@ù㌔ µbðBp@ùyð9s@ùŸñ*Ttv@ùˆ@¹1BTˆ¹¨ÕGùa"‘©)a‘&±Bù*}Dù+áEù)@ùùùÿ+¹ë§©I€Ré¹ú+©Ðp*‘ãªD€RåªG€R?ֈ@ùà´óªÈø7ñˆùaTàªҍ”¨ƒZøið)y@ù)@ù?ë¡Tàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñˆùaTઽ”`°´0‘#c‘m‰R━RŸÿÿå°¥4‘âC‘ãÑàªá'@ù䪾/”€ø7÷kG©âC@ùtv@ùˆ@¹1ÃöÿT¶ÿÿᢉRˆÿÿ¤‰R†ÿÿ¡¤‰R„ÿÿ¢”ÿÃÑë+mé#müo
©úg©ø_©öW©ôO©ý{©ýƒ‘óªüªhðy@ù@ù¨øÿ©¨¡‘	¡‘è§©	ᑑ飩ÿ?ùhðq@ùÿ#	©ã´ñˆTôª(‹è'ù(-‘‰
is8)	
‹ ÖöªÙAø:ñ‹T€ҨõBù•b‘¨zxøëà
T‘?ëaÿÿT€ҡzxøàªB€RO0” 5‘?ë!ÿÿTEŒ”@´º‰R¯ñ TñT6@ùöOùh€Ri°)y‘j°JU‘ñI±‰šµˆšjðJA@ù@@ùj°J©‘êϩ飩è°õ0‘èùa°!¸‘Œ”“	R‘vðÖr@ù9è@©ùë©8@ùøCù­8@ùøCùöªÙAøúª?ñJTLü+ù8d@©øg©öªÚAøûª_ñj
Te9è@©ùë©8@ùøCùöªÛAøhñkTè#ùü+ùÕ@ù¿ñT€ҨuEùœb‘ˆ{vøë`TÖ‘¿ëaÿÿT€ҁ{vøàªB€Rõ/” 5Ö‘¿ë!ÿÿTt:XA©ú[	©8d@©øg©›
@ùsàóÿ7è'@ùyxøøCùxóÿ´Ù@ù?ñ‹T€ҨiCù•b‘¨z{øë`T{‘?ëaÿÿT€ҡz{øàªB€RÓ/” 5{‘?ë!ÿÿTɋ”@¡µS»‰R(€R"`ÿÿ7è'@ùy{øùGùùþÿ´ü+ù[ÑÚ@ù_ñ‹T€ҨEù•b‘¨z|øë`Tœ‘_ëaÿÿT€ҡz|øàªB€R±/” 5œ‘_ë!ÿÿT§‹”`•µ“¼‰RH€Rið)A@ù @ùèùh°©‘i€Ré#©h°U‘é°)õ0‘é#©a°!¸‘‹‹”`°H1‘#c‘᪂•RW¥ÿ—€ÒÇ`üÿ7è'@ùy|øúKùúûÿ´{Ñü+@ùhñêïÿTvðÖr@ùàø7è'@ùyvø–´öOùû#@ùw‹”@—µvðÖr@ùü+@ùñJTµ¨ÚGùAùµ@ù€€R?Öáªàª€R€R €R€Ò`?ÖV´óª@¹1BTh¹h@ùÈø7ñhùaTàªqŒ”¨ÚGùAùµ@ù€€R?Öáªàª€R€R €R€Ҁ?Öôª S´ˆ@¹1BTˆ¹ˆ@ùÈø7ñˆùaTàªXŒ”¨ÚGùAùµ@ù€€R?Öáªàª€R€R €R€Ҡ?ÖõªQ´¨@¹1BT¨¹¨@ùˆø7ñ¨ù@Tˆ@¹i@¹?kT©@¹(*(5àª9‹”@`
~ jaT‹”Œµàª1‹”	@` jaT‹”€‹µàª*‹”
@`~@!`aT
‹”àŠµ!j́TP!iLƒT!iTšw@ùH@¹1BTH¹A`‹”€…´ûª@A`‹”ùª´ A`‹”øª´¨ÕGùƒ‘©&­@ùið)q@ùéùÿ+¹ø›©ÿ¹ù©°p‘âªãªd€R媀R?րƒ´öªH@ùÈø7ñHùaTàªï‹”h@ùÈø7ñhùaTàªè‹”(@ùH=ø7ñ(ùá<Tàªá‹”äàªދ”ˆ@¹i@¹?kÀóÿT—ð÷"9‘ùÒDùà@ù"@ù᪾‹”`B´øª@¹1BT¹¨ù@ù@ùI@ùHB´àª?Öùª@B´@ùÈø7ñùaTઽ‹”øÒDùà@ù@ù᪣‹”ö'ùà@´ûª@¹1BTh¹–ðÁbBùh@ùI@ù(A´àª?Öúª A´ü+ùh@ùÈø7ñhùaTઠ‹”H@ù|МW@ùë@T€R€Òéc‘)!‘øÏ©ô7ù!M(Ë2àª-½ÿ—ûª´@ùÈø7ñùaTઈ‹”?´H@ùÈø7ñHùaT઀‹”(@ùë€>T€R€Òéc‘)!‘úï©!M(Ëઽÿ—øª´H@ùÈø7ñHùaTàªk‹”h@ùÈø7ñhùaTàªd‹”Ø<´(@ùÈø7ñ(ùaTàª\‹”iÐ)u@ùhÐm@ù	ëÀTë€ThÐq@ùëTàª֊”ùª`Xø7@ùÈø6
	ëùŸ@ùÈø7ñùaTàª@‹”ù85øÒDùà@ù@ùáª%‹”à9´ùª@¹1BT(¹ˆðù@ù(@ùI@ùÈ9´àª?ÖøªÀ9´(@ùÈø7ñ(ùaTàª$‹”ùÒDùà@ù"@ùáª
‹”À8´úª@¹1BTH¹ÁbBùH@ùI@ùÈ8´àª?ÖûªÀ8´H@ùÈø7ñHùaTàª
‹”h@ùë@8T€R€Òéc‘)!‘úÓ©õ7ù!M(Ë2ઙ¼ÿ—ùª´H@ùÈø7ñHùaTàªôŠ”Y7´h@ùÈø7ñhùaTàªìŠ”@ùë€6T€R€Òéc‘)!‘ûç©!M(Ëàª|¼ÿ—úª´h@ùÈø7ñhùaTàª׊”(@ùÈø7ñ(ùaTàªЊ”vÐÖv@ùš4´@ùÈø7ñùaTàªƊ”_ëThÐm@ù_ë€ThÐq@ù_ëTàªBŠ”øª`Jø7H@ùÈø6
_ëøŸH@ùÈø7ñHùaTàª¬Š”¸05ùÒDùà@ù"@ùáª‘Š” 1´øª@¹1BT¹ˆðù@ù@ùI@ùˆ1´àª?Öùª€1´@ùÈø7ñùaTàªŠ”øÒDùà@ù@ùáªvŠ”@0´ûª@¹1BTh¹ˆðùAùh@ùI@ùˆ0´àª?Öúª€0´h@ùÈø7ñhùaTàªuŠ”H@ùëÀ0T€R€Òéc‘)!‘øÏ©õ7ù!M(Ë2઼ÿ—ûª´@ùÈø7ñùaTàª_Š”Û/´H@ùÈø7ñHùaTàªWŠ”(@ùëà0T€R€Òö+@ùéc‘)!‘úï©!M(Ëàªæ»ÿ—øª´H@ùÈø7ñHùaTàªAŠ”h@ùÈø7ñhùaTàª:Š”/´(@ùÈø7ñ(ùaTàª2Š”iÐ)u@ù	ëThÐm@ùë€ThÐq@ùëTબ‰”ùª@<ø7@ùÈø6
	ëùŸ@ùÈø7ñùaTઊ”ù,5Øv@ù@¹1BT¹¨@ùB‘‰ð%­@ùÿ#¹õ©ÿ¹åùp‘â'@ùãªäª€Rçª?Ö`,´öª@ùÈø7ñùaTàªö‰”h@ùÈø7ñhùaTàªï‰”´ˆ@ùÈø7ñˆùaTàªç‰”´¨@ùÈø7ñ¨ùaTàª߉”¨XøiÐ)y@ù)@ù?ë!CTàªý{R©ôOQ©öWP©ø_O©úgN©üoM©é#Lmë+KmÿÑÀ_Ö`H1‘ðc‘ɉRŸR ýÿ€Ò6ŸR÷ʉR—VŸR×̉R”¥ˆ” µàªγÿ—øª=ÿµ–¡Ré‰R‹àª+‰”ùª¾ÿµVé‰R—¡Rô•ˆ” µàª¾³ÿ—ûª@¿ÿµ€җ¡R¶é‰R(@ùHø6çઉ”úª ¿ÿµ€Òöé‰R—¡R§X@ùx;´[@ù@¹1ÃTh@¹1ãTH@ù ø6€Җì‰R—¡RH@ùø6´:@ùz9´8@ùH@¹1ÃT@¹1ãT(@ù ø6—¡Rvï‰R(@ùèø6¼ˆð¥Gùˆð)Gù€ÒL¶ÿ—à6´øª~¶ÿ—@ùèø7¶¡R×ñ‰RÊPˆ” µàªy³ÿ—ùª@Æÿµ֡Rô‰R6àªֈ”øª€ÆÿµסRVô‰R(@ùèø6œ>ˆ” µàªg³ÿ—úª`Çÿµ¶ô‰RסR”àªĈ”ûª€Çÿµ€Òöô‰RסRH@ùˆ
ø6pz@ùš1´v@ùH@¹1ƒTÈ@¹1£Th@ùÈø6Ò€Җ÷‰RסRA@ùÛ/´@ùh@¹1ãTÈ@¹1T@ù(ø6Õvú‰RסRkˆð¥Gùˆð-Gù€Òúµÿ—€-´øª,¶ÿ—@ùHø7ö¡R×ü‰Rxþ‡” µàª'³ÿ—øª€Îÿµ¢Rÿ‰Rä઄ˆ”ùªÀÎÿµVÿ‰R¢RM µàª³ÿ—ûªàÏÿµ€Ò¢R¶ÿ‰R(@ùhø6@àªqˆ”úªÀÏÿµ€Òöÿ‰R¢Rh@ùÈø7ñhùaTàªïˆ”:µX@ùX'´V@ù@¹1TÈ@¹1#TH@ùHø6ž€ҖŠR¢RH@ùÈø7ñHùaTàª׈”9´(@ùèø7ñ(ùTàªψ”:@ùº#´6@ùH@¹1cTÈ@¹1ƒT(@ù¨ø6‘¢RvŠR(@ùhýÿ6´@ùÈø7ñùaTશˆ”`H1‘ðc‘áªâª‰ˆð¥Gùˆð1Gù€҂µÿ—`´øª´µÿ—@ùÈø76¢R׊RñùaTઝˆ”pvŠRw¢RÝÿÿ¹h@¹1bàÿTh¹H@ùÈø7ñHùaTઍˆ”(€Rúªòüÿöï‰R—¡RËÿÿH¹@¹1bàÿT¹(@ùÈø7ñ(ùaTàª{ˆ”(€Rùªþüÿ¶¡R×ñ‰RIH¹È@¹1¢æÿTȹh@ùÈø7ñhùaTàªiˆ”(€Rûªbýÿöú‰RסRøª¦ÿÿh¹È@¹1BæÿTȹ@ùÈø7ñùaTàªVˆ”(€Røªmýÿö¡R×ü‰R$¹È@¹1"íÿTȹH@ùÈø7ñHùaTàªDˆ”(€RúªÒýÿöŠR¢R‚ÿÿH¹È@¹1ÂîÿTȹ(@ùÈø7ñ(ùaTàª2ˆ”(€RùªÞýÿ6¢R׊R`H1‘ðc‘áªâª֠ÿ—€Òh@ùÆÿ64þÿ吥ô0‘âc‘ã‘àªá'@ùäª**” ø7øgH©ú[I©ŒûÿS¼‰Rgûÿˆð¥Gùˆð)Gù€Òç´ÿ—`´øªµÿ—@ùø7V Rw։Reÿÿˆð¥Gùˆð-Gù€Òٴÿ—´øªµÿ—@ù¨ø7– RwډRWÿÿˆð¥Gùˆð1Gù€Ò˴ÿ— 	´øªý´ÿ—@ùHø7֠RwމRIÿÿ€Ò€Òâ‰R¡RH@ù(áÿ6
ÿÿ€ÒVã‰R7¡Rêþÿ–ä‰RW¡RçþÿÖå‰R÷ Räþÿ»‰R*ûÿs½‰R(ûÿ¾‰R&ûÿ¶ŸR÷ЉR¤ÿÿ֟R7҉R¡ÿÿöŸRwӉRžÿÿV Rw։R›ÿÿ– RwډR˜ÿÿ֠RwމR•ÿÿǔ€R&üÿ€RBüÿ¶¡RWñ‰Rÿÿ€R³üÿ€RÏüÿö¡RWü‰R†ÿÿ€RAýÿ€R]ýÿ6¢RWŠRÿÿV R÷ՉR|ÿÿ– R÷ىRyÿÿ֠R÷݉RvÿÿÿÃÑé#müo
©úg©ø_©öW©ôO©ý{©ýƒ‘óªüªh°y@ù@ù¨ø¿ÿ7©ˆÐ¡‘	‘è§©‘èÿ©y°9s@ù¹ƒøÃ´ñhTôª7‹ÐA‘‰
is8)	
‹ ÖõªºAøYñ‹T€҈ЕCù›b‘h{xøë`T‘_ëaÿÿT€Òa{xøàªB€RV*” 5‘_ë!ÿÿTL†”@´ŠR
ñ`	TñT5@ùµƒøHH€RIð)y‘JðJU‘
ñI±‰šµˆšj°JA@ù@@ùJðJ©‘êϩ飩èQ‘èùAð!¸‘$†”ŠRcü/ù6@ù¶ƒøõªºAøùª_ñŠTF6`@©¶ã7©õªºAøHñËTès©ûª¼@ùŸñK
T€҈ÐuEù—b‘èzuøëÀTµ‘ŸëaÿÿT€ÒázuøàªB€R
*”€
5µ‘Ÿë!ÿÿTV8Ô@©¸W8©6@ù¶ƒøš
@ùXu°µr@ù6`@©¶ã7©U`õÿ7özxø¶ƒøõÿ´ü/ùº@ù_ñ‹T€҈Ð%Dùœb‘ˆ{{øë@T{‘_ëaÿÿT€ҁ{{øàªB€Ræ)”5{‘_ë!ÿÿT܅”Àxµh°A@ù@ù*€RHð©‘K€Rè«©HðU‘é)Q‘诩éùAð!¸‘E”AŠR@ðô1‘Ðc‘"£RŸÿ—€Ò€üÿ7øz{ø¸ø8üÿ´:Ñü/@ùy°9s@ùHñŠóÿTu°µr@ùÀø7u{uø•´µƒøú+@ù­…”tµu°µr@ùü/@ùy°9s@ù÷ª_ñ*lTÿ©šÐHÛGùAùµ@ù€€R?Öáªàª€R€R €R€Ò`?Öóªà;ù€`´h@¹1BTh¹h@ùÈø7ñhùaTઢ†”ÿ;ùt@¹HÛGùAùµ@ùà€R?Öáªàª€R€R €R€Òà?Öûªà7ùÀ]´h@¹1BTh¹h@ùˆø7ñhù Tÿÿ©ô5h@¹¨5ઃ…”@`~!`aTc…”-µàªUN”÷ª±aT\…”`Áµ”ðˆ@ù‰Ð )DùA`€R?Ö1 žTˆ@ùàbž‰Ð ™Cù!€R?Ö1T¿ëû/ù`*Tˆ°!9‘ÑDù@ù@ùáªE†”´öª@¹1BTȹö7ùˆÐåAùÈ@ùI@ùˆ´àª?Öøªà3ù€´È@ùÈø7ñÈùaTàªB†”@ùi°)U@ù	렜T€Ò€Réã‘)!‘ùשj°JQ@ùêGù!M(Ë2àªͷÿ—öªà;ù´(@ùÈø7ñ(ùaTàª'†”ÿ7ùv›´@ùÈø7ñùaTઆ”È@¹1BTȹÈ@ùÈø7ñÈùaTઆ”ÿ;ùÿ3ùHÛGùyBùÀ@ùÁ@¹?ÖùªØ
@ùšw@ùˆÐýAù[@ùàªáªý…”€—´ôª@ù‰@ùó+ùˆ ´àªáªâª?Öôª@ µ€Òõ~ŠRÍàªò…”ÿÿ©tíÿ4”ðˆ
@ù‰Ð!)Dùં€R?Ö1 ITˆ
@ù‰Ð!™Cùàª"€R?Ö1ÀHTt°”V@ù¿ëTˆ°!9‘ÑDù@ùâ@ùᪿ…”@I´öª@¹1BTȹö7ùˆÐåAùÈ@ùI@ù(I´àª?Ö÷ªà3ù I´È@ùÈø7ñÈùaT઼…”è@ùë@HT€Ò€Réã‘)!‘ø×©j°JQ@ùêGù!M(Ë2àªI·ÿ—öªà;ù´@ùÈø7ñùaTણ…”ÿ7ù6G´è@ùÈø7ñèùaTચ…”È@¹1BTȹÈ@ùÈø7ñÈùaTએ…”õª€Òÿ;ùÿ3ùHÛGùyBùÀ@ùÁ@¹?ÖùªHÛGùAùóï©öù`€R?Ö@=´øªà7ùë€KTˆ°QGùhB´	@ù?ëÀJT+­@ù‹E´j	@ù_ñTka‘l@ùŸë ITk!‘JñaÿÿT)
@ù
@ùj°JA@ù@@ùé#©Að!Ø‘<„”õDŠRٱR*HÛGùAùóo©@€R?Ö÷ª€@´÷3ùÿ렉Tˆ°QGùHD´é@ù?ëàˆT+­@ù+{´j	@ù_ñTka‘l@ùŸëTk!‘JñaÿÿT)
@ù
@ùj°JA@ù@@ùé#©Að!Ø‘„”€Ò€ҕ<ŠR9±Rà;@ùà´@ù¨ø7ñùAT+…”à7@ùà´@ù¨ø7ñùAT#…”à3@ùà´@ù¨ø7ñùAT…”@ðô1‘Ðc‘áªâªĝÿ—€ÒÖe´È@ùˆeø7&˜w@ùˆÐýAù@ùàªáª…”öª ”´È@ù‰@ù¨´àªáªâª?Ööª`µ€Ò5bŠR³ˆ@¹1BTˆ¹óª›w@ùˆÐñAù|@ùàªáªè„”ô'ùv´úª@ù	‰@ùI´àªáªâª ?Öà;ù€u´úª@ùI@¹)1BTI¹ú;ùi°)U@ù	ëAtT[@ùû7ùûu´T@ùh@¹1Tˆ@¹1#Tô;ùH@ùHø6h¹ˆ@¹1"ÿÿTˆ¹ô;ùH@ùÈø7ñHùaT઻„”"€Rúªèã‘!‘ûÿ©
ËàªO¶ÿ—üªà3ùô'@ù´h@ùÈø7ñhùaTન„”ÿ7ù¼n´H@ùÈø7ñHùaTટ„”ÿ;ùˆ@ùÈø7ñˆùaTગ„”ÿ3ùƒ”úª?ñkT{‚‘u‚‘àªA`áªâªU”‡ø9ñ!ÿÿTàª{ƒ”ˆÐåFùˆ@ùA@ùôk´@ÐØ!‘c„”óoE©Àl5÷'@ùàªáª€Ҁ?Öõª]„”l´è@ùÈø7ñèùaTàªm„”Uj´¨@ùÈø7ñ¨ùaTàªe„”È@¹€Ò1¢NTȹsÈ@¹1BTȹ™w@ùˆÐñAù:@ùàªáªN„”à~´øª@ù	‰@ùI´àªáªâª ?Öà7ù`~´øª@ù	@¹)1BT	¹ø7ùi°)U@ù	ë!}T@ùù;ùÙ~´@ù(@¹1Tˆ@¹1#Tô7ù@ùHø6(¹ˆ@¹1"ÿÿTˆ¹ô7ù@ùÈø7ñùaTàª"„”"€Røªèã‘!‘ùÿ©
Ëશµÿ—úªà3ù´(@ùÈø7ñ(ùaT઄”ÿ;ùºw´@ùt°”r@ùÈø7ñùaT઄”ÿ7ùH@ùÈø7ñHùaTàªýƒ”óƒ”úª4@ù@ùñdTúT@ùhÿÿµôª€Ò€Ò€Òh@¹1BTh¹y@ù(@¹1BT(¹ôªàªނ”øª€ƒ‘‚ƒ‘A`ᪧ€”
ƒ” s´üªÿ3ùH7@ù@ùùà´@ù¨ø7ñùATσ”û/@ùóª´(@ùÈø7ñ(ùaTàªŃ”´@ùÈø7ñùaTઽƒ”<´ˆ°åFù઀Ґ°ÿ—÷ªÈ@ùÈø7ñÈùaTયƒ”w9µ€ÒusŠRY´Rxþÿ€Ò€Ò€ÒٯR5)ŠRzþÿ€Ò€Ò5-ŠR°Rmþÿ€Ò€Òu2ŠR™°Rhþÿ€Ò€ҕ3ŠR¹°Rcþÿ@Ð3‘C°cD‘A>ƒR‚a€R>œÿ—ÿ7ùµDŠRٱRXþÿo‚”Àyµàª˜­ÿ—öªà7ùà¶ÿµ€Òõ5ŠRàªô‚”÷ªà3ù ·ÿµ€Ò56ŠRöªø@ùø7ùøw´ô
@ù@¹1Tˆ@¹1#Tô3ùè@ùHø66€ÒÕ8ŠRù°R3þÿh=@ù@ùAÐ!ˆ‘K‚”þÿÅð¥P‘âã‘£#Ñàªáªäªf%” ø7¶ãw©µƒXø•üÿ@И2‘C°cD‘8ƒR"a€Rû›ÿ—€Òÿ3ùU<ŠRþÿê	ªj´J@ù_ë¡ÿÿT#¹ˆ@¹1"úÿTˆ¹ô3ùè@ùÈø7ñèùaTàª4ƒ”(€R÷ªôªzýÿŠRLüÿh=@ù@ùAÐ!ˆ‘‚”ñýÿ!ŠRCüÿÁŠRAüÿjJ@ù
ë·ÿT´è@ùÈø7ñèùaTઃ”ˆ°QEù@ùI@ù,´àª?Ö÷ªà7ù,´ˆÐ
@ùàªáª?Öà3ù`+´úªè@ùÈø7ñèùaTàªþ‚”óo©ÿ7ùH@ùÈø7ñHùaTàªõ‚”ÿ3ùóªšw@ùˆ°ýAù[@ùàªáªæ‚”€(´÷ª@ù‰@ù(´àªáªâª?Ö÷ªéªàµ=è@¹1éªBTè¹;u@ùˆ°ñAù|@ùàªáª͂”€&´úª@ù	‰@ùI"´àªáªâª ?Öà7ù&´úª@ùëá!T[@ùû;ù»&´T@ùh@¹1Tˆ@¹1#Tô7ùH@ùHø6h¹ˆ@¹1"ÿÿTˆ¹ô7ùH@ùÈø7ñHùaT઩‚”"€Rúªèã‘!‘ûÿ©
Ëàª=´ÿ—üªà3ù´h@ùÈø7ñhùaTગ‚”ÿ;ùü´H@ùÈø7ñHùaT઎‚”ÿ7ùˆ@ùÈø7ñˆùaTઆ‚”ÿ3ù|”úª?ñË
T€Ò{‚‘u‚‘Ñœ‘ŸëÀT§S©™Bù@ý(™Bù@ùàªâª;”›@ù™Bùù@ù‘ù@¹q«ýÿT€Ò
IAùK™Bùi	‹I™ù‰zhø*@ùJ‘*ù‘	€¹	ëêûÿTñ}Ӊjkø*
@ùJ‘*
ùŠjkøI@¹©ýÿ4LáT94I•Bù)@ù)!€¹K™Bùi	‹I™ùìÿÿ?qATI@ùL™@ù?ëJT)‘Iù‰zhø*Aù'	üÿ7‹zhø*}}Ók
‹l@ùm•@ùŸ
ëKTù‹zhøj
‹J•Aùl™BùŠ
Ëj™ù*Q?qé
ªìýÿTÍÿÿ_ù‰jkø*@ùJ‘*ù‰jkø*Aù+™Aù,™BùJˊ
‹*™ùÀÿÿ‰‘iù‰zhø*
‹JAù+™Bùj
‹*™ù·ÿÿઁ”ˆ°åFùè@ùA@ùt´@°Ø!‘óoE©`5àªáª€Ҁ?Öõªê”U´è@ùÈø7ñèùaTàªú”Õ´¨@ùÈø7ñ¨ùaTàªò”È@¹1BTȹ÷ªüªÈ@ùÈø7ñÈùaTàªå”´è@ùÈø7ñèùaTàª݁”´h@ùÈø7ñhùaTàªՁ”´h@ùÈø7ñhùaTàª́”¨Yøi)y@ù)@ù?ë¡@Tàªý{R©ôOQ©öWP©ø_O©úgN©üoM©é#LmÿÑÀ_ÖI@¹)1BTI¹ú7ùë`ÞÿT€Ò€Ò
ÿÿàª'”÷ªà7ù@ÔÿµUFŠR•FŠRù±R÷ªvüÿh@ù@ù᪌€”5HŠR²R÷ªyh@ù@ù᪃€”ÿ7ùuHŠRõJŠRóoE©è@ù(ø7ñèùÁT઎”€Òåþÿàªáª€ÒõªóoE©„ÿÿµVŠR²R÷ªNüÿe€” 7´€Ò|ÿÿ€Ò€ҕ^ŠRٳREüÿ€Ò€ҵ_ŠRù³R@üÿê	ªê´J@ù_ë¡ÿÿTgQ€”€7µàªz«ÿ—öªà7ù`bÿµ€Ҹàª׀”øªà3ùÀbÿµ€Ò€ÒÕwŠRٴR'üÿ@ùù7ùycÿ´@ù(@¹1C*Tˆ@¹1c*Tô3ù@ùˆ*ø6X€ÒuzŠRٴRüÿh@ù@ùáª+€”€Òõ~ŠRYµRû/@ùüÿh@ù@ùáª!€”ÿ;ù5ŠR€Ò€ÒzüÿµŠRˆ@ùèø7ñé'@ù(ùaTà'@ù)”€ÒYµRóoE©óûÿ€Òküÿ÷'@ùàªáª€҅€”õªóoE©¨üÿ€ÒŠŠRYµRåûÿ€Òú”`-´€Òû/@ù÷'@ùœüÿ€Ò€Ò\ŠR™³RØûÿjJ@ù
ëáxÿTÿ3ùˆ!9‘ÑDù@ù@ùáªé€” ´öª@¹1BTȹö;ùˆ°åAùÈ@ùI@ùÈ
´àª?Öøªà7ùÀ
´È@ùÈø7ñÈùaTàªæ€”õªˆ°QEùè@ùI@ù¨	´àª?Öùªà;ù 	´@ùëÀ	T€Ò€Réã‘)!‘úç©jJQ@ùêGù!M(Ë2àªh²ÿ—öªà3ù´H@ùÈø7ñHùaT઀”(@ùÈø7ñ(ùaT઻€”ÿ;ùš°v´@ùÈø7ñùaT઱€”È@¹1BTȹÈ@ùdÿ7ñÈù¡cÿTદ€”ûÿŠ”µàª³ªÿ—öªà;ùõÿµì઀”øªà7ù€õÿµ€Ò5>ŠRY±Rbûÿ઀”ùªà;ù öÿµ€ÒY±R•>ŠRaûÿ@ùzöÿ´@ùH@¹1cTÈ@¹1ƒTö7ù@ù¨ø6Y±R5AŠRQûÿH¹È@¹1ÂþÿTȹö7ù@ùÈø7ñùaTàªn€”(€Røª–ÿÿ€Ò€ÒU]ŠR¹³R4ûÿh@ù@ùáªJ”€Ò5bŠRY´R+ûÿh@ù@ùáªA”ÿ7ùubŠR€Ò€Ò3üÿõdŠRÈ@ùÈø7ñÈùaTàªJ€”€Ò€ÒY´Rû/@ùûÿ€Ò$üÿóªÿÿ©ÿ3ù@Ðô1‘°c‘ÁhŠRb´Ré˜ÿ—ბ⣑ãÑàªp%”`ø7ê'F©è;@ù飩飩êùêù`€Rà” ´üªàªáª€Òþ¬ÿ—à'ùÈ@ùÈø7ñÈùaT઀”ˆ@ùÈø7ñˆùaT઀”è'@ù¨´hu@ùé'@ù?ë Ti)m@ùê'@ù_	ë€Ti)q@ùê'@ù_	ëàTà'@ù‹”öª(¹ˆ@¹1âÕÿTˆ¹ô3ù@ùÈø7ñùaTàªô”(€Røª·ùÿukŠR"é'@ù?ëöŸè'@ù@ùèø7ñé'@ù(ùaTà'@ùã”–ø7–4à@ùÒÿ—ÿ3ùà@ùÿ—à#@ù¾’ÿ—ÿ;ù@7@ùáªâªãªŠ%”û/@ùüªóªš°oùÿmŠR@7@ùáªâªãª%”€Ò€ÒY´Rû/@ùóª‘úÿÅ”h=@ù@ùA°!T"‘¨~”>þÿ€Ò€Òÿ7ùõ5ŠRPüÿ€Rƒüÿ€Òÿ;ùY±Rõ=ŠR…úÿ€Ò€Òÿ7ù•wŠRٴRwúÿHð=@ù@ùA!T"‘~”þÿõkŠRÓÿÿ•lŠRÑÿÿI”áC©ã#@ùHªÿ—ÿ©nŠRÿ;ùÉÿÿÿÃÑüo	©úg
©ø_©öW©ôO
©ý{©ýƒ‘ôªóªHðy@ù@ù¨ƒøÿ©ˆ¡‘	‘è'©‘è©Hðq@ùèCùôŸñHTõª<‹Q‘‰
it8)	
‹ ÖúªYAø;ñ‹T€҈•Cù¶b‘Èzxøë€T‘?ëaÿÿT€ÒÁzxøàªB€RK"”@5‘?ë!ÿÿTA~” ´!™ŠR‚Ÿ
ñ 	TŸñaT"@ùGH€RI°)y‘J°JU‘Ÿ
ñI±‰šµˆšJðJA@ù@@ùJ°J©‘êө飩Èð‘èùA°!¸‘~”!žŠReü'ù7@ù÷;ùúªYAøûª?ñÊTH7d@©÷g©úª[AøhñëTès©V@ùßñ+T€҈uEù¼b‘ˆ{zøë€TZ‘ßëaÿÿT€ҁ{zøàªB€R"”@5Z‘ßë!ÿÿT]9ˆ@©ù‹©7@ù÷;ù»
@ù\BðBp@ù7d@©tv@ùˆ@¹1cT[@õÿ7—{xø÷;ù÷ôÿ´ü'ùY@ù?ñ‹T€҈%Dù¶b‘Èz|øë@Tœ‘?ëaÿÿT€ÒÁz|øàªB€RÚ!”5œ‘?ë!ÿÿTÐ}”àµHðA@ù@ù*€RH°©‘K€Rè«©H°U‘Éð)‘诩éùA°!¸‘µ}”ašŠR@°x3‘c‘"¶R—ÿ—€ÒO€üÿ7è'@ùy|øù?ùüÿ´{Ñü'@ùhñjóÿTBðBp@ùtv@ùˆ@¹1ƒTàø7è'@ùyzø‚´âCùû#@ù}”À
µBðBp@ùü'@ùñê
Ttv@ùˆ@¹1BTˆ¹ˆ°@ùa"‘‰)a‘'íBù*}Cù+áEù)@ùÿ3¹ë'©‰€Ré¹ù«©I€Ré¹àÐ`:‘ãªD€R€Ræª?ֈ@ù@´óªÈø7ñˆùaTઌ~”તF”ôª€´h@ùÈø7ñhùaTઁ~”¨ƒZøIð)y@ù)@ù?ëáTàªý{N©ôOM©öWL©ø_K©úgJ©üoI©ÿÑÀ_ÖÈø7ñˆùaTàªl~”@°x3‘c‘¥ŠRBR”ÿÿ@°x3‘c‘fŠRâR—ÿ—h@ùèúÿ6ÛÿÿÅ𥀑âC‘ãÑàªáªäªc ”€ø7÷gG©âC@ùtv@ùˆ@¹1ôÿT ÿÿ!šŠRsÿÿA›ŠRqÿÿᛊRoÿÿG~”ÿCÑüo©úg©ø_	©öW
©ôO©ý{©ý‘õªóªHðy@ù@ù¨ƒøˆ‘	¡‘è'©ÿ+ù±CùHðq@ùô£©ƒ´öª7‹Õ´¿ñ 	T¿
ñaT4@©ô‹©Ù
@ù‚BðBp@ù5´¿ñ€T¿
ñT"@ù4@ùuv@ù¨@¹1cT{¨þ~Óè(*I°)y‘J°JU‘’¿ñI±‰šJðJA@ù@@ùJ°J©‘ëkÉ
‘ë'©êשèùA°!¸‘Ú|”ᵊR@°È4‘c‘"AR¦–ÿ—€҅úªYAø)ñëT€҈áBùÛb‘éùh{|øë€Tœ‘?ëaÿÿT€Òa{|øàªB€RË ”@5œ‘?ë!ÿÿT
4@ùô/ùúªYAø
àø7èz|ø¨´è/ùôªù@ù´|”àµ(ñKTèùûª\@ùŸñKT€҈uEù×b‘èzzøëÀTZ‘ŸëaÿÿT€ÒázzøàªB€R¢ ”€5Z‘Ÿë!ÿÿTBðBp@ùuv@ù¨@¹1cTÀø7b{zø‚´â3ùù@ùŠ|” 
µBðBp@ù÷ª?ñª
Tuv@ù¨@¹1BT¨¹ˆ°@ùa‚‘‰)a‘'9Bù*áEù)@ùÿ3¹ê'©ÿ¹ê§©I€Ré¹àð‘ãª$€R€Ræª?֨@ù@´óªÈø7ñ¨ùaTàª{}”ઓE”ôª€´h@ùÈø7ñhùaTàªp}”¨ƒZøIð)y@ù)@ù?ëÁTàªý{L©ôOK©öWJ©ø_I©úgH©üoG©ÿC‘À_ÖÈø7ñ¨ùaTàª[}”@°È4‘c‘|ŠR¢ʁR^ÿÿ@°È4‘c‘¾ŠRBˁRý•ÿ—h@ùèúÿ6Ûÿÿ吥È
‘â‘ãc‘àªáªäªR” ø7ô‹E©uv@ù¨@¹1côÿT£ÿÿ!³ŠR>ÿÿsŠR<ÿÿA²ŠR:ÿÿ7}”ÿCÑüo©úg©ø_	©öW
©ôO©ý{©ý‘ôªóªHðy@ù@ù¨ƒøˆ!‘	%‘è'©ÿ+ùHðq@ùÿ£©ƒ´õª6‹ô´Ÿñ 	TŸ
ñÁT7@©÷‹©¹
@ùŸñÀTŸ
ñÁT"@ùDøªAøyñ‹T€҈Å@ù¼b‘ˆ{zøëTZ‘ëaÿÿT€ҁ{zøàªB€Rä”À5Z‘ë!ÿÿTÚ{”`´ʊRH°y‘I°)U‘*€RŸñ(±ˆšIµŠšJðJA@ù@@ùJ°J©‘k­‘j±ŠšêÓ©è§©é)å5‘éùA°!¸‘¶{”͊R@°h5‘c‘‚ˁR‚•ÿ—€Òm7@ù÷/ùøªAø
BðBp@ù7@ùtv@ùˆ@¹1ãT7Àùÿ7×zzø÷/ùwùÿ´(ñ+Tèù@ùŸñKT€҈uEùºb‘H{{øëÀT{‘ŸëaÿÿT€ÒA{{øàªB€R•”€5{‘Ÿë!ÿÿTBðBp@ùtv@ùˆ@¹1CTÀø7Âz{ø‚´â3ùù@ù}{”@
µBðBp@ù?ñª
Ttv@ùˆ@¹1BTˆ¹ˆ°@ùa‚‘‰)a‘'@ù*áEù)@ùÿ3¹ê'©ÿ¹ê§©é€Ré¹àð ‘ãª$€R€Ræª?ֈ@ù@´óªÈø7ñˆùaTàªo|”ઇD”ôª€´h@ùÈø7ñhùaTàªd|”¨ƒZøIð)y@ù)@ù?ëTàªý{L©ôOK©öWJ©ø_I©úgH©üoG©ÿC‘À_ÖÈø7ñˆùaTàªO|”@°h5‘c‘aԊR¢ցRvÿÿ@°h5‘c‘!֊RBׁRñ”ÿ—h@ùèúÿ6Ûÿÿ吥ä5‘â‘ãc‘àªáªäªF”àø7÷‹E©tv@ùˆ@¹1côÿT£ÿÿˊRVÿÿáʊRTÿÿ-|”ÿCÑüo©úg©ø_	©öW
©ôO©ý{©ý‘ôªóªHðy@ù@ù¨ƒøˆ!!‘	
‘è'©ÿ+ùHðq@ùÿ£©ƒ´õª6‹ô´Ÿñ 	TŸ
ñÁT7@©÷‹©¹
@ùŸñÀTŸ
ñÁT"@ùDøªAøyñ‹T€҈%Dù¼b‘ˆ{zøëTZ‘ëaÿÿT€ҁ{zøàªB€RÚ”À5Z‘ë!ÿÿTÐz”`´¡áŠRH°y‘I°)U‘*€RŸñ(±ˆšIµŠšJðJA@ù@@ùJ°J©‘k­‘j±ŠšêÓ©è§©é°)%‘éùA°!¸‘¬z”!åŠR@°ü5‘c‘‚ׁRx”ÿ—€Òm7@ù÷/ùøªAø
BðBp@ù7@ùtv@ùˆ@¹1ãT7Àùÿ7×zzø÷/ùwùÿ´(ñ+Tèù@ùŸñKT€ÒhðuEùºb‘H{{øëÀT{‘ŸëaÿÿT€ÒA{{øàªB€R‹”€5{‘Ÿë!ÿÿTBÐBp@ùtv@ùˆ@¹1CTÀø7Âz{ø‚´â3ùù@ùsz”@
µBÐBp@ù?ñª
Ttv@ùˆ@¹1BTˆ¹ˆ@ùa‚‘ið)a‘'}Cù*áEù)@ùÿ3¹ê'©ÿ¹ê§©©€Ré¹àа‘ãª$€R€Ræª?ֈ@ù@´óªÈø7ñˆùaTàªe{”àª}C”ôª€´h@ùÈø7ñhùaTàªZ{”¨ƒZøIÐ)y@ù)@ù?ëTàªý{L©ôOK©öWJ©ø_I©úgH©üoG©ÿC‘À_ÖÈø7ñˆùaTàªE{”@ü5‘ãðc‘ìŠRbށRvÿÿ@ü5‘ãðc‘ÁíŠR߁Rç“ÿ—h@ùèúÿ6Ûÿÿ吥%‘â‘ãc‘àªáªäª<”àø7÷‹E©tv@ùˆ@¹1côÿT£ÿÿ!ãŠRVÿÿâŠRTÿÿ#{”ÿCÑüo©úg©ø_
©öW©ôO©ý{©ý‘óªöªHÐy@ù@ù¨øÿ©hð‘	á‘飩	Á‘¡‘飩ÿ?ùHÐq@ùÿ#	©ã´ñˆTôª<‹èða‘‰
is8)	
‹ Öö+ùöªÚAøYñ‹T€Òhð½Cù•b‘¨zxøë T‘_ëaÿÿT€ҡzxøàªB€RÒ”à5‘_ë!ÿÿTÈy”@´úŠR°ñ TñT:@ùúOùh€RI)y‘JJU‘ñI±‰šµˆšJÐJA@ù@@ùJJ©‘êϩ飩è°1‘èùA!¸‘ y”“‹R’ZÐZs@ù8ä@©øç©7@ù÷Cù¯ö+ù7@ù÷CùöªÚAøùª_ñJTLúªö+ù7`@©÷c©öªÛAøû'ùñJ
Tdö+ù8ä@©øç©7@ù÷CùöªÛAøhñ+Tès©Õ@ù¿ñT€ÒhðuEùœb‘ˆ{vøë`TÖ‘¿ëaÿÿT€ҁ{vøàªB€Rv” 5Ö‘¿ë!ÿÿTt9hA©ùk	©7`@©÷c©›
@ùs óÿ7—{xø÷CùWóÿ´Ú@ù_ñ‹T€Òhð¡Cù•b‘¨z{øë`T{‘_ëaÿÿT€ҡz{øàªB€RU” 5{‘_ë!ÿÿTKy”வSûŠR(€R"`ÿÿ7˜{{øøGùÿÿ´úª(Ñè'ùÛ@ùñ‹T€ÒhðùCù•b‘¨z|øë`Tœ‘ëaÿÿT€ҡz|øàªB€R3” 5œ‘ë!ÿÿT)y” Ÿµ“üŠRH€RIÐ)A@ù @ùèùH©‘i€Ré#©HU‘é°)1‘é#©A!¸‘
y”@¤6‘ãðc‘áªB߁Rْÿ—€ҫ`üÿ7Y{|øùKùüÿ´è'@ùÑüªhñ*ðÿTZÐZs@ùö+@ùàø7è'@ùyvøš´úOùû#@ùøx” ¦µZÐZs@ùüÛD©ñ*”TsðhÚGùAùµ@ùà€R?Öáªàª€R€R €R€Ҁ?Öõªh´¨@¹1BT¨¹¨@ùÈø7ñ¨ùaTàªòy”hÚGùAùµ@ùà€R?Öáªàª€R€R €R€Ҁ?Öôª e´ˆ@¹1BTˆ¹ˆ@ùÈø7ñˆùaTàªÙy”hÚGùAùµ@ùà€R?Öáªàª€R€R €R€Ò`?Öóª c´h@¹1BTh¹h@ùˆø7ñhùÀ
Tˆ@¹©@¹?kTi@¹(*¨
5ó+ùàªöB”÷ª±aTšx”ªµóªàªîB”øª±aT’x” ©µàªçB”úª±aT‹x”`©µ‹ëˋTÜv@ùˆ@¹1BTˆ¹àªËx” ´ùªàªÇx”øª ´àªÃx”ûª ´ˆ@ùB‘ið)!‘'@ù*@ù)Y@ù€Rë3¹û'©)€Ré¹ø«©é¹àÐÐ
‘âªãª€Re€Ræª?֋´÷ªˆ@ùó+@ùÈø7ñˆùaTàªoy”(@ùÈø7ñ(ùaTàªhy”@ùÈø7ñùaTàªay”h@ùÈø7ñhùaTàªZy”àªrA”àŒ´öªºàªSy”ˆ@¹©@¹?k@òÿTö+ùvÐÖ"9‘×ÒDùÀ@ùâ@ùáª2y”S´ûª@¹1BTh¹hðù@ùh@ùI@ùS´àª?ÖøªS´h@ùÈø7ñhùaTàª1y”×ÒDùÀ@ùâ@ùáªy”R´ùª@¹1BT(¹hðCù(@ùI@ù¨R´àª?Öüª R´(@ùÈø7ñ(ùaTàªy”ÙÒDùÀ@ù"@ùáªüx” Q´÷ª@¹1BTè¹ú'ùhðá@ùè@ùI@ùHQ´àª?Öúª@Q´è@ùÈø7ñèùaTàªúx”H@ù[Ð{W@ùë PT€R€Òéc‘)!‘÷שô7ù!M(Ë2ઇªÿ—ùª´è@ùÈø7ñèùaTàªâx”9O´H@ùÈø7ñHùaTàªÚx”ˆ@ùë`NT€R€Òéc‘)!‘úç©ó7ù!M(Ë2àªiªÿ—÷ª´H@ùÈø7ñHùaTàªÄx”(@ùÈø7ñ(ùaTઽx”—L´ˆ@ùÈø7ñˆùaTવx”@ùëLT€R€Òéc‘)!‘ùß©!M(ËàªEªÿ—úª´(@ùÈø7ñ(ùaTઠx”è@ùÈø7ñèùaTઙx”ZJ´@ùÈø7ñùaTઑx”HÐu@ù_ëTIÐ)m@ù_	ë€TIÐ)q@ù_	ëTàªx”÷ª`ø7H@ùÈø6
_ë÷ŸH@ùÈø7ñHùaTàªux”×F5|ðAù¨@ùI@ùHH´àª?Öøª@H´×ÒDùÀ@ùâ@ùáªQx”H´ûª@¹1BTh¹hð¡Bùh@ùI@ù¨G´àª?Ö÷ª G´h@ùÈø7ñhùaTàªPx”@ù[Ð{W@ùëGT@ùZH´@ùH@¹1ãT(@¹1T@ù(ø6
H¹(@¹1BÿÿT(¹@ùÈø7ñùaTàª3x”(€Røªéc‘)!‘úß©!M(ËàªƩÿ—ùª´H@ùÈø7ñHùaTàª!x”è@ùÈø7ñèùaTàªx”9A´@ùˆø7ñù€TzÐHÐq@ù?ëÀTHWGù(G´)@ù?ë T+­@ùV´j	@ù_ñTka‘l@ùŸëTk!‘JñaÿÿT)
@ù
@ùJÐJA@ù@@ùé#©A!Ø‘Òv”65‹RøîRúª!àªïw”zÐHÐq@ù?ëûÿT¨@ùÈø7ñ¨ùaTàªãw”Aùˆ@ùI@ùH;´àª?Öøª@;´ÕÒDùÀ@ù¢@ùáªÁw” ;´üª@¹1BTˆ¹hð¡Bùˆ@ùI@ùˆ;´àª?Öõª€;´ˆ@ùÈø7ñˆùaTàªÀw”@ùëA;T@ù·<´@ùè@¹1ãTh@¹1T@ù(ø6
è¹h@¹1BÿÿTh¹@ùÈø7ñùaTથw”(€Røªéc‘)!‘÷ש!M(Ëàª8©ÿ—üª´è@ùÈø7ñèùaTઓw”¨@ùÈø7ñ¨ùaTઌw”|5´@ùˆø7ñù`TH°q@ùŸë THWGù(D´‰@ù?ëT+­@ùF´j	@ù_ñTka‘l@ùŸëàTk!‘JñaÿÿT)
@ù
@ùJ°JA@ù@@ùé#©!ð!Ø‘Ev”V:‹RïRúª“àªbw”H°q@ùŸë¡ûÿTˆ@ùÈø7ñˆùaTàªWw”hÐAùh@ùI@ù¨0´àª?Öøª 0´ÔÒDùÀ@ù‚@ùáª4w” 0´ûª@¹1BTh¹hСBùh@ùI@ùH0´àª?Öôª@0´h@ùÈø7ñhùaTàª3w”@ùI°)U@ù	ë0T@ùu1´@ù¨@¹1ãTÈ@¹1T@ù(ø6
¨¹È@¹1BÿÿTȹ@ùÈø7ñùaTàªw”(€Røªö+@ùéc‘)!‘õÓ©!M(Ëન¨ÿ—ûª´¨@ùÈø7ñ¨ùaTàªw”ˆ@ùÈø7ñˆùaTàªüv”*´@ùÈø7ñùaTàªôv”H°q@ùë@DTHWGùˆ3´i@ù?ë CT+­@ùË?´j	@ù_ñTka‘l@ùŸë€BTk!‘JñaÿÿT)
@ù
@ùJ°JA@ù@@ùé#©!ð!Ø‘³u”v?‹R8ïRúªôªõªH@ùÈø7ñHùaTàªÊv”€Ò ð¤6‘ãÐc‘áªâªrÿ—€Òùª•Dµ*€Ò€Ò€Ò8ìRv	‹Rðÿÿ€Ò€ÒXìRV‹Rëÿÿ€ÒxìR6
‹Rçÿÿ”u” µàª½ ÿ—ûª ­ÿµ€ҘîRö"‹RÝÿÿàªv”øª@­ÿµ€Ò€Ò6#‹R˜îR›u” µàªª ÿ—ùª ®ÿµ€Ò€Ò€҈îRèK¹–#‹R@ùÈ0ø6Šàªv”üª ­ÿµ€ÒÖ#‹RˆîRèK¹hiu”@Fµàª’ ÿ—÷ª€®ÿµ€Ò.àªðu”úª¯ÿµ€Òv$‹R W@ùE´Y@ùè@¹1T(@¹1#TH@ùHø6Ö€Ò€Ò'‹Rš@ùZC´—@ùH@¹1ãTè@¹1Tˆ@ù(ø6Õ€Ò€Òö)‹RˆîRèK¹A@ùYA´@ù(@¹1ãTH@¹1T@ù(ø6Õ€Ò€҈îRèK¹Ö,‹R@ù'ø6<hÐ¥GùhÐ5Gù€Ò£ÿ—`>´úªD£ÿ—H@ù¨ø7¸îR6/‹RñHùÁìÿTcÿÿઢu”øª¸ÿµ€ÒøîRv1‹R^ÿÿu”`<µàª4 ÿ—ûª ¸ÿµßઓu”÷ª ¸ÿµ€ÒèîRèK¹ö1‹R@ù¨!ø6€R€Òáýÿ€Ò€Ò€ÒèîRèK¹¶4‹R@ù( ø6€RÖýÿàªzu”øªÅÿµ€ÒïR–6‹Rõª5ÿÿât” µàª ÿ—üªÅÿµ€Ò€Ò€ÒïRèK¹Ö6‹Ràªdu”õªÀÄÿµ€Ò€Ò€Ò7‹RïRèK¹õªÒ€R€Ò?þÿ€Ò€Ò€ÒïRèK¹Ö9‹Rõª@ùø6Ô€R3þÿH°=@ù@ù!ð!ˆ‘»t”ÚýÿàªBu”øª Ïÿµ€Ò8ïR¶;‹Rõªôªüþÿ©t”@1µàªҟÿ—ûª€Ïÿµ†àª1u”ôªÐÿµ€Ò€Ò(ïRèK¹6<‹Rõªôª@ùø6¬€R€ҙþÿ€Ò€Ò(ïRèK¹ö>‹Rõªôª@ùhø6Ÿ€Rþÿè¹(@¹1"æÿT(¹H@ùÈø7ñHùaTઔu”(€RúªŸüÿH¹è@¹1BæÿT蹈@ùÈø7ñˆùaTઅu”(€Rüª®üÿV-‹R˜îR¯þÿ(¹H@¹1BæÿTH¹@ùÈø7ñùaTàªsu”(€RøªÁüÿ€ҸîR6/‹R¤þÿ吥0‘âc‘ã‘àªáªäªt” ø7÷cH©ùkI©UûÿH°=@ù@ù!ð!ˆ‘Ft”òýÿê	ªJ´J@ù_ë¡ÿÿTjýÿH°=@ù@ù!ð!ˆ‘9t”wþÿê	ªÊ
´J@ù_ë¡ÿÿTéýÿSüŠRûÿhÐ¥GùhÐ5Gù€Ò¢ÿ—"´úªI¢ÿ—H@ùHø7Ö‹RñHù T€Òó+@ù˜íRiþÿ€Ò€Ò€Ò€ÒV‹RÈíRèK¹ó+@ù€Җ‹RèíRÖ‹RîR‹R¨íRèK¹ó+@ù(@ùÈø7ñ(ùaTàªu”€Ò€Ò´ˆ@ùÈø7ñˆùaTàªu”´@ùÈø7ñùaTàªu”øK@¹´h@ùÈø7ñhùaTàªût”´è@ùÈø7ñèùaTàªót”ZÄÿµ(þÿXîR6 ‹R&þÿûŠR½úÿê	ª
´J@ù_ë¡ÿÿTJ°J@ù
ë ŸÿTäüÿsýŠR°úÿþŠR®úÿJ°J@ù
뀯ÿThýÿ€ҘíRÖ‹Ró+@ùþÿJ°J@ù
ë!¾ÿTh@ùÈø7ñhùaTàªÈt”Úv@ùH@¹1BTH¹hð@ùB‘iÐ)!‘%@ù*@ù)Y@ù€Rë#¹û'©)€Ré¹êùà°Ð
‘â'@ùãªäª&€Rçª?Öà´÷ªH@ùÈø7ñHùaTતt”઼<”´öªõªôªóª´¨@ùÈø7ñ¨ùaTકt”´ˆ@ùÈø7ñˆùaTઍt”´h@ùÈø7ñhùaTઅt”´è@ùÈø7ñèùaTàª}t”¨ZøI°)y@ù)@ù?ëÁTàªý{P©ôOO©öWN©ø_M©úgL©üoK©ÿC‘À_ÖB‹RXïRóª˜ýÿøïRÖC‹Rõªôªóªœýÿ€ÒøìRV‹Ró+@ù—ýÿ€ÒíR–‹Ró+@ù’ýÿ€Ò8íRÖ‹Ró+@ùýÿó+@ù˜íR‡ýÿTt”€Ò€Ò€Ò6$‹R÷ýÿ€RXûÿ€Rtûÿ€R—ûÿ€ҸîR¶.‹Rzýÿ€Ò€Ò€ÒèîRèK¹¶1‹R@ùHæÿ66ÿÿ€Ò€Ò€Ò(ïRèK¹ö;‹Rõªôª@ùèäÿ6+ÿÿ€ҘíRV‹Ró+@ùaýÿÿCÑüo©úg©ø_	©öW
©ôO©ý{©ý‘ôªóªH°y@ù@ù¨ƒøhÐ!!‘	
‘è'©ÿ+ùH°q@ùÿ£©ƒ´õª6‹ô´Ÿñ 	TŸ
ñÁT7@©÷‹©¹
@ùŸñÀTŸ
ñÁT"@ùDøªAøyñ‹T€ÒhÐ%Dù¼b‘ˆ{zøëTZ‘ëaÿÿT€ҁ{zøàªB€RÙ”À5Z‘ë!ÿÿTÏr”`´AP‹R(ðy‘)ð)U‘*€RŸñ(±ˆšIµŠšJ°JA@ù@@ù*ðJ©‘ëÐk­‘j±ŠšêÓ©è§©é°)%‘éù!ð!¸‘«r”ÁS‹R ð`7‘ãÐc‘"ðRwŒÿ—€Òm7@ù÷/ùøªAø
B°Bp@ù7@ùtv@ùˆ@¹1ãT7Àùÿ7×zzø÷/ùwùÿ´(ñ+Tèù@ùŸñKT€Òh°uEùºb‘H{{øëÀT{‘ŸëaÿÿT€ÒA{{øàªB€RŠ”€5{‘Ÿë!ÿÿTBBp@ùtv@ùˆ@¹1CTÀø7Âz{ø‚´â3ùù@ùrr”@
µBBp@ù?ñª
Ttv@ùˆ@¹1BTˆ¹hÐ@ùa‚‘i°)a‘'}Cù*áEù)@ùÿ3¹ê'©ÿ¹ê§©É€Ré¹àP"‘ãª$€R€Ræª?ֈ@ù@´óªÈø7ñˆùaTàªds”àª|;”ôª€´h@ùÈø7ñhùaTàªYs”¨ƒZøI)y@ù)@ù?ëTàªý{L©ôOK©öWJ©ø_I©úgH©üoG©ÿC‘À_ÖÈø7ñˆùaTàªDs” Ð`7‘ã°c‘¡Z‹RBúRvÿÿ Ð`7‘ã°c‘a\‹RâúRæ‹ÿ—h@ùèúÿ6Ûÿÿ吥$‘â‘ãc‘àªáªäª;”àø7÷‹E©tv@ùˆ@¹1côÿT£ÿÿÁQ‹RVÿÿ!Q‹RTÿÿ"s”ÿƒÑüo©úg
©ø_©öW©ôO©ý{©ýC‘öªúªHy@ù@ù¨øh°A‘ÿÿ©	‘
Á‘é«©	a ‘飩	¡$‘JJq@ùéÿ©ñDùê×	©-EùôWù´ßñÈT÷ª(‹è+ùè°u‘‰
iv8)	
‹ ÖúùøªAøsñ‹T€Òh°YCùüb‘ˆ{zøë`TZ‘ëaÿÿT€ҁ{zøàªB€RÌ” 5Z‘ë!ÿÿTÂq”`´Ai‹RšÈ
Ñ
ñÈT[{s@ùé°)‘Š+ih8J	‹@Ö4@ù5@ù;@ù!@©ü¨€RI€Rß
ñ(±ˆš)Ð)y‘*ÐJU‘I±‰šJJA@ù@@ù*ÐJ©‘ê۩飩è%5‘èù!Ð!¸‘q”Áp‹Rrúù(@ùè'ùèGùøªAøóªñJTT($@©é#©è§©øªAø	ñkTé#©@ùñ+T€Òh°uEùùb‘({|øë€
Tœ‘ëaÿÿT€Ò!{|øàªB€Rx”@5œ‘ë!ÿÿTe)ì@©éo	©(@ùé#©èGùøªAøb;TA©û×	©($@©é#©è§©øªAø€5ÐA©õS
©"ì@©âo	©!@ùáGùè
@ù¡`òÿ7è+@ùyzøèGùè'ùÈñÿ´@ùñ‹T€Òh°¡Aùùb‘({|øë@Tœ‘ëaÿÿT€Ò!{|øàªB€RC”5œ‘ë!ÿÿT9q” µHA@ù@ù*€R(Щ‘K€Rè«©(ÐU‘é)%5‘诩éù!Ð!¸‘q”j‹R Ð8‘ã°c‘BûRêŠÿ—€Òp€üÿ7è+@ùy|øèKùè#ùèûÿ´hÑú@ù	ñêñÿT[{s@ùMàø7è+@ùy|ø›´ûOùè@ù	q” µ[{s@ùè@ù	ñëTéë©èù@ù?ñ«T€Òh°iAùúb‘H{søëàTs‘?ëaÿÿT€ÒA{søàªB€Rô” 5s‘?ë!ÿÿT	ø7è+@ùysø¨´èSùõªèëB©áp”ú#C©À	µ	ñ+Té#©@ùñT€Òh°ýEùùb‘({søë Ts‘ëaÿÿT€Ò!{søàªB€RÏ”à5s‘ë!ÿÿTâD© ø7è+@ùysøÈ´èWùôªè@ùâD©¹p”âD©è@ù`µñŠTàªãªäªåªF;”¨ZøI)y@ù)@ù?ëTý{Q©ôOP©öWO©ø_N©úgM©üoL©ÿƒ‘À_Ö吥$5‘âc‘ã#‘àªá+@ùäªÃ”`ø7á‹H©û×I©ôW@ùáÿÿ!m‹RmÿÿAl‹RkÿÿAj‹RiÿÿÁm‹Rgÿÿak‹Reÿÿ¦q”ÿCÑüo©úg©ø_
©öW©ôO©ý{©ý‘óªà'ùHy@ù@ù¨ø¿ÿ8©h°¡‘	A‘è§©‘èÿ©ZZs@ùºƒøÃ´ñHTôª5‹è°‘‰
is8)	
‹ ÖøªAøyñ‹T€Òh°•Cùœb‘ˆ{wøë€	T÷‘ëaÿÿT€ҁ{wøàªB€RX”@5÷‘ë!ÿÿTNp” ´ð‹Rj
ñ TñaT(@ù¨ƒø6 @©¶£8©àª69”÷ª±!T–H€R)Ð)y‘*ÐJU‘
ñI±‰šµˆšJJA@ù@@ù*ÐJ©‘êϩ飩èÐE
‘èù!Ð!¸‘p”õ‹RE6 @©¶£8©øªAø(ñê	Ts)@ù6 @©¨'9©¶ƒø™
@ùk6@ù¶ƒøøªAøû#ùñJT@øÿ7¶zwø¶ƒøö÷ÿ´ù#ù@ùñ‹T€Òh°}Dù™b‘({|øë@Tœ‘ëaÿÿT€Ò!{|øàªB€Rÿ”5œ‘ë!ÿÿTõo” ºµHA@ù@ù*€R(Щ‘K€Rè«©(ÐU‘éÐ)E
‘诩éù!Ð!¸‘Úo”Añ‹R ÐØ8‘ã°c‘"‚R¦‰ÿ—€Òð€üÿ7¨z|ø¨ø(üÿ´è#@ùÑ(ñËTè#ùûª@ùŸñ‹T€Òh°uEù•b‘¨zxøëàT‘ŸëaÿÿT€ҡzxøàªB€RÔ 5‘Ÿë!ÿÿTàø7h{xø¨´¨ƒøù#@ùõª±o”õª¹µ?ñJ¤Tઠ8”÷ª±aT§o”@«µ´[y©ÿ©h°ÙGùAùµ@ù€€R?Öáªàª€R#€R$ €R€Ò`?Öóªà3ù w´h@¹1BTh¹h@ùÈø7ñhùaTણp”ÿÿ©a@¹ó#ùav4|°œÃ>‘ˆ@ùyBù`@ù?Öøªy
@ùˆ3@ùi°!Dùં€R?Ö1ÀwT8´hÐ@ùÑàª?Ö(BҨ%°ò(óÒò(®çògžnA(a amT‰@ùhUGù?ëà:T*­@ù
:´I	@ù?ñ«]TJa‘K@ùëÀ9TJ!‘)ñaÿÿTåßëÀTbp”4@ùàù@ù¿ñ¤ZúT@ùhÿÿµ€Ò€Òÿù઎o”à/ù´óª €R
p”ôªà+ù ´“ùÿ/ùr¨@¹1BT¨¹º@ùH@¹1BTH¹àªBo”àùh!9‘ýDù@ùb@ùáª*p”t´üª@¹1BTˆ¹ü/ùh°‘Bùˆ@ùI@ùÈs´àª?Öûªà3ùÀs´ˆ@ùÈø7ñˆùaTàª'p”h@ùI)U@ù	ëÀrT€Ò€R飑)!‘ôÛ©!M(Ëવ¡ÿ—üªà+ù´ˆ@ùÈø7ñˆùaTàªp”ÿ/ùüq´h@ùÈø7ñhùaTàªp”àª5o”àp´ûª@€R²o”r´ôªì©ÿ©ÿ3ù´H@ùÈø7ñHùaTàªóo”|°œÃ>‘´¨@ùÈø7ñ¨ùaTàªéo”à@ùà´@ù¨ø7ñùATáo”h!9‘ÑDù@ùb@ùáªÅo” b´öª@¹1BTȹö+ùó#@ùh°}FùÈ@ùI@ùˆb´àª?Öõªà3ù€b´È@ùÈø7ñÈùaTàªÁo” €Rqo”ûªà+ùb´ˆ@¹1BTˆ¹tù~n”öªà/ùÀa´háAù"ðBP@ùàª{n”Àø7¨@ùA@ùs{´ Ø!‘‹o”`}5àªáªâª`?Öúª‡o”Z|´¨@ùÈø7ñ¨ùaTગo”ÿ3ùh@ùÈø7ñhùaTએo”ÿ+ùÈ@ùÈø7ñÈùaTઇo”ÿ/ùH@¹1BTH¹V@ùˆ@ùyBù@@ùA@¹?Öóªˆ;@ùàbži ™Cù!€R?Ö1vTúùx´zؚ
€Ò€Ò€Ò€Ò€ҙ8ŒRX#‚R€Òè'@ùu@ùhýAù{@ùàªáªXo”`u´õª@ù‰@ù´àªáªâª?ÖõªÀµ¥¨@¹1BT¨¹ôùè'@ùu@ùhñAù|@ùàªáª?o”àu´ûª@ù	‰@ù	´àªáªâª ?Öà/ù`u´ûª@ù)ð)U@ù	ë¡T|@ùü+ùœv´s@ùˆ@¹1Th@¹1#Tó/ùh@ùHø6ˆ¹h@¹1"ÿÿTh¹ó/ùh@ùÈø7ñhùaTàªo”"€Rûªè£‘!‘üÿ©
Ëભ ÿ—óª´ˆ@ùÈø7ñˆùaTàªo”ÿ+ù3o´h@ùÈø7ñhùaTàªÿn”ÿ/ùh@ùÈø7ñhùaTàª÷n”îm”óª_ñëTè'@ù‘‘ó}ÓàªáªâªãªäªåªÅl”Ö‹ZñáþÿTàªØm”håFù¨@ùA@ùtl´ Ø!‘Àn”ú@ù€m5àªáª€Ҁ?Öóª»n”ô@ùól´¨@ùÈø7ñ¨ùaTàªÊn”³j´h@ùÈø7ñhùaTàªÂn”H@¹€Ò1BTH¹õªó#@ùó1µ•i@¹)1BTi¹û/ù)ð)U@ù	ë ïÿT€Ò€җÿÿ)@ù?ëÀT©ÿÿµ)ð)@ù	ë#THð!9‘ÑDù@ùb@ù᪉n”@l´öª@¹1BTȹö3ùhÁBùÈ@ùI@ùˆl´àª?Öõªà+ù€l´È@ùÈø7ñÈùaTઆn”|ãAùˆ@ùI@ùl´àª?Ööªà3ùl´¨@ù;ð{W@ùë@lT€Ò€R飑)!‘øÛ©JðJqGùê?ù!M(Ë2ઠÿ—÷ªà/ù´@ùÈø7ñùaTàªan”È@ùÈø7ñÈùaTàªZn”ÿ3ùj´¨@ùÈø7ñ¨ùaTàªQn”8ðw@ùÿ+ùÿë9ð9o@ùäYúäZúTÿëóŸàªËm”óªàkø7è@ùÈø7ñèùaTàª:n”4ãAùˆ@ùI@ù¨g´àª?Öóªà/ù g´!ð!H@ùàªb€R¹m”à+ùÀg´õªh@ùÈø7ñhùaTàª!n”ÿ/ù¿ë T¿ëàT¿ë Tઠm”óª`ø6€Ò€Ò€Ò€Ò€Ò€ÒyŒR*¿ëóŸ¨@ùÈø7ñ¨ùaTàªn”ÿ+ùS4háEùˆ@ùI@ù¨f´àª?Öôªà/ù f´ˆ@ùë!gT•@ùõ3ùh´“
@ù¨@¹1Th@¹1#Tó/ùˆ@ùHø6¨¹h@¹1"ÿÿTh¹ó/ùˆ@ùÈø7ñˆùaTàªÛm”"€Rôªè£‘!‘õÿ©
ËàªoŸÿ—öªà+ù´¨@ùÈø7ñ¨ùaTàªÉm”ÿ3ù¶a´ˆ@ùÈø7ñˆùaTàªÀm”h™Fù઀RIm”ôªà/ùà`´È@ùÈø7ñÈùaT઱m”ÿ+ùŸë TŸëàTŸë Tàª0m”óª`ø6€Ò€Ò€Ò€Ò€Ò€ҙŒRóŸëóŸˆ@ùÈø7ñˆùaTકm”s4hA/‘	@ù*@¹J1ÂT*¹hA/‘
h!/‘	@ù*@¹J1‚T*¹h!/‘@ùh¥Gù裑!‘ÿß©âA²Ÿÿ—à/ù`B´óªƒšÿ—h@ùÈø7ñhùaTàªnm”€Ò€Ò€Ò€Ò€Òÿ/ùÙŒRX"‚Ró#@ùà3@ùà´@ù¨ø7ñùAT]m”à/@ùà´@ù¨ø7ñùATUm”à+@ùà´@ù¨ø7ñùATMm”´È@ùÈø7ñÈùaTàªEm”´ˆ@ùÈø7ñˆùaTàª=m”´h@ùÈø7ñhùaTàª5m” °Ø8‘ãc‘áªâªޅÿ—€Ò´h@ùÈø7ñhùaTàª%m”´H@ùÈø7ñHùaTàªm”´è@ùÈø7ñèùaTàªm”´ˆ@ùÈø7ñˆùaTàª
m”´H@ùÈø7ñHùaTàªm”¨Zø)ð)y@ù)@ù?ëÁJTàªý{P©ôOO©öWN©ø_M©úgL©üoK©ÿC‘À_Ö€Ò€Ò€Ò€Ò€Ò€Òþ‹R˜‚R‰ÿÿh©GùhUGù€Òÿ—à/ù J´óªñ™ÿ—h@ùÈø7ñhùaTàªÜl”€Ò€Ò€Ò€Ò€Ò€Òÿ/ù¹ŒRø‚Rmÿÿ€Ò€Ò€Ò€Ò€Ò€Ò9ŒRX ‚Reÿÿ®k”`Gµàªזÿ—öªà+ùó#@ùžÿµ€Ò€Ò€Ò€Ò7ŒRX#‚RVÿÿàª.l”õªà3ùÿµ€Ò€Ò€Ò€Ò€ÒY7ŒRX#‚RIÿÿ€Ò€Ò€Ò€ҹ7ŒRX#‚RBÿÿ€Ò€Ò€Ò€ÒY8ŒRX#‚R;ÿÿ„k”Àµàª­–ÿ—üªà/ù ŒÿµÔ&ŒR/àª
l”ûªà3ù€Œÿµÿ3ù'ŒRó@ùt@ùô/ùTÿ´s@ùˆ@¹1#'Th@¹1C'Tó3ùh@ùh'ø6?´)ŒRü/@ùÿ3ù4*ŒRó@ù|´ˆ@ù(ø7ñˆùÁTàªql”t*ŒRh@ùÈø7ñhùaTàªhl”ó@ùÿ3ùÿ/ùà+@ùà´@ù¨ø7ñùAT]l”ÿ+ù °Ø8‘ãc‘áªâ"‚R…ÿ—ác‘⃑ãC‘ઌ” ø7È@ù)ð)]@ù	ëA4TÈ@¹1BTȹàªuk”üª`4´ €Ròk”ûª`4´|ùàªáª†k” 4´ôªÈ@ùÈø7ñÈùaTàª1l”h@ùÈø7ñhùaTàª*l”à/@ùà´@ù¨ø7ñùAT"l”ÿ/ùà3@ùà´@ù¨ø7ñùATl”ÿ3ùà+@ùà´@ù¨ø7ñùATl”ÿ+ùh6@ù@ùùà´@ù¨ø7ñùATl”ó@ù´H@ùÈø7ñHùaTàªük”Ó´h@ùˆø7ñhù T|œÃ>‘üÿ€Ò€Ò€Ò9/ŒR#‚Rh6@ù@ùùà´@ù¨ø7ñùATäk”ó@ù´H@ùÈø7ñHùaTàªÛk”´h@ùÈø7ñhùaTà@ùÓk”€Ò€Ò€Òjþÿàªáªâª2k”úª€…ÿµ€Ò€Ò€Ò€Ò€Ò€Ò€Ò€Òy?ŒRø#‚RXþÿ¢j”à&´€Ò€Ò€Ò€Ò€ҹ8ŒRX#‚RNþÿ(Ð@ù@ù᪗j”€Ò€Ò€Ò€ҹCŒRx$‚RúÏC©Bþÿ吥D
‘⣑£ãÑàªáªäª®
”Àø7¶ƒXøàªu3”÷ª±[ÿTÕúÿ(Ð@ù@ùáªzj”ÿ/ùùCŒRyFŒRúÏC©ô@ù¨@ùÈø7ñ¨ùaT઄k”€Ò€Ò€Ò€Òx$‚Rþÿ€Òfüÿàªáª€Òßj”óªôkC©¥üÿ€Ò€Ò€Ò€ÒùOŒRx$‚R	þÿ€Òô@ù›üÿPj”€´€җüÿAô‹Rjúÿ€Ò€Ò€Ò€Ò€ÒYŒRøýÿ€Ò€Ò€Ò€Ò€Ò€ÒY!ŒR€Ò€Ò€Ò€Ò€ҙ!ŒR˜"‚Réýÿˆ¹h@¹1ÙÿTh¹ó3ùh@ùÈø7ñhùaTàªAk”(€Rûªûÿñ‹RAúÿ!j”€µàªJ•ÿ—öªà3ùà“ÿµ€Ò€Ò€Ò€Ò€ÒÀણj”õªà+ùÿµ€Ò€Ò€Ò€Ò€Ò€ҙŒRGખj”öªà3ù@”ÿµ€Ò€Ò€Ò€Ò€ÒùŒR;¸@ùø“ÿ´³
@ù@¹1ãTh@¹1Tó+ù¨@ù(ø6=€Ò€Ò€Ò€Ò€ҙŒR'!ò‹RúÿÁò‹Rúÿàªüj”\ðœÃ>‘ûÿàªmj”óªà/ù ˜ÿµ€Ò€Ò€Ò€Ò€Ò€ÒùŒR€Ò€Ò€Ò€Ò€Ò€Ò9ŒR8!‚R~ýÿ€Ò€Ò€Ò€Ò€Ò€ÒŒR!‚Ruýÿ¹h@¹1BùÿTh¹ó+ù¨@ùÈø7ñ¨ùaTàªÍj”(€RõªVüÿàª>j”ôªà/ù ™ÿµ€Ò€Ò€Ò€Ò€ÒYŒR€Ò€Òãüÿ€Ò€Ò€Ò€Ò€ÒÙŒR	€ÒÚüÿ€Ò€Ò€Ò€Ò€ÒYŒRX!‚REýÿ¬j”àªMj”öªÌÿµ€Ò€ҹ0ŒR8#‚R³þÿ€Òù0ŒR8#‚R¯þÿ91ŒR8#‚R¬þÿ€ÒÙ1ŒR8#‚R¨þÿ€Ò€Ò€Ò€Ò€Ò€Ò9ŒRºýÿ€Ò€Ò€Ò€Ò€Òÿ+ù7ŒRÑþÿ(Ð=@ù@ùð!T"‘ki”Äþÿ(Ð=@ù@ùð!T"‘di”ÿÿ€Ò€Ò€Ò€Ò€Ò€Òÿ3ùYŒR“ÿÿÿCÑé#
müo©úg©ø_
©öW©ôO©ý{©ý‘óª(Ðy@ù@ù¨øHð‘	!$‘è§©ÿGù7Ð÷r@ùÿß©£´õª6‹´ñT
ñTà#ù8P@©øÓ©¹
@ù‰ñ@	T
ñáTà#ù4@ùô;ùGà#ù8@ùø7ùúªYAøNà#ùúª[Aøyñ‹T€ÒHðñ@ù¼b‘ˆ{xøëàT‘ëaÿÿT€ҁ{xøàªB€R
” 5‘ë!ÿÿT
i”`´_ŒR(y‘))U‘*€Rñ(±ˆšIµŠš*ÐJA@ù@@ù*J©‘Ëðk­‘j±Ššêϩ觩é)¹>‘éù!!¸‘æh”bŒR ˆ9‘Ãðc‘B%‚R²‚ÿ—€Òúà#ù4Дr@ù8@ùø7ùÿÿ©ÿ+ùઑi”±aTKàùÿ7Øzxøø7ù˜ùÿ´(ñ+Tè'ù\@ùŸñ‹T€ÒHðuEù»b‘h{zøëTZ‘ŸëaÿÿT€Òa{zøàªB€RÆ”À5Z‘Ÿë!ÿÿT4Дr@ùÿÿ©ÿ+ùàªji”±T$Àø7Ôzzø”´ô;ùù'@ù¬h”ਵ4Дr@ù?ñ
¡Tÿÿ©ÿ+ùàªWi”±@¢Tõª\ðˆÛGùAùµ@ù€€R?Öáªàª"€R#€R$ €R€Ò`?Öóªà3ù€V´h@¹1BTh¹ô'ùh@ùÈø7ñhùaTઞi”ÿ/ùXÐ#9‘ÓDù@ù‚@ù᪁i”àT´öª@¹1BTȹö3ùHðù@ùÈ@ùI@ù(U´àª?Öà+ù U´È@ùÈø7ñÈùaTàªi”ÿ3ùÓDù@ù‚@ùáªdi”@T´úª@¹1BTH¹HðCùH@ùI@ù(T´àª?Öûª T´H@ùÈø7ñHùaTàªci”h@ù:ÐZW@ùë@ST€R€Òéã‘)!‘öÏ©JðJFùêGù!M(Ë2àªîšÿ—ôªà3ù´È@ùÈø7ñÈùaTàªHi”R´h@ùÈø7ñhùaTàª@i”ö+@ùÈ@ùë`QT€R€Òéã‘)!‘ô3@ùùÓ©!M(ËàªΚÿ—øªà/ù´(@ùÈø7ñ(ùaTàª(i”ˆ@ùÈø7ñˆùaTàª!i”ÿ3ù˜O´È@ùÈø7ñÈùaTàªi”ÿ+ù(Ðu@ùëÀT)Ð)m@ù	ë@TëTઓh”ôª }ø7@ùÈø6
ëôŸ@ùÈø7ñùaTàªýh”L5óùs
@ùè'@ùëÀTíh”ùª4@ù@ùŸñ„WúÁT@ùhÿÿµ€Ò€Ò€Òàªh”à/ù´ôª €R•h”öªà+ùYÐ9#9‘ ˆ´Ôùÿ©vˆ@¹1BTˆ¹›@ùh@¹1BTh¹àªËg”øªHÐ!9‘ýDù@ù‚@ù᪳h” X´öª@¹1BTȹö/ùô'@ù÷ªHð‘BùÈ@ùI@ùHX´àª?Öúªà3ù@X´È@ùÈø7ñÈùaTમh”H@ùë`WT€Ò€Réã‘)!‘öÓ©!M(Ëàª>šÿ—ôªà+ù´È@ùÈø7ñÈùaTઘh”ÿ/ù”V´H@ùÈø7ñHùaTએh”ાg”€U´úª@€R;h”@W´öªè©ÿ©ÿ3ù´h@ùÈø7ñhùaTàª|h”úªYÐ9#9‘´ˆ@ùÈø7ñˆùaTàªqh”X´@ù\ðø7ñù¡Tàªhh”\ð4ÓDù @ù‚@ùáªLh”À;´øª@¹1BT¹ø3ùHð}Fù@ùI@ùè;´àª?Ö÷ªà/ùà;´@ùÈø7ñùaTàªIh”4ÓDù @ù‚@ùáª/h”à:´øª@¹1BT¹ø3ùHð!Bù@ùI@ù(;´àª?Öùª ;´@ùÈø7ñùaTàª-h”è@ùë :T€Ò€Rø#@ùéã‘)!‘úÛ©ùGù!M(Ë2઻™ÿ—ôªà+ù´H@ùÈø7ñHùaTàªh”ÿ3ù(@ùÈø7ñ(ùaTàª
h”Ô8´è@ùÈø7ñèùaTàªh”ö#ùÿ/ùˆ@¹1BTˆ¹ôÿ©–
@ùˆÛGùyBù€@ù@¹?Öùªw@ùHðýAùš@ùàªáªêg”÷ª6´è@ù‰@ù´àªáªâª?Ö÷ªÀµ«è@¹1BTè¹w@ùHðñAù›@ùàªáªÓg” 4´úª@ù	‰@ù©
´àªáªâª ?Öà/ù 4´úª@ù)Ð)U@ù	ëA
T[@ù;5´T@ùh@¹1Tˆ@¹1#Tô/ùH@ùHø6h¹ˆ@¹1"ÿÿTˆ¹ô/ùH@ùÈø7ñHùaTમg”"€Rúªèã‘!‘ûÿ©
ËàªB™ÿ—ôªà+ù´h@ùÈø7ñhùaTજg”.´H@ùÈø7ñHùaTઔg”ÿ/ùˆ@ùÈø7ñˆùaTઌg”ÿ+ù‚f”àù?ñkT¿ñMT€Ò#‘¼ò}Ón€Ò	ä/ó}Ó`jzüàªõ`”Àj:ü))`‘¿ëÿÿT€Òi	ñ}ÓÁjiü!`Áj)ü‘¿ëAÿÿTÖ‹{‹ë+ýÿTI@¹)1BTI¹ú/ù)°)U@ù	ëóÿT€Ò€ұÿÿ€Òä/n‹ë"`«ÿÿTà@ùHf”HÐåFùè@ùA@ùs&´ÐØ!‘0g”öWD©€'5àªáª€Ò`?Öôª+g”ó@ùô&´è@ùÈø7ñèùaTàª:g”Ô$´ˆ@ùˆø7ñˆùàT¨@¹1#TôªSµàª,g”¨@¹1"ÿÿT¨¹ôª´h@ùÈø7ñhùaTàªg”´¨@ùÈø7ñ¨ùaTàªg”´È@ùÈø7ñÈùaTàªg”´¨@ùÈø7ñ¨ùaTàªg”¨Yø)°)y@ù)@ù?ë¡PTàªý{P©ôOO©öWN©ø_M©úgL©üoK©é#JmÿC‘À_Ö€Ò€Ò€Òÿ'ù€ҔlŒRu3‚RÚÔe”€Qµàªýÿ—öªà3ù@«ÿµ€Ò€Ò€Òÿ'ùtnŒRÌàªVf”à+ù «ÿµ€Ò€Ò€Òÿ'ù€ҴnŒRÁ¼e”€Oµàªåÿ—úªà«ÿµ€Ò€ÒxàªBf”ûª ¬ÿµ€Òÿ'ù€ÒToŒR¯ôªv@ùN´s@ùÈ@¹1C2Th@¹1c2Th@ùˆ2ø6˜€Ò€Òÿ'ù€ÒôqŒRœôªÙ@ùùK´Ó
@ù(@¹1#:Th@¹1C:Tó+ùÈ@ùh:ø6×€Ò€Ò€Òÿ'ù€ÒÔtŒR‡HÐ¥GùHÐYGù€Òp“ÿ—à/ùàH´ôª¡“ÿ—ˆ@ùÈø7ñˆùaTઌf”€Ò€Ò€Òÿ'ù€Òÿ/ù4wŒRõ3‚Rnhe”`Gµàª‘ÿ—øªà3ù`Äÿµ€Ò€Ò€Òÿ'ù6àªëe”÷ªà/ù`Äÿµ€Ò€Òÿ'ùô‘ŒR,Re”€Eµàª{ÿ—øªà3ù@Åÿµ€Ò€Ò€Òÿ'ùT’ŒRàªÔe”ùª Åÿµ€Ò€Ò€Òÿ'ù”’ŒRú@ùú3ùø#@ùZC´ô
@ùH@¹1£0Tˆ@¹1Ã0Tô/ùè@ùè0ø6‹€Ò€Ò€Òÿ'ùT•ŒRU5‚Ró@ù*(°@ù@ùáª#e”€Ò€ÒœŒR6‚RóÛC©(°@ù@ùáªe”ÿ/ùTœŒRԞŒRè@ùóÛC©Èø7ñèùaTàª#f”€Ò€Ò€Ò6‚R	€Òqþÿàªáª€Òe”ôªóÛC©õ'@ùÔþÿ€Ò€Ò€Òô¯ŒR6‚Rù€Òó@ùËþÿðd”`:´€ÒÇþÿìd”À:µàªÿ—öªà/ùô'@ù¨ÿµ÷ªAŒRÿÿ©à+@ù`µBàªme”úªà3ù¨ÿµÿ3ùŒRV@ùö/ù¶8´T@ùÈ@¹1#+Tˆ@¹1C+Tô3ùH@ùh+ø6_!„ŒRö/@ùÿ3ù¡„ŒRô'@ùV´È@ùø7ñÈù¡TàªöªÔe”áªÿ/ùà+@ù µᄌRH@ùô'@ùø7ñHù¡TàªöªÅe”áªÿ3ùÿ/ùà+@ù ´@ùèø7ñùTöª¹e”áªÿ+ùðˆ9‘ÃÐc‘Â4‚Ra~ÿ—ác‘⃑ãC‘àªè
”`ø7ˆ@ù)°)]@ù	ëa%Tˆ@¹1BTˆ¹àªÑd”úª %´ €RNe”à%´áªùàªá'ùâd”À%´öªˆ@ùúªÈø7ñˆùaTઌe”à'@ù@ù¨ø7ñùAT…e”à/@ùà´@ù¨ø7ñùAT}e”ÿ/ùà3@ùà´@ù¨ø7ñùATte”ÿ3ùà+@ùà´@ù¨ø7ñùATke”ÿ+ù(7@ù@ùùà´@ù¨ø7ñùAT`e”\ÐY°9#9‘´h@ùÈø7ñhùaTàªUe”øÿ´@ùȜÿ6ìüÿ€Ò€Ò€ÒԉŒRõ4‚R(7@ù@ùùà´@ù¨ø7ñùATBe”´h@ùÈø7ñhùaTàª:e”´@ùÈø7ñùaTàª2e”ÿ'ù€Òûªó@ùȹh@¹1âÍÿTh¹h@ùÈø7ñhùaTàª!e”(€RûªóªÂûÿ€Ò€Ò€Òÿ'ù€ÒTuŒRÕ3‚Rà3@ùà´@ù¨ø7ñùATe”à/@ùà´@ù¨ø7ñùATe”à+@ùà´@ù¨ø7ñùATþd”´H@ùÈø7ñHùaTàªöd”´h@ùÈø7ñhùaTàªîd”´è@ùÈø7ñèùaTàªæd”ðˆ9‘ÃÐc‘áªâª}ÿ—€Òõ'@ùó¶ÿµ½ýÿ(¹h@¹1ÆÿTh¹ó+ùÈ@ùÈø7ñÈùaTàªÎd”(€Röªóª‘ûÿH¹ˆ@¹1‚ÏÿTˆ¹ô/ùè@ùÈø7ñèùaTઽd”(€R÷ª”üÿÅð¥¸>‘âã‘㣑àªáªäªÂ” ø7øÓF©ÿÿ©ÿ+ùàªFd”±^ÿT€Ò€Ò€Òÿ'ù€Ò€ÒTkŒRU3‚RŒÿÿ€Ò€Ò€Òÿ'ù€ÒÔ{ŒR€Ò€Ò€Òÿ'ù|ŒRu4‚Ró@ù}ÿÿȹˆ@¹1ÕÿTˆ¹ô3ùH@ùÈø7ñHùaTઅd”(€Rúªô'@ùÙûÿ`ŒRxúÿá_ŒRvúÿd”ઠd”ôªàÚÿµ€Ò€Ò€ÒT‹ŒR5‚R'ÿÿóª€Ҕ‹ŒR5‚R"ÿÿóª€ÒԋŒR5‚Rÿÿóª€ÒtŒŒR5‚R÷'@ùÿÿ€Ò€Ò€Òÿ'ù€Òÿ3ùtnŒRDÿÿ€Ò€Ò€Òÿ'ù€ÒoŒR=ÿÿ€R3ÿÿ€R„ÿÿ€Ò€Ò€Òÿ'ù€ҴvŒRõ3‚R2ÿÿ€Ò€Ò€Òÿ'ùÿ3ù´‘ŒRÿýÿ€Ò€Ò€Òÿ'ùÿ3ùT’ŒRøýÿ€Rüÿ(°=@ù@ùÐ!T"‘c”(þÿ÷ªAŒRôƒD©ÿÿ©€Íÿµsþÿ€R¦ÿÿÿÃÑüo©úg©ø_©öW©ôO	©ý{
©ýƒ‘ôªóª(°y@ù@ùè'ùHЁ3‘è©C´õª6‹t´ŸñaT!@ùá#ù¸
@ù<Ÿñ¡T!@ù:º
@ùXñ‹T€ÒHÐqFù»b‘h{yøë`T9‘_ëaÿÿT€Òa{yøàªB€Râ” 59‘_ë!ÿÿTØb”`´a¾ŒR(°A@ù@ùÈЭ‘*€RèÓ©ð™‘é)e0‘è«©éùð!¸‘¼b”aRð0:‘ÃÐc‘â7‚Rˆ|ÿ—€Ò	`üÿ7Ázyøá#ùüÿ´ñ*Tàª|8”è'@ù)°)y@ù)@ù?ëÁTý{J©ôOI©öWH©ø_G©úgF©üoE©ÿÑÀ_Ö吥d0‘âÑã‘àªáªäªÈ”`ø7á#@ùæÿÿ¿ŒRÖÿÿµc”ÿÃÑüo©úg©ø_©öW©ôO	©ý{
©ýƒ‘óªôª(y@ù@ùè'ùH°3‘è©C´õª6‹ó´ñáT8@ùøù¹
@ù@ñ!T8@ùøù	@ù(­B9È6áº
@ùYñ‹T€ÒH°qFù»b‘h{xøë`T‘_ëaÿÿT€Òa{xøàªB€Rh” 5‘_ë!ÿÿT^b”`´A[R(A@ù@ùȰ­‘*€RèϩЙ‘é)E‘è«©éùÐ!¸‘Bb”A]RЈ;‘ðc‘‚G‚R|ÿ—€ÒN`üÿ7Øzxøøùüÿ´?ñjST	@ù(­B9¨T7HaGù?ë TT*­@ùŠQ´I	@ù?ñTJa‘K@ùëSTJ!‘)ñaÿÿTY9#9‘3ÓDù @ùb@ùáª'c”@p´õª@¹1BT¨¹H°
Aù¨@ùI@ù¨p´àª?Ööª p´¨@ùÈø7ñ¨ùaTàª&c”È@ù))U@ù	ëàoT€R€ÒéÑ)!‘õc©!M(Ë઴”ÿ—óª´¨@ùÈø7ñ¨ùaTàªc”o´È@ùÈø7ñÈùaTàªc”\°«Cùh@ùI@ùHn´àª?Ööª@n´Z°A£Fù઀R‡b”÷ªÀm´È@ùÈø7ñÈùaTàªðb”;{w@ùÿë(m@ùäHú(q@ùäHúTÿëõŸàªib”õª€zø7è@ùÈø7ñèùaTàªØb”•j5«Cùh@ùI@ùˆl´àª?Ööª€l´A£Fùßë TÈ@ù))Q@ù	ë:ZW@ùákTÈ
@ù©€’	Š!ñ!TÈ@¹qõŸ5€R:ZW@ù€RÈ@ùÈø7ñÈùaTરb”7ÓDù @ùâ@ù᪖b”öªµ4–j´È@¹1BTȹH°UCùÈ@ùI@ùˆj´àª?Öõª€j´È@ùÈø7ñÈùaTઔb”¨@ùëjT€R€ÒéÑ)!‘öO©ø#ù!M(Ë2àª#”ÿ—÷ª´È@ùÈø7ñÈùaTàª~b”i´¨@ùÈø7ñ¨ùaTàªvb”ÿëàT(m@ùÿë`T(q@ùÿëàTàªòa”õªyø7è@ù¨ø6¡öp´È@¹1BTȹH°ý@ùÈ@ùI@ùèp´àª?Öûªàp´È@ùÈø7ñÈùaTàªPb”H°QEùh@ùI@ù(p´àª?Ö÷ª p´àª€Ò€R€R
”õªp´è@ùÈø7ñèùaTàª9b” €Réa”÷ª@o´õùû`”õª`o´6ÓDù @ùÂ@ùáªb”@o´ùª@¹1BT(¹H°©Bù(@ùI@ùHo´àª?Öøª@o´(@ùÈø7ñ(ùaTàªb”H°áAùàªâªß`”ø7@ùÈø7ñùaTàª	b”h@ùA@ù¶p´°Ø!‘èa”@q5àªáªâªÀ?Ööªäa”6p´h@ùÈø7ñhùaTàªôa”è@ùÈø7ñèùaTàªía”¨@ùÈø7ñ¨ùaTàªæa”H°YEùˆ@ùI@ùÈm´àª?ÖõªÀm´¨@ùëÁmT´@ù”n´·
@ùˆ@¹1cTè@¹1ƒT¨@ù¨ø6áÿëõŸè@ùÈø7ñèùaTàªÅa”546ÓDù @ùÂ@ù᪪a” W´õª@¹1BT¨¹H°Aù¨@ùI@ùhW´àª?Ööª`W´¨@ùÈø7ñ¨ùaT઩a”È@ùëÀVT€R€ÒéÑ)!‘õO©!M(Ëàª9“ÿ—ûª´¨@ùÈø7ñ¨ùaTઔa”ûU´È@ùÈø7ñÈùaTઌa”h@ùø7ñhù¡Tઅa”ûªH°YEùˆ@ùI@ùèI´àª?ÖöªàI´È@ùëJTÓ@ù3K´Ô
@ùh@¹1ãTˆ@¹1TÈ@ù(ø6
h¹ˆ@¹1BÿÿTˆ¹È@ùÈø7ñÈùaTàª_a”(€RöªéÑ)!‘óo©!M(Ëàªò’ÿ—ôª´h@ùÈø7ñhùaTàªMa”E´È@ùÈø7ñÈùaTàªEa”ˆ@ùÈø7ñˆùaTàª>a”h@¹€Ò1£Tóªh@ùˆ#ø6 h¹óªh@ùè"ø6€ҴO‚RZRöªÈ@ùÈø7ñÈùaTàª&a”öª´È@ùÈø7ñÈùaTàªa”€Ò´¨@ùÈø7ñ¨ùaTàªa”´(@ùÈø7ñ(ùaTàªa”´@ùÈø7ñùaTàªa”Ј;‘ðc‘áªâª­yÿ—€ÒSµäˆ¹è@¹1ÂäÿT蹨@ùÈø7ñ¨ùaTàªî`”(€RõªéÑ)!‘ô[©!M(Ëઁ’ÿ—÷ª´ˆ@ùÈø7ñˆùaTàªÜ`”WN´¨@ùÈø7ñ¨ùaTàªÔ`”è@ùÈø7ñèùaTàªÍ`”àªáªÐ'”àL´ûªh@ùhø6¯)@ù?ë€T©ÿÿµ))@ù	ëa¯ÿT吥D‘âÑ㣑àªáªäªÄ”`)ø7ø@ù	@ù(­B9¨«6H!9‘ÑDù@ùb@ù᪓`”´öª@¹1BTȹH°ý@ùÈ@ùI@ùè´àª?Öõªà´È@ùÈø7ñÈùaT઒`”¨@ù7÷V@ùë T€R€ÒéÑ)!‘öc©!M(Ëઠ’ÿ—óª´È@ùÈø7ñÈùaTàª{`”S´¨@ùÈø7ñ¨ùaTàªs`”H°YEùˆ@ùI@ùˆ´àª?Öõª€´¨@ùë¡T´@ùt´¶
@ùˆ@¹1ãTÈ@¹1T¨@ù(ø6
ˆ¹È@¹1BÿÿTȹ¨@ùÈø7ñ¨ùaTàªO`”(€RõªéÑ)!‘ôO©!M(Ëàªâ‘ÿ—öª´ˆ@ùÈø7ñˆùaTàª=`”¶
´¨@ùˆø7ñ¨ù TÈ@ùhø7ñÈùTàª0`”h@¹€Ò1ÂTh¹ûªh@ùHø7àª%`”È@ùèýÿ6h@¹€Ò1ƒþÿTûªh@ùÈø7ñhùaTàª`”´È@ùÈø7ñÈùaTàª`”è'@ù))y@ù)@ù?ëa8Tàªý{J©ôOI©öWH©ø_G©úgF©üoE©ÿÑÀ_Öå^” µàªŠÿ—öª ëÿµfR‚M‚RFàªk_”õª`ëÿµ€Ò€Ò€ҔM‚RZfRÊþÿ¶@ùÖ4´³
@ùÈ@¹1ãTh@¹1T¨@ù(ø6%€Ò€Ò€ÒúhR”M‚RÁþÿàªO_”õªÀíÿµ€ҡjR¢M‚Rs€R€҄ÿÿ€Ò€Ò:mR´M‚R±þÿ€R}ÿÿȹh@¹1BüÿTh¹¨@ùÈø7ñ¨ùaTઽ_”(€Rõª0ÿÿŸ^” µàªȉÿ—õªàÿµaqRN‚R°ˆ;‘Ðc‘Oüÿàª!_”öª ÿµ€Ò€Ò€ҺqRN‚R‰þÿÕ@ùÕ+´Ó
@ù¨@¹1cTh@¹1ƒTÈ@ù¨ø6‰€Ò€Ò€ÒN‚RZtRnþÿàª_”öª’ÿµvR"N‚R*€Ò€Ò€Ò4N‚RZvRXþÿHÅGùHiGù€ÒWŒÿ—€'´ôª‰Œÿ—ˆ@ùÈø7ñˆùaTàªt_”€ÒaxRBN‚Ràªä^”öªÿµ¡zR¢N‚R	á[Rüÿ	ð)I@ù	ë@TàªB€Rî^”p&”õªðZW@ù ”ÿ6€Ò€Ò€ҴN‚RúzR2þÿ:^”À"µàªc‰ÿ—öªðZW@ù@•ÿµàªÀ^”õªÿµ€Ò€Ò€ÒôN‚Rš|Rþÿ¶@ùö ´·
@ùÈ@¹1CTè@¹1cT¨@ùˆø6¨€Ò€Ò€Ò:RôN‚Rþÿત^”öª`¶ÿµFR"O‚RóªÈ€R€ÒÉýÿ€Ò€Ò€Ò€Ò4O‚RZ‰Róªñýÿ€R¿ýÿ¨¹h@¹1ÂïÿTh¹È@ùÈø7ñÈùaTàª_”(€Röªîûÿ€Ò€Ò€ҚvR4N‚Ráýÿë]”àµàª‰ÿ—õªðZW@ù(ÿµ€ÒRO‚Ršàªn^”öªà¨ÿµ€Ò€ÒZRO‚R×ýÿÕ@ù´×
@ù¨@¹1ƒTè@¹1£TÈ@ùÈø6š€Ò€Ò€Ò€ÒO‚RúƒR²ýÿÃ]”àµàªìˆÿ—öªðZW@ùàŽÿµ¡àªI^”ûª`ÿµ€Ò€Ò€ҴO‚RڍR¨ýÿàª?^”÷ª ÿµ€Ò€Ò€ҴO‚R:ŽR”ýÿ€Ò€ҴO‚RzŽRýÿ€Ò€ҴO‚RڎRŠýÿ€Ò€ҴO‚RzR…ýÿ—]”àµàªÿ—ùªðZW@ù ÿµ€Òyàª^”øª‘ÿµ´O‚RúRtýÿ€Ò€Ò€ҺRôN‚Rvýÿȹè@¹1âëÿT蹨@ùÈø7ñ¨ùaTએ^”(€RõªðZW@ùüûÿÀ
@ý(€Rbž aõŸðZW@ùÌûÿàªáªâªå]”öª@ÿµ`]” 	´€Ò€ҴO‚RšRGýÿàªè]”õª€’ÿµa’RÂO‚R
€R€Òýÿ€Ò€Òú”RÔO‚RKýÿ€Rxýÿ¡–RâO‚R°ˆ;‘Ðc‘wÿ—€Òh@ùÈÇÿ6Bþÿ¨¹è@¹1¢íÿTè¹È@ùÈø7ñÈùaTàªL^”(€RöªðZW@ù¤üÿI^”€Rºýÿ€R$ûÿ€ÒáwRBN‚RÞÿÿ€ÒA|RâN‚RÚÿÿ€R¬ÿÿ€Ríÿÿ€ҁR¢O‚RÒÿÿ€Ò€ҴO‚RºRýÿð=@ù@ù!T"‘]”®ÿÿÿCÑöW©ôO©ý{©ý‘õªóªôªÿ©@ù­B96 €Rµ5ˆ
@ùh´ˆ@ùèù	ð)A@ù @ùó#©°!8
‘ê\”€Rý{D©ôOC©öWB©ÿC‘À_Öè@ù@ù­B9ˆ 6áC‘âc‘઀ÒÉ\”àþÿ5 €Rþÿ5è@ùÈýÿ´åÿÿðA@ù@ùóù°!°‘äÿÿÿCÑüo©úg©ø_©öW©ôO©ý{©ý‘óªõªöªôª÷ªøªÿ©ÿùY‹@ùU@ùà@ùà´@ù¨ø7ñùATÖ]”ÿùà@ùÀ´@ùˆø7ñù TÿùÚÐ7ác‘⣑パ઒\”À4*@ùè@ùjµ Á]”ÿùšþ×6	@ùè@ù	ëjT	ñ}Ó
	‹J
@ùéjiøé+©‘èù*@ùè@ùê´éªJ@ù_ë€T*@øŠÿÿµ€Òè@ù)ËÈj)øÿ© ùÿµÎÿÿ	@¹)1CTè@ù	@¹)1cTè@ù@ù­B9ˆ 7{	¹è@ù	@¹)1âþÿT	¹è@ù@ù­B9( 6(@ù¨´ûªn\”àµh@øè´@ù@ùá@ù)@ù	ë!ÿÿTB]” þÿ7Àþÿ5è@ùiËÈj)øh@ùHóÿµ?ë Tµò}ÓX\” µ”"‘µ"ñÀTˆ@ù@ùá@ùë T@ù)@ù	ë¡þÿT(]” þÿ7@þÿ5à@ùðA@ù@ùó©°!T‘àªðA@ù@ùè@ùó#©°!8
‘.\”à@ùÀ´@ùˆø7ñù Tà@ùÀ´	@ù‰ø7€€)ñ	ùT@]”èª=]”à@ù€þÿµ€àªý{H©ôOG©öWF©ø_E©úgD©üoC©ÿC‘À_Öà@ùà´@ù¨ø7ñùAT)]”à@ù ´	@ùéø7€R€R)ñ	ùáüÿTßÿÿ€RäÿÿðA@ù@ùóù°!°‘ÅÿÿöW½©ôO©ý{©ýƒ‘óªë`
T	@ùða@ù*@ù?ë@Hú@Tðµr@ù?ë HúéŸ_ëUú`TI7⪋\” ´ôªðu@ùë@T	ð)m@ùŸ	ëÀTŸë€Tàªw\”óªˆ@ùhø6àªý{B©ôOA©öWèÀ_Ö@ù)@ù	ëÁT	@ù*@ù_±$Aº$JúT @¹iBÓ* @¹LS?kATë(7@ù€àªý{B©ôOA©öWèÀ_֟ëóŸˆ@ùèûÿ7ñˆùûÿTàªÅ\”àªý{B©ôOA©öWèÀ_Ö ‘
à‘r Œšj(7!@ù+ ‘,à‘_r‹š?	qÀT?qáT
@9+@9
@y+@y
@¹+@¹_kATñáT
qóŸàªý{B©ôOA©öWèÀ_ÖqóŸàªý{B©ôOA©öWèÀ_Ö}	›¿\”qèŸéŸ
q‰àªý{B©ôOA©öWèÀ_ÖÿÃÑôO©ý{©ýƒ‘`µ|\”0@ùÈ´óª@ù µý{B©ôOA©ÿÑÀ_Ö@ùèø7ñùTóªu\”áªðE@ù@ùáù°!Ì‘J[”€ý{B©ôOA©ÿÑÀ_Öð9@ù@ùՇÿ—`4઀ҀҀÒ‡ÿ—€Rý{B©ôOA©ÿÑÀ_րý{B©ôOA©ÿÑÀ_ÖôO¾©ý{©ýC‘G\”0@ù(´óª@ù€µý{A©ôO¨À_Öð9@ù@ùµ‡ÿ—@4઀ҀҀÒì†ÿ—€Rý{A©ôO¨À_րý{A©ôO¨À_ÖÿÑöW©ôO©ý{©ýÑóª@ù	ð)M@ù	ë@T	ð)]@ù	ë@TÕF©•´¨@ùH´àªU[”`´ôª¨@ùàªáª?Öóªˆ@ùHø7ñˆùáTàª\”,誡ø¶èªb4h
@ù‹ƒ4i
@ù	ëâTi@ù3yhøh@¹1¢T"´ˆ@ùÈ´Aø¶â5‚@ùàªý{C©ôOB©öWA©ÿ‘@Ö誡ø¶èªb4h
@ù‹ƒ4i
@ù	ëbTh‹
@ùh@¹1ãTàªý{C©ôOB©öWA©ÿ‘À_Öh¹àªý{C©ôOB©öWA©ÿ‘À_Öàª[”@´ôªàªáªO[”óªˆ@ù(÷ÿ6éÿÿáùˆ@ù¨´àª?րø·á@ù‹Êÿÿð1@ù@ùœZ”€4—Z”á@ùÂÿÿ€Òàªý{C©ôOB©öWA©ÿ‘À_ÖÿÃÑôO©ý{©ýƒ‘ôªvZ”óª@´h@¹1BTh¹àªý{B©ôOA©ÿÑÀ_֋Z”@ÿÿµˆ@ù­B9h7Ð)@ù@ù᪅Z”àªý{B©ôOA©ÿÑÀ_Öôù €RI[” ýÿ´ôªÐ)@ù@ùáªvZ”ˆ@ù(üÿ7ñˆùÁûÿTઆ[”àªý{B©ôOA©ÿÑÀ_ÖÿÃÑôO©ý{©ýƒ‘@ù­B9H6@ù=ñIT	@’ýCÓ¡	›	ñ`T	±!T	 C)(yªé2	ë"TàKý{B©ôOA©ÿÑÀ_Ö	@¹@’ ¥›À ëÿÿT	 C)(yª	ý_ÓàªIþÿ´Ð1@ù@ù!ð‘AZ”€ý{B©ôOA©ÿÑÀ_ÖzZ”À ëaþÿTý{B©ôOA©ÿÑÀ_Ö”`þÿ´óªÅÿÿ—h@ùHûÿ7ñhùáúÿTàùàª=[”à@ùý{B©ôOA©ÿÑÀ_Öý{¿©ý‘@ù	­B9)6@¹1cTý{hÀ_Ö¹ý{hÀ_Ö1@ùÈ´A@ùˆ´?Ö@´@ù	Ð)Q@ù	ë þÿT!x‘ý{hZ”àµÐA@ù@ù!ˆ‘Z”€Òý{hÀ_ÖÿÑôO©ý{©ýÑóª	@ù(
@ù)­B9I7	Ð)A@ù @ùᣩáù!„‘ÝY”
	Ð)@ù @ùèùBä‘!€RéY” 4h@ùÈø7ñhùaTàªïZ”€Òàªý{C©ôOB©ÿ‘À_ÖôO¾©ý{©ýC‘óªèª	Ð)q@ù@ùñIúAT@ùhÿÿµ€Ò_ù?ù`ùý{A©ôO¨À_Ö@ù@¹1BT¹@ù(ù	@¹)1BT	¹ÄY”`ùý{A©ôO¨À_ÖÿCÑöW©ôO©ý{©ý‘óªôªöªõªÿù0@ùà©¿2ù@´@ùèù	@¹)1bT	¹à@ùªY”àùàc‘áC‘â#‘Y”¨2@ùè	µá@ùA´à@ù¢Y”@	ø7è@ù¨´	@¹)1BT	¹è@ù¨´	@¹)1BT	¹è@ùÈ´	@¹)1bT	¹è@ùé@ùÉùˆùé@ùiù©6@ù3@ù(ùà@ùÀ´@ùˆø7ñù€Tà@ùÀ´@ùˆø7ñù TS´h@ùˆø7ñhù`T€Rý{D©ôOC©öWB©ÿC‘À_ÖmZ”à@ù ýÿµñÿÿiZ”þÿµ€Rý{D©ôOC©öWB©ÿC‘À_Öàª`Z”€Rý{D©ôOC©öWB©ÿC‘À_ÖßùŸùùà@ù9mÿ—à@ù7mÿ—à@ù5mÿ—€ý{D©ôOC©öWB©ÿC‘À_ÖôO¾©ý{©ýC‘óªôªèª@ùùà´@ù¨ø7ñùAT<Z”Ô´ˆ@ùˆø7ñˆù`T³´h@ùhø7ñhùTàªý{A©ôO¨,Zàª*Z”³þÿµý{A©ôO¨À_ÖÿÃÑôO©ý{©ýƒ‘@ù­B9h6@ù=ñéT	@’ýCÓ¡	›	ñ T	±¡T	 C)(yªàËý{B©ôOA©ÿÑÀ_Ö	@¹@’ ¥›ý{B©ôOA©ÿÑÀ_Ö	 C) yªý{B©ôOA©ÿÑÀ_Öý{B©ôOA©ÿÑ(YÅþÿ—´óªÔÿÿ—h@ùÈüÿ7ñhùaüÿTàùàªñY”à@ùý{B©ôOA©ÿÑÀ_ր’ý{B©ôOA©ÿÑÀ_ÖÿƒÑúg©ø_©öW©ôO©ý{©ýC‘@ù9@ù´øª"@ù¢
´óªC´a@ùàªý{E©ôOD©öWC©ø_B©úgA©ÿƒ‘@Öõª÷ª4€ÒþX”öªôª@	´Ø´€Ò@ùÐBp@ùàªiY”öªTµ"€ÒÐÖr@ù˜þÿµ•4àªêX”áªõªà´ÐBp@ùàªXY”öªT´ˆ@ùø7ñˆù¡TદY”
€ÒÐ!p@ùÐBp@ùàªGY”öªþÿµ´¨@ùÈø7ñ¨ùaTઔY”Ö´(@ùàªáª?ÖóªÈ@ùø7ñÈù¡TઇY”

@ù	Ð)A@ù @ùèù!p‘[X”€Òàªý{E©ôOD©öWC©ø_B©úgA©ÿƒ‘À_ÖàªWlÿ—õÿÿÿÑé#
müo©úg©ø_©öW©ôO©ý{©ýÑôªóªöªÐy@ù@ù¨ø¢øÿ	©ÿ©(@¹1TH@¹1#Tà#ùˆ@¹1BTˆ¹(Ð!9‘ÑDù@ùâ@ùáª8Y”@û´õª@¹1BT¨¹õKù(ðAù¨@ùI@ùˆü´àª?Öøª€ü´¨@ùÈø7ñ¨ùaTàª6Y” €RæX”àKùý´È@¹1BTȹùôW”àGùàý´õª(ð™AùÐBl@ùòW” 
ø7÷K@ù@ùA@ùyþ´àðØ!‘Y” 5àªáªâª ?ÖõªýX”´õCù@ùÈø7ñùaTàªY”àK@ù@ù¨ø7ñùATY”ÿKùàG@ù@ù¨ø7ñùATýX”ÿGùûC@ùÈ@ùÈø7ñÈùaTàªôX”ÿCù(ð©Cùh@ùI@ùˆú´àª?ÖõªàCù€ú´8ðŸFùÐ÷R@ù¿ëT¨@ùëT¨@¹È¹H@¹1"ðÿTH¹à#ùˆ@¹1ðÿT€ÿÿ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿ+ù5u€RËE†Rá6€R¨@ùÈø7ñ¨ùaT઼X”еr@ùÿCùМw@ùûùÖ4«X”úª4@ù@ùñUú!T@ùhÿÿµ€Ò€Ò€Ò'(ð©Cùh@ùI@ù™´àª?ÖöªàGù™´(ð¡Fùßë`+TÈ@ùëáTÈ
@ù©€’	Š!ñ¡*TÈ@¹q÷ŸR@¹1BT¹@ùè@¹1BTè¹àª~W”öª(Ð!9‘ýDù@ùb@ùáªfX” ´ùª@¹1BT(¹ùGùû@ù(ð‘Bù(@ùI@ù(´àª?ÖàKù ´(@ùÈø7ñ(ùaTàªcX”ÿGù(ðÅBùh@ùI@ùè
´àª?Öùªà
´(@ù	Ð)U@ù	ëÁ
T;@ù{´<@ùh@¹1ãTˆ@¹1T(@ù(ø6
h¹ˆ@¹1BÿÿTˆ¹(@ùÈø7ñ(ùaTàª<X”"€RùªМw@ù¨#Ñ!‘»ÿ7©
ËàªΉÿ—àGù;´h@ùÈø7ñhùaTàª)X”àG@ùû@ù`´(@ùÈø7ñ(ùaTàªX”èK@ù	@ù
ÐJU@ù?
ë€T€R€ҩ#Ñ)!‘êƒH©¹«7©!M(ˬ‰ÿ—àCù´(@ùÈø7ñ(ùaTàªX”àG@ù@ù¨ø7ñùATX”ÿGùèC@ùÈ´àK@ù@ù¨ø7ñùATöW”ÿKùúC@ùÿCù´è@ùÈø7ñèùaTàªëW”´@ùÈø7ñùaTàªãW”´È@ùÈø7ñÈùaTàªÛW”8ðŸFùàª"€RdW”àGù@
´ëÀTÐm@ùë@TëTSW”@™ú7öªàG@ù@ùÈø6ëöŸ@ùˆø7ñù@TÿGù¶ 4(°!9‘ÑDù@ùÂ@ù᪠W” e´@¹1BT¹àKù(ÐyDù@ùI@ùg´?ÖàCùg´àK@ù@ù¨ø7ñùAT W”ÿKùèC@ù	@ù
°JU@ù?
ë`gT€RéK@ùª#ÑJ!‘«Wø©¯7©àC@ùAM(Ë+‰ÿ—èªàGùàK@ù´@ù¨ø7ñùAT…W”èG@ùÿKùhf´àC@ù@ù¨ø7ñùAT{W”ÿCùàG@ùŸFùë€T@ù	°)Q@ù	ë!ºT@¹)€R6(
@ù¨ø6€R@ù¨ø7ñùATdW”ÿGùv4ú+ù(Ð¥Gù(ÐõFù€Ò4„ÿ—àGù ž´f„ÿ—àG@ù@ù¨ø7ñùATQW”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿGù5v€RËa†Rö@ù]€R7€RÈ@ùÈø7ñÈùaTàª6W”ÿGù÷m5(ÐQEùh@ùI@ùÈq´àª?ÖöªàGùÀq´àª€Ò€R€Rðúÿ—àCùs´È@ùÈø7ñÈùaTàªW”úC@ùÿ©ŸFù_ëT(°!9‘ÑDù@ùâ@ùáªûV”àú´öª@¹1BTȹöGù(ÐyDùÈ@ùI@ù(ý´àª?ÖàKù ý´È@ùÈø7ñÈùaTàªùV”ÿGùèK@ù	@ù
°JU@ù?
ë€ýT€RéƒH©ª#ÑJ!‘«Wø©¯7©AM(Ë…ˆÿ—èªàCùàG@ù´@ù¨ø7ñùATßV”èC@ùÿGù¨ü´àK@ù@ù¨ø7ñùATÕV”ÿKùàC@ùŸFùëT@ù	°)Q@ù	ëABT@¹)€R6(
@ù(ø6ÄV”ÿGùöàÿ5
€R@ù¨ø7ñùATºV”ÿCùVú5Ÿëú+ù TàªMV”±èT÷ª(°!9‘ÑDù@ùÂ@ù᪔V”àè´@¹1BT¹àKù<ЁƒEù@ùI@ù(ê´?ÖàGù ê´àK@ù@ù¨ø7ñùAT”V”ÿKù(°!9‘ÑDù@ùÂ@ùáªwV” ê´øª@¹1BT¹9Ð!Bù@ùI@ùê´àª?Öúªê´@ùÈø7ñùaTàªvV”(°!9‘ÑDù@ùÂ@ùáªZV”àé´øª@¹1BT¹(Ð!Bù@ùI@ù¨é´àª?Ööª é´@ùÈø7ñùaTàªYV”H@ù	°)U@ù	ëàéT€R€ҩ#Ñ)!‘¸Û7©!M(Ëàªç‡ÿ—àKù´@ùÈø7ñùaTàªBV”È@ùÈø7ñÈùaTàª;V”èK@ùè´H@ùÈø7ñHùaTàª2V”àK@ù8Ð÷Aù@ùI@ùHè´?Ööªú+@ù@è´àK@ù@ù¨ø7ñùAT!V”ÿKùèG@ù	@ù
°JU@ù?
ë€èT€Rà§H©ª#ÑJ!‘©Û7©AM(Ë®‡ÿ—àCùàK@ùà´@ù¨ø7ñùAT	V”ÿKùÈ@ùÈø7ñÈùaTàªV”èC@ùç´ó?ùàG@ù@ù¨ø7ñùAT÷U”èC@ùè3ùÿ©‰@ù(°UGù3Ð?ëÀ	T*­@ùê´I	@ù?ñË4TJa‘K@ùë TJ!‘)ñaÿÿTžÿ3ùôª¹Wø?ëahTˆ@¹1CTÿGù(°1Gùé@¹)1cT)Ð(¡Fù
@¹J1£T Wø¨ø@ùùùèø6ˆ¹ÿGù(°1Gùé@¹)1âýÿTé¹1Gù)Ð(¡Fù
@¹J1¢ýÿT
¹(¡Fù Wø¨ø@ùùù¨ø7ñùAT¯U”°u@ùè?ùëAvTÙ)@ù?ëÀT©ÿÿµ	°)@ù	ëÁ+T(°!9‘ÑDù@ùÂ@ù᪅U”€F´@¹1BT¹àGù(ÐÁBù@ùI@ùÈG´?ÖúªÀG´àG@ù@ù¨ø7ñùAT…U”ÿGù;ÐaãAùˆ@ùI@ùH´àª?ÖàGùH´ÿKùH@ù	°)U@ù	ë IT€Rë§H©ª#ÑJ!‘©¯7©)°)qGù©ƒøAM(Ë2ઇÿ—àCùàK@ùà´@ù¨ø7ñùAT`U”ÿKùàG@ù@ù¨ø7ñùATXU”ÿGùèC@ùèF´H@ùÈø7ñHùaTàªNU”àC@ù°u@ùëÀT°m@ùë@TëTÊT”ú7öªàC@ù@ùø6°u@ùëöŸ@ù¨ø7ñùAT2U”ÿCù64öª`öCùÂmÿ—úªàv´ƒEùH@ùI@ùHx´àª?ÖàGù@x´H@ùÈø7ñHùaTàªU”ÀöCù¯mÿ—àKùÀx´!Bù@ùI@ùHz´?Öüª@z´àK@ù@ù¨ø7ñùAT
U”ÿKùaãAùˆ@ùI@ù¨z´àª?Öû@ùàKù z´ˆ@ù	°)U@ù	ëà{T€R€ҩ#Ñ)!‘êK@ù¶«7©!M(Ëઍ†ÿ—úªàªÒgÿ—àK@ù@ù¨ø7ñùATçT”ÿKùÚz´ˆ@ùÈø7ñˆùaTàªÞT”÷AùH@ùI@ù({´àª?Ööª°9w@ù {´H@ùÈø7ñHùaTàªÍT”èG@ù	@ù
°JU@ù?
ë`{T€R€ҩ#Ñ)!‘¸Û7©àG@ù!M(ËZ†ÿ—àCùટgÿ—È@ùÈø7ñÈùaT઴T”èC@ùˆz´àG@ù@ù¨ø7ñùAT«T”ÿGùá3@ù(@¹1BT(¹áGùàC@ù‚€R/T”úª z´_ë T°m@ù_ë T_ë`TàªT”öªÃú7H@ù(ø6
û@ùú+@ùJ_ëöŸH@ùÈø7ñHùaT઄T”–4èC@ù	@¹)1ú+@ùcTè‘@ùàG@ù@ùˆø6èG@ù	@¹)1ú+@ùBT	¹è#‘@ùàG@ù@ùø6	¹è‘@ùàG@ù@ù¨ø7ñùATbT”ÿGùàC@ù@ù¨ø7ñùATZT”öCùÈ@¹1BTȹÈ@ùÈø7ñÈùaTàªNT”öC@ùà3@ù@ù¨ø7ñùATFT”ÿCùö3ù(ÐÙGùAùµ@ù€€R?Öáªàª€R€R$ €R€ÒÀ?ÖàCù/´öª@¹1bTȹàC@ù@ùˆø7ñù€TÿCùˆ@ù¨ø7ñˆùATàª"T”ßëTT”ÿCùˆ@ù¨þÿ6ßëÀT(°UGùઘ”Àú4(ЩCùÈÒ@©I@ù­´àª?Öüª­´(СFùŸëàTˆ@ù	°)Q@ù	ëúTˆ@ù©€’	Š!ñáTˆ@¹qøŸ€R8€Rˆ@ùÈø7ñˆùaTàªïS”X«5(ÐuEùÈ@ùI@ù¨®´àª?Öüª ®´àªáªb€RoS”àCù/´ˆ@ùÈø7ñˆùaTàªØS”àC@ù	°)u@ù	ëÀT°m@ùë@TëTTS”`ú7øªàC@ù@ùÈø6		ëøŸ@ù¨ø7ñùAT¾S”ÿCùX­5(Ð@ùàªáª?Ö@`(!9‘ÑDù@ù‚@ù᪚S”`¯´üª@¹18°BTˆ¹(°µBùˆ@ùI@ù¯´àª?ÖàGù¯´ˆ@ùÈø7ñˆùaTઘS”A`šR” ¯´ôªèG@ù	@ù
JU@ù?
뀵T€R€Ò9w@ù©#Ñ)!‘·Ó7©àG@ù!M(Ë…ÿ—àCù´è@ùÈø7ñèùaTàªzS”ˆ@ùÈø7ñˆùaTàªsS”èC@ùè³´àG@ù@ù¨ø7ñùATjS”ÿGùàC@ùëÀTm@ùë@TëTçR”Àú7ôªàC@ù@ùÈø6	ëôŸ@ù¨ø7ñùATQS”ÿCù´³5`öCùâkÿ—àGù¹´(°%Cù@ùI@ù¨½´?Öüªó?@ù ½´àG@ù@ù¨ø7ñùAT;S”ÿGù(°ýDùˆ@ùI@ùè½´àª?ÖàGùུˆ@ùÈø7ñˆùaTàª*S”ŸFù઀R´R”@¾´ôªèG@ù	@ù
JU@ù?
ëa¿T
@ùœw@ù—Á´	@ùé@¹)1#T	@¹)1CTàG@ùèGù@ùhø6é¹	@¹)1ÿÿT	¹àG@ùèGù@ù¨ø7ñùATS”(€R©#Ñ)!‘·Ó7©àG@ù!M(Ë•„ÿ—àCùàªÚeÿ—ˆ@ùÈø7ñˆùaTàªïR”èC@ùè¹´àG@ù@ù¨ø7ñùATæR”ÿGùàC@ùëÀTm@ùë@TëTcR” ú7ôªàC@ù@ùÈø6	ëôŸ@ù¨ø7ñùATÍR”ÿCùô·5n9`À`ËQ”àCù»´á3@ù‚€RPR”àGù@¼´àC@ù@ù¨ø7ñùAT¹R”ÿCùàG@ùëÀTm@ùë@TëT6R”€ú7ôªàG@ù@ùÈø6	ëôŸ@ù¨ø7ñùAT R”ÿGùô¹5ôª¹Wø?ëà—ÿTm@ù@¹1‚T	)m@ù(¹ÿGù(@¹1cT÷ª(¹·Wø(!9‘ÑDù@ùÂ@ùáªnR”@´@¹1BT¹àGù(°yDù@ùI@ùH´?ÖàCù@´àG@ù@ù¨ø7ñùATnR”ÿGù €RR”àGù´è@¹1bTè¹àG@ùù*Q”üª ™´(!9‘ÑDù@ùÂ@ùáªDR” œ´úª@¹1BTH¹(°©BùH@ùI@ùHœ´àª?ÖàKù@œ´H@ùˆø7ñHùZT(°áAùâK@ùàªQ”@Zø7ùùùªàK@ù@ù¨ø7ñùAT6R”ÿKùö_H©È@ùA@ùú+@ùxÃ´à°Ø!‘R” Æ5àªáªâª?ÖöªR”Å´öKùû@ù8°àC@ù@ù÷ª¨ø7ñùATR”ÿCùàG@ù@ù¨ø7ñùATR”ÿGùˆ@ùÈø7ñˆùaTàª
R” WøèK@ù¨ø@ù¨ø7ñùATR”ÿKùm@ùè?ùœw@ùë Tm@ùë Të`TàªyQ”àÀù7@4Ÿë T(°­Aùˆ@ùI@ù(í´àª?Öüª í´ÿGùˆ@ù	)U@ù	ë!¦Tˆ@ùèGùȥ´“@ù	@¹)1c
Th@¹1ƒ
Tˆ@ù¨
ø6qëàŸüÿ5 Wøáª‚€RXQ”àKù`÷´ë7Tm@ùë€6Të@6TGQ”@Mú7óªàK@ù@ù6ø6³(°¡Dùà#@ù@ùI@ùÈ+´?ÖàGùÀ+´@€R`Q”àCù@-´ŸFù	@¹)1cNTùH@¹1ÃNTèC@ùùiP”üªàN´(°uEùàªâªhP”Àhø7áH©âªo~ÿ—àKùe´àG@ù@ù¨ø7ñùATQ”ÿGùàC@ù@ù¨ø7ñùAT…Q”ÿCùˆ@ùÈø7ñˆùaTàª}Q”ÿÿ©€Ò€Òÿ/ùÿùÿù€ÒèK@ùè#ùÿKù”r@ùè@ùëèTí	¹h@¹1ÂòÿTh¹ˆ@ùÈø7ñˆùaTàªaQ”"€RüªèG@ù©#Ñ)!‘¨ÿ7©!
Ëàªô‚ÿ—èªàKùàG@ù´@ù¨ø7ñùATNQ”èK@ùÿGù¨Û´ˆ@ùÈø7ñˆùaTàªDQ”ûK@ùÿKù઀’"€R€Rõÿ—àKù@Û´áªàªŠP” Ü´öªàK@ù@ù¨ø7ñùAT/Q”ÿKùh@ùÈø7ñhùaTàª'Q”(°ÍDùà#@ù@ùI@ùÛ´?ÖàKùÛ´ÿGù@ù	)U@ù	롍T	@ùéGùI´@ù*@¹J1#T	@¹)1CTàK@ùèKù@ùhø6*¹	@¹)1ÿÿT	¹àK@ùèKù@ù¨ø7ñùATüP”(€RéƒH©ª#ÑJ!‘©ß7©AM(ː‚ÿ—óªàG@ùÕcÿ—ÿGù“Ö´àK@ù@ù¨ø7ñùATèP”ÿKù(°-EùÈ@ùI@ùHÖ´àª?Öüªóù@Ö´ €RP”àKù×´h@¹1bTh¹àK@ùùšO”àGù ×´(°¡(‘Q@ù@ù™O” -ø7â‡H©àª }ÿ—àCù ´ˆ@ùÈø7ñˆùaTાP”àK@ù@ù¨ø7ñùAT·P”ÿKùàG@ù@ù¨ø7ñùAT¯P”øC@ùÿ©(°õCù?iÿ—àCùø#ù ´(°Aù@ùI@ùÈ´?ÖàGùÀ´àC@ù@ù¨ø7ñùAT˜P”ÿCù €RGP”àCù€´@¹1bT¹àC@ùùTO”àKù ´(°™AùBl@ùSO”àDø7áH©âK@ùZ}ÿ—üª€7´àG@ù@ù¨ø7ñùATxP”ÿGùàC@ù@ù¨ø7ñùATpP”ÿCùàK@ù@ù¨ø7ñùAThP”ÿKù(°Aùˆ@ùI@ù5´àª?ÖàKù5´ˆ@ùÈø7ñˆùaTàªWP” €RP”üªÀ4´	)Q@ù(@¹1BT(¹‰ùO”àCù 4´(°!‘@ùÕDùO”`±ø7àK@ùâC@ùáª}ÿ—àGùr´àK@ù@ùû@ù¨ø7ñùAT5P”ÿKùˆ@ùÈø7ñˆùaTàª-P”øªàC@ù@ù¨ø7ñùAT%P”ÿCù÷G@ùà#@ù@ù¨ø7ñùATP”ÿÿ©€Ò€Òÿ/ùÿùÿGù÷#ù÷ª8°è@ùë|TëóŸ@ù¨ø7ñùATP”ÿKùÓÀ5 WøŸFù€RO”àKùàôëÀTm@ùë@TëT~O”àú7óªàK@ù@ùÈø6	ëóŸ@ù¨ø7ñùATèO”ÿKù“Â5Ÿë T(!9‘ÑDù@ùb@ùáªÈO”@õ´üª@¹1:°BTˆ¹(°Aùˆ@ùI@ù¨ö´àª?ÖàCù ö´ˆ@ùÈø7ñˆùaTàªÆO”ŸFùં€RPO”óª ö´ÿGùèC@ù	@ùêðJU@ù?
ëöðÖv@ù ÷T€Rà'H©ª#ÑJ!‘©Ï7©AM(ËKÿ—àKùàG@ùà´@ù¨ø7ñùAT¦O”ÿGùh@ùÈø7ñhùaTઞO”èK@ù¨õ´àC@ù@ù¨ø7ñùAT•O”ÿCùàK@ù¡Wø€RO”àCù õ´àK@ù@ù¨ø7ñùAT‡O”ÿKùàC@ùë@
Tèðm@ùëÀTë€TO”àUú7óªàC@ù@ùHø6eàªtO”(áAùâK@ùàª=N”¦ÿ6€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òèðm@ùè?ù+½†RÕz€R{€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùkцR5|€R¥(=Dùà#@ù@ùI@ùè$´?ÖàKùà$´ÿGù@ùéð)U@ù	ëÑT	@ùéGù©Ð´@ù*@¹J1#‡T	@¹)1C‡TàK@ùèKù@ùh‡ø6>	¹àC@ùŸFùùH@¹1‚±ÿTH¹èC@ùùóM”üª`±ÿµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òôð”r@ù‹ۆRÕ|€R7ëóŸ@ù¨ø7ñùATO”ÿCù³ç5ŸFù	@¹)1bT	¹ŸFùèOùA›Aùˆ@ùI@ù(ê´àª?ÖàKù ê´@ùéð)U@ù	ëAëT@ù3í´@ùi@¹)1#T	@¹)1CTàK@ùèKù@ùhø6i¹	@¹)1ÿÿT	¹àK@ùèKù@ù¨ø7ñùATáN”"€R¨#Ñ!‘³ÿ7©àK@ù
Ëv€ÿ—àCù઻aÿ—èC@ùÈæ´àK@ù@ù¨ø7ñùATÎN”ÿKùèC@ùèùˆ@ùÈø7ñˆùaTàªÄN”ÿCù(õCùUgÿ—àCùàå´(}Fù@ùI@ùèæ´?ÖàKùàæ´àC@ù@ù¨ø7ñùAT¯N”ÿCù €R^N”àCùç´è@¹1bTè¹àC@ùùkM”üª€ç´(áAùâðBP@ùàªiM”À
ø7àK@ùáC@ùâªo{ÿ—àGùà´àK@ù@ù¨ø7ñùATN”ÿKùàC@ù@ù¨ø7ñùAT…N”ÿCùˆ@ùÈø7ñˆùaTàª}N”óG@ùÿGù(éDùh@ùI@ù¨´àª?Öüªóù ´ÿCùˆ@ùéð)U@ù	끵Tˆ@ùèCù(µ´“@ù	@¹)1ÃTh@¹1ãTˆ@ùø64€Ò€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ùëԆR¤€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òôð”r@ùËۆRÕ|€Rb€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò+ø†Ru~€Rô@ùT	¹h@¹1búÿTh¹ˆ@ùÈø7ñˆùaTàª+N”"€RüªèC@ù©#Ñ)!‘¨ÿ7©!
Ëાÿ—àGùàC@ùaÿ—ÿCùèG@ù¨û´ˆ@ùÈø7ñˆùaTàªN”÷ùèG@ùè/ùÿGùàO@ù¡Wø€R›M”àGù û´€Ò€Ò€Ò€Ò€Ҩ#Ñ!‘(€Rèù98£(‘	ÿCùàO@ù¡Wø€R‡M”àGù‹þ†Rº´öß©éð)u@ù	ëèðm@ùHúUúü'ùT	ëôŸ÷@ù6@ùHø6
lM”÷@ù6)ù7ôªàG@ù@ù¨ø7ñùATÙM”ÿGùte4(‘Dùà#@ù@ùI@ùHJ´?Öüª`›´ WøáO@ù,M”àCù€›´ÿKùˆ@ùéð)U@ù	ëITˆ@ùèKù(´”@ù	@¹)1ãTˆ@¹1Tˆ@ù(ø6
	¹ˆ@¹1BÿÿTˆ¹ˆ@ùÈø7ñˆùaTપM”üª(€RéK@ùêC@ù©«7©AË‘àª=ÿ—àGùàK@ù‚`ÿ—ÿKùàC@ù@ù¨ø7ñùAT–M”ÿCùèG@ù¨•´ˆ@ùÈø7ñˆùaTઌM”÷G@ùà;@ùm`ÿ—ÿGùàO@ù(Fù‚€RM”àGù€”´éð)u@ù	ëÀTèðm@ùë@TëTþL”Àù7ôªàG@ù@ùÈø6	ëôŸ@ùˆø7ñù@<TÿGù4âc‘à/@ù€Ò€Ò$€R€Rzóÿ—àGù ´áª(Fùà@ùðL”àù7àG@ù@ù¨ø7ñùATQM”ÿGùÀöCùãeÿ—üªàŽ´(­Aùˆ@ùI@ùÈ9´àª?ÖàCù Ž´ˆ@ùÈø7ñˆùaTàª<M”èC@ù	@ùêðJU@ù?
ë@8T€Ò€Òé@ù´§7©AË‘àC@ùÊ~ÿ—àGùàª`ÿ—èG@ùHŒ´àC@ù@ù¨ø7ñùAT"M”ÿCùôG@ùàª`ÿ—ÿGù઀’"€R€Rãðÿ—àGùàŠ´áªàªeL”àCù ‹´àG@ù@ù¨ø7ñùAT
M”ÿGùûC@ùˆ@ùÈø7ñˆùaTàªM”ÿCù(-Eùh@ùI@ù¨2´àª?ÖàCù ‰´ €R§L”àGù ‰´è@¹1bTè¹àG@ùù´K”üª€‰´S@ù@ù઴K”àGø7àH©âª»yÿ—àKù ‰´àC@ù@ù¨ø7ñùATÙL”ÿCùàG@ù@ù¨ø7ñùATÑL”ÿGùˆ@ùÈø7ñˆùaTàªÉL”ôK@ùપ_ÿ—ÿKùÀöCùXeÿ—àKù †´(5Fù@ùI@ùh+´?Öüª†´àK@ù@ù¨ø7ñùAT²L”ÿKù €RaL”àKù@…´ˆ@¹1bTˆ¹àK@ùùnK”àGùà„´(	EùâðBt@ùmK”à?ø7â‡H©àªtyÿ—àCù@„´ˆ@ùÈø7ñˆùaT઒L”àK@ù@ù¨ø7ñùAT‹L”ÿKùàG@ù@ù¨ø7ñùATƒL”ÿGùàC@ù@ùéð)]@ù	ëá#T@ù	ñT@ùèGù	€‘)@ùéKù
@¹J1bT
¹éK@ù(@¹1£TàC@ù@ùÈø6	(¹àC@ù@ù¨ø7ñùAT`L”ÿCùüG@ùà'@ù@_ÿ—ÿGùöK@ùà7@ù<_ÿ—ÿKù(yEùÈ@ùI@ùˆ#´àª?ÖàKùà|´ÿGù@ùéð)U@ù	ë¡T	@ùéGùI´@ù*@¹J1#T	@¹)1CTàK@ùèKù@ùhø6*¹	@¹)1ÿÿT	¹àK@ùèKù@ù¨ø7ñùAT,L”"€RèƒH©¨ÿ7©AËÃ}ÿ—àCùàG@ù_ÿ—ÿGùèC@ùhx´àK@ù@ù¨ø7ñùATL”ÿKùàC@ù@ù¨ø7ñùATL”ÿCù(ñEùˆ@ùI@ùh´àª?ÖàKù`v´ÿGù@ùéð)U@ù	ë!T	@ùéGùÉ´@ù*@¹J1#T	@¹)1CTàK@ùèKù@ùhø6*¹	@¹)1ÿÿT	¹àK@ùèKù@ù¨ø7ñùATæK”(€RéƒH©©Û7©AË‘|}ÿ—àCùàG@ùÁ^ÿ—ÿGùèC@ùÈq´àK@ù@ù¨ø7ñùATÓK”ÿKùóC@ùˆ@ùÈø7ñˆùaTàªÊK”ÿCù!wEùh@ùI@ù(´àª?ÖáªàCù o´àO@ù
K”àKùp´àC@ù@ù¨ø7ñùATµK”ÿCùâc‘ãC‘à/@ùáªh”à"ø7àK@ù@ù¨ø7ñùAT§K”ÿKù!wEùh@ùI@ùˆ´àª?ÖáªàKùm´àO@ùêJ”àCù`m´àK@ù@ù¨ø7ñùAT’K”àO@ùèC@ùÿ#	©@ù²ÿ7ñù¡±ÿT‰K”‹ýÿ‡K”ÿGùôÃÿ55þÿ€ÒXÿÿ€ҜÿÿõJ”üª¶ÿµ‰€ÒÓýÿàªîJ”àCù€Æÿµ§
@ùôÇÿ´	@ù‰@¹)1ã	T	@¹)1
TàC@ùèCù@ù(
ø6TàªÛJ”àCù Íÿµ´×J”üªàÔÿµÕéÐ)M@ù	ë 	TØJ”üª@´àC@ù@ù¨ø7ñùATPK”ÿCùˆ@ùq@ùàªÀ?ÖóªàGù ´àªÀ?ÖàKù´àªÀ?ÖA€R¶îÿ—Àåù7ˆ@ùèÛÿ7ñˆùÛÿTàª8K”ÙþÿફJ”àKùÀÜÿµËદJ”àKùàäÿµØàª¡J”áªàCù íÿµäછJ”áªàKùÀðÿµì‰¹	@¹)1BöÿT	¹àC@ùèCù@ù¨ø7ñùATK”(€Rßýÿ@ù	ñÁST	@ù(…@øèGù)@ùéKù
@¹J1ãÒÿT˜þÿ*¹	@¹)1yÿT	¹àK@ùèKù@ù¨ø7ñùATùJ”(€RéƒH©ª#ÑJ!‘©ë7©AM(ˍ|ÿ—àCùàG@ùÒ]ÿ—ÿGùèC@ùèš´àK@ù@ù¨ø7ñùATäJ”ÿKùàC@ù¢CÑ€Ò€Ò€R€Röðÿ—àKù´àC@ù@ù¨ø7ñùATÓJ”ÿCùàK@ùÿKùðQEù@ùM@ùà#ù⪨š´?Ö€ÒôДr@ù šù7üó©èªóªü/ùüùüùöªè@ùëT9€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ùëֆR•|€Rûªö@ùÊé@ù(@¹1ÃTÿù€Ò€Òÿ©ÿ#ùk‡Ru€R€Ò€Òÿ©ÿ#ùë‡R•€Róª	ÿs©€Ò€Ò€Òÿ©ë$‡Rõ€Rö7ù÷;ù÷SA©ö@ù©ÿù(¹é#ùöªô@ùû@ùú+@ùðè@ùëá
Tè#@ù@ùÐUGùàªRvÿ—à	4ðÅBùK@ù¨¼´à#@ù?ÖàCùð ¼´ÿGù@ùéÐ)U@ù	ëÁtT	@ùéGùit´@ù*@¹J1#T	@¹)1CTàC@ùèCù@ùhø6*¹	@¹)1ÿÿT	¹àC@ùèCù@ù¨ø7ñùATOJ”(€Rà'H©ª#ÑJ!‘ŸFù©¯7©AM(Ëâ{ÿ—àKùàG@ù']ÿ—ÿGùèK@ùˆ·´øªàC@ù@ù¨ø7ñùAT8J”ÿCù÷K@ùà#@ù@ù¨ø7ñùAT/J”ÿKù÷#ù÷ªðð©Cùh@ùI@ùh´àª?ÖàKù`´ŸFù€Òw”Àù7øªàK@ù@ù¨ø7ñùATJ”ÿKùø4ø#@ù@¹1CTÿù‚è@ùëõ3@ù Tð©Cùà#@ù@ùI@ùh±´?ÖðàKù`±´Fù€ÒU”²ù7øªàK@ù@ù¨ø7ñùATôI”ÿKù8
4ðõCù„bÿ—àKù@²´ðåAù@ùI@ù¨²´?ÖàCù ²´àK@ù@ù¨ø7ñùATÞI”ÿKù¤H”àKù@²´ð¡âAùh@ùI@ùˆ²´àª?ÖâªàGù€²´àK@ù¡âAù›H”à	ø7àG@ù@ùõ3@ù¨ø7ñùATÄI”ÿGùàC@ùð!GùâK@ù—vÿ—àGù`²´àC@ù@ù¨ø7ñùATµI”ÿCùàK@ù@ù¨ø7ñùAT­I”øG@ùÿÿ©àªá#@ù®”àGùøù€°´âªÐ1Gùàª7I”0ù7àG@ù@ù¨ø7ñùAT˜I”ÿGùø@ù@¹1BT¹ûªö@ùÿÿù¹ûªö@ùùàªá#@ù”øªàGù誤´ÿùÿGùûªöªîü'ù€Ò€Ò€ÒÿùË@‡R•‚€RèªûªöªXH”@­µàªsÿ—õªàKùàþµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿ+ùe
àªÒH”øªÀþµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿ+ù5u€R‹D†Rh€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿ+ù5u€RëD†RY€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿ+ù5u€R‹E†RJàªáªâªH”àCù þµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ù$એH”õªàCùÀþµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÿ+ùUu€RËG†R"êG”£´€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿÿ©ÿ+ù5u€RëE†R€Ò€Òÿ©ÿ#ù‡R€Ò€Òÿ©ÿ#ùK‡RÕ~€RU€Ò€Òÿ©ÿ#ùë‡RÕ~€Rô@ùö@ùû
€Ò€Ò€Òÿ©ÿ#ù«‡Rõ~€RGþÿ€Ò€Òÿ©ÿ#ùˇR5€R@þÿ€Ò€Òÿ©ÿ#ù	‡R5€R9þÿ€Ò€Ò€Òÿ©ÿ#ù«‡R5€R1þÿ€Ò€Ò€Òÿ©ÿ#ùk
‡R€Ò€Ò€Òÿ©ÿ#ù«
‡RU€R÷;ùûª!þÿ€Ò€Ò€Òÿ©ÿ#ùK‡Ru€Rþÿ€Ò€Ò€Òÿ©ÿ#ù‹‡Ru€Rþÿ€Ò€Òÿ©ÿ#ù+‡Ru€R	þÿ€Ò€Òÿ©ÿ#ù‹‡Ru€Rþÿ€Ò€Ò€Òÿ©ÿ#ùk‡Rðýÿ€Ò€Òÿ©ÿ#ù«‡Rêýÿ€Ò€Òÿ©ÿ#ù‡Räýÿ€Ò€Òÿ©ÿ#ù«‡RÞýÿ€Ò€Òÿ©ÿ#ù‡RØýÿ
ñ˞TèÐE@ù@ùH€Rèùá!Ì‘ûÿs©€Ò€Ò€Òÿ©ë‡Rµ€Rö7ùÆýÿÿs©€Ò€Ò€Òÿ©k‡Rµ€Rö7ù½ýÿÿs©€Ò€Ò€Òÿ© ‡RÕ€Rö7ù´ýÿÿs©€Ò€Ò€Òÿ©‹"‡RÕ€Rö7ù«ýÿÿs©€Ò€Ò€Òÿ©K$‡R¬ýÿÿs©€Ò€Ò€Òÿ©‹$‡R¥ýÿÿs©€Ò€Ò€Òÿ©+&‡Rÿs©€Ò€Ò€Òÿ©k&‡R€€R—ýÿÿs©€Ò€Ò€Òÿ©öß©÷SA©ö@ùµ~€R:
éÐ)I@ù	ë ÐTàªB€R¤G”&”öª êý6€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÿ+ùUu€RH†R
çF” “µàªrÿ—ùªàGùû@ùñýµkK†RàK@ù€µ3àªjG”àKù ñýµÿKù«K†R7àªcG”ùª`òýµL†RàK@ù µ$€Ò€ҭïÿ‹N†RàK@ùÀµ€ҧïÿ
@ù´	@ù)@¹)1#™T	@¹)1C™TàK@ùèKù@ùh™ø6΀ÒkQ†RàK@ù ´@ùèø7ñùTóªÅG”ëªÿKùY´(@ùø7ñ(ù¡TàªóªºG”ëªàG@ù ´@ùèø7ñùTóª°G”ëªÿGùàC@ù ´@ùèø7ñùTóª¥G”ëªÿCùH3@ù¨´	Ð!©Gù@ùëàwT(@ùU@ùhtÑ7	@ù)­B9iq96	¬B9)q16qù6(¬B9Èp16	¬@ù‰s´(	@ùñT)a‘*@ù_ë`uT)!‘ñaÿÿTµu€RÓÿë©€Ò€Ò€Òÿÿ©ÿÿ©€Òÿÿ©ÿ#ùÿùöª€Ò€Òÿ?ùv€RK[†R	€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùUw€R«u†R	GF”µàªpqÿ—àKù@þµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÃF”àGù þµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ù•w€R+w†RX	 F”~µàªIqÿ—øªþµ€Ò€ÒìદF”úª@þµ€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ù•w€RËw†R=	F” |µàª.qÿ—øª@þµ€ÒáઌF”öª þµ€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ù•w€Rkx†R#	X@ùX{´[@ù@¹1#‚Th@¹1C‚TH@ùh‚ø6€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ù•w€R+{†R	`F”öªú+@ùþµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ù•w€R«{†Rô	
@ùéKùiþ´	@ù*@¹J1#~T	@¹)1C~TàG@ùèGù@ùh~ø6ö€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ù•w€Rk~†RÕ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ù5x€R˓†RÅàªF”üª@Sþµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùµx€R떆RÐ¥GùÐGù€Òhsÿ—óª l´àª™sÿ—h@ùÈø7ñhùaT઄F”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿ?ùÕx€R™†RÅàªéE”üª Qþµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùõx€RK›†Rà€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùõx€R‹›†RÑÐ¥GùÐGù€Ò&sÿ—àCù@f´Xsÿ—àC@ù@ù¨ø7ñùATCF”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿÿ©y€R«†R„E”ÐeµàªApÿ—üªÀPþµ$ઠE”àGù@Qþµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùUy€RK¡†R—€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùUy€R«¡†R‡îD”Àaµàªpÿ—àGùàpþµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò
lE”àCùpþµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òè°m@ùè?ùK»†RÕz€R
@ùù°9w@ù_´	@ùé@¹)1ceT	@¹)1ƒeTàG@ùèGù@ù¨eø60€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùK¤†R€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òè°m@ùè?ù«»†RÕz€RÐÐ¥GùÐ	Gù€҆rÿ—àCùÀX´¸rÿ—àC@ù@ù¨ø7ñùAT£E”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿÿ©uy€R«¦†Rä€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òè°m@ùè?ùK¼†RÕz€R¡€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ù먆R•y€RòYD” Sµàª‚oÿ—úª€cþµ™
àªáD”àKùdþµ€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò˼†Rè°m@ùè?ùÕz€RwÏD”üªó?@ù Bþµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ù+©†R•y€RÅ઻D”àGù`Bþµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ù‹©†R•y€R²€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ù멆R•y€R¢€R€Òü°œw@ù òÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùk¬†R•y€R€RòÿÐ¥GùÐ
Gù€Òàqÿ—àCùH´rÿ—àC@ù@ù¨ø7ñùATýD”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿÿ©µy€Rˮ†R>€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ù±†R\€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùK±†RMÐ¥GùÐGù€ңqÿ—àGù`B´Õqÿ—àG@ù@ù¨ø7ñùATÀD”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿ?ùÿGùõy€Rk³†Rôªö@ùË€ÒNóÿ€R°óÿ€Ò€Ò€Òÿ©ÿ#ù+‡R€Rúÿ€Ò€Ò€Òÿ©ÿ#ùk‡R€Rúÿ€Ò€Ò€Òÿ©ÿ#ù«þ†Rµ~€Rô@ùö@ù­€Ò€Ò€Òÿ©ÿ#ùˇRõ~€RùùÿmC”@Aµàª–nÿ—àKù€šýµÿë©€Ò€Ò€Òÿÿ©ÿÿ©€Òÿÿ©ÿ#ùÿùöª€Ò€Òÿ?ù
èC”àCù@™ýµÿë©€Ò€Ò€Òÿÿ©ÿÿ©€Òÿÿ©ÿ#ùÿùöª€Ò€Òÿ?ùv€R‹\†R|	
@ùéKùI>´	@ù*@¹J1£sT	@¹)1ÃsTàC@ùèCù@ùèsø6¢ÿë©€Ò€Ò€Òÿÿ©ÿÿ©€Òÿÿ©ÿ#ùÿùöª€Ò€Òÿ?ùv€R+_†R\€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùux€R«•†R­é°)I@ù	ë@šTàªb€R¶C”8”øªþ6€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùµx€R+—†R”àªáªâªyC”àKùÐÀ=þµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òè°m@ùè?ùk½†RÕz€R÷ªãB”€4´€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€ÒÿKùè°m@ùè?ùÕz€Rk½†Rö@ù÷ª€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒkÆR•{€RùàªPC”öªàGù@gýµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÿ+ùUv€RKe†RãÐ¥GùÐùFù€ҙpÿ—óªàGù€-´àªÉpÿ—h@ùÈø7ñhùaT઴C”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿ+ùÿGùuv€Rkg†Rö@ù¿àªC”öªàGù€Žýµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÿ+ùµv€RËi†R©€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÿ+ùµv€Rj†R˜Èø·é)E@ù @ùÉÐ)©‘аJ­‘ñI‰šè'©ÁÐ!p‘JB”€Ò€Ò€Òÿ©ÿ#ùk‡RÌøÿKB”`$µàªtmÿ—àGù ¹ýµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ù	ÇB”úª€¸ýµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ùÕw€R«†R]઴B”àGù@¸ýµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿ?ùÕw€R‚†Rö@ùJH@ùèKùè¶ý´àªZ@ù	@¹)1CXTH@¹1cXT@ùˆXø6È€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿ?ùÕw€R«„†Rö@ù-)¹	@¹)1gÿT	¹àK@ùèKù@ù¨ø7ñùATC”(€Rëêÿÿë©€Ò€Ò€Òÿÿ©ÿÿ©€Òÿÿ©ÿ#ùÿùöª€Ò€Òÿ?ùv€Rk[†R
¹h@¹1~ÿTh¹H@ùÈø7ñHùaTàªäB”(€Rúªû@ùìÿ*¹	@¹)1‚ÿT	¹àG@ùèGù@ù¨ø7ñùATÓB”(€R¹ìÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùõx€R˛†R?€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùˤ†RUy€R/é¹	@¹)1šÿT	¹àG@ùèGù@ù¨ø7ñùAT¤B”(€Rïÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ù묆R•y€R€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ù‹±†RÕy€RôªöªàªôA”üª þµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒëņRÕ{€RŒ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒkȆRÕ{€R€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù+ʆR€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùkʆRõ{€Rö@ùg¿A”àKù@%þµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù̆R
€Ò€Ò€Òÿÿ©ÿÿ©ÿ©ÿ/ùÿù‹ΆR|€R‚÷ÿથA”üªóù*þµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùKІR5|€Rs÷ÿ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ù‹ІR5|€Ri÷ÿ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ù+цR5|€R_÷ÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òk߆R}€R°¥Gù°Gù€ÒÓnÿ—àKùù´oÿ—àK@ù@ù¨ø7ñùATðA”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€ÒÿKù5}€Rká†Rö@ùþ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ҫã†Ru}€Rð°¥Gù°Gù€Ҧnÿ—àKù õ´Ønÿ—àK@ù@ù¨ø7ñùATÃA”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€ÒÿKù•}€R«å†Rö@ùÑàª(A”àKùàñþµü'ù€Ò€Ò€Òÿù«8‡Rü'ù€Ò€Ò€Òÿùë8‡Ru€R+øÿú+ùé)I@ù	ë –Tb€R(A”ª”Àôø7öªàG@ù® 
@ýábž aöŸÎèÿé)I@ù	ëTàªb€RA”™”÷ª@Iý6€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÿ+ùUv€R‹e†R’€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿ?ùõw€R‹††Rö@ùƒàªÚ@”àGùˆýµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿ?ùõw€Rˆ†Rö@ùp€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿ?ùõw€R+‡†Rö@ù`¸@”üª†ýµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿ?ùõw€Rk‡†Rö@ùNથ@”û@ùàKù …ýµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ùõw€Rˇ†R:–@ùöà´àªœ@ùÈ@¹1cOTˆ@¹1ƒOT@ù¨Oø6€€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ùõw€RkІRàªv@”öªù9w@ù …ýµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ùõw€R늆R

@ù8Û´	@ù	@¹)1CKT	@¹)1cKTàG@ùèGù@ùˆKø6_€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ùõw€R«†Rì€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ùõw€RkކRÝ€Җòÿ€RÅõÿ*¹	@¹)1‚ŒÿT	¹àC@ùèCù@ù¨ø7ñùAT¯@”(€Rû@ù°üœw@ùéÿ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ù‹цR5|€Rðõÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ùkӆRåõÿ
@”àGù€þýµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ù«ӆRØõÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ùԆRÎõÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ù«ԆRÄõÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò€Òÿ?ùÕw€R+…†Rö@ù	¹H@¹1â§ÿTH¹@ùÈø7éªñùATX@”(€RãêÿË?”àGù€Ôýµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òô”r@ùKچRÕ|€R`€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òô”r@ù‹چRÕ|€RP?” ĵàªAjÿ—üªû@ù°° 
þµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò+é†Rõ}€R:ઑ?”àCù 	þµ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òké†Rõ}€R)€Ò€Ò€Òÿÿ©ÿÿ©ÿ©ÿ/ùÿùöª€ÒËé†Rõ}€R	
@ùéGùI¿´	@ù*@¹J1#cT	@¹)1CcTàC@ùèCù@ùhcø6€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒKì†Rõ}€Rÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒËì†Rõ}€Rñ°¥Gù°Gù€ҧlÿ—àCù€¹´Ùlÿ—àC@ù@ù¨ø7ñùATÄ?”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€ÒÿCù~€Rëî†Rö@ùÒàª)?”àKù þµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òkò†RU~€RÀ€Ò€ÒÁðÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òëô†RU~€R¯€ұðÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ҫö†RJñÿø>”àKù`þµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òëö†R:ñÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒK÷†R-ñÿ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òë÷†R!ñÿ€@ý(€Rbž a[ëÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ҋ߆R}€Rd€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒËã†Ru}€RVú+ù>”€ªµàªFiÿ—öªàGùû@ùú+@ùÜðœw@ù€ýµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÕv€Rkl†R9ઐ>”àKù ýµÿë©€Ò€Ò€Òÿÿ©ÿÿ©€Òÿÿ©ÿ#ùÿùöª€Ò€Òÿ?ùÕv€R«l†R$	
@ùéGùi¦´	@ù*@¹J1ƒKT	@¹)1£KTàK@ùèKù@ùÈKø6aÿë©€Ò€Ò€Òÿÿ©ÿÿ©€Òÿÿ©ÿ#ùÿùöª€Ò€Òÿ?ùÕv€RKo†Rú+ù¥GùýFù€ҹkÿ—àCùà¡´ëkÿ—àC@ù@ù¨ø7ñùATÖ>”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿÿ©õv€Rëq†Rö@ùã€Rwôÿ€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ùՆRôÿàª/>”àKù@Ëýµ€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ù«ՆRþóÿ€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ùֆRõóÿ€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ù«ֆRìóÿȹˆ@¹1°ÿTˆ¹@ù¨ø7ñùAT‘>”(€Rû@ù–éÿ	¹	@¹)1â´ÿT	¹àG@ùèGù@ù¨ø7ñùAT>”(€Rû@ùÙð9w@ù¸éÿ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ùõw€R‹Ž†RŠ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒÔð”r@ùëۆRÕ|€R{€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒKø†RðÿàªÆ=”üªóù ûýµ€Ò€Òÿ©ÿÿ©ÿ©€Òÿ/ùöª€Ò+ú†R•~€Rô@ù]€Ò€Òÿ©ÿÿ©ÿ©€Òÿ/ùöª€ҫü†R•~€Rô@ùP€Ò€Ò€Òÿ©ÿÿ©ÿ©€Ò€ҋþ†Rµ~€Ršóÿ=”àKù`Ûýµ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒÔð”r@ùË*‡Ru€€R2€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒÔð”r@ùK-‡Ru€€R"€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒÔð”r@ùË-‡Ru€€R…=”€ÒÔð”r@ù eþ6k/‡R•€€Rúªøªüó©üó©ü'ùóªü/ùüùöªûªàK@ùÀ´@ùˆø7ñù!TüùüªøªúªõªûªôªùªÔ=”ëªôªûªõªúªøªü@ùX´@ùø7ñù¡TàªøªÄ=”ëªàG@ù ´@ùèø7ñùTøªº=”ëªàC@ù ´@ùèø7ñùTøª°=”ëªZ´H@ùø7ñHù¡Tàªøª¦=”ëª\´ˆ@ùø7ñˆù¡Tàªøªœ=”ëªÀ°ì‘ƒc‘áªâªDVÿ—€ÒüëD©õ3@ù´H@ùÈø7ñHùaTઉ=”´¨@ùÈø7ñ¨ùaTઁ=”õ@ùè?@ùH´è?@ù@ùèø7ñé?@ù(ùaTà?@ùu=”´è@ùÈø7ñèùaTàªm=”´h@ùÈø7ñhùaTàªe=”à@ù÷;@ùà´@ù¨ø7ñùAT\=”à#@ùà´@ù¨ø7ñùATT=”àO@ùà´@ù¨ø7ñùATL=”´¨@ùÈø7ñ¨ùaTàªD=”à/@ùà´@ù¨ø7ñùAT<=”´è@ùÈø7ñèùaTàª4=”´h@ùÈø7ñhùaTàª,=”´ˆ@ùÈø7ñˆùaTàª$=”à7@ùà´@ù¨ø7ñùAT=”à@ùà´@ù¨ø7ñùAT=”´È@ùÈø7ñÈùaTàª=” Wøà´@ù¨ø7ñùAT=”´ˆ@ùÈø7ñˆùaTàªü<”¨YøÉð)y@ù)@ù?ëÁTàªý{S©ôOR©öWQ©ø_P©úgO©üoN©é#Mmÿ‘À_Ö@ýábž aöŸû@ùú+@ùÜðœw@ù@ùH¯ü6}åÿ*¹	@¹)1ÿT	¹àC@ùèCù@ù¨ø7ñùATÓ<”(€Rû@ùÖðÖv@ùíÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Òí†Rõ}€RÜþÿÀ
@ý(€Rbž a+äÿú+ùÉð)I@ù	ëTb€RA<”Ô@^ø7öªàC@ù}€Ò€Òÿÿ©ÿÿ©ÿ'ù€Òÿ/ù׆Rõñÿ*¹	@¹)1¢´ÿT	¹àK@ùèKù@ù¨ø7ñùAT˜<”(€Rû@ùÜðœw@ù¢åÿà#@ù<”àCù Cþµü'ù€Ò€Ò€ÒÿùK3‡R€Róÿü'ù€Ò€Ò€ÒÿùË5‡R€Rèªûªöª—þÿï;”àKùàNþµõ3ùü'ù€Ò€Ò€ÒÿùË=‡RՁ€R÷òÿõ3ùü'ù€Ò€Ò€Òÿù>‡RՁ€Rîòÿõ3ùü'ù€Ò€ÒÿùG‡Rƒ€Rçòÿõ3ùü'ù€Ò€Ò€Òÿù«?‡RÝòÿÉ;”àCù Mþµõ3ùü'ù€Ò€Ò€Òÿùë?‡RÒòÿü'ù€Ò€Ò€ÒÿùK@‡RËòÿશ;”âªàGùÀMþµü'ù€Ò€Ò€Òÿù‹@‡R¿òÿ@ýábž aöŸû@ùú+@ùÜðœw@ù@ùȭü6qåÿõ3ùü'ù€Ò€Ò€ÒÿùA‡R«òÿõ3ùü'ù€Ò€Ò€ÒËB‡Rµ‚€R¤òÿõ3ùü'ù€Ò€Ò€ÒC‡Rµ‚€Rœòÿ€Ò€Òÿ©ÿ#ù‡Rrñÿóªê:”)<”€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿ+ùÿKù5u€RKD†RþÿóªØfÿ—û@ùóª ´€@ùëëªaÿÿTÈð=@ù@ùÁ!T"‘Ò:”ãòÿÈð@ù?ëàŸû@ùëª@‹þ4À°ì‘ƒc‘᪢u€R‡Tÿ—á‘âC‘ã#‘àªáÿ—àø7¥GùñFùh@ùA@ù´ÀØ!‘¬;”@5àªáª€Ò ?Öóª¨;”Ó
´àªËhÿ—h@ùÈø7ñhùaTશ;”õu€RëW†RÕu€RëU†RH7@ù@ùù ´@ùèø7ñùTóª¦;”ëªW´è@ùø7ñèù¡Tàªóªœ;”ëª6´È@ùèø7ñÈù¡Tàªóª’;”몀ҀҀÒÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿ+ùö@ùŸýÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÿ+ùýÿàªáª€ÒÖ:”óªàõÿµõu€RkW†RºÿÿO:” 7´õu€RkW†Rû@ù´ÿÿ€ÒÿGùkK†Rû@ùàK@ù`rþµšóÿ€REãÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ùÿKù•w€Rëv†Rgýÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ù•w€R‹w†RWýÿ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿùöª€Ò€Òÿ?ù•w€R+x†RHýÿ€RHøÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©ÿ/ùÿù誀ҀÒÿ?ùÕx€R‹˜†R˜øÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùy€R+†Rˆøÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùUy€R¡†Rxøÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒÿGùÈÐm@ùè?ù»†RÕz€Rýÿ€R]çÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ù+¦†Ruy€RTøÿ€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€ÒÈÐm@ùè?ù‹¼†RÕz€Rãüÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ùK®†Rµy€R4øÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù誀ҀÒÿ?ù벆Rõy€R$øÿ€Ò€Òÿ©ÿ#ù‡Rðÿù?@ùÿùù?@ùˆ@ùÈø7ñˆùaTક:”AÞÿ—ù?ùà5ÈÐE@ù@ùhð­‘ɐ)©‘ñ*ˆšè@ùè+©Á!p‘a9”€Ò€Ò€Òÿ©ÿ#ù‡Rãïÿÿë©€Ò€Ò€Òÿÿ©ÿÿ©€Òÿÿ©ÿ#ùÿùöª€Ò€Òÿ?ùÿKùv€RK\†Rˆüÿ€R¼ùÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ù5v€RKa†Rö@ùvüÿÈÐ=@ù@ù¡ð!T"‘?9”Wöÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©ÿÿ©ÿù€Ò€Òÿ?ùÿ+ùuv€Rëf†Rö@ù_üÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿùöª€Ò€Òÿ?ùÿGùÕw€Rk†RNüÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Òëà†R5}€Rö@ù@üÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò+å†R•}€Rö@ù2üÿ€R„ûÿ€R’ûÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Ò+é†Rõ}€Rö@ù üÿ€R0ýÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿ/ùÿù€Òkî†R~€Rö@ùüÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùv€R«_†Rö@ùüÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÿGùÕv€Rkl†Rö@ùïûÿ€R:ýÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùõv€Rkq†Rö@ùÝûÿ€Ò€Ò€Òÿÿ©ÿÿ©ÿ©€Òÿÿ©ÿù€Ò€Òÿ?ùÕv€RËo†Rö@ùÍûÿÈÐ=@ù@ù¡ð!T"‘–8”Bþÿý{¿©ý‘ë T@ùÉÐ)Q@ù	ë¡T@ù¢´©€’	Š!ñT@¹qàŸý{hÀ_Ö €Rý{hÀ_Öý{hÀ_րRý{hÀ_ÖÉÐ)I@ù	ë TB€R9”ý{h•@ýAbž aàŸý{hÀ_ÖÿƒÑý{©ýC‘¡´@ùë€T
­@ùê´I	@ù?ñTJa‘K@ùë`TJ!‘)ñaÿÿT
@ù)@ùÊÐJA@ù@@ùè'©Á!Ø‘?8”€Rý{A©ÿƒ‘À_ÖÈÐ=@ù@ùÁ!ˆ‘D8”öÿÿéª €R©´)@ù?ë¡ÿÿTðÿÿÉÐ)@ù?	ëAüÿT €Rý{A©ÿƒ‘À_ÖÿÑöW©ôO©ý{©ýÑóª@ù9@ù´É
@ùÉ´ôª"´@@ùC´a@ùÂÐBp@ùÞ8”`µ2ÀÐp@ùÿÿµÁÐ!p@ùÂÐBp@ùÔ8” ´õªÈ
@ùàªáªâª?Öóª¨@ùˆø7ñ¨ùàTàªý{C©ôOB©öWA©ÿ‘À_Öàª9”àªý{C©ôOB©öWA©ÿ‘À_Ö
@ùÉÐ)A@ù @ùɐ)
 ‘ʐJ9 ‘ñI‰šè'©Á!X‘ß7”€àªý{C©ôOB©öWA©ÿ‘À_Ö@ù¥F©‰´"@ùB´@ֈ´
@ùH´,ôO¾©ý{©ýC‘@´óªÈÐu@ùëÉÐ)m@ùIúÉÐ)q@ùIú!TëôŸh@ùHø6àªý{A©ôO¨À_Öàª_8”ôªh@ùÿÿ7ñhù¡þÿTàªÏ8”àªý{A©ôO¨À_Ö€àªý{A©ôO¨À_ÖÿÑöW©ôO©ý{©ýÑóªôª(@ùÉÐ)Q@ù	ëTh
@ù=ñ(Ti@¹@’!¥›?±T—7”€µ€’àª"€R#€Rý{C©ôOB©öWA©ÿ‘rÜÿàªú7”`þÿ´õªÐ7”᪨@ùˆýÿ7ñ¨ù!ýÿTàªõª™8”áªäÿÿ	@’ýCÓ¡	›	±`T	ñ¡Ti"C)!yªßÿÿÈÐ1@ù@ùi7”`4h@ù
@ù\7”ÈÐ%@ù@ùóùÁ!\ ‘[7”€Òý{C©ôOB©öWA©ÿ‘À_Öi"C)(yªáËÁÿÿઠ7”᪽ÿÿÿCÑöW©ôO©ý{©ý‘ÈÐy@ù@ùèù@ù	­B9©86ôªóªéð!AùI@ùÉÐ)Y@ù	ë¡T€Ò#€RI8”õª ´è#‘!‘ÿÓ©àªâA²ìiÿ—óª¨@ùèø7ñ¨ùTàªH8”¨´?ÖõªÀýÿµ–bÿ—7”h@ù
@ùÉÐ)A@ù @ùèùÁ!!‘7”€Òè@ùÉÐ)y@ù)@ù?ëáTàªý{D©ôOC©öWB©ÿC‘À_Ö-8”Ÿ7”õª@úÿµäÿÿÿÃÑôO©ý{©ýƒ‘@ù­B9h6@ù=ñéT	@’ýCÓ¡	›	ñ T	±¡T	 C)(yªàËý{B©ôOA©ÿÑÀ_Ö	@¹@’ ¥›ý{B©ôOA©ÿÑÀ_Ö	 C) yªý{B©ôOA©ÿÑÀ_Öý{B©ôOA©ÿÑ(7ÅÜÿ—´óªÔÿÿ—h@ùÈüÿ7ñhùaüÿTàùàªñ7”à@ùý{B©ôOA©ÿÑÀ_ր’ý{B©ôOA©ÿÑÀ_ÖÿCÑöW©ôO©ý{©ý‘ôªÈÐy@ù@ùèùèÐ!9‘ÑDù@ùb@ùáªÁ7”@´õª@¹1BT¨¹èð½Bù¨@ùI@ù(´àª?Öóª¨@ù ´Èø7ñ¨ùaTàªÀ7”h@ùÉÐ)U@ù	ëàT€R€Òé#‘)!‘öÓ©!M(ËàªNiÿ—õª´È@ùÈø7ñÈùaT઩7”´h@ùÈø7ñhùaTડ7”Ȱu@ù¿ëɰ)m@ù¤Iúɰ)q@ù¤IúT¿ëóŸàª7”óªø7¨@ùˆø7ñ¨ù Ts4àªÆ”óª±aTj6”µàª²6”ôª€´è@ùɰ)y@ù)@ù?ë¡Tàªý{D©ôOC©öWB©ÿC‘À_Öàªq7”óüÿ5èÐAùˆ@ùI@ùÈ´àª?ÖõªÀ´.6”óªÀ´èÐ!‘@ùÕDùàª,6”ø7èйFù¨@ùA@ù´ ÐØ!‘:7” 5àªáªâªÀ?Öôª67””´¨@ùÈø7ñ¨ùaTàªF7”h@ùÈøÿ7ñhùaøÿTàª?7”Àÿÿ´€Rv˃R¨@ùÈø7ñ¨ùaTàª57”´h@ùÈø7ñhùaTàª-7” ð@4‘cÐc‘áªâªÖOÿ—€Ҧÿÿ	6” µàª2aÿ—õªàéÿµT€RöCRïÿÿએ6”óª¨@ù êÿµÈø7ñ¨ùaTàª7”T€R6ƒRáÿÿv@ù´u
@ùÈ@¹1cT¨@¹1ƒTh@ù¨ø6T€RÖăRh@ùˆùÿ6Ðÿÿ”€RȃRÍÿÿ€ÒT€RVŃRºÿÿȹ¨@¹1ÂýÿT¨¹h@ùÈø7ñhùaTàªé6”(€Róª.ÿÿàªZ6”õª€ïÿµ´€RöʃR³ÿÿ´€R6˃R¡ÿÿt€R¶ƃR­ÿÿàªáªâª<6”ôªàðÿµ·5”à´´€R–˃R’ÿÿÏ6”€RÿÿȰ=@ù@ù¡Ð!T"‘°5”ôÿÿÿÃÑôO©ý{©ýƒ‘@ù­B9h6@ù=ñéT	@’ýCÓ¡	›	ñ T	±¡T	 C)(yªàËý{B©ôOA©ÿÑÀ_Ö	@¹@’ ¥›ý{B©ôOA©ÿÑÀ_Ö	 C) yªý{B©ôOA©ÿÑÀ_Öý{B©ôOA©ÿÑÅ5bÛÿ—´óªÔÿÿ—h@ùÈüÿ7ñhùaüÿTàù઎6”à@ùý{B©ôOA©ÿÑÀ_ր’ý{B©ôOA©ÿÑÀ_ÖÿCÑüo©úg©ø_	©öW
©ôO©ý{©ý‘ôªóªúªüªõªöªÈ°y@ù@ù¨ƒø(@¹1ãTˆ@¹1	T €R’5” 	´øª÷ÐèîEù	@¹)1óùôùbT	¹èîEù	@ù(ùèÐ
Dù"5”`·´óªöùè°%Gùàªâªãª€Rl5”öªh@ùÈø7ñhùaTàªH6”¶´@ùÈø7ñùaTàª@6”áîEùàªfMÿ—óª ¶´h@¹1BTh¹h@ùˆø7ñhù`TóùÈ@ù¨ø7ñÈùATàª*6”¨¹ˆ@¹1B÷ÿTˆ¹ €RJ5” ÷ÿµ ð8‘cÐc‘¡x‹R"‚RÊNÿ—€ÒE	àª6”óùÈ@ù¨üÿ6÷°÷"9‘óÒDùà@ùb@ùáª÷5”@±´øª@¹1BT¹ùÐ!Aù@ùI@ùh±´àª?Öóª`±´@ùÈø7ñùaTàªö5”h@ùɰ)U@ù	렱T€R€ÒéC‘)!‘öW©!M(Ë઄gÿ—ôª´È@ùÈø7ñÈùaTàªß5”԰´h@ùˆø7ñhù T¨@ùhø7ñ¨ùTàªÒ5”àªÏ5”¨@ùèþÿ6õÒDùà@ù¢@ù᪳5”ô'ù ¯´óª@¹1BTh¹!Aùh@ùI@ù°´àª?Öøª°´h@ùÈø7ñhùaTલ5”@ùɰ)U@ù	ë°T€R€ÒéC‘)!‘ós©!M(Ëàª@gÿ—ùª´h@ùÈø7ñhùaTછ5”9¯´@ùˆø7ñù Tˆ@ùhø7ñˆùT઎5”ઋ5”ˆ@ùèþÿ6Õ°µr@ù_ë TI@ù(­B9¨7è°aGù?ë T*­@ùJ´I	@ù?ñTJa‘K@ùëTJ!‘)ñaÿÿTH@¹1¢TH¹#€ғ4”úªàµÿ#ùÿù€Ò€Ò€Ò€Òó…‹Rö‚Rüª€Òy	)@ù?ëÀT©ÿÿµÉ°)@ù	ë¡üÿT €R|4”ÀÞ´éªH@¹1BTH¹(
@ùùú	ªüЁSEùˆ@ùI@ù(¦´àª?Ööª ¦´àªÚ4”±&TóªÈ@ùÈø7ñÈùaTàª65”ñá¦TSEù(@ùI@ù¨©´àª?Ööª ©´àªÄ4”±ªTóªÈ@ùˆø7ñÈùÀeT
ñfTSEù(@ùI@ù²´àª?Ööª²´àª€Ò€R€RÞØÿ—øªúù ²´È@ùÈø7ñÈùaTàª	5”SEù(@ùI@ùè±´àª?Ööªà±´àª!€R€R€RÇØÿ—ûª@²´È@ùÈø7ñÈùaTàªó4”àªáªb€R}4”öª ±´@ùÈø7ñùaTàªæ4”h@ùÈø7ñhùaTàªß4”Û°{w@ùȰm@ùßë€Tßë@TßëTàª[4”óª€ù7È@ùÈø6
ßëóŸÈ@ùÈø7ñÈùaTàªÅ4”“Z5SEùˆ@ùI@ù(­´àª?Ööª ­´àª€Ò€R€R‚Øÿ—óª`­´È@ùÈø7ñÈùaTમ4”SEù(@ùI@ù(­´àª?Ööª ­´àª€Ò€R€RlØÿ—øª ­´È@ùÈø7ñÈùaTઘ4”àªáªb€R"4”öª­´h@ùÈø7ñhùaTઋ4”@ùÈø7ñùaT઄4”ßëÀTȰm@ùßë@TßëTàª4”óªÀùø7È@ùÈø6
ßëóŸÈ@ùÈø7ñÈùaTàªl4”S©5H@ù	9@ùi“´)@ù)“´èÐÉFùઠ?Ööª «´È@ùÛ°{O@ùë!“TÈ@ùñRTȹö#ùÈ@ùÈø7ñÈùaTàªN4”SEùˆ@ùI@ùˆ©´àª?Öøª€©´àª€Ò€R€RØÿ—öª ©´@ùÈø7ñùaTàª84”é#@ù(	@ù)@ù?ëÍT)ýA“	ëmTÉ@¹)1BTɹê#@ùI
@ù6y(ø‘H	ùà#@ùáªE3”1@ðTÈ@ùÈø7ñÈùaTàª4”èЭEùà@ù@ùI@ùh¥´?Öóª`¥´h@ùɰ)U@ù	ëá¥Tu@ù5§´v
@ù¨@¹1ãTÈ@¹1Th@ù(ø6
¨¹È@¹1BÿÿTȹh@ùÈø7ñhùaTàªô3”(€RóªéC‘)!‘ê#@ùõ+©!M(Ëઆeÿ—øª´¨@ùÈø7ñ¨ùaTàªá3”ؠ´h@ùÈø7ñhùaTàªÙ3”èÐEù@ùI@ù¨ ´àª?Öóª  ´@ùÈø7ñùaTàªÉ3”SEùˆ@ùI@ùè ´àª?Öøªà ´àª€Ò€R€R‡×ÿ—@¡´õª@ùÈø7ñùaTળ3”h@ùɐ)U@ù	ë!¡Tv@ù֢´x
@ùÈ@¹1ãT@¹1Th@ù(ø6
ȹ@¹1BÿÿT¹h@ùÈø7ñhùaTખ3”(€RóªéC‘)!‘ê°J©Fùö+©õ3ù!M(Ë2àª&eÿ—àù´È@ùÈø7ñÈùaTઁ3”¨@ùÈø7ñ¨ùaTàªz3”ö@ù֚´h@ùÈø7ñhùaTàªq3”è°Aù(@ùI@ù›´àª?Ö󪛴õÒDùà@ù¢@ùáªN3”`›´úª@¹1BTH¹÷@ùè°ÝAùH@ùI@ù蛴àª?Öõªà›´H@ùÈø7ñHùaTàªL3”h@ùɐ)U@ù	ëa›Tv@ùú@ùVž´w
@ùÈ@¹1ãTè@¹1Th@ù(ø6
ȹè@¹1BÿÿTè¹h@ùÈø7ñhùaTàª.3”(€Róª÷@ùéC‘)!‘öW©!M(ËàªÀdÿ—üª´È@ùÈø7ñÈùaTàª3”¨@ùÈø7ñ¨ùaTàª3”ö@ù\•´h@ùÈø7ñhùaTàª3”(@ùÈø7ñ(ùaTàª3”è@¹1BTè¹è@ùɐ)U@ù	ë`•T€R€ÒóªéC‘)!‘õs©!M(Ëઍdÿ—öª´¨@ùÈø7ñ¨ùaTàªè2”v”´h@ùÈø7ñhùaTàªà2”È@ùɐ)]@ù	ëA”TÈ
@ù
ñaÎTÈb‘ʂ‘ɢ‘X@ù@ù9@ùh@¹1ó@ùCT@¹1cT(@¹1ƒTÈ@ù¨ø6h¹@¹1âþÿT¹(@¹1ÂþÿT(¹È@ùÈø7ñÈùaTવ2”è°‰Bùàªb€R›Õÿ—ø7÷°õ°À4è°YFùàªb€R’Õÿ— “ø74谍Dùàªb€R‹Õÿ—`Ãø7ÀÃ5àöCù1Kÿ—@’´öªè°í@ù@ùI@ù’´àª?Öúªô'@ù’´È@ùÈø7ñÈùaTઉ2”àöCùKÿ—€‘´õªè°ÙAù@ùI@ùö@ùȑ´?Öóª´¨@ùÈø7ñ¨ùaTàªu2”è°‘@ù(@ùI@ùȑ´ôªàª?Öùª´àªáªÃ1” ’´õª(@ùÈø7ñ(ùaTàª_2”h@ùɐ)U@ù	ë’T€R€ÒéC‘)!‘ùW©ô3ù!M(Ë2àªìcÿ—öªàª1Eÿ—¨@ùÈø7ñ¨ùaTàªF2”ö´h@ùÈø7ñhùaTàª>2”@€Rî1”óªùªà´vùˆ@¹1BTˆ¹|ùú0”ô@ù`´öªè°Eùâªù0”€ ø7è°Aùàªâªó0”õ'@ù€ ø7àªáªâªø^ÿ—@Á´ôªH@ùÈø7ñHùaTàª2”h@ùÈø7ñhùaTàª2”È@ùú@ùÈø7ñÈùaTàª2”Ȑu@ùŸë $TȐm@ùŸë #TȐq@ùŸë #Tઁ1”@¿ø7@#4õ° àªó1”
ñ@šÿTè°¥Gùè°=Gù€ÒÄ^ÿ—€J´óªö^ÿ—h@ù÷@ùÈø7ñhùaTàªà1”ÿ#ù€Ò€Ò€Ò€Òÿù!™‹R‚R¸€ÒàöCùiJÿ— „´öªôù¡ÚAù@ùI@ùH„´àª?Öóªô'@ù@„´È@ùÈø7ñÈùaTàªÁ1”àöCùTJÿ—úª´è°EùH@ùI@ùö_C©àªȃ´?Öõª´H@ùÈø7ñHùaTબ1”ôª¨@ùɐ)U@ù	ëà‚T€Ò€Rú@ùéC‘)!‘ùc©!M(Ëàª8cÿ—öªàª}Dÿ—ւ´¨@ùÈø7ñ¨ùaTઑ1”è°QGùઓøÿ—@‚´ùªÈ@ùÈø7ñÈùaT઄1”àªáªÜ0”´õª(@ùÈø7ñ(ùaTàªx1”h@ùɐ)U@ù	ëà„T€R€ÒéC‘)!‘ê@ùö+©õ3ù!M(Ë2àªcÿ—ùªàªIDÿ—¨@ùÈø7ñ¨ùaTàª^1”¹ƒ´h@ùõ@ùÈø7ñhùaTàªU1”¨@ùÈø7ñ¨ùaTàªN1”àªá'@ùš0” ‚´öª(@ùÈø7ñ(ùaTàªB1”à#@ùe0”@´óªè°QEùÈ@ùM@ùùªàªâªè€´?Öà€ø7h@ùˆø7ñhù TÈ@¹1ô@ùãTóªè@ùȂø6‡ÿùÿùb‚RɋRàªõ'@ùÿùÿùb‚R¡ɋRàªÈ@ùˆø7ñÈù!T÷ªàªôªöª1”àªâªáªûª÷ªôªõªôªóªûªøªö_C©“´h@ùHø7ñhùáTàªóªùªû0”âªáªõ'ùó@ùÚ´H@ùˆø7ñHù!Tàªùªóªõªì0”âªáªóªùªú@ùóx´h@ùˆxø7ºÈu@ùŸëàŸÝÿ5è°YFùà@ùB€RÄÓÿ— ›ø7à›4è°]FùiIÿ—€´óªè°UFù@ùI@ù¨ž´àª?Ööª ž´h@ùÈø7ñhùaTàªÂ0”è°IGù઀Җ]ÿ—óªà´È@ùÈø7ñÈùaT઴0”h@ùõ°ˆÛÿ7ñhù!ÛÿTબ0”Öþÿ઩0”È@¹1ô@ùbïÿTȹóªè@ùèqø6õ'@ù“ÿÿ©ÿ©ÿù€Ò€Ò€Òÿÿ©ÿ©ÿù€Ò€Ò€Ò€Ò€ÒÿùAy‹R"‚Rôª$ÿÿ©€Òÿÿ©€Ò€Òÿÿ©"‚R¡y‹Rhÿÿg/”µàªZÿ—øªàNÿµ€Òÿ#ùÿù€Һàªë/”óªàNÿµÿ©ÿ#ùÿù€Ò€Ò€Ò€Ò€Ò€Òÿù¡{‹R‚‚Rôªþv@ù–•´t
@ùÈ@¹1cTˆ@¹1ƒTh@ù¨ø6±ÿ©ÿ#ù€Ò€Ò€Ò€ÒÿùA~‹R‚‚R÷@ùKÿÿ3/” µàª\Zÿ—óªQÿµ€Òÿ#ùÿù€Ò€Ò€Ò€Ò€‹R¶‚RYલ/”øª@Pÿµÿ©ÿ#ù€Ò€Òõª€Ò€ÒÿùA€‹R¢‚R÷@ù+ÿÿ@ùóŽ´@ùh@¹1cT¨@¹1ƒT@ù¨ø6‰ÿ©ÿ#ùÿù€Ò€Ò€Ò€Ò€ÒÿùႋR¢‚R¯àªŠ/”öª Zÿµÿ#ù€Ò€Ò€Òÿù¡‹R¢
‚R÷@ùêÿë©€Ò€Òÿÿ©€Ò€Ò€Òÿ#ù¢
‚RᏋRhè°¥Gùè°9Gù€ÒÑ\ÿ—€ˆ´óª]ÿ—h@ù÷@ùÈø7ñhùaTàªí/”ÿ#ù€Ò€Ò€Ò€ÒÿùᑋRÂ
‚RÅàªX/”öª Vÿµÿ#ù€Ò€Ò€Òÿù!”‹RWÿë©€Ò€Òÿÿ©€Ò€Ò€Òÿ#ùâ
‚Ra”‹R8
@ùɐ)A@ù @ùèù¡Ð!p‘£.”ÿ#ù€ҽàªd/”à#ù`mÿµÿù€Ò€Òÿÿ©€Ò€Òÿ#ù‚Ra¡‹Rȹˆ@¹1ÂêÿTˆ¹h@ùÈø7ñhùaT઩/”(€Róª¸ùÿh¹¨@¹1ÂïÿT¨¹@ùÈø7ñùaTચ/”(€Røªíùÿÿ#ù€Ò€Ò€Ò€Òÿù¡˜‹R‚R÷@ùnàª/”öª@Nÿµÿ#ù€Ò€Ò€Òÿùa•‹Râ
‚R÷@ùaÿù€Ò€Òÿÿ©€Òÿ#ùâ
‚R¡•‹Ráàªë.”öª`Nÿµÿ#ùÿÿ©€Ò€Ò€Ò€Ò€Òÿù–‹Rÿ#ùÿÿ©€Ò€Ò€ÒÿùA–‹Rÿ#ùÿÿ©€Ò€Ò€Òÿù¡–‹Râ
‚R—àªÌ.”öª Sÿµÿ#ù€Ò€Ò€Òÿùa›‹R"‚R÷@ù,ÿù€Òÿÿ©€Ò€Òÿ#ù"‚R¡›‹R¬àª¶.”öª Sÿµÿ#ù€Ò€Òõª€Òÿù€Òÿùœ‹R"‚Ršÿù€Òÿÿ©€Òÿ#ù"‚RAœ‹R•ÿ#ùÿÿ©€Ò€Ò€Òÿù¡œ‹R"‚Ry营GùèAGù€Òõ[ÿ—@n´óª'\ÿ—h@ù÷@ùÈø7ñhùaTàª/”ÿ#ù€Ò€Ò€Ò€ÒÿùឋRB‚Réÿ#ù€Ò€Ò€Òÿù!¡‹R‚R÷@ùààªs.”øªÀVÿµ€Ò€Ò€Òÿù£‹R"‚R÷@ùÔÿÿ©€Ò€Ò€Ò€ÒÿùA£‹R"‚R)_.”óªàZÿµ€Ò€Ò€Ò€ÒÿùᤋRB‚R÷@ù¿€Ò€Rêúÿ€Ò€Òõª€Òÿù€Òÿùa§‹R8€RßúÿàªD.”óª _ÿµÿÿ©€Ò€Ò€Ò€Ò€Ò€Òÿù᧋RB‚Rüª€ÒXàª3.”øª`_ÿµ€Ò€Òõª€Òÿù€ÒÿùA¨‹Rÿÿ©€Ò€Ò€Ò€Òÿù¨‹RB‚Rüª€Òûª?€R€Òûÿ€Ò€Òõª€Òÿù€ÒÿùA«‹RB‚Rüª÷@ù”ýÿ€Rûÿàª	.”óª@eÿµ€Ò€Ò€Òÿù­‹Rb‚R÷@ùú@ùim-”à\µàª–Xÿ—úª÷@ùÀdÿµ€Ò€Òõª€ÒÿùÿùA­‹Ràªí-”õª`dÿµ€Ò€Òõª€Òÿùÿù­‹R
€Ò€Rú@ù?ûÿ€Ò€Òõª€Òÿù€ÒÿùA°‹Rb‚Rüª[ýÿ€Òÿ#ù€Ò€Ò€Ò€ÒÿùኋR"
‚R÷@ù4€R'ûÿõ@ùUW´ó
@ù¨@¹1#7Th@¹1C7Tè@ùh7ø6¿€Ò€Òõª€Òÿù€Òÿùa´‹R‚‚Rö@ù7ýÿë€9Tવ-”@T´õªÈ@ùÈø7ñÈùaTàª-.”¨@ùq@ùàª`?ÖûªÀS´àª`?ÖøªT´àª`?Ö@T´ùªàª`?Öa€R‘Ñÿ—`Aø7¨@ùHBø7öªñ¨ùó@ùákÿT\ûÿ€ÒS½‹RÖ‚R*€ғ¾‹Rö‚R%€ғËRv‚R!àªz-”úªô'@ù@nÿµÿù€Òÿùb‚RÁËRYôª€Òÿùb‚R!ċRö_C©H@ù ÿ6
ýÿg-”óª€nÿµÿù€ÒÿùaċRb‚Ràª÷ªãªøªùª€Ò|ôªàªV-”ùª€nÿµÿùÿùÁċRb‚Rõ'@ù÷@ùÔüÿÿù€ÒÿùŋRb‚Ràª÷ªãªøªûªùªcy@ùyM´v
@ù(@¹1c0TÈ@¹1ƒ0Th@ù¨0ø6‰ÿùÿùÁNjR
ÿùÿùb‚RAȋR”üÿôªÿùÿùAɋRb‚Rõ'@ùó֋R–‚RÇઠ-”óªô'@ù|ÿµÿù€҂‚R!׋Ràªõª†üÿõªôªÿù׋R‚‚Rö_C©–üÿ-”õª€|ÿµõªôªÿùÁ׋R‚‚Rüÿ¹@ùú@ù9F´¶
@ù(@¹1Ã*TÈ@¹1ã*T¨@ù+ø6\ÿùaڋR‚‚Ràª÷ªãªøªÿù€҂‚RáڋRàªõ'@ùùªYüÿ€ÒÿùAۋR‚‚Ràª÷ªãªøªûª€Òô'@ù@ùø7úªñù¡Tùªàªóªõªøª\-”ãªàªâªáªúªùªóªèªøªüªùªõª–†ÿµCüÿv@ù6>´w
@ùÈ@¹1c$Tè@¹1ƒ$Th@ù¨$ø6)€ÒÿùދR‚‚Rõ'@ùö@ù7üÿÓߋR¶‚RùùöùSá‹RÖ‚Rùªô@ùLÀ,”`ÿ6á‹R‚Rh@ùHø7ñhùáTàªóªõª#-”âªáªùª °8‘cc‘ËEÿ—€Òüªõ'@ùùªô@ù7´è@ùhŽÿ7ñèùõ'@ùaTàª
-”´H@ùÈø7ñHùaTàª-”à#@ùà´@ù¨ø7ñùATý,”´È@ùÈø7ñÈùaTàªõ,”´h@ùÈø7ñhùaTàªí,”´@ùÈø7ñùaTàªå,”´(@ùÈø7ñ(ùaTàªÝ,”´ˆ@ùÈø7ñˆùaTàªÕ,”´¨@ùÈø7ñ¨ùaTàªÍ,”´ˆ@ùÈø7ñˆùaTàªÅ,”¨ƒZø©ð)y@ù)@ù?ëTàªý{L©ôOK©öWJ©ø_I©úgH©üoG©ÿC‘À_Öÿ#ùÿÿ©€Ò€Ò€Ò€Ò€Òÿù—‹Râ
‚RWÿÿÿ#ùÿÿ©€Ò€Ò€Ò€Ò€Òÿù‹R"‚RLÿÿÿù€Ò€Òÿÿ©€Ò€Ò€Ò"‚R¡£‹Rüª€Òõªyûÿ¨¹h@¹1ÉÿTh¹è@ùÈø7ñèùaTઇ,”(€RŽùÿ€ÒS¿‹Rö‚Rœè¥GùèEGù€ÒTYÿ—@$´õª†Yÿ—¨@ùHø7€ÒSKR‚Rñ¨ùá
Tàªn,”lÈ
@ù
ñ¡TÈ@ù
!‘	A‘’ùÿñ+T¨ðE@ù@ùh€Rèù¡°!Ì‘Èø·©ð)E@ù @ù©°)©‘jJ­‘ñI‰šè'©¡°!p‘++”ÿù€Ò€Òÿù€Ò€Ò€҂‚R¡µ‹Rõª)ûÿ(¹È@¹1ÂÏÿTȹh@ùÈø7ñhùaTàª7,”(€RóªÝùÿ(¹È@¹1bÕÿTȹ¨@ùÈø7ñ¨ùaTàª(,”(€Rõªƒúÿȹè@¹1ÂÛÿTè¹h@ùÈø7ñhùaTàª,”(€Róª÷@ù¥úÿÿùÿùb‚RÁɋRõúÿõù€Ò€Ò€Òÿù€Ò!º‹R‚‚R þÿó@ùQùÿ€ÒSKR‚R÷@ùú@ù³ˋR–‚R͋R¶‚R营GùèMGù€ÒÌXÿ— ´õªþXÿ—¨@ùø7SӋR6‚Rñ¨ùýÿTyÿÿS΋RÖ‚R÷@ù °8‘cc‘áªâªŽDÿ—€Òö@ùè@ùÙÿ69ûÿàªM+”öª aÿµôùôª΋R‚Rö_C©h@ù¨Ôÿ6­þÿôùÿù€Ò‚RáϋR¬úÿSӋR6‚RÃÿÿÆ+”€Òÿ#ùÿù€Ò€Ò€Ò€Òs{‹R–‚Rõ'ùÓÿÿ€RÈõÿ€R
öÿÿ#ù€Ò€Ò€Ò€Òÿùa‘‹RÂ
‚R÷@ù‹þÿÿ#ù€Ò€Ò€Ò€Òÿùaž‹RB‚R÷@ùþÿ€Ò€Òõª€Òÿù€ÒÿùA­‹Rb‚Rýüÿ€Rœøÿÿù€Ò€Òÿù€Ò€҂‚RḋRõªpúÿ઀Ҁҳsª‘
àªSðs®‘5€Rળsª‘U€R@ù¨ø7ñùATu+”!Ïÿ—5¨ÐE@ù@ùõO©¡!p‘I*”€Ò€Ò€Òÿù€Ò€Òÿù€҂‚R!»‹Rô'@ù8¿ÿµUúÿ€Rùÿ€R¹ùÿ€RCÿÿ€ÒÓRTÿÿÓҋR6‚RRÿÿÿCÑüo©úg©ø_
©öW©ôO©ý{©ý‘öªùª¨Ðy@ù@ù¨ø¿ƒøÿÿ©ÿÿ©ÿÿ©àªÙ*”±ÀTúªÈ@ùØÐ	WGù¼Мs@ù	ë T­@ù+´j	@ù_ñ«	Tka‘l@ùŸ	ë€Tk!‘JñaÿÿTE€Ò€ÒÓȌR´=‚Rbꪪ´J@ù_	ë¡ÿÿTªÐJ@ù?
ëÁTÉð!BùI@ù(•´àª?Öõª ƒø •´ÈðmFù¨@ùI@ù(•´àª?ÖôªàCù •´¨@ùÈø7ñ¨ùaTàªÿ*”¨Ðu@ù¿ƒøŸë©Ð)m@ù„Iú„\úTŸëóŸàªy*”󪀟ø7ˆ@ùÈø7ñˆùaTàªè*”ÿCùӑ4È@ù	WGù	ëÀTÈ@ù	WGù	뀞T­@ùk“´j	@ù_ñTka‘l@ùŸ	ë`Tk!‘JñaÿÿTÕе"9‘´fAù @ù‚@ù᪶*”€•´óª@¹1BTh¹ó;ùàªáªF*”1`•Tôªh@ùˆø7ñhù`Tÿ;ùô25³:Gù @ùb@ù᪝*”´ôª@¹1BTˆ¹ô;ùÈðUFùˆ@ùI@ùè´àª?Ö÷ªàCùà´ˆ@ùÈø7ñˆùaTચ*”`€RJ*”à;ù´øªÉð(yFù
@¹J1bT
¹(yFùùÀ@ùÈðCù@ùI@ùÈ´?Öôªà?ùÀ´ˆ@ù©Ð)a@ù	ëÁTˆ@¹1BTˆ¹´ƒøõªˆ@ùÈø7ñˆùaTàªq*”ÿ?ù¨"@¹¨07Séý¿êÿŸR	qI‰ê€RqS‰uÈð©Cù(I@ù(‡´àª?ÖôªàCù ‡´Èð¡FùŸëàTˆ@ù©Ð)Q@ù	ëîTˆ
@ù©€’	Š!ñáTˆ@¹qóŸ3€R€Rˆ@ùÈø7ñˆùaTàª@*”ÿCù³ëÿ4ÈðuEùÈ@ùI@ù(í´àª?ÖôªàCù í´¨Ðu@ùŸëÀT©Ð)m@ùŸ	ë@TŸëTર)”óªàýø7ˆ@ùÈø6
ŸëóŸˆ@ùÈø7ñˆùaTàª*”ÿCùóæÿ4ßë`?TWGù¨
´É@ù?ëà>T+­@ùë´j	@ù_ñTka‘l@ùŸëTk!‘JñaÿÿT)
@ù
@ùªÐJA@ù@@ùé#©¡!Ø‘Ù(”€Ò€ҳӌR?‚R6àªõ)”ÿ;ùt5<ÿÿó€R¨
@ùùÊðIDù+@¹k1ù'ùbT+¹IDùY‘	ùᪿ)”€v´ùªˆ€RI€RB@q(1ˆq%ŸhQq3ˆèª	 @¹÷+ùi(75@ù*£‘+ã‘?ruŠš÷ª	ð’<%Ț@ùT@ù´ŸëdqTI @¹(SI(7A@ùk T઀ҀÒ䪸)”
J ‘Kà‘?raŠšk¡þÿT‚"ӚàªÞ)”@ùZ@ùz´ˆËënTI @¹(SI(7A@ùk Tàªáª€Ò䪝)”J ‘Kà‘?raŠšk¡þÿTˆ"Ӛ ‹B#ӚÂ)”T‹@ùD@ùúªä´ˆËëKjTI @¹(S©(7A@ùkúªTàªáª€Ò)”¹ƒø@ùø6J ‘Kà‘?raŠškúªAþÿTˆ"Ӛ ‹‚ Ӛ )”¹ƒø@ùÈø7ñùaTàªk)”@€R)”à;ù¼Мs@ù÷+@ù`ä´ôªùÈð½Gù	@¹)1BT	¹ˆù"(” ƒøù'@ù`ã´õªÈð!,‘@ùAù(”`Eø7è@ùA@ùSö´€ðØ!‘/)”@÷5àªáªâª`?Öøª+)”8ö´ø?ùè@ùÈø7ñèùaTàª:)”ÿCùˆ@ùÈø7ñˆùaTàª2)”ÿ;ù¨@ùÈø7ñ¨ùaTàª*)”¿ƒø@ùÈø7ñùaTàª")”ÿ?ù3w@ùÈðýAùt@ùàªáª)”÷ª a´è@ù‰@ù´àªáªâª?Ö÷ªÀµè@¹1BTè¹3w@ùÈðñAùu@ùàªáªý(”€_´ôª@ù	‰@ùé´àªáªâª ?֠ƒø_´ôª@ù©Ð)U@ù	ëT•@ùõ;ùU_´“
@ù¨@¹1Th@¹1#T³ƒøˆ@ùHø6¨¹h@¹1"ÿÿTh¹³ƒøˆ@ùÈø7ñˆùaTàª×(”"€Rôª¨ÃÑ!‘µ9©
ËàªkZÿ—øªà?ù´¨@ùÈø7ñ¨ùaTàªÅ(”ÿ;ù¸X´ˆ@ùÈø7ñˆùaT઼(”¿ƒø@ùÈø7ñùaT઴(”ª(”à#ù4@ù@ùñ\úT@ùhÿÿµ€Ò€Ò€Òÿ©à©SÑñjT?ø3ù@¹1BT¹@ùû7ùh@¹1BTh¹àª'”à©SÑñËTèªùª‘àªáª;”úªàªáª€R€RPÌÿ—ôª`3´àªáª€R€RIÌÿ—õªà2´àªáªâª2	”€2ø7ˆ@ùÈø7ñˆùaTàªp(”àªáªâª&	”@1ø7¨@ùˆø7ñ¨ù`)T:ñ!*Tÿ?ù¿ƒø´h@ùÈø7ñhùaTàªZ(”ÿ7ù´@ùÈø7ñùaTàªQ(”ÿ3ù¼Мs@ùà+@ùà´@ù¨ø7ñùATF(”ÿ/ùW´ÈðåFù઀ÒUÿ—óªà/ùè@ùÈø7ñèùaTàª6(”ó­´h@ùÈø7ñhùaTàª.(”€Òÿ/ùˆ@¹1“Ta‰@¹)1BT‰¹´ƒø©Ð)U@ù	ëÀåÿT€Ò€ÒHÿÿÈ@ùÉ
@ùé+ùÉð!ÙEùI@ùˆÝ´àª?ÖôªàCù€Ý´àª€Ò€R€RÖËÿ— ƒø@´óªˆ@ùÈø7ñˆùaTàª(”ÿCùàªÙÍÿ—à#ù±aTà&”`×µh@ùÈø7ñhùaTàªò'”×ðáâAùÈ@ùI@ùh¿´àª?Öôª ƒø`¿´ÈðÉBùˆ@ùI@ùh¿´àª?ÖõªàCù`¿´ù'ùˆ@ùÈø7ñˆùaTàªÖ'”¿ƒøàª®Íÿ—ùª±aTµ&” Òµ¨@ùÈø7ñ¨ùaTàªÇ'”Õе"9‘³ÒDù @ùb@ù᪫'” ¼´ôª@¹1BTˆ¹ôCùúùÈÐåAùˆ@ùI@ùè»´àª?Öúª ƒøà»´ˆ@ùÈø7ñˆùaTધ'”àªÖ&”àCù »´óª €RR'”à?ù »´üªùc&”àCù »´ûª³ÒDù @ùb@ùáª~'”ິöª@¹1BTȹÈÐ¥BùÈ@ùI@ùˆº´àª?Öóªà;ù€º´È@ùÈø7ñÈùaTàª|'”áâAùàªâªF&”à
ø7h@ùÈø7ñhùaTàªp'”H@ùA@ù“¾´€ÐØ!‘O'”`¿5àªáªâª`?Ö÷ªK'”W¾´÷;ùH@ùÈø7ñHùaTàªZ'”¿ƒøˆ@ùÈø7ñˆùaTàªR'”ÿ?ùh@ùÈø7ñhùaTàªJ'”ÿCùÿ;ù¼°œs@ùÿëÈTWGù¨¿´é@ù?ë`ÇT+­@ùëÅ´j	@ù_ñTka‘l@ùŸë@ÆTk!‘JñaÿÿT)
@ù
@ùª°JA@ù@@ùé#©ð!Ø‘&”€Òs݌R@‚Re€Ò€Òó.R”E‚R`€Ò€ÒSیRô?‚R[àª'”:ñ¡T´þÿZÑ_ñ-ÖÿTàªáªÁ”óªàªáª€R€RÖÊÿ—ôª ´àªáª€R€RÏÊÿ—õª ´àªáªâª¸”@ø7ˆ@ùÈø7ñˆùaTàªö&”àªáªâª¬”ø7¨@ù(ûÿ7ñ¨ùÁúÿTàªê&”Óÿÿ€Òö:R6;Rv;R€Ҷ;R¼°œs@ù€ÒÀ9ÿ—ÿ;ùઽ9ÿ—¿ƒøàC@ùº9ÿ—ÿCùષ9ÿ—ÿ?ù€ð0:‘CÐc‘áª"F‚R{?ÿ—¡ãÑâã‘ãÑà#@ùÌÿ— ø7¶ƒXøôWG©õÓ©öù`€Rt&”àCù€à´óªàªáª€ґSÿ—úªè@ùÈø7ñèùaTર&”h@ùÈø7ñhùaT઩&”ÿCùÞ´¨°u@ù_ë T©°)m@ù_	ë T_ëàTàª#&”óª³>R!_ëóŸH@ùÈø7ñHùaT઎&”Óø7óÚ4àªn9ÿ—¿ƒøàªk9ÿ—ÿ?ùàªh9ÿ—ÿ;ùè#@ù5@ùáªâªã+@ù3Ìÿ—€҈@¹1]T±S@Rè#@ù5@ùáªâªã+@ù'Ìÿ—€Ò€ÒÔE‚R¬àªá%”õª ƒø kÿµ€Ò€Ò4>‚RÓʌRªàª×%”ôªàCù kÿµ€Ò€ÒˌR4>‚R˜ÈÐ¥GùÈÐ]Gù€Ò,Sÿ—àCùÀÖ´óª]Sÿ—h@ùÈø7ñhùaTàªH&”€Ò€ÒÿCù³͌RT>‚RêªJ
´J@ù_	ë¡ÿÿTR¨°1@ù@ùð!Ð:‘"%”(@ùÈø7ñ(ùaTàª/&”€Ò€ҿƒøôD‚RS+Rpઝ%”ôªàCù yÿµ€Ò€ҳЌR”>‚R^%”àеàª-Pÿ—óªà;ù jÿµ€Ò€҂€Ò€Òs%R”D‚RO¨°@ù@ùáªô$”€Ò3RÔE‚RF¨°@ù@ùáªë$”¿ƒøS3RÓ5Rè@ùˆñÿ7ñèù!ñÿTàª÷%”†ÿÿ€Ò ýÿ€Ò€ÒsˌR4>‚R.ª°J@ù?
ëAcÿTÉÐ!uEùI@ù(]´àª?Öôªà?ù ]´ÈНFùŸë Tˆ@ù©°)Q@ù	ëa]Tˆ@¹3€Rˆ@ùˆø7ñˆùàT34ˆ@¹1bHTˆ¹AàªÈ%”3ÿÿ5ÈЩCùÈ@ùI@ù(`´àª?Öôªà?ù `´ÈСFùŸëàTˆ@ù©°)Q@ù	ëápTˆ
@ù©€’	Š!ñáTˆ@¹qóŸ3€R€Rˆ@ùÈø7ñˆùaTડ%”ÿ?ù“4ÈÐáAùÈ@ùI@ùˆo´àª?Öõªà?ù€o´ÈÐFù¨@ùI@ùˆo´àª?ÖôªàCù€o´¨@ùÈø7ñ¨ùaT઄%”ذ#9‘ÓDù@ùb@ùáªh%”@n´õª@¹1BT¨¹õ?ùÈÐDù¨@ùI@ù(n´àª?Ö÷ªà;ù n´¨@ùÈø7ñ¨ùaTàªe%”ÿ?ùˆ@ùÈø7ñˆùaTàª]%”ÿCùè@ùÈø7ñèùaTàªU%”Ÿë
T;Gù@ùb@ùáª9%”~´õª@¹1BT¨¹õ;ùÈÐUFù¨@ùI@ùè}´àª?ÖôªàCùà}´¨@ùÈø7ñ¨ùaTàª6%”ý#”à;ù@}´õªÈÐ!,‘@ùAùû#”à,ø7ÈÐaGùˆ@ùA@ù´€ÐØ!‘	%”à5àªáªâªà?Ö÷ª%”׀´÷?ùˆ@ùÈø7ñˆùaTàª%”ÿCù¨@ùÈø7ñ¨ùaTàª%”è@ùÈø7ñèùaTàª%”ÿ?ùȰ!9‘ÑDù@ùb@ùáªè$” H´ôª@¹1BTˆ¹ô;ùÈÐéAùˆ@ùI@ù¨H´àª?ÖøªàCù H´ˆ@ùÈø7ñˆùaTàªå$”ÈÐeGùÈ@ù¥F©‰=´)@ùI=´àª ?Öôªà;ùÀF´ûª@ùº°ZW@ùë€FT€Ò€R©ÃÑ)!‘µS9©!M(ËàªfVÿ—÷ªà?ù´¨@ùÈø7ñ¨ùaTàªÀ$”¿ƒøˆ@ùÈø7ñˆùaTસ$”ÿ;ù·D´@ùÈø7ñùaTય$”ÿÿ©3w@ùÈÐýAùt@ùàªáª¡$” C´øª@ù‰@ù´àªáªâª?ÖøªÀµ@¹1BT¹üª3w@ùÈÐñAùu@ùàªáª‰$”@A´ôª@ù	‰@ù‰´àªáªâª ?ÖàCùÀ@´ôª@ùë!T•@ùõ;ùUA´“
@ù¨@¹1Th@¹1#TóCùˆ@ùHø6¨¹h@¹1"ÿÿTh¹óCùˆ@ùÈø7ñˆùaTàªe$”"€Rôª¨ÃÑ!‘µ9©
ËàªùUÿ—ùªà?ù´¨@ùÈø7ñ¨ùaTàªS$”ÿ;ù¹:´ˆ@ùÈø7ñˆùaTàªJ$”ÿCù(@ùÈø7ñ(ùaTàªB$”8$”ùª4@ùác‘⃑㣑SÉÿ—uѿñKTšƒ‘»°{k@ù	àªáªâªê” ø7µѿñÍTàªáªÙ”¿ë ÿÿTüªàªáª€R€RìÇÿ—ôª ´àªáªâª²#”`ø7ˆ@ùÈø7ñˆùaTàª$”àªáª€R€RÙÇÿ—ôª´àªáªâªÂ”Àø7ˆ@ùHúÿ7ñˆùáùÿTàª$”Ìÿÿÿ?ùà/@ùà6ÿ—ÿ/ùà3@ùÝ6ÿ—ÿ3ùà7@ùÚ6ÿ—ÿ7ù´ÈÐåFù઀ÒÈPÿ—óªà7ù@ù¼°œs@ùÈø7ñùaTàªä#”G´h@ùÈø7ñhùaTàªÜ#”ÿ7ùˆ@¹1âT‰@¹)1BT‰¹ôCùë êÿT€Ò€Òkÿÿ¼°œs@ùˆ@¹1âTˆ¹5€Ò€ÒӍRôB‚R ƒXøà´@ù¨ø7ñùATº#”àC@ùà´@ù¨ø7ñùAT²#”à?@ùà´@ù¨ø7ñùATª#”´È@ùÈø7ñÈùaTઢ#”à;@ùà´@ù¨ø7ñùATš#”€Ð0:‘C°c‘áªâªC<ÿ—€Ò´è@ùÈø7ñèùaTઊ#”¨Zø©)y@ù)@ù?ë{Tàªý{P©ôOO©öWN©ø_M©úgL©üoK©ÿC‘À_Ö5RöC‚R
uRöC‚R
µRD‚RõRD‚R€Ò5R6D‚R¼œs@ù€ÒL6ÿ—ÿ;ù ƒXøI6ÿ—¿ƒø€ÒF6ÿ—ÿCùàªC6ÿ—ÿ?ù€Ð0:‘C°c‘áªâª<ÿ—áã‘â‘ãÑ઎Èÿ— ø7ö×G©ô;@ùõÓ©öù`€R#” ƒø s´óªàªáª€ÒPÿ—úª@ùÈø7ñùaTàª<#”h@ùÈø7ñhùaTàª5#”¿ƒø:q´¨u@ù_ë T©)m@ù_	ë T_ëàTય"”óª3R_ëóŸH@ùÈø7ñHùaTàª#”sø73n4àªú5ÿ—ÿ?ùàª÷5ÿ—ÿCùàªô5ÿ—ÿ;ùá‹E©ã7@ù 7@ùÁÈÿ—ˆ@¹1âîÿT@ÿÿӍRá‹E©ã7@ù 7@ù¸Èÿ—€ÒTC‚R>ÿÿàªs"”ôªà?ù £ÿµ€Ò€ҳöŒRTA‚R4ÿÿÈj´
@ùˆj´àª+êÿ—þÿ©)I@ù	ë TàªB€Rv"”øéÿ—óª ¢ÿ6€Ò€ÒóöŒRTA‚Rÿÿ©)I@ù	ë€'TàªB€Rg"”ééÿ—óªÿ6€Ò€ÒóЌR”>‚RÿÿàªE"”ôªàCù ÿµ€Ò€ÒÓьR”>‚Rÿÿ€Ò€ғDRÔE‚Rÿÿàª6"”ôªà?ù  ÿµ€Ò€ÒÓúŒRÔA‚R÷þÿ!”ÀdµàªÆLÿ—ôªà;ù€·ÿµ€Ò€ҳRàª!"”øªàCù ·ÿµ€Ò€ÒóR€Ò€ÒSR@ùµƒø•¹ÿ´@ù¨@¹1"Th@¹1#"TóCù@ùH"ø6€ÒóR4C‚RÍþÿ¨@ù@ùáªr!”€ÒÓ	RTC‚RÄþÿ¨@ù@ùáªi!”ÿCù
R“R@ù(ïÿ7ñùÁîÿTàªu"”sÿÿ€ÒþÿW!” \µàª€Lÿ—ôªà;ù øþµ€Ò€ÒààªÜ!”÷ªàCù`øþµ€Ò3'RÔD‚Ržþÿ€Ò€ғ(RôD‚R™þÿÏ!”ôªà?ù€úþµ€Ò€ғ)RôD‚Rþÿ©)Q@ù	ëYT(-@ùàª?Öõª ƒøúþµ€Ò€ÒôD‚RÓ)R‰þÿ€Ò€ҳ,RÔD‚R|þÿ€Ò€ҔE‚R³.Rþÿ€Ò€ÒҌR”>‚Rrþÿ€
@ýábž aóŸZüÿ©)I@ù	ëTàªB€Rµ!”7éÿ—󪠏ÿ6€Ò€ÒûŒRÔA‚R^þÿઓ!”õªà?ùÿµ€Ò€ÒóûŒRÔA‚RTþÿઉ!”ôªàCùÿµ€Ò€Ò3üŒRÔA‚RJþÿð ”RµàªLÿ—õªà?ùà‘ÿµ€Ò€ҋàªu!”÷ªà;ù ’ÿµ€ÒÓüŒRÔA‚R7þÿ€Ò€Ò4?‚R3ՌR:þÿàªg!”ôª ƒøà@ÿµ€Ò€ÒT?‚Ró֌R0þÿàª]!”õªàCùà@ÿµ€Ò€Ò3׌RT?‚RþÿÄ ”@MµàªíKÿ—ôªàCùDÿµ€Ò€ÒeàªI!”úª ƒø`Dÿµ€Ò€Òô?‚R3ٌRþÿ€Ò€ғٌRô?‚Rþÿ€Ò€ÒÓٌRô?‚Rþÿ€Ò€ÒsڌRô?‚Rûýÿ¡ ” IµàªÊKÿ—öª@EÿµIàª)!”óªà;ùÀEÿµ€ÒóڌRô?‚Rëýÿ€Ò!RTC‚Rçýÿ¨=@ù@ùÐ!ˆ‘Ž ”¦÷ÿ€
@ý(€Rbž aQ÷ÿàªáªâªÿ ”øªà?ù 
ÿµ€Ò€Òw ”E´€Ò€Òÿ?ù0RÔD‚RÉýÿ¨¹h@¹1"ÞÿTh¹óCù@ùÈø7ñùaTàª}!”(€RøªªüÿàªáªâªÝ ”÷ªà;ù`Bÿµ€ÒV ”ÀA´€Ò€Òÿ;ù“یRô?‚R¨ýÿê	ªj´J@ù_ë¡ÿÿT3€
@ý(€Rbž a²ûÿC ” AµàªlKÿ—õªà;ù ‚ÿµ€Ò€ÒàªÈ ”ôªàCù`‚ÿµ€Ò€Ò3ÿŒRôA‚R‰ýÿ€Ò€ғR„ýÿ¨=@ù@ùÐ!ˆ‘, ”úÿ€Ò€ғՌR4?‚Ryýÿ€Ò€ғ׌RT?‚RtýÿªJ@ù
ë¡åþTè	ªÉ
@ùé+ùɰ!ÙEùI@ùÈ"ÿµàªž ”ôªàCùÀ"ÿµ€Ò€ÒóԌR4?‚R_ýÿàªáªâªƒ ”÷ªà?ùàÿµ€Òü”9´€Ò€Òÿ?ùóRôA‚RNýÿê	ªª´J@ù_ë¡ÿÿTªJ@ù
ëa:ÿTú
@ùè'@ùu@ùȰýAùt@ùàªáªö ”À!´øª@ù‰@ù´àªáªâª?ÖøªÀµ@¹1BT¹è'@ùu@ùȰñAùu@ùàªáªÞ ”à´ôª@ù	‰@ùI´àªáªâª ?ÖàCù`´ôª@ù‰@¹)1BT‰¹ôCù©)U@ù	ë!T•@ùõ?ù•´“
@ù¨@¹1Th@¹1#TóCùˆ@ùHø6¨¹h@¹1"ÿÿTh¹óCùˆ@ùÈø7ñˆùaTલ ”"€Rôª¨ÃÑ!‘µ9©
ËàªFRÿ—ûªà;ù´¨@ùÈø7ñ¨ùaTઠ ”ÿ?ù»´ˆ@ùÈø7ñˆùaTગ ”ÿCùh@ùÈø7ñhùaTએ ”ÿ;ù„ ”4@ùøù@ùñd\úT@ùhÿÿµ€Òÿù€Òÿ©û3ùh@¹1BTh¹i@ùé7ù(@¹1BT(¹éùàªm”÷ùàùà/ùè@ùÑ?#ñáTŸñõ+@ù÷#@ùTè'@ù‘öV›øËàªáª”|›©jhøIùÉ@ù©j(øH@ùÈùÖ‹”ñþÿTŸñõ+@ù÷#@ùTè'@ù‘öV›øËàªáªú”T›àªáªâªr ”àªáªâªn ”àªáªâªj ”Ö‹”ñÁýÿT¼œs@ùˆ@¹1BTˆ¹ˆ@ùõßB©ôÏA©èø7ñˆùT p@ù* ”ÿ;ù´ˆ@ùÈø7ñˆùaTàª! ”ÿ7ù´h@ùÈø7ñhùaTઠ”ÿ3ù´h@ùÈø7ñhùaTઠ”ȰåFù¨@ùA@ùÔ´€°Ø!‘씀5àªáª€Ҁ?Öóªè”ó´ó/ù¨@ùÈø7ñ¨ùaTàª÷”´h@ùùþ7ñhù¡øþTàªï”Â÷ÿ¨@ù@ùáªÒ”€ÒÓތR4@‚R$üÿ¨@ù@ùáªÉ”ÿCùߌR€Ò€Ò+ÿÿ“áŒR@ùÈø7àªñùATÒ”€Ò4@‚Rüÿ€Òÿÿàªáª€Ò0”óªÉÿÿ€ÒsñŒR4@‚Rüÿ€ÒÃÿÿ¦” ´€Ҽœs@ù÷@ù¼ÿÿ3?RBùÿÓ?R@ùÿa”áªâªãª_Jÿ—¿ƒøÿ©SAR7ùÿ³R¦üÿSR¤üÿ«”S”áªâªãªQJÿ—ÿÿ©ÓRÿ;ùšüÿàª.çÿ—Áúÿ€Ò€Ò3͌RT>‚RÖûÿ€Ò€Òÿ;ù3%R”D‚RÐûÿ€Ò€Òÿ;ù³Rýüÿ€Ò€Òÿ;ùó&RÔD‚RÅûÿ‰ð)I@ù	ë&ÿT¨ð9Gùàªë”õª ƒø€ þµ4ýÿ€Ò€Òÿ?ù“üŒRÔA‚R³ûÿ€Ò€ÒÿCùó،Rô?‚R­ûÿ€Ò€ҳڌRô?‚R¨ûÿˆð=@ù@ù!T"‘O”Óýÿˆð=@ù@ù!T"‘H”íýÿˆð=@ù@ù!T"‘A”–ÿÿ€Ò€Òÿ;ùóþŒRôA‚Rûÿˆð=@ù@ù!T"‘4”3þÿöW½©ôO©ý{©ýƒ‘óªôª@ù‰ð)M@ù	ë@TÙF©ö´É
@ù©´àªj”	´õªÈ
@ùàªáªâª?Öóª¨@ùˆø7ñ¨ù Tàªý{B©ôOA©öWèÀ_ÖH´@ù´àªâªý{B©ôOA©öWè`ֈ@ùyaøi@¹)1bTi¹ˆ@ùy!ø@ùˆø7ñùàT3€Ràªý{B©ôOA©öWèÀ_Ö”3€Ràªý{B©ôOA©öWèÀ_Öàªÿ”àªý{B©ôOA©öWèÀ_Öàª,”@´õªàªáªâª‰”óª¨@ùˆøÿ6Æÿÿ€àªý{B©ôOA©öWèÀ_Öèª@ù	@¹)1bT	¹
@ùÀ_ÖôO¾©ý{©ýC‘óª!´ôª(@¹1BTˆ¹`@ù@ùˆø7ñù€Ttù€Rý{A©ôO¨À_֔ð”r@ùˆ@¹1þÿTðÿÿÄ”tù€Rý{A©ôO¨À_ÖôO¾©ý{©ýC‘Ȑ‰Dù5” ´ôª€Òh”óª`µ˜” ´ˆ@ùˆø7ñˆù@Tàªý{A©ôO¨À_Ö€Òàªý{A©ôO¨À_Öડ”àªý{A©ôO¨À_ֈð5@ù@ùÐ!Ü‘ƒ”ˆ@ùèüÿ6éÿÿÿÃÑø_©öW©ôO©ý{©ýƒ‘÷ªöªõªôªˆðy@ù@ù¨ƒøáªý”óªÀ´h@ù­B987ˆðA@ù@ùôW©Ð!¸‘h&B©Ê
@ò€RjŠš?
ë*Jš?ñ銚)‹?ëÂTˆðE@ù@ùö'©ôW©Ð!D‘B”h@ùÈø7ñhùaTàª^”€Ҩƒ\ø‰ð)y@ù)@ù?ë!Tàªý{R©ôOQ©öWP©ø_O©ÿÑÀ_ÖÿqAþÿTë	þÿTö#©ôW©‚ÐB‘àƒ‘€R©”ბ€Ò€Ò0”€üÿ6ÛÿÿA”ÿƒÑø_©öW©ôO©ý{©ýC‘õªöªôª÷ªÐ!ð
‘ª”`´óªáªï”@´øªáªß”4àªáªØ”Àù ´h@ùhø7€R€Rñhù!Tઔàªý{E©ôOD©öWC©ø_B©ÿƒ‘À_ֈð!@ù@ùàªT”àS©Ð!$‘ઈðA@ù@ùàªJ”÷ªàª±”õ©÷S©Ð!ì‘àªØ”h@ùˆø7€€ñhù ûÿTý{E©ôOD©öWC©ø_B©ÿƒ‘À_րý{E©ôOD©öWC©ø_B©ÿƒ‘À_րRý{E©ôOD©öWC©ø_B©ÿƒ‘À_ÖÿƒÑø_©öW©ôO©ý{©ýC‘õªöªôª÷ªÐ!ð
‘L”`´óªáª‘”@´øªáª”4àªáªz”Àù ´h@ùhø7€R€Rñhù!T઼”àªý{E©ôOD©öWC©ø_B©ÿƒ‘À_ֈð!@ù@ùàªö”àS©Ð!„$‘ઈðA@ù@ùàªì”÷ªàªS”õ©÷S©Ð!L%‘àªz”h@ùˆø7€€ñhù ûÿTý{E©ôOD©öWC©ø_B©ÿƒ‘À_րý{E©ôOD©öWC©ø_B©ÿƒ‘À_րRý{E©ôOD©öWC©ø_B©ÿƒ‘À_ÖÿÃÑüo©úg©ø_©öW©ôO	©ý{
©ýƒ‘ôªˆðy@ù@ùɐ))‘è'ùéÿ©“ðsr@ùóùC´õª6‹Ô´ŸñaT8@ùøù¹
@ùLÔ´ŸñT8@ùøùHè4ªýӉ°)y‘аJU‘ŸñI±‰šŠðJA@ù@@ùJJ­‘‹°k©‘j±Ššêө飩H°é8‘èù°!¸‘$”A±R€Ð|0‘Cc‘bV‚Rð5ÿ—€ҿ¹
@ù:ñ«T€ÒȐ1Eù»b‘h{xøë@T‘?ëaÿÿT€Òa{xøàªB€RÀÿ—5‘?ë!ÿÿT
˜ðs@ù
Àø7Øzxø˜´øùùª” 7µ˜ðs@ù?ñê%T¹ð9#9‘4wEù @ù‚@ùáªü” ´÷ª@¹1BTè¹ÚACAùè@ùI@ù(´àª?Ööª ´è@ùÈø7ñèùaTàªû”4‹@ù @ù‚@ùáªá”´÷ª@¹1BTè¹àªáªr”1 TôªÈ@ùˆø7ñÈù Tè@ùhø7ñèùTàªÞ”àªÛ”è@ùèþÿ65wEù @ù¢@ùᪿ”öª´4Ö´È@¹1BTȹȐ1EùÈ@ùI@ùè´àª?Öõªà´È@ùÈø7ñÈùaTઽ”¨@ù‰ð)U@ù	ëàT€Ò€Réã‘)!‘ôã©!M(ËàªKNÿ—óª´ˆ@ùÈø7ñˆùaTદ”´¨@ùˆ$ø7ñ¨ù!$Tàªö´È@¹1BTȹACAùÈ@ùI@ù(´àª?Öõª ´È@ùÈø7ñÈùaTઊ”´@ùˆ@¹1bTˆ¹´@ù¨@ùÈø7ñ¨ùaTàª}”èã‘!‘ÿã©àªâA²Nÿ—À´õªØÇEù@ùI@ùh´àª?Ö÷ª`´¨@ùÈø7ñ¨ùaTàªe”6wEù @ùÂ@ùáªK” ´õª@¹1BT¨¹ACAù¨@ùI@ù´àª?Ööª´¨@ùÈø7ñ¨ùaTàªK”ÇEùÈ@ùM@ùH´àªâª?Ö@ø7è@ùÈø7ñèùaTàª<”È@ùÈø7ñÈùaTàª5”h@¹1bTh¹©” µàª>Fÿ—÷ªäÿµ€ҸX‚RS·R—ચ”öª äÿµ€Ò€ғ·R” µàª,Fÿ—÷ª åÿµ€Ò€Òó·R¸X‚Ru€Ò€Ò3¸R¸X‚Rè@ù(
ø6mñ” µàªFÿ—öª@çÿµ€ÒØX‚RӹRsàªv”õª`çÿµ€ÒºRØX‚R\´@ùTèÿ´³
@ùˆ@¹1ƒTh@¹1£T¨@ùÈø6Š€ÒØX‚R³¼RTE°¥è8‘âã‘ãÑàªáªäªò½ÿ—ø7ø@ùÈþÿÄ” µàªíEÿ—öª èÿµ€ÒY‚RӿRFàªI”õª èÿµ€Ò
RY‚R÷ª€Òè@ùÈø6*8Y‚RÓMR7àª:”÷ªàêÿµ8Y‚RR)¤” µàªÍEÿ—õªìÿµ€Ò]àª+”öª@ìÿµ³R8Y‚Rè@ùhø6àªâª<”íÿ6€ÒÍR8Y‚Rè@ùÈø7ñèùaTઠ”´È@ùÈø7ñÈùaTઘ”´¨@ùÈø7ñ¨ùaTઐ”€°|0‘#ðc‘áªâª94ÿ—€Ò´ˆ@ùÈø7ñˆùaT઀”è'@ù‰Ð)y@ù)@ù?ë¡Tàªý{J©ôOI©öWH©ø_G©úgF©üoE©ÿÑÀ_ֈ¹h@¹1¢ïÿTh¹¨@ùÈø7ñ¨ùaTàªe”(€Rõª­þÿ¯RþÿᮍRþÿ`”€Ò€ÒsR8Y‚Rè@ùhöÿ6·ÿÿÿÃÑôO©ý{©ýƒ‘¨Ð!9‘uEù@ùb@ùáª6”´ôª@¹1BTˆ¹¨ðAAùˆ@ùI@ùH´àª?Öóªˆ@ù@´ˆø7ñˆùÀTàªý{B©ôOA©ÿÑÀ_Öàª0”àªý{B©ôOA©ÿÑÀ_Ö” µ¨Ð)Gù@ùI@ù‰Ð)Y@ùáª	ëAT€Ò#€R”ôªàúÿµ”@´̍R
ઋ”óªˆ@ùûÿµÈø7ñˆùaTàª”A̍R€°à0‘#ðc‘b\‚Rµ3ÿ—€Òàªý{B©ôOA©ÿÑÀ_Ö´?ÖôªàöÿµNEÿ—ß”üÿµˆÐ-@ù@ùóùað!X ‘Δ̍Råÿÿd”ôªõÿµñÿÿÿƒÑúg©ø_©öW©ôO©ý{	©ýC‘óªˆÐy@ù@ùè'ù¨ð!
‘è©C´õª6‹s´ñaT4@ùô#ù·
@ù:ñ¡T4@ù8¹
@ù7ñ‹T€ҨðEAùºb‘H{xøë T‘?ëaÿÿT€ÒA{xøàªB€R§½ÿ—à5‘?ë!ÿÿT”`´a׍RˆÐA@ù@ù(ð­‘*€RèÏ©ˆ™‘IÐ)]*‘è«©éù!¸‘”aٍR€°x1‘#ðc‘¢\‚RA üÿ7Ôzxøô#ùTüÿ´ÿñJ
T¨Ð!9‘uEù@ù¢@ùáª{”À´óª@¹1BTh¹•еr@ùëÀ
T¨Ð‘GùÈ´i@ù?ë
T+­@ù‹´j	@ù_ñTka‘l@ùŸëàTk!‘JñaÿÿT)
@ù
@ùŠÐJA@ù@@ùé#©!Ø‘H”´h@ùÈø7ñhùaTàªc”€°x1‘#ðc‘!ߍRÂ_‚R3ÿ—€ÒA?” µàªhDÿ—óª`ùÿµ€°x1‘#ðc‘áލRñÿÿˆÐ=@ù@ù!ˆ‘4”ÓûÿµäÿÿEХ\*‘âÑã‘àªáªäªN¼ÿ— ø7ô#@ù¥ÿÿê	ªª´J@ù_ë¡ÿÿTŠÐJ@ù
ëÁ÷ÿTh
@ù@ùàªáª?Ö´@ù¨ø7ñùAT%”¨@¹1BT¨¹h@ùÈø7ñhùaTઔè'@ù‰Ð)y@ù)@ù?ëÁTàªý{I©ôOH©öWG©ø_F©úgE©ÿƒ‘À_ր°x1‘#ðc‘àRâ_‚Rµ2ÿ—€Òh@ùˆüÿ6èÿÿ؍R]ÿÿ”ø_¼©öW©ôO©ý{©ýÑóª‚µ¾”ôª€
´h@¹1BTh¹¨Ð!9‘uEù@ùÂ@ùáªÔ”à´õª@¹1BT¨¹¨ðÍDù¨@ùI@ùˆ´àª?Ööª€´¨@ùÈø7ñ¨ùaTàªÓ”ઐ”õª`´È@ùA@ùW´`ðØ!‘®”à5àªáªâªà?Ö÷ªª”×
´È@ùˆø7ñÈù`T¨@ù¨ø7ñ¨ùATવ”h@ùø6ર”¨@ù¨þÿ6h@ùÈø7ñhùaTધ”ˆ@ùˆø7ñˆùàTàªý{C©ôOB©öWA©ø_ĨÀ_Öચ”àªý{C©ôOB©öWA©ø_ĨÀ_ÖôªAÐ!€5‘àª"€Ri»ÿ— 4àªJ”ôªÀòÿµ€Òàªý{C©ôOB©öWA©ø_ĨÀ_Ög”àµàªCÿ—õª@óÿµ#àªï”öªÀóÿµWìR
·ìRàªáªâªÖ”÷ª õÿµQ” ´÷ìRàªK,ÿ—àªI,ÿ—€°2‘#ðc‘áªa‚R2ÿ—€Òh@ùöÿ6´ÿÿ€Ò€ÒìRîÿÿˆÐ=@ù@ùað!T"‘<”æÿÿø_¼©öW©ôO©ý{©ýÑóª‚µ”ôª€
´h@¹1BTh¹¨Ð!9‘uEù@ùÂ@ùáª%”à´õª@¹1BT¨¹¨ðÍDù¨@ùI@ùˆ´àª?Ööª€´¨@ùÈø7ñ¨ùaTàª$”àªá”õª`´È@ùA@ùW´`ðØ!‘ÿ”à5àªáªâªà?Ö÷ªû”×
´È@ùˆø7ñÈù`T¨@ù¨ø7ñ¨ùATઔh@ùø6ઔ¨@ù¨þÿ6h@ùÈø7ñhùaTàªø”ˆ@ùˆø7ñˆùàTàªý{C©ôOB©öWA©ø_ĨÀ_Öàªë”àªý{C©ôOB©öWA©ø_ĨÀ_ÖôªAÐ!<7‘àª"€Rººÿ— 4છ”ôªÀòÿµ€Òàªý{C©ôOB©öWA©ø_ĨÀ_ָ”àµàªáBÿ—õª@óÿµ#àª@”öªÀóÿµùR
wùRàªáªâª'”÷ª õÿµ¢” ´·ùRજ+ÿ—ચ+ÿ—€°|2‘#ðc‘áªâa‚R_1ÿ—€Òh@ùöÿ6´ÿÿ€Ò€Ò×øRîÿÿˆÐ=@ù@ùað!T"‘”æÿÿý{¿©ý‘@ù	@ùઠ?Ö|S#p¦R'!ý{hÀ_Ö@ù@ùઠÖöW½©ôO©ý{©ýƒ‘?ñKTóªôªõª @ù¨@ù?Ö`†ü”ñaÿÿTý{B©ôOA©öWèÀ_ÖöW½©ôO©ý{©ýƒ‘?ñëTóªôªõªp¦R @ù¨
@ù?Ö|S#Á'!`F¼”ñáþÿTý{B©ôOA©öWèÀ_Öë+»mé#möW©ôO©ý{©ý‘óªTД9‘Uðµ‘vÐÖ)‘`"@©?Ö	üKÓ cž(CÓ
ñ}Ӂjjüaªjjø?
ëãT}ò€T	QÀZiüÉzhü
8i`@ùh@ù?ÖI%@AaL”0!`ýÿTA`ý{D©ôOC©öWB©é#Amë+ÅlÀ_Ö`@ùh@ù?Ö@aP”hp—ÒÈ/¥ò(;ÙòÈèògž 8`ý{D©ôOC©öWB©é#Amë+ÅlÀ_Öë+¹mé#múg©ø_©öW©ôO©ý{©ýƒ‘?ñ«Tóªôªõª€ÒWÐ÷9‘Xð‘yp—ÒÙ/¥ò9;ÙòÙèòzÐZ)‘ @ù¨@ù?Ö@a&”!gž(8`hz6üÖ‘ßë`T "@©?Ö	üKÓ cž(CÓ
ñ}Óájjüa
kjø?
ëCþÿT}ò ýÿT	Q@[iüI{hü
8i @ù¨@ù?ÖI%@Aa÷”0!`ýÿTãÿÿý{F©ôOE©öWD©ø_C©úgB©é#Amë+ÇlÀ_Öë+ºmé#mø_©öW©ôO©ý{©ýC‘óªTð”9‘uµ	‘p¦Rwð÷	‘`@ùh
@ù?Ö	|	S # S
}~Ӂjj¼!ªjj¸?
kcTr`T	QàZi¼ézh¼
8)`@ùh
@ù?Ö|S#Á'!I%A!Ä”0! eüÿTA `@ùh
@ù?Ö|S#p¦R'ˆ!É”(ىRȨr' 8 ý{E©ôOD©öWC©ø_B©é#Amë+ÆlÀ_Öë+¸mé#müo©úg©ø_©öW©ôO©ý{©ýÑ?ñ‹Tóªôªõª€ÒWÐ÷9‘Xð	‘p¦R:ىRÚ¨r{Ð{	‘ @ù¨
@ù?Ö|S#!'ˆ!”A'(8 hz6¼Ö‘ßëT @ù¨
@ù?Ö	|	S # S
}~Óájj¼!
kj¸?
k#þÿTr üÿT	Q`[i¼i{h¼
8) @ù¨
@ù?Ö|S#!'!I%A!i”0! eüÿTÞÿÿý{G©ôOF©öWE©ø_D©úgC©üoB©é#Amë+ÈlÀ_ÖöW½©ôO©ý{©ýƒ‘?ñ«Tóªôªõª @ù¨@ù?Ö@a^”@a`†ü”ñÿÿTý{B©ôOA©öWèÀ_ÖöW½©ôO©ý{©ýƒ‘?ñkTóªôªõªp¦R @ù¨
@ù?Ö|S#Á'ˆ!À"C”@a@b`F¼”ñaþÿTý{B©ôOA©öWèÀ_Öë+ºmé#mø_©öW©ôO©ý{©ýC‘óªUðµ‘VðÖ9‘	|w÷‘`"@©?Öôªˆ	ðIÓ cž
}}ӡjjüa@axòaÊjjø?
ëÃTè4	QàZiüêzhü8j`@ùh@ù?Öj)@ 	hhþ”P!`…üÿT5Ò„­òUuÐò5ú÷ò`@ùh@ù?Ö@a”¡gž(``@ùh@ù?Ö@aý”@a 8`	h a
þÿTh¦•Ò(A°òˆvÇò¨èògž(h@aŸoòaA`ý{E©ôOD©öWC©ø_B©é#Amë+ÆlÀ_ÖöW½©ôO©ý{©ýƒ‘?ñ+Tóªôªõªàª£ÿÿ—`†ü”ñÿÿTý{B©ôOA©öWèÀ_Öë+ºmé#mø_©öW©ôO©ý{©ýC‘óªuµ9‘v°Ö	‘p¦R	|x°‘`@ùh
@ù?Ö	|	S #
}~ӡjj¼!@!r!Êjj¸?
kãT¨4	Q[i¼
{h¼8*`@ùh
@ù?Ö|S#á'!`)
À"Á"!	` `’”P!`ÅûÿT"ôªp¦RvªƒR–ѷr`@ùh
@ù?Ö|S#©'ˆ)˜”Á'( `@ùh
@ù?Ö|S#ˆ)”@! 8 	( !mýÿTˆ´›R(
¨r'((@!Ÿr!A ý{E©ôOD©öWC©ø_B©é#Amë+ÆlÀ_ÖöW½©ôO©ý{©ýƒ‘?ñ+Tóªôªõªàª™ÿÿ—`F¼”ñÿÿTý{B©ôOA©öWèÀ_Öï;·mí3më+mé#múg©ø_©öW©ôO©ý{©ý‘@`óªn!`!TT°”9‘Uе‘v°Ö)‘`"@©?Ö	üKÓ cž(CÓ
ñ}Ӂjjü	aªjjø?
ëcT}ò T	QÀZiüÈzhü
8h`@ùh@ù?ÖH!@ Aa(”!`ýÿT!`	ä/aT A`Én!kTT°”9‘Uе‘6€Rwp—Ò×/¥ò7;Ùò×èòx°)‘Àb8ih”
@``9hJah/”	@`€9j0!`iüÿT`@ùh@ù?Ö	@``"@©?Ö	üKÓ cž(CÓ
ñ}Ӂjjüaªjjø?
ëãT}ò T	Q[iü
{hü
8j`@ùh@ù?֪)@€Aaé”P!`ýÿT`9h0!`ˆúÿT`@ùh@ù?Ö@að”ágž,8``9h0!`(ùÿTah A`ý” l(úÿT	@`{`@ùh@ù?Ö@aß”hp—ÒÈ/¥ò(;ÙòÈèògž 8`oa``
9`(€RbjÀal`Uðµ‘VðÖ9‘·­˜Ò×_¶òwOÞòôçò8Ò„­òXuÐò8ú÷òy¦•Ò9A°ò™vÇò¹èòzZ‘`"@©?Öôªˆ	ðIÓ cž
}}ӡjjüa@axòaÊjjø?
ëTH4	Q@[iüH{hü	8h`@ùh@ù?Ö(!@|oo”!`eüÿT€-O `	üÿT`(``@ùh@ù?Öá	oâgžBa!¬B aTŽ”	@`lom9hA`ˆ” )`@	`ÀO0!`%ùÿT`@ùh@ù?Ö@a€”gž(``@ùh@ù?Ö@ay”@a 8`	h a
þÿT gž(h@aŸoòa€-O `éõÿTÏÿÿ@	hý{H©ôOG©öWF©ø_E©úgD©é#Cmë+Bmí3Amï;ÉlÀ_Öï;¶mí3më+mé#müo©úg©ø_©öW©ôO©ý{	©ýC‘@ óª.! TTД9‘Uðµ	‘p¦RwÐ÷	‘`@ùh
@ù?Ö	|	S # S
}~Ӂjj¼	!ªjj¸?
kcTrà
T	QàZi¼èzh¼
8(`@ùh
@ù?Ö|S#Á'!H! A!”! eüÿT A ãÁ" `Tä/@bÝ.!+ETTД9‘p¦RVðÖ	‘7ىRרrxÐ	‘
`9)(”
@ `9(
a(&”	@ €9*0! 	üÿT`@ùh
@ù?Ö|S#¡'	!`@ùh
@ù?Ö	|	S # S
}~Ӂjj¼!Êjj¸?
kcTr T	Q[i¼
{h¼
8*`@ùh
@ù?Ö|S#¡'!ª)€A!Ø”P! eüÿT`9(0! ¨ùÿT`@ùh
@ù?Ö|S#¡'ˆ!Ü”á',8 `9(0! è÷ÿTa( A é” ,ÈøÿT	@ ‡`@ùh
@ù?Ö|S#p¦R'ˆ!Ç”(ىRȨr' 8 y!` 
9 P$*uµ9‘À!l v°Ö	‘p¦RØ{’Rø §ryªƒR™ѷrš´›R:
¨r{°{‘`@ùh
@ù?Ö	|	S #
}~ӡjj¼!@!r!Êjj¸?
kÃTˆ4	Q`[i¼h{h¼	8(`@ùh
@ù?Ö|S#á'! !À"àÁ"|!` `w”!`¥ûÿT€-  IûÿT ( `@ùh
@ù?Ö|S#á'!á	/'B!!¬ !ÄTz”	@ ,/m9(A t” ) @	 À0! å÷ÿT!ôª`@ùh
@ù?Ö|S#é'ˆ)b”!'( `@ùh
@ù?Ö|S#ˆ)Y”@! 8 	( !mýÿT@'((@!Ÿr!€-  éóÿTÅÿÿ@	(ý{I©ôOH©öWG©ø_F©úgE©üoD©é#Cmë+Bmí3Amï;ÊlÀ_Öý{¿©ý‘$@©àª ?ÖüAÓý{hÀ_Öý{¿©ý‘@ù	@ùઠ?Ö|Sý{hÀ_Öý{¿©ý‘$@©àª ?ÖüAÓý{hÀ_Ö@©àª Öí3»më+mé#môO©ý{©ý‘	@`n !`
ä/T` !` 
Tc0!kÅTè€Rb8ixž€Ò`bž()`nh`¨æƒÒ# òèìÈòÈþ÷ògž!`¨ЀÒȧòÈÒßòÈøçògž!(b!`èrŠÒèa¹òÈPÈòÈó÷ògž!(b!`Hƒ”Ò(H£òˆ4ÈòHïçògž!(b!`菇Ò(3»òVÍòèë÷ògž!(b!`ˆäŸÒc¥òȣÒòhéçògž!(b!`h‡Ò(p¢ò'Ðòhè÷ògž!(b!`H”Ò(@£ò4ÀòHéçògž!(b!`肍Ò(آòˆ-ØòÈì÷ògž!(b `èó²¨öçògž(ahˆ֗҈¹ò(þÌò¨ÿçògžlJA9bA`´”€)@
8h0!kèWŸqTñKT4€R	n9iA`§”J9`”‘ŸëMÿÿT@A`ý{D©ôOC©é#Bmë+Amí3ÅlÀ_Öé#¾mý{©ýC‘(@`	@``üÿ—%@ý{A©é#ÂlÀ_Öë+»mé#möW©ôO©ý{©ý‘@`óªT”9‘U°µ‘vÖ)‘`"@©?Ö	üKÓ cž(CÓ
ñ}Ӂjjü	aªjjø?
ëcT}òÀT	QÀZiüÊzhü8j`@ùh@ù?Öj)@ Aa^”P!`ýÿT`@ùh@ù?Ö@ah”hp—ÒÈ/¥ò(;ÙòÈèògž)8`	iý{D©ôOC©öWB©é#Amë+ÅlÀ_Öé#¾mý{©ýC‘(@`	@`@ù	@ùઠ?Ö%@ý{A©é#ÂlÀ_Öé#¾mý{©ýC‘(@`äüÿ—	`ý{A©é#ÂlÀ_Öé#¾mý{©ýC‘(@ áýÿ—	 ý{A©é#ÂlÀ_Öí3»më+mé#môO©ý{©ý‘(@`	@`óªn0!`èT!`¨T–™ÒȖ±ò¨Ðò¨Tåògž0!`¥T–™ÒȖ±ò¨Ðò¨Tåògž!`ÅT`@ùh@ù?Ö!)h ` ièWŸbý{D©ôOC©é#Bmë+Amí3ÅlÀ_ÖઠA`ªüÿ—	@`àªA`¦üÿ— )` `ý{D©ôOC©é#Bmë+Amí3ÅlÀ_Ö
n`@ùh@ù?Ö
@``@ùh@ù?Ö@`¡i@A`”@`¡h`A`”€)` mèýÿTA)k8 `ýÿTáb a
T€`ý{D©ôOC©é#Bmë+Amí3ÅlÀ_Ö@A`Þ”	i`A`Û”h0!`!Í`(9a	8aA`Å”
@` A`”@)`Ï”9`¾”ý{D©ôOC©é#Bmë+Amí3ÅlÀ_Öé#¾mý{©ýC‘`h_üÿ—	`ý{A©é#ÂlÀ_Öë+¼mé#môO©ý{©ýÑ(@`	@`óª
`jPüÿ—@	`hjàªKüÿ—@	`i``ý{C©ôOB©é#Amë+ÄlÀ_Öé#½môO©ý{©ýƒ‘óªiûÿ—@`àªfûÿ—`ý{B©ôOA©é#ÃlÀ_Öë+»mé#möW©ôO©ý{©ý‘@`óªT”9‘U°µ‘vÖ)‘`"@©?Ö	üKÓ cž(CÓ
ñ}Ӂjjü	aªjjø?
ëcT}òÀT	QÀZiüÊzhü8j`@ùh@ù?Öj)@ Aac”P!`ýÿT`@ùh@ù?Ö@am”hp—ÒÈ/¥ò(;ÙòÈèògž)8` hý{D©ôOC©öWB©é#Amë+ÅlTë+»mé#möW©ôO©ý{©ý‘ `Tä/ý{D©ôOC©öWB©é#Amë+ÅlÀ_Ö@`óªT”9‘U°µ‘vÖ)‘`"@©?Ö	üKÓ cž(CÓ
ñ}Ӂjjü	aªjjø?
ëcT}òÀT	QÀZiüÊzhü8j`@ùh@ù?Öj)@ Aa ”P!`ýÿT`@ùh@ù?Ö@a*”hp—ÒÈ/¥ò(;ÙòÈèògž)8`nh A`5”ý{D©ôOC©öWB©é#Amë+ÅlÀ_Öë+»mé#möW©ôO©ý{©ý‘@`óªT”9‘U°µ‘vÖ)‘`"@©?Ö	üKÓ cž(CÓ
ñ}Ӂjjü	aªjjø?
ëcT}òÀT	QÀZiüÊzhü8j`@ùh@ù?Öj)@ Aaã”P!`ýÿT`@ùh@ù?Ö@aí”hp—ÒÈ/¥ò(;ÙòÈèògž)8` AaÙ”@an!hö”ý{D©ôOC©öWB©é#Amë+ÅlÀ_Öë+¼mé#môO©ý{©ýÑ(@`	@`óª
l`@ùh@ù?Ö jjT `MÿÿT(`Æ”%@ý{C©ôOB©é#Amë+ÄlÀ_Ö`!8` 8`¼”¤Hý{C©ôOB©é#Amë+ÄlÀ_Öë+¼mé#môO©ý{©ýÑ(@`	@`óª
n`@ùh@ù?Ö@9` jeÿÿT¦”@a¤”¤Hý{C©ôOB©é#Amë+ÄlÀ_Öé#½môO©ý{©ýƒ‘(@`	@`óª`@ùh@ù?Ö `ÿÿTn!8`aŽ”%@ý{B©ôOA©é#ÃlÀ_Öé#¾mý{©ýC‘(@`	@`Múÿ—%@r”ý{A©é#ÂlÀ_Öë+»mé#möW©ôO©ý{©ý‘@`óªT”9‘U°µ‘vÖ)‘`"@©?Ö	üKÓ cž(CÓ
ñ}Ӂjjü	aªjjø?
ëcT}òÀT	QÀZiüÊzhü8j`@ùh@ù?Öj)@ AaJ”P!`ýÿT`@ùh@ù?Ö@aT”hp—ÒÈ/¥ò(;ÙòÈèògž)8``iÀa	`ý{D©ôOC©öWB©é#Amë+ÅlÀ_Öé#½môO©ý{©ýƒ‘@`óªúÿ—	@`T€R€b`àªÒúÿ—ba!Àa!iÀa `ý{B©ôOA©é#ÃlÀ_ÖÿCÑï;mí3më+mé#müo©úg©ø_	©öW
©ôO©ý{©ý‘
@`óªH€RbP!`kTHÁa@A`”àýӍÒHb°òXÙò¨ýçògž¨GÒèz´ò®Çòˆèògž,H-’Ҩ¯òè§ÆòÈõ÷ògžh˖ÒÈú¢ò(¡Íò(óçògž-Lèç²hèògž€9`HN‘Òȑ¼òHþÃòHþçògž `ˆä’Òè²òÈoßò(þçògž (`àýU€R b€9`HȇÒ=»òˆUßòˆèògž `H.ŸÒè!½òèöÕò¨ýçògž¶pÒ6
·ò֣Ðòvûçò—=ŠÒףò·pÝò7öçò8‡–ÒٮòØ÷ÓòXñçò 8`àý@Aaêƒmûó²»öçòœ֗Ҝ¹ò<þÌò¼ÿçòê@ýÀ9ið!`	T`@ùh@ù?Öl	8h`@ùh@ù?Ö!Á`¢b9aAm!h!(l!(IÂgž!(b!@e4xžágž!a‹Tá@ý aéTôüÿ·gž!aeT hLüÿT¤”@`à@ý¡”i)`	h `(lœ”/9`€bžá@ýâ@ýAˆ‘bžn!`	ä/`ùÿT`!`ùÿTnc!`ÅTè€Rb8hxž€Ò bž)` k`¨æƒÒ# òèìÈòÈþ÷ògž!`¨ЀÒȧòÈÒßòÈøçògž!(b!`èrŠÒèa¹òÈPÈòÈó÷ògž!(b!`Hƒ”Ò(H£òˆ4ÈòHïçògž!(b!`菇Ò(3»òVÍòèë÷ògž!(b!`ˆäŸÒc¥òȣÒòhéçògž!(b!`h‡Ò(p¢ò'Ðòhè÷ògž!(b!`H”Ò(@£ò4ÀòHéçògž!(b!`肍Ò(آòˆ-ØòÈì÷ògž!(b `agž(akgžlIAj9b`A`9”@%@	8kc!`èWŸq(AúKíÿT:€Rê@ýnk9h`A`+”)9`Z‘_ëMÿÿT`ÿÿàb@!`aT€Ò
@Aa”@`	n€’`@ùh@ù?Ö)	`0!h”‘LÿÿTàªý{L©ôOK©öWJ©ø_I©úgH©üoG©é#Fmë+Emí3Dmï;CmÿC‘À_Öé#½môO©ý{©ýƒ‘óª(€RbB8aHaœùÿ—	`àªý{B©ôOA©é#ÃlÏþÿÿÃÑï;	mí3
më+mé#müo
©úg©ø_©öW©ôO©ý{©ýƒ‘óªôªH@¹à'ýè4H@ùëTA@ý  `À/TSù@ý(€RH¹n¡8` a@`DT«8`¬8kabžK°m!,KAý"@eUxžUùbbžBkBlBÀaèç²HèògžclèQ˜Ҩ¥òˆëÑò(èògž‚ŒbB@elM(c¢bž@(cM€m8mà+ý(mD€m¢bžèç²H3“òÈèògžb(bÐ҈èògžbbˆ¾Ÿ҈¯ò(ÝÄò(øçògžh(b"8dä?ýc…DBc`Dc¤(dDdHm8aà/ýl!b"c¢(b!b`H®	`A¸mámdÂ)`aI(`â;ýB¤m`bžk
l€@ùˆ@ù?Öi€@ùˆ@ù?Ö!A`	@`ð!mÍ TáCýv‘·‘ØËyË:€Rè;m c- T`bžk
l€@ùˆ@ù?ÖáC@ýa€@ùˆ@ù?Ö	@`ð!mÍTð!nÍTà;@ýð!`ûן A``”Û6á3@ýaá/@ý 8`@exžŸëlüÿT(!` üÿTà;@ýà9` 	`á3@ý#à9mhá?@ý!(`n H¢bžB8alB(cBÀ`Bm8b d¬ùÿT!@e<xž›ëhW›ÚUñbT¡á7@ýaá?@ý (`@exžü÷ÿ·(!` ÷ÿTà9n 	`á7@ýa›ëhW›ÚUñTbž`BbCbB8c0 b%Tbž"ja#clc(dè󲍸çògž!C!jl!(cOahÿ›bžH€RbBj*b
”	@`@9o0!`¤T@)o0!`LòÿTˆ‘bžäbžbžÈËbž#aámdJbH@``ã‹m@`àý€aõ”àý bžl(aàýnî”áAm `á+@ý#B`bžàmÀ	kî@ýÁ	laã”âAm@@ÐÒ(èògž"oØÒèògžb8bBoÐÒèògž‚8bBoÜ҈èògž¢8bBo×ÒHèògžÂ8bç@ýBg°É҈ èògžBg(b"jb8bBj‚8bBj¢8bBjÂ8bBhè@ýBg(bð@ý"pb8bBp‚8bBp¢8bBpÂ8bBnBg(bâ#@ý!ba8a!b8a!b¡8a!bÁ8aâ@ý!bî@ý!g(a0!`ìäÿT&alÂbž"bŸëÍTnÿëŒãÿTnèªbžDd„8acd‘ëMÿÿTÿÿˆ‘nŸë±Uú¬áÿTnbžDd„8acd‘ëMÿÿTÿÿà+@ý M(o@exžhËlá'@ý0 `\šý{R©ôOQ©öWP©ø_O©úgN©üoM©é#Lmë+Kmí3Jmï;ImÿÑÀ_ÖK°AmU@ùM„CmB$@ý@ EmámA0@ý@¸Fmàm@¤GmàmÌþÿë+»mé#möW©ôO©ý{©ý‘õª@`óªôªH@¹è4¨
@ùëT @ý h T³
ù¨ý6€R¶¹n	8h©ýjbž A`<”@	`+”
@``bžªýhbbžÁb .ýI#Àad#CP ceT`bžÂbIBÀa Bxž¶ù€@ùˆ@ù?Ö jÍT€ÒAA`8aiË"bžBhAabžBi!bઠamT‘ëmþÿT€@ùˆ@ù?րÒAA` aìþÿTý{D©ôOC©öWB©é#Amë+ÅlÀ_֪¦Am¶@ù€@ùˆ@ù?Ö jŒûÿT€Òý{D©ôOC©öWB©é#Amë+ÅlÀ_ÖôO¾©ý{©ýC‘¡´ä/!À" a¡T€Òý{A©ôO¨À_Öóªl aHTabžaÐg0 bHTáªý{A©ôO¨„ÿÿn 8`abžaÐg0 bhTáª{ÿÿ—`Ëý{A©ôO¨À_Öáªý{A©ôO¨ÓýÿáªÑýÿ—`Ëý{A©ôO¨À_Öë+¼mé#môO©ý{©ýÑ  a Tø¯R'À"ý{C©ôOB©é#Amë+ÄlÀ_Ö(@`	@`óªàb  `aT` hàªI÷ÿ—	`ý{C©ôOB©é#Amë+ÄlÀ_Ö(€Rb iETb 9`	`iàª9÷ÿ—)	`àªböÿ—Áa(a$@ý{C©ôOB©é#Amë+ÄlÀ_Ö
`jàªcüÿ—øÓbž )`jàª$÷ÿ—@	`ý{C©ôOB©é#Amë+ÄlÀ_Öë+¼mé#môO©ý{©ýÑ(@`	@`óªA@`³ÿÿ—
h`kàª÷ÿ—`	`i@`ý{C©ôOB©é#Amë+ÄlÀ_Öë+¼mé#môO©ý{©ýÑ)@`@`óªH€Rba
`&öÿ—	` `ˆ€Rb!i`!@!Àa8aI!@`@ùh@ù?Ö)ia aèT A`ý{C©ôOB©é#Amë+ÄlÀ_Ö	hiý{C©ôOB©é#Amë+ÄlÀ_Öí3ºmë+mé#möW©ôO©ý{©ýC‘  a Tø¯R'À"¢)@`@`óªH‡‘ÒF¼òÈ1Ïò¨Èçògž0 `TH€Rb`@ùh@ù?Ö(€Rb…`£…҈ˆªòh?Äò(èògž `‰(Òh±ò¨ßòˆÜçògž0!`¥Tni(iÐÒÈ%èògž0!`¨
T(€Rbˆ€Rb!i!I!Àa(aH€RbCacÀa!8cCi!c AAaa£…Ҕˆªòt?Äò4èò5€RV€R`@ùh@ù?ցgž `Ø”¡ba@`)`*``9j,	``@ùh@ù?ÖÁb!8laâb0 b*T€`Ù”¡b(a8láb a‹üÿT`@ùh@ù?Ö	@`@A`¸”l0!a@a L`(háb aóGŸÀ`£…҈ˆªòh?Äò(èògž(hH€Rb!h´”8h37€ba%ni	Àaàªyõÿ— !@£…҈ˆªòh?Äò(øògž a%TH€Rb£…҈ˆªòh?Äò(èògž B£…҈ˆªòh?Äò(èògž a-TH€Rb£…҈ˆªòh?Äò(èògž@€Aý{E©ôOD©öWC©é#Bmë+Amí3ÆlÀ_Öí3»më+mé#môO©ý{©ý‘@`óª@a‚”	@``@ùh@ù?Ö h4€RêT
@``@ùh@ù?Ö
@` hêT`@ùh@ù?Ö 	`b”@a`	kP!`(Tb@A`d”@``A`a”€` )`@exžñËüÿTH!`€üÿTôªP!k跟q(€Rˆšàªý{D©ôOC©é#Bmë+Amí3ÅlÀ_Öé#¾mý{©ýC‘@`n	8h@ù	@ùઠ?Ö hmT €RA`	i!(h‘ aŒÿÿTý{A©é#ÂlÀ_Ö €Rý{A©é#ÂlÀ_Öë+»mé#möW©ôO©ý{©ý‘@`óª4ð”9‘Uµ‘VðÖ)‘`"@©?Ö	üKÓ cž(CÓ
ñ}Ӂjjü	aªjjø?
ëcT}òÀT	QÀZiüÊzhü8j`@ùh@ù?Öj)@ Aaý”P!`ýÿT`@ùh@ù?Ö@a”hp—ÒÈ/¥ò(;ÙòÈèògž)8`)AaAaþ” `Àd|èÒgž aTð’ý{D©ôOC©öWB©é#Amë+ÅlÀ_Öxžý{D©ôOC©öWB©é#Amë+ÅlÀ_Öé#¾mý{©ýC‘@`èó²¨úçògž!`kTn	8h@ù	@ùઠ?Ö híT €RA`	i!(h‘ aŒÿÿTý{A©é#ÂlÀ_ÖA`ý{A©é#Âl˜ÿÿ €Rý{A©é#ÂlÀ_Öí3»më+mé#môO©ý{©ý‘óªn8l`A`Д	@`
~ð’`@ùh@ù?֋9``@ùh@ù?Ö
@`¡h`A`”@e€bžp!`LþÿTp!lþÿT€k€)`A`¸”A	k8l!b"9l!bi0 `ˆüÿT`xžý{D©ôOC©é#Bmë+Amí3ÅlÀ_Öí3¼më+mé#mý{©ýÑH@`	@`@8`"8iJ`9a+`@ù	@ùL`ઠ?Ö l(TjÀa )`ý{C©é#Bmë+Amí3ÄlÀ_Ön 8`kÀa9`ý{C©é#Bmë+Amí3ÄlÀ_ÖöW½©ôO©ý{©ýƒ‘´óªôª(Aª	HªHª!HªAHªHª(ü`ӈµ€@ùˆ
@ù?Öè* ŠëHÿÿTý{B©ôOA©öWèÀ_ր"@©?ÖŠëˆÿÿT÷ÿÿ€Òý{B©ôOA©öWèÀ_ÖöW½©ôO©ý{©ýƒ‘󪢴öªõªôªHü`Өµ€¿ëT€@ùˆ
@ù?ÖsB ‹àªý{B©ôOA©öWèÀ_ֿ±@T$4€"@©?ÖŠëˆÿÿT‹àªý{B©ôOA©öWèÀ_֤4€@ùˆ
@ù?Ö
khÿÿTsB(‹àªý{B©ôOA©öWèÀ_ր"@©?Ö‹àªý{B©ôOA©öWèÀ_ֶ‘€"@©?Ö	|›|֛?ëèûÿTê5ªK	֚u©›¿	ëIûÿT€"@©?Ö|›¿ëˆÿÿT|֛‹àªý{B©ôOA©öWèÀ_ֶ€@ùˆ
@ù?Ö|¶›¿kâTs‚H‹àªý{B©ôOA©öWèÀ_Öé5**	ÖU¥¿kÉþÿT€@ùˆ
@ù?Öè*}›¿kHÿÿTîÿÿöW½©ôO©ý{©ýƒ‘óª"4õªôª_1AT€@ùˆ
@ù?Öàªý{B©ôOA©öWèÀ_ÖÄ4öª€@ùˆ
@ù?Ö
khÿÿTàªý{B©ôOA©öWèÀ_ֶ€@ùˆ
@ù?Ö|¶›k	Tý`Óàªý{B©ôOA©öWèÀ_Öé5**	ÖU¥¿k©þÿT€@ùˆ
@ù?Öè*}›¿kHÿÿTíÿÿø_¼©öW©ôO©ý{©ýÑóª4ôªõª÷ªöªèÿŸR_kT¨@¹¨4ˆ@yˆ¹¨@¹Q-ä4øª¨@¹
ˆ@yˆ¹¨@¹Q¨¹‰@¹)
?k‰Tèþÿ5À@ùÈ
@ù?ր¹(€R¨¹‰@¹)
?kÈþÿT3`>ý{C©ôOB©öWA©ø_ĨÀ_Öø¨@¹ˆ4ˆ@yˆ¹¨@¹QÀ@ùÈ
@ù?ր¹(€R¨¹ˆ@y`>ý{C©ôOB©öWA©ø_ĨÀ_ÖÀ@ùÈ
@ù?ր¹(€R¨¹‰@¹*=?J}K=kÂTì>R	Ø·±kCTsBJ`>ý{C©ôOB©öWA©ø_ĨÀ_Ö(}Sˆ¹¨@¹Q¨¹‰@¹*=J}ÿ"*k	þÿTÈþÿ5À@ùÈ
@ù?ր¹(€R¨¹‰@¹*=J}ÿ"*k¨þÿTãÿÿø_¼©öW©ôO©ý{©ýÑóª"4ôªõª÷ªöª_üq!T¨@¹4ˆ@¹}Sˆ¹¨@¹Q/4øª¨@¹ˆ@¹}Sˆ¹¨@¹Q¨¹‰@¹)
?k‰TÈþÿ5À@ùÈ
@ù?ր¹h€R¨¹‰@¹)
?kÈþÿT3`ý{C©ôOB©öWA©ø_ĨÀ_Öø¨@¹¨4ˆ@¹}Sˆ¹¨@¹QÀ@ùÈ
@ù?ր¹h€R¨¹ˆ@9`ý{C©ôOB©öWA©ø_ĨÀ_ÖÀ@ùÈ
@ù?ր¹h€R¨¹‰@¹*J}KkÂTìR	Ø·±kCTs"J`ý{C©ôOB©öWA©ø_ĨÀ_Ö(}Sˆ¹¨@¹Q¨¹‰@¹*J}ÿ*k	þÿTÈþÿ5À@ùÈ
@ù?ր¹h€R¨¹‰@¹*J}ÿ*k¨þÿTãÿÿ"4ôO¾©ý{©ýC‘óªôª¨@¹è4h@¹}Sh¹ˆ@¹Q@ù	@ùઠ?Ö`¹è€Rˆ¹h@9ý{A©ôO¨àªÀ_Öüoº©úg©ø_©öW©ôO©ý{©ýC‘ôªõªóªB´÷ªöªHü`ӈµ€ÿëT¿ñËTÀ@ùÈ
@ù?ÖhB ‹ˆ†øµñAÿÿT†¿ñ‹T¿"ñ"T€Ò9ÿ± T¿ñ„6kT€ÒèWª	HªHª!HªAHªHªÀ"@©?ÖŠëˆÿÿT‹ˆz8ø‘ëáþÿTi¿ñD	6ËT€ÒèWª	HªHª!HªAHª	ý`Ó9*À@ùÈ
@ù?Ö
khÿÿThB(‹ˆz8ø‘ëÁþÿTR¨ò}’`N‰‚‘êª ?­ ‚¬J!ñ¡ÿÿTë	T©ˈ‹…ø)ñÁÿÿTB¿ñTÀ"@©?Ö‹ˆ†øµñaÿÿT9T€Òù‘è7ª		ٚ:¡›‹ˆz8ø‘ë TÀ"@©?Ö	|›|ٛ?ëÈþÿT_	ë‰þÿTÀ"@©?Ö|›_ëˆÿÿT|ٛíÿÿ«T€Òùú7*h‚H‹ˆz8ø‘ë€TÀ@ùÈ
@ù?Öè*}›ÿk£þÿTIÙ;ék)þÿTÀ@ùÈ
@ù?Öè*}›kHÿÿTéÿÿý{E©ôOD©öWC©ø_B©úgA©üoƨÀ_Öüoº©úg©ø_©öW©ôO©ý{©ýC‘ôªõªóª‚4÷ªöª_1ÀT¿ñÄ6K
T€Òè*Hª	HªHª!Hª	ýPÓ9*À@ùÈ
@ù?Ö
khÿÿTˆz8¸‘ëÁþÿT>¿ñ‹T¿BñbT€Ò3¿ñËTÀ@ùÈ
@ù?ÖˆF¸µñAÿÿT.«T€Òùú7*ý`Óˆz8¸‘ë`TÀ@ùÈ
@ù?Öè*}›kˆþÿTIÙ;ék	þÿTÀ@ùÈ
@ù?Öè*}›kHÿÿTèÿÿ¨î|’`N‰‚‘êª ?­ ‚¬JAñ¡ÿÿTëÀT©ˈ
‹E¸)ñÁÿÿTý{E©ôOD©öWC©ø_B©úgA©üoƨÀ_Öúg»©ø_©öW©ôO©ý{©ý‘ôªõªóªÂ4÷ªöªèÿŸR_kàT¿ñD6«T€Ò€R€Ré*)Iª)	Iª)Iª*ýHÓY	*|SQ	
ÿ")k"Thÿÿ5À@ùÈ
@ù?Ö(€R	
ÿ")k#ÿÿT)‰z8x‘ëþÿT`¿ñËT¿‚ñ¢	T€ÒU¿ñT€R€R|SQ	‰&xµñà	THÿÿ5À@ùÈ
@ù?Ö(€R	‰&xµñÿÿTE‹T€Ò€R€Ré9=é7*)=*	ÙW¥iBI‰z8x‘ë T(4|SQ	<)}*=_k‚þÿT
À@ùÈ
@ù?Ö(€R	<)}*=_kBýÿT_kCTçÿÿÀ@ùÈ
@ù?Ö(€R	<)}ÿ")kéûÿTÿÿ4|SQ	<)}ÿ")kHÿÿT×ÿÿ¨ê{’`N‰‚‘êª ?­ ‚¬Jñ¡ÿÿTëÀT©ˈ‹%x)ñÁÿÿTý{D©ôOC©öWB©ø_A©úgŨÀ_Öúg»©ø_©öW©ôO©ý{©ý‘óªôªõª‚4÷ªöª_üq`TŸñÄ6KT€Ò€R€Ré*)Iª)	Iª*ýDÓY	*|SQ	
ÿ)k"Thÿÿ5À@ùÈ
@ù?Öh€R	
ÿ)k#ÿÿT)ij88‘ëþÿTVŸñ‹
Tàªáªâªý{D©ôOC©öWB©ø_A©úgŨÅŸñ+	T€R€R|SQ	i8”ñTHÿÿ5À@ùÈ
@ù?Öh€R	i8”ñÿÿT6«T€Ò€R€Ré9é7*)*	ÙW¥©"Iij88‘ëÀT(4|SQ	)}*_k‚þÿT
À@ùÈ
@ù?Öh€R	)}*_kBýÿT_kTçÿÿ|SQ	)}ÿ)k)üÿTHÿÿ5À@ùÈ
@ù?Öh€R	)}ÿ)kÿÿT×ÿÿý{D©ôOC©öWB©ø_A©úgŨÀ_ÖöW½©ôO©ý{©ýƒ‘ñëTôªóª4õª€R€R	 @ù¨
@ù?Öè€R	‰8sñTÿÿ4|SQ	‰8sñAÿÿTý{B©ôOA©öWèÀ_Öàªâªý{B©ôOA©öWèOí3¸më+mé#múg©ø_©öW©ôO©ý{©ýÑóªôªõª™Ñ?ñkTöª÷ªøªn	ä/
lÐgúªnà@ýl•´!Á" aT€Ò@ùµ˿ñkTà†@üŒ9`Z#‘9ñ!þÿT# jHT¡bža0 kTàªáªâª°øÿ—ìÿÿ9`¡bža0 khTàªáªâª¦øÿ—
àªáªâª÷ÿ—Ýÿÿàªáªâªüöÿ— Ë×ÿÿ¿ñkTˆ‹øý{G©ôOF©öWE©ø_D©úgC©é#Bmë+Amí3ÈlÀ_Öí3»më+mé#môO©ý{©ý‘óª@¹H4`
@ý
¹
ùý{D©ôOC©é#Bmë+Amí3ÅlÀ_Ö	~
`nh@ù@ù
@ù?ÖL%@h@ù@ù
@ù?ÖM%@ 	mˆL!kjþÿT!` þÿTA`½”p `hÀala
ý(€Rh
¹mý{D©ôOC©é#Bmë+Amí3ÅlÀ_Öý{¿©ý‘@ù@ù
@ù?Ön 8`¥”@aý{hÀ_ÖÿÑï;mí3më+mé#môO©ý{©ýÑóª	n i!Th@ù@ù
@ù?Ö 9`”@a€@` `ä/€T
n!j…T4€R
€b8ih”	@`@9hIAh””a9i ai
Th@ù@ù
@ù?Ö	@`h@ù@ù
@ù?Ö@9`n”@a@9h0!`ÈüÿTAh A`” k¨ýÿTVa@`9`(€RbáýaÀaL`
~`p´­˜ÒÔ_¶òtOÞòôçòh
@¹€Rk
@ý
¹
ù€)K `èT(ÿÿ5h@ù@ù
@ù?ÖÉ5@h@ù@ù
@ù?ÖË5@`	k(I!jjþÿT!` þÿTA`8”à	`hÀaia
ý(€Rh
¹k€)K `iüÿT`(`h@ù@ù
@ù?Öa	k‚gžBa!¨B a$T ”àýlkàýI9hA`” )`á@ý `á@ý Ká@ý0 `Å÷ÿTà@ýhý{G©ôOF©é#Emë+Dmí3Cmï;Bmÿ‘À_Öé#¾mý{©ýC‘(@`aÿÿ—	`ý{A©é#ÂlÀ_Öé#¾mý{©ýC‘@`@ù@ù
@ù?Ön 8`ó”@ahá”(€Rb8aý{A©é#ÂlÀ_Ö `aTä/À_Öé#¾mý{©ýC‘@`@ù@ù
@ù?Ö	n 9`Û”@a!hð”ý{A©é#ÂlÀ_Öë+½mé#mý{©ýƒ‘@`(€R	b@ù@ù
@ù?Ö
n@9`Ç”·” 9`AhÛ”ý{B©é#Amë+ÃlÀ_Öé#¾mý{©ýC‘`hÿÿ—	`ý{A©é#ÂlÀ_Öé#¾mý{©ýC‘@`@ù	@ùઠ?Ö@a®”p `Àa	`ý{A©é#ÂlÀ_Öï;ºmí3më+mé#môO©ý{©ýC‘	@`óªàb  `áT` hàªóþÿ—	`D(@`(€Rb iÅTb 9``kàªæþÿ—j	`h
@¹È4`
@ý
¹
ù/`@ù
`jSôÿ—øÓbž )`jàªÕþÿ—@	`!h Tø¯R'À"!~
nh@ù@ù
@ù?Ön1@h@ù@ù
@ù?Öo1@à	oÉN0!mjþÿT(!` þÿT A`[”p `iÀana
ý(€Rh
¹oÁa(a(@ý{E©ôOD©é#Cmë+Bmí3Amï;ÆlÀ_Öë+¼mé#môO©ý{©ýÑ(@`	@`óªA@`›ÿÿ—
h`kઘþÿ—`	`i@`ý{C©ôOB©é#Amë+ÄlÀ_ÖÿÃÑï;mí3më+mé#môO©ý{©ýƒ‘)@`@`óªH€Rba`@¹¨4`
@ý
¹
ù!ãý~
`nh@ù@ù
@ù?֯1@h@ù@ù
@ù?֫1@`	kêOP!njþÿTH!` þÿT@A`”p `jÀaoa
ý(€Rh
¹kã@ý	` `ˆ€Rb!i`!@!Àa8ai @h@ù@ù
@ù?Ö)ia ahT A`	hiý{F©ôOE©é#Dmë+Cmí3Bmï;AmÿÑÀ_Öï;ºmí3më+mé#môO©ý{©ýC‘(@`	@`óª@¹¨4`
@ý
¹
ù~`
nh@ù@ù
@ù?֎-@h@ù@ù
@ù?֏-@à	oÊNP!mjþÿTH!` þÿT@A`¹”p `jÀana
ý(€Rh
¹o%@ý{E©ôOD©é#Cmë+Bmí3Amï;ÆlÀ_Öï;ºmí3më+mé#môO©ý{©ýC‘(@`	@`óª@¹¨4`
@ý
¹
ù~`
nh@ù@ù
@ù?֎-@h@ù@ù
@ù?֏-@à	oÊNP!mjþÿTH!` þÿT@A`ƒ”p `jÀana
ý(€Rh
¹o%@i”ý{E©ôOD©é#Cmë+Bmí3Amï;ÆlÀ_Öï;ºmí3më+mé#môO©ý{©ýC‘@`óª@¹¨4i
@ý
¹
ù
~`nh@ù@ù
@ù?Öm)@h@ù@ù
@ù?Ön)@À	n©M0!ljþÿT(!` þÿT A`M”p `iÀama
ý(€Rh
¹	nT€R€b`ઞýÿ—ba!Àa!iÀa `ý{E©ôOD©é#Cmë+Bmí3Amï;ÆlÀ_Öé#½môO©ý{©ýƒ‘óª(€RbB8aHa‡ýÿ—	``@ùý{B©ôOA©é#Ãlùòÿï;ºmí3më+mé#môO©ý{©ýC‘óª@¹h4i
@ý
¹
~`n
ùh@ù@ù
@ù?Öm)@h@ù@ù
@ù?Ön)@À	n¨M!ljþÿT!` þÿTA`”p `hÀama
ý(€Rh
¹n	~
`nh@ù@ù
@ù?ÖK%@h@ù@ù
@ù?ÖM%@ 	mhK!ljþÿT!` þÿTA`á”p `hÀa k)m
¹
ù `ý{E©ôOD©é#Cmë+Bmí3Amï;ÆlÀ_Öí3»më+mé#môO©ý{©ý‘(@`	@`óªn0!`ˆT!`HT
nh@ù@ù
@ù?Ö
@`h@ù@ù
@ù?Ö@`¡i@A`Í”@`¡h`A`É”)`0 m¨ýÿT)`âb0 b
T€)`€`ý{D©ôOC©é#Bmë+Amí3ÅlÀ_ÖઠA`þüÿ—	@`àªA`úüÿ— )` `ý{D©ôOC©é#Bmë+Amí3ÅlÀ_Ö@A`‘”	i`A`Ž”h0!`!Í`(9a	8aA`x”
@` A`u”@)`‚”9`q”ý{D©ôOC©é#Bmë+Amí3ÅlÀ_Öë+¼mé#môO©ý{©ýÑ(@`	@`óª
`jÎüÿ—@	`hjàªÉüÿ—@	`i``ý{C©ôOB©é#Amë+ÄlÀ_Öé#¾mý{©ýC‘@`@ù@ù
@ù?Ön 8`W”@a	`ý{A©é#ÂlÀ_ÖôO¾©ý{©ýC‘óªl aHTabžaÐg0 bHTáªý{A©ôO¨ëôÿn 8`abžaÐg0 bhTáªâôÿ—`Ëý{A©ôO¨À_Öáªý{A©ôO¨:óÿáª8óÿ—`Ëý{A©ôO¨À_ÖÿÃÑï;mí3më+mé#müo©úg©ø_©öW©ôO	©ý{
©ýƒ‘óªõªôªöª,ñ
TŸ뛲•šš•š¨‹	Ë?ëéù8±“š`bžbža	n!9`bžlJ@	Ë"bždbžBd@`a	Ñ!bža(c
ÀaI#Ž҉wºòi}Øò‰ýçò gž	s‚Òiæ§ò©YÎòiÿçò!gž‘âbžy‘#bž+M@c	‘bža@exžˆ‘bžÊîÿ—@`(ËbžÆîÿ—)`èËbžÂîÿ—)`HË‘ˆ‹bž¼îÿ—)`ë³›šbž(i	€R!b!(M!@e aETbž
(i"ñ«T€ҿ먲”šbžø˹‹	A`8!`íTÀ@ùÈ@ù?Ö(‹bž!a(a@e¸á^Øa^)9`÷Ñë!þÿT9ixži˿ë? b(M
@elq;€RÀ@ùÈ@ù?Ö@`À@ùÈ@ù?Ö8n`	`h@)` `„þÿT mJþÿT@exžˆ‘bžvîÿ—	@`(Ëbžrîÿ—))`Ëè‘bžmîÿ—))`ˆ‹bžiîÿ— )`‰9`b8h=@ i‰T9i	`ab aŠúÿTA`w”` ` iÈùÿTŸë蜚‰Ëê@ù_ë ±ˆš€Òý{J©ôOI©öWH©ø_G©úgF©üoE©é#Dmë+Cmí3Bmï;AmÿÑÀ_Ö5ñÿšöÿé#¾mý{©ýC‘@`èó²¨úçògž!`«TA`ý{A©é#Âlöÿ@ù	@ùઠ?Ö@aM”	@`(€Rb8hE” `Àdxžý{A©é#ÂlÀ_Öûÿí3ºmë+mé#möW©ôO©ý{©ýC‘  a Tø¯R'À"x)@`@`óªH‡‘ÒF¼òÈ1Ïò¨Èçògž0 `TH€Rb`@ùh@ù?Ö(€Rb…`£…҈ˆªòh?Äò(èògž `_(Òh±ò¨ßòˆÜçògž0!`¥Tni(i(€Rbˆ€Rb!i!I!Àa(aH€RbCacÀa!8cCi!c AAaa£…Ҕˆªòt?Äò4èò5€RV€R`@ùh@ù?ցgž `Ý”¡ba@`)`*``9j,	``@ùh@ù?ÖÁb!8laâb0 b*T€`Þ”¡b(a8láb a‹üÿT`@ùh@ù?Ö	@`@A`½”l0!a@a L`(háb aóGŸÀ`£…҈ˆªòh?Äò(èògž(hH€Rb!h¹”8h“7€baý{E©ôOD©öWC©é#Bmë+Amí3ÆlÀ_Öï;ºmí3më+mé#môO©ý{©ýC‘@`óª
n 9`§”	@``@ùh@ù?Ö h4€RêT
@``@ùh@ù?Ö
@` hêT`@ùh@ù?Ö 	`„”«9``	kP!`(TŽb@A`Œ”@``A`‰”€`À)`@exžñËüÿTH!`€üÿTôªP!k跟q(€Rˆšàªý{E©ôOD©é#Cmë+Bmí3Amï;ÆlÀ_֐@ù֐@ù֐
@ù֐@ù֐@ù֐@ù֐@ù֐@ù֐"@ù֐&@ù֐*@ù֐.@ù֐2@ù֐6@ù֐:@ù֐>@ù֐B@ù֐F@ù֐J@ù֐N@ù֐R@ù֐V@ù֐Z@ù֐^@ù֐b@ù֐f@ù֐j@ù֐n@ù֐r@ù֐v@ù֐z@ù֐~@ù֐‚@ù֐†@ù֐Š@ù֐Ž@ù֐’@ù֐–@ù֐š@ù֐ž@ù֐¢@ù֐¦@ù֐ª@ù֐®@ù֐²@ù֐¶@ù֐º@ù֐¾@ù֐Â@ù֐Æ@ù֐Ê@ù֐Î@ù֐Ò@ù֐Ö@ù֐Ú@ù֐Þ@ù֐â@ù֐æ@ù֐ê@ù֐î@ù֐ò@ù֐ö@ù֐ú@ù֐þ@ù֐Aù֐Aù֐
Aù֐Aù֐Aù֐Aù֐Aù֐Aù֐"Aù֐&Aù֐*Aù֐.Aù֐2Aù֐6Aù֐:Aù֐>Aù֐BAù֐FAù֐JAù֐NAù֐RAù֐VAù֐ZAù֐^Aù֐bAù֐fAù֐jAù֐nAù֐rAù֐vAù֐zAù֐~Aù֐‚Aù֐†Aù֐ŠAù֐ŽAù֐’Aù֐–Aù֐šAù֐žAù֐¢Aù֐¦Aù֐ªAù֐®Aù֐²Aù֐¶Aù֐ºAù֐¾Aù֐ÂAù֐ÆAù֐ÊAù֐ÎAù֐ÒAù֐ÖAù֐ÚAù֐ÞAù֐âAù֐æAù֐êAù֐îAù֐òAù֐öAù֐úAù֐þAù֐Bù֐Bù֐
Bù֐Bù֐Bù֑1¢‘ðG¿©p~@ùÖPùÿÿPöÿÿ!Póÿÿ6PðÿÿOPíÿÿkPêÿÿ„Pçÿÿ™Päÿÿ°PáÿÿÃPÞÿÿßPÛÿÿþPØÿÿPÕÿÿ#PÒÿÿ9PÏÿÿUPÌÿÿhPÉÿÿ{PÆÿÿšPÃÿÿ¯PÀÿÿÓP½ÿÿôPºÿÿP·ÿÿ#P´ÿÿ;P±ÿÿPP®ÿÿiP«ÿÿ†P¨ÿÿ P¥ÿÿÁP¢ÿÿâPŸÿÿûPœÿÿP™ÿÿ*P–ÿÿ?P“ÿÿSPÿÿnPÿÿ‰PŠÿÿ¨P‡ÿÿÆP„ÿÿïPÿÿP~ÿÿ&P{ÿÿ=PxÿÿPPuÿÿfPrÿÿPoÿÿ—Plÿÿ²PiÿÿÌPfÿÿáPcÿÿ÷P`ÿÿP]ÿÿ)PZÿÿBPWÿÿ]PTÿÿrPQÿÿŽPNÿÿ±PKÿÿÈPHÿÿÞPEÿÿøPBÿÿP?ÿÿ-P<ÿÿCP9ÿÿYP6ÿÿƒP3ÿÿ›P0ÿÿ»P-ÿÿ×P*ÿÿðP'ÿÿP$ÿÿ(P!ÿÿAPÿÿWPÿÿsPÿÿ‹Pÿÿ Pÿÿ½PÿÿÖPÿÿõP	ÿÿPÿÿ$PÿÿDPÿÿ`PýþÿxPúþÿ‘P÷þÿ¥Pôþÿ¿PñþÿØPîþÿìPëþÿ	Pèþÿ	Påþÿ2	PâþÿG	Pßþÿ`	PÜþÿz	PÙþÿ“	PÖþÿ¬	PÓþÿÅ	PÐþÿâ	PÍþÿÿ	PÊþÿ#
PÇþÿF
PÄþÿ\
PÁþÿ‡
P¾þÿ¥
P»þÿÃ
P¸þÿá
PµþÿP²þÿP¯þÿHP¬þÿeP©þÿ‰P¦þÿ P£þÿÆP þÿÚPþÿóPšþÿP—þÿP”þÿP‘þÿ%PŽþÿ3P‹þÿ@PˆþÿMP…þÿYP‚þÿgPþÿvP|þÿƒPyþÿ’Pvþÿ¡Psþÿ°Ppþÿ¿PmþÿË9A`…YxROTYdGLQœINlHMR MTY9A`AIQq9A`9A`HMR HMR HMR HMR 9A`@HQr9Ba8A_AJTuDNmu}M@Gnumpy.random.mtrandnumpy/random/mtrand.pyxCannot take a larger sample than population when 'replace=False'DeprecationWarningFewer non-zero entries in p than sizeImportErrorIndexErrorInvalid bit generator. The bit generator must be instantized._MT19937MT19937Negative dimensions are not allowedOverflowErrorProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.
In future version, providing byteorder will raise a ValueErrorRandomStateRandomState.binomial (line 3353)RandomState.bytes (line 805)RandomState.chisquare (line 1910)RandomState.choice (line 841)RandomState.dirichlet (line 4394)RandomState.exponential (line 500)RandomState.f (line 1729)RandomState.gamma (line 1645)RandomState.geometric (line 3772)RandomState.gumbel (line 2764)RandomState.hypergeometric (line 3834)RandomState.laplace (line 2670)RandomState.logistic (line 2888)RandomState.lognormal (line 2974)RandomState.logseries (line 3969)RandomState.multinomial (line 4257)RandomState.multivariate_normal (line 4058)RandomState.negative_binomial (line 3505)RandomState.noncentral_chisquare (line 1986)RandomState.noncentral_f (line 1823)RandomState.normal (line 1454)RandomState.pareto (line 2354)RandomState.permutation (line 4668)RandomState.poisson (line 3593)RandomState.power (line 2561)RandomState.rand (line 1177)RandomState.randint (line 679)RandomState.randn (line 1221)RandomState.random_integers (line 1289)RandomState.random_sample (line 385)RandomState.rayleigh (line 3090)RandomState.seed (line 228)RandomState.shuffle (line 4543)RandomState.standard_cauchy (line 2075)RandomState.standard_exponential (line 577)RandomState.standard_gamma (line 1563)RandomState.standard_normal (line 1385)RandomState.standard_t (line 2150)RandomState.tomaxint (line 621)RandomState.triangular (line 3244)RandomState.uniform (line 1050)RandomState.vonmises (line 2265)RandomState.wald (line 3167)RandomState.weibull (line 2457)RandomState.zipf (line 3676)Range exceeds valid boundsRuntimeWarningSequenceShuffling a one dimensional array subclass containing objects gives incorrect results for most array subclasses.  Please use the new random number API instead: https://numpy.org/doc/stable/reference/random/index.html
The new API fixes this issue. This version will not be fixed due to stability guarantees of the API.TThis function is deprecated. Please call randint(1, {low} + 1) insteadThis function is deprecated. Please call randint({low}, {high} + 1) insteadTypeErrorUnsupported dtype %r for randintUserWarningValueError()*.?a'a' and 'p' must have same size'a' cannot be empty unless no samples are takena must be 1-dimensionala must be 1-dimensional or an integera must be greater than 0 unless no samples are takenaddall__all__allclosealphaalpha <= 0anyarangeargsarrayarray is read-onlyasarrayastype at 0x{:X}atolbbg_type
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        bit_generatorbitgenbool_
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        can only re-seed a MT19937 BitGeneratorcapsulecastingcheck_validcheck_valid must equal 'warn', 'raise', or 'ignore'
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        __class____class_getitem__cline_in_tracebackcollections.abccopycount_nonzerocovcov must be 2 dimensional and squarecovariance is not symmetric positive-semidefinite.cumsumdfdfdendfnum
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        disabledotemptyempty_likeenable__enter__epsequal__exit__
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        finfoflagsfloat64format
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gaussgc
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        getget_state and legacy can only be used with the MT19937 BitGenerator. To silence this warning, set `legacy` to False.greater
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        has_gausshigh
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        idignore__import__index_initializingint16int32int64int8intpisenabledisfiniteisnanisnativeisscalarissubdtypeitemitemsizekappakeykwargsllam
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        leftleft > modeleft == rightlegacylegacy can only be True when the underlyign bitgenerator is an instance of MT19937._legacy_seedinglengthlessless_equalloclocklogical_or
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        low__main__may_share_memorymeanmean and cov must have same lengthmean must be 1 dimensionalmodemode > right_mt19937mu
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        n__name__nbadndim
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        newbyteorderngoodngood + nbad < nsamplenonc
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        npnsamplenumpy.core.multiarray failed to importnumpy.core.umath failed to importnumpy.linalgobject_' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.operatorp'p' must be 1-dimensional
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _pickle
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        _poisson_lam_maxpos
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        probabilities are not non-negativeprobabilities contain NaNprobabilities do not sum to 1prodpvalspvals must be a 1-d sequence__pyx_vtable__raise_rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        __randomstate_ctorrangeravel
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        reducereplacereshapereturn_indexreversedrightrtolscalesearchsorted
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        set_state can only be used with legacy MT19937 state instances.shape
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        sidesigmasingletonsizesort__spec__sqrtstacklevel
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        statestate dictionary is not valid.state must be a dict or a tuple.__str__stridessubtractsumsum(pvals[:-1]) > 1.0sum(pvals[:-1].astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.svdtake__test__tobytestol
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        <u4uint16uint32uint64uint8
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        uniqueunsafe
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        warnwarnings
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        writeablexx must be an integer or at least 1-dimensionalyou are shuffling a 'zeros
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        __reduce__seed
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        get_state
        get_state(legacy=True)

        Return a tuple representing the internal state of the generator.

        For more details, see `set_state`.

        Parameters
        ----------
        legacy : bool, optional
            Flag indicating to return a legacy tuple state when the BitGenerator
            is MT19937, instead of a dict. Raises ValueError if the underlying
            bit generator is not an instance of MT19937.

        Returns
        -------
        out : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            If legacy is True, the returned tuple has the following items:

            1. the string 'MT19937'.
            2. a 1-D array of 624 unsigned integer keys.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If `legacy` is False, or the BitGenerator is not MT19937, then
            state is returned as a dictionary.

        See Also
        --------
        set_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        set_state
        set_state(state)

        Set the internal state of the generator from a tuple.

        For use if one has reason to manually (re-)set the internal state of
        the bit generator used by the RandomState instance. By default,
        RandomState uses the "Mersenne Twister"[1]_ pseudo-random number
        generating algorithm.

        Parameters
        ----------
        state : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The `state` tuple has the following items:

            1. the string 'MT19937', specifying the Mersenne Twister algorithm.
            2. a 1-D array of 624 unsigned integers ``keys``.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If state is a dictionary, it is directly set using the BitGenerators
            `state` property.

        Returns
        -------
        out : None
            Returns 'None' on success.

        See Also
        --------
        get_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        For backwards compatibility, the form (str, array of 624 uints, int) is
        also accepted although it is missing some information about the cached
        Gaussian value: ``state = ('MT19937', keys, pos)``.

        References
        ----------
        .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
           623-dimensionally equidistributed uniform pseudorandom number
           generator," *ACM Trans. on Modeling and Computer Simulation*,
           Vol. 8, No. 1, pp. 3-30, Jan. 1998.

        random_sample
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        random
        random(size=None)

        Return random floats in the half-open interval [0.0, 1.0). Alias for
        `random_sample` to ease forward-porting to the new random API.
        beta
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        .. note::
            New code should use the `~numpy.random.Generator.beta`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.


        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        See Also
        --------
        random.Generator.beta: which should be used for new code.
        exponential
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        standard_exponential
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        randint
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        bytes
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        choice
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        uniform
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        randn
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        random_integers
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        standard_normal
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        normal
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        standard_gamma
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gamma
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        f
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        noncentral_f
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        chisquare
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        noncentral_chisquare
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        standard_cauchy
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        standard_t
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        vonmises
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        pareto
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        weibull
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        power
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        laplace
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        gumbel
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        logistic
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        lognormal
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        rayleigh
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        wald
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        triangular
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        binomial
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        negative_binomial
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        poisson
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        zipf
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        geometric
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        hypergeometric
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        logseries
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        multivariate_normal
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        multinomial
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        dirichlet
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        shuffle
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        permutation
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _bit_generatortypenumpydtypedouble
    seed(seed=None)

    Reseed the singleton RandomState instance.

    Notes
    -----
    This is a convenience, legacy function that exists to support
    older code that uses the singleton RandomState. Best practice
    is to use a dedicated ``Generator`` instance rather than
    the random variate generation methods exposed directly in
    the random module.

    See Also
    --------
    numpy.random.Generator
    get_bit_generator
    Returns the singleton RandomState's bit generator

    Returns
    -------
    BitGenerator
        The bit generator that underlies the singleton RandomState instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random`` namespace. This function, and its counterpart set method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    set_bit_generator
    numpy.random.Generator
    set_bit_generator
    Sets the singleton RandomState's bit generator

    Parameters
    ----------
    bitgen
        A bit generator instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random``namespace. This function, and its counterpart get method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    get_bit_generator
    numpy.random.Generator
    sample
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    ranf
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    Á]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛe'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msyÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒx€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9mtrandnameloader__loader__origin__file__parent__package__submodule_search_locations__path__Interpreter change detected - this module can only be loaded into one interpreter per process.Module 'mtrand' has already been imported. Re-initialisation is not supported.builtinscython_runtime__builtins__init numpy.random.mtrandnumpy/__init__.cython-30.pxdcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%ddoes not match4294967296name '%U' is not definedBitGeneratornumpy.random.mtrand.RandomState._initialize_bit_generator while calling a Python objectNULL result without error in PyObject_Callcalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionnumpy.random.mtrand.RandomState
    RandomState(seed=None)

    Container for the slow Mersenne Twister pseudo-random number generator.
    Consider using a different BitGenerator with the Generator container
    instead.

    `RandomState` and `Generator` expose a number of methods for generating
    random numbers drawn from a variety of probability distributions. In
    addition to the distribution-specific arguments, each method takes a
    keyword argument `size` that defaults to ``None``. If `size` is ``None``,
    then a single value is generated and returned. If `size` is an integer,
    then a 1-D array filled with generated values is returned. If `size` is a
    tuple, then an array with that shape is filled and returned.

    **Compatibility Guarantee**

    A fixed bit generator using a fixed seed and a fixed series of calls to
    'RandomState' methods using the same parameters will always produce the
    same results up to roundoff error except when the values were incorrect.
    `RandomState` is effectively frozen and will only receive updates that
    are required by changes in the internals of Numpy. More substantial
    changes, including algorithmic improvements, are reserved for
    `Generator`.

    Parameters
    ----------
    seed : {None, int, array_like, BitGenerator}, optional
        Random seed used to initialize the pseudo-random number generator or
        an instantized BitGenerator.  If an integer or array, used as a seed for
        the MT19937 BitGenerator. Values can be any integer between 0 and
        2**32 - 1 inclusive, an array (or other sequence) of such integers,
        or ``None`` (the default).  If `seed` is ``None``, then the `MT19937`
        BitGenerator is initialized by reading data from ``/dev/urandom``
        (or the Windows analogue) if available or seed from the clock
        otherwise.

    Notes
    -----
    The Python stdlib module "random" also contains a Mersenne Twister
    pseudo-random number generator with a number of methods that are similar
    to the ones available in `RandomState`. `RandomState`, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    See Also
    --------
    Generator
    MT19937
    numpy.random.BitGenerator

    numpy.random.mtrand.RandomState.__repr__numpy.random.mtrand.RandomState.__str____repr____getstate____setstate__tomaxintat leastat mostexactly%.200s() takes %.8s %zd positional argument%.1s (%zd given)s%.200s() keywords must be strings%s() got an unexpected keyword argument '%U'numpy.random.mtrand.RandomState.__getstate__numpy.random.mtrand.RandomState.__setstate__%s() got multiple values for keyword argument '%U'numpy.random.mtrand.RandomState.__reduce__too many values to unpack (expected %zd)need more than %zd value%.1s to unpacknumpy.random.mtrand.RandomState.seednumpy.random.mtrand.RandomState.get_statenumpy.random.mtrand.RandomState.set_statevalue too large to convert to intintan integer is required__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)numpy.random.mtrand.RandomState.random_samplenumpy.random.mtrand.RandomState.randomnumpy.random.mtrand.RandomState.betanumpy.random.mtrand.RandomState.exponentialnumpy.random.mtrand.RandomState.standard_exponentialnumpy.random.mtrand.RandomState.tomaxintnumpy.random.mtrand.RandomState.randintnumpy.random.mtrand.RandomState.bytes'%.200s' object is unsliceablenumpy.random.mtrand.RandomState.choiceMissing type objectCannot convert %.200s to %.200s'%.200s' object does not support slice %.10sassignmentdeletioncannot fit '%.200s' into an index-sized integer'%.200s' object is not subscriptablenumpy.random.mtrand.RandomState.uniformnumpy.random.mtrand.RandomState.randnumpy.random.mtrand.RandomState.randnnumpy.random.mtrand.RandomState.random_integersnumpy.random.mtrand.RandomState.standard_normalnumpy.random.mtrand.RandomState.normalnumpy.random.mtrand.RandomState.standard_gammanumpy.random.mtrand.RandomState.gammanumpy.random.mtrand.RandomState.fnumpy.random.mtrand.RandomState.noncentral_fnumpy.random.mtrand.RandomState.chisquarenumpy.random.mtrand.RandomState.noncentral_chisquarenumpy.random.mtrand.RandomState.standard_cauchynumpy.random.mtrand.RandomState.standard_tnumpy.random.mtrand.RandomState.vonmisesnumpy.random.mtrand.RandomState.paretonumpy.random.mtrand.RandomState.weibullnumpy.random.mtrand.RandomState.powernumpy.random.mtrand.RandomState.laplacenumpy.random.mtrand.RandomState.gumbelnumpy.random.mtrand.RandomState.logisticnumpy.random.mtrand.RandomState.lognormalnumpy.random.mtrand.RandomState.rayleighnumpy.random.mtrand.RandomState.waldnumpy.random.mtrand.RandomState.triangularnumpy.random.mtrand.RandomState.binomialnumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3numpy.random.mtrand.RandomState.negative_binomialnumpy.random.mtrand.int64_to_longnumpy.random.mtrand.RandomState.poissonnumpy.random.mtrand.RandomState.zipfnumpy.random.mtrand.RandomState.geometricnumpy.random.mtrand.RandomState.hypergeometricnumpy.random.mtrand.RandomState.logseriesnumpy.random.mtrand.RandomState.multivariate_normalnumpy.random.mtrand.RandomState.multinomialnumpy.random.mtrand.RandomState.dirichletnumpy.random.mtrand.RandomState.shufflejoin() result is too long for a Python stringnumpy.random.mtrand.RandomState.permutation__init__numpy.random.mtrand.RandomState.__init__hasattr(): attribute name must be stringbase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typemultiple bases have vtable conflict: '%.200s' and '%.200s'invalid vtable found for imported typeboolcomplexflatiterbroadcastndarraygenericnumberintegersignedintegerunsignedintegerinexactfloatingcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequence%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectnumpy.random._commonPOISSON_LAM_MAXLEGACY_POISSON_LAM_MAXMAXSIZEuint64_t__pyx_capi__%.200s does not export expected C variable %.200sC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)numpy.random._bounded_integers_rand_uint64PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintint (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)check_array_constraintint (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)kahan_sumdouble (double *, npy_intp)double_fillPyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)validate_output_shapePyObject *(PyObject *, PyArrayObject *)contPyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)discPyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)cont_broadcast_3PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)discrete_broadcast_iii%.200s does not export expected C function %.200sC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)cannot import name %Snumpy.import_arraynumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is not PyCapsule object_ARRAY_API is NULL pointermodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%x . Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem .FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random.mtrand.seednumpy.random.mtrand.get_bit_generatornumpy.random.mtrand.set_bit_generatornumpy.random.mtrand.samplenumpy.random.mtrand.ranf%s (%s:%d)numpy/random/mtrand.cpython-312-iphonesimulator.so.p/numpy/random/mtrand.pyx.cdd8Kˆˆ˜IˆH@HOhO$T\]¸_\`¤afxf¬¬¬­ ®p®D¯|±Œ³$¶P¶·$¹ü¹PÁ¸ÁpœÉ(ÊDÌH̬Îlí
ÔøHJÜ\„d@Í4å
dZ
s$‹ø‹d‘ä’à”ܖx—¨˜š œô
œÐü¤ $# $°(¬) †ˆ<ˆl‰´d–˜ě<¡p¡€¡,¢$£<¤H¥„¦L§˜¨à¨Tªœª´®D³¨³´³¸µàµȶD·¹4¹
”¹	̹ȼ
°½	¾0¾$¿	€¿Ä	HÄÈÊXÌÍ
0ÏÒüÒdÓŒÔÕäÕxÖ¬Ù„ÝðÝ8â¨æ@ç˜èpé éìÔì,í˜íï
dï`ó	 óäô@ö
 öàö|÷¬ú´ú,û0û\ýìOøOPPP(P4P@PLPXPdPpP|PˆP”P P¬P¸PÄPÐPÜPèPôPQQQ$Q0Q<QHQTQ`QlQxQ„QQœQ¨Q´QÀQÌQØQäQðQüQRR R,R8RDRPR\RhRtR€RŒR˜R¤R°R¼RÈRÔRàRìRøRSSS(S4S@SLSXSdSpS|SˆS”S S¬S¸SÄSÐSÜSèSôSTTT$T0T<THTTT`TlTxT„TTœT¨T´TÀTÌTØTäTðTüTUU U,U8UDUPU\UhUtU€UŒU˜U¤U°U¼UÈUÔUàUìUøUVVV@Ö(N	˜D	DKxNÿÿÿÿÿÿÿÿ@Ùð\4P	D`ÙˆðpF	0M	¨
Ô©â|D²â€‚¿âä‚/n€‚:nˆ'‚?n¶p,-‚Àp°u¤8‚ºuÅ|D‚Ó|‡ƒðF‚ŽƒG„ÐJ‚L„JÌO‚͊b•¼S‚w•Ìâ¼V‚­™Ÿg‚Ÿ~ªˆ‚„ª"­Œ‚)­øº€•‚»É¨$É•Íè«›ÍÃÖ¼¯‚ÓÖæá@¿‚öápê@‚wêIú@Ç‚Xúw,Ë‚}ŒÐ‚ŽªÕ‚·'-àÚ‚1-g6ÌÞ‚|6}BÈろBÎLÐæ‚ÙL[^¼ê‚d^gk¸ï‚nke{¤ó‚m{[‰÷‚a‰Q—|û‚Y—+¥€‚2¥S¸„‚\¸ÌĈ
‚ÖĤ֌‚­ÖÍà|‚Òà=ìx‚HìÔöl0‚ÝöàœP‚òräU‚zy$Z‚~G)L^‚Q)Ì0tb‚Û0IAP~‚SAIMx‚‚]MQchˆ‚]c®o<¥‚¸o|T¾‚!|р,À‚݀ͅTÓtÓ:nìØ‚ô…Ÿ‡œá±‡—ŠHã‚©Š`üægύ¸éԍ"`…FpRDpp0pp p(p SDpp(pp`RBRBRBRBRASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASAp SGRASASASASAQ>@_PyBaseObject_TypeQq@_PyBool_Type@_PyCFunction_Type@_PyCapsule_Type@_PyDict_Type@_PyExc_AttributeError@_PyExc_DeprecationWarning@_PyExc_Exception@_PyExc_ImportError@_PyExc_IndexError@_PyExc_KeyError@_PyExc_NameError@_PyExc_OverflowError@_PyExc_RuntimeError@_PyExc_StopIteration@_PyExc_SystemError@_PyExc_TypeError@_PyExc_ValueError@_PyFloat_Type@_PyList_Type@_PyLong_Type@_PyMethod_Type@_PyObject_GenericGetAttr@_PyTuple_Type@_PyUnicode_Type@_Py_Version@__Py_EllipsisObject@__Py_FalseStruct@__Py_NoneStruct@__Py_TrueStruct@___stack_chk_guard@dyld_stub_binderr>@_PyBytes_FromStringAndSizer>@_PyCMethod_Newr>@_PyCapsule_GetNamer>@_PyCapsule_GetPointerr >@_PyCapsule_IsValidr(>@_PyCapsule_Newr0>@_PyCode_NewEmptyr8>@_PyDict_Copyr@>@_PyDict_GetItemStringrH>@_PyDict_GetItemWithErrorrP>@_PyDict_NewrX>@_PyDict_Nextr`>@_PyDict_SetItemrh>@_PyDict_SetItemStringrp>@_PyDict_Sizerx>@_PyErr_Clearr€>@_PyErr_ExceptionMatchesrˆ>@_PyErr_Formatr>@_PyErr_GivenExceptionMatchesr˜>@_PyErr_NormalizeExceptionr >@_PyErr_Occurredr¨>@_PyErr_SetObjectr°>@_PyErr_SetStringr¸>@_PyErr_WarnExrÀ>@_PyErr_WarnFormatrÈ>@_PyEval_RestoreThreadrÐ>@_PyEval_SaveThreadrØ>@_PyException_GetTracebackrà>@_PyException_SetTracebackrè>@_PyFloat_AsDoublerð>@_PyFloat_FromDoublerø>@_PyFrame_Newr€>@_PyGC_Disablerˆ>@_PyGC_Enabler>@_PyImport_AddModuler˜>@_PyImport_GetModuler >@_PyImport_GetModuleDictr¨>@_PyImport_ImportModuler°>@_PyImport_ImportModuleLevelObjectr¸>@_PyInterpreterState_GetIDrÀ>@_PyList_AppendrÈ>@_PyList_AsTuplerÐ>@_PyList_NewrØ>@_PyLong_AsLongrà>@_PyLong_AsSsize_trè>@_PyLong_FromLongrð>@_PyLong_FromSsize_trø>@_PyLong_FromStringr€>@_PyMem_Mallocrˆ>@_PyMem_Reallocr>@_PyModuleDef_Initr˜>@_PyModule_GetDictr >@_PyModule_GetNamer¨>@_PyModule_NewObjectr°>@_PyNumber_Addr¸>@_PyNumber_InPlaceAddrÀ>@_PyNumber_InPlaceTrueDividerÈ>@_PyNumber_IndexrÐ>@_PyNumber_LongrØ>@_PyNumber_Multiplyrà>@_PyNumber_Remainderrè>@_PyNumber_Subtractrð>@_PyOS_snprintfrø>@_PyObject_Callr€>@_PyObject_CallFinalizerFromDeallocrˆ>@_PyObject_Formatr>@_PyObject_GC_IsFinalizedr˜>@_PyObject_GC_UnTrackr >@_PyObject_GetAttrr¨>@_PyObject_GetAttrStringr°>@_PyObject_GetItemr¸>@_PyObject_GetIterrÀ>@_PyObject_HashrÈ>@_PyObject_IsInstancerÐ>@_PyObject_IsTruerØ>@_PyObject_Notrà>@_PyObject_RichComparerè>@_PyObject_SetAttrrð>@_PyObject_SetAttrStringrø>@_PyObject_SetItemr€>@_PyObject_Sizerˆ>@_PyObject_VectorcallDictr>@_PySequence_Containsr˜>@_PySequence_Listr >@_PySequence_Tupler¨>@_PySlice_Newr°>@_PyThreadState_Getr¸>@_PyTraceBack_HererÀ>@_PyTuple_NewrÈ>@_PyTuple_PackrÐ>@_PyType_IsSubtyperØ>@_PyType_Modifiedrà>@_PyType_Readyrè>@_PyUnicode_AsUTF8rð>@_PyUnicode_Comparerø>@_PyUnicode_Concatr€>@_PyUnicode_Decoderˆ>@_PyUnicode_Formatr>@_PyUnicode_FromFormatr˜>@_PyUnicode_FromStringr >@_PyUnicode_FromStringAndSizer¨>@_PyUnicode_InternFromStringr°>@_PyUnicode_Newr¸>@_PyUnstable_Code_NewWithPosOnlyArgsrÀ>@_PyVectorcall_FunctionrÈ>@_Py_EnterRecursiveCallrÐ>@_Py_LeaveRecursiveCallrØ>@__PyDict_GetItem_KnownHashrà>@__PyDict_NewPresizedrè>@__PyObject_GenericGetAttrWithDictrð>@__PyObject_GetDictPtrrø>@__PyThreadState_UncheckedGetr€>@__PyType_Lookuprˆ>@__PyUnicode_FastCopyCharactersr>@__Py_Deallocr˜@___stack_chk_failr @_acosr¨@_cosr°@_expr¸@_expfrÀ@_expm1rÈ@_fmodrÐ@_freerØ@_logrà@_log1prè@_log1pfrð@_logfrø@_mallocr€@_memcmprˆ@_memcpyr@_memsetr˜@_powr @_powf_PyInit_mtrand¸–¸–´ˆ˜ ¼	ð	„ÄܤÈèl
ø}¬\˜PÔ¸HxØx˜,ÌÔ´Øœ¸h¸¬Œœäœˆ¤øèäàü	ð€È „B„ô	”%ÔÔ„€€
ìð	ü	Èìü	ˆìü	ììì„
„
„
„
ðü	ô/°@È
À¨¨Ü7¨ðÔ9˜2ذ,Ôì¬Üxüؤœ è”üÔ¤þ¬Ø´,¨Ø¨ü	üÄY°`ü „¬Øøø°¬´¼¼4L`ø˜Œ¼XpÌHôH˜	 $ „(è4$$È(`8è˜üˆ`T,ô\ˆ	@€
À\¬Ôøh¨ŒÌ””°ðèðl ¨Ð ˜ØØ0ì$PTX(Dð\ÌØÜü@ÄÜ`@œ°x¬ƒDK—xN°€š¼ šÚ\ŸúL¤P¥B”¨\ðªj”«|ܬ™D±µ°±É@¸î8÷
ä÷&
@øU
Xùz
¨ù“
|ú¶
´üÙ
üütý+Lþ<Äþ„\¿ˆúT(\Q4ŠP	ˆøð+¨
dÔ•`²|ÿ€<äy€µˆ'ë,-&¤8aD ðFØÐJÌOK¼S‘¼VËgˆ;Œs€•¬¨â諼¯Z@¿›@ÂÓ@Ç,ËJÐ}Õ»àÚöÌÞ<Èã}Ðæ¹¼êó¸ï+¤ód÷›|ûÔ€„Fˆ
Œ»|ñx-l0gœPªäUã$ZL^Ttb”P~Ïx‚hˆS<¥T¾É,À\Ö"0×?œÚWÈÜu¤Ý‡Þžà´ðàÈââ°âPã!àã6ÈåM\æiXç‚,éºPhÒühâÔiûk4k3ÜkL4mi\n~Xo¬èsÄät
 ¨¡D ØÑ[ TÓž tÓá øÓò ¤Ô!üÕ'!t×D!ìØk!œáŸ!HãÓ!üæü!¸é#"tì>"¨ìW"¸ìu"í•"dí²"\îÔ"tïó"€ð#¼ñ=#òe#„ò}#Ðóš#ô´#ŒõÓ#Ôõê#ìù$|þ$œþ1$ÀþF$àþS$ìþb$ðq$…$•$4£$X³$|À$DÒ$lÜ$Ìô$%ì%!%1%ˆ@%èQ%<	c%h	t%\
‡%¸
—%@±%€Ç%â%ó%P&`%&¼2&hC&<U&4n&œŠ&Äœ&P ©&!¼&°!Í&D"ä&ô#'ä$$'Ì&C'¼(a'()}'È+™'p-µ'À/Ð'à1ê'x2þ'Ð3(¨4)(Ø4@(D7N(h7](¸7m(8{(d8(Œ8ž(Ð8»(@:Ð(œ:Ý(è;ì(À<þ(œ=)˜>+)Ø>C)@P)xAZ)ØAn)B†)´B¤)äE»)èEÏ)ìEè)dF*hF*”H&*ØVP*Wl*,W–*RW«*^W¿*iWé*§Wú*°W
+¸W7+ÜWN+êWx+µX+ÁXµ+âXÙ+ÿX,!Y',?YP,aYz,„Y›,žYÀ,¼Yé,ÞY-ýY8-$Z_-DZ‡-eZ°-‡ZÙ-©Z.ÍZ,.ùZV.#[€.P[ª.u[Ð.”[ö.³[ /×[G/÷[l/\/2\¶/Q\Û/o\0—\/0¼\W0Ý\z0ù\¡0]Ë0A]õ0m]1”]H1¼]r1ß]™1ÿ]Ã1"^ê1B^2c^62€^]2 ^2½^¥2Ø^½2ç^Ï2ð^ù2.`30`.3w`Z3Ã`m3Í`–3î`«3ú`¿3aË3a×3	aä3að3
aý3a4a-41aV4aaw4ya¡4ŸaÊ4Ôa×4Øaä4Üaó4äa5ía5óa%5þa25bB5	bP5b_5b{5'bŒ5/bœ56b­5Ab»5FbÆ5Hb×5Pb6Sq6aq'6hq56nq^6tˆ64t™6<tª6Dt¿6Pté6„t7º};7‰‹J7“‹a7¥‹}7¸‹–7ȋ¤7͋»7ۋÈ7ߋò7Œ87Œ,8>Œ88AŒG8GŒV8MŒ~8®˜8¶˜œ8º˜«8¿8˘Ï8ҘÞ8ܘë8à˜ú8æ˜9ï˜19„£Z9 ±i9¦±x9¬±‰9´±™9»±Â9ʽÑ9нÝ9ӽ:NÅ:RÅ=:ÇÅN:ÏÅw:ðØŠ:úؘ:ÿØÁ:méÍ:péÝ:wéí:‚éü:ˆé;–é!;œé0;¢é?;¨éM;­é[;²én;¼é€;Åé;Ëé¡;Ôé³;ÝéÇ;èéÕ;íéç;öéö;üé<ê<ê<	ê+<
êS<ß÷a<ä÷t<ð÷ˆ<þ÷˜<øÂ<YøÚ<iøê<pøø<uø=€ø=„ø'=‰ø;=”ød==Ò¶=È"Ã=Ì"Ñ=Õ"ë=æ"ù=ë"#>#G>)#U>.#i>;#z>D#†>G#¯>˜/Ø>ŒEã>ŽEñ>—Eÿ>œE
?¡E6?!SL?.S[?4Sw?KS…?PS®?Q_×?Ál@“|@–|@ž|F@Å|p@ç|†@ô|–@ü|¾@¾}Ð@Ç}Û@É}ü@ã}%AڍMAʒ]AҒ…AќžA✫AæœÔA֪þAùª!B«HB1«VB6«eB<«‹BY«ŸBh«®Bn«¾Bt«æBå¯C[»7CƒÄ`C–ψCJÖ¢C]Ö±CcÖÀCiÖéC‰àûCàD˜àD à3D­àED¶àTD¼àbDÁàqDÇà‡DÔà¯DKãØD‹ãçD‘ãEAèEFè,ELè?EVèME[è[E`èiEièwEnè‹Eyè³EºòÛEðöF+F‰
TFcFŠF0³FQÀFYÑFaãFjðFn	G„2G\?G`MGe[GnlGvyGz¢GÍ"ËGY-×G]-çGd-÷Gk-Hr-Hx-?H—;OHž;_H¥;ˆH¨H°HT¾HTÐH!TùHbIbIbAIJb^I`bmIfb–I?nÍIÀp	JºuEJÓ|…JŽƒ¾JL„õJ͊3Kw•zK­™µKŸïK„ª'L)­`L»šL$ÉÑL›Í	MÓÖKMöáMwêÆMXúN}?NŽsN·²N1-îN|65OBwOÙL´Od^ïOnk(Pm{bPa‰šPY—ÔP2¥
Q\¸HQÖÄ„Q­Ö¿QÒàöQHì3RÝönRò²RzìR~#SQ)_SÛ0 SSAÜS]M#T]cbT¸oŸT!|ÚT݀Uô…@U±‡uU©ŠªUgÔUԍüU@ŽV@–V@žV@¢&V@¦1V@®<V@¶GV@¾QV@Â[V@ÆeV@ÊpV@ÒzV	(D	‰V	0D	šV	˜D	±V	ÈD	åV	ÐD	W	pF	FW	0M	xW	€M	ˆW
 N	´W(N	ÃWHN	ßW_	X _	d.XdÂXdÏXf‚ô¬g.8K$8K$N8K.DKY$DK$4NDK.xN—$xN$LNxN.€š°$€š$ N€š. š¼$ š$¼N š.\ŸÚ$\Ÿ$ðN\Ÿ.L¤ú$L¤$NL¤.P¥$P¥$DNP¥.”¨B$”¨$\N”¨.ðª\$ðª$¤Nðª.”«j$”«$HN”«.ܬ|$ܬ$hNܬ.D±™$D±$lND±.°±µ$°±$N°±.@¸É$@¸$ø>N@¸.8÷î$8÷$¬N8÷.ä÷
$ä÷$\Nä÷.@ø&
$@ø$N@ø.XùU
$Xù$PNXù.¨ùz
$¨ù$ÔN¨ù.|ú“
$|ú$8N|ú.´ü¶
$´ü$HN´ü.üüÙ
$üü$xNüü.tý$tý$ØNtý.Lþ+$Lþ$xNLþ.Äþ<$Äþ$˜NÄþ.\„$\$,N\.ˆ¿$ˆ$ÌNˆ.Tú$T$ÔNT.($($4N(.\$\$ØN\.4Q$4$N4.P	Š$P	$8NP	.ˆÂ$ˆ$hNˆ.ðø$ð$¸Nð.¨
+$¨
$,N¨
.Ôd$Ô$ŒNÔ.`•$`$N`.|²$|$N|.€ÿ$€$dN€.ä<$ä$œNä.€y$€$
N€.ˆ'µ$ˆ'$¤Nˆ'.,-ë$,-$xN,-.¤8&$¤8$hN¤8.Da$D$äND.ðF $ðF$àNðF.ÐJØ$ÐJ$üNÐJ.ÌO$ÌO$ðNÌO.¼SK$¼S$N¼S.¼V‘$¼V$HN¼V.gË$g$!Ng.ˆ$ˆ$„Nˆ.Œ;$Œ$ôNŒ.€•s$€•$”N€•.¨¬$¨$ÔN¨.è«â$è«$ÔNè«.¼¯$¼¯$„N¼¯.@¿Z$@¿$N@¿.@›$@Â$N@Â.@ÇÓ$@Ç$ìN@Ç.,Ë$,Ë$ðN,Ë.ÐJ$Ð$üNÐ.Õ}$Õ$ÈNÕ.àÚ»$àÚ$ìNàÚ.ÌÞö$ÌÞ$üNÌÞ.Èã<$Èã$NÈã.Ðæ}$Ðæ$ìNÐæ.¼ê¹$¼ê$üN¼ê.¸ïó$¸ï$ìN¸ï.¤ó+$¤ó$ìN¤ó.÷d$÷$ìN÷.|û›$|û$N|û.€Ô$€$N€.„$„$N„.ˆ
F$ˆ
$Nˆ
.Œ$Œ$ðNŒ.|»$|$üN|.xñ$x$ôNx.l0-$l0$0 Nl0.œPg$œP$HNœP.äUª$äU$@NäU.$Zã$$Z$(N$Z.L^$L^$(NL^.tbT$tb$ÜNtb.P~”$P~$(NP~.x‚Ï$x‚$ðNx‚.hˆ$hˆ$ÔNhˆ.<¥S$<¥$N<¥.T¾$T¾$ØNT¾.,ÀÉ$,À$0N,À.\Ö$\Ö$ÔN\Ö.0×"$0×$lN0×.œÚ?$œÚ$,NœÚ.ÈÜW$ÈÜ$ÜNÈÜ.¤Ýu$¤Ý$xN¤Ý.Þ‡$Þ$üNÞ.àž$à$ØNà.ðà´$ðà$$Nðà.âÈ$â$œNâ.°ââ$°â$ N°â.Pã$Pã$NPã.àã!$àã$èNàã.Èå6$Èå$”NÈå.\æM$\æ$üN\æ.Xçi$Xç$ÔNXç.,é‚$,é$$N,é.Phº$Ph$¬NPh.ühÒ$üh$ØNüh.Ôiâ$Ôi$4NÔi.kû$k$,Nk.4k$4k$¨N4k.Ük3$Ük$XNÜk.4mL$4m$(N4m.\ni$\n$üN\n.Xo~$Xo$NXo.ès¬$ès$üNès.ätÄ$ät$Ä,Nät.¨¡
 $¨¡$00N¨¡.ØÑD $ØÑ$|NØÑ.TÓ[ $TÓ$ NTÓ.tÓž $tÓ$„NtÓ.øÓá $øÓ$¬NøÓ.¤Ôò $¤Ô$XN¤Ô.üÕ!$üÕ$xNüÕ.t×'!$t×$xNt×.ìØD!$ìØ$°NìØ.œák!$œá$¬Nœá.HãŸ!$Hã$´NHã.üæÓ!$üæ$¼Nüæ.¸éü!$¸é$¼N¸é&*&ØVP*&Wl*&,W–*&RW«*&^W¿*&iWé*&§Wú*&°W
+&¸W7+&ÜWN+&êWx+&µX+&ÁXµ+&âXÙ+&ÿX,&!Y',&?YP,&aYz,&„Y›,&žYÀ,&¼Yé,&ÞY-&ýY8-&$Z_-&DZ‡-&eZ°-&‡ZÙ-&©Z.&ÍZ,.&ùZV.&#[€.&P[ª.&u[Ð.&”[ö.&³[ /&×[G/&÷[l/&\/&2\¶/&Q\Û/&o\0&—\/0&¼\W0&Ý\z0&ù\¡0&]Ë0&A]õ0&m]1&”]H1&¼]r1&ß]™1&ÿ]Ã1&"^ê1&B^2&c^62&€^]2& ^2&½^¥2&Ø^½2&ç^Ï2&ð^ù2&.`3&0`.3&w`Z3&Ã`m3&Í`–3&î`«3&ú`¿3&aË3&a×3&	aä3&að3&
aý3&a4&a-4&1aV4&aaw4&ya¡4&ŸaÊ4&Ôa×4&Øaä4&Üaó4&äa5&ía5&óa%5&þa25&bB5&	bP5&b_5&b{5&'bŒ5&/bœ5&6b­5&Ab»5&FbÆ5&Hb×5&Pb6&Sq6&aq'6&hq56&nq^6&tˆ6&4t™6&<tª6&Dt¿6&Pté6&„t7&º};7&‰‹J7&“‹a7&¥‹}7&¸‹–7&ȋ¤7&͋»7&ۋÈ7&ߋò7&Œ8&7Œ,8&>Œ88&AŒG8&GŒV8&MŒ~8&®˜8&¶˜œ8&º˜«8&¿8&˘Ï8&ҘÞ8&ܘë8&à˜ú8&æ˜9&ï˜19&„£Z9& ±i9&¦±x9&¬±‰9&´±™9&»±Â9&ʽÑ9&нÝ9&ӽ:&NÅ:&RÅ=:&ÇÅN:&ÏÅw:&ðØŠ:&úؘ:&ÿØÁ:&méÍ:&péÝ:&wéí:&‚éü:&ˆé;&–é!;&œé0;&¢é?;&¨éM;&­é[;&²én;&¼é€;&Åé;&Ëé¡;&Ôé³;&ÝéÇ;&èéÕ;&íéç;&öéö;&üé<&ê<&ê<&	ê+<&
êS<&ß÷a<&ä÷t<&ð÷ˆ<&þ÷˜<&øÂ<&YøÚ<&iøê<&pøø<&uø=&€ø=&„ø'=&‰ø;=&”ød=&=&Ò¶=&È"Ã=&Ì"Ñ=&Õ"ë=&æ"ù=&ë"#>&#G>&)#U>&.#i>&;#z>&D#†>&G#¯>&˜/Ø>&ŒEã>&ŽEñ>&—Eÿ>&œE
?&¡E6?&!SL?&.S[?&4Sw?&KS…?&PS®?&Q_×?&Ál@&“|@&–|@&ž|F@&Å|p@&ç|†@&ô|–@&ü|¾@&¾}Ð@&Ç}Û@&É}ü@&ã}%A&ڍMA&ʒ]A&Ғ…A&ќžA&✫A&æœÔA&֪þA&ùª!B&«HB&1«VB&6«eB&<«‹B&Y«ŸB&h«®B&n«¾B&t«æB&å¯C&[»7C&ƒÄ`C&–ψC&JÖ¢C&]Ö±C&cÖÀC&iÖéC&‰àûC&àD&˜àD& à3D&­àED&¶àTD&¼àbD&ÁàqD&Çà‡D&Ôà¯D&KãØD&‹ãçD&‘ãE&AèE&Fè,E&Lè?E&VèME&[è[E&`èiE&ièwE&nè‹E&yè³E&ºòÛE&ðöF&+F&‰
TF&cF&ŠF&0³F&QÀF&YÑF&aãF&jðF&n	G&„2G&\?G&`MG&e[G&nlG&vyG&z¢G&Í"ËG&Y-×G&]-çG&d-÷G&k-H&r-H&x-?H&—;OH&ž;_H&¥;ˆH&¨H°H&T¾H&TÐH&!TùH&bI&bI&bAI&Jb^I&`bmI&fb–I&?nÍI&Àp	J&ºuEJ&Ó|…J&Žƒ¾J&L„õJ&͊3K&w•zK&­™µK&ŸïK&„ª'L&)­`L&»šL&$ÉÑL&›Í	M&ÓÖKM&öáM&wêÆM&XúN&}?N&ŽsN&·²N&1-îN&|65O&BwO&ÙL´O&d^ïO&nk(P&m{bP&a‰šP&Y—ÔP&2¥
Q&\¸HQ&ÖÄ„Q&­Ö¿Q&ÒàöQ&Hì3R&ÝönR&ò²R&zìR&~#S&Q)_S&Û0 S&SAÜS&]M#T&]cbT&¸oŸT&!|ÚT&݀U&ô…@U&±‡uU&©ŠªU&gÔU&ԍ‰V&	0D	šV&	˜D	±V&	ÈD	åV&	ÐD	W&	pF	FW&	0M	xW&	€M	ˆW ´W&(N	ÃW&HN	ßW&_	X& _	d•Yd	ZdZfoô¬g.tì#"$tì$4Ntì.¨ì>"$¨ì$N¨ì.¸ìW"$¸ì$LN¸ì.íu"$í$`Ní.dí•"$dí$øNdí.\î²"$\î$N\î.tïÔ"$tï$Ntï.€ðó"$€ð$<N€ð.¼ñ#$¼ñ$XN¼ñ.ò=#$ò$pNò.„òe#$„ò$LN„ò.Ðó}#$Ðó$HNÐó.ôš#$ô$tNô.Œõ´#$Œõ$HNŒõ.ÔõÓ#$Ôõ$NÔõ.ìùê#$ìù$Nìù.|þ$$|þ$ N|þ.œþ$$œþ$$Nœþ.Àþ1$$Àþ$ NÀþ.àþF$$àþ$Nàþ.ìþS$$ìþ$Nìþ.ðb$$ð$(Nð.q$$$èN.…$$$4N.4•$$4$$N4.X£$$X$$NX.|³$$|$ÈN|.DÀ$$D$(ND.lÒ$$l$`Nl.ÌÜ$$Ì$8NÌ.ô$$$èN.ì%$ì$Nì.%$$üN.!%$$ˆN.ˆ1%$ˆ$`Nˆ.è@%$è$TNè.<	Q%$<	$,N<	.h	c%$h	$ôNh	.\
t%$\
$\N\
.¸
‡%$¸
$ˆN¸
.@—%$@$@N@.€±%$€$€N€.Ç%$$N.â%$$ÀN.Pó%$P$NP.`&$`$\N`.¼%&$¼$¬N¼.h2&$h$ÔNh.<C&$<$øN<.4U&$4$hN4.œn&$œ$(Nœ.ÄŠ&$Ä$ŒNÄ.P œ&$P $ÌNP .!©&$!$”N!.°!¼&$°!$”N°!.D"Í&$D"$°ND".ô#ä&$ô#$ðNô#.ä$'$ä$$èNä$.Ì&$'$Ì&$ðNÌ&.¼(C'$¼($lN¼(.()a'$()$ N().È+}'$È+$¨NÈ+.p-™'$p-$PNp-.À/µ'$À/$ NÀ/.à1Ð'$à1$˜Nà1.x2ê'$x2$XNx2üU&@ŽV&@–V&@žV&@¢&V&@¦1V&@®<V&@¶GV&@¾QV&@Â[V&@ÆeV&@ÊpV&@ÒdÃZd0[dG[fpô¬g.Ð3þ'$Ð3$ØNÐ3.¨4($¨4$0N¨4.Ø4)($Ø4$lNØ4.D7@($D7$$ND7.h7N($h7$PNh7.¸7]($¸7$TN¸7.8m($8$XN8.d8{($d8$(Nd8.Œ8($Œ8$DNŒ8.Ð8ž($Ð8$pNÐ8.@:»($@:$\N@:.œ:Ð($œ:$LNœ:.è;Ý($è;$ØNè;.À<ì($À<$ÜNÀ<.œ=þ($œ=$üNœ=.˜>)$˜>$@N˜>.Ø>+)$Ø>$DNØ>.@C)$@$\N@.xAP)$xA$`NxA.ØAZ)$ØA$@NØA.Bn)$B$œNB.´B†)$´B$0N´B.äE¤)$äE$NäE.èE»)$èE$NèE.ìEÏ)$ìE$xNìE.dFè)$dF$NdF.hF*$hF$,NhF.”H*$”H$N”Hd8Kþ$þ1þLþ^þmþ€þ–þ©þ¸þÈþÙþæþüþþ!þ.þ>þTþaþnþ{þ“þ¡þ¾þØþèþùþ
þþ*þ@þSþiþƒþ”þ§þ¹þÉþÚþïþþþ+þ<þNþhþ‚þ”þ¨þ¶þÃþÑþÞþòþþþ5þWþqþ€þþœþ©þ¸þÊþÛþïþþþþ,þ;þMþ_þqþ…þ“þ¨þÄþÔþãþöþ
þþ,þ;þ^þoþˆþþ¶þÈþàþòþþþ(þ9þGþ]þoþ‡þ™þ¨þÁþÖþçþùþþþ+þ8þFþTþfþwþ…þ—þªþ¼þÎþàþöþ	þ)	þE	þT	þd	þˆ	þŸ	þ¶	þÍ	þÙ	þô	þ	
þ+
þA
þ^
þn
þ
þš
þ®
þ¿
þÏ
þß
ñ

!'-29AGOW_glrwyz{|}€‚ƒ„…†‡‰Š‹ŒŽ‘’“”¢£¤¥§¨©ª«¬­®¯°±²´µ¶·¸º»½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåçèéêëìíîïðñòóõö÷øúûüýþÿ	

uvx~ˆ•–—˜™š›œžŸ ¡¦³¹¼Ïæôùwyz{|}€‚ƒ„…†‡‰Š‹ŒŽ‘’“”¢£¤¥§¨©ª«¬­®¯°±²´µ¶·¸º»½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÐÑÒÓÔÕÖרÙÚÛÜÝÞßàáâãäåçèéêëìíîïðñòóõö÷øúûüýþÿ	

 _PyInit_mtrand_PyBaseObject_Type_PyBool_Type_PyBytes_FromStringAndSize_PyCFunction_Type_PyCMethod_New_PyCapsule_GetName_PyCapsule_GetPointer_PyCapsule_IsValid_PyCapsule_New_PyCapsule_Type_PyCode_NewEmpty_PyDict_Copy_PyDict_GetItemString_PyDict_GetItemWithError_PyDict_New_PyDict_Next_PyDict_SetItem_PyDict_SetItemString_PyDict_Size_PyDict_Type_PyErr_Clear_PyErr_ExceptionMatches_PyErr_Format_PyErr_GivenExceptionMatches_PyErr_NormalizeException_PyErr_Occurred_PyErr_SetObject_PyErr_SetString_PyErr_WarnEx_PyErr_WarnFormat_PyEval_RestoreThread_PyEval_SaveThread_PyExc_AttributeError_PyExc_DeprecationWarning_PyExc_Exception_PyExc_ImportError_PyExc_IndexError_PyExc_KeyError_PyExc_NameError_PyExc_OverflowError_PyExc_RuntimeError_PyExc_StopIteration_PyExc_SystemError_PyExc_TypeError_PyExc_ValueError_PyException_GetTraceback_PyException_SetTraceback_PyFloat_AsDouble_PyFloat_FromDouble_PyFloat_Type_PyFrame_New_PyGC_Disable_PyGC_Enable_PyImport_AddModule_PyImport_GetModule_PyImport_GetModuleDict_PyImport_ImportModule_PyImport_ImportModuleLevelObject_PyInterpreterState_GetID_PyList_Append_PyList_AsTuple_PyList_New_PyList_Type_PyLong_AsLong_PyLong_AsSsize_t_PyLong_FromLong_PyLong_FromSsize_t_PyLong_FromString_PyLong_Type_PyMem_Malloc_PyMem_Realloc_PyMethod_Type_PyModuleDef_Init_PyModule_GetDict_PyModule_GetName_PyModule_NewObject_PyNumber_Add_PyNumber_InPlaceAdd_PyNumber_InPlaceTrueDivide_PyNumber_Index_PyNumber_Long_PyNumber_Multiply_PyNumber_Remainder_PyNumber_Subtract_PyOS_snprintf_PyObject_Call_PyObject_CallFinalizerFromDealloc_PyObject_Format_PyObject_GC_IsFinalized_PyObject_GC_UnTrack_PyObject_GenericGetAttr_PyObject_GetAttr_PyObject_GetAttrString_PyObject_GetItem_PyObject_GetIter_PyObject_Hash_PyObject_IsInstance_PyObject_IsTrue_PyObject_Not_PyObject_RichCompare_PyObject_SetAttr_PyObject_SetAttrString_PyObject_SetItem_PyObject_Size_PyObject_VectorcallDict_PySequence_Contains_PySequence_List_PySequence_Tuple_PySlice_New_PyThreadState_Get_PyTraceBack_Here_PyTuple_New_PyTuple_Pack_PyTuple_Type_PyType_IsSubtype_PyType_Modified_PyType_Ready_PyUnicode_AsUTF8_PyUnicode_Compare_PyUnicode_Concat_PyUnicode_Decode_PyUnicode_Format_PyUnicode_FromFormat_PyUnicode_FromString_PyUnicode_FromStringAndSize_PyUnicode_InternFromString_PyUnicode_New_PyUnicode_Type_PyUnstable_Code_NewWithPosOnlyArgs_PyVectorcall_Function_Py_EnterRecursiveCall_Py_LeaveRecursiveCall_Py_Version__PyDict_GetItem_KnownHash__PyDict_NewPresized__PyObject_GenericGetAttrWithDict__PyObject_GetDictPtr__PyThreadState_UncheckedGet__PyType_Lookup__PyUnicode_FastCopyCharacters__Py_Dealloc__Py_EllipsisObject__Py_FalseStruct__Py_NoneStruct__Py_TrueStruct___stack_chk_fail___stack_chk_guard_acos_cos_exp_expf_expm1_fmod_free_log_log1p_log1pf_logf_malloc_memcmp_memcpy_memset_pow_powfdyld_stub_binder___pyx_pymod_create___pyx_pymod_exec_mtrand_Py_XDECREF___Pyx_modinit_type_init_code___Pyx_modinit_type_import_code___Pyx_modinit_variable_import_code___Pyx_modinit_function_import_code___Pyx_ImportDottedModule___Pyx_Import___Pyx_ImportFrom___pyx_f_5numpy_import_array___Pyx__GetModuleGlobalName___Pyx_AddTraceback___Pyx_CreateStringTabAndInitStrings___Pyx_GetBuiltinName___Pyx_PyObject_GetAttrStrNoError___Pyx_PyObject_GetAttrStr_ClearAttributeError___Pyx_PyErr_ExceptionMatchesInState___Pyx_ErrRestoreInState___Pyx_PyErr_ExceptionMatchesTuple___Pyx_PyErr_GivenExceptionMatches___Pyx_inner_PyErr_GivenExceptionMatches2___Pyx_PyErr_GivenExceptionMatchesTuple___Pyx_IsSubtype___pyx_f_5numpy_6random_6mtrand_11RandomState__initialize_bit_generator___pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss___pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw___Pyx_PyObject_Call___Pyx_Raise___pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState___pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr_____pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str_____pyx_tp_traverse_5numpy_6random_6mtrand_RandomState___pyx_tp_clear_5numpy_6random_6mtrand_RandomState___pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init_____pyx_tp_new_5numpy_6random_6mtrand_RandomState___Pyx_PyObject_FastCallDict___pyx_specialmethod___pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr_____pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate_____pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate_____pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce_____pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed___pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state___pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state___pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample___pyx_pw_5numpy_6random_6mtrand_11RandomState_21random___pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta___pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential___pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential___pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint___pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint___pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes___pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice___pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform___pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand___pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn___pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers___pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma___pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma___pyx_pw_5numpy_6random_6mtrand_11RandomState_53f___pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f___pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare___pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare___pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy___pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t___pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises___pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto___pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull___pyx_pw_5numpy_6random_6mtrand_11RandomState_71power___pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace___pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel___pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic___pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal___pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh___pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald___pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular___pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson___pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf___pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric___pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric___pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries___pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet___pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle___pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation___Pyx_CheckKeywordStrings___Pyx_ParseOptionalKeywords___Pyx_PyUnicode_Equals___Pyx_IternextUnpackEndCheck___Pyx_IterFinish___Pyx_GetItemInt_Fast___Pyx_PyDict_GetItem___Pyx_PyInt_As_int___Pyx_PyNumber_IntOrLong___Pyx_PyNumber_IntOrLongWrongResultType___Pyx__ExceptionSave___Pyx__GetException___Pyx__ExceptionReset___Pyx_PyInt_As_Py_intptr_t___Pyx_PyObject_GetSlice___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice___Pyx_PyInt_BoolEqObjC___Pyx_TypeTest___Pyx_PyObject_SetSlice___Pyx_PyObject_GetItem___Pyx_PyObject_IsTrueAndDecref___Pyx_PyObject_GetIndex___Pyx_PyObject_GetItem_Slow___Pyx_PyInt_As_long___pyx_f_5numpy_6random_6mtrand_int64_to_long___Pyx_PyInt_As_int64_t___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle___Pyx_SetItemInt_Fast___pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generator___pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator___Pyx_GetVtable___Pyx_ImportType_3_0_12___Pyx_ImportVoidPtr_3_0_12___Pyx_ImportFunction_3_0_12___pyx_pw_5numpy_6random_6mtrand_1seed___pyx_pw_5numpy_6random_6mtrand_3get_bit_generator___pyx_pw_5numpy_6random_6mtrand_5set_bit_generator___pyx_pw_5numpy_6random_6mtrand_7sample___pyx_pw_5numpy_6random_6mtrand_9ranf_random_standard_uniform_f_random_standard_uniform_random_standard_uniform_fill_random_standard_uniform_fill_f_random_standard_exponential_random_standard_exponential_fill_random_standard_exponential_f_random_standard_exponential_fill_f_random_standard_exponential_inv_fill_random_standard_exponential_inv_fill_f_random_standard_normal_random_standard_normal_fill_random_standard_normal_f_random_standard_normal_fill_f_random_standard_gamma_random_standard_gamma_f_random_positive_int64_random_positive_int32_random_positive_int_random_uint_random_loggam_random_normal_random_exponential_random_uniform_random_gamma_random_gamma_f_random_beta_random_chisquare_random_f_random_standard_cauchy_random_pareto_random_weibull_random_power_random_laplace_random_gumbel_random_logistic_random_lognormal_random_rayleigh_random_standard_t_random_poisson_random_negative_binomial_random_binomial_btpe_random_binomial_inversion_random_binomial_random_noncentral_chisquare_random_noncentral_f_random_wald_random_vonmises_random_logseries_random_geometric_search_random_geometric_inversion_random_geometric_random_zipf_random_triangular_random_interval_random_bounded_uint64_random_buffered_bounded_uint32_random_buffered_bounded_uint16_random_buffered_bounded_uint8_random_buffered_bounded_bool_random_bounded_uint64_fill_random_bounded_uint32_fill_random_bounded_uint16_fill_random_bounded_uint8_fill_random_bounded_bool_fill_random_multinomial_legacy_gauss_legacy_standard_exponential_legacy_standard_gamma_legacy_gamma_legacy_pareto_legacy_weibull_legacy_power_legacy_chisquare_legacy_rayleigh_legacy_noncentral_chisquare_legacy_noncentral_f_legacy_wald_legacy_normal_legacy_lognormal_legacy_standard_t_legacy_negative_binomial_legacy_standard_cauchy_legacy_beta_legacy_f_legacy_exponential_legacy_random_binomial_legacy_random_hypergeometric_legacy_random_poisson_legacy_random_zipf_legacy_random_geometric_legacy_random_multinomial_legacy_vonmises_legacy_logseries___pyx_k_Cannot_take_a_larger_sample_than___pyx_k_DeprecationWarning___pyx_k_Fewer_non_zero_entries_in_p_than___pyx_k_ImportError___pyx_k_IndexError___pyx_k_Invalid_bit_generator_The_bit_ge___pyx_k_MT19937___pyx_k_MT19937_2___pyx_k_Negative_dimensions_are_not_allo___pyx_k_OverflowError___pyx_k_Providing_a_dtype_with_a_non_nat___pyx_k_RandomState___pyx_k_RandomState_binomial_line_3353___pyx_k_RandomState_bytes_line_805___pyx_k_RandomState_chisquare_line_1910___pyx_k_RandomState_choice_line_841___pyx_k_RandomState_dirichlet_line_4394___pyx_k_RandomState_exponential_line_500___pyx_k_RandomState_f_line_1729___pyx_k_RandomState_gamma_line_1645___pyx_k_RandomState_geometric_line_3772___pyx_k_RandomState_gumbel_line_2764___pyx_k_RandomState_hypergeometric_line___pyx_k_RandomState_laplace_line_2670___pyx_k_RandomState_logistic_line_2888___pyx_k_RandomState_lognormal_line_2974___pyx_k_RandomState_logseries_line_3969___pyx_k_RandomState_multinomial_line_425___pyx_k_RandomState_multivariate_normal___pyx_k_RandomState_negative_binomial_li___pyx_k_RandomState_noncentral_chisquare___pyx_k_RandomState_noncentral_f_line_18___pyx_k_RandomState_normal_line_1454___pyx_k_RandomState_pareto_line_2354___pyx_k_RandomState_permutation_line_466___pyx_k_RandomState_poisson_line_3593___pyx_k_RandomState_power_line_2561___pyx_k_RandomState_rand_line_1177___pyx_k_RandomState_randint_line_679___pyx_k_RandomState_randn_line_1221___pyx_k_RandomState_random_integers_line___pyx_k_RandomState_random_sample_line_3___pyx_k_RandomState_rayleigh_line_3090___pyx_k_RandomState_seed_line_228___pyx_k_RandomState_shuffle_line_4543___pyx_k_RandomState_standard_cauchy_line___pyx_k_RandomState_standard_exponential___pyx_k_RandomState_standard_gamma_line___pyx_k_RandomState_standard_normal_line___pyx_k_RandomState_standard_t_line_2150___pyx_k_RandomState_tomaxint_line_621___pyx_k_RandomState_triangular_line_3244___pyx_k_RandomState_uniform_line_1050___pyx_k_RandomState_vonmises_line_2265___pyx_k_RandomState_wald_line_3167___pyx_k_RandomState_weibull_line_2457___pyx_k_RandomState_zipf_line_3676___pyx_k_Range_exceeds_valid_bounds___pyx_k_RuntimeWarning___pyx_k_Sequence___pyx_k_Shuffling_a_one_dimensional_arra___pyx_k_T___pyx_k_This_function_is_deprecated_Plea___pyx_k_This_function_is_deprecated_Plea_2___pyx_k_TypeError___pyx_k_Unsupported_dtype_r_for_randint___pyx_k_UserWarning___pyx_k_ValueError___pyx_k__4___pyx_k__5___pyx_k__53___pyx_k__6___pyx_k__62___pyx_k_a___pyx_k_a_and_p_must_have_same_size___pyx_k_a_cannot_be_empty_unless_no_sam___pyx_k_a_must_be_1_dimensional___pyx_k_a_must_be_1_dimensional_or_an_in___pyx_k_a_must_be_greater_than_0_unless___pyx_k_add___pyx_k_all___pyx_k_all_2___pyx_k_allclose___pyx_k_alpha___pyx_k_alpha_0___pyx_k_any___pyx_k_arange___pyx_k_args___pyx_k_array___pyx_k_array_is_read_only___pyx_k_asarray___pyx_k_astype___pyx_k_at_0x_X___pyx_k_atol___pyx_k_b___pyx_k_bg_type___pyx_k_binomial_n_p_size_None_Draw_sam___pyx_k_bit_generator___pyx_k_bitgen___pyx_k_bool___pyx_k_bytes_length_Return_random_byte___pyx_k_can_only_re_seed_a_MT19937_BitGe___pyx_k_capsule___pyx_k_casting___pyx_k_check_valid___pyx_k_check_valid_must_equal_warn_rais___pyx_k_chisquare_df_size_None_Draw_sam___pyx_k_choice_a_size_None_replace_True___pyx_k_class___pyx_k_class_getitem___pyx_k_cline_in_traceback___pyx_k_collections_abc___pyx_k_copy___pyx_k_count_nonzero___pyx_k_cov___pyx_k_cov_must_be_2_dimensional_and_sq___pyx_k_covariance_is_not_symmetric_posi___pyx_k_cumsum___pyx_k_df___pyx_k_dfden___pyx_k_dfnum___pyx_k_dirichlet_alpha_size_None_Draw___pyx_k_disable___pyx_k_dot___pyx_k_empty___pyx_k_empty_like___pyx_k_enable___pyx_k_enter___pyx_k_eps___pyx_k_equal___pyx_k_exit___pyx_k_exponential_scale_1_0_size_None___pyx_k_f_dfnum_dfden_size_None_Draw_sa___pyx_k_finfo___pyx_k_flags___pyx_k_float64___pyx_k_format___pyx_k_gamma_shape_scale_1_0_size_None___pyx_k_gauss___pyx_k_gc___pyx_k_geometric_p_size_None_Draw_samp___pyx_k_get___pyx_k_get_state_and_legacy_can_only_be___pyx_k_greater___pyx_k_gumbel_loc_0_0_scale_1_0_size_N___pyx_k_has_gauss___pyx_k_high___pyx_k_hypergeometric_ngood_nbad_nsamp___pyx_k_id___pyx_k_ignore___pyx_k_import___pyx_k_index___pyx_k_initializing___pyx_k_int16___pyx_k_int32___pyx_k_int64___pyx_k_int8___pyx_k_intp___pyx_k_isenabled___pyx_k_isfinite___pyx_k_isnan___pyx_k_isnative___pyx_k_isscalar___pyx_k_issubdtype___pyx_k_item___pyx_k_itemsize___pyx_k_kappa___pyx_k_key___pyx_k_kwargs___pyx_k_l___pyx_k_lam___pyx_k_laplace_loc_0_0_scale_1_0_size___pyx_k_left___pyx_k_left_mode___pyx_k_left_right___pyx_k_legacy___pyx_k_legacy_can_only_be_True_when_the___pyx_k_legacy_seeding___pyx_k_length___pyx_k_less___pyx_k_less_equal___pyx_k_loc___pyx_k_lock___pyx_k_logical_or___pyx_k_logistic_loc_0_0_scale_1_0_size___pyx_k_lognormal_mean_0_0_sigma_1_0_si___pyx_k_logseries_p_size_None_Draw_samp___pyx_k_low___pyx_k_main___pyx_k_may_share_memory___pyx_k_mean___pyx_k_mean_and_cov_must_have_same_leng___pyx_k_mean_must_be_1_dimensional___pyx_k_mode___pyx_k_mode_right___pyx_k_mt19937___pyx_k_mu___pyx_k_multinomial_n_pvals_size_None_D___pyx_k_multivariate_normal_mean_cov_si___pyx_k_n___pyx_k_name___pyx_k_nbad___pyx_k_ndim___pyx_k_negative_binomial_n_p_size_None___pyx_k_newbyteorder___pyx_k_ngood___pyx_k_ngood_nbad_nsample___pyx_k_nonc___pyx_k_noncentral_chisquare_df_nonc_si___pyx_k_noncentral_f_dfnum_dfden_nonc_s___pyx_k_normal_loc_0_0_scale_1_0_size_N___pyx_k_np___pyx_k_nsample___pyx_k_numpy_core_multiarray_failed_to___pyx_k_numpy_core_umath_failed_to_impor___pyx_k_numpy_linalg___pyx_k_object___pyx_k_object_which_is_not_a_subclass___pyx_k_operator___pyx_k_p___pyx_k_p_must_be_1_dimensional___pyx_k_pareto_a_size_None_Draw_samples___pyx_k_permutation_x_Randomly_permute___pyx_k_pickle___pyx_k_poisson_lam_1_0_size_None_Draw___pyx_k_poisson_lam_max___pyx_k_pos___pyx_k_power_a_size_None_Draws_samples___pyx_k_probabilities_are_not_non_negati___pyx_k_probabilities_contain_NaN___pyx_k_probabilities_do_not_sum_to_1___pyx_k_prod___pyx_k_pvals___pyx_k_pvals_must_be_a_1_d_sequence___pyx_k_pyx_vtable___pyx_k_raise___pyx_k_rand_2___pyx_k_rand_d0_d1_dn_Random_values_in___pyx_k_randint_low_high_None_size_None___pyx_k_randn_d0_d1_dn_Return_a_sample___pyx_k_random_integers_low_high_None_s___pyx_k_random_sample_size_None_Return___pyx_k_randomstate_ctor___pyx_k_range___pyx_k_ravel___pyx_k_rayleigh_scale_1_0_size_None_Dr___pyx_k_reduce_2___pyx_k_replace___pyx_k_reshape___pyx_k_return_index___pyx_k_reversed___pyx_k_right___pyx_k_rtol___pyx_k_scale___pyx_k_searchsorted___pyx_k_seed_seed_None_Reseed_a_legacy___pyx_k_set_state_can_only_be_used_with___pyx_k_shape___pyx_k_shuffle_x_Modify_a_sequence_in___pyx_k_side___pyx_k_sigma___pyx_k_singleton___pyx_k_size___pyx_k_sort___pyx_k_spec___pyx_k_sqrt___pyx_k_stacklevel___pyx_k_standard_cauchy_size_None_Draw___pyx_k_standard_exponential_size_None___pyx_k_standard_gamma_shape_size_None___pyx_k_standard_normal_size_None_Draw___pyx_k_standard_t_df_size_None_Draw_sa___pyx_k_state___pyx_k_state_dictionary_is_not_valid___pyx_k_state_must_be_a_dict_or_a_tuple___pyx_k_str___pyx_k_strides___pyx_k_subtract___pyx_k_sum___pyx_k_sum_pvals_1_1_0___pyx_k_sum_pvals_1_astype_np_float64_1___pyx_k_svd___pyx_k_take___pyx_k_test___pyx_k_tobytes___pyx_k_tol___pyx_k_tomaxint_size_None_Return_a_sam___pyx_k_triangular_left_mode_right_size___pyx_k_u4___pyx_k_uint16___pyx_k_uint32___pyx_k_uint64___pyx_k_uint8___pyx_k_uniform_low_0_0_high_1_0_size_N___pyx_k_unique___pyx_k_unsafe___pyx_k_vonmises_mu_kappa_size_None_Dra___pyx_k_wald_mean_scale_size_None_Draw___pyx_k_warn___pyx_k_warnings___pyx_k_weibull_a_size_None_Draw_sample___pyx_k_writeable___pyx_k_x___pyx_k_x_must_be_an_integer_or_at_least___pyx_k_you_are_shuffling_a___pyx_k_zeros___pyx_k_zipf_a_size_None_Draw_samples_f___pyx_doc_5numpy_6random_6mtrand_11RandomState_12seed___pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state___pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_state___pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_sample___pyx_doc_5numpy_6random_6mtrand_11RandomState_20random___pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta___pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential___pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential___pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxint___pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint___pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes___pyx_doc_5numpy_6random_6mtrand_11RandomState_34choice___pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniform___pyx_doc_5numpy_6random_6mtrand_11RandomState_38rand___pyx_doc_5numpy_6random_6mtrand_11RandomState_40randn___pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integers___pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma___pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma___pyx_doc_5numpy_6random_6mtrand_11RandomState_52f___pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_f___pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare___pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare___pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy___pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t___pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises___pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto___pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull___pyx_doc_5numpy_6random_6mtrand_11RandomState_70power___pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace___pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel___pyx_doc_5numpy_6random_6mtrand_11RandomState_76logistic___pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormal___pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleigh___pyx_doc_5numpy_6random_6mtrand_11RandomState_82wald___pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangular___pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_90poisson___pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf___pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometric___pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric___pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries___pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet___pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle___pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutation___pyx_doc_5numpy_6random_6mtrand_seed___pyx_doc_5numpy_6random_6mtrand_2get_bit_generator___pyx_doc_5numpy_6random_6mtrand_4set_bit_generator___pyx_doc_5numpy_6random_6mtrand_6sample___pyx_doc_5numpy_6random_6mtrand_8ranf_we_double_ke_double_we_float_ke_float_wi_double_ki_double_fi_double_wi_float_ki_float_fi_float_fe_double_fe_float__dyld_private___pyx_moduledef___pyx_moduledef_slots___Pyx_check_single_interpreter.main_interpreter_id___pyx_type_5numpy_6random_6mtrand_RandomState___pyx_methods_5numpy_6random_6mtrand_RandomState___pyx_getsets_5numpy_6random_6mtrand_RandomState__MergedGlobals___pyx_module_is_main_numpy__random__mtrand___pyx_methods___pyx_mstate_global_static___pyx_vtabptr_5numpy_6random_13bit_generator_SeedSequence__MergedGlobals.318/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-e5oisdy3/numpy/random/mtrand.cpython-312-iphonesimulator.so.p/numpy/random/mtrand.pyx.c/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-e5oisdy3/numpy/random/mtrand.cpython-312-iphonesimulator.so.p/meson-generated_numpy_random_mtrand.pyx.c.o___pyx_pymod_create/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-e5oisdy3/../numpy/random/src/distributions/distributions.c/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-e5oisdy3/numpy/random/mtrand.cpython-312-iphonesimulator.so.p/src_distributions_distributions.c.o/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-e5oisdy3/../numpy/random/src/legacy/legacy-distributions.c/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-e5oisdy3/numpy/random/mtrand.cpython-312-iphonesimulator.so.p/src_legacy_legacy-distributions.c.oúÞÀ’úÞ~~X¨
sà þ`mtrand.cpython-312-iphonesimulator.so	˜†IÅ3M“€—&êô<vþôÜÅߓªÛÞLÏÅZ­¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§­¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§­¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§6ØÄàðÃЩ)³Œ´U›¢+)\]…“1-£¯E—–y*úÞHiû. B„´ñh©'ò€;T—]ш”õú:‘Š®ɭÏálQKàÑÆßªÄ.B<®¼â˜Rs€·º¥x¨9Éu
v·çÿ¯۹ "ûáyPšU½÷䟻Îe©ОuX·ù”¹W~وÖ-e‹M´ò¶1/Հ&ùº"å¼£UhT⧪Y·Žè§B‰«q‚·U~@]øþÎ9ƒ·ùDÀZËhE;ôI±™=¥ÛÆg›QVHÄÉÍëÞ-3Sƒ@še­À4"տ÷ë=R®æöñëé6DDIv>1½Nyœ넯l°2¿׻+Öù%Eê¡ÿō`ÚT™3ÉÇú±iB[’’»RáX3Þ]E”8S«æÂ賢(“MÎ,¹rzÑzæ¶pL™‰G¯uÎIô)Zäݬ¼ÛÝLÛd×-°sûUí~z¬<-íå%«±Æ×ʈþSB®]˜
Ÿ¦‰ö;Ðs±Ø)¡Tp˜k€0Q÷é 	f==ÐÈ'úDrý›„õËç^âF7Ž–.5ÔIÄ|4'öƠÊû^Œ¶$˜‰?mÃkËm'‹CvTÖL¬ÏÌQÛ¢ù¨UáPÛâ!‚¾>ÖçïàÌgö~&þÐ)éNHíˆå9Cž^âçK©?͇á»0iYaw ¾¬Ù 4—­Õzzá’|}*”¢­$±8õ7z8 <h®$‘
·¶µç2³Ljš‚é±h™CA¼eº¯hûfb?-ëë,õ˜\–
å™\5˜|IÐ`}j>#ßQ#qÅ7ª1‹ägšÔcÂN;E„=4_Qm~뇷“¹÷Ž>às\®ƒÜqƏSÉLªÃÝ2†Š
Œ6ùZí7¯’Sµ.Úá
A_Ìî¦^.‡Éüz“„ÖD¼í7žD%cà9vf¿ÆI¶ÍmÅûŠÌ3Àñ„_øðÇ:èè¯ޚ:Ð3Ä,·(
lmªößüø¾¼GΞ%5ú»áG7É,-¥9nØüž-¥~t‘[hА¬Ÿ¥œÛW*V[–Ät»§ƒ8¢fFãåM¬JEà<½fwËxݿ•	Ç&s‘a$fñ¦Ìn
«ïZ÷˙Àhց¡óëAoÕ#'¼{{ÊÖ{T܎ËÈ]¬3¤Äò|ãvÈAÿcçÀÒ?ͮ¤‘ĪýJ¬u-»©¹5™ï\%ÒVÁ&ÎzybeבÜ+êh¼nÝdsØÔT§Å;¦—hë¾Y¡mü`\é½>ã݁©ö,y.^«𳥣½Tj¨ËÛCrm¶þgår—ù§å{˜w«¨G[ÓŸH:pÓ6eWK§ìº9¨çqDɔüà"ƹV…Êï­è_õPçóº|FîبWó/öãx÷õT	„¦ÕQuªXDÎáYœ¾ڜè`7å`0×äè‚~Ãîñ?…Þ^dî@T™^ãuj2)½þ?þ2¾ã´X§°õåf…=´ hHÂ`¨“í_­¯"1
¨ïO*µ´Øï]«èP¥)Zì²DÍ.e— òË^Uí™,:ä%|ö nsêÎ/ѷô·AF#Jµƒ¢y®]mG\¢Š`IKIØÆœ¢ùµÜØØ6§rzRDFðï½è'/ž£ij“ڽxfÍR|øì¯LøSњO†?&²£Z«I	›L€g}{C±ÚnÂd¬KÐÙ0ɟµ¥£”HI‰`4搫:Loë÷u§Û&êŒÅZb<†x!+©ñŸ1æä.YyåX–wÏkŽºd8p“ا#ÑŠúʄM+úø­èˢ)Z‡ë‘QDæÑÇUÒà¦Þl9UKgmJV¤Â/îÀ6Lò,'Øà²cµm8©é‹éø´»ûr
LO&ù#Ñí—E¿X[(àøÞù™=lQ/wnA3‹¸¯šޥHdO4ÑoÐ%Ýà2ŠOÛçZxiÊ~ÁÂZâ"áæýÿ/‚£Âô¯ÊY_'Ÿ±r#mv*̢isެ'J‰ä*ʲzù¶'&üQ«ç8ú3{HêqÖ0Twû»xJ«FóeMÓ
¾J@%KäÞϺy8ÆÈϦ_ŸÿVˆù~ƒ3ò&Îrã6[ °iÇv¥2B†Ãaҭ¢$Ä|¥ƒ¡Wjþ–¥—øC+ÿύ‡x-¶…²¡bÅÚ%|ҽ9³æHÄÎz³~Çü.@œöûMRu3'½)7ÑH¡¿½¨0̷CM°!*"t[äGŒ´²Ŕ߅GõaêûxÕàqÎRlF)X/prâv.ùúï‰	¶ÞթFrN[ΚïÆDM9ÞzDaŸ:­‘ž4xl´޷$ôZS»$uª;®„‚w`Ì܂l–‡»,%{=›`,S¨ËÒÌўåŒ~ªµX¨Ę©Jª¬Ê&%… q[dwÀð•I=æô83ȞCrHˆÇß6„Ø_œżÿõ¬¡ì3«hq•wr/‹‰.Ò
œùFÎ›cØ÷HQ¼ÈưrØNmeL™?U–­lâ<y
ª<÷j)U•¶ù6ªmʆîjøÉhâqƒµ°w|Fœÿ]¯žt³ñìQ¦™±xäX'Û×4o›C:6μ®âþŽZ2\´ÖL½ÎASÅ8ÌӋš•Ê7‡–§zª'óÖEDAo.‚‚M®	²ËÛ^Œæó=ŠI‘`P*¥4?áDˆÁôro÷–ëÝœØ&SöÄ*<íîùzŠi$+·F­×54Ô$åꀌ»KÈRÉöҨ´	ò„äØZhܟŸÏkO‹ºL´¼»&¹ŸÒƒµµç9&2W=;78ÕóÂü„þDƒˆëÂ_֮¢®ª;Údsm!|no³—)›ùí¥þÛuñ#‚º^ñð7§zìÔÜÍæQ±±¹l ¬M%$©‰&¨-@e´ž"p›²7sک½¯ïe?°…ªÁ՛n’Sä'Ù௯/öª~h·“«Š“F<COŽ“ïÉRÏr|ÞÒLá˜%.ÈJà ـp?Zš­íMÎû	p&ûjî1^2ûnÓ >u¢мÂÓ]CMá?aäul›×.M8B÷7±Ÿ·нlA:‰ò`å.I7òb*üŽ\“[$AöC¿Ðõ:s°I3¶ÁǍd|†fdÅ1Âñb6ƒ¼ÇV‚Ϝ:Éù…^äé˜?ÀKõ÷ž[Ÿ2ëÀ
‘òs|Ò#pÔNq肋Ìjâý~Í_;¹€‹|,
劷SÉýN°ÅÖ{:y
\õõ†“ZMcǣ¿TuûðÉI¸§bfPy§qÍ4:yŠ%¢žØÖ׀},aÖƒY+VäTd÷¸ù©ýF¶’m›÷^¡ÙÁ~v4íZS®@2@3¬,—!íكÈt°0G‰¤åUýü“2ˆGÝ!ýaËF
ÜÔ -U_èâž;þ_”rd$‰›½¿Ì́cFiB™PÍhm—XW!é_Ì1]jˆ7M‰aèÆë<´î›K÷Úcˆ€ª䏙{iDÈx]+?®ˆh‡$â-s°'ŽŽL€"D:Ëc˜û4Šl}t:I
Ë}úH£U«9ê ý޹V
:%ù7H¯ë\B‘mVàãDڔN!!²#7åŒ"°ç½>?5⩥¿y‹òÁRkey$µáÿEnùV|ßӡ——#ãå]2Q*ÜN
ÿ\¼;z¸Ç*°C¿ºº·Sëó¦žÛä‚[Úà-ëáûÿã
uÎEÃÒ;Ðàhý$.LrôÕyñQ)¾ö÷Ԁ¼’HH«–̰C띥@’©ôŽ“(¡˜L2)@jk­²O=ᤖ­õ†}Ø#xBƒŽRdŸª‹ֽ;ŒÛC}É=ætðê\r: »ƒÔg
±¶g¶´ôÇèì¼P«F3å@±žæÎêWD›Ôùv4¤8‰…|ûž€g½jƒ$ÜÙoøN°â7¼«;ÔÃÿ‘͵©/Go§(öuð2qyåॠs„°¡\ò¤	»ûV+Jï“ë£vÂ<­ŒŒ6†	½d¨­hÝ|-×ꀺ’J¦Ûu±ßVÌǐ¥3µpkô¸ü–úŸ$f÷7”Ï“ø¥ Tm±'^Cwº!Ýoµ‚ÓmqÏB®3Gxˆš¥O«ç+“áxmýìǾ.Ѝ¸ÎlZ
a²½񹪽u¾Ă“g°„!¯,l&Èg,%Mjö$mõ–—ær›v>„wržÀ"XmƹÀLO¸gG´²^20]cmý£XÚOLß|ªmX‘DU„küù2Iùº¬4/´XïJ¶IJvНú IޯMKê½(!ÍV4k3¥YŽ©â¡cÛìWoÓ#\œ¢Aҁž@}û”V‚5ŸÁR[È>Zëfâûø ©Fó˜Y°Ã	]ܱÀÁñWù
Îl]*!±A¤a>›H…åíâÎ^‰}N’W²>ˆBlÉ\ѐ©bÔ|MoÇFJ{‹¥PkVö³(®ÿU7sãNh׈—þ颈Lw©­güjnrR)ʉ(àé6þ±'$r…C•¾-ÂÊfÀ9âóyìû:ÄíÇ*eà‰m乡8=FÁ
2ð¾)Çr?ټ£¼AŸÏ!p#…:”¡-þƶ`ˆò#Öõ+ŠK­˜Yr!0ÔHVd#Ѕ<kÕIJ‘^\‰½ý×öWfí…^f”µ*°;஢dÏÜ«¯•滏¼EC¹À{jKiJ…ý„âØ@X†ø0º©~'é¿7¦íAÃvkí@CJ0;Ȋ³.K”ûØÖ~É9¾Ù]r”ٮT/ì8蔛JUñ¤]0k+Ÿ˜ýTmTé0å
8Õõç§Ûñɔ†Y¤Ö[¶dQ”MˆH¥ˆC	I¾êGªö܍ZÀy򠎥Ÿ¦ Láä0îÇбm! èL3 ‹M7~Ûàáïõ"Äþµ/=b,ž¹O>€B—»ªÛ>•rÿA¥w†5WŽF™¯HÐÚúƒs!·îúZÖó±¯îô͐˜›2А«´af2`&T}~Øu<Zø
K,>ٚnM¿?º{‘iŸQ²ÿ‰UcôÕù7åñ=_<‹„þ¦ݕu&	´Ç%g˜’ÖÆá 
 TÐ;pôI	\{<ߟ9jÙP® íëáÁPæå½Nþ2¨}ÇzØç–%Ϯ!{´©Á}N%Îā™v}æ;jn_Yz@fSšLáR%€̤¦"s+῁¡_
J¶Úôì½}áíBܤ…¶ÀƢÊÿ7‘mR‚-ÏsO©üà¤ۣ4Çh”åA’‚×[EÐÎÞŽNÀæÎ:¯Áэ™õ~6%Õ/TÕõlµÉØSÀG«Ø١–³š#º˜d$dd©	t¸	1urÝ©ré;lÄ݈ӳjïDBŸ��Ôâ4¥t«7O•ƒv(ñG„~‚¢%Ëب;(¨%L æԆ幘vO"­¯º.ˆ_ˆdQ¬3Ec;G§¡”ˆï`ª‘B\éƜú
1‰p†Ÿ"C&‘!ºpZx®ò‘÷~7*ã—œ=)Úz ‰Ϧ¿8Y©ý¦%*\`¥…ªðò‚CþÄìËSv
Ìy!ã½ÊúXàÕ*4n÷\±¦ºCXų»
2|ìEVÀ·ñéԝF	<¾šj†ÂûƒŠ¹"5úÒ+$­—‘i˜ˉ6œ÷‹üÁÆKcüèßÃIË$ž…BÊ{«‰}÷O–þ8Š­¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§­¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§­¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§­¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§ò¦Ôï;‡âá
Ú:5ͻ*ÇÆ)ÁU5d0Pӭ¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§­¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§­¬²XoÆéfÀ×ÑÑkOXÿ|´|z…ڽ‹H‰,§hme¼îFG\ì2oÏ)ì‘d‚j¯UYK>¦Ô<’xG%ƒ¸6}oH©׉Õ"¡Ùú>ü÷s?ïÒûŠ‚Žù׾¯·óî'ƒá%¦
¸1^¤àpK LÊÂ'‡5·×øxJì-gcº’ÿg.$¤ÒKKGô$¥u%É[GùǾPÈ%˜(ˆðïÈץi€Š®Æý¨‚ÿ¾¬‰%Väcü	¬"ÊØ˔kÉ]²±.{>“sPè&þ£´’"+ÞÝö,gÜÏp²°¤-ö¯܁˜u
ðÒÉ^ó-8ҥ8ÂZ09ÈÚÀY/1”\wQîUz¬YºâäV‡MÏðz%ÁVu¨½e7X…Øã¤aQÐÏUjËD”Ë{a{Ò4dèJۉ5õ}£ôAÂõÑÑâ§Q‚>ŠßB(cß
²±ûªßJ(߂…#u>€ǎ¯üÕg¥³âóÁ"_nBÅ$ѹ:ÁëÿxiDR„R­ °͛„ÒE<
–烏"­µÉu’QîË3«}>èdöEƷ»îƪéߟŒ°š•öXQ€þFheñϻչÀG—p\3ٝÑ×Ùcr4LŒ‘_x/"ѾÆCùõ©¨zq&n¡t•ÅÜY ‚IÁv+äÐÐE•R8ìýŠxhfr=tx+úêWÉBøGLÿª