Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / mtrand.cpython-312-iphonesimulator.so
Size: Mime:
ÏúíþH…(__TEXT€	€	__text__TEXT`3è’`3€__stubs__TEXTHÆ*HÆ€__stub_helper__TEXTrÉVrÉ€__const__TEXTÐÎ8ˆÐÎ__cstring__TEXTW	Ò&W	__unwind_info__TEXTÜ}	Ü}	˜__DATA_CONST€	@€	@__got__DATA_CONST€	€	‡ˆ__DATAÀ	@À	@__la_symbol_ptr__DATAÀ	8À	§__data__DATA@Ä	
@Ä	__common__DATAPÎ	__bss__DATA`Î	@H__LINKEDIT
@
P
Pnumpy/random/mtrand.cpython-312-iphonesimulator.so"€0
  
x
ø
 À
px
ØbPÈÈɧ
.SñÅe	l3vœúÔ,ÿá‡2 
þ*0@/usr/lib/libc++.1.dylib8>8/usr/lib/libSystem.B.dylib&0
)À
UH‰åH=å	]é”ffffff.„UH‰åAWAVAUATSPI‰þ趔H‹x蓓H‹
J‘	Hƒùÿt H9Át,H‹ˆL	H‹8H5«#	è“éH‰‘	Hƒøÿ„ïH‹œš	H…Ût‹ÿÀ„Û‰éÔH5#	L‰÷èݓH…À„°I‰ÇH‰Çèi“H‰ÃI‹©€uHÿÈI‰uL‰ÿ躔H…Û„H‰ßè/“H…À„pI‰ÇH5¶"	L‰÷耓H…À„qI‰ÄH5¢"	L‰ÿH‰Âè’A‰ÅI‹$©€uHÿÈI‰$uL‰çèQ”E…íˆH5s"	L‰÷è+“H…À„9I‰ÄH5_"	L‰ÿH‰Â轑A‰ÅI‹$©€uHÿÈI‰$uL‰çèü“E…íˆÃH5."	L‰÷è֒H…À„I‰ÄH5"	L‰ÿH‰Âèh‘A‰ÅI‹$©€uHÿÈI‰$uL‰ç觓E…íxrH5ð!	L‰÷腒H…À„ÍI‰ÆH;lK	t!H5ç!	L‰ÿL‰òè‘A‰ÇI‹©€tëE1ÿI‹©€uHÿÈI‰tE…ÿyëL‰÷è9“E…ÿyë1ÛH‰ßèÄW1ÛH‰ØHƒÄ[A\A]A^A_]ÃH‹AJ	H‹8蹐…ÀtÑ誐é¯þÿÿH‹$J	H‹8蜐…Àt´荐éçþÿÿH‹J	H‹8萅Àt—èpéÿÿÿH‹êI	H‹8èb…À„vÿÿÿèOévÿÿÿ„UH‰åAWAVAUATSHìèH‹uJ	H‹H‰EÐH‹÷—	H…Àt)H9ø„ý=H‹ÊI	H‹8H5$!	萸ÿÿÿÿé?H‰=—	‹ÿÀt‰诐H‰¾—	H…À„¸?‹ÿÁt‰H=1!	è%H…À„£=‹ÿÁt‰H‰‘—	H=!	èH…À„Ÿ=‹ÿÁt‰DžüþÿÿH‰k—	H‹=D—	H‹U—	H5é 	è͐…Àˆ„=H‹jI	H‹‰AáÿÿùtlI‰ÂIÁêÁèD¶ØHƒìL5:!	Hå 	L
ˆ—E1äHÿÿÿ¾ÈH‰߹A¸1ÀASARAVèúHƒÄ º1ÿH‰ÞèýŽ…Àˆ=E1ä1ÿèqH‰º–	H…À„?H=—E1ä1öè@ŽH‰¡–	H…À„ý>H=ñ–E1ä1öèwH‰ˆ–	H…À„ç>è²sWÀ趎H‰¥	A¾ãvH…À„`>òl–蓎H‰ø¤	H…À„C>òW–èvŽH‰ã¤	H…À„&>òB–èYŽH‰Τ	E1äH…À„~<1ÿ虎H‰¼¤	H…À„g<¿èŽH‰ª¤	H…À„Õ=H=å	E1ä1ö1ÒèhŽH‰¤	H…À„*<HÇÇÿÿÿÿè@ŽH‰{¤	H…À„–=ƒ=#•	t"H‹=J•	H‹5Cž	H‹¤	è͎…Àˆž;èʍA´H…À„É=H‰ÃH5´•H‰ÇèH…ÀuH‹•	H5™•H‰ß荅Àˆ>@H‹²›	H‹=ó”	H‹GH‹€H‰ÞH;öF	…v=1ҹè
H…À„}=H‰„¥	H‹µ—	H‹=®”	H‹GH‹€H‰ÞH;±F	…^=1ҹèŎH…À„e=H‰G¥	H‹X—	H‹=i”	H‹GH‹€H‰ÞH;lF	…F=1ҹ耎H…À„M=H‰
¥	H‹ã–	H‹=$”	H‹GH‹€H‰ÞH;'F	….=1ҹè;ŽH…À„5=H‰ͤ	H‹^Ÿ	H‹=ߓ	H‹GH‹€H‰ÞH;âE	…=1ҹèöH…À„=H‰¤	H‹”	H‹=š“	H‹GH‹€H‰ÞH;E	…þ<1ҹ豍H…À„=H‰S¤	H‹„”	H‹=U“	H‹GH‹€H‰ÞH;XE	…æ<1ҹèlH…À„í<H‰¤	H‹–	H‹=“	H‹GH‹€H‰ÞH;E	…à<1ҹè'H…À„ç<H‰٣	H‹šž	H‹=˒	H‹GH‹€H‰ÞH;ÎD	…Å<1ҹèâŒH…À„Ì<H‰œ£	H‹…“	H‹=†’	H‹GH‹€H‰ÞH;‰D	…Ú<1ҹ蝌H…À„á<H‰_£	H‹8“	H‹=A’	H‹GH‹€H‰ÞH;DD	…ã<1ҹèXŒH…À„ê<H‰"£	H‹5»›	¿1À轋H‰¡	A¾÷vH…À„}8H‹5š›	¿1À蔋H‰ߠ	H…À„Z8H‹5™	¿1Àèq‹H‰Ġ	H…À„78H‹5”’	¿1ÀèN‹H‰© 	H…À„8H‹5ѕ	¿1Àè+‹H‰Ž 	H…À„ñ7H‹5¶—	H‹'¢	¿1Àè‹H‰l 	H…À„Ç7H‹5ܘ	¿1ÀèފH‰Y 	H…À„¤7H‹5Iž	¿1À車H‰> 	H…À„7H‹5.ž	¿1À蘊H‰# 	H…À„^7H‹5	¿1ÀèuŠH‰ 	H…À„;7H‹5°–	H‹YŸ	¿1ÀèKŠH‰æŸ	H…À„7H‹5þ–	H‹OŸ	¿1Àè!ŠH‰ğ	H…À„ç6H‹
ŒB	¿H‰ÎH‰Ê1Àèø‰H‰£Ÿ	H…À„¾6H‹5K‘	H‹¡	¿1ÀèΉH‰Ÿ	H…À„”6H‹5ٞ	H‹âž	¿1À褉H‰_Ÿ	H…À„j6H‹5'“	¿1À聉H‰DŸ	H…À„G6H‹5“	¿1Àè^‰H‰)Ÿ	H…À„$6H‹5ْ	¿1Àè;‰H‰Ÿ	H…À„6H‹5®’	¿1Àè‰H‰óž	H…À„Þ5H‹5C™	¿1ÀèõˆH‰؞	H…À„»5H‹5`’	¿1Àè҈H‰½ž	H…À„˜5H‹5…™	¿1À诈H‰¢ž	H…À„u5H‹5Z™	¿1À茈H‰‡ž	H…À„R5H‹5G™	¿1ÀèiˆH‰lž	H…À„/5H‹5d	¿1ÀèFˆH‰Qž	H…À„5H‹5‰	¿1Àè#ˆH‰6ž	H…À„é4H‹5.	¿1ÀèˆH‰ž	H…À„Æ4H‹53Ž	¿1Àè݇H‰ž	H…À„£4H‹5°	¿1À躇H‰å	H…À„€4H‹5}•	¿1À藇H‰ʝ	H…À„]4H‹5B–	¿1Àèt‡H‰¯	H…À„:4H‹5?•	¿1ÀèQ‡H‰”	H…À„4H‹5¬–	¿1Àè.‡H‰y	H…À„ô3H‹5ɕ	¿1Àè‡H‰^	H…À„Ñ3H‹5&’	¿1Àèè†H‰C	H…À„®3H‹5{•	¿1ÀèņH‰(	H…À„‹3H‹=0?	H‰þH‰ú苆H‰œ	H…À„i3H‹5N‘	¿1À耆H‰ëœ	H…À„F3H‹5£‘	H‹|	¿1ÀèV†H‰ɜ	H…À„3H‹5y‘	¿1Àè3†H‰®œ	H…À„ù2H‹5–›	H‹—>	¿1Àè	†H‰Œœ	H…À„Ï2H‹5ä–	¿1Àèæ…H‰qœ	H…À„¬2H‹5¡	¿1ÀèÅH‰Vœ	H…À„‰2H‹5¦	¿1À蠅H‰;œ	H…À„f2H‹5‹Ž	H‹¼œ	¿1Àèv…H‰œ	H…À„<2H‹5š	H‹Ê=	¿1ÀèL…H‰÷›	H…À„2H‹5š	¿1Àè)…H‰ܛ	H…À„ï1H‹5\—	H‹M	¿1Àèÿ„H‰º›	H…À„¼1I‰ÇL‹57‹	L‹-(‹	H‹é”	H‰…ðþÿÿL‹%—	H=t‹1ö襂H…À„:1H‰ÿ1ö1ҹE1ÀA¹PAVh³ATATÿµðþÿÿAUAUAWAUAUAVèɄHƒÄ`I‰ÇH‹©€uHÿÈH‰uH‰ßèê„L‰='›	M…ÿ„Ð2L‹5Š	L‹=€Š	L‹%A”	L‹-ª	H=ӊ1öè‚H…À„µ0H‰Ã1ÿ1ö1Ò1ÉE1ÀA¹PAVhËAUAUATAWAWAWAWAWAVè2„HƒÄ`I‰ÇH‹©€uHÿÈH‰uH‰ßèS„L‰=˜š	M…ÿ„92H‹5Ž	H‹i–	¿1À蓃H‰Vš	H…À„2I‰ÇL‹5ˉ	L‹-¼‰	H‹}“	H‰…ðþÿÿL‹%¿•	H=Š1öè9H…À„ó/H‰ÿ1ö1ҹE1ÀA¹PAVhåATATÿµðþÿÿAUAUAWAUAUAVè]ƒHƒÄ`I‰ÇH‹©€uHÿÈH‰uH‰ßè~ƒL‰=˙	M…ÿ„d1H‹5»Œ	H‹d	¿1À辂H‰‰™	H…À„:1I‰ÇL‹5öˆ	L‹-çˆ	H‹¨’	H‰…ðþÿÿL‹%ª”	H=3‰1öèd€H…À„'/H‰Ã1ÿ1ö1ҹE1ÀA¹PAVhATATÿµðþÿÿAUAUAWAUAUAV苂HƒÄ`I‰ÇH‹©€uHÿÈH‰uH‰ß謂L‰=™	M…ÿ„’0L‹5Qˆ	L‹=Bˆ	H‹Ø	H‰…ðþÿÿL‹%õ‘	L‹-~“	H=‡ˆ1öè¸H…À„„.H‰Ã1ÿ1ö1ҹE1ÀA¹PAVh
AUAUATAWAWÿµðþÿÿAWAWAVè߁HƒÄ`I‰ÆH‹©€uHÿÈH‰uH‰ßè‚L‰5]˜	M…ö„æ/è·F…Àˆ3èÊK…Àˆ3èýP…Àˆü2èÀQ…Àˆ÷2H‹=I‘	èÌTH…À„ú2I‰ÇH‹=9‡	H‹5*‘	H‰Âè*…Àˆ„.I‹©€uHÿÈI‰uL‰ÿèlH‹=q•	è|TH…À„×2I‰ÇH‹=é†	H‹5R•	H‰ÂèÚ~…ÀˆB.I‹©€uHÿÈI‰uL‰ÿ聿èbH…À„²2I‰ÇH‹c‰	‹ÿÁt	‰H‹T‰	I‹OH‰H‹=^‹	L‰þ1Òè„VH…À„2H‰ÃI‹©€uHÿÈI‰uL‰ÿ貀H‹5‰	H‰ßè¿VH…À„l2I‰ÇH‹=,†	H‹5íˆ	H‰Âè~…Àˆí-I‹©€uHÿÈI‰uL‰ÿè_€H‹©€uHÿÈH‰uH‰ßèE€H‹=’	èUSH…À„12H‰ÃH‹=…	H‹5[	H‰Âè³}…Àˆ‘-H‹©€uHÿÈH‰uH‰ßèõ¿è;~H…À„2H‰ÃH‹Œ†	‹ÿÁt	‰H‹}†	H‹KH‰H‹=ï	H‰޺èZUH…À„ç1I‰ÇH‹©€uHÿÈH‰uH‰ßèˆH‹55†	L‰ÿè•UA¾H…À„Á1H‰ÃH‹=ü„	H‹5†	H‰Âèí|…ÀˆÝ,H‹©€uHÿÈH‰uH‰ßè/I‹©€uHÿÈI‰uL‰ÿèèLVƒøÿ„~1H‹”„	òèÿ|H…À„}1I‰ÇH‹X…	H‹¸H‹5ڎ	L‰úèj|…Àˆ},I‹©€uHÿÈI‰uL‰ÿè¬~H‹=…	è~H‹E6	‹ÿÁt‰H‰6“	H‹=÷„	WÀ)…ÿÿÿHµÿÿÿHº€èßõH…À„1I‰ÇH‹=ìƒ	H‹5͎	H‰ÂèÝ{…Àˆ	,I‹©€uHÿÈI‰uL‰ÿè~H‹=œŽ	èYH…À„ï0I‰ÇH‹5œ‡	H‹@H‹€L‰ÿH…À„æ0ÿÐH‰ÃH…À„é0I‹©€uHÿÈI‰uL‰ÿèÁ}H‹=Vƒ	H‹5O‡	H‰ÚèG{…Àˆ„+H‹©€uHÿÈH‰uH‰ßè‰}H‹=Ž	èéXH…À„¤0H‰ÃH‹5‡	H‹@H‹€H‰ßH…À„›0ÿÐI‰ÇH…À„ž0H‹©€uHÿÈH‰uH‰ßè+}H‹=	H‹5ц	L‰úè±z…Àˆ+I‹©€uHÿÈI‰uL‰ÿèó|H‹=p	èSXH…À„a0I‰ÇH‹5	H‹@H‹€L‰ÿH…À„X0ÿÐH‰ÃH…À„[0I‹©€uHÿÈI‰uL‰ÿè•|H‹=*‚	H‹5s†	H‰Úèz…Àˆñ+H‹©€uHÿÈH‰uH‰ßè]|H‹=ڌ	è½WH…À„0H‰ÃH‹5r†	H‹@H‹€H‰ßH…À„
0ÿÐI‰ÇH…À„0H‹©€uHÿÈH‰uH‰ßèÿ{H‹=”	H‹5%†	L‰úè…y…Àˆœ,I‹©€uHÿÈI‰uL‰ÿèÇ{H‹=DŒ	è'WH…À„Ó/I‰ÇH‹5ô…	H‹@H‹€L‰ÿH…À„Ê/ÿÐH‰ÃH…À„Í/I‹©€uHÿÈI‰uL‰ÿèi{H‹=þ€	H‹5§…	H‰Úèïx…Àˆ,H‹©€uHÿÈH‰uH‰ßè1{H‹=®‹	è‘VH…À„z0H‰ÃH‹5ö…	H‹@H‹€H‰ßH…À„q0ÿÐI‰ÇH…À„t0H‹©€uHÿÈH‰uH‰ßèÓzH‹=h€	H‹5©…	L‰úèYx…Àˆ¡+I‹©€uHÿÈI‰uL‰ÿè›zH‹=‹	èûUH…À„70I‰ÇH‹5Ѕ	H‹@H‹€L‰ÿH…À„.0ÿÐH‰ÃH…À„10I‹©€uHÿÈI‰uL‰ÿè=zH‹=Ò	H‹5ƒ…	H‰ÚèÃw…Àˆ+H‹©€uHÿÈH‰uH‰ßèzH‹=‚Š	èeUH…À„î/H‰ÃH‹5R…	H‹@H‹€H‰ßH…À„å/ÿÐI‰ÇH…À„è/H‹©€uHÿÈH‰uH‰ßè§yH‹=<	H‹5…	L‰úè-w…Àˆ›*I‹©€uHÿÈI‰uL‰ÿèoyH‹=ì‰	èÏTH…À„«/I‰ÇH‹5ô„	H‹@H‹€L‰ÿH…À„¢/ÿÐH‰ÃH…À„¥/I‹©€uHÿÈI‰uL‰ÿèyH‹=¦~	H‹5§„	H‰Úè—v…Àˆ^*H‹©€uHÿÈH‰uH‰ßèÙxH‹=V‰	è9TH…À„b/H‰ÃH‹5¶„	H‹@H‹€H‰ßH…À„Y/ÿÐI‰ÇH…À„\/H‹©€uHÿÈH‰uH‰ßè{xH‹=~	H‹5i„	L‰úèv…Àˆõ)I‹©€uHÿÈI‰uL‰ÿèCxH‹=	è£SH…À„/I‰ÇH‹5ðƒ	H‹@H‹€L‰ÿH…À„/ÿÐH‰ÃH…À„/I‹©€uHÿÈI‰uL‰ÿèåwH‹=z}	H‹5£ƒ	H‰Úèku…Àˆ³)H‹©€uHÿÈH‰uH‰ßè­wH‹=*ˆ	è
SH…À„Ö.H‰ÃH‹5ªƒ	H‹@H‹€H‰ßH…À„Í.ÿÐI‰ÇH…À„Ð.H‹©€uHÿÈH‰uH‰ßèOwH‹=ä|	H‹5]ƒ	L‰úèÕt…ÀˆJ)I‹©€uHÿÈI‰uL‰ÿèwH‹=”‡	èwRH…À„“.I‰ÇH‹5<ƒ	H‹@H‹€L‰ÿH…À„Š.ÿÐH‰ÃH…À„.I‹©€uHÿÈI‰uL‰ÿè¹vH‹=N|	H‹5ï‚	H‰Úè?t…Àˆý(H‹©€uHÿÈH‰uH‰ßèvH‹=þ†	èáQH…À„J.H‰ÃH‹5†ƒ	H‹@H‹€H‰ßH…À„A.ÿÐI‰ÇH…À„D.H‹©€uHÿÈH‰uH‰ßè#vH‹=¸{	H‹59ƒ	L‰úè©s…Àˆ¬(I‹©€uHÿÈI‰uL‰ÿèëuH‹=h†	èKQH…À„.I‰ÇH‹5pƒ	H‹@H‹€L‰ÿH…À„þ-ÿÐH‰ÃH…À„.I‹©€uHÿÈI‰uL‰ÿèuH‹="{	H‹5#ƒ	H‰Úès…Àˆ?(H‹©€uHÿÈH‰uH‰ßèUuH‹=҅	èµPH…À„¾-H‰ÃH‹5ò‚	H‹@H‹€H‰ßH…À„µ-ÿÐI‰ÇH…À„¸-H‹©€uHÿÈH‰uH‰ßè÷tH‹=Œz	H‹5¥‚	L‰úè}r…Àˆø'I‹©€uHÿÈI‰uL‰ÿè¿tH‹=<…	èPH…À„{-I‰ÇH‹5t‚	H‹@H‹€L‰ÿH…À„r-ÿÐH‰ÃH…À„u-I‹©€uHÿÈI‰uL‰ÿèatH‹=öy	H‹5'‚	H‰Úèçq…Àˆ±'H‹©€uHÿÈH‰uH‰ßè)tH‹=¦„	è‰OH…À„2-H‰ÃH‹5V‚	H‹@H‹€H‰ßH…À„)-ÿÐI‰ÇH…À„,-H‹©€uHÿÈH‰uH‰ßèËsH‹=`y	H‹5	‚	L‰úèQq…Àˆj'I‹©€uHÿÈI‰uL‰ÿè“sH‹=„	èóNH…À„ï,I‰ÇH‹5؁	H‹@H‹€L‰ÿH…À„æ,ÿÐH‰ÃH…À„é,I‹©€uHÿÈI‰uL‰ÿè5sH‹=Êx	H‹5‹	H‰Úè»p…Àˆ#'H‹©€uHÿÈH‰uH‰ßèýrH‹=zƒ	è]NH…À„¦,H‰ÃH‹5Ё	H‹@H‹€H‰ßH…À„,ÿÐI‰ÇH…À„ ,H‹©€uHÿÈH‰uH‰ßèŸrH‹=4x	H‹5=	L‰úè%p…ÀˆÎ'I‹©€uHÿÈI‰uL‰ÿègrH‹=ä‚	èÇMH…À„c,I‰ÇH‹5<	H‹@H‹€L‰ÿH…À„Z,ÿÐH‰ÃH…À„],I‹©€uHÿÈI‰uL‰ÿè	rH‹=žw	H‹5ï€	H‰Úèo…Àˆ‡'H‹©€uHÿÈH‰uH‰ßèÑqH‹=N‚	è1MH…À„,H‰ÃH‹5¾€	H‹@H‹€H‰ßH…À„,ÿÐI‰ÇH…À„,H‹©€uHÿÈH‰uH‰ßèsqH‹=w	H‹5q€	L‰úèùn…Àˆ@'I‹©€uHÿÈI‰uL‰ÿè;qH‹=¸	è›LH…À„Ù+I‰ÇH‹5@€	H‹@H‹€L‰ÿH…À„Ð+ÿÐH‰ÃH…À„Ó+I‹©€uHÿÈI‰uL‰ÿèÝpH‹=rv	H‹5ó	H‰Úècn…Àˆû&H‹©€uHÿÈH‰uH‰ßè¥pH‹="	èLH…À„’+H‰ÃH‹5:€	H‹@H‹€H‰ßH…À„‰+ÿÐI‰ÇH…À„Œ+H‹©€uHÿÈH‰uH‰ßèGpH‹=Üu	H‹5í	L‰úèÍm…Àˆ´&I‹©€uHÿÈI‰uL‰ÿèpH‹=Œ€	èoKH…À„O+I‰ÇH‹5¼	H‹@H‹€L‰ÿH…À„F+ÿÐH‰ÃH…À„I+I‹©€uHÿÈI‰uL‰ÿè±oH‹=Fu	H‹5o	H‰Úè7m…Àˆo&H‹©€uHÿÈH‰uH‰ßèyoH‹=ö	èÙJH…À„+H‰ÃH‹5F	H‹@H‹€H‰ßH…À„ÿ*ÿÐI‰ÇH…À„+H‹©€uHÿÈH‰uH‰ßèoH‹=°t	H‹5ù~	L‰úè¡l…Àˆ(&I‹©€uHÿÈI‰uL‰ÿèãnH‹=`	èCJH…À„Å*I‰ÇH‹5Ø~	H‹@H‹€L‰ÿH…À„¼*ÿÐH‰ÃH…À„¿*I‹©€uHÿÈI‰uL‰ÿè…nH‹=t	H‹5‹~	H‰Úèl…Àˆã%H‹©€uHÿÈH‰uH‰ßèMnH‹=Ê~	è­IH…À„~*H‰ÃH‹5¢~	H‹@H‹€H‰ßH…À„u*ÿÐI‰ÇH…À„x*H‹©€uHÿÈH‰uH‰ßèïmH‹=„s	H‹5U~	L‰úèuk…Àˆœ%I‹©€uHÿÈI‰uL‰ÿè·mH‹=4~	èIH…À„;*I‰ÇH‹5,~	H‹@H‹€L‰ÿH…À„2*ÿÐH‰ÃH…À„5*I‹©€uHÿÈI‰uL‰ÿèYmH‹=îr	H‹5ß}	H‰Úèßj…ÀˆW%H‹©€uHÿÈH‰uH‰ßè!mH‹=ž}	èHH…À„ô)H‰ÃH‹5®}	H‹@H‹€H‰ßH…À„ë)ÿÐI‰ÇH…À„î)H‹©€uHÿÈH‰uH‰ßèÃlH‹=Xr	H‹5a}	L‰úèIj…Àˆ%I‹©€uHÿÈI‰uL‰ÿè‹lH‹=}	èëGH…À„±)I‰ÇH‹50}	H‹@H‹€L‰ÿH…À„¨)ÿÐH‰ÃH…À„«)I‹©€uHÿÈI‰uL‰ÿè-lH‹=Âq	H‹5ã|	H‰Úè³i…ÀˆË$H‹©€uHÿÈH‰uH‰ßèõkH‹=r|	èUGH…À„j)H‰ÃH‹5ª|	H‹@H‹€H‰ßH…À„a)ÿÐI‰ÇH…À„d)H‹©€uHÿÈH‰uH‰ßè—kH‹=,q	H‹5]|	L‰úèi…Àˆ„$I‹©€uHÿÈI‰uL‰ÿè_kH‹=Ü{	è¿FH…À„')I‰ÇH‹5,|	H‹@H‹€L‰ÿH…À„)ÿÐH‰ÃH…À„!)I‹©€uHÿÈI‰uL‰ÿèkH‹=–p	H‹5ß{	H‰Úè‡h…Àˆ?$H‹©€uHÿÈH‰uH‰ßèÉjH‹=F{	è)FH…À„â(H‰ÃH‹5Ö{	H‹@H‹€H‰ßH…À„Ù(ÿÐI‰ÇH…À„Ü(H‹©€uHÿÈH‰uH‰ßèkjH‹=p	H‹5‰{	L‰úèñg…Àˆø#I‹©€uHÿÈI‰uL‰ÿè3jH‹=°z	è“EH…À„Ÿ(I‰ÇH‹5ð{	H‹@H‹€L‰ÿH…À„–(ÿÐH‰ÃH…À„™(I‹©€uHÿÈI‰uL‰ÿèÕiH‹=jo	H‹5£{	H‰Úè[g…Àˆ³#H‹©€uHÿÈH‰uH‰ßèiH‹=z	èýDH…À„Z(H‰ÃH‹5‚{	H‹@H‹€H‰ßH…À„Q(ÿÐI‰ÇH…À„T(H‹©€uHÿÈH‰uH‰ßè?iH‹=Ôn	H‹55{	L‰úèÅf…Àˆn#I‹©€uHÿÈI‰uL‰ÿèiH‹=„y	ègDH…À„(I‰ÇH‹5L{	H‹@H‹€L‰ÿH…À„(ÿÐH‰ÃH…À„(I‹©€uHÿÈI‰uL‰ÿè©hH‹=>n	H‹5ÿz	H‰Úè/f…Àˆ)#H‹©€uHÿÈH‰uH‰ßèqhH‹=îx	èÑCH…À„Ò'H‰ÃH‹5Îz	H‹@H‹€H‰ßH…À„É'ÿÐI‰ÇH…À„Ì'H‹©€uHÿÈH‰uH‰ßèhH‹=¨m	H‹5z	L‰úè™e…Àˆä"I‹©€uHÿÈI‰uL‰ÿèÛgH‹=Xx	è;CH…À„'I‰ÇH‹5Pz	H‹@H‹€L‰ÿH…À„†'ÿÐH‰ÃH…À„‰'I‹©€uHÿÈI‰uL‰ÿè}gH‹=m	H‹5z	H‰Úèe…ÀˆŸ"H‹©€uHÿÈH‰uH‰ßèEgH‹=Âw	è¥BH…À„@'H‰ÃH‹5Òy	H‹@H‹€H‰ßH…À„7'ÿÐI‰ÇH…À„:'H‹©€uHÿÈH‰uH‰ßèçfH‹=|l	H‹5…y	L‰úèmd…ÀˆZ"I‹©€uHÿÈI‰uL‰ÿè¯fH‹=,w	èBH…À„ó&I‰ÇH‹5Ty	H‹@H‹€L‰ÿH…À„ê&ÿÐH‰ÃH…À„í&I‹©€uHÿÈI‰uL‰ÿèQfH‹=æk	H‹5y	H‰Úè×c…Àˆ"H‹©€uHÿÈH‰uH‰ßèfH‹=–v	èyAH…À„¤&H‰ÃH‹5Vy	H‹@H‹€H‰ßH…À„›&ÿÐI‰ÇH…À„ž&H‹©€uHÿÈH‰uH‰ßè»eH‹=Pk	H‹5	y	L‰úèAc…ÀˆÐ!I‹©€uHÿÈI‰uL‰ÿèƒeH‹=v	èã@H…À„W&I‰ÇH‹5y	H‹@H‹€L‰ÿH…À„N&ÿÐH‰ÃH…À„Q&I‹©€uHÿÈI‰uL‰ÿè%eH‹=ºj	H‹5»x	H‰Úè«b…Àˆ‹!H‹©€uHÿÈH‰uH‰ßèídH‹=ju	èM@H…À„&H‰ÃH‹5šx	H‹@H‹€H‰ßH…À„ÿ%ÿÐI‰ÇH…À„&H‹©€uHÿÈH‰uH‰ßèdH‹=$j	H‹5Mx	L‰úèb…ÀˆF!I‹©€uHÿÈI‰uL‰ÿèWdH‹=Ôt	è·?H…À„»%I‰ÇH‹5x	H‹@H‹€L‰ÿH…À„²%ÿÐH‰ÃH…À„µ%I‹©€uHÿÈI‰uL‰ÿèùcH‹=Ži	H‹5Ïw	H‰Úèa…Àˆ!H‹©€uHÿÈH‰uH‰ßèÁcH‹=>t	è!?H…À„l%H‰ÃH‹5¶w	H‹@H‹€H‰ßH…À„c%ÿÐI‰ÇH…À„f%H‹©€uHÿÈH‰uH‰ßèccH‹=øh	H‹5iw	L‰úèé`…Àˆ¼ I‹©€uHÿÈI‰uL‰ÿè+cH‹=¨s	è‹>H…À„%I‰ÇH‹5`w	H‹@H‹€L‰ÿH…À„%ÿÐH‰ÃH…À„%I‹©€uHÿÈI‰uL‰ÿèÍbH‹=bh	H‹5w	H‰ÚèS`…Àˆw H‹©€uHÿÈH‰uH‰ßè•bH‹r	H=‹^	1ö1ÉèØ_H…À„Å$H‰ÃH‹=h	H‹5t	H‰Âèø_…Àˆm H‹©€uHÿÈH‰uH‰ßè:bH‹§q	H=P^	1ö1Éè}_H…À„$H‰ÃH‹=¬g	H‹5õm	H‰Âè_…Àˆe H‹©€uHÿÈH‰uH‰ßèßaH‹Lq	H=^	1ö1Éè"_H…À„U$H‰ÃH‹=Qg	H‹5zs	H‰ÂèB_…Àˆ[ H‹©€uHÿÈH‰uH‰ßè„aH‹ñp	H=Ú]	1ö1ÉèÇ^H…À„$H‰ÃH‹=öf	H‹5ßr	H‰Âèç^…ÀˆS H‹©€uHÿÈH‰uH‰ßè)aH‹–p	H=Ÿ]	1ö1Éèl^H…À„å#H‰ÃH‹=›f	H‹5r	H‰ÂèŒ^…ÀˆI H‹©€uHÿÈH‰uH‰ßèÎ`¿5è_H…À„º#H‰ÃH‹
Uj	‹ÿÂt	‰H‹
Fj	HƒÀH‹SH‰
H‹
Lj	‹ÿÂt	‰H‹
=j	H‹H‰JH‹
gj	‹ÿÂt	‰H‹
Xj	H‹H‰JH‹
’j	‹ÿÂt	‰H‹
ƒj	H‹H‰JH‹
j	‹ÿÂt	‰H‹
~j	H‹H‰J H‹
k	‹ÿÂt	‰H‹
ùj	H‹H‰J(H‹
[k	‹ÿÂt	‰H‹
Lk	H‹H‰J0H‹
Vk	‹ÿÂt	‰H‹
Gk	H‹H‰J8H‹
qk	‹ÿÂt	‰H‹
bk	H‹H‰J@H‹
|k	‹ÿÂt	‰H‹
mk	H‹H‰JHH‹
k	‹ÿÂt	‰H‹
pk	H‹H‰JPH‹
rk	‹ÿÂt	‰H‹
ck	H‹H‰JXH‹
uk	‹ÿÂt	‰H‹
fk	H‹H‰J`H‹
€k	‹ÿÂt	‰H‹
qk	H‹H‰JhH‹
Cl	‹ÿÂt	‰H‹
4l	H‹H‰JpH‹
¦l	‹ÿÂt	‰H‹
—l	H‹H‰JxH‹
¡l	‹ÿÂt	‰H‹
’l	H‹H‰Š€H‹
™l	‹ÿÂt	‰H‹
Šl	H‹H‰ŠˆH‹
ñl	‹ÿÂt	‰H‹
âl	H‹H‰ŠH‹
él	‹ÿÂt	‰H‹
Úl	H‹H‰Š˜H‹
m	‹ÿÂt	‰H‹
m	H‹H‰Š H‹
9m	‹ÿÂt	‰H‹
*m	H‹H‰Š¨H‹
1m	‹ÿÂt	‰H‹
"m	H‹H‰Š°H‹
)m	‹ÿÂt	‰H‹
m	H‹H‰Š¸H‹
™m	‹ÿÂt	‰H‹
Šm	H‹H‰ŠÀH‹
‘m	‹ÿÂt	‰H‹
‚m	H‹H‰ŠÈH‹
‘m	‹ÿÂt	‰H‹
‚m	H‹H‰ŠÐH‹
™m	‹ÿÂt	‰H‹
Šm	H‹H‰ŠØH‹
Ùm	‹ÿÂt	‰H‹
Êm	H‹H‰ŠàH‹
Ùm	‹ÿÂt	‰H‹
Êm	H‹H‰ŠèH‹
Ñm	‹ÿÂt	‰H‹
Âm	H‹H‰ŠðH‹
Ém	‹ÿÂt	‰H‹
ºm	H‹H‰ŠøH‹
¹m	‹ÿÂt	‰H‹
ªm	H‹H‰ŠH‹
±m	‹ÿÂt	‰H‹
¢m	H‹H‰ŠH‹
±m	‹ÿÂt	‰H‹
¢m	H‹H‰ŠH‹
±m	‹ÿÂt	‰H‹
¢m	H‹H‰ŠH‹
ñm	‹ÿÂt	‰H‹
âm	H‹H‰Š H‹
ùm	‹ÿÂt	‰H‹
êm	H‹H‰Š(H‹
ñm	‹ÿÂt	‰H‹
âm	H‹H‰Š0H‹
ám	‹ÿÂt	‰H‹
Òm	H‹H‰Š8H‹
ém	‹ÿÂt	‰H‹
Úm	H‹H‰Š@H‹
)n	‹ÿÂt	‰H‹
n	H‹H‰ŠHH‹
!n	‹ÿÂt	‰H‹
n	H‹H‰ŠPH‹
n	‹ÿÂt	‰H‹
n	H‹H‰ŠXH‹
n	‹ÿÂt	‰H‹
n	H‹H‰Š`H‹
	n	‹ÿÂt	‰H‹
úm	H‹H‰ŠhH‹
n	‹ÿÂt	‰H‹
rn	H‹H‰ŠpH‹
©n	‹ÿÂt	‰H‹
šn	H‹H‰ŠxH‹
±n	‹ÿÂt	‰H‹
¢n	H‹H‰Š€H‹
©n	‹ÿÂt	‰H‹
šn	H‹H‰ŠˆH‹
¹n	‹ÿÂt	‰H‹
ªn	H‹H‰ŠH‹
Ùn	‹ÿÂt	‰H‹
Ên	H‹H‰ˆ˜H‹Aa	‹ÿÁt	‰H‹2a	H‹KH‰ H‹=Ø_	H‹5Yc	H‰ÚèÉW…ÀˆÙH‹©€uHÿÈH‰uH‰ßèZ¿-èÝYH…À„H‰ÃH‹5Òa	H‹«k	H‰Çè{WDžüþÿÿ…ÀˆÒH‹5ša	H‹»j	H‰ßèSW…ÀˆýH‹5¼`	H‹e	H‰ßè5W…Àˆ&H‹5†a	H‹l	H‰ßèW…ÀˆQH‹5ˆa	H‹¹l	H‰ßèùV…ÀˆzH‹5
a	H‹ëi	H‰ßèÛV…Àˆ¥H‹5$`	H‹%c	H‰ßè½V…ÀˆÎH‹5`	H‹gc	H‰ßèŸV…ÀˆùH‹5 a	H‹¡l	H‰ßèV…Àˆ"H‹5Š`	H‹[i	H‰ßècV…Àˆ'H‹5|`	H‹mi	H‰ßèEV…Àˆ,H‹5f`	H‹wi	H‰ßè'V…Àˆ1H‹5ˆ`	H‹1k	H‰ßè	V…Àˆ6H‹5ê_	H‹‹g	H‰ßèëU…Àˆ;H‹5D`	H‹Ýj	H‰ßèÍU…Àˆ@H‹5F_	H‹Ïc	H‰ßè¯U…ÀˆEH‹5 _	H‹yc	H‰ßè‘U…Àˆ2H‹5j_	H‹ûf	H‰ßèsU…ÀˆH‹5Ä^	H‹b	H‰ßèUU…ÀˆH‹5&_	H‹§f	H‰ßè7U…ÀˆùH‹5€_	H‹ùi	H‰ßèU…ÀˆæH‹5‚_	H‹;j	H‰ßèûT…ÀˆÓH‹5„_	H‹%k	H‰ßèÝT…ÀˆÀH‹5Æ^	H‹ïf	H‰ßè¿T…Àˆ­H‹5X_	H‹1k	H‰ßè¡T…ÀˆšH‹5¢^	H‹g	H‰ßèƒT…Àˆ‡H‹5^	H‹d	H‰ßèeT…ÀˆtH‹5î]	H‹ßb	H‰ßèGT…ÀˆaH‹5è]	H‹Id	H‰ßè)T…ÀˆNH‹5Ò]	H‹Cd	H‰ßèT…Àˆ;H‹5<^	H‹•g	H‰ßèíS…Àˆ(H‹5~^	H‹/j	H‰ßèÏS…ÀˆH‹5H^	H‹‰i	H‰ßè±S…ÀˆH‹5ò\	H‹Ã_	H‰ßè“S…ÀˆïH‹5\]	H‹d	H‰ßèuS…ÀˆÜH‹5n]	H‹¿e	H‰ßèWS…ÀˆÉH‹5ø]	H‹	j	H‰ßè9S…Àˆ¶H‹5º\	H‹ca	H‰ßèS…Àˆ£H‹5¬\	H‹½a	H‰ßèýR…ÀˆH‹5®\	H‹/c	H‰ßèßR…Àˆ}H‹5 \	H‹¡c	H‰ßèÁR…ÀˆjH‹5z\	H‹kc	H‰ßè£R…ÀˆWH‹5\	H‹å_	H‰ßè…R…ÀˆDH‹5Æ\	H‹çf	H‰ßègR…Àˆ1H‹5X\	H‹‘d	H‰ßèIR…ÀˆH‹=:Z	H‹5Óg	H‰Úè+R…ÀˆH‹©€…EHÿÈH‰…9H‰ßèeTé,1Àé1DžüþÿÿHÇèY	A¾·vE1äëyDžüþÿÿHÇÐY	A¾¸vE1äëYA¾¹vE1äëNHKj	ë5A´A¾êvë:A¾Ävë2H7j	ëH6j	ëH5j	ëH4j	HÇA´A¾÷vH‹=EY	H…ÿt`Hƒ=HY	”ÀA€ôAÄu(H=åâH
ÞYD‰ö‹•üþÿÿèP/H‹=	Y	H…ÿtDHÇùX	H‹©€u/HÿÈH‰u'èVSë èQH…ÀuH‹
	H‹8H5…âèQ1ÀHƒ=¶X	ÀH‹
	H‹	H;MÐ…ûHÄè[A\A]A^A_]ÃA½wA¾ëA½wA¾1ÛD‰µüþÿÿI‹©€uHÿÈI‰uL‰ÿèÅRH…Ût)H‹©€uHÿÈH‰A´E‰î…äþÿÿH‰ßèœRé×þÿÿA´E‰îéÌþÿÿA½.wA¾ë˜A½;wDžüþÿÿë¬A½Owé{ÿÿÿDžüþÿÿA¾µvE1äé‰þÿÿA½ewA¾²éPÿÿÿE1äépþÿÿA½}wA¾é7ÿÿÿA½ŒwDžüþÿÿƒéJÿÿÿDžüþÿÿé2þÿÿA½›wA¾„éÿÿÿA¾ÈvéþÿÿA¾ÉvéþÿÿA¾Êvé	þÿÿA¾îvéþýÿÿH…À„ÿÐH…ÀA´…ˆÂÿÿ辬èiOL=h	érH…À„ùÿÐH…ÀA´… Âÿÿ葬è<OL=Ýg	éEH…À„âÿÐH…ÀA´…¸Âÿÿèd¬èOL=¸g	éH…À„ËÿÐH…ÀA´…ÐÂÿÿè7¬èâNL=“g	éëH…À„´ÿÐH…ÀA´…èÂÿÿè
¬èµNL=ng	é¾H…À„ÿÐH…ÀA´…ÃÿÿèݫèˆNL=Ig	é‘H…À„†ÿÐH…ÀA´…Ãÿÿ谫è[NL=$g	ëgA½ªwDžüþÿÿ…é±ýÿÿH…À„]ÿÐH…ÀA´…Ãÿÿèq«èNL=íf	ë(H…À„IÿÐH…ÀA´…9ÃÿÿèG«èòML=Ëf	H…ÀuH‹w	H‹8H5óßH‰Ú1Àè¹MIÇA¾õvé-üÿÿH…À„ÿÐH…ÀA´…$Ãÿÿèíªè˜MH…ÀuH‹$	H‹8H5 ßH‰Ú1ÀèfMHÇUf	ëLH…À„ÍÿÐH…ÀA´…Ãÿÿ蟪èJMH…ÀuH‹Ö	H‹8H5RßH‰Ú1ÀèMHÇf	A¾õvA´é…ûÿÿA½¹wA¾†éLüÿÿA½ÈwDžüþÿÿ‡é_üÿÿA¾ðvéTûÿÿA½×wA¾ˆéüÿÿA½æwDžüþÿÿ‰é.üÿÿA½õwA¾ŠéõûÿÿA¾üvëA¾ývëA¾þvëA¾ÿvDžüþÿÿA´éíúÿÿA¾wDžüþÿÿA´éÕúÿÿA½xDžüþÿÿ‹éÀûÿÿA¾wDžüþÿÿA´é¨úÿÿA½xA¾ŒéoûÿÿA¾$wDžüþÿÿA´éúÿÿA½)wA¾éFûÿÿA½,wDžüþÿÿéYûÿÿèNA½"xDžüþÿÿé?ûÿÿA¾9wDžüþÿÿA´é'úÿÿA½1xA¾ŽéîúÿÿA¾EwDžüþÿÿA´éþùÿÿA½JwDžüþÿÿééúÿÿA½Mwé¶úÿÿA½@xDžüþÿÿéÉúÿÿA¾ZwDžüþÿÿiA´é±ùÿÿA¾cwDžüþÿÿ²A´é™ùÿÿA½OxA¾é`úÿÿA¾{wDžüþÿÿA´épùÿÿA½^xDžüþÿÿ‘é[úÿÿA¾‡wDžüþÿÿƒA´éCùÿÿèêKH‰ÃH…À…ÏÿÿA½‰wA¾ƒéùùÿÿA½mxA¾’éèùÿÿA¾–wDžüþÿÿ„A´éøøÿÿèŸKI‰ÇH…À…bÏÿÿA½˜wDžüþÿÿ„éÒùÿÿA½|xDžüþÿÿ“é½ùÿÿA¾¥wDžüþÿÿ…A´饸ÿÿèLKH‰ÃH…À…¥ÏÿÿA½§wA¾…é[ùÿÿA½‹xA¾”éJùÿÿA¾´wDžüþÿÿ†A´éZøÿÿèKI‰ÇH…À…ðÏÿÿA½¶wDžüþÿÿ†é4ùÿÿA½šxDžüþÿÿ•éùÿÿA¾ÃwDžüþÿÿ‡A´éøÿÿè®JH‰ÃH…À…3ÐÿÿA½ÅwA¾‡é½øÿÿèŒJH…ÀA´…u¼ÿÿéèùÿÿèvJH…ÀA´…¤¼ÿÿéÿùÿÿè`JH…ÀA´…ӼÿÿéúÿÿèJJH…ÀA´…½ÿÿé-úÿÿè4JH…ÀA´…1½ÿÿéDúÿÿèJH…ÀA´…`½ÿÿé[úÿÿèJH…ÀA´…½ÿÿérúÿÿèòIH…ÀA´…¾½ÿÿé›úÿÿèÜIH…ÀA´…í½ÿÿé¯úÿÿèÆIH…ÀA´…¾ÿÿéóúÿÿè°IH…ÀA´…K¾ÿÿé+ûÿÿA½©xA¾–éº÷ÿÿA¾ÒwDžüþÿÿˆA´éÊöÿÿèqII‰ÇH…À…ŒÏÿÿA½ÔwDžüþÿÿˆé¤÷ÿÿDžüþÿÿ—A½¸xé÷ÿÿA¾áwDžüþÿÿ‰A´éwöÿÿèIH‰ÃH…À…ÏÏÿÿA½ãwA¾‰é-÷ÿÿA¾˜1ÛA½Çxé÷ÿÿA¾ðwDžüþÿÿŠA´é*öÿÿèÑHI‰ÇH…À…ÐÿÿA½òwDžüþÿÿŠé÷ÿÿDžüþÿÿ™A½ÖxéïöÿÿA¾ÿwDžüþÿÿ‹A´é×õÿÿè~HH‰ÃH…À…[ÐÿÿA½xA¾‹éöÿÿ1ÛA¾šA½åxé|öÿÿA¾xDžüþÿÿŒA´éŠõÿÿè1HI‰ÇH…À…¤ÐÿÿA½xDžüþÿÿŒédöÿÿDžüþÿÿ›A½ôxéOöÿÿA¾xDžüþÿÿA´é7õÿÿèÞGH‰ÃH…À…çÐÿÿA½xA¾éíõÿÿ1ÛA¾œA½yéÜõÿÿA¾,xDžüþÿÿŽA´éêôÿÿè‘GI‰ÇH…À…0ÑÿÿA½.xDžüþÿÿŽéÄõÿÿDžüþÿÿA½yé¯õÿÿA¾;xDžüþÿÿA´é—ôÿÿè>GH‰ÃH…À…sÑÿÿA½=xA¾éMõÿÿ1ÛA¾žA½!yé<õÿÿA¾JxDžüþÿÿA´éJôÿÿèñFI‰ÇH…À…¼ÑÿÿA½LxDžüþÿÿé$õÿÿDžüþÿÿŸA½0yéõÿÿA¾YxDžüþÿÿ‘A´é÷óÿÿèžFH‰ÃH…À…ÿÑÿÿA½[xA¾‘é­ôÿÿ1ÛA¾ A½?yéœôÿÿA¾hxDžüþÿÿ’A´éªóÿÿèQFI‰ÇH…À…HÒÿÿA½jxDžüþÿÿ’é„ôÿÿDžüþÿÿ¡A½NyéoôÿÿA¾wxDžüþÿÿ“A´éWóÿÿèþEH‰ÃH…À…‹ÒÿÿA½yxA¾“é
ôÿÿ1ÛA¾¢A½]yéüóÿÿA¾†xDžüþÿÿ”A´é
óÿÿè±EI‰ÇH…À…ÔÒÿÿA½ˆxDžüþÿÿ”éäóÿÿDžüþÿÿ£A½lyéÏóÿÿA¾•xDžüþÿÿ•A´é·òÿÿè^EH‰ÃH…À…ÓÿÿA½—xA¾•émóÿÿ1ÛA¾¤A½{yé\óÿÿA¾¤xDžüþÿÿ–A´éjòÿÿèEI‰ÇH…À…`ÓÿÿA½¦xDžüþÿÿ–éDóÿÿDžüþÿÿ¥A½Šyé/óÿÿDžüþÿÿ—A¾³xA´éòÿÿè¾DH‰ÃH…À…£ÓÿÿA¾—1ÛA½µxéÍòÿÿ1ÛA¾¦A½™yéºòÿÿDžüþÿÿ˜A¾ÂxA´éÈñÿÿèoDI‰ÇH…À…êÓÿÿDžüþÿÿ˜A½Äxé¢òÿÿDžüþÿÿ§A½¨yéòÿÿDžüþÿÿ™A¾ÑxA´éuñÿÿèDH‰ÃH…À…-ÔÿÿA¾™1ÛA½Óxé+òÿÿ1ÛA¾¨A½·yéòÿÿDžüþÿÿšA¾àxA´é&ñÿÿèÍCI‰ÇH…À…tÔÿÿDžüþÿÿšA½âxéòÿÿDžüþÿÿ©A½ÆyéëñÿÿDžüþÿÿ›A¾ïxA´éÓðÿÿèzCH‰ÃH…À…·Ôÿÿ1ÛA¾›A½ñxé‰ñÿÿ1ÛA¾ªA½ÕyévñÿÿDžüþÿÿœA¾þxA´é„ðÿÿè+CI‰ÇH…À…þÔÿÿDžüþÿÿœA½yé^ñÿÿDžüþÿÿ«A½äyéIñÿÿDžüþÿÿA¾
yA´é1ðÿÿèØBH‰ÃH…À…AÕÿÿ1ÛA¾A½yéçðÿÿ1ÛA¾¬A½óyéÔðÿÿDžüþÿÿžA¾yA´éâïÿÿè‰BI‰ÇH…À…ˆÕÿÿDžüþÿÿžA½yé¼ðÿÿDžüþÿÿ­A½zé§ðÿÿDžüþÿÿŸA¾+yA´éïÿÿè6BH‰ÃH…À…ËÕÿÿ1ÛA¾ŸA½-yéEðÿÿ1ÛA¾®A½zé2ðÿÿDžüþÿÿ A¾:yA´é@ïÿÿèçAI‰ÇH…À…ÖÿÿDžüþÿÿ A½<yéðÿÿDžüþÿÿ¯A½ zéðÿÿDžüþÿÿ¡A¾IyA´éíîÿÿè”AH‰ÃH…À…UÖÿÿ1ÛA¾¡A½Kyé£ïÿÿ1ÛA¾°A½/zéïÿÿDžüþÿÿ¢A¾XyA´éžîÿÿèEAI‰ÇH…À…œÖÿÿDžüþÿÿ¢A½ZyéxïÿÿDžüþÿÿ±A½>zécïÿÿDžüþÿÿ£A¾gyA´éKîÿÿèò@H‰ÃH…À…ßÖÿÿ1ÛA¾£A½iyéïÿÿDžüþÿÿ³A½JzéïÿÿDžüþÿÿ¤A¾vyA´éúíÿÿè¡@I‰ÇH…À…$×ÿÿDžüþÿÿ¤A½xyéÔîÿÿDžüþÿÿËA½Vzé¿îÿÿDžüþÿÿ¥A¾…yA´é§íÿÿèN@H‰ÃH…À…g×ÿÿ1ÛA¾¥A½‡yé]îÿÿDžüþÿÿåA½bzénîÿÿDžüþÿÿ¦A¾”yA´éVíÿÿèý?I‰ÇH…À…¬×ÿÿDžüþÿÿ¦A½–yé0îÿÿDžüþÿÿA½nzéîÿÿDžüþÿÿ§A¾£yA´éíÿÿèª?H‰ÃH…À…ï×ÿÿ1ÛA¾§A½¥yé¹íÿÿDžüþÿÿ
A½zzéÊíÿÿDžüþÿÿ¨A¾²yA´é²ìÿÿèY?I‰ÇH…À…4ØÿÿDžüþÿÿ¨A½´yéŒíÿÿDžüþÿÿA½%{éwíÿÿDžüþÿÿ©A¾ÁyA´é_ìÿÿè?H‰ÃH…À…wØÿÿ1ÛA¾©A½ÃyéíÿÿA½/{é0íÿÿDžüþÿÿªA¾ÐyA´éìÿÿè¿>I‰ÇH…À…ÆØÿÿDžüþÿÿªA½ÒyéòìÿÿA½0{éçìÿÿDžüþÿÿ«A¾ßyA´éÏëÿÿèv>H‰ÃH…À…Ùÿÿ1ÛA¾«A½áyé…ìÿÿA½1{é ìÿÿDžüþÿÿ¬A¾îyA´éˆëÿÿè/>I‰ÇH…À…bÙÿÿDžüþÿÿ¬A½ðyébìÿÿA½2{éWìÿÿDžüþÿÿ­A¾ýyA´é?ëÿÿèæ=H‰ÃH…À…¯Ùÿÿ1ÛA¾­A½ÿyéõëÿÿA½3{éìÿÿDžüþÿÿ®A¾zA´éøêÿÿèŸ=I‰ÇH…À…þÙÿÿDžüþÿÿ®A½zéÒëÿÿA½4{éÇëÿÿDžüþÿÿ¯A¾zA´é¯êÿÿèV=H‰ÃH…À…KÚÿÿ1ÛA¾¯A½zéeëÿÿA½5{é€ëÿÿDžüþÿÿ°A¾*zA´éhêÿÿè=I‰ÇH…À…šÚÿÿDžüþÿÿ°A½,zéBëÿÿA½6{é7ëÿÿDžüþÿÿ±A¾9zA´éêÿÿèÆ<H‰ÃH…À…çÚÿÿ1ÛA¾±A½;zéÕêÿÿA½7{éðêÿÿDžüþÿÿ³A¾HzA´éØéÿÿA½8{éÍêÿÿDžüþÿÿËA¾TzA´éµéÿÿA½9{éªêÿÿDžüþÿÿåA¾`zA´é’éÿÿA½:{é‡êÿÿDžüþÿÿA¾lzA´éoéÿÿA½;{édêÿÿDžüþÿÿ
A¾xzA´éLéÿÿA½<{éAêÿÿDžüþÿÿA¾„zA´é)éÿÿA½={éêÿÿDžüþÿÿA¾-{A´ééÿÿA½>{éûéÿÿA½?{éðéÿÿA½@{éåéÿÿA½A{éÚéÿÿA½B{éÏéÿÿA½C{éÄéÿÿA½D{é¹éÿÿA½E{é®éÿÿA½F{é£éÿÿA½G{é˜éÿÿA½H{ééÿÿA½I{é‚éÿÿA½J{éwéÿÿA½K{éléÿÿA½L{éaéÿÿA½M{éVéÿÿA½N{éKéÿÿA½O{é@éÿÿA½P{é5éÿÿA½Q{é*éÿÿA½R{ééÿÿA½S{ééÿÿA½T{é	éÿÿA½U{éþèÿÿA½V{éóèÿÿA½W{éèèÿÿA½X{éÝèÿÿA½Y{éÒèÿÿA½Z{éÇèÿÿA½[{é¼èÿÿA½\{é±èÿÿffff.„UH‰åH…ÿtH‹©€uHÿÈH‰t]Ã]éA;ffff.„UH‰åAWAVAUATSHƒì(HàQ	H‰ñQ	H:œH‰ËQ	H¼žH‰ÅQ	HޞH‰¿Q	Hˆ7	H‰QA	H‹Ê8	H…ÀtuH‹HHƒù|kHƒ=ƒ8	t%HÿÉ1Ò@H‹|Ð ö‡©„HÿÂH9Ñuæë<H‹M7	HÿÉ1ö„H‹|ð ö‡©„ÞHƒ¿ …ýHÿÆH9ñuØèk8A‰ÆH=ñ6	€
“7	è½9‰À%…7	ýE…ötèH8…ÛˆÛL‹5“@	Iƒ¾ u%I‹†H;ÃñuH‹ºñI‰†L‹5d@	H=­P	1ö1ÒèR7H…À„ŒH‰ÃI‹¾H‹5*J	H‰ÂèZ7H‹…Àˆ|÷Á€uHÿÉH‰uH‰ßè›9H‹
@	H‹H‰MÀL‹©P1ÛH…Àt€ÿÃH‹€H…ÀuòCHcøHÁçè±9H‰EÈHÇÿÿÿÿIƒ}Œ¨…ÛŽHEÀ‰ØH‰E°A¾L‰m¸ë*ff.„IÁæ H¸IÆIÁþ M9uŽ\K‹DõH‹¸H‹5FI	èÕ7H…ÀtÄI‰ÄH‰Ç1öè16H‰ÁH…ÀH‰EÐu+è†6H‹MÐH…ÀuH‹ðH‹8H5ëàès6H‹MÐI‹$©€uHÿÈI‰$uL‰çèx8H‹MÐH…É„Wÿÿÿ1ÛL‹}M‹?H‹EÈL‹$ØIƒüÿuuI‹¿H‹5©H	è87H…ÀtAI‰ÅH‰Ç1öè”5I‰ÄH…Àu
èí5H…ÀteI‹E©€uHÿÈI‰EH‹MÐuL‰ïèü7ëE1äH‹MÐH‹EÈL‰$ØHÇDØÿÿÿÿL‹m¸I9Ì„ÁþÿÿM…ät]IÇHÿÃH9]°…Xÿÿÿé£þÿÿH‹$ïH‹8H5ñßèy5I‹E©€t…ëH‹WH‹ïH‹8H5¼Þ1Àè25é(H‹EÀH‹H‹PK‹DõH‹HH‹äîH‹8H5^ß1Àè5H‹}Èèz7éî»L‹5¡îL%qßëHÁã H¸HÃHÁû I9]~pI‹DÝH‹¸H‹5ZG	èé5H…ÀtÈI‰ÇH‰Ç1öèE4H…Àu
è¡4H…ÀtI‹©€u¢HÿÈI‰ušL‰ÿè¶6ëI‹>L‰æè4I‹©€…wÿÿÿëÓèB4H‹}ÈèÇ6H‹=<	H‹5Y=	H‹ê<	è“5‰Á1Éy#ëH‹OH‹èíH‹8H5¶Ý1Àè4¸ÿÿÿÿHƒÄ([A\A]A^A_]Ã÷Á€uäHÿÉH‰uÜH‰ßè6ëÒf„UH‰åAVSH=-Åè34»ÿÿÿÿH…À„I‰ÆH5ÅHq¹˜H‰ÇA¸è[°H‰”;	H…À„¼I‹©€uHÿÈI‰uL‰÷è¥5H=ÅÄèË3H…À„¬I‰ÆH5­ÄHñݹ H‰ÇA¸èø¯H‰9;	H…À„YI‹©€uHÿÈI‰uL‰÷èB5H=bÄèh3H…À„II‰ÆH5JÄH“ݹ H‰ÇA¸蕯H‰Þ:	H…À„öI‹©€uHÿÈI‰uL‰÷èß4H=pè3H…À„æI‰ÆH5pHÿo¹`H‰ÇA¸è2¯H‰ƒ:	H…À„“H5ÏoHÝ¹H
L‰÷A¸è¯H‰Z:	H…À„bH5žoHßܹ0L‰÷A¸èЮH‰1:	H…À„1H5moH¸Ü¹PL‰÷A¸蟮H‰:	H…À„H5<oHÜ¹L‰÷A¸èn®H‰ß9	H…À„ÏH5oHfܹL‰÷A¸è=®H‰¶9	H…À„žH5ÚnH<ܹL‰÷A¸è®H‰9	H…À„mH5©nHÜ¹L‰÷A¸èۭH‰d9	H…À„<H5xnHðÛ¹L‰÷A¸読H‰;9	H…À„H5GnHÏÛ¹L‰÷A¸èy­H‰9	H…À„ÚH5nH¦Û¹L‰÷A¸èH­H‰é8	H…À„©H5åmH~Û¹L‰÷A¸è­H‰À8	H…À„xH5´mH]Û¹L‰÷A¸èæ¬H‰—8	H…À„GH5ƒmH5Û¹L‰÷A¸赬H‰n8	H…À„H5RmHÛ¹ØL‰÷A¸脬H‰E8	H…À„åI‹©€uHÿÈI‰uL‰÷èÎ1H=ÐÚèô/H…À„ÕI‰ÆH5¸ÚH«Á¹`H‰ÇA¸è!¬H‰ê7	H…À„‚H5‡ÚH›Ú¹@L‰÷A¸èð«H‰Á7	H…ÀtUH‹¸èX«H‰ÁH	H…Àt=H5BÚHcÚ¹L‰÷A¸諫H‰„7	H…ÀtI‹1۩€u#1ÛëI‹©€u»ÿÿÿÿHÿÈI‰uL‰÷èä0‰Ø[A^]Ãf„UH‰åAVSH=	Ûèó.A¾ÿÿÿÿH…À„ H‰ÃH5ÛH56	H
ækH‰Çè~¬…Àx\H5ïÚHH	H
ÅkH‰ßè]¬…Àx;H5åÚHëG	H
ßÚH‰ßè<¬…ÀxH‹E1ö©€u-E1öHÿÈH‰u"ëH‹©€uA¾ÿÿÿÿHÿÈH‰uH‰ßè0D‰ð[A^]ÃfDUH‰åAVSH=Ûè#.»ÿÿÿÿH…À„îI‰ÆH5ÛHîF	H
ÛH‰Çèÿ¬…Àˆ§H5KÛHÑF	H
ìÚL‰÷èڬ…Àˆ‚H53ÛH´F	H
ÇÚL‰÷赬…Àˆ]H5ÛH—F	H
¢ÚL‰÷萬…Àˆ8H5ÛHzF	H
}ÚL‰÷èk¬…ÀˆH5èÚHF	H
XÚL‰÷èF¬…ÀˆîH5ÏÚHðE	H
3ÚL‰÷è!¬…ÀˆÉH5¶ÚHÛE	H
ÚL‰÷èü«…Àˆ¤H5ÚH¾E	H
éÙL‰÷è׫…ÀˆI‹©€uHÿÈI‰uL‰÷èy.H=µØèŸ,H…À„oI‰ÆH5QÚH·E	H
TÚH‰Ç耫…Àˆ(H5‡ÚH‚E	H
ÚL‰÷è[«…ÀˆH5ÌÚHME	H
ÈÚL‰÷è6«…ÀˆÞH5ÍÚHÈD	H
ËÚL‰÷è«…Àˆ¹H5÷ÚHE	H
ÿÚL‰÷è쪅Àˆ”H5ÛH†D	H
ÛL‰÷èǪ…ÀxsH5ÜHåD	H
ÜL‰÷親…ÀxRH5ÝH¤D	H
ÝL‰÷腪…Àx1H5ÞH«D	H
ñÜL‰÷èdª…ÀxI‹1۩€u#1ÛëI‹©€u»ÿÿÿÿHÿÈI‰uL‰÷èõ,‰Ø[A^]Ãf.„UH‰åAWAVAUATSPI‰þèô*H…À„&H‰ÃH‹5?	H‹@H‹€H;eäL‰uÐH‰ß…1ҹèr,I‰ÇH…À„ÎH‹5ù8	I‹GH‹€H;'ä…üE1äL‰ÿ1ҹè5,I‰ÅH…Àt%L;-8ät+L;-ät"L;-ätL‰ïè8+ëA¶I‹©€t&ë41ÀL;-ä”À…ÒE1öM‰ìI‹©€uHÿÈI‰uL‰ÿèã+E„öu(E1ÿI‹$©€uHÿÈI‰$uL‰çè¿+M…ÿ…œè_)H‰ØHƒÄ[A\A]A^A_]Ãèf)H…À„¯è:)é¥H…À„ñÿÐI‰ÇH…À…ìþÿÿ臆ë³L‰ÿH…À„æÿÐI‰ÅH…À…ÿÿÿèf†A¶E1äI‹©€„CÿÿÿéNÿÿÿM‰ìI‹$©€„Oÿÿÿé[ÿÿÿI‹©€uHÿÈI‰uL‰ÿè+H‹©€L‹uÐuHÿÈH‰uH‰ßèâ*èm(H…ÀtDI‰ÇH‹5j0	L‰÷H‰Â1ÉE1Àèö(H‰ÃI‹©€…üþÿÿHÿÈI‰…ðþÿÿL‰ÿè™*éãþÿÿ1ÛéÜþÿÿèt)I‰ÇH…À…øýÿÿéÿÿÿè^)I‰ÅH…À…þÿÿéÿÿÿffff.„UH‰åAWAVATS‰ÓI‰÷I‰üèÌ'H…ÀtDI‰ÆH‹5É/	L‰çH‰ÂL‰ùA‰ØèT(H‰ÃI‹©€uHÿÈI‰uL‰÷èÿ)H‰Ø[A\A^A_]Ã1Ûëðff.„UH‰åAWAVAUATSPH‰óI‰ÿH‹GH‹€H…ÀtÿÐI‰ÆH…ÀtL‰ðHƒÄ[A\A]A^A_]Ãè‹(I‰ÆH…ÀuáH‹ÄàH‹8è<'…Àt|è-'L‰ÿè(H…À„‰H‰Çè)H…Àt|I‰ÇH‹5#2	H‰ÇèÝ(H…ÀtmI‰ÄH‰ÇH‰ÞèÊ(H…ÀteI‰ÅH‰ÇèR'I‰ÆL‰ïè½íÿÿL‰çèµíÿÿL‰ÿè­íÿÿM…ö…RÿÿÿH‹MàH‹8H5iÚE1öH‰Ú1Àè¤&é/ÿÿÿE1öE1ÿëE1öE1äE1íë©E1öE1íë¡fDUH‰åAWAVAUATSHƒì(HÇE°HÇE¸HÇEÀè„(I‰ÄH‹@hH‹
tàëfH‹@H…ÀtFH‹H…ÛtïH9Ëtê‹ÿÀt‰H‹K‹ÿÀt‰H‰MÈH‰ßèD&I‰ÇH=ßÙèq&H…Àu%éw1ÀH‰EÈ1ÛE1ÿH=¾ÙèP&H…À„WI‰ÅH5ÃÙH‰Çèõ&I‰ÆI‹E©€u
HÿÈI‰E„ÔM…ö„!I‹FH;øÞt=H‹?ßH‹8H5„Ùè”%I‹©€…ðHÿÈI‰…äL‰÷èš'é×L‰÷1öèñ$H‰ÁH‰u>	I‹©€uHÿÈI‰uL‰÷èg'H‹
T>	H…ÉtZÿ=	uiH‹?>	ÿ˜ƒø‡åH‹©ÞL‹0H‹>	ÿ˜H5jÙL‰÷º
ëML‰ïè'M…ö…$ÿÿÿëCH‹nÞH‹8H5ÖØèÃ$ë+H‹VÞL‹0H‹Ì=	ÿH5ÐØL‰÷º	‰Á1Àèx$H‹ûÝH‹0I‹|$`èæ‚…À„ŽH=#ØH
ùµ¾hºÖèQHu°HU¸HMÀL‰çè]›…ÀxgL‰}ÐH‹==	H‹5;	1Òè‹A½ØH…À„¥I‰ÇH‰Ç薋I‹A¾’©€uHÿÈI‰uL‰ÿè&L‹}ÐëA¾hA½ÖëA¾‚A½×I‹|$hH‹uÈH‰ÚL‰ùèrœH‹}°H…ÿtH‹©€u
HÿÈH‰uèÆ%H‹}¸H…ÿtH‹©€u
HÿÈH‰uè¦%H‹}ÀH…ÿtH‹©€u
HÿÈH‰uè†%H=×H
ݴD‰öD‰êè9»ÿÿÿÿ‰ØHƒÄ([A\A]A^A_]ÃH‹D<	ÿƒøt…À…‡H‹ªÜH‹8H5 Øé7þÿÿH‹}ÈH…ÿtH‹©€u
HÿÈH‰uè%H…ÛtH‹©€uHÿÈH‰uH‰ßèè$1ÛM…ÿ„uÿÿÿI‹©€…gÿÿÿHÿÈI‰…[ÿÿÿL‰ÿè»$éNÿÿÿH‹#ÜH‹8H5BØé°ýÿÿA¾Žé{þÿÿUH‰åSPH‰ûH‹= *	H‹SH‰ÞèN$H…Àt‹ÿÁt‰HƒÄ[]Ãè+"H…ÀuH‰ßHƒÄ[]éx~1ÀHƒÄ[]Ãffffff.„UH‰åAWAVAUATSHƒì(I‰ΉÓA‰õI‰ÿè$I‰ÂE…íH‰Eȉ]ÔL‰u¸tHHƒ=¤)	„ŒL‰}ÀI‹Z`IÇB`H…Ût-L‹{A‹ÿÀtA‰L‹c(M…ätA‹$ÿÀtA‰$ëE1íéJE1ÿE1äH‹=O)	è†#H‹5.	H…ÀtDH‹8H‹Vè\#I‰ÆH…ÀtaL;5[ÛL‹UÈtL;5^ÛtL‰÷èv"L‹UȅÀtE1íH…Ûu^ëfH‹=ó(	è~H…Àt H‰E°H‰ÇèG"…À…{L‹5ÛévèÆ H‹=½(	H‹5~-	H‹çÚè "E1íL‹UÈH…Ût
L9c(…I‹z`I‰Z`H…ÿtH‹©€uHÿÈH‰u	èÄ"L‹UÈM…ÿ‹]ÔtI‹©€uHÿÈI‰t+M…ät7I‹$©€L‹}Àu,HÿÈI‰$u#L‰çè"L‹UÈëL‰ÿès"L‹UÈM…äuÉL‹}ÀE‰îA÷ÞDCóE…öt)H‹ô9	H…Àt‹
Ù9	‰ÎÿΈ°‰òHÁâD9t}WI‹Z`IÇB`H…Û„ÒH‹KH‰ÈH‰MÿÀtH‹M	L‹c(M…ä„$A‹$ÿÀ„«A‰$E…í…£é…ötH1ÿëff.„zA‰ñD‰ÎA9ù~1A‰ðA)øD‰ÂÁêDÂÑúúLcÂIÁàF‹DA‰ÑE9ðÑ|ÉëD‹@1Ò1öE9ð@œÆ։ò9ʍBÿÿÿHcÊHÁáD9t…0ÿÿÿL‹<A‹ÿÀ„žA‰é–1ÀH‰EÀE1äE…ítpH=¾ÕHÂÕL‰þD‰é1Àè¾ H…À„ÅI‰ÅH‰ÇèŒ H…À„•H‹}¸H‰ƋUÔèjI‰ÇI‹E©€u-HÿÈI‰Eu$L‰ïèÓ ëE1äE…íuH‹}¸L‰þ‹UÔè2I‰ÇM…ÿ„^H…Ût
L9c(…]L‹UÈI‹z`I‰Z`H…ÿH‹]ÀtH‹©€uHÿÈH‰u	ès L‹UÈH…ÛtH‹©€uHÿÈH‰uH‰ßèP L‹UÈM…ät I‹$©€uHÿÈI‰$uL‰çè+ L‹UÈE…ö„jH‹»7	H…À„‹œ7	‰ÙÿÉxV‰ÊHÁâA‰ÜD9t|q…ÉtB1ÒëfD‰ù9×~8‰Î)ÖA‰ôAÁìAôAÑüAÔIcôHÁæ‹t0D‰çD9öÓ}AT$‰ÏëȋpE1ä1ÉD9öœÁDáA‰ÌA9Ü}IcÌHÁáD9t„O;7	u2ƒÃ@HcóHÁæH‰ÇèáH…À„KH‰û6	‰í6	‹ß6	L‹UÈA‰ØE)à~iHcóIcÌH‰ÏH÷×H‰òAöÀtI‰ðIÁàHVÿI‰ÑIÁáBBH÷t6H‰ÖHÁæHÆff.„FàNðHƒÂþFðHƒÆàH9ÊäëIcÌHÁáD‰tL‰<ÿÉR6	A‹ÿÀtA‰‹]ÔH‹F$	L‰×L‰þ1Éè«I‰ÄH…Àt
A‰\$(L‰çèæI‹©€ueHÿÈI‰u]L‰ÿènëSI‹E©€uHÿÈI‰EuL‰ïèPH‹}ÀH…ÿtH‹©€u
HÿÈH‰uè0H…ÛtH‹©€uHÿÈH‰t>M…ätI‹$©€u	HÿÈI‰$tHƒÄ([A\A]A^A_]ÃL‰çHƒÄ([A\A]A^A_]éÛH‰ßé`ÿÿÿH‰ßL‰æèÄL‹UÈI‹z`I‰Z`H…ÿ…ØúÿÿéîúÿÿL‹5‹ÕH‹}°H‹©€…úÿÿHÿÈH‰…úÿÿè„éúÿÿ¿èéH…Àt]H‰
5	Çû4	@Çé4	D‰pL‰8A‹ÿÀt4A‰ë/H‰ßL‰æè3é“üÿÿH‹<L‰<H‹©€u
HÿÈH‰uè‹]ÔL‹UÈéVþÿÿUH‰åAVSHìàEH‹ëÔH‹H‰EèH]#	H‰…ºÿÿH?#H‰…ºÿÿHDž ºÿÿAHDž(ºÿÿƅ0ºÿÿƅ1ºÿÿƅ2ºÿÿH#	H‰…8ºÿÿHH#H‰…@ºÿÿHDžHºÿÿHDžPºÿÿƅXºÿÿƅYºÿÿƅZºÿÿHß"	H‰…`ºÿÿH!#H‰…hºÿÿHDžpºÿÿ&HDžxºÿÿƅ€ºÿÿƅºÿÿƅ‚ºÿÿH "	H‰…ˆºÿÿH#H‰…ºÿÿHDž˜ºÿÿHDž ºÿÿƅ¨ºÿÿƅ©ºÿÿƅªºÿÿHa"	H‰…°ºÿÿHÅ"H‰…¸ºÿÿHDž:ÿÿHDžȺÿÿƅкÿÿƅѺÿÿƅҺÿÿH""	H‰…غÿÿHŒ"H‰…àºÿÿHDžèºÿÿ>HDžðºÿÿƅøºÿÿƅùºÿÿƅúºÿÿHã!	H‰…»ÿÿHƒ"H‰…»ÿÿHDž»ÿÿ	HDž»ÿÿƅ »ÿÿƅ!»ÿÿƅ"»ÿÿH¤!	H‰…(»ÿÿHE"H‰…0»ÿÿHDž8»ÿÿHDž@»ÿÿƅH»ÿÿƅI»ÿÿƅJ»ÿÿH
e!	H‰P»ÿÿH‰…X»ÿÿHDž`»ÿÿHDžh»ÿÿƅp»ÿÿƅq»ÿÿƅr»ÿÿH-!	H‰…x»ÿÿHÇ!H‰…€»ÿÿHDžˆ»ÿÿ$HDž»ÿÿƅ˜»ÿÿƅ™»ÿÿƅš»ÿÿHî 	H‰… »ÿÿH¤!H‰…¨»ÿÿHDž°»ÿÿHDž¸»ÿÿƅ;ÿÿƅ{ÿÿƅ»ÿÿH¯ 	H‰…ȻÿÿHy!H‰…лÿÿHDžػÿÿËHDžà»ÿÿƅè»ÿÿƅé»ÿÿƅê»ÿÿHp 	H‰…ð»ÿÿHý!H‰…ø»ÿÿHDž¼ÿÿHDž¼ÿÿƅ¼ÿÿƅ¼ÿÿƅ¼ÿÿH
1 	H‰¼ÿÿH‰… ¼ÿÿHDž(¼ÿÿHDž0¼ÿÿƅ8¼ÿÿƅ9¼ÿÿƅ:¼ÿÿHù	H‰…@¼ÿÿH‹!H‰…H¼ÿÿHDžP¼ÿÿ!HDžX¼ÿÿƅ`¼ÿÿƅa¼ÿÿƅb¼ÿÿHº	H‰…h¼ÿÿHt!H‰…p¼ÿÿHDžx¼ÿÿHDž€¼ÿÿƅˆ¼ÿÿƅ‰¼ÿÿƅмÿÿH{	H‰…¼ÿÿHM!H‰…˜¼ÿÿHDž ¼ÿÿ"HDž¨¼ÿÿƅ°¼ÿÿƅ±¼ÿÿƅ²¼ÿÿH<	H‰…¸¼ÿÿH6!H‰…<ÿÿHDžȼÿÿHDžмÿÿƅؼÿÿƅټÿÿƅڼÿÿHý	H‰…à¼ÿÿH!H‰…è¼ÿÿHDžð¼ÿÿ"HDžø¼ÿÿƅ½ÿÿƅ½ÿÿƅ½ÿÿH¾	H‰…½ÿÿHø H‰…½ÿÿHDž½ÿÿ#HDž ½ÿÿƅ(½ÿÿƅ)½ÿÿƅ*½ÿÿH	H‰…0½ÿÿHá H‰…8½ÿÿHDž@½ÿÿHDžH½ÿÿƅP½ÿÿƅQ½ÿÿƅR½ÿÿH@	H‰…X½ÿÿHº H‰…`½ÿÿHDžh½ÿÿHDžp½ÿÿƅx½ÿÿƅy½ÿÿƅz½ÿÿH	H‰…€½ÿÿH“ H‰…ˆ½ÿÿHDž½ÿÿ"HDž˜½ÿÿƅ ½ÿÿƅ¡½ÿÿƅ¢½ÿÿHÂ	H‰…¨½ÿÿH| H‰…°½ÿÿHDž¸½ÿÿHDž=ÿÿƅȽÿÿƅɽÿÿƅʽÿÿHƒ	H‰…нÿÿHU H‰…ؽÿÿHDžà½ÿÿ'HDžè½ÿÿƅð½ÿÿƅñ½ÿÿƅò½ÿÿHD	H‰…ø½ÿÿH> H‰…¾ÿÿHDž¾ÿÿ HDž¾ÿÿƅ¾ÿÿƅ¾ÿÿƅ¾ÿÿH	H‰… ¾ÿÿH H‰…(¾ÿÿHDž0¾ÿÿ!HDž8¾ÿÿƅ@¾ÿÿƅA¾ÿÿƅB¾ÿÿHÆ	H‰…H¾ÿÿH H‰…P¾ÿÿHDžX¾ÿÿ"HDž`¾ÿÿƅh¾ÿÿƅi¾ÿÿƅj¾ÿÿH‡	H‰…p¾ÿÿHéH‰…x¾ÿÿHDž€¾ÿÿ"HDžˆ¾ÿÿƅ¾ÿÿƅ‘¾ÿÿƅ’¾ÿÿHH	H‰…˜¾ÿÿHÒH‰… ¾ÿÿHDž¨¾ÿÿ$HDž°¾ÿÿƅ¸¾ÿÿƅ¹¾ÿÿƅº¾ÿÿH		H‰…>ÿÿH»H‰…ȾÿÿHDžоÿÿ,HDžؾÿÿƅà¾ÿÿƅá¾ÿÿƅâ¾ÿÿHÊ	H‰…è¾ÿÿH¤H‰…ð¾ÿÿHDžø¾ÿÿ*HDž¿ÿÿƅ¿ÿÿƅ	¿ÿÿƅ
¿ÿÿH‹	H‰…¿ÿÿHH‰…¿ÿÿHDž ¿ÿÿ-HDž(¿ÿÿƅ0¿ÿÿƅ1¿ÿÿƅ2¿ÿÿHL	H‰…8¿ÿÿHvH‰…@¿ÿÿHDžH¿ÿÿ%HDžP¿ÿÿƅX¿ÿÿƅY¿ÿÿƅZ¿ÿÿH
	H‰…`¿ÿÿH_H‰…h¿ÿÿHDžp¿ÿÿHDžx¿ÿÿƅ€¿ÿÿƅ¿ÿÿƅ‚¿ÿÿHÎ	H‰…ˆ¿ÿÿH8H‰…¿ÿÿHDž˜¿ÿÿHDž ¿ÿÿƅ¨¿ÿÿƅ©¿ÿÿƅª¿ÿÿH	H‰…°¿ÿÿHH‰…¸¿ÿÿHDž?ÿÿ$HDžȿÿÿƅпÿÿƅѿÿÿƅҿÿÿHP	H‰…ؿÿÿHúH‰…à¿ÿÿHDžè¿ÿÿ HDžð¿ÿÿƅø¿ÿÿƅù¿ÿÿƅú¿ÿÿH	H‰…ÀÿÿHÓH‰…ÀÿÿHDžÀÿÿHDžÀÿÿƅ Àÿÿƅ!Àÿÿƅ"ÀÿÿHÒ	H‰…(ÀÿÿH¬H‰…0ÀÿÿHDž8ÀÿÿHDž@ÀÿÿƅHÀÿÿƅIÀÿÿƅJÀÿÿH“	H‰…PÀÿÿH…H‰…XÀÿÿHDž`ÀÿÿHDžhÀÿÿƅpÀÿÿƅqÀÿÿƅrÀÿÿHT	H‰…xÀÿÿH^H‰…€ÀÿÿHDžˆÀÿÿHDžÀÿÿƅ˜Àÿÿƅ™ÀÿÿƅšÀÿÿH	H‰… ÀÿÿH7H‰…¨ÀÿÿHDž°Àÿÿ(HDž¸ÀÿÿƅÀÀÿÿƅÁÀÿÿƅÂÀÿÿHÖ	H‰…ÈÀÿÿH H‰…ÐÀÿÿHDžØÀÿÿ%HDžàÀÿÿƅèÀÿÿƅéÀÿÿƅêÀÿÿH—	H‰…ðÀÿÿH	H‰…øÀÿÿHDžÁÿÿ!HDžÁÿÿƅÁÿÿƅÁÿÿƅÁÿÿHX	H‰…ÁÿÿHòH‰… ÁÿÿHDž(ÁÿÿHDž0Áÿÿƅ8Áÿÿƅ9Áÿÿƅ:ÁÿÿH	H‰…@ÁÿÿHËH‰…HÁÿÿHDžPÁÿÿ HDžXÁÿÿƅ`ÁÿÿƅaÁÿÿƅbÁÿÿHÚ	H‰…hÁÿÿH¤H‰…pÁÿÿHDžxÁÿÿ(HDž€ÁÿÿƅˆÁÿÿƅ‰ÁÿÿƅŠÁÿÿH›	H‰…ÁÿÿHH‰…˜ÁÿÿHDž Áÿÿ,HDž¨Áÿÿƅ°Áÿÿƅ±Áÿÿƅ²ÁÿÿH\	H‰…¸ÁÿÿHvH‰…ÀÁÿÿHDžÈÁÿÿ'HDžÐÁÿÿƅØÁÿÿƅÙÁÿÿƅÚÁÿÿH	H‰…àÁÿÿH_H‰…èÁÿÿHDžðÁÿÿ(HDžøÁÿÿƅÂÿÿƅÂÿÿƅÂÿÿHÞ	H‰…ÂÿÿHHH‰…ÂÿÿHDžÂÿÿ#HDž Âÿÿƅ(Âÿÿƅ)Âÿÿƅ*ÂÿÿHŸ	H‰…0ÂÿÿH1H‰…8ÂÿÿHDž@Âÿÿ HDžHÂÿÿƅPÂÿÿƅQÂÿÿƅRÂÿÿH`	H‰…XÂÿÿH
H‰…`ÂÿÿHDžhÂÿÿ#HDžpÂÿÿƅxÂÿÿƅyÂÿÿƅzÂÿÿH!	H‰…€ÂÿÿHóH‰…ˆÂÿÿHDžÂÿÿ HDž˜Âÿÿƅ Âÿÿƅ¡Âÿÿƅ¢ÂÿÿHâ	H‰…¨ÂÿÿHÌH‰…°ÂÿÿHDž¸Âÿÿ!HDžÀÂÿÿƅÈÂÿÿƅÉÂÿÿƅÊÂÿÿH£	H‰…ÐÂÿÿHµH‰…ØÂÿÿHDžàÂÿÿHDžèÂÿÿƅðÂÿÿƅñÂÿÿƅòÂÿÿHd	H‰…øÂÿÿHŽH‰…ÃÿÿHDžÃÿÿ HDžÃÿÿƅÃÿÿƅÃÿÿƅÃÿÿH%	H‰… ÃÿÿHgH‰…(ÃÿÿHDž0ÃÿÿHDž8Ãÿÿƅ@ÃÿÿƅAÃÿÿƅBÃÿÿHæ	H‰…HÃÿÿH@H‰…PÃÿÿHDžXÃÿÿHDž`ÃÿÿƅhÃÿÿƅiÃÿÿƅjÃÿÿH§	H‰…pÃÿÿHH‰…xÃÿÿHDž€ÃÿÿHDžˆÃÿÿƅÃÿÿƅ‘Ãÿÿƅ’ÃÿÿHh	H‰…˜ÃÿÿHÜH‰… ÃÿÿHDž¨Ãÿÿ	HDž°Ãÿÿƅ¸Ãÿÿƅ¹ÃÿÿƅºÃÿÿH)	H‰…ÀÃÿÿH«H‰…ÈÃÿÿHDžÐÃÿÿ>HDžØÃÿÿƅàÃÿÿƅáÃÿÿƅâÃÿÿHê	H‰…èÃÿÿH¢H‰…ðÃÿÿHDžøÃÿÿHDžÄÿÿƅÄÿÿƅ	Äÿÿƅ
ÄÿÿH«	H‰…ÄÿÿH]H‰…ÄÿÿHDž ÄÿÿGHDž(Äÿÿƅ0Äÿÿƅ1Äÿÿƅ2ÄÿÿHl	H‰…8ÄÿÿHfH‰…@ÄÿÿHDžHÄÿÿLHDžPÄÿÿƅXÄÿÿƅYÄÿÿƅZÄÿÿH-	H‰…`ÄÿÿHkH‰…hÄÿÿHDžpÄÿÿ
HDžxÄÿÿƅ€ÄÿÿƅÄÿÿƅ‚ÄÿÿHî	H‰…ˆÄÿÿH8H‰…ÄÿÿHDž˜Äÿÿ!HDž Äÿÿƅ¨Äÿÿƅ©ÄÿÿƅªÄÿÿH¯	H‰…°ÄÿÿHH‰…¸ÄÿÿHDžÀÄÿÿHDžÈÄÿÿƅÐÄÿÿƅÑÄÿÿƅÒÄÿÿHp	H‰…ØÄÿÿH×H‰…àÄÿÿHDžèÄÿÿHDžðÄÿÿƅøÄÿÿƅùÄÿÿƅúÄÿÿH1	H‰…ÅÿÿH“H‰…ÅÿÿHDžÅÿÿHDžÅÿÿƅ Åÿÿƅ!Åÿÿƅ"ÅÿÿHò	H‰…(ÅÿÿHTH‰…0ÅÿÿHDž8ÅÿÿHDž@ÅÿÿƅHÅÿÿƅIÅÿÿƅJÅÿÿH³	H‰…PÅÿÿHH‰…XÅÿÿHDž`ÅÿÿHDžhÅÿÿƅpÅÿÿƅqÅÿÿƅrÅÿÿHt	H‰…xÅÿÿHÊH‰…€ÅÿÿHDžˆÅÿÿHDžÅÿÿƅ˜Åÿÿƅ™ÅÿÿƅšÅÿÿH5	H‰… ÅÿÿH…H‰…¨ÅÿÿHDž°ÅÿÿHDž¸ÅÿÿƅÀÅÿÿƅÁÅÿÿƅÂÅÿÿHö	H‰…ÈÅÿÿH@H‰…ÐÅÿÿHDžØÅÿÿHDžàÅÿÿƅèÅÿÿƅéÅÿÿƅêÅÿÿH·	H‰…ðÅÿÿHûH‰…øÅÿÿHDžÆÿÿHDžÆÿÿƅÆÿÿƅÆÿÿƅÆÿÿH
x	H‰ÆÿÿH‰… ÆÿÿHDž(ÆÿÿHDž0Æÿÿƅ8Æÿÿƅ9Æÿÿƅ:ÆÿÿH@	H‰…@ÆÿÿH‚H‰…HÆÿÿHDžPÆÿÿ HDžXÆÿÿƅ`ÆÿÿƅaÆÿÿƅbÆÿÿH	H‰…hÆÿÿH[H‰…pÆÿÿHDžxÆÿÿ0HDž€ÆÿÿƅˆÆÿÿƅ‰ÆÿÿƅŠÆÿÿHÂ	H‰…ÆÿÿHDH‰…˜ÆÿÿHDž ÆÿÿHDž¨Æÿÿƅ°Æÿÿƅ±Æÿÿƅ²ÆÿÿHƒ	H‰…¸ÆÿÿHH‰…ÀÆÿÿHDžÈÆÿÿ&HDžÐÆÿÿƅØÆÿÿƅÙÆÿÿƅÚÆÿÿHD	H‰…àÆÿÿHH‰…èÆÿÿHDžðÆÿÿ5HDžøÆÿÿƅÇÿÿƅÇÿÿƅÇÿÿH	H‰…ÇÿÿHôH‰…ÇÿÿHDžÇÿÿHDž Çÿÿƅ(Çÿÿƅ)Çÿÿƅ*ÇÿÿHÆ	H‰…0ÇÿÿH±H‰…8ÇÿÿHDž@ÇÿÿHDžHÇÿÿƅPÇÿÿƅQÇÿÿƅRÇÿÿH‡	H‰…XÇÿÿHnH‰…`ÇÿÿHDžhÇÿÿHDžpÇÿÿƅxÇÿÿƅyÇÿÿƅzÇÿÿHH	H‰…€ÇÿÿH/H‰…ˆÇÿÿHDžÇÿÿ	HDž˜Çÿÿƅ Çÿÿƅ¡Çÿÿƅ¢ÇÿÿH		H‰…¨ÇÿÿHñH‰…°ÇÿÿHDž¸ÇÿÿHDžÀÇÿÿƅÈÇÿÿƅÉÇÿÿƅÊÇÿÿHÊ
	H‰…ÐÇÿÿH°H‰…ØÇÿÿHDžàÇÿÿHDžèÇÿÿƅðÇÿÿƅñÇÿÿƅòÇÿÿH‹
	H‰…øÇÿÿHtH‰…ÈÿÿHDžÈÿÿHDžÈÿÿƅÈÿÿƅÈÿÿƅÈÿÿHL
	H‰… ÈÿÿH1H‰…(ÈÿÿHDž0ÈÿÿHDž8Èÿÿƅ@ÈÿÿƅAÈÿÿƅBÈÿÿH

	H‰…HÈÿÿHñH‰…PÈÿÿHDžXÈÿÿHDž`ÈÿÿƅhÈÿÿƅiÈÿÿƅjÈÿÿHÎ	H‰…pÈÿÿH¯H‰…xÈÿÿHDž€ÈÿÿHDžˆÈÿÿƅÈÿÿƅ‘Èÿÿƅ’ÈÿÿH	H‰…˜ÈÿÿHyH‰… ÈÿÿHDž¨ÈÿÿHDž°Èÿÿƅ¸Èÿÿƅ¹ÈÿÿƅºÈÿÿHP	H‰…ÀÈÿÿHEH‰…ÈÈÿÿHDžÐÈÿÿHDžØÈÿÿƅàÈÿÿƅáÈÿÿƅâÈÿÿH	H‰…èÈÿÿHH‰…ðÈÿÿHDžøÈÿÿHDžÉÿÿƅÉÿÿƅ	Éÿÿƅ
ÉÿÿHÒ	H‰…ÉÿÿHÆH‰…ÉÿÿHDž ÉÿÿHDž(Éÿÿƅ0Éÿÿƅ1Éÿÿƅ2ÉÿÿH“	H‰…8ÉÿÿHŠH‰…@ÉÿÿHDžHÉÿÿHDžPÉÿÿƅXÉÿÿƅYÉÿÿƅZÉÿÿHT	H‰…`ÉÿÿHHH‰…hÉÿÿHDžpÉÿÿHDžxÉÿÿƅ€ÉÿÿƅÉÿÿƅ‚ÉÿÿH
	H‰ˆÉÿÿH‰…ÉÿÿHDž˜ÉÿÿHDž Éÿÿƅ¨Éÿÿƅ©ÉÿÿƅªÉÿÿHÝ
	H‰…°ÉÿÿH(9H‰…¸ÉÿÿHDžÀÉÿÿHDžÈÉÿÿƅÐÉÿÿƅÑÉÿÿƅÒÉÿÿH
ž
	H‰ØÉÿÿH‰…àÉÿÿHDžèÉÿÿHDžðÉÿÿƅøÉÿÿƅùÉÿÿƅúÉÿÿHf
	H‰…ÊÿÿH<H‰…ÊÿÿHDžÊÿÿHDžÊÿÿƅ Êÿÿƅ!Êÿÿƅ"ÊÿÿH'
	H‰…(ÊÿÿH¬H‰…0ÊÿÿHDž8Êÿÿ	HDž@ÊÿÿƅHÊÿÿƅIÊÿÿƅJÊÿÿH
è		H‰PÊÿÿH‰…XÊÿÿHDž`Êÿÿ	HDžhÊÿÿƅpÊÿÿƅqÊÿÿƅrÊÿÿH°		H‰…xÊÿÿHzH‰…€ÊÿÿHDžˆÊÿÿHDžÊÿÿƅ˜Êÿÿƅ™ÊÿÿƅšÊÿÿHq		H‰… ÊÿÿH6"H‰…¨ÊÿÿHDž°ÊÿÿHDž¸ÊÿÿƅÀÊÿÿƅÁÊÿÿƅÂÊÿÿH2		H‰…ÈÊÿÿH|:H‰…ÐÊÿÿHDžØÊÿÿHDžàÊÿÿƅèÊÿÿƅéÊÿÿƅêÊÿÿHó	H‰…ðÊÿÿH¶!H‰…øÊÿÿHDžËÿÿHDžËÿÿƅËÿÿƅËÿÿƅËÿÿH´	H‰…ËÿÿHv!H‰… ËÿÿHDž(ËÿÿHDž0Ëÿÿƅ8Ëÿÿƅ9Ëÿÿƅ:ËÿÿHu	H‰…@ËÿÿHÝ\H‰…HËÿÿHDžPËÿÿHDžXËÿÿƅ`ËÿÿƅaËÿÿƅbËÿÿH
6	H‰hËÿÿH‰…pËÿÿHDžxËÿÿHDž€ËÿÿƅˆËÿÿƅ‰ËÿÿƅŠËÿÿHþ	H‰…ËÿÿH° H‰…˜ËÿÿHDž ËÿÿžHDž¨Ëÿÿƅ°Ëÿÿƅ±Ëÿÿƅ²ËÿÿH¿	H‰…¸ËÿÿH	#H‰…ÀËÿÿHDžÈËÿÿ(HDžÐËÿÿƅØËÿÿƅÙËÿÿƅÚËÿÿH€	H‰…àËÿÿHê"H‰…èËÿÿHDžðËÿÿHDžøËÿÿƅÌÿÿƅÌÿÿƅÌÿÿH
A	H‰ÌÿÿH‰…ÌÿÿHDžÌÿÿHDž Ìÿÿƅ(Ìÿÿƅ)Ìÿÿƅ*ÌÿÿH		H‰…0ÌÿÿHk"H‰…8ÌÿÿHDž@ÌÿÿHDžHÌÿÿƅPÌÿÿƅQÌÿÿƅRÌÿÿHÊ	H‰…XÌÿÿH,"H‰…`ÌÿÿHDžhÌÿÿHDžpÌÿÿƅxÌÿÿƅyÌÿÿƅzÌÿÿH‹	H‰…€ÌÿÿHý!H‰…ˆÌÿÿHDžÌÿÿ4HDž˜Ìÿÿƅ Ìÿÿƅ¡Ìÿÿƅ¢ÌÿÿHL	H‰…¨ÌÿÿH–ÝH‰…°ÌÿÿHDž¸Ìÿÿ
HDžÀÌÿÿƅÈÌÿÿƅÉÌÿÿƅÊÌÿÿH

	H‰ÐÌÿÿH‰…ØÌÿÿHDžàÌÿÿ
HDžèÌÿÿƅðÌÿÿƅñÌÿÿƅòÌÿÿHÕ	H‰…øÌÿÿHo!H‰…ÍÿÿHDžÍÿÿ6	HDžÍÿÿƅÍÿÿƅÍÿÿƅÍÿÿH–	H‰… ÍÿÿHF\H‰…(ÍÿÿHDž0ÍÿÿHDž8Íÿÿƅ@ÍÿÿƅAÍÿÿƅBÍÿÿH
W	H‰HÍÿÿH‰…PÍÿÿHDžXÍÿÿHDž`ÍÿÿƅhÍÿÿƅiÍÿÿƅjÍÿÿH	H‰…pÍÿÿHá)H‰…xÍÿÿHDž€ÍÿÿÏ
HDžˆÍÿÿƅÍÿÿƅ‘Íÿÿƅ’ÍÿÿHà	H‰…˜ÍÿÿHi7H‰… ÍÿÿHDž¨Íÿÿ
HDž°Íÿÿƅ¸Íÿÿƅ¹ÍÿÿƅºÍÿÿH¡	H‰…ÀÍÿÿH37H‰…ÈÍÿÿHDžÐÍÿÿHDžØÍÿÿƅàÍÿÿƅáÍÿÿƅâÍÿÿHb	H‰…èÍÿÿH7H‰…ðÍÿÿHDžøÍÿÿHDžÎÿÿƅÎÿÿƅ	Îÿÿƅ
ÎÿÿH#	H‰…ÎÿÿHå6H‰…ÎÿÿHDž ÎÿÿHDž(Îÿÿƅ0Îÿÿƅ1Îÿÿƅ2ÎÿÿHä	H‰…8ÎÿÿH®6H‰…@ÎÿÿHDžHÎÿÿHDžPÎÿÿƅXÎÿÿƅYÎÿÿƅZÎÿÿH¥	H‰…`ÎÿÿHl6H‰…hÎÿÿHDžpÎÿÿHDžxÎÿÿƅ€ÎÿÿƅÎÿÿƅ‚ÎÿÿHf	H‰…ˆÎÿÿH36H‰…ÎÿÿHDž˜ÎÿÿHDž Îÿÿƅ¨Îÿÿƅ©ÎÿÿƅªÎÿÿH'	H‰…°ÎÿÿHù5H‰…¸ÎÿÿHDžÀÎÿÿ%HDžÈÎÿÿƅÐÎÿÿƅÑÎÿÿƅÒÎÿÿHè	H‰…ØÎÿÿHâ5H‰…àÎÿÿHDžèÎÿÿ3HDžðÎÿÿƅøÎÿÿƅùÎÿÿƅúÎÿÿH©	H‰…ÏÿÿHÎ5H‰…ÏÿÿHDžÏÿÿHDžÏÿÿƅ Ïÿÿƅ!Ïÿÿƅ"ÏÿÿHj	H‰…(ÏÿÿHŽ5H‰…0ÏÿÿHDž8ÏÿÿHDž@ÏÿÿƅHÏÿÿƅIÏÿÿƅJÏÿÿH
+	H‰PÏÿÿH‰…XÏÿÿHDž`ÏÿÿHDžhÏÿÿƅpÏÿÿƅqÏÿÿƅrÏÿÿHó	H‰…xÏÿÿH
5H‰…€ÏÿÿHDžˆÏÿÿHDžÏÿÿƅ˜Ïÿÿƅ™ÏÿÿƅšÏÿÿH
´	H‰ ÏÿÿH‰…¨ÏÿÿHDž°ÏÿÿHDž¸ÏÿÿƅÀÏÿÿƅÁÏÿÿƅÂÏÿÿH|	H‰…ÈÏÿÿH‰4H‰…ÐÏÿÿHDžØÏÿÿHDžàÏÿÿƅèÏÿÿƅéÏÿÿƅêÏÿÿH
=	H‰ðÏÿÿH‰…øÏÿÿHDžÐÿÿHDžÐÿÿƅÐÿÿƅÐÿÿƅÐÿÿH	H‰…ÐÿÿHH‰… ÐÿÿHDž(Ðÿÿ
HDž0Ðÿÿƅ8Ðÿÿƅ9Ðÿÿƅ:ÐÿÿH
Æ	H‰@ÐÿÿH‰…HÐÿÿHDžPÐÿÿ
HDžXÐÿÿƅ`ÐÿÿƅaÐÿÿƅbÐÿÿHŽ	H
3H‰…hÐÿÿH‰pÐÿÿHDžxÐÿÿaHDž€ÐÿÿƅˆÐÿÿƅ‰ÐÿÿƅŠÐÿÿHO	H
©?H‰…ÐÿÿH‰˜ÐÿÿHDž ÐÿÿHDž¨Ðÿÿƅ°Ðÿÿƅ±Ðÿÿƅ²ÐÿÿH	H
j?H‰…¸ÐÿÿH‰ÀÐÿÿHDžÈÐÿÿHDžÐÐÿÿƅØÐÿÿƅÙÐÿÿƅÚÐÿÿHÑÿH
0H‰…àÐÿÿH‰èÐÿÿHDžðÐÿÿHDžøÐÿÿƅÑÿÿƅÑÿÿƅÑÿÿH’ÿH
½/H‰…ÑÿÿH‰ÑÿÿHDžÑÿÿHDž Ñÿÿƅ(Ñÿÿƅ)Ñÿÿƅ*ÑÿÿHSÿH
™>H‰…0ÑÿÿH‰8ÑÿÿHDž@ÑÿÿHDžHÑÿÿƅPÑÿÿƅQÑÿÿƅRÑÿÿHÿH
X>H‰…XÑÿÿH‰`ÑÿÿHDžhÑÿÿHDžpÑÿÿƅxÑÿÿƅyÑÿÿƅzÑÿÿHÕþH
>H‰…€ÑÿÿH‰ˆÑÿÿHDžÑÿÿHDž˜Ñÿÿƅ Ñÿÿƅ¡Ñÿÿƅ¢ÑÿÿH–þH
Ü=H‰…¨ÑÿÿH‰°ÑÿÿHDž¸Ñÿÿ
HDžÀÑÿÿƅÈÑÿÿƅÉÑÿÿƅÊÑÿÿHWþH
Ÿ=H‰…ÐÑÿÿH‰ØÑÿÿHDžàÑÿÿHDžèÑÿÿƅðÑÿÿƅñÑÿÿƅòÑÿÿHþH
\=H‰…øÑÿÿH‰ÒÿÿHDžÒÿÿHDžÒÿÿƅÒÿÿƅÒÿÿƅÒÿÿHÙýH
=H‰… ÒÿÿH‰(ÒÿÿHDž0Òÿÿ	HDž8Òÿÿƅ@ÒÿÿƅAÒÿÿƅBÒÿÿHšýH
°0H‰…HÒÿÿH‰PÒÿÿHDžXÒÿÿHDž`ÒÿÿƅhÒÿÿƅiÒÿÿHbýƅjÒÿÿH‰…pÒÿÿH‰xÒÿÿHDž€ÒÿÿHDžˆÒÿÿƅÒÿÿƅ‘Òÿÿƅ’ÒÿÿH#ýH
d<H‰…˜ÒÿÿH‰ ÒÿÿHDž¨Òÿÿ•
HDž°Òÿÿƅ¸Òÿÿƅ¹ÒÿÿƅºÒÿÿHäüH
L·H‰…ÀÒÿÿH‰ÈÒÿÿHDžÐÒÿÿHDžØÒÿÿƅàÒÿÿƅáÒÿÿH¬üƅâÒÿÿH‰…èÒÿÿH‰ðÒÿÿHDžøÒÿÿHDžÓÿÿƅÓÿÿƅ	Óÿÿƅ
ÓÿÿHmüH
6FH‰…ÓÿÿH‰ÓÿÿHDž ÓÿÿHDž(Óÿÿƅ0Óÿÿƅ1Óÿÿƅ2ÓÿÿH.üH
TH‰…8ÓÿÿH‰@ÓÿÿHDžHÓÿÿHDžPÓÿÿƅXÓÿÿƅYÓÿÿƅZÓÿÿHïûH
ÊSH‰…`ÓÿÿH‰hÓÿÿHDžpÓÿÿHDžxÓÿÿƅ€ÓÿÿƅÓÿÿƅ‚ÓÿÿH°ûH
‰SH‰…ˆÓÿÿH‰ÓÿÿHDž˜ÓÿÿHDž Óÿÿƅ¨Óÿÿƅ©ÓÿÿƅªÓÿÿHqûH
JSH‰…°ÓÿÿH‰¸ÓÿÿHDžÀÓÿÿHDžÈÓÿÿƅÐÓÿÿƅÑÓÿÿƅÒÓÿÿH2ûH
B©H‰…ØÓÿÿH‰àÓÿÿHDžèÓÿÿHDžðÓÿÿƅøÓÿÿƅùÓÿÿHúúƅúÓÿÿH‰…ÔÿÿH‰ÔÿÿHDžÔÿÿHDžÔÿÿƅ Ôÿÿƅ!Ôÿÿƅ"ÔÿÿH»úH
ŒRH‰…(ÔÿÿH‰0ÔÿÿHDž8ÔÿÿHDž@ÔÿÿƅHÔÿÿƅIÔÿÿƅJÔÿÿH|úH
T^H‰…PÔÿÿH‰XÔÿÿHDž`ÔÿÿHDžhÔÿÿƅpÔÿÿƅqÔÿÿƅrÔÿÿH=úH
^H‰…xÔÿÿH‰€ÔÿÿHDžˆÔÿÿHDžÔÿÿƅ˜Ôÿÿƅ™ÔÿÿƅšÔÿÿHþùH
ÌH‰… ÔÿÿH‰¨ÔÿÿHDž°Ôÿÿ
HDž¸ÔÿÿƅÀÔÿÿƅÁÔÿÿHÆùƅÂÔÿÿH‰…ÈÔÿÿH‰ÐÔÿÿHDžØÔÿÿ
HDžàÔÿÿƅèÔÿÿƅéÔÿÿƅêÔÿÿH‡ùH
P]H‰…ðÔÿÿH‰øÔÿÿHDžÕÿÿ{HDžÕÿÿƅÕÿÿƅÕÿÿƅÕÿÿHHùH
„dH‰…ÕÿÿH‰ ÕÿÿHDž(ÕÿÿHDž0Õÿÿƅ8Õÿÿƅ9Õÿÿƅ:ÕÿÿH	ùH
"*H‰…@ÕÿÿH‰HÕÿÿHDžPÕÿÿHDžXÕÿÿƅ`ÕÿÿƅaÕÿÿHÑøƅbÕÿÿH‰…hÕÿÿH‰pÕÿÿHDžxÕÿÿHDž€ÕÿÿƅˆÕÿÿƅ‰ÕÿÿƅŠÕÿÿH’øH
ÒH‰…ÕÿÿH‰˜ÕÿÿHDž Õÿÿ
HDž¨Õÿÿƅ°Õÿÿƅ±ÕÿÿHZøƅ²ÕÿÿH‰…¸ÕÿÿH‰ÀÕÿÿHDžÈÕÿÿ
HDžÐÕÿÿƅØÕÿÿƅÙÕÿÿƅÚÕÿÿHøH
4cH‰…àÕÿÿH‰èÕÿÿHDžðÕÿÿuHDžøÕÿÿƅÖÿÿƅÖÿÿƅÖÿÿHÜ÷H
bcH‰…ÖÿÿH‰ÖÿÿHDžÖÿÿHDž Öÿÿƅ(Öÿÿƅ)Öÿÿƅ*ÖÿÿH÷H
XEH‰…0ÖÿÿH‰8ÖÿÿHDž@ÖÿÿHDžHÖÿÿƅPÖÿÿƅQÖÿÿHe÷ƅRÖÿÿH‰…XÖÿÿH‰`ÖÿÿHDžhÖÿÿHDžpÖÿÿƅxÖÿÿƅyÖÿÿƅzÖÿÿH&÷H
ŸbH‰…€ÖÿÿH‰ˆÖÿÿHDžÖÿÿ!HDž˜Öÿÿƅ Öÿÿƅ¡Öÿÿƅ¢ÖÿÿHçöH
yuH‰…¨ÖÿÿH‰°ÖÿÿHDž¸Öÿÿ
HDžÀÖÿÿƅÈÖÿÿƅÉÖÿÿƅÊÖÿÿH¨öH
<uH‰…ÐÖÿÿH‰ØÖÿÿHDžàÖÿÿHDžèÖÿÿƅðÖÿÿƅñÖÿÿƅòÖÿÿHiöH
ÐH‰…øÖÿÿH‰×ÿÿHDž×ÿÿHDž×ÿÿƅ×ÿÿƅ×ÿÿH1öƅ×ÿÿH‰… ×ÿÿH‰(×ÿÿHDž0×ÿÿHDž8×ÿÿƅ@×ÿÿƅA×ÿÿƅB×ÿÿHòõH
stH‰…H×ÿÿH‰P×ÿÿHDžX×ÿÿnHDž`×ÿÿƅh×ÿÿƅi×ÿÿƅj×ÿÿH³õH
š„H‰…p×ÿÿH‰x×ÿÿHDž€×ÿÿHDžˆ×ÿÿƅ×ÿÿƅ‘×ÿÿƅ’×ÿÿHtõH
V„H‰…˜×ÿÿH‰ ×ÿÿHDž¨×ÿÿHDž°×ÿÿƅ¸×ÿÿƅ¹×ÿÿƅº×ÿÿH5õH
„H‰…À×ÿÿH‰È×ÿÿHDžÐ×ÿÿHDžØ×ÿÿƅà×ÿÿƅá×ÿÿƅâ×ÿÿHöôH
ڃH‰…è×ÿÿH‰ð×ÿÿHDžø×ÿÿHDžØÿÿƅØÿÿƅ	Øÿÿƅ
ØÿÿH·ôH
™ƒH‰…ØÿÿH‰ØÿÿHDž ØÿÿHDž(Øÿÿƅ0Øÿÿƅ1Øÿÿƅ2ØÿÿHxôH
`ƒH‰…8ØÿÿH‰@ØÿÿHDžHØÿÿHDžPØÿÿƅXØÿÿƅYØÿÿƅZØÿÿH9ôH
ƒH‰…`ØÿÿH‰hØÿÿHDžpØÿÿHDžxØÿÿƅ€ØÿÿƅØÿÿƅ‚ØÿÿHúóH
ނH‰…ˆØÿÿH‰ØÿÿHDž˜ØÿÿHDž Øÿÿƅ¨Øÿÿƅ©ØÿÿƅªØÿÿH»óH
‚H‰…°ØÿÿH‰¸ØÿÿHDžÀØÿÿHDžÈØÿÿƅÐØÿÿƅÑØÿÿƅÒØÿÿH|óH
[‚H‰…ØØÿÿH‰àØÿÿHDžèØÿÿHDžðØÿÿƅøØÿÿƅùØÿÿƅúØÿÿH=óH
‚H‰…ÙÿÿH‰ÙÿÿHDžÙÿÿ
HDžÙÿÿƅ Ùÿÿƅ!Ùÿÿƅ"ÙÿÿHþòH
܁H‰…(ÙÿÿH‰0ÙÿÿHDž8Ùÿÿ	HDž@ÙÿÿƅHÙÿÿƅIÙÿÿƅJÙÿÿH¿òH
žH‰…PÙÿÿH‰XÙÿÿHDž`ÙÿÿHDžhÙÿÿƅpÙÿÿƅqÙÿÿƅrÙÿÿH€òH
]H‰…xÙÿÿH‰€ÙÿÿHDžˆÙÿÿ	HDžÙÿÿƅ˜Ùÿÿƅ™ÙÿÿƅšÙÿÿHAòH
H‰… ÙÿÿH‰¨ÙÿÿHDž°Ùÿÿ	HDž¸ÙÿÿƅÀÙÿÿƅÁÙÿÿƅÂÙÿÿHòH
á€H‰…ÈÙÿÿH‰ÐÙÿÿHDžØÙÿÿHDžàÙÿÿƅèÙÿÿƅéÙÿÿƅêÙÿÿHÃñH
¥€H‰…ðÙÿÿH‰øÙÿÿHDžÚÿÿHDžÚÿÿƅÚÿÿƅÚÿÿƅÚÿÿH„ñH
c€H‰…ÚÿÿH‰ ÚÿÿHDž(Úÿÿ	HDž0Úÿÿƅ8Úÿÿƅ9Úÿÿƅ:ÚÿÿHEñH
%€H‰…@ÚÿÿH‰HÚÿÿHDžPÚÿÿHDžXÚÿÿƅ`ÚÿÿƅaÚÿÿH
ñƅbÚÿÿH‰…hÚÿÿH‰pÚÿÿHDžxÚÿÿHDž€ÚÿÿƅˆÚÿÿƅ‰ÚÿÿƅŠÚÿÿHÎðH
¤H‰…ÚÿÿH‰˜ÚÿÿHDž ÚÿÿHDž¨Úÿÿƅ°Úÿÿƅ±Úÿÿƅ²ÚÿÿHðH
aH‰…¸ÚÿÿH‰ÀÚÿÿHDžÈÚÿÿHDžÐÚÿÿƅØÚÿÿƅÙÚÿÿƅÚÚÿÿHPðH
!H‰…àÚÿÿH‰èÚÿÿHDžðÚÿÿHDžøÚÿÿƅÛÿÿƅÛÿÿƅÛÿÿHðH
Ü~H‰…ÛÿÿH‰ÛÿÿHDžÛÿÿHDž Ûÿÿƅ(Ûÿÿƅ)ÛÿÿHÙïƅ*ÛÿÿH‰…0ÛÿÿH‰8ÛÿÿHDž@ÛÿÿHDžHÛÿÿƅPÛÿÿƅQÛÿÿƅRÛÿÿHšïH
k.H‰…XÛÿÿH‰`ÛÿÿHDžhÛÿÿHDžpÛÿÿƅxÛÿÿƅyÛÿÿHbïƅzÛÿÿH‰…€ÛÿÿH‰ˆÛÿÿHDžÛÿÿHDž˜Ûÿÿƅ Ûÿÿƅ¡Ûÿÿƅ¢ÛÿÿH#ïH
Ô}H‰…¨ÛÿÿH‰°ÛÿÿHDž¸ÛÿÿÒ
HDžÀÛÿÿƅÈÛÿÿƅÉÛÿÿƅÊÛÿÿHäîH
_‹H‰…ÐÛÿÿH‰ØÛÿÿHDžàÛÿÿHDžèÛÿÿƅðÛÿÿƅñÛÿÿƅòÛÿÿH¥îH
‹H‰…øÛÿÿH‰ÜÿÿHDžÜÿÿHDžÜÿÿƅÜÿÿƅÜÿÿƅÜÿÿHfîH
âŠH‰… ÜÿÿH‰(ÜÿÿHDž0ÜÿÿHDž8Üÿÿƅ@ÜÿÿƅAÜÿÿƅBÜÿÿH'îH
©ŠH‰…HÜÿÿH‰PÜÿÿHDžXÜÿÿHDž`ÜÿÿƅhÜÿÿƅiÜÿÿƅjÜÿÿHèíH
qŠH‰…pÜÿÿH‰xÜÿÿHDž€ÜÿÿTHDžˆÜÿÿƅÜÿÿƅ‘Üÿÿƅ’ÜÿÿH©íH
ŠŠH‰…˜ÜÿÿH‰ ÜÿÿHDž¨ÜÿÿHDž°Üÿÿƅ¸Üÿÿƅ¹ÜÿÿƅºÜÿÿHjíH
SŠH‰…ÀÜÿÿH‰ÈÜÿÿHDžÐÜÿÿHDžØÜÿÿƅàÜÿÿƅáÜÿÿƅâÜÿÿH+íH
ŠH‰…èÜÿÿH‰ðÜÿÿHDžøÜÿÿHDžÝÿÿƅÝÿÿƅ	Ýÿÿƅ
ÝÿÿHììH
щH‰…ÝÿÿH‰ÝÿÿHDž ÝÿÿHDž(Ýÿÿƅ0Ýÿÿƅ1Ýÿÿƅ2ÝÿÿH­ìH
•‰H‰…8ÝÿÿH‰@ÝÿÿHDžHÝÿÿHDžPÝÿÿƅXÝÿÿƅYÝÿÿHuìƅZÝÿÿH‰…`ÝÿÿH‰hÝÿÿHDžpÝÿÿHDžxÝÿÿƅ€ÝÿÿƅÝÿÿƅ‚ÝÿÿH6ìH
‰H‰…ˆÝÿÿH‰ÝÿÿHDž˜ÝÿÿHDž Ýÿÿƅ¨Ýÿÿƅ©ÝÿÿƅªÝÿÿH÷ëH
ЈH‰…°ÝÿÿH‰¸ÝÿÿHDžÀÝÿÿHDžÈÝÿÿƅÐÝÿÿƅÑÝÿÿƅÒÝÿÿH¸ëH
KH‰…ØÝÿÿH‰àÝÿÿHDžèÝÿÿ	HDžðÝÿÿƅøÝÿÿƅùÝÿÿH€ëƅúÝÿÿH‰…ÞÿÿH‰ÞÿÿHDžÞÿÿ	HDžÞÿÿƅ Þÿÿƅ!Þÿÿƅ"ÞÿÿHAëH
ˆH‰…(ÞÿÿH‰0ÞÿÿHDž8ÞÿÿpHDž@ÞÿÿƅHÞÿÿƅIÞÿÿƅJÞÿÿHëH
ËVH‰…PÞÿÿH‰XÞÿÿHDž`Þÿÿ
HDžhÞÿÿƅpÞÿÿƅqÞÿÿHÊêƅrÞÿÿH‰…xÞÿÿH‰€ÞÿÿHDžˆÞÿÿ
HDžÞÿÿƅ˜Þÿÿƅ™ÞÿÿƅšÞÿÿH‹êH
´“H‰… ÞÿÿH‰¨ÞÿÿHDž°ÞÿÿÎHDž¸ÞÿÿƅÀÞÿÿƅÁÞÿÿƅÂÞÿÿHLêH
ëÒH‰…ÈÞÿÿH‰ÐÞÿÿHDžØÞÿÿ
HDžàÞÿÿƅèÞÿÿƅéÞÿÿHêƅêÞÿÿH‰…ðÞÿÿH‰øÞÿÿHDžßÿÿ
HDžßÿÿƅßÿÿƅßÿÿƅßÿÿHÕéH
¶¤H‰…ßÿÿH‰ ßÿÿHDž(ßÿÿöHDž0ßÿÿƅ8ßÿÿƅ9ßÿÿƅ:ßÿÿH–éH
e°H‰…@ßÿÿH‰HßÿÿHDžPßÿÿHDžXßÿÿƅ`ßÿÿƅaßÿÿƅbßÿÿHWéH
"°H‰…hßÿÿH‰pßÿÿHDžxßÿÿ	HDž€ßÿÿƅˆßÿÿƅ‰ßÿÿƅŠßÿÿHéH
ñ¯H‰…ßÿÿH‰˜ßÿÿHDž ßÿÿHDž¨ßÿÿƅ°ßÿÿƅ±ßÿÿƅ²ßÿÿHÙèH
»¯H‰…¸ßÿÿH‰ÀßÿÿHDžÈßÿÿHDžÐßÿÿƅØßÿÿƅÙßÿÿH¡èƅÚßÿÿH‰…àßÿÿH‰èßÿÿHDžðßÿÿHDžøßÿÿƅàÿÿƅàÿÿƅàÿÿHbèH
C¯H‰…àÿÿH‰àÿÿHDžàÿÿ#HDž àÿÿƅ(àÿÿƅ)àÿÿƅ*àÿÿH#èH
,¯H‰…0àÿÿH‰8àÿÿHDž@àÿÿHDžHàÿÿƅPàÿÿƅQàÿÿƅRàÿÿHäçH
¯H‰…XàÿÿH‰`àÿÿHDžhàÿÿHDžpàÿÿƅxàÿÿƅyàÿÿƅzàÿÿH¥çH
¾®H‰…€àÿÿH‰ˆàÿÿHDžàÿÿ
HDž˜àÿÿƅ àÿÿƅ¡àÿÿƅ¢àÿÿHfçH
„®H‰…¨àÿÿH‰°àÿÿHDž¸àÿÿ	HDžÀàÿÿƅÈàÿÿƅÉàÿÿƅÊàÿÿH'çH
F®H‰…ÐàÿÿH‰ØàÿÿHDžààÿÿHDžèàÿÿƅðàÿÿƅñàÿÿHïæƅòàÿÿH‰…øàÿÿH‰áÿÿHDžáÿÿHDžáÿÿƅáÿÿƅáÿÿƅáÿÿH°æH
ýðH‰… áÿÿH‰(áÿÿHDž0áÿÿHDž8áÿÿƅ@áÿÿƅAáÿÿHxæƅBáÿÿH‰…HáÿÿH‰PáÿÿHDžXáÿÿHDž`áÿÿƅháÿÿƅiáÿÿƅjáÿÿH9æH
B­H‰…páÿÿH‰xáÿÿHDž€áÿÿQHDžˆáÿÿƅáÿÿƅ‘áÿÿƅ’áÿÿHúåH
ÚH‰…˜áÿÿH‰ áÿÿHDž¨áÿÿHDž°áÿÿƅ¸áÿÿƅ¹áÿÿHÂåƅºáÿÿH‰…ÀáÿÿH‰ÈáÿÿHDžÐáÿÿHDžØáÿÿƅàáÿÿƅááÿÿƅâáÿÿHƒåH
ԸH‰…èáÿÿH‰ðáÿÿHDžøáÿÿôHDžâÿÿƅâÿÿƅ	âÿÿƅ
âÿÿHDåH
ÎH‰…âÿÿH‰âÿÿHDž âÿÿHDž(âÿÿƅ0âÿÿƅ1âÿÿHåƅ2âÿÿH‰…8âÿÿH‰@âÿÿHDžHâÿÿHDžPâÿÿƅXâÿÿƅYâÿÿƅZâÿÿHÍäH
üÍH‰…`âÿÿH‰hâÿÿHDžpâÿÿ	HDžxâÿÿƅ€âÿÿƅâÿÿƅ‚âÿÿHŽäH
¾ÍH‰…ˆâÿÿH‰âÿÿHDž˜âÿÿHDž âÿÿƅ¨âÿÿƅ©âÿÿHVäƅªâÿÿH‰…°âÿÿH‰¸âÿÿHDžÀâÿÿHDžÈâÿÿƅÐâÿÿƅÑâÿÿƅÒâÿÿHäH
<ÍH‰…ØâÿÿH‰àâÿÿHDžèâÿÿHDžðâÿÿƅøâÿÿƅùâÿÿƅúâÿÿHØãH
H‰…ãÿÿH‰ãÿÿHDžãÿÿHDžãÿÿƅ ãÿÿƅ!ãÿÿH ãƅ"ãÿÿH‰…(ãÿÿH‰0ãÿÿHDž8ãÿÿHDž@ãÿÿƅHãÿÿƅIãÿÿƅJãÿÿHaãH
zÌH‰…PãÿÿH‰XãÿÿHDž`ãÿÿ€
HDžhãÿÿƅpãÿÿƅqãÿÿƅrãÿÿH"ãH
³ÙH‰…xãÿÿH‰€ãÿÿHDžˆãÿÿ
HDžãÿÿƅ˜ãÿÿƅ™ãÿÿƅšãÿÿHãâH
yÙH‰… ãÿÿH‰¨ãÿÿHDž°ãÿÿHDž¸ãÿÿƅÀãÿÿƅÁãÿÿH«âƅÂãÿÿH‰…ÈãÿÿH‰ÐãÿÿHDžØãÿÿHDžàãÿÿƅèãÿÿƅéãÿÿƅêãÿÿHlâH
ÙH‰…ðãÿÿH‰øãÿÿHDžäÿÿHDžäÿÿƅäÿÿƅäÿÿƅäÿÿH-âH
ÕØH‰…äÿÿH‰ äÿÿHDž(äÿÿHDž0äÿÿƅ8äÿÿƅ9äÿÿHõáƅ:äÿÿH‰…@äÿÿH‰HäÿÿHDžPäÿÿHDžXäÿÿƅ`äÿÿƅaäÿÿƅbäÿÿH¶áH
—½H‰…häÿÿH‰päÿÿHDžxäÿÿHDž€äÿÿƅˆäÿÿƅ‰äÿÿH~áƅŠäÿÿH‰…äÿÿH‰˜äÿÿHDž äÿÿHDž¨äÿÿƅ°äÿÿƅ±äÿÿƅ²äÿÿH?áH
Ð×H‰…¸äÿÿH‰ÀäÿÿHDžÈäÿÿHDžÐäÿÿƅØäÿÿƅÙäÿÿƅÚäÿÿHáH
õ¥H‰…àäÿÿH‰èäÿÿHDžðäÿÿ
HDžøäÿÿƅåÿÿƅåÿÿHÈàƅåÿÿH‰…åÿÿH‰åÿÿHDžåÿÿ
HDž åÿÿƅ(åÿÿfDž)åÿÿHŽàH
ãH‰…0åÿÿH‰8åÿÿHDž@åÿÿp
HDžHåÿÿfDžPåÿÿƅRåÿÿHTàH
¿oH‰…XåÿÿH‰`åÿÿHDžhåÿÿHDžpåÿÿfDžxåÿÿH!àƅzåÿÿH‰…€åÿÿH‰ˆåÿÿHDžåÿÿHDž˜åÿÿƅ åÿÿfDž¡åÿÿHçßH
ÈïH‰…¨åÿÿH‰°åÿÿHDž¸åÿÿÒHDžÀåÿÿfDžÈåÿÿƅÊåÿÿH­ßH
XÿH‰…ÐåÿÿH‰ØåÿÿHDžàåÿÿHDžèåÿÿfDžðåÿÿƅòåÿÿHsßH
ÿH‰…øåÿÿH‰æÿÿHDžæÿÿHDžæÿÿfDžæÿÿH@ßƅæÿÿH‰… æÿÿH‰(æÿÿHDž0æÿÿHDž8æÿÿfDž@æÿÿƅBæÿÿHßH
ë
H‰…HæÿÿH‰PæÿÿHDžXæÿÿHDž`æÿÿfDžhæÿÿƅjæÿÿHÌÞH
eþH‰…pæÿÿH‰xæÿÿHDž€æÿÿ'HDžˆæÿÿfDžæÿÿƅ’æÿÿH’ÞH
SþH‰…˜æÿÿH‰ æÿÿHDž¨æÿÿ"HDž°æÿÿfDž¸æÿÿƅºæÿÿHXÞH
3þH‰…ÀæÿÿH‰ÈæÿÿHDžÐæÿÿ
HDžØæÿÿfDžàæÿÿƅâæÿÿHÞH
ÏÔH‰…èæÿÿH‰ðæÿÿHDžøæÿÿHDžçÿÿfDžçÿÿƅ
çÿÿHäÝH
­ÔH‰…çÿÿH‰çÿÿHDž çÿÿHDž(çÿÿfDž0çÿÿƅ2çÿÿHªÝH
zýH‰…8çÿÿH‰@çÿÿHDžHçÿÿHDžPçÿÿfDžXçÿÿƅZçÿÿHpÝH
IýH‰…`çÿÿH‰hçÿÿHDžpçÿÿÂHDžxçÿÿfDž€çÿÿƅ‚çÿÿH6ÝH
ÉýH‰…ˆçÿÿH‰çÿÿHDž˜çÿÿ	HDž çÿÿfDž¨çÿÿƅªçÿÿHüÜH
ýH‰…°çÿÿH‰¸çÿÿHDžÀçÿÿHDžÈçÿÿfDžÐçÿÿHÉÜƅÒçÿÿH‰…ØçÿÿH‰àçÿÿHDžèçÿÿHDžðçÿÿfDžøçÿÿƅúçÿÿHÜH
ýH‰…èÿÿH‰èÿÿHDžèÿÿHDžèÿÿfDž èÿÿƅ"èÿÿHUÜH
™ìH‰…(èÿÿH‰0èÿÿHDž8èÿÿHDž@èÿÿfDžHèÿÿH"ÜƅJèÿÿH‰…PèÿÿH‰XèÿÿHDž`èÿÿHDžhèÿÿfDžpèÿÿƅrèÿÿHèÛH
yüH‰…xèÿÿH‰€èÿÿHDžˆèÿÿ÷HDžèÿÿfDž˜èÿÿƅšèÿÿH®ÛH
H‰… èÿÿH‰¨èÿÿHDž°èÿÿHDž¸èÿÿfDžÀèÿÿH{ÛƅÂèÿÿH‰…ÈèÿÿH‰ÐèÿÿHDžØèÿÿHDžàèÿÿƅèèÿÿfDžéèÿÿHAÛH
ºH‰…ðèÿÿH‰øèÿÿHDžéÿÿðHDžéÿÿfDžéÿÿƅéÿÿHÛH
hH‰…éÿÿH‰ éÿÿHDž(éÿÿHDž0éÿÿfDž8éÿÿƅ:éÿÿHÍÚH
V“H‰…@éÿÿH‰HéÿÿHDžPéÿÿHDžXéÿÿfDž`éÿÿHšÚƅbéÿÿH‰…héÿÿH‰péÿÿHDžxéÿÿHDž€éÿÿfDžˆéÿÿƅŠéÿÿH`ÚH
¹H‰…éÿÿH‰˜éÿÿHDž éÿÿÿ	HDž¨éÿÿfDž°éÿÿƅ²éÿÿH&ÚH
wH‰…¸éÿÿH‰ÀéÿÿHDžÈéÿÿHDžÐéÿÿfDžØéÿÿƅÚéÿÿHìÙH
FH‰…àéÿÿH‰èéÿÿHDžðéÿÿHDžøéÿÿfDžêÿÿƅêÿÿH²ÙH
‘H‰…êÿÿH‰êÿÿHDžêÿÿHDž êÿÿfDž(êÿÿHÙƅ*êÿÿH‰…0êÿÿH‰8êÿÿHDž@êÿÿHDžHêÿÿfDžPêÿÿƅRêÿÿHEÙH
–H‰…XêÿÿH‰`êÿÿHDžhêÿÿð
HDžpêÿÿfDžxêÿÿƅzêÿÿHÙH
D&H‰…€êÿÿH‰ˆêÿÿHDžêÿÿ#HDž˜êÿÿfDž êÿÿƅ¢êÿÿHÑØH
2&H‰…¨êÿÿH‰°êÿÿHDž¸êÿÿHDžÀêÿÿfDžÈêÿÿƅÊêÿÿH—ØH
&H‰…ÐêÿÿH‰ØêÿÿHDžàêÿÿHDžèêÿÿfDžðêÿÿƅòêÿÿH]ØH
ì%H‰…øêÿÿH‰ëÿÿHDžëÿÿHDžëÿÿfDžëÿÿƅëÿÿH#ØH
¯%H‰… ëÿÿH‰(ëÿÿHDž0ëÿÿHDž8ëÿÿfDž@ëÿÿHð×ƅBëÿÿH‰…HëÿÿH‰PëÿÿHDžXëÿÿHDž`ëÿÿfDžhëÿÿƅjëÿÿH¶×H
?%H‰…pëÿÿH‰xëÿÿHDž€ëÿÿHDžˆëÿÿfDžëÿÿƅ’ëÿÿH|×H
%H‰…˜ëÿÿH‰ ëÿÿHDž¨ëÿÿHDž°ëÿÿfDž¸ëÿÿƅºëÿÿHB×H
ç$H‰…ÀëÿÿH‰ÈëÿÿHDžÐëÿÿHDžØëÿÿfDžàëÿÿƅâëÿÿH×H
¨CH‰…èëÿÿH‰ðëÿÿHDžøëÿÿHDžìÿÿfDžìÿÿHÕÖƅ
ìÿÿH‰…ìÿÿH‰ìÿÿHDž ìÿÿHDž(ìÿÿfDž0ìÿÿƅ2ìÿÿH›ÖH
.$H‰…8ìÿÿH‰@ìÿÿHDžHìÿÿHDžPìÿÿfDžXìÿÿƅZìÿÿHaÖH
ú#H‰…`ìÿÿH‰hìÿÿHDžpìÿÿqHDžxìÿÿfDž€ìÿÿƅ‚ìÿÿH'ÖH
kH‰…ˆìÿÿH‰ìÿÿHDž˜ìÿÿHDž ìÿÿfDž¨ìÿÿHôÕƅªìÿÿH‰…°ìÿÿH‰¸ìÿÿHDžÀìÿÿHDžÈìÿÿfDžÐìÿÿƅÒìÿÿHºÕH
»'H‰…ØìÿÿH‰àìÿÿHDžèìÿÿvHDžðìÿÿfDžøìÿÿƅúìÿÿH€ÕH
jFH‰…íÿÿH‰íÿÿHDžíÿÿHDžíÿÿfDž íÿÿHMÕƅ"íÿÿH‰…(íÿÿH‰0íÿÿHDž8íÿÿHDž@íÿÿfDžHíÿÿƅJíÿÿHÕH
|2H‰…PíÿÿH‰XíÿÿHDž`íÿÿ(	HDžhíÿÿfDžpíÿÿƅríÿÿHÙÔH
>ûH‰…xíÿÿH‰€íÿÿHDžˆíÿÿHDžíÿÿfDž˜íÿÿH¦ÔƅšíÿÿH‰… íÿÿH‰¨íÿÿHDž°íÿÿHDž¸íÿÿfDžÀíÿÿƅÂíÿÿHlÔH
mNH‰…ÈíÿÿH‰ÐíÿÿHDžØíÿÿHDžàíÿÿfDžèíÿÿH9ÔƅêíÿÿH‰…ðíÿÿH‰øíÿÿHDžîÿÿHDžîÿÿfDžîÿÿƅîÿÿHÿÓH
p:H‰…îÿÿH‰ îÿÿHDž(îÿÿHDž0îÿÿfDž8îÿÿƅ:îÿÿHÅÓH
9óH‰…@îÿÿH‰HîÿÿHDžPîÿÿHDžXîÿÿfDž`îÿÿH’ÓƅbîÿÿH‰…hîÿÿH‰pîÿÿHDžxîÿÿHDž€îÿÿfDžˆîÿÿƅŠîÿÿHXÓH
ÑDH‰…îÿÿH‰˜îÿÿHDž îÿÿ´HDž¨îÿÿfDž°îÿÿƅ²îÿÿHÓH
OKH‰…¸îÿÿH‰ÀîÿÿHDžÈîÿÿHDžÐîÿÿfDžØîÿÿƅÚîÿÿHäÒH
5H‰…àîÿÿH‰èîÿÿHDžðîÿÿHDžøîÿÿfDžïÿÿH±ÒƅïÿÿH‰…ïÿÿH‰ïÿÿHDžïÿÿHDž ïÿÿfDž(ïÿÿƅ*ïÿÿHwÒH
£JH‰…0ïÿÿH‰8ïÿÿHDž@ïÿÿHDžHïÿÿfDžPïÿÿƅRïÿÿH=ÒH
gJH‰…XïÿÿH‰`ïÿÿHDžhïÿÿHDžpïÿÿfDžxïÿÿƅzïÿÿHÒH
:LH‰…€ïÿÿH‰ˆïÿÿHDžïÿÿ	HDž˜ïÿÿfDž ïÿÿHÐÑƅ¢ïÿÿH‰…¨ïÿÿH‰°ïÿÿHDž¸ïÿÿ	HDžÀïÿÿfDžÈïÿÿƅÊïÿÿH–ÑH
¯IH‰…ÐïÿÿH‰ØïÿÿHDžàïÿÿ 
HDžèïÿÿfDžðïÿÿƅòïÿÿH\ÑH
ÆáH‰…øïÿÿH‰ðÿÿHDžðÿÿHDžðÿÿfDžðÿÿƅðÿÿH"ÑH
KSH‰… ðÿÿH‰(ðÿÿHDž0ðÿÿHDž8ðÿÿfDž@ðÿÿƅBðÿÿHèÐH
SH‰…HðÿÿH‰PðÿÿHDžXðÿÿHDž`ðÿÿfDžhðÿÿƅjðÿÿH®ÐH
ÖRH‰…pðÿÿH‰xðÿÿHDž€ðÿÿHDžˆðÿÿfDžðÿÿƅ’ðÿÿHtÐH
œRH‰…˜ðÿÿH‰ ðÿÿHDž¨ðÿÿ
HDž°ðÿÿfDž¸ðÿÿƅºðÿÿH:ÐH
gRH‰…ÀðÿÿH‰ÈðÿÿHDžÐðÿÿ	HDžØðÿÿfDžàðÿÿƅâðÿÿHÐH
.RH‰…èðÿÿH‰ððÿÿHDžøðÿÿHDžñÿÿfDžñÿÿHÍÏƅ
ñÿÿH‰…ñÿÿH‰ñÿÿHDž ñÿÿHDž(ñÿÿfDž0ñÿÿƅ2ñÿÿH“ÏH
·QH‰…8ñÿÿH‰@ñÿÿHDžHñÿÿHDžPñÿÿfDžXñÿÿƅZñÿÿHYÏH
¹H‰…`ñÿÿH‰hñÿÿHDžpñÿÿHDžxñÿÿfDž€ñÿÿH&Ïƅ‚ñÿÿH‰…ˆñÿÿH‰ñÿÿHDž˜ñÿÿHDž ñÿÿfDž¨ñÿÿƅªñÿÿHìÎH
ýPH‰…°ñÿÿH‰¸ñÿÿHDžÀñÿÿHDžÈñÿÿfDžÐñÿÿH¹ÎƅÒñÿÿH‰…ØñÿÿH‰àñÿÿHDžèñÿÿHDžðñÿÿfDžøñÿÿƅúñÿÿHÎH
†PH‰…òÿÿH‰òÿÿHDžòÿÿ
HDžòÿÿfDž òÿÿƅ"òÿÿHEÎH
JÞH‰…(òÿÿH‰0òÿÿHDž8òÿÿHDž@òÿÿfDžHòÿÿHÎƅJòÿÿH‰…PòÿÿH‰XòÿÿHDž`òÿÿHDžhòÿÿfDžpòÿÿƅròÿÿHØÍH
ÙOH‰…xòÿÿH‰€òÿÿHDžˆòÿÿwHDžòÿÿfDž˜òÿÿƅšòÿÿHžÍH
çûH‰… òÿÿH‰¨òÿÿHDž°òÿÿHDž¸òÿÿfDžÀòÿÿHkÍƅÂòÿÿH‰…ÈòÿÿH‰ÐòÿÿHDžØòÿÿHDžàòÿÿfDžèòÿÿƅêòÿÿH1ÍH
šäH‰…ðòÿÿH‰øòÿÿHDžóÿÿ
HDžóÿÿfDžóÿÿHþÌƅóÿÿH‰…óÿÿH‰ óÿÿHDž(óÿÿ
HDž0óÿÿfDž8óÿÿƅ:óÿÿHÄÌH
QH‰…@óÿÿH‰HóÿÿHDžPóÿÿ@HDžXóÿÿfDž`óÿÿƅbóÿÿHŠÌH
QH‰…hóÿÿH‰póÿÿHDžxóÿÿHDž€óÿÿfDžˆóÿÿHWÌƅŠóÿÿH‰…óÿÿH‰˜óÿÿHDž óÿÿHDž¨óÿÿfDž°óÿÿƅ²óÿÿHÌH
ëH‰…¸óÿÿH‰ÀóÿÿHDžÈóÿÿHDžÐóÿÿfDžØóÿÿHêËƅÚóÿÿH‰…àóÿÿH‰èóÿÿHDžðóÿÿHDžøóÿÿfDžôÿÿƅôÿÿH°ËH
1PH‰…ôÿÿH‰ôÿÿHDžôÿÿ°HDž ôÿÿfDž(ôÿÿƅ*ôÿÿHvËH
ŸTH‰…0ôÿÿH‰8ôÿÿHDž@ôÿÿHDžHôÿÿfDžPôÿÿƅRôÿÿH<ËH
bTH‰…XôÿÿH‰`ôÿÿHDžhôÿÿHDžpôÿÿfDžxôÿÿH	ËƅzôÿÿH‰…€ôÿÿH‰ˆôÿÿHDžôÿÿHDž˜ôÿÿfDž ôÿÿƅ¢ôÿÿHÏÊH
ëSH‰…¨ôÿÿH‰°ôÿÿHDž¸ôÿÿ
HDžÀôÿÿfDžÈôÿÿƅÊôÿÿH•ÊH
³SH‰…ÐôÿÿH‰ØôÿÿHDžàôÿÿHDžèôÿÿfDžðôÿÿƅòôÿÿH[ÊH
vSH‰…øôÿÿH‰õÿÿHDžõÿÿHDžõÿÿfDžõÿÿƅõÿÿH!ÊH
9SH‰… õÿÿH‰(õÿÿHDž0õÿÿ	HDž8õÿÿfDž@õÿÿƅBõÿÿHçÉH
SH‰…HõÿÿH‰PõÿÿHDžXõÿÿHDž`õÿÿfDžhõÿÿƅjõÿÿH­ÉH
ÃRH‰…põÿÿH‰xõÿÿHDž€õÿÿHDžˆõÿÿfDžõÿÿƅ’õÿÿHsÉH
®H‰…˜õÿÿH‰ õÿÿHDž¨õÿÿHDž°õÿÿfDž¸õÿÿH@ÉƅºõÿÿH‰…ÀõÿÿH‰ÈõÿÿHDžÐõÿÿHDžØõÿÿfDžàõÿÿƅâõÿÿHÉH
RH‰…èõÿÿH‰ðõÿÿHDžøõÿÿA
HDžöÿÿfDžöÿÿƅ
öÿÿHÌÈH
uÿH‰…öÿÿH‰öÿÿHDž öÿÿHDž(öÿÿfDž0öÿÿH™Èƅ2öÿÿH‰…8öÿÿH‰@öÿÿHDžHöÿÿHDžPöÿÿfDžXöÿÿƅZöÿÿH_ÈH
¨[H‰…`öÿÿH‰höÿÿHDžpöÿÿ6HDžxöÿÿfDž€öÿÿƅ‚öÿÿH%ÈH
dH‰…ˆöÿÿH‰öÿÿHDž˜öÿÿHDž öÿÿfDž¨öÿÿHòÇƅªöÿÿH‰…°öÿÿH‰¸öÿÿHDžÀöÿÿHDžÈöÿÿfDžÐöÿÿƅÒöÿÿH¸ÇH
)_H‰…ØöÿÿH‰àöÿÿHDžèöÿÿHDžðöÿÿfDžøöÿÿƅúöÿÿH~ÇH
×JH‰…÷ÿÿH‰÷ÿÿHDž÷ÿÿHDž÷ÿÿfDž ÷ÿÿHKÇƅ"÷ÿÿH‰…(÷ÿÿH‰0÷ÿÿHDž8÷ÿÿHDž@÷ÿÿfDžH÷ÿÿƅJ÷ÿÿHÇH
ŠiH‰…P÷ÿÿH‰X÷ÿÿHDž`÷ÿÿzHDžh÷ÿÿfDžp÷ÿÿƅr÷ÿÿHׯH
iµH‰…x÷ÿÿH‰€÷ÿÿHDžˆ÷ÿÿHDž÷ÿÿfDž˜÷ÿÿH¤Æƅš÷ÿÿH‰… ÷ÿÿH‰¨÷ÿÿHDž°÷ÿÿHDž¸÷ÿÿfDžÀ÷ÿÿƅÂ÷ÿÿHjÆH
KqH‰…È÷ÿÿH‰Ð÷ÿÿHDžØ÷ÿÿ‚HDžà÷ÿÿfDžè÷ÿÿƅê÷ÿÿH0ÆH
‹‚H‰…ð÷ÿÿH‰ø÷ÿÿHDžøÿÿHDžøÿÿfDžøÿÿHýÅƅøÿÿH‰…øÿÿH‰ øÿÿHDž(øÿÿHDž0øÿÿfDž8øÿÿƅ:øÿÿHÃÅH
‚H‰…@øÿÿH‰HøÿÿHDžPøÿÿHDžXøÿÿfDž`øÿÿƅbøÿÿH‰ÅH
úH‰…høÿÿH‰pøÿÿHDžxøÿÿ!HDž€øÿÿfDžˆøÿÿƅŠøÿÿHOÅH
فH‰…øÿÿH‰˜øÿÿHDž øÿÿHDž¨øÿÿfDž°øÿÿƅ²øÿÿHÅH
ŸH‰…¸øÿÿH‰ÀøÿÿHDžÈøÿÿHDžÐøÿÿfDžØøÿÿƅÚøÿÿHÛÄH
eH‰…àøÿÿH‰èøÿÿHDžðøÿÿ	HDžøøÿÿfDžùÿÿƅùÿÿH¡ÄH
,H‰…ùÿÿH‰ùÿÿHDžùÿÿHDž ùÿÿfDž(ùÿÿƅ*ùÿÿHgÄH
ð€H‰…0ùÿÿH‰8ùÿÿHDž@ùÿÿHDžHùÿÿfDžPùÿÿƅRùÿÿH-ÄH
΀H‰…XùÿÿH‰`ùÿÿHDžhùÿÿØHDžpùÿÿfDžxùÿÿƅzùÿÿHóÃH
dH‰…€ùÿÿH‰ˆùÿÿHDžùÿÿHDž˜ùÿÿfDž ùÿÿƅ¢ùÿÿH¹ÃH
&H‰…¨ùÿÿH‰°ùÿÿHDž¸ùÿÿHDžÀùÿÿfDžÈùÿÿƅÊùÿÿHÃH
é€H‰…ÐùÿÿH‰ØùÿÿHDžàùÿÿ	HDžèùÿÿfDžðùÿÿƅòùÿÿHEÃH
°€H‰…øùÿÿH‰úÿÿHDžúÿÿHDžúÿÿfDžúÿÿƅúÿÿHÃH
v€H‰… úÿÿH‰(úÿÿHDž0úÿÿHDž8úÿÿfDž@úÿÿƅBúÿÿHÑÂH
B€H‰…HúÿÿH‰PúÿÿHDžXúÿÿSHDž`úÿÿfDžhúÿÿƅjúÿÿH—ÂH
KPH‰…púÿÿH‰xúÿÿHDž€úÿÿHDžˆúÿÿfDžúÿÿHdÂƅ’úÿÿH‰…˜úÿÿH‰ úÿÿHDž¨úÿÿHDž°úÿÿfDž¸úÿÿƅºúÿÿH*ÂH
ã„H‰…ÀúÿÿH‰ÈúÿÿHDžÐúÿÿŒ
HDžØúÿÿfDžàúÿÿƅâúÿÿHðÁH
°éH‰…èúÿÿH‰ðúÿÿHDžøúÿÿHDžûÿÿfDžûÿÿƅ
ûÿÿH¶ÁH
ëŽH‰…ûÿÿH‰ûÿÿHDž ûÿÿHDž(ûÿÿfDž0ûÿÿƅ2ûÿÿH|ÁH
­ŽH‰…8ûÿÿH‰@ûÿÿHDžHûÿÿHDžPûÿÿfDžXûÿÿƅZûÿÿHBÁH
rŽH‰…`ûÿÿH‰hûÿÿHDžpûÿÿHDžxûÿÿfDž€ûÿÿƅ‚ûÿÿHÁH
7ŽH‰…ˆûÿÿH‰ûÿÿHDž˜ûÿÿHDž ûÿÿfDž¨ûÿÿƅªûÿÿHÎÀH
üH‰…°ûÿÿH‰¸ûÿÿHDžÀûÿÿHDžÈûÿÿfDžÐûÿÿƅÒûÿÿH”ÀH
ÔH‰…ØûÿÿH‰àûÿÿHDžèûÿÿHDžðûÿÿfDžøûÿÿHaÀƅúûÿÿH‰…üÿÿH‰üÿÿHDžüÿÿHDžüÿÿfDž üÿÿƅ"üÿÿH'ÀH
HH‰…(üÿÿH‰0üÿÿHDž8üÿÿHDž@üÿÿfDžHüÿÿƅJüÿÿHí¿H
%›H‰…PüÿÿH‰XüÿÿHDž`üÿÿHDžhüÿÿfDžpüÿÿƅrüÿÿH³¿H
êšH‰…xüÿÿH‰€üÿÿHDžˆüÿÿHDžüÿÿfDž˜üÿÿƅšüÿÿHy¿H
”¾H‰… üÿÿH‰¨üÿÿHDž°üÿÿ	HDž¸üÿÿfDžÀüÿÿHF¿ƅÂüÿÿH‰…ÈüÿÿH‰ÐüÿÿHDžØüÿÿ	HDžàüÿÿfDžèüÿÿƅêüÿÿH¿H
5šH‰…ðüÿÿH‰øüÿÿHDžýÿÿ
HDžýÿÿfDžýÿÿƅýÿÿHҾH
ƒ@H‰…ýÿÿH‰ ýÿÿHDž(ýÿÿHDž0ýÿÿfDž8ýÿÿHŸ¾ƅ:ýÿÿH‰…@ýÿÿH‰HýÿÿHDžPýÿÿHDžXýÿÿfDž`ýÿÿƅbýÿÿHe¾H
†¦H‰…hýÿÿH‰pýÿÿHDžxýÿÿkHDž€ýÿÿfDžˆýÿÿƅŠýÿÿH+¾H
¯±H‰…ýÿÿH‰˜ýÿÿHDž ýÿÿHDž¨ýÿÿfDž°ýÿÿHø½ƅ²ýÿÿH‰…¸ýÿÿH‰ÀýÿÿHDžÈýÿÿHDžÐýÿÿfDžØýÿÿƅÚýÿÿH¾½H
7±H‰…àýÿÿH‰èýÿÿHDžðýÿÿ	HDžøýÿÿfDžþÿÿƅþÿÿH„½H
lÙH‰…þÿÿH‰þÿÿHDžþÿÿHDž þÿÿfDž(þÿÿHQ½ƅ*þÿÿH‰…0þÿÿH‰8þÿÿHDž@þÿÿHDžHþÿÿfDžPþÿÿƅRþÿÿH½H
ˆ°H‰…XþÿÿH‰`þÿÿHDžhþÿÿî
HDžpþÿÿfDžxþÿÿƅzþÿÿHݼH
4¾H‰…€þÿÿH‰ˆþÿÿHDžþÿÿ
HDž˜þÿÿfDž þÿÿƅ¢þÿÿH£¼H
ü½H‰…¨þÿÿH‰°þÿÿHDž¸þÿÿHDžÀþÿÿfDžÈþÿÿƅÊþÿÿHi¼H
½H‰…ÐþÿÿH‰ØþÿÿHDžàþÿÿ/HDžèþÿÿfDžðþÿÿƅòþÿÿH/¼H
°½H‰…øþÿÿH‰ÿÿÿHDžÿÿÿHDžÿÿÿfDžÿÿÿƅÿÿÿHõ»H
„½H‰… ÿÿÿH‰(ÿÿÿHDž0ÿÿÿHDž8ÿÿÿfDž@ÿÿÿƅBÿÿÿH»»H
ëyH‰…HÿÿÿH‰PÿÿÿHDžXÿÿÿHDž`ÿÿÿfDžhÿÿÿHˆ»ƅjÿÿÿH‰…pÿÿÿH‰xÿÿÿHÇE€HÇEˆfÇEÆE’HZ»H
ۼH‰E˜H‰M HÇE¨ÉHÇE°fÇE¸ÆEºWÀ)EÐ)EÀHÇEàL‹µºÿÿM…ö„³H8ºÿÿëffff.„L‹3HƒÃ(M…ö„H‹{àH‹sè¶Cù
Cøt€{út9è¦I‰H…Àu\ëÊf.„HÿÎ蠣I‰H…Àu@ë®fffff.„H‹SðHÿÎH…Òt1É赥I‰H…Àuëƒ辥I‰H…À„rÿÿÿfH‰Çè¥écÿÿÿH‹ì]H‹H;EèuHÄàE[A^]ÃèܥfUH‰åAVSH‰ûH‹=g«H‹GH‹€H‰ÞH;j]u1ҹ肥I‰ÆH…ÀtL‰ð[A^]ÃH…Àt>ÿÐI‰ÆH…Àuéè˜èC£H…ÀtE1öëÕH‹Ê\H‹8H5F5E1öH‰Ú1Àè	£ëµè4¤I‰ÆH…Àu¨ë½f.„UH‰åH‹GH‹€H;Ú\u
1ҹ]éñ¤H…Àt	ÿÐH…Àt]Ãèè£H…Àuôè1À]Ãf.„UH‰åSPèǤH‹x`H…ÿ„åH‰ÃH‹ö[H‹0H‹GH9ðtsH‹NH‹‰¨÷Á…ÊH‹Pö‚«€t|ö€«@tsá€tkö†«@tbH‹ˆXH…Ét?H‹AH…À~|1Òffff.„H9tÑtGHÿÂH9Ðuñë\HÇC`ë@H‹€H9ðt'H…Àuï1ÀH;5+[”Àuë/H‰ÇèΡ…Àt#H‹{`HÇC`H…ÿtH‹©€uHÿÈH‰tHƒÄ[]ÃHƒÄ[]éգH‰Çè9…Àu¿ëàUH‰åH…ÿtTH‹H9÷t>H‹FH‹€¨©u=H‹Oö«€t&ö‡«@t%€tö†«@t
]é¸]Ã]é'¡1À]Ã]éÉf„UH‰åAWAVATSH‰ËI‰×I‰öI‰üH…ÒtI9_(u|I‹|$`M‰|$`H…ÿtH‹©€u
HÿÈH‰uè£M…ötI‹©€uHÿÈI‰t H…ÛtH‹©€uHÿÈH‰t[A\A^A_]ÃL‰÷è͢H…ÛuØëèH‰ß[A\A^A_]鶢L‰ÿH‰Þ觠I‹|$`M‰|$`H…ÿ…uÿÿÿëŠfUH‰åAWAVAUATSPL‹~M…ÿކH‰óI‰þ1Àffff.„L9tÄ_HÿÀI9ÇuíM…ÿŽUE1äL‹-JYJ‹tãL9ö„6I‹Fö€«€„­Aö†«@„ŸH‹FH‹€¨©€tdö†«@t[I‹†XL‰ñH…Àt=H‹HH…É~1ÒH9tЄ×HÿÂH9ÑuíIÿÄ1ÀM9üuéÉH‹‰H9ñ„°H…Éuë1ÀL9î”Àë1©t"H‹FH…À~Â1ÉL9t΄„HÿÁH9Èuí1ÉëL‰÷è*Ÿ…ÀtëjHÿÁH9Át“H‹TÎH‹zö‡«€tæö‚«@tÝL9òtBI‹¾XM‰ðH…ÿt)L‹GM…À~ÀE1ÉJ9TÏt IÿÁM9Èuñë¬M‹€I9Ðt
M…ÀuïL9êu–¸ë1ÀHƒÄ[A\A]A^A_]Ãfffff.„UH‰åH9÷u¸]ÃH‹Gö€«€t7ö‡«@t.H‹FH‹€¨©€tö†«@t]é©t]é|]é:žfDUH‰å¸H9÷tRH‹XH…Ét5H‹QH…Ò~1ÿff.„H9tùt)HÿÇH9úuñ1À]ÃH‹¿H9÷tH…ÿuï1ÀH;5#W”À]Ãfffff.„UH‰åH‹NH…É~&1H9|Æ„œHÿÀH9ÁuíH…É~1ÒL‹ßVë1À]Ãf„HÿÂ1ÀH9ÊtëH‹DÖL‹HAö«€tãö€«@tÚH9øtLL‹XI‰úM…Ét3M‹QM…Ò~½E1Ûf.„K9DÙt IÿÃM9ÚuñëŸM‹’I9Ât
M…ÒuïL9Àu‰¸]ÃfUH‰å¸H9÷tRH‹XH…Ét5H‹QH…Ò~1ÿff.„H9tùt)HÿÇH9úuñ1À]ÃH‹¿H9÷tH…ÿuï1ÀH;5óU”À]Ãfffff.„UH‰åAWAVATSI‰÷I‰þ‹ÿÀtA‰I‹~H‹©€u
HÿÈH‰u蟞M‰~H‹5 ¨I‹GH‹€L‰ÿH…À„-ÿÐH‰ÃH…À„0H5k.H‰ßè̛…À„BH5T.H‰ß诛I‰ÄH…ÀuèœH…À…›IF I‹L$ I‰N@A$AL$AN0AF I‰FHI‹FL‰÷ÿPH…À„5H‹÷Á€uHÿÉH‰uH‰ÇèߝH‹5l«I‹GH‹€L‰ÿH…À„
ÿÐI‰ÇH…À„
I‹¾èH‹©€u
HÿÈH‰u蕝M‰¾èL‹5sUA‹ÿÀt
L‹5eUA‰H‹©€uHÿÈH‰uH‰ßè\L‰ð[A\A^A_]Ãè7œH‰ÃH…À…ÐþÿÿE1ö1ÿèÑaÿÿH=>-H
s£¾º"ºÖèäxÿÿëºH‹=ƒ³H‹5Ա1Òè½A¿ÙH…À„œI‰ÆH‰ÇèCI‹A¼Ý"©€uKHÿÈI‰uCL‰÷èǜë9A¼#A¿Ýë+螛I‰ÇH…À…óþÿÿA¼
#A¿ÞëA¼ï"A¿ÛE1ö1ÿèaÿÿH=‹,H
"D‰æD‰úè5xÿÿH‹©€„ïþÿÿéúþÿÿA¼Ù"ëÂf.„UH‰åÇGPHÇGXH‹T‹ÿÁt‰H‹T]ÃDUH‰åAWAVAUATSHƒì(L‰EÀH‰MÈI‰õH‰}ÐIÿÍM…í~tL‰ËI‰ÔHƒEÐ H‹EÈI‰ÇM¯ýL}ÀH÷ØH‰E¸€H‹}ÐL‰îè´jH¯EÈH‹MÀL4H‰ßL‰öL‰âèœL‰÷L‰þL‰âèõ›L‰ÿH‰ÞL‰âèç›L}¸IÿÍu´H‹]S‹ÿÁt‰H‹NSHƒÄ([A\A]A^A_]Ãffffff.„UH‰åAWAVATSH‰ÓI‰öI‰ÿH‹GL‹ €M…ät5H=c+èޚ…ÀuEL‰ÿL‰öH‰ÚAÿÔH‰Ãè̚H…Ût"H‰Ø[A\A^A_]ÃL‰ÿL‰öH‰Ú[A\A^A_]飙蜘H…Àt1ÛëÐH‹DRH‹8H5+艘ëäff.„UH‰åAWAVSPH‰ûH‹H‹‡¨©@u0©€t	öƒ«@u2H‹úQH‹8H5=+HƒÄ[A^A_]é-˜H‰ÞHƒÄ[A^A_]é˜1ÿ蠙H…À„ƒI‰ÇH‰ßH‰Æ1Òèñ˜I‰ÆI‹©€uHÿÈI‰uL‰ÿèšM…ötQI‹Nö«@u'H‹yQH‹8H5w*H‰Ú1À蓗I‹©€tëH‰ßL‰ö蔗I‹©€uHÿÈI‰tHƒÄ[A^A_]ÃL‰÷HƒÄ[A^A_]铙ffffff.„UH‰åSPH‰ûH‹GHƒ¸ˆuqH‰ßèK˜H‹{H…ÿtHÇCH‹©€u
HÿÈH‰uè=™H‹»èH…ÿt"HǃèH‹©€u
HÿÈH‰uè™H‹CH‰ßHƒÄ[]ÿ @H‰ßèԗ…ÀuƒH‹CH
aÿÿÿH9H0…nÿÿÿH‰ß觗…À„^ÿÿÿHƒÄ[]ÃUH‰åAWAVAUATSHƒì(I‰üH‹¥PH‹H‰EÐH‹5—«H‹GH‹€H…À„öÿÐH‰ÃH…À„ùH‹CH;"P…ÌL‹{M…ÿ„¿L‹kA‹ÿÀuA‹EÿÀuH‹A¾©€t!ë/A‰A‹EÿÀtãA‰EH‹A¾©€uHÿÈH‰uH‰ßè˜L‰ëL‰}ÀHÇEÈJõH÷ØH4(HƒÆÈH‰ßL‰òèVI‰ÅM…ÿtI‹©€uHÿÈI‰uL‰ÿ踗M…í„:H‹©€uHÿÈH‰uH‰ß蕗H‹=
¡H‹5#£H‹GH‹€H…À„	ÿÐI‰ÆH…À„H‹=ʭHÇEÀHuÈL‰eÈHº€è»1ÛH…À„æI‰ÄL‰m¸I‹FH;ÖN…ÖM‹nM…í„ÛM‹~A‹EÿÀuA‹ÿÀuI‹»©€të-A‰EA‹ÿÀtäA‰I‹»©€uHÿÈI‰uL‰÷辖M‰þL‰mÀL‰eȉØHÁàH÷ØH4(HƒÆÈÿÃL‰÷H‰ÚèH‰ÃM…ítI‹E©€uHÿÈI‰EuL‰ïèq–I‹$©€uHÿÈI‰$uL‰çèU–H…ÛL‹m¸„
I‹©€uHÿÈI‰uL‰÷è.–L‰ïH‰Þ軔H…À„ðI‰ÇI‹E©€u	HÿÈI‰Et/H‹©€u7HÿÈH‰u/H‰ßèé•H‹ÞMH‹H;EÐt+é?L‰ïè̕H‹©€tÉH‹·MH‹H;EÐ…L‰øHƒÄ([A\A]A^A_]ÃE1ÿE1öéýÿÿèx”H‰ÃH…À…ýÿÿA¼Ìé®A¼àE1öëjèQ”I‰ÆH…À…ôýÿÿA¼äE1öëA¼æë%E1íéƒþÿÿA¼û1Ûë1ÛE1íéoþÿÿA¼ÿE1öI‹E©€uHÿÈI‰EuL‰ïè•H…ÛtH‹©€uHÿÈH‰uH‰ßèæ”M…ötI‹©€uHÿÈI‰uL‰÷èǔH=ì.H
›D‰æºÀèxpÿÿE1ÿH‹žLH‹H;EЄçþÿÿ薔fff.„UH‰åAWAVATSI‰ÿH‹5ӞH‹GH‹€H…À„ÁÿÐI‰ÆH…À„ÄH‹5ҢI‹FH‹€L‰÷H…À„ÈÿÐH‰ÃH…À„ËI‹©€uHÿÈI‰uL‰÷è”I‹H‹5`žH‹GH‹€H…À„£ÿÐI‰ÇH…À„¦H‹5_¢I‹GH‹€L‰ÿH…À„ÿÐI‰ÆH…À„ I‹©€uHÿÈI‰uL‰ÿ蔓H‹=AœL‰öè’A¼ÄH…À„pI‰ÇI‹©€uHÿÈI‰uL‰÷èY“H‹5œL‰ÿèâ‘H…À„CI‰ÆI‹©€uHÿÈI‰uL‰ÿè$“H‰ßL‰ö跑H…À„UI‰ÇI‹©€uHÿÈI‰tH‹©€u$HÿÈH‰uH‰ßèá’ëL‰÷èגH‹©€tÜA‹ÿÀtA‰L‰ûH‹©€uHÿÈH‰uH‰ß覒L‰ø[A\A^A_]Ã聑I‰ÆH…À…<þÿÿH=×,H
ǘ¾G ºÃè8nÿÿE1ÿëÁèN‘H‰ÃH…À…5þÿÿA¿I A¼Ãéè,‘I‰ÇH…À…ZþÿÿH=‚,H
r˜¾V ëRè‘I‰ÆH…À…`þÿÿA¾X ëA¿[ ëIA¾^ I‹©€uHÿÈI‰uL‰ÿèޑH=,,H
˜D‰öºÄèmÿÿE1ÿéûþÿÿA¿a I‹©€uHÿÈI‰uL‰÷蛑H=é+H
ٗD‰þD‰âèNmÿÿE1ÿH…Û…¶þÿÿéËþÿÿffff.„UH‰åAWAVSPI‰ÖH‰óI‰ÿH‹H…ÿt	L‰öÿӅÀuI‹¿èH…ÿt	L‰öÿӅÀu1ÀHƒÄ[A^A_]Ãf„UH‰åAVSH‰ûH‹L‹5ëHL‰sA‹ÿÀtA‰H…ÿtH‹©€u
HÿÈH‰uèՐH‹»èL‰³èA‹ÿÀtA‰H…ÿtH‹©€u
HÿÈH‰u衐1À[A^]ÃfDUH‰åAWAVAUATSHƒì8I‰ýH‹uHH‹H‰EÐL‹vH¢H‰EÀHÇEÈL‹%@HL‰e¸H…Ò„ÕI‰×M…ötIƒþ…ÖL‹fL‰e¸L‰ÿè͍H‰ÃM…öu+H…Û~&H‹5šH‹VL‰ÿèۏH…À„/I‰ÄH‰E¸HÿËH…ۏ*L;%ÎG„RH‹5é™H‹Fö€«„I‹D$H‹€L‰çH…À„$ÿÐH…À„'H‹÷Á€uHÿÉH‰uH‰Ç膏A‹$ÿÀtA‰$M‰çéÙIƒþ„„M…ö„ÕM‰ðI÷ÐIÁè?M…öHô)H
ö)HHÈH‹ÅFH‹8H-*L
D•LHÈL‰4$H5Û)Hô51ÀèŌ¾¸H=ê5H
D•º´èºjÿÿ»ÿÿÿÿé“L‹fL‰e¸L;%ÁF…óþÿÿëC蔌H…À…kL
š5HUÀHM¸L‰ÿ1öM‰ðè?ø…ÀˆÐL‹e¸L;%|F…®þÿÿL‹%/•H‹=”I‹T$L‰æèEŽH…À„nI‰ƋÿÀtA‰I‹F1ÛH;F„E1äL‰eÀHÇEÈHÝH÷ØH4(HƒÆÈL‰÷H‰Úè–I‰ÇM…ätI‹$©€uHÿÈI‰$uL‰çèöM…ÿ„XI‹©€…FHÿÈI‰…:L‰÷é-¾ªé»þÿÿH‹FEH‹8H5Ä4胋»·A¿H=„4H
ޓD‰þ‰Úé•þÿÿèoŒH…À…ÙýÿÿL‰m°è‹L‹-”H‹=ÿ’I‹UL‰îè-H…À„I‰ƋÿÀtA‰I‹F1ÛH;éD„E1íL‰mÀHÇEÈHÝH÷ØH4(HƒÆÈL‰÷H‰Úè~I‰ÇM…ítI‹E©€uHÿÈI‰EuL‰ïèތM…ÿ„I‹©€uHÿÈI‰uL‰÷軌H‹5šI‹GH‹€L‰ÿH…À„ÙÿÐI‰ÆH…À„ÜI‹FH;8D…ùM‹nM…í„ìI‹NA‹EÿÀu‹ÿÀuI‹»©€u)ëA‰E‹ÿÀtå‰I‹»©€uHÿÈI‰„ûI‰ÎL‰mÀL‰eȉØHÁàH÷ØH4(HƒÆÈÿÃL‰÷H‰ÚèzH‰ÃM…ítI‹E©€uHÿÈI‰EuL‰ïèڋH…Û„-I‹©€L‹m°uHÿÈI‰uL‰÷賋H‹©€uHÿÈH‰uH‰ß虋I‹EL‰ïL‰þÿH…ÀtlH‹1Û÷Á€uHÿÉH‰uH‰Çèk‹I‹©€uHÿÈI‰uL‰ÿèQ‹H‹FCH‹H;EÐ…,‰ØHƒÄ8[A\A]A^A_]ÃL‰÷I‰Îè!‹éøþÿÿº½¾„H=ö1H
P‘èËfÿÿ»ÿÿÿÿë迈»¶A¿óH…À…?ýÿÿL‰çèåÿÿI‰ÆH…À…qüÿÿé&ýÿÿM‹fM…ä„­M‹~A‹$ÿÀu2A‹ÿÀu6I‹»©€t9ëG»A¼¶é¼1ÛE1íéWþÿÿA‰$A‹ÿÀtÊA‰I‹»©€uHÿÈI‰uL‰÷èNŠM‰þéüÿÿè
ˆ»¸A¿*H…À…üÿÿL‰ïèQäÿÿI‰ÆH…À…×üÿÿétüÿÿM‹nM…í„M‹~A‹EÿÀ…­A‹ÿÀ…±I‹»©€„°é»»>A¼¸E1ÿë+諈I‰ÆH…À…$ýÿÿº¹¾Lé’þÿÿ»`A¼¹I‹©€uHÿÈI‰uL‰÷è‰H=c0H
½‰ÞD‰âè3eÿÿ»ÿÿÿÿM…ÿ…îýÿÿéþÿÿ¾¥éDúÿÿA‰EA‹ÿÀ„OÿÿÿA‰I‹»©€uHÿÈI‰uL‰÷è‰M‰þéåûÿÿè‰1Ûé¾úÿÿ1ÛéÏûÿÿf.„UH‰åö‡ªuF1öÿ—0H…Àt7H‹
¯ŸH‰HH‹
´@H‰H‹‰ÖÿÆu	H‰ˆè]É1H‰ˆèƒÂt‰]ÃH‹¦?H‹5GŽ1Òÿ8H…Àu¬ëáUH‰åAWAVSPI‰öH‰ûI¿ÿÿÿÿÿÿÿI!×tAIƒÿuoH‹{H;=p?tH‹5g?趇…ÀtRH‹C‹HöÁtFöÁ …±H‹[éªH‹{H;=5?tH‹5,?è{‡…ÀtH‹C‹HöÁtöÁ uIH‹[ëEH‰ß謇H…ÀtH‰ßL‰öL‰ú1ÉHƒÄ[A^A_]ÿàM…ÿt|H‰ßL‰öL‰ú1ÉHƒÄ[A^A_]éç†1ÛL‹pH=êèe‡…À…ŸH‰ß1öAÿÖH‰ÃèS‡H…Ûurë~1ÛM‹6L‹xH=¶è1‡…ÀuoH‰ßL‰öAÿ×H‰Ãè"‡H…ÛuAëML‹5øŒH‹CL‹¸€M…ÿtDH=wèò†…Àu0H‰ßL‰ö1ÒAÿ×H‰Ãèá†H…ÛtH‰ØHƒÄ[A^A_]ÃèńH…Àt1ÛëäH‰ßL‰ö1ÒHƒÄ[A^A_]駅H‹V>H‹8H51蛄ëÍffff.„UH‰å]éæíÿÿfDUH‰åAWAVAUATSPH…ҏZH‰ûH…É…‡H‹5v’H‹CH‹€H‰ßH…À„’ÿÐI‰ÆH…À„•èàƒH‰ÃH…À„H‹5‘“H‹>H‰ßèʃ…Àˆ„L‹%ӋI‹FL‹¨€M…í„aH=NèɅA¿Ð …ÀuYL‰÷L‰æH‰ÚAÿÕI‰Ä豅M…ä„SI‹©€uHÿÈI‰uL‰÷辅H‹©€uoHÿÈH‰ugH‰ß褅ë]A¿Ï I‹©€uHÿÈI‰uL‰÷肅H…ÛtH‹©€uHÿÈH‰uH‰ßèc…H=« H
¡‹D‰þºÉèaÿÿE1äL‰àHƒÄ[A\A]A^A_]ÃH‹¸<H‹8H‰$H5àHH
ÊL
 E1äE1À1À趂ëµHƒy„nþÿÿH5nE1äH‰Ï1Òè‡í…À…RþÿÿëŒ踃I‰ÆH…À…kþÿÿA¿Ë éRÿÿÿA¿Í éÿÿÿL‰÷L‰æH‰ÚèjƒI‰ÄH…À…¸þÿÿA¿Ð ééþÿÿèL‚H…À…ÛþÿÿH‹ô;H‹8H5Ïè9‚éÀþÿÿ„UH‰åAWAVAUATSHƒì8I‰ÖH‰ûH‹2<H‹H‰EÐH—H‰EÀHÇEÈH…Ét/I‰ÏJöM…ö„aIƒþ…ÌL‹.L‰m¸M‹gM…ä~éIƒþ…­L‹.L‰m¸H‹5¬•H‹CH‹€H‰ßH…À„“ÿÐH‰ÃH…À„–H‹CH;T;…iL‹sM…ö„\L‹cA‹ÿÀuA‹$ÿÀuH‹A¿©€t!ë/A‰A‹$ÿÀtãA‰$H‹A¿©€uHÿÈH‰uH‰ßè9ƒL‰ãL‰uÀL‰mÈD‰øHÁàH÷ØH4(HƒÆÈAÿÇH‰ßL‰úèŠúÿÿI‰ÇM…ötI‹©€uHÿÈI‰uL‰÷èì‚M…ÿ„ÖH‹©€uHÿÈH‰„ôI‹©€…üHÿÈI‰…ðL‰ÿ諂éãH‰E°H‰]¨M‹gM…ä~SL‹-j•1Û„M9lß„õHÿÃI9Üuí1Ûff.„I‹tßL‰ïºèžï…À…ÀHÿÃI9ÜuÞè	€H…Àt¾)!ë<H‹¶9H‹8L‰4$H5ÞH¨H
ÈL
#ˆA¸1Àè´¾9!H=jH
3ˆºËè©]ÿÿ1Àë,H‰ßèсI‹©€„ÿÿÿH‹¨9‹ÿÁt	H‹›9‰H‹
¢9H‹	H;MÐ…ÑHƒÄ8[A\A]A^A_]ÈBÿÿÿH‹E°L‹,ØL‰m¸M…í„-ÿÿÿIÿÌH‹]¨H‹E°M…䎄ýÿÿL
çHUÀHM¸L‰ÿH‰ÆM‰ðèÚê…ÀxhL‹m¸éZýÿÿE1öE1ÿéðýÿÿè
€H‰ÃH…À…jýÿÿA¾g!ë H‹A¾{!©€uHÿÈH‰uH‰ßèí€H=bH
+‡D‰öºÌéðþÿÿ¾.!éÓþÿÿèɀffffff.„UH‰åAWAVAUATSHƒìHH‹˜8H‹H‰EÐH…ҏHH‰ûH…É…uH‹{H‹5¹‘H‹GH‹€H…À„‚ÿÐI‰ÆH…À„…I‹FH;ü7…óM‹~M…ÿ„æM‹nA‹ÿÀuA‹EÿÀuI‹A¼©€t!ë/A‰A‹EÿÀtãA‰EI‹A¼©€uHÿÈI‰uL‰÷èáM‰îL‰}ÀHÇEÈJåH÷ØH4(HƒÆÈL‰÷L‰âè0÷ÿÿI‰ÅM…ÿtI‹©€uHÿÈI‰uL‰ÿè’M…í„àI‹©€uHÿÈI‰uL‰÷èoI‹EH;(7…ÛI‹UHƒú…ýIEIM L‰êHƒÂ(H‹L‹!H‹‹ÿÀ…DA‹$ÿÀ…F‹ÿÀt‰H‰U¸H‰M¨I‹E©€uHÿÈI‰EuL‰ïèö~¿è<}H…À„0I‰ÅH‹ݏ‹ÿÁt	‰H‹ΏI‹MH‰L‹= ŽèG|ÇE´Ñ¾B"H…À„I‰ÆH‹54„L‰ÿH‰ÂL‰éA¸è¼|I‰ÇI‹©€uHÿÈI‰uL‰÷èg~M…ÿ„ÐI‹E©€uHÿÈI‰EuL‰ïèB~H‹5?L‰ÿèOTÿÿH…À„¸H‰NjÿÀt‰H‹©€H‰ùH‰} uHÿÈH‰t=I‹©€uBHÿÈI‰u:L‰ÿèì}ë0‰A‹$ÿÀ„ºþÿÿA‰$‹ÿÀ…²þÿÿé¯þÿÿèÄ}I‹©€t¾L‰ç1ö1Ò1ÉèØíH…À„DI‰ǿèú|H…À„iI‰ÅL‰xH‹M¨‹ÿÀt‰I‰M H‹5k‰H‹CH‹€H‰ßH…À„XÿÐI‰ÇH…À„[èÕzH…À„^H‰ÃÇE´ÒH‹5ŠH‹5H‰Çè¸z…ÀˆÒL‰e˜L‹5½‚I‹GL‹ €M…ä„*H=8
è³|¾c"…À…0L‰ÿL‰öH‰ÚAÿÔI‰Æè˜|M…ö„I‹©€uHÿÈI‰uL‰ÿè¥|H‹©€L‹e˜uHÿÈH‰uH‰ßè‡|¿èá{H…À„÷I‰ÇH‹M ‹ÿÀt‰I‰OM‰o M‰w(H‹}¨H‹©€„Séa¾b"E1öH‹U¸I‹E©€u,HÿÈI‰EH‹E¨tI‰ÅëH‰E¨H‰U¸L‰ïA‰õè|D‰îH‹U¸L‹m¨L‰àL‰ñ1ÿI‰ÎI‰ÄH…Ét6I‹©€u,HÿÈI‰u$L‰m¨I‰ÕH‰}¸L‰÷A‰öèÀ{H‹}¸D‰öL‰êL‹m¨H…Ût,H‹©€u"HÿÈH‰uI‰ÖH‰}¸H‰߉óèŠ{H‹}¸‰ÞL‰òL‰m¨M…ÿD‹u´t,I‹©€u"HÿÈI‰uH‰ÓI‰ýL‰ÿA‰÷èQ{L‰ïD‰þH‰ÚH‰U¸H…ÿtH‹©€uHÿÈH‰u	‰óè&{‰ÞH=ùH
bD‰òèÚVÿÿE1ÿH‹}¨H…ÿH‹M tH‹©€uHÿÈH‰uH‰ËèäzH‰ÙM…ät"I‹$©€uHÿÈI‰$uL‰çH‰Ëè½zH‰ÙH‹}¸H…ÿtH‹©€uHÿÈH‰uH‰Ëè—zH‰ÙH…ÉtH‹©€uHÿÈH‰uH‰ÏèuzH‹j2H‹H;EÐ…ÓL‰øHƒÄH[A\A]A^A_]ÃE1ÿE1äéfúÿÿH‹É1H‹8H‰$H5ñHݛH
ÛL
E1ÿE1À1ÀèÇwë–Hƒy„€ùÿÿH5®›E1ÿH‰Ï1Òè˜â…À…dùÿÿéjÿÿÿèÆxI‰ÆH…À…{ùÿÿH=£H
€¾â!ºÏè}UÿÿE1ÿé4ÿÿÿ¾ö!ÇE´Ï1ÀH‰E 1ÛE1ÿ1ÿ1ÒE1äE1íé›ýÿÿH; 1„L‰ïèlxH…À„ÜI‹M÷Á€uHÿÉI‰MuI‰ÆL‰ïèEyL‰ðH‹HL‹¹àI‰ÅH‰ÇAÿ×L5%H‰ÁH‰E¨H…À„¢L‰ïAÿ×H…À„šI‰ÄL‰ïAÿ×H‰E¸H…À„•L‰ïAÿ׾H‰Çèè…ÀˆI‹E©€…ÒùÿÿL‰éHÿÈI‰E…ÂùÿÿéµùÿÿºÑ¾="1ÀH‰E ëLE1ÿ1ÛE1ö1ÀH‰E éTüÿÿE1ÿ1ÛE1ö1ÀH‰E H‹U¸¾B"é<üÿÿ¾E"A¾Ñ1ÀH‰E ëFºÒ¾T"H=*H
“~èTÿÿE1ÿH‹}¨H‹M H‹©€„5ýÿÿéCýÿÿ¾V"A¾Ò1ÿH‹U¸I‹©€„›üÿÿé¸üÿÿèçvI‰ÇH…À…¥úÿÿÇE´Ò¾^"E1ÿëÇE´Ò¾`"1ÛéŽûÿÿL‰ÿL‰öH‰Úè‹vI‰ÆH…À…òúÿÿ¾c"E1öL‹e˜éfûÿÿèguH…ÀL‹e˜„¦E1öH‹U¸¾c"éGûÿÿ¾g"E1ÿ1Ûé4ûÿÿI‹UHƒúuI‹EHHHPéøÿÿHƒú|,H‹Ú.H‹8H5C1ÀH‰E¨º1ÀèätÇE´ÏëIÇE´Ï¾"H…ÒˆH‹™.H‹8HƒúH}H
îHDÈH51ÀH‰E¨1Àè’t¾"E1ä1ÒE1ÿ1ÛE1ö1ÀH‰E é…úÿÿ¾$"ÇE´Ï1ÀH‰E L‹u¨L‰ãL‹}¸1ÒE1äL‰ïE1íé¦úÿÿèvÇE´Ï¾"1ÀH‰E¨ë¢E1ä1Ûë»L5~|E1äë»I‹E©€uHÿÈI‰EuL‰ïè<vèæÇE´Ï…ÀtE1íë!H‹´-H‹8H5FE1íH‰ÚL‰ñ1ÀèÀs1À1ÒE1ÿ1ÉH‰M L‰ãH‹M¨¾,"éóùÿÿH‹e-H‹8H5@èªsé?þÿÿf„UH‰åAWAVAUATSHƒì8I‰ÖH‰ûH‹¢-H‹H‰EÐHL‡H‰EÀHÇEÈL‹-q-L‰m¸H…Ét/I‰ÏJöM…ö„ÁIƒþuCL‹.L‰m¸M‹gM…äŽLé¹M…ö„>IƒþuL‹.L‰m¸L‹sA‹ÿÀ…-é+M‰ðI÷ÐIÁè?M…öH¸H
ºHHÈH‹‰,H‹8HñL
{LHÈL‰4$H5ŸH––1Àè‰r¾©#H=H
{ºäè~Pÿÿ1Àé¿M‹gM…䎘H‰]¨L‹-G†1ÛH‰E°f„M9lßt;HÿÃI9Üuñ1Ûffffff.„I‹tßL‰ïºèžá…Àu
HÿÃI9ÜuâëxH‹E°L‹,ØM…ít	L‰m¸IÿÌëèóqH…À…ÍL‹-,H‹]¨H‹E°M…ärL‹sA‹ÿÀtA‰L‹%zH‹=†yI‹T$L‰æè³sH…À„-I‰NjÿÀtA‰L‰÷L‰þèÇrƒøÿ„>A‰ÄI‹©€uHÿÈI‰tI‹©€u$HÿÈI‰uL‰ÿè…sëL‰÷è{sI‹©€tÜE…ä„ÿH‹{H‹5@H‹GH‹€H…À„+ÿÐI‰ÆH…À„.I‹FH;ä*…xM‹~M…ÿ„kL‰m°I‰ÝI‹^A‹ÿÀu‹ÿÀuI‹A¼©€të+A‰‹ÿÀtå‰I‹A¼©€uHÿÈI‰uL‰÷èÈrI‰ÞL‰ëL‹m°L‰}ÀL‰mÈD‰àHÁàH÷ØH4(HƒÆÈAÿÄL‰÷L‰âèêÿÿI‰ÄM…ÿtI‹©€uHÿÈI‰uL‰ÿètrM…ä„kI‹©€uHÿÈI‰tI‹$©€u&HÿÈI‰$uL‰çè=rëL‰÷è3rI‹$©€tÚH‹CH‰ßÿPH…À„^H‹÷Á€uHÿÉH‰t9H‹ç)‹ÿÁt	H‹Ú)‰H‹
á)H‹	H;MÐ…‘HƒÄ8[A\A]A^A_]ÃH‰ÇèÁqH‹¦)‹ÿÁu¿ëÆE1ÿE1äééþÿÿènoH…ÀuL‰çèÁËÿÿI‰ÇH…À…ÁýÿÿE1ÿ»øA¼Û#é„A¼Ý#»øëwH‹=އH‹5/†1ÒèÖÿÿ»ùH…À„I‰ÇH‰Çè—ÖÿÿI‹A¼î#©€uA¼î#»ùëUèpI‰ÆH…À…ÒýÿÿA¼$»úëTA¼$»úE1ÿI‹©€uHÿÈI‰uL‰÷èØpM…ÿt'I‹©€uHÿÈI‰uL‰ÿè¹pëA¼!$»ûH=üH
êvD‰æ‰ÚéÝûÿÿL
M’HUÀHM¸L‰ÿH‰ÆM‰ðèÚ…ÀxL‹m¸L‹sA‹ÿÀ…eüÿÿécüÿÿ¾›#é‡ûÿÿ¾–#é}ûÿÿèHpA¼ê#ëŽfDUH‰åAWAVAUATSHƒìXH‰ÓH‰} H‹(H‹H‰EÐH[}H‰E°HÇE¸L‹5è'L‰uÈH…Ét/I‰ÏHÞH…Û„½Hƒûu?L‹6L‰uÈM‹oM…íŽGéÁ	H…Û„9HƒûuL‹6L‰uÈA‹ÿÀ…(é&I‰ØI÷ÐIÁè?H…ÛH+
H
-
HHÈH‹ü&H‹8Hd
L
{uLHÈH‰$H5
HŒ“1Àèül¾Œ$H=²H
{uºýèñJÿÿ1Ûé—M‹oM…펗L‹5^|E1äH‰Eˆffffff.„O9tçt;IÿÄM9åuñE1äfffff.„K‹tçL‰÷ºèÜ…Àu
IÿÄM9åuâëxH‹EˆN‹4àM…öt	L‰uÈIÿÍëèclH…À…h
L‹5{&H‹EˆM…íA‹ÿÀtA‰H‹E H‹xH‹5=H‹GH‹€H…À„ìÿÐI‰ÇH…À„ïI‹GH‹5xL‰ÿH;V%…âèÛßI‰Ļ&H…À„âH‹5ÃtL‰çºèFÛ…ÀˆÕ‰ÃI‹$©€u
HÿÈI‰$„~…Û„†L;5½%t+L;5¤%t"L;5£%tL‰÷è½l…ÀˆL	…ÀuéR1ÀL;5‡%”À„>H‹H‹=sH‹SH‰ÞèDmH…À„.I‰ċÿÀtA‰$H‹5MI‹D$H‹€L‰çH…À„/ÿÐI‰Ż'H…À„2I‹$©€uHÿÈI‰$uL‰çè
mH‹߁I‹EL‹ €M…ä„H=2ýè­l…À…2L‰ïH‰Þ1ÒAÿÔH‰Ãè˜lH…Û„2I‹E©€uHÿÈI‰EuL‰ïè£lH‹©€uHÿÈH‰uH‰ßè‰lL‹-f$A‹EÿÀtA‰EI‹©€u%HÿÈI‰uL‰÷è\lëL‰çèRl…Û…zþÿÿM‰õH‹E HcxPèœj»+H…À„I‰ÄH‹5VxL‰ÿH‰ÂèEk…Àˆ
I‹$©€uHÿÈI‰$uL‰çèókH‹E ò@Xèíi»,H…À„ÞI‰ÄH‹5‰wL‰ÿH‰Âèðj…ÀˆÍI‹$©€uHÿÈI‰$uL‰çèžkL;-‹#”ÀL;-q#”ÁL;-o#A”ÆAÎAÆA€þu1ÀL;-^#”ÀëL‰ïèmj…Àˆ“…ÀL‰mˆ„žH‹E L‹`A‹$ÿÀtA‰$H‹ÚqH‹=ÃpH‹SH‰ÞèñjH…À„1I‰ŋÿÀtA‰EL‰çL‰îèjƒøÿ„X‰ÃI‹$©€uHÿÈI‰$uL‰çèÓjI‹E©€uHÿÈI‰EuL‰ïè·j…ÛL‹mˆ„#E„öt1ÀL;-‘"”ÀëL‰ïè i…ÀˆÔ…À„¶I‹GH‹5AtL‰ÿH;—!…PèÜI‰Ż3H…À„PI‹GH‹5(}L‰ÿH;f!…DèëÛI‰ÄH…À„DI‹D$H‹5wL‰çH;9!…4è¾ÛH…À„4H‰E I‹$©€uHÿÈI‰$uL‰çèÙiI‹GH‹5²|L‰ÿH;ð …èuÛI‰ÄH…À„I‹D$H‹5­yL‰çH;à …èHÛH…À„H‰EI‹$©€uHÿÈI‰$uL‰çèciI‹GH‹5ŒuL‰ÿH;z …ÙèÿÚI‰ÄH…À„ÙI‹GH‹5ètH;Q L‰ÿM‰ïI‰þ…ÖèÍÚH…À„ÖI‰ſè_hH…À„ØH‰ÃL‰xH‹E H‰C H‹EH‰C(L‰c0L‰k8L‹mˆM‰÷ë
A‹ÿÀtA‰L‰ûI‹©€uHÿÈI‰uL‰ÿè£hI‹E©€uHÿÈI‰EuL‰ïè‡hH‹| H‹H;EÐ…WH‰ØHƒÄX[A\A]A^A_]ÃèHgI‰ÇH…À…úÿÿÇE¬Á$»%ëè5gI‰Ļ&H…À…úÿÿÇE¬Í$E1äé{ÇE¬Ï$éÂÇE¬%é]ÇE¬%éTÇE¬%éEÇE¬%é<è¨eH…ÀuH‰ßèûÁÿÿI‰ÅH…À…¾üÿÿE1í1ÀH‰E 1ÀH‰E1ÀH‰E˜L‹uˆ»-ÇE¬.%éÇE¬0%»-éÊH‹=õ}H‹5f|E1ä1Òè,ÌÿÿH…À„PH‰ÃH‰Çè¸ÌÿÿH‹©€uHÿÈH‰uH‰ßèBgE1äE1í1ÀH‰E 1ÀH‰E1ÀH‰E˜L‹uˆ».ÇE¬C%éˆèfI‰Ż3H…À…°üÿÿÇE¬`%E1äE1íë2èãeI‰ÄH…À…¼üÿÿÇE¬b%E1äëèÆeH…À…ÌüÿÿÇE¬d%1ÀH‰E 1ÀH‰E1ÀH‰E˜L‹uˆéè–eI‰ÄH…À…åüÿÿÇE¬g%E1äëÎèyeH…À…õüÿÿÇE¬i%ë·èbeI‰ÄH…À…'ýÿÿÇE¬t%E1ä1ÀH‰E˜»4L‹uˆé³è3eH…À…*ýÿÿÇE¬v%1ÀH‰E˜»4H‹EˆëÇE¬€%H‹Eˆ»3L‰m˜M‰ýM‰÷I‰ÆënL
7ŠHU°HMÈL‰ÿH‰ÆI‰ØèzÏ…Àˆ¦L‹uÈA‹ÿÀ…T÷ÿÿéR÷ÿÿÇE¬&%»-ëÇE¬U%»2E1äM‰îE1í1ÀH‰E 1ÀH‰E1ÀH‰E˜L‰çè!*ÿÿL‰ïè*ÿÿH‹} è*ÿÿH‹}è*ÿÿH‹}˜èþ)ÿÿH=×H
 k‹u¬‰ÚèAÿÿ1ÛM‰õM…ÿ…üÿÿé”üÿÿèþbH…ÀuH‰ßèQ¿ÿÿI‰ÄH…À…Á÷ÿÿE1äÇE¬â$E1íëEèñcI‰Ż'H…À…Î÷ÿÿÇE¬ä$éFÿÿÿE1äL‰ïH‰Þ1Òè¦cH‰ÃH…À…
øÿÿÇE¬ï$1ÀH‰E 1ÀH‰E1ÀH‰E˜»'éÿÿÿE1ä1ÀH‰E 1ÀH‰E1ÀH‰E˜»'ë(èTbH…;'„ŒE1ä1ÀH‰E 1ÀH‰E1ÀH‰E˜ÇE¬ï$éÌþÿÿÇE¬Ö$E1äE1í1ÀH‰E 1ÀH‰E1ÀH‰E˜»&é£þÿÿ¾~$ééôÿÿ¾y$éßôÿÿèdÇE¬?%M‰îE1í1ÀH‰E 1ÀH‰E1ÀH‰E˜».éaþÿÿH‹kH‹8H5Fôè°aéYÿÿÿffffff.„UH‰åAWAVAUATSHƒìHH‰ÓH‰}˜H‹¡H‹H‰EÐHsvH‰E°HÇE¸H…Ét/I‰ÏHÞH…Û„êHƒû…KL‹6L‰uÈM‹oM…í~é(Hƒû…,L‹6L‰uÈI‹FH‹€¨© …ž©„T
L‰÷1ö1ҹè@ÓH…À„I‰ÄH‹5½iH‰Ǻè@Ð…Àˆ‰ÃI‹$©€uHÿÈI‰$uL‰çèÎb…Û…ôèQ`H…À„"H‰ÃE1íL‰÷1ö1ҹèÍÒÇE¨vH…À„I‰ÇH‹5SlH‰ßH‰Âè`…ÀˆNI‹©€uHÿÈI‰uL‰ÿèZbèå_H…À„^	I‰žL‰÷1ҹèaÒH…À„T	I‰ÇH‹5oL‰ïH‰Âè³_…Àˆ¹I‹©€uHÿÈI‰uL‰ÿèõa¾L‰÷1ҹè
ÒH…À„C	I‰ÇH‹5ÚqL‰ïH‰Âè__…ÀˆlI‹©€uHÿÈI‰uL‰ÿè¡aH‹5~tH‰ßL‰êè+_…ÀˆI‹E©€uHÿÈI‰EuL‰ïèkaL‰÷è—`Hƒøÿ„x	HƒøŒç¾L‰÷1ҹègÑH…À„f	I‰ÄH‹5\mH‰ßH‰ÂèK`…Àˆ^	I‹$©€uHÿÈI‰$uL‰çèù`¾L‰÷1ҹèÑH…À„3	I‰ÄH‹5ŽlH‰ßH‰Âèõ_…Àˆ+	I‹$©€uHÿÈI‰$uL‰çè£`‹ÿÀt‰H‰] é0H‹5WjL‰÷èÃ_»l…Àˆu„£H‹5MsL‰÷è¡_…Àˆ`„†A‹ÿÀtA‰1ÀH‰E H‹5 lI‹FH‹€L‰÷H…À„¬ÿÐI‰ÄH…À„¯H‹uI‹D$L‹¸€M…ÿ„¢H=>ðè¹_¾6'…À…¶L‰çH‰Þ1ÒAÿ×H‰ÃèŸ_H…Û„¦I‹$©€uHÿÈI‰$uL‰çèª_H‹CH;;„‹H‰ßè“]éƒH‰E¨M‹oM…í~ML‹5TrE1äO9tç„IÿÄM9åuíE1äf.„K‹tçL‰÷ºèŽÌ…À…àIÿÄM9åuÞèù\H…Àt¾&ë<H‹¦H‹8H‰$H5ÎùHQˆH
¸ùL
eA¸1Àè¤\¾&H=„ûH
#eº7éšL‹%:uL‹=³sI‹D$L‹¨€M…í„OH=íîèh^»mA¾a&…ÀuIL‰çL‰þ1ÒAÿÕI‰ÇèL^M…ÿ„AL‰ÿèÇÃÿÿI‹»mA¾e&©€uHÿÈI‰uL‰ÿèF^H=åúH
„dD‰ö‰Úèú9ÿÿE1ÿé¾Ü&I‰ÜM‰ýE1ÿE1ö1ÛéÓòC¸ÿÿÿÿò*Èf.ÁšÀ•ÁÁuòE¨è´[òE¨H…À…aH‹©€uHÿÈH‰uH‰ßòE¨è»]òE¨H‹E˜ò@XH‹5ŠiI‹FH‹€L‰÷H…À„›ÿÐI‰ÅH…À„žH‹ŽrI‹EL‹¸€M…ÿ„H=©íè$]¾F'ÇE¨~…À…œL‰ïH‰Þ1ÒAÿ×I‰Äè]M…䄈I‹E©€uHÿÈI‰EuL‰ïè]L‰çèbÏ‰ÃøÿuèÆZH…À…òI‹$©€uHÿÈI‰$uL‰çèÕ\H‹E˜‰XPH‹xH‹5ŸoH‹GH‹€˜L‰òH…À„,ÿЅÀˆ/L‹=‡A‹ÿÀuL‰óL‹u H‹©€…AééL‹=_A‰L‰óL‹u H‹©€…éžê&ë¾î&E1öI‰Ü1ÛÇE¨wI‹$©€uHÿÈI‰$uL‰çM‰üA‰÷è\D‰þM‰çM…ít(I‹E©€uHÿÈI‰EuL‰ïM‰üA‰÷èì[D‰þM‰çM…ÿt I‹©€uHÿÈI‰uL‰ÿA‰÷èÄ[D‰þH=`øH
ÿa‹U¨èw7ÿÿE1ÿH…Û„aH‹©€…SHÿÈH‰…GH‰ßè}[é:¾ð&E1ÿI‰ÜéPýÿÿ1ÀH‰E I‰Þéûÿÿˆ"üÿÿH‹E¨N‹4àL‰uÈM…ö„
üÿÿIÿÍH‹E¨M…íŽé÷ÿÿL
t„HU°HMÈL‰ÿH‰ÆI‰Øè®Ä…ÀˆL‹uÈé»÷ÿÿA¾O&é°üÿÿ»sA¾µ&é üÿÿ¾·&ÇE¨sE1íé·üÿÿH‹=?qH‹5Èo1Òèy¿ÿÿ»tH…À„:I‰ÇH‰ÇèÀÿÿI‹A¾Æ&é9üÿÿ»vA¾Ø&é@üÿÿ¾Ú&I‰Üé^üÿÿè`YI‰ÄH…À…Qúÿÿº}¾4'éðE1íL‰çH‰Þ1ÒèYH‰ÃH…À…wúÿÿ¾6'ÇE¨}é<ÇE¨}é-ÇE¨}èàWH…À„¡E1íE1ÿL‰óL‹u ¾6'é¹ýÿÿèÛXI‰ÅH…À…büÿÿº~¾D'ënE1ÿL‰ïH‰Þ1Òè•XI‰ÄH…À…‘üÿÿ¾F'ÇE¨~éCE1ÿé;èiWH…À„EE1ÿL‰óL‹u ¾F'érýÿÿèX…À‰Ñüÿÿº¾T'L‰óH=öH
¤_è5ÿÿE1ÿL‹u H‹©€„­ýÿÿM…ötI‹©€uHÿÈI‰uL‰÷èYH‹H‹H;EÐ…‘L‰øHƒÄH[A\A]A^A_]ÃA¾U&é¨úÿÿ¾æ&E1íI‰ÜE1ÿE1öé”üÿÿ¾è&ëAH‹=FoH‹5¿m1Òèx½ÿÿ»qH…À„zI‰ÇH‰Çèÿ½ÿÿI‹A¾£&é8úÿÿ¾ì&I‰ÜE1ÿ1ÛÇE¨wE1öé>üÿÿ¾9'ÇE¨}E1ÿI‰ÝL‰óL‹u éMüÿÿL‰çL‰þ1ÒèWI‰ÇH…À…Ïùÿÿ»mA¾a&éìùÿÿèùUH…À…ÞùÿÿH‹¡H‹8H5|èèæUéÃùÿÿ¾&éùÿÿ¾I'ÇE¨~E1íE1ÿL‰óL‹u é¦ûÿÿºx¾ü&1ÀH‰E éfþÿÿ1ÀH‰E ºy¾'éQþÿÿ¾	'ÇE¨yë!1ÀH‰E ºz¾'é.þÿÿ¾'ÇE¨zE1íE1ÿE1öé?ûÿÿè{WA¾Â&é$ùÿÿH‹çH‹8H5Âçè,UéDýÿÿH‹ÌH‹8H5§çèUé ýÿÿA¾Ÿ&éãøÿÿDUH‰åAWAVAUATSHƒìHI‰ÖH‰ûH‹H‹H‰EÐH4iH‰E°HÇE¸H‹ÑH‰UÈH…Ét/I‰ÏJöM…ö„ÀIƒþuBH‹H‰UÈM‹gM…äŽLéòM…ö„>IƒþuH‹L‹³èA‹ÿÀ…1é/M‰ðI÷ÐIÁè?M…öHñH
ñHHÈH‹ê
H‹8HRñL
i\LHÈL‰4$H5ñHž†1ÀèêS¾¿'H=ôH
i\ºèß1ÿÿ1Ûé÷M‹gM…䎙H‰] L‹-0h1ÛH‰E¨f.„M9lßt;HÿÃI9Üuñ1Ûffffff.„I‹tßL‰ïºèþÂ…Àu
HÿÃI9ÜuâëxH‹E¨H‹ØH…Òt	H‰UÈIÿÌëèSSH…À…	H‹c
H‹] H‹E¨M…䏫L‹³èA‹ÿÀtA‰HƒÃ H=æçL‹/
H‰ÞL‰ñÿlH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èUH‹

H‹H;EÐ…–H‰ØHƒÄH[A\A]A^A_]é€uHÿÈI‰uL‰÷èØTH=¯òH
[¾î'ºµé£þÿÿL
…HU°HMÈL‰ÿH‰ÆM‰ðè:¾…ÀxH‹UÈL‹³èA‹ÿÀ…,ÿÿÿé*ÿÿÿ¾±'éJþÿÿ¾¬'é@þÿÿèlTfUH‰åAWAVAUATSHƒìHI‰ÖH‰ûH‹BH‹H‰EÐHtfH‰E°HÇE¸L‹-L‰mÈH…Ét/I‰ÏJöM…ö„§Iƒþu0L‹.L‰mÈM‹gM…äŽ,é÷M…ö„IƒþuL‹.éM‰ðI÷ÐIÁè?M…öHkîH
mîHHÈH‹<H‹8H¤îL
»YLHÈL‰4$H5RîH¹Š1Àè<Q¾Y(H=‚ñH
»Yº·éÏM‹gM…䎒H‰] L‹-‰e1ÛH‰E¨M9lßt;HÿÃI9Üuñ1Ûffffff.„I‹tßL‰ïºè^À…Àu
HÿÃI9ÜuâëxH‹E¨L‹,ØM…ít	L‰mÈIÿÌëè³PH…À…L‹-Ã
H‹] H‹E¨M…äÐH‹5«cH‹CH‹€H‰ßH…À„@ÿÐI‰ÆH…À„Cè%PH‰ÃH…À„:H‹5¾dH‰ßL‰êèP…Àˆ„L‹%XI‹FL‹¨€M…í„H=—âèRA¿Œ(…ÀuYL‰÷L‰æH‰ÚAÿÕI‰ÄèúQM…ä„I‹©€uHÿÈI‰uL‰÷èRH‹©€uoHÿÈH‰ugH‰ßèíQë]A¿‹(I‹©€uHÿÈI‰uL‰÷èËQH…ÛtH‹©€uHÿÈH‰uH‰ßè¬QH=±ïH
êWD‰þº¾è]-ÿÿE1äH‹ƒ	H‹H;EÐ…ÂL‰àHƒÄH[A\A]A^A_]ÃèOPI‰ÆH…À…½þÿÿA¿‡(ë£A¿‰(é_ÿÿÿL‰÷L‰æH‰ÚèPI‰ÄH…À…	ÿÿÿA¿Œ(é:ÿÿÿèæNH…À…,ÿÿÿH‹ŽH‹8H5iáèÓNéÿÿÿL
ˆHU°HMÈL‰ÿH‰ÆM‰ðèuº…Àx	L‹mÈéþÿÿ¾K(éEýÿÿ¾F(é;ýÿÿè¹Pffffff.„UH‰åAWAVAUATSHƒìxI‰ÒI‰ýH‹‚H‹H‰EÐWÀ)E°HMYH‰EHòYH‰E˜H—bH‰E HÇE¨H‹4H‰UÀH…É„µIƒú‡ÄI‰ÏJÖH‰…pÿÿÿHäL‰•hÿÿÿJcHÁÿáM‹wM…ö~aIGL‹%ÔX1ÛH‰Eˆfffff.„M9dß„×HÿÃI9Þuí1Ûff.„I‹tßL‰çºèþ¼…À…¢HÿÃI9ÞuÞèiM¾í(H…ÀL‹•hÿÿÿ…RëIƒú„OIƒúu	H‹VéGE1ÀIƒúHêH
êHLÈAœÀIƒðH‹ÑH‹8HƒìH5ùéH%‡L
'ê1ÀARèÚLHƒÄ¾)éÜL‰­xÿÿÿH‹H‰E€H‰E°IGH‰EˆI‹_I‰ÞH…ۏé]L‰­xÿÿÿL‹VL‰U¸L‹L‰M°IGM‹wM…öŽÚL‰UˆL‰M€L‹(M…íŽøL‹%Ý`1Ûff.„M9dß„ÀHÿÃI9Ýuí1Ûff.„I‹tßL‰çº讻…À…HÿÃI9ÝuÞéH‹VH‰UÀL‹VL‰U¸L‹L‰M°M‹wé¡H‹L‹L‹VM‹µèA‹ÿÀ…˜é–ˆ`þÿÿH‹…pÿÿÿH‹ØH‰E°H…À„HþÿÿH‰E€L‰­xÿÿÿIÿÎH‹EˆH‹H…Û~JL‹%UWE1ífO9dIÿÅL9ëuíE1íf.„K‹tïL‰çºè޺…ÀuwIÿÅL9ëuâèMKH…À…H‹ýH‹8HƒìH5%èHQ…H
þçL
LèA¸1ÀjèùJHƒÄ¾÷(H=bëH
tSºÀèê(ÿÿ1ÛéxH‹…pÿÿÿN‹èL‰U¸M…Ò„wÿÿÿIÿÎH‹ßL‹M€H‹EˆM…ö&þÿÿL‹­xÿÿÿM‹µèA‹ÿÀuXëYxH‹…pÿÿÿH‹ØH…Òt	H‰UÀIÿÎëèwJH…À…OH‹‡L‹­xÿÿÿL‹M€L‹UˆM…öÚM‹µèA‹ÿÀtA‰IƒÅHHƒìH‹OH=(>L‰îL‰ñA¸Pjÿ5óTÿ5­`jÿ5ÍUARjÿ5UÿcHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èLH‹øH‹H;EÐ…°H‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷èÆKH=òéH
R¾L)ºïé†þÿÿL
—ƒHUHM°L‰ÿH‹µpÿÿÿL‹…hÿÿÿè µ…Àx7L‹M°L‹U¸H‹UÀM‹µèA‹ÿÀ…íþÿÿéëþÿÿ¾õ(éþÿÿ¾þ(éþÿÿ¾)é	þÿÿè@Kf,ûÿÿ&üÿÿUüÿÿëüÿÿ@UH‰åAWAVAUATSHƒìhI‰ÒH‰ûH‹H‹H‰EÐH”\H‰E H)]H‰E¨HÇE°L‹
N_L‰MÀL‹-»L‰mÈH…ÉtAI‰ÌJÖM…Ò„âIƒú„XIƒúu[H‰E˜L‰U€L‹nL‰mÈL‹L‰MÀM‹|$é6L‹-jM…Ò„/Iƒút
IƒúuL‹nL‹L‹³èA‹ÿÀ…éM‰ÐIÁè>A÷ÐAƒàM…ÒHÜäH
ÞäHHÈH‹­H‹8HƒìH5ÕäH}ˆL
å1ÀARè¶GHƒÄ¾Å)H=DèH
1Pºôè§%ÿÿ1ÛéL‰U€M‹|$M…ÿŽ|H‰E˜H‰]ID$H‹J[E1öL‰MˆH‰…xÿÿÿfff.„K9\ôtVIÿÆM9÷uñE1öfffff.„K‹tôH‰ߺ讶…Àu%IÿÆM9÷uâëAH‰E˜L‰U€L‹L‰MÀID$M‹|$ëCx$H‹E˜J‹ðH…ÀtH‰EÀIÿÏI‰ÁH‹]H‹…xÿÿÿëèÚFH…ÀH‹]L‹MˆH‹…xÿÿÿ…äM…ÿާL‰MˆH‰]L‹(M…í~qH‹[E1öffffff.„K9\ôt;IÿÆM9õuñE1öfffff.„K‹tôH‰ߺè޵…Àu
IÿÆM9õuâëxH‹E˜N‹,ðM…ít	L‰mÈIÿÏëè3FH…À…8L‹-CH‹]L‹MˆM…ÿÞL‹³èA‹ÿÀtA‰HƒÃHH‹–\L‹ÏPHƒìL‹H=í;H‰ÞL‰êL‰ñA¸ASjARPjARPjÿ5’YÿÔ^HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èÂGH‹·ÿH‹H;EÐ…¦H‰ØHƒÄh[A\A]A^A_]é€uHÿÈI‰uL‰÷è…GH=ÖåH
ÃM¾ü)º;éˆýÿÿL
҅HU HMÀL‰çH‹u˜L‹E€èå°…Àx)L‹MÀL‹mÈL‹³èA‹ÿÀ…óþÿÿéñþÿÿ¾¯)é)ýÿÿ¾´)éýÿÿ¾¨)éýÿÿè	Gffffff.„UH‰åAWAVAUATSHƒì8H‰ÓI‰þH‹ÒþH‹H‰EÐHYH‰E°HÇE¸H‹¡þH‰UÈH…Ét/I‰ÏHÞH…Û„ÅHƒûuAH‹H‰UÈM‹gM…äŽLé
H…Û„>HƒûuH‹I‹žè‹ÿÀ…1é.I‰ØI÷ÐIÁè?H…ÛHêàH
ìàHHÈH‹»ýH‹8H#áL
:LLHÈHƒìH5ÑàH41ÀSèºCHƒÄ¾g*H=täH
5LºAè«!ÿÿE1öé
M‹gM…䎔L‰u L‹-ûWE1öH‰E¨@O9l÷t;IÿÆM9ôuñE1öfffff.„K‹t÷L‰ïºèβ…Àu
IÿÆM9ôuâëxH‹E¨J‹ðH…Òt	H‰UÈIÿÌëè#CH…À…#H‹3ýL‹u H‹E¨M…äÆI‹žè‹ÿÀt‰IƒÆHHƒìL‹
ýH=}'L‰öH‰ÙE1ÀAQjAQAQjAQAQjAQÿÜ[HƒÄPI‰ÆH‹M…öt=©€uHÿÈH‰uH‰ßèÊDH‹¿üH‹H;EÐ…•L‰ðHƒÄ8[A\A]A^A_]é€uHÿÈH‰uH‰ßèDH=
ãH
ËJ¾ž*ºgéŒþÿÿL
•HU°HMÈL‰ÿH‰ÆI‰Øèï­…ÀxH‹UÈI‹žè‹ÿÀ…ÿÿÿéÿÿÿ¾Y*é4þÿÿ¾T*é*þÿÿè"D„UH‰åAWAVAUATSHƒìxI‰ÖI‰üH‹òûH‹H‰EÐH$VH‰EÀHÇEÈH‹ÁûH‰E¸H…ÉH‰}€t&I‰ÏNöM…ö„¢Iƒþu#H‹H‰E¸M‹oéQIƒþ„M…ö„ÛM‰ðI÷ÐIÁè?M…öH$ÞH
&ÞHHÈH‹õúH‹8H]ÞL
tILHÈL‰4$H5ÞHâÝ1Àèõ@¾	+H=èáH
tIºmèêÿÿE1öé$M‹oM…í~YL‰E˜H‹>UE1äff.„K9\çtaIÿÄM9åuñE1äfffff.„K‹tçH‰ߺè°…Àu0IÿÄM9åuâëFHÇEˆHÇEHÇE éXH‹H‰E¸ëFxH‹E˜J‹àH…ÀtH‰E¸IÿÍL‹e€L‹E˜ëè5@H…ÀL‹e€H‹GúL‹E˜…M…폽HÇEˆHÇEHÇE H;ú„äI‰ÅL‹5UQH‹=®GI‹VL‰öèÜAH…À„ H‰ËÿÀt‰H‰] H‹5MH‹CH‹€H‰ßH…À„žÿÐI‰ÆH‰EH…À„¡H‹©€uHÿÈH‰uH‰ßè¤A¿èþ@H‰E H…À„šI‰ÇA‹EÿÀtA‰EM‰oè?H‰EˆH…À„„I‰ÅH‹šPH‹=óFH‹SH‰Þè!AH…ÀL‰m˜„w‹ÿÁH‰Ãt‰H‹5ÀMH‹CH‹€H‰ßH…À„‡ÿÐI‰ÅÇE°žH…À„ŠH‹©€uHÿÈH‰uH‰ßèæ@H‹5óKH‹}˜L‰êèo>…ÀˆôI‹E©€uHÿÈI‰EuL‰ïè¯@I‹FH‹˜€H…Û„aH=ÞÐèY@…ÀL‹m˜…‰L‰÷L‰þL‰êÿÓH‰Ãè@@H…Û„_I‹©€uHÿÈI‰uL‰÷èM@HÇEI‹©€uHÿÈI‰uL‰ÿè+@HÇE I‹E©€uHÿÈI‰EuL‰ïè@‹ÿÀt‰H‹©€uHÿÈH‰uH‰ßèå?HÇEˆH‹CH‰E°H‹ÂVH‹{ H‰xÿÿÿ‹sÿðH‰…pÿÿÿH…ÀŽÁID$ H‰…hÿÿÿ1ÀH‰E¨E1íëffffff.„IÿÅL9­pÿÿÿ„‹L‰m˜I‹œ$èL‹-­JL‹{L‰ÿL‰îèF?H…À„}I‰ÆH‹@H‹ˆH…Ét"L‰÷H‰ÞL‰úÿÑI‰ÆH…ÀuéÞf.„A‹ÿÀt	A‰fDI‹œ$èL‹%)JL‹{L‰ÿL‰æèÚ>H…À„8I‰ÅH‹@H‹ˆH…Ét&L‰ïH‰ÞL‰úÿÑH…ÀL‹e€„I‰ÅH‹@ëDA‹MÿÁL‹e€tA‰MH;Aö…I‹]H‰] H…Û„òM‹e‹ÿÀu(A‹$ÿÀu*I‹EA¿©€t.ë=ffff.„‰A‹$ÿÀtÖA‰$I‹EA¿©€uHÿÈI‰EuL‰ïè>M‰åL‹e€H‰]ÀHÇEÈJýHuÈH)ÆL‰ïL‰úècµÿÿI‰ÇH‰EˆH…Ût'H‹©€uHÿÈH‰uH‰ßèÁ=ffff.„HÇE M…ÿ„I‹E©€u	HÿÈI‰EtH‹}ˆH‹©€u-HÿÈH‰u%èt=ëL‰ïèj=H‹}ˆH‹©€tÛ„HÇEˆè7;H‰ÃH‹½hÿÿÿè´äH‹M°L‹m˜J‰éH‰ßè;H‹9RI‹FL‹¸€M…ÿ„H=LÍèÇ<…À…—L‰÷H‰Þ1ÒAÿ×H‰Ãè²<H…ÛtuI‹©€uHÿÈI‰uL‰÷èÃ<ffffff.„H…Û„\H‹©€…ýÿÿHÿÈH‰…
ýÿÿH‰ßè‰<éýÿÿ1ÛE1ÿémþÿÿL‰÷H‰Þ1Òè;;H‰Ãë‹è/:H…Àt1ÛézÿÿÿH‹ÔóH‹8H5¯Ìè:ëáI‹œ$èL‹%|GL‹sL‰÷L‰æè<H…À„þI‰ÇH‹@H‹ˆH…Ét3L‰ÿH‰ÞL‰òÿÑI‰ÇH…ÀH‹M€u*éáH‹xÿÿÿ‹ÿÀt‰I‰ÞéÆA‹ÿÀH‹M€tA‰H‹™èL‹-êFL‹cL‰çL‰îè›;H…À„¨I‰ÆH‹@H‹ˆH…Ét-L‰÷H‰ÞL‰âÿÑH‰EH…À„—I‰ÆH‹@H;ót é:A‹ÿÁtA‰L‰uH;ýò…M‹fL‰e M…ä„M‹nA‹$ÿÀtA‰$A‹EÿÀtA‰EL‰mI‹»©€uHÿÈI‰uL‰÷èó:M‰îL‰eÀHÇEÈHÝH÷ØH4(HƒÆÈL‰÷H‰ÚèB²ÿÿH‰ÃH‰EˆM…ätI‹$©€uHÿÈI‰$uL‰çèž:HÇE H…Û„¹I‹©€uHÿÈI‰uL‰÷ès:HÇEH‹©€L‹u€uHÿÈH‰uH‰ßèM:è6:H‰E°H‹@h1Ûë„H‹@H…Àt6L‹(M…ítïL;-òtæA‹EÿÀtA‰EI‹]‹ÿÀt‰L‰ïèð7I‰ÄëE1íE1äI~ èbáH‰Çè@8HÇEˆH…À„5I‰ÆH‹E°H‹@hH‹8L‰(H…ÿtH‹©€u
HÿÈH‰uè 9H…ÛtH‹©€uHÿÈH‰uH‰ßè9M…ätI‹$©€uHÿÈI‰$uL‰çè`9M…ÿ„eH‹lNI‹GL‹ €M…䄨H=Éèú8…À…çL‰ÿH‰Þ1ÒAÿÔH‰Ãèå8H…Û„½I‹©€uHÿÈI‰uL‰ÿèò8H…Û…ÝÇE°›A¼Ó+éA¼,1ÀH‰E¨H‹}˜H‹©€u
HÿÈH‰uè°81ÛH‹}H…ÿtH‹©€u
HÿÈH‰uèŽ8H‹} H…ÿtH‹©€u
HÿÈH‰uèn8H‹}¨H…ÿtH‹©€u
HÿÈH‰uèN8M…ítI‹E©€uHÿÈI‰EuL‰ïè-8H=ßÖH
k>D‰æ‹U°èàÿÿE1öH…ÛtH‹©€uHÿÈH‰uH‰ßèò7H‹çïH‹H;EÐ…íL‰ðHƒÄx[A\A]A^A_]ÃH‹ùîH‹8L‰îèŒ5ÇE°£A¼8,1ÀH‰E¨ërH‹ÒîH‹8L‰æèe5A¼:,E1íëA¼N,H‹xÿÿÿI‹ÇE°£©€uHÿÈI‰uL‰÷èZ71ÀH‰E¨é¡þÿÿÇE°£A¼„,ë
ÇE°£A¼8,E1íH‹xÿÿÿévþÿÿE1ä1Ûé*üÿÿH‹GîH‹8L‰æèÚ4ÇE°›A¼R+éH‹#îH‹8L‰îè¶4HÇEA¼T+ëA¼h+I‹©€u ÇE°›HÿÈI‰…ÚL‰ÿè©6éÍÇE°›éÁL‰¥pÿÿÿHÇEHÇE H=3ÕH
¿<¾+ºœè0ÿÿHuˆHUHM H‹}°è;«H‹uˆ…ÀH‰u˜ˆYH‹UH‹M ¿H‰•hÿÿÿH‰xÿÿÿ1Àè‡5H…À„BL‰ÿI‰ÄH‰Æ1ÒèÿÿI‰ÆI‹©€uHÿÈI‰uL‰ÿèç5I‹$©€uHÿÈI‰$uL‰çèË5M…ö„øL;5¯í„äL;5’í„×L;5í„ÊL‰÷è£4A‰ÇéÈL
$ÐHUÀHM¸L‰ÿL‰ÆM‰ðè
Ÿ…Àˆ‹H‹E¸éóÿÿè$3H…À…cL‰÷èsÿÿH‰ÃH‰E H…À…IóÿÿéNè4I‰ÆH‰EH…À…_óÿÿA¼ö+ÇE°žE1í1ÀH‰E¨1ÛH‹} H…ÿ…süÿÿé…üÿÿÇE°žA¼ù+ë
ÇE°žA¼þ+1Û1ÀH‰E¨E1íéüÿÿèŽ2H…ÀuH‰ßèáŽÿÿH‰ÃH…À…vóÿÿÇE°ž1ÀH‰E¨E1íA¼,éÃûÿÿèu3I‰ÅÇE°žH…À…vóÿÿH‰]¨A¼,E1íé™ûÿÿL‰ÿH‰Þ1Òè%3H‰ÃéCûÿÿè2H…À„1Ûé.ûÿÿL‰÷L‰þL‹m˜L‰êèö2H‰ÃH…À…µóÿÿA¼,1ÀH‰E¨E1íé=ûÿÿèÏ1H…À„S1ÀH‰E¨E1íA¼,éûÿÿA¼“+騾û*é›ðÿÿE1ÿL;5»ëA”ÇI‹©€uHÿÈI‰uL‰÷è©3E…ÿxk„H‹}˜è1øþÿHÇEˆH‹½hÿÿÿèøþÿHÇEH‹½xÿÿÿè	øþÿH‹E°H‹xhH‰ÞL‰êH‹pÿÿÿèߩL‹e€H‹4ëé ñÿÿ¾ö*éðÿÿA¼ +H‹E°H‹xhH‰ÞL‰êH‹pÿÿÿ襩ÇE°›1ÀH‰E¨A½»Hƒ}˜…+úÿÿéCúÿÿèò2HÇE ÇE°žA¼ô+éûýÿÿA¼—+ë—A¼œ+ëH‹?êH‹8H5Ãè„0éfþÿÿH‹$êH‹8H5ÿÂèi0é’þÿÿèß1H‰ÇH‹u˜H‹•hÿÿÿH‹xÿÿÿèÿÿH‹E°H‹xhH‰ÞL‰êH‹pÿÿÿèߨH=ÑH
‘8¾¨+º›éïÿÿfUH‰åAWAVAUATSHì¨H‰½`ÿÿÿH‹êH‹H‰EÐWÀ)E°Hé?H‰E€H.>H‰EˆH#DH‰EHð<H‰E˜HÇE H‹=µéH‰}¸H‰}ÀH‹fFH‰]ÈH…É„·Hƒú‡I‰ÏHÖH‰…PÿÿÿHº#H‰•@ÿÿÿHcHÁÿáH‰½hÿÿÿM‹oM…í~\IGL‹5O?E1äH‰…HÿÿÿDO9tç„]IÿÄM9åuíE1äf.„K‹tçL‰÷ºènž…À…(IÿÄM9åuÞèÙ.¾-H…ÀH‹•@ÿÿÿ…¹ë^HBÿHƒøwTL‹-ÑèH
#HcHÈL‰­hÿÿÿÿàH‹^H‰]ÈH‹FH‰…hÿÿÿH‰EÀL‹nL‰m¸L‹6L‰u°A‹ÿÀ…„éð1ÀH…ÒŸÀLD@H-ËH
/ËHNÈH‹þçH‹8H„6L
_ËLNÈH‰$H5ËH*ƒ1Àèþ-¾1-H=ÏH
}6º§èóÿÿ1Ûé–H‹^H‰]ÈH‹FH‰…hÿÿÿH‰EÀH‹FH‰…XÿÿÿH‰E¸L‹6L‰u°M‹oé—H‰½hÿÿÿH‹FH‰…XÿÿÿH‰E¸L‹6L‰u°IGM‹oM…펑L‰µxÿÿÿH‰pÿÿÿH‰…HÿÿÿL‹0M…öŽpL‹%ÐA1Ûfffff.„M9dß„.HÿÃI9Þuí1Ûff.„I‹tßL‰çº螜…À…ýHÿÃI9ÞuÞéH‰pÿÿÿH‹FH‰…hÿÿÿH‰EÀH‹FH‰…XÿÿÿH‰E¸L‹6L‰u°IGM‹oM…íL‹­XÿÿÿH‹pÿÿÿA‹ÿÀ…Îé:H‰½hÿÿÿL‹6L‰u°IGM‹oM…íŽL‰µxÿÿÿH‰pÿÿÿH‰…HÿÿÿL‹0M…öŽ=L‹%×:1ÛDM9dß„HÿÃI9Þuí1Ûff.„I‹tßL‰çº讛…À…ÓHÿÃI9ÞuÞéèx H‹…PÿÿÿH‹ØH…ÀtH‰…hÿÿÿH‰EÀIÿÍëèò+H…À…@H‹æH‰…hÿÿÿL‹µxÿÿÿH‹…HÿÿÿM…íŽøþÿÿL‰µxÿÿÿL‹0M…ö~zL‹%ö81Ûfff.„M9dßt;HÿÃI9Þuñ1Ûffffff.„I‹tßL‰çºèîš…Àu
HÿÃI9Þuâë%x#H‹…PÿÿÿH‹ØH…ÀtH‰EÈIÿÍH‰ÃL‹µxÿÿÿëè6+H…ÀH‹pÿÿÿL‹µxÿÿÿ…kM…íL‹­XÿÿÿސL
€HU€HM°L‰ÿH‹µPÿÿÿL‹…@ÿÿÿ躖…ÀˆCL‹u°L‹m¸H‹EÀH‰…hÿÿÿH‹]ÈA‹ÿÀ…ÛëJˆÚûÿÿH‹…PÿÿÿN‹4àL‰u°M…ö„ÂûÿÿIÿÍH‹…HÿÿÿM…íþýÿÿL‹-¦äL‰­hÿÿÿA‹ÿÀ…A‹EÿÀ…’L;-ä„–M‰÷éóx H‹…PÿÿÿH‹ØH…ÀtH‰…XÿÿÿH‰E¸IÿÍëè,*H…À…ßH‹<äH‰…XÿÿÿH‹pÿÿÿL‹µxÿÿÿH‹…HÿÿÿM…íoüÿÿL‹­XÿÿÿA‹ÿÀ„qÿÿÿA‰A‹EÿÀ„nÿÿÿA‰EL;-ëã…jÿÿÿA‹ÿÀtA‰H‹ÔãH‹÷Á€uHÿÉH‰uH‹=ºãèÉ+L‹=N@A‹ÿÀt
A‰L‹==@I‹©€uHÿÈI‰uL‰÷è—+M‰õHº€H‹=g1HÇE€HuˆH‰pÿÿÿH‰]ˆèã¢ÿÿH…À„¨I‰ÄH‹58H‹@H‹€L‰çH…À„´ÿÐH‰ÃH…À„·H;ãt1H;ãt(H;ãtH‰ßè*A‰ƅÀˆìH‹©€të$E1öH;ßâA”ÆH‹©€uHÿÈH‰„E…ö…lL‹5Í>H‹=V0I‹VL‰öè„*H…À„AH‰ËÿÀt‰L‰¥xÿÿÿH‹5ˆ>H‹CH‹€H‰ßH…À„>ÿÐI‰ÄH…À„AH‹©€uHÿÈH‰uH‰ßèM*H‹j?I‹D$L‹°€M…ö„H=tºèï)¾¶-ºý…À…L‰çH‰Þ1ÒAÿÖH‰ÃèÐ)H…Û„JI‹$©€uHÿÈI‰$uL‰çèÛ)H‹©€uHÿÈH‰uH‰ßèÁ)H‹5~8H‹½xÿÿÿH‹GH‹€H…À„³ÿÐI‰ÄH…À„¶I‹D$H;9á…NI‹\$H…Û„@L‰½PÿÿÿM‰ïM‹l$‹ÿÀu1A‹EÿÀu3I‹$A¾©€t7ëFH‰ßè9)E…ö…Ôécþÿÿ‰A‹EÿÀtÍA‰EI‹$A¾©€uHÿÈI‰$uL‰çèû(M‰ìM‰ýL‹½PÿÿÿH‰]€HÇEˆJõH÷ØH4(HƒƈL‰çL‰òè@ ÿÿI‰ÆH…ÛtH‹©€uHÿÈH‰uH‰ßè¢(M…ö„I‹$©€uHÿÈI‰$uL‰çè}(H‹½xÿÿÿH‹©€u
HÿÈH‰uè_(M‰ôL‹5‘7H‹=ê-I‹VL‰öè(H…À„ÓH‰ËÿÀt‰L‰¥xÿÿÿH‹5¬4H‹CH‹€H‰ßH…À„ÓÿÐI‰ÄH…À„ÖH‹©€uHÿÈH‰uH‰ßèá'H‹½xÿÿÿL‰æºèé&H…À„®H‰ÃI‹$©€u	HÿÈI‰$t:H;šßtBH;ßt9H;€ßt0H‰ßèš&A‰ƅÀˆ€H‹©€t+ë5L‰çèk'H;Xßu¾E1öH;LßA”ÆH‹©€uHÿÈH‰„†E…ö„ŽH‹…`ÿÿÿH‹˜è‹ÿÀt‰L‹`ÿÿÿIƒÁ H‰$E1äL‰ÿL‰îH‹•hÿÿÿ¹E1Àÿî=H…À„ÂI‰ÆH‹©€uHÿÈH‰L‹¥xÿÿÿ…¨é›L‹¥xÿÿÿé—H‰ßè°&E…ö…rÿÿÿH‹Ü5H‹=5,H‹SH‰Þèc&H…À„	I‰ċÿÀtA‰$H‹53I‹D$H‹€L‰çH…À„ÿÐH‰ÃH…À„I‹$©€uHÿÈI‰$uL‰çè.&H‹½xÿÿÿH‰޺è6%H…À„íI‰ÄH‹©€uHÿÈH‰uH‰ßèô%L;%áÝt1L;%ÈÝt(L;%ÇÝtL‰çèá$‰ÅÀˆÃI‹$©€të$1ÛL;%¥Ý”ÃI‹$©€u
HÿÈI‰$„=…Û„EH‹…`ÿÿÿH‹˜è‹ÿÀL‹¥xÿÿÿt‰L‹`ÿÿÿIƒÁ H‰$L‰ÿL‰îH‹•hÿÿÿ¹E1ÀÿK<H…À„=I‰ÆH‹©€uHÿÈH‰uH‰ßè!%H‹…hÿÿÿH;ÿÜ„¬A‹ÿÀtA‰L‰óI‹$©€uHÿÈI‰$uL‰çèä$M…ötI‹©€uHÿÈI‰uL‰÷èÅ$M…ÿtI‹©€uHÿÈI‰uL‰ÿè¦$I‹E©€uHÿÈI‰EuL‰ïèŠ$H‹ÜH‹H;EÐ…VH‰ØHĨ[A\A]A^A_]ÃH‹½pÿÿÿ‹ÿÀt‰H‹5_Ûºè]#º H…À„I‰ÄH;Üt1L;%Üt(L;%ÜtL‰çè#‰ÅÀˆI‹$©€të$1ÛL;%áÛ”ÃI‹$©€u
HÿÈI‰$„s…Û…4H‹5oÛH‹½pÿÿÿºèÎ"H…À„¿I‰ÄH;“Û„ÛL;%vÛ„ÎL;%qÛ„ÁL‰çè‡"‰ÅÀˆI‹$©€„·éÃL‰çèQ#…Û…»ýÿÿL‹5~2H‹=×(I‹VL‰öè#H…À„ÙH‰ËÿÀt‰H‹5˜/H‹CH‹€H‰ßH…À„áÿÐI‰ÄH…À„äH‹©€uHÿÈH‰uH‰ßèÕ"H‹½xÿÿÿL‰æºèÝ!H…À„¼H‰ÃI‹$©€uHÿÈI‰$uL‰çè™"H;†ÚtFH;mÚt=H;lÚt4H‰ßè†!A‰ƅÀˆýH‹©€t/ë=L‰çèW"…Û…¹é€þÿÿE1öH;4ÚA”ÆH‹©€uHÿÈH‰uH‰ßè""E…ö„^H‹…`ÿÿÿH‹˜è‹ÿÀt‰L‹`ÿÿÿIƒÁ H‰$E1äL‰ÿL‰îH‹•hÿÿÿ¹E1Àÿâ8H…À…äúÿÿº¾i.é¡1ÛL;%©Ù”ÃI‹$©€uHÿÈI‰$uL‰çè–!H‹½pÿÿÿH‹©€u
HÿÈH‰uèx!…ÛL‹¥xÿÿÿ„\üÿÿH‹ž0H‹=÷&H‹SH‰Þè%!H…À„Z
I‰ċÿÀtA‰$L‰­XÿÿÿH‹5‡*I‹D$H‹€L‰çH…À„[
ÿÐI‰ÅH…À„^
I‹$©€uHÿÈI‰$uL‰çèé I‹EH;’Ø„=
E1ä1ÛL‰e€L‰uˆ‰ØHÁàH÷ØH4(HƒƈÿÃL‰ïH‰Úè)˜ÿÿH‰ÃM…ätI‹$©€uHÿÈI‰$uL‰çè‰ H…Û„-
I‹E©€uHÿÈI‰EuL‰ïèd H‹5Q2H‹CH‹€H‰ßH…À„
ÿÐI‰ÄL‹­XÿÿÿH…À„
H‹©€uHÿÈH‰uH‰ßè H‹5Ä%L‰çºèH…À„çH‰ÃI‹$©€uHÿÈI‰$uL‰çèÛH;È×t1H;¯×t(H;®×tH‰ßèÈA‰ąÀˆ&H‹©€të(E1äH;‹×A”ÄH‹©€uHÿÈH‰uH‰ßèyE…äL‹¥xÿÿÿ„\úÿÿH‹pÿÿÿ‹ÿÀt‰H‹AH;ׄkE1ä1ÛL‰e€L‰uˆ‰ØHÁàH÷ØH4(HƒƈÿÃH‹½pÿÿÿH‰Ú薖ÿÿH‰ÃM…ätI‹$©€uHÿÈI‰$uL‰çèöH…Û„ŠH‹½pÿÿÿH‹©€L‹¥xÿÿÿ…ÑùÿÿHÿÈH‰…ÅùÿÿèÀé»ùÿÿH‹ð-H‹=I$H‹SH‰ÞèwH…À„O
I‰ċÿÀtA‰$H‹5 +I‹D$H‹€L‰çH…À„Z
ÿÐH‰ÃH…À„]
I‹$©€uHÿÈI‰$uL‰çèBH‹½xÿÿÿH‰޺èJH…À„6
I‰ÄH‹©€uHÿÈH‰uH‰ßèL;%õÕt2L;%ÜÕt)L;%ÛÕt L‰çèõ‰ÅÀyº¾‡.E1öéG1ÛL;%¸Õ”ÃI‹$©€uHÿÈI‰$uL‰ç襅ÛteH‹…`ÿÿÿH‹˜è‹ÿÀL‹¥xÿÿÿt‰L‹`ÿÿÿIƒÁ H‰$L‰ÿL‰îH‹•hÿÿÿ¹E1Àÿn4H…À…øÿÿ¾”.ºI‰ÜE1öé»
H‹=q,èœøþÿH…À„GH‰ÃH‹5±0H‹@H‹€H‰ßH…À„5ÿÐI‰ÄH…À„8H‹©€uHÿÈH‰uH‰ßèÞH‹½xÿÿÿL‰æºèæH…À„H‰ÃI‹$©€uHÿÈI‰$uL‰çè¢H;Ôt0H;vÔt'H;uÔtH‰ßèA‰ƅÀyº¾².é³E1öH;SÔA”ÆH‹©€uHÿÈH‰uH‰ßèAE…öt[H‹…`ÿÿÿH‹˜è‹ÿÀt‰L‹`ÿÿÿIƒÁ H‰$E1äL‰ÿL‰îH‹•hÿÿÿ¹E1Àÿ3H…À…õÿÿº¾¿.éÄH‹=+èA÷þÿH…À„-I‰ÄH‹5N/H‹@H‹€L‰çH…À„ÿÐH‰ÃH…À„I‹$©€uHÿÈI‰$uL‰çèH‹½xÿÿÿH‰޺è‰H…À„÷
I‰ÄH‹©€uHÿÈH‰uH‰ßèGL;%4Ót2L;%Ót)L;%Ót L‰çè4‰ÅÀyº¾Ý.E1öé†1ÛL;%÷Ò”ÃI‹$©€uHÿÈI‰$uL‰çèä…ÛteH‹…`ÿÿÿH‹˜è‹ÿÀL‹¥xÿÿÿt‰L‹`ÿÿÿIƒÁ H‰$L‰ÿL‰îH‹•hÿÿÿ¹E1Àÿ½1H…À…Rõÿÿ¾ê.ºI‰ÜE1öéú
H‹=°)èÛõþÿH…À„
H‰ÃH‹5à-H‹@H‹€H‰ßH…À„ö	ÿÐI‰ÄH…À„ù	H‹©€uHÿÈH‰uH‰ßèH‹½xÿÿÿL‰æºè%H…À„Î	H‰ÃI‹$©€uHÿÈI‰$uL‰çèáH;ÎÑt0H;µÑt'H;´ÑtH‰ßèÎA‰ƅÀyº¾/éò	E1öH;’ÑA”ÆH‹©€uHÿÈH‰uH‰ßè€E…öt[H‹…`ÿÿÿH‹˜è‹ÿÀt‰L‹`ÿÿÿIƒÁ H‰$E1äL‰ÿL‰îH‹•hÿÿÿ¹E1Àÿd0H…À…Fòÿÿº¾/éH‹=U(è€ôþÿH…À„ðI‰ÄH‹5,H‹@H‹€L‰çH…À„ÞÿÐH‰ÃH…À„áI‹$©€uHÿÈI‰$uL‰çèÀH‹½xÿÿÿH‰޺èÈH…À„·I‰ÄH‹©€uHÿÈH‰uH‰ßè†L;%sÐt2L;%ZÐt)L;%YÐt L‰çès‰ÅÀyº¾3/E1öéÅ1ÛL;%6ДÃI‹$©€uHÿÈI‰$uL‰çè#…Û„H‹…`ÿÿÿH‹˜è‹ÿÀL‹¥xÿÿÿt‰L‹`ÿÿÿIƒÁ H‰$L‰ÿL‰îH‹•hÿÿÿ¹E1Àÿ/H…À…òÿÿ¾@/ºI‰ÜE1öé5H=‘¶H
ô¾-ºùèeóþÿ1ÛM…ÿ…ÎòÿÿéãòÿÿèpH‰ÃH…À…Iìÿÿºû¾›-E1öéŸè-H…ÀuL‰÷è€qÿÿH‰ÃH…À…ïÿÿE1öº¾ÿ-éoèI‰ÄH…À…*ïÿÿº¾.é`¾.ºE1öéƒH‹=9&èdòþÿH…À„H‰ÃH‹5É H‹@H‹€H‰ßH…À„ýÿÐI‰ÄH…À„H‹©€uHÿÈH‰uH‰ßè¦H‹½xÿÿÿL‰æºè®H…À„OH‰ÃI‹$©€uHÿÈI‰$uL‰çèjH;WÎtqH;>ÎthH;=Ît_H‰ßèWA‰ƅÀy^º¾^/é{1ÛE1öé9íÿÿº¾.E1öéeL‰¥xÿÿÿºû¾-éIº¾.é:E1öH;ÚÍA”ÆH‹©€uHÿÈH‰uH‰ßèÈE…ö„”H‹…`ÿÿÿH‹˜è‹ÿÀt‰L‹`ÿÿÿIƒÁ H‰$E1äL‰ÿL‰îH‹•hÿÿÿ¹E1Àÿ¸,H…À…Šîÿÿº¾k/éGÿÿÿè+H…ÀuL‰÷è~oÿÿH‰ÃH…À…¬êÿÿE1öºý¾©-ëpèI‰ÄH…À…¿êÿÿºý¾«-éaE1öL‰çH‰Þ1ÒèÕH‰ÃH…À…ëÿÿ¾¶-ºýékèÓI‰ÄH…À…Jëÿÿº¾Â-E1öL‹¥xÿÿÿH=¢³H
è€ðþÿ1Ûé­ïÿÿètH…À„JE1öºý¾¶-é¾Ö-ºE1öéúèBH…ÀuH‰ßè•nÿÿI‰ÄH…À…æíÿÿE1öL‹¥xÿÿÿº
¾*.ë€è.H‰ÃH…À…ìíÿÿ¾,.º
E1ö飺
¾/.é_¾/E1äH‹pÿÿÿéQ¾>.ºI‰ÜE1öékè³H…ÀuH‰ßènÿÿI‰ÄH…À…•òÿÿL‹¥xÿÿÿº!¾·/éñþÿÿèŸI‰ÅH…À…¢òÿÿ¾¹/º!ëUL‰½PÿÿÿM‹eM…ä„MM‹}A‹$ÿÀ…®A‹ÿÀ…²I‹E»©€„±é½º!¾Î/M‰ìL‹­Xÿÿÿé¹è!I‰ÄL‹­XÿÿÿH…À…ñòÿÿº!¾Ò/é`º!¾Õ/郺
¾1.E1öél¾ž/鎾-éŸâÿÿH‹…pÿÿÿL‹`M…䄚H‹…pÿÿÿL‹hA‹$ÿÀtA‰$A‹EÿÀtA‰EH‹…pÿÿÿH‹»©€uHÿÈH‹pÿÿÿH‰uH‹½pÿÿÿèvL‰­pÿÿÿL‹­Xÿÿÿéóÿÿº"¾ö/L‹¥pÿÿÿéÌèH…À…L‰÷èclÿÿH‰ÃH…ÀL‹¥xÿÿÿ…	ïÿÿE1öéèI‰ÄH…À…ïÿÿº¾W.éF¾Z.ºE1öéi¾¥/E1ä郾-é”áÿÿ¾-éŠáÿÿA‰$A‹ÿÀ„NþÿÿA‰I‹E»©€uHÿÈI‰EuL‰ïè–M‰ýL‹½Pÿÿÿé´ðÿÿº!¾×/éž-é/áÿÿº¾\.驾¦/H‹pÿÿÿº é™èH…ÀuH‰ßèckÿÿI‰ÄH…À… òÿÿE1öL‹¥xÿÿÿº¾€.éKüÿÿèùH‰ÃH…À…£òÿÿ¾‚.ºE1öénº¾….é*º¾«.éüÿÿè¸I‰ÄH…À…Èóÿÿº¾­.éû¾°.ºE1ö麾Ö.é¿ûÿÿèwH‰ÃH…À…âôÿÿ¾Ø.ºE1öé캾Û.騺¾/é~ûÿÿè6I‰ÄH…À…öÿÿº¾/ë|¾/ºE1öéŸè!º¾,/é;ûÿÿèóH‰ÃH…À…÷ÿÿ¾./ºE1öëkº¾1/ë*º¾W/éûÿÿè¸I‰ÄH…À…ùÿÿº¾Y/E1öE1äH‹©€u HÿÈH‰uH‰߉•hÿÿÿ‰ó莉ދ•hÿÿÿM…ät&I‹$©€uHÿÈI‰$uL‰ç‰ÓA‰ôè`D‰æ‰ÚH=6®H
™èëþÿ1ÛL‹¥xÿÿÿé:êÿÿ¾\/ºE1öëªH‹=¸H;=	Ç„
H‹…xÿÿÿH‹@ö€«t
H;ÈÆ…éH‹µxÿÿÿè„I‰ÄH…À„éH‹=S%HÇE€HuˆL‰eˆHº€è4†ÿÿH…À„ÉH‰ÃI‹$©€uHÿÈI‰$uL‰çèH‰ßèäsÿÿH‹©€uHÿÈH‰uH‰ßènE1öL‹¥xÿÿÿº¾Š/éŽùÿÿH‹ÒÅH‹8H5­žèé›ùÿÿE1ä1ÛéüÿÿE1ä1Ûé·ûÿÿE1öL‹¥xÿÿÿº¾U.éFùÿÿH‹µxÿÿÿè½I‰ÄH…À…ÿÿÿº¾ƒ/éùÿÿ¾…/ºE1öéSþÿÿVÜÿÿòÞÿÿêÝÿÿ—Þÿÿ´ÝÿÿÝÿÿ	ÝÿÿúÜÿÿòÜÿÿfff.„UH‰åAWAVAUATSHƒì8I‰ÖH‰ûH‹‚ÅH‹H‰EÐHäH‰EÀHÇEÈH…Ét/I‰ÏJöM…ö„ÄIƒþ…,H‹>H‰}¸M‹gM…ä~é£Iƒþ…
H‹>H‰}¸è.„I‰ÆHƒøÿ„jIFÿM~H…ÀLIøH‹5“H‹CH‹€H‰ßH…À„ÿÐI‰ÅH…À„„èe
H‰ÃH…À„ƒIÁÿIÿÇL‰ÿè"H…À„xI‰ÄH‹5ãH‰ßH‰Âè8
…ÀˆÇI‹$©€uHÿÈI‰$uL‰çèxL‹=­H‹=I‹WL‰þè4H…À„?I‰ċÿÀtA‰$H‹5ÍI‹D$H‹€L‰çH…À„GÿÐI‰ÇH…À„JI‹$©€uHÿÈI‰$uL‰çèÿH‹5H‰ßL‰úè‰	…Àˆ"I‹©€uHÿÈI‰uL‰ÿèËL‹=ð I‹EL‹ €M…ä„òH=ó›èn¾í0…À…øL‰ïL‰þH‰ÚAÿÔI‰ÇèSM…ÿ„ãI‹E©€uHÿÈI‰EuL‰ïè^H‹©€uHÿÈH‰uH‰ßèDH‹5±I‹GH‹€L‰ÿH…À„³ÿÐH‰ÃH…À„¶I‹©€uHÿÈI‰uL‰ÿèþ
H‹CH;§Â…ÁL‹cM…ä„´L‹kA‹$ÿÀ…æA‹EÿÀ…êH‹A¿©€„êéõèrH…À„ˆýÿÿ¾~0é®H‰E°H‰]¨M‹gM…ä~PL‹-ç1ÛDM9lß„«HÿÃI9Üuí1Ûff.„I‹tßL‰ïºèŽw…À…vHÿÃI9ÜuÞèùH…Àt¾r0ë<H‹¦ÁH‹8L‰4$H5ΤHghH
¸¤L
A¸1À褾‚0H=è¨H
#º%é¶¾Ô0E1ÿë¾ã0E1äA¾FI‹E©€uHÿÈI‰EuL‰ïA‰õè–	D‰îH…ÛtH‹©€uHÿÈH‰uH‰߉óèr	‰ÞM…ät I‹$©€uHÿÈI‰$uL‰ç‰óèM	‰ÞM…ÿtI‹©€uHÿÈI‰uL‰ÿ‰óè*	‰ÞH=+¨H
fD‰òèÞäþÿ1ÛH‹ÁH‹H;EÐ…;H‰ØHƒÄ8[A\A]A^A_]ÃA‰$A‹EÿÀ„þÿÿA‰EH‹A¿©€uHÿÈH‰uH‰ßè¶L‰ëL‰eÀH‹$H‰EÈD‰øHÁàH÷ØH4(HƒÆÈAÿÇH‰ßL‰úè€ÿÿI‰ÇM…ätI‹$©€uHÿÈI‰$uL‰çè`M…ÿ„H‹©€uHÿÈH‰uH‰ßè=H‹5zI‹GH‹€L‰ÿH…À„âÿÐH‰ÃI‹H…Û„å©€uHÿÈI‰uL‰ÿè÷H‹CH; ¿…ÅL‹cM…䄸L‹kA‹$ÿÀuA‹EÿÀuH‹A¿©€t"ë0A‰$A‹EÿÀtâA‰EH‹A¿©€uHÿÈH‰uH‰ßèƒL‰ëL‰eÀHÇEÈJýH÷ØH4(HƒÆÈH‰ßL‰úèÒ~ÿÿI‰ÇM…ätI‹$©€uHÿÈI‰$uL‰çè2M…ÿ„#H‹©€uHÿÈH‰uH‰ßèL‰ÿL‰ö1Ò1ÉE1ÀA¹èÃ~H‰ÃI‹H…Û„©€…ÍýÿÿHÿÈI‰…ÁýÿÿL‰ÿèÉé´ýÿÿˆŒüÿÿH‹E°H‹<ØH‰}¸H…ÿ„wüÿÿIÿÌH‹]¨H‹E°M…äŽnùÿÿL
ðdHUÀHM¸L‰ÿH‰ÆM‰ðèp…Àˆ¥H‹}¸é@ùÿÿèNI‰ÅH…À…|ùÿÿ¾Æ0A¾Féýÿÿ¾Ð0E1äéqüÿÿ¾Ò0E1äédüÿÿE1äE1ÿénýÿÿE1ÿE1äé–þÿÿèÝH…ÀuL‰ÿè0`ÿÿI‰ÄH…À…°ùÿÿE1äE1ÿA¾G¾Þ0é-üÿÿèÉI‰ÇH…À…¶ùÿÿ¾à0A¾GE1ÿé	üÿÿL‰ïL‰þH‰Úè~I‰ÇH…À…*úÿÿ¾í0E1äéÏûÿÿè^H…À„ÍE1äE1ÿA¾F¾í0é¾ûÿÿèZH‰ÃH…À…Júÿÿ¾ù0A¾GI‹©€„
üÿÿéüÿÿ¾1ë<è$H‰ÃI‹H…Û…ýÿÿ¾1©€uGA¾GHÿÈI‰…ãûÿÿéÒûÿÿ¾'1A¾GE1äE1ÿH‹©€„cûÿÿérûÿÿ¾+1©€t¹A¾Gé£ûÿÿ¾w0éÜúÿÿèÂH‹9¼H‹8H5•è~éÿÿÿffff.„UH‰åAWAVAUATSHì˜I‰ÏI‰ýH‹o¼H‹H‰EÐWÀ)E°H:
H‰E€HH‰EˆHœH‰EHÙH‰E˜HÇE L‹%¼L‰e¸H‹
¼H‰MÀL‰eÈM…ÿ„¸Hƒú‡íHÖH‰…PÿÿÿHŠH‰•HÿÿÿHcHÂÿâL‰­xÿÿÿM‹wM…ö~`IGH‹£E1íH‰…`ÿÿÿf„K9\ï„IÿÅM9îuíE1íf.„K‹tïH‰ߺèÎp…À…çIÿÅM9îuÞè9¾›1H…ÀH‹•Hÿÿÿ…šë?HBÿHƒøw5H‹
9»L‹%*»HãHc‚HÐL‰âÿàL‹fH‹NH‹VH‹6é1ÀH…ÒŸÀLD@H¬H
®HNÈH‹}ºH‹8H	L
ޝLNÈH‰$H5“HÔc1Àè}¾Ë1H=¢H
üºIèrÞþÿ1Àé¬H‹6H‰u°IGM‹wM…öŽ3L‰µpÿÿÿH‰µhÿÿÿL‰­xÿÿÿH‰…`ÿÿÿL‹0M…öŽQH‹”E1íK9\ï„IÿÅM9îuíE1íf.„K‹tïH‰ߺèno…À…ÕIÿÅM9îuÞéÿH‹VH‰U¸H‹6H‰u°II‹GH…À éêH‹NH‰MÀH‹VH‰U¸H‹6H‰u°II‹GH…ÀÝé½L‹fL‰eÈH‹NH‰MÀH‹VH‰U¸H‹6H‰u°I‹G鐈þÿÿH‹…PÿÿÿJ‹4èH‰u°H…ö„þÿÿIÿÎL‹­xÿÿÿH‹
X¹H‹…`ÿÿÿM…öÍþÿÿL‹%9¹L‰âéGx5H‹…PÿÿÿJ‹èH…Òt%H‰U¸H‹…pÿÿÿHÿÈL‹­xÿÿÿH‹
¹H‹µhÿÿÿë1èÕþH…À…ˆH‹å¸L‹­xÿÿÿH‹
߸H‹µhÿÿÿH‹…pÿÿÿH‹½`ÿÿÿH…ÀŽÏH‰•XÿÿÿH‰…pÿÿÿH‰µhÿÿÿL‰­xÿÿÿH‰½`ÿÿÿL‹7M…ö~~L‹-ï1ÛDM9lßt;HÿÃI9Þuñ1Ûffffff.„I‹tßL‰ïºè®m…Àu
HÿÃI9Þuâë0x.H‹…PÿÿÿH‹ØH…ÉtH‰MÀH‹…pÿÿÿHÿÈL‹­xÿÿÿH‹µhÿÿÿë*èëýH…À…ŠH‹
¸L‹­xÿÿÿH‹µhÿÿÿH‹…pÿÿÿH‹•XÿÿÿH‹½`ÿÿÿH…ÀŽåH‰•XÿÿÿH‰…pÿÿÿH‰µhÿÿÿH‰xÿÿÿL‹7M…öއL‹%P1Ûfffff.„M9dßt;HÿÃI9Þuñ1Ûffffff.„I‹tßL‰çºè¾l…Àu
HÿÃI9Þuâë0x.H‹…PÿÿÿL‹$ØM…ätL‰eÈH‹…pÿÿÿHÿÈH‹xÿÿÿH‹µhÿÿÿë*èûüH…À…L‹%·H‹xÿÿÿH‹µhÿÿÿH‹…pÿÿÿH‹•XÿÿÿH…À-L‰ïM‰àèOxH‹
è¶H‹	H;MÐuuHĘ[A\A]A^A_]ÃL
Ô_HU€HM°L‰ÿH‹µPÿÿÿL‹…HÿÿÿèHh…Àx&H‹u°H‹U¸H‹MÀL‹eÈ똾°1éÎûÿÿ¾©1éÄûÿÿ¾µ1éºûÿÿ¾¢1é°ûÿÿèoþ†úÿÿÉûÿÿ[üÿÿ€üÿÿ­üÿÿ5ûÿÿ1ûÿÿ-ûÿÿ)ûÿÿUH‰åAWAVAUATSHìˆH‰ûH‹"¶H‹H‰EÐHH‰EHI
H‰E˜H>H‰E HÇE¨L‹5[L‰u°L‹=XL‰}¸H‹ŵH‰EÀH…É„¿Hƒú‡I‰ÌH‰…hÿÿÿHÖH‰…pÿÿÿHúH‰•`ÿÿÿHcHÁH‰XÿÿÿÿáL‰µxÿÿÿM‹t$M…öŽæL‰}ˆID$L‹-VE1ÿH‰E€ffffff.„O9lü„{IÿÇM9þuíE1ÿf.„K‹tüL‰ïºènj…À…JIÿÇM9þuÞécHƒúwHH‰XÿÿÿH‹å´H‰…hÿÿÿHOHcHÁÿáH‹FH‰…hÿÿÿH‰EÀL‹~L‰}¸L‹6L‰u°é†H‰ÐH÷ÐHÁè?H…ÒL@HP—I‰ÒH
O—HHÈH‹´H‹8HƒìH5F—HhkL
t—1ÀARè'úHƒÄ¾Ô:H=œH
¢ºèØþÿ1ÛéL‰}ˆH‹H‰…xÿÿÿH‰E°ID$M‹t$éŒL‹~L‰}¸H‹H‰…xÿÿÿH‰E°ID$M‹t$éH‹FH‰…hÿÿÿH‰EÀL‹~L‰}¸H‹H‰…xÿÿÿH‰E°M‹t$é‡x$H‹…pÿÿÿJ‹øH…ÀtH‰E°IÿÎH‰…xÿÿÿH‹E€ëèqùH…ÀH‹E€…®M…ö~_H‰E€H‹H…ÛŽ~L‹-¸E1ÿDO9lütKIÿÇL9ûuñE1ÿfffff.„K‹tüL‰ïºèŽh…ÀuIÿÇL9ûuâë/L‹}ˆL‹µxÿÿÿéëxH‹…pÿÿÿN‹<øM…ÿt
L‰}¸IÿÎH‹E€ëèÌøH…ÀL‹}ˆH‹E€…ÛM…ö~VL‰}ˆH‹H…Û~uL‹-
E1ÿO9lütDIÿÇL9ûuñE1ÿfffff.„K‹tüL‰ïºèîg…ÀuIÿÇL9ûuâë+L‹µxÿÿÿëRx H‹…pÿÿÿJ‹øH…ÀtH‰…hÿÿÿH‰EÀIÿÎëè0øH…À…3H‹@²H‰…hÿÿÿL‹}ˆM…öL‹µxÿÿÿ­
H‹&H‹˜(¿ÿhL‰÷H‰Æ1Ò1ÉA¸E1ÉÿÓH…À„þI‰ŋÿÀtA‰EI‹E©€uHÿÈI‰EuL‰ïèÙùH‹ÆH‹˜(¿ÿhL‰ÿH‰Æ1Ò1ÉA¸E1ÉÿÓH…ÀH‰…xÿÿÿ„´H‰ËÿÀt‰H‹©€uHÿÈH‰„˜A‹ECL‰­pÿÿÿ„ L‹%›H‹=ôþI‹T$L‰æè!ùH…À„qI‰ƋÿÀtA‰H‹5;I‹FH‹€L‰÷H…À„yÿÐI‰ÇH…À„|I‹©€uHÿÈI‰uL‰÷èðøI‹GH;™°„bE1ö1ÛH‰]H‹…xÿÿÿH‰E˜L‰m D‰ðHÁàH÷ØH4(HƒƘAƒÎL‰ÿL‰òè"pÿÿI‰ÆH…ÛtH‹©€uHÿÈH‰uH‰ßè„øM…ö„>I‹©€uHÿÈI‰uL‰ÿèaøA‹ÿÀtA‰H‹DL‰uˆL‰÷ÿ0H…À„I‰ċÿÀtA‰$I‹$©€uHÿÈI‰$uL‰çèøL‹5FH‹=ŸýI‹VL‰öèÍ÷H…À„ÕI‰ŋÿÀtA‰EH‹5öI‹EH‹€L‰ïH…À„ßÿÐI‰ÆI‹EM…ö„â©€uHÿÈI‰EuL‰ïè™÷H‹ÎH‹='ýH‹SH‰ÞèU÷H…À„êI‰ŋÿÀtA‰EH‹5I‹EH‹€L‰ïH…À„úÿÐH‰ÃH…À„ýI‹E©€uHÿÈI‰EuL‰ïè!÷H‹CH;ʮ„áE1íE1ÿL‰}L‰e˜D‰èHÁàH÷ØH4(HƒƘAÿÅH‰ßL‰êè^nÿÿI‰ÅM…ÿtI‹©€uHÿÈI‰uL‰ÿèÀöM…í„ÇH‹©€uHÿÈH‰uH‰ßèöI‹FH;F®„­E1ÿ1ÛH‰]L‰m˜D‰øHÁàH÷ØH4(HƒƘAÿÇL‰÷L‰úèÛmÿÿI‰ÇH…ÛtH‹©€uHÿÈH‰uH‰ßè=öI‹E©€uHÿÈI‰EuL‰ïè!öM…ÿ„wI‹©€L‹­pÿÿÿuHÿÈI‰uL‰÷è÷õL;=ä­t0L;=˭t'L;=ʭtL‰ÿèäô‰ÅÀˆð	I‹©€të&1ÛL;=©­”ÃI‹©€uHÿÈI‰uL‰ÿè˜õ…ÛL‹µxÿÿÿ„H‹µXÿÿÿL‹¾èA‹ÿÀtA‰HƒÆ H‹þHƒìL‹G­H=ПH‹•hÿÿÿL‰ùA¸M‰éARjPÿ5¢	jPATjPÿHƒÄPH…À„éH‰ÃI‹©€…aHÿÈI‰…UL‰ÿèöôI‹E©€„IéUH‰ßèÚôA‹ECL‰­pÿÿÿ…`ûÿÿL‰÷èÀòò…`ÿÿÿf.¢úšÀ•ÁÁuèkòH…À…	L‰ÿèòòEˆf.uúšÀ•ÁÁuè>òH…À…äòEˆò\…`ÿÿÿòEˆL‹%ŒH‹=åùI‹T$L‰æèôH…À„I‰ƋÿÀtA‰H‹5ÔI‹FH‹€L‰÷H…À„ÿÐI‰ÇH…À„I‹©€uHÿÈI‰uL‰÷èáóòEˆèßñÇE€ƒE1äH…À„H‰ÃI‹GH;j«„E1öL‰uH‰]˜D‰àHÁàH÷ØH4(HƒƘAÿÄL‰ÿL‰âèkÿÿI‰ÅM…ötI‹©€uHÿÈI‰uL‰÷ècóH‹©€uHÿÈH‰uH‰ßèIóM…íL‹µxÿÿÿ„ÖI‹©€uHÿÈI‰uL‰ÿèóL;-«t1L;-óªt(L;-òªtL‰ïèò‰ÅÀˆ}I‹E©€të(1ÛL;-Ъ”ÃI‹E©€uHÿÈI‰EuL‰ïè½ò…Û„nH‹XÿÿÿL‹«èA‹EÿÀtA‰Eò…`ÿÿÿè–ðH…À„±I‰ÇòEˆè€ðH…À„¬I‰ÆHƒÃ H‹
ûHƒìL‹BªH=˜H‰ÞH‹•hÿÿÿL‰éA¸M‰ùARjPÿ5šjPAVjPÿ	HƒÄPH…À„mH‰ÃI‹E©€uHÿÈI‰EuL‰ïèôñI‹©€uHÿÈI‰uL‰ÿèÚñI‹©€L‹­pÿÿÿuHÿÈI‰uL‰÷è¹ñE1ä1ÀH‰EˆL‹µxÿÿÿI‹E©€uHÿÈI‰EuL‰ïèñM…ötI‹©€uHÿÈI‰uL‰÷ènñM…ätI‹$©€uHÿÈI‰$uL‰çèMñH‹}ˆH…ÿtH‹©€u
HÿÈH‰uè-ñH‹"©H‹H;EÐ…9H‰ØHĈ[A\A]A^A_]ÃH==‘H
B÷¾;º|é–ôÿÿ1ÀH‰EˆA¿(;»}é‡è˜îA¿Ú;»ŒH…À…hL‰çèÜJÿÿI‰ÆH…À…n÷ÿÿéOè†ïI‰ÇH…À…„÷ÿÿ¾Ü;ÇE€Œé­I‹_H…Û„‘÷ÿÿM‹g‹ÿÀ…A‹$ÿÀ…I‹A¾©€„é(ÇE€Œ¾ñ;E1äéqA¿<»éÏèàíA¿<»‘H…ÀuL‰÷è(JÿÿI‰ÅH…À…øÿÿL‹­pÿÿÿéèËîI‰ÆI‹EM…ö…øÿÿ©€uHÿÈI‰EuL‰ïè·ïH=ðH
õõ¾<º‘èfËþÿ1ÛL‹­pÿÿÿéÜýÿÿèSíH…ÀuH‰ßè¦IÿÿI‰ÅH…À…øÿÿÇE€‘E1ÿ1ÛL‹­pÿÿÿ¾<é%è8îH‰ÃH…À…øÿÿÇE€‘¾<éÒL‹{M…ÿ„øÿÿH‹KA‹ÿÀ…‹ÿÀ…	H‹A½©€…é¾3<ÇE€‘E1ÿëOI‹^H…Û„FøÿÿI‹N‹ÿÀ…ý‹ÿÀ…ÿI‹A¿©€…	éø¾J<ÇE€‘E1ÿ1ÛL‹­pÿÿÿéXH‹=H‹51Òè+Sÿÿ»’H…À„†I‰ÆH‰Çè²SÿÿI‹A¿^<©€…ûA¿^<»’éEÇE€“¾{<1ÛéèæëA¿b;»ƒH…À…¶L‰çè*HÿÿI‰ÆH…À…ËùÿÿéèÔìI‰ÇH…À…áùÿÿ¾d;ÇE€ƒE1ÿ1Û1ÀH‰EˆE1ä鑾g;1ÀH‰Eˆ1ÛL‹µxÿÿÿé¤M‹wM…ö„ÄM‹oA‹ÿÀ…÷A‹EÿÀ…úI‹A¼©€„úé¾|;E1ä1ÀH‰Eˆ1ÛL‹­pÿÿÿéGH‹=ÜH‹5Õ1ÒèîQÿÿ»„H…À„\I‰ÆH‰ÇèuRÿÿI‹©€L‹­pÿÿÿ…®1ÉH‰MˆA¿;»„A¼HÿÈI‰…šL‰÷èÙìéÇE€‡¾­;éZÇE€ˆ¾·;E1ä1ÀH‰EˆE1öéLÇE€†¾Á;E1ä1ÀH‰Eˆé2L
p[HUHM°L‰çH‹µpÿÿÿL‹…`ÿÿÿèV…ÀˆAL‹u°L‹}¸H‹EÀH‰…hÿÿÿéòÿÿ‰A‹$ÿÀ„ãûÿÿA‰$I‹A¾©€uHÿÈI‰uL‰ÿèìM‰çé3óÿÿA‰‹ÿÀ„÷üÿÿ‰H‹A½©€uHÿÈH‰„ØH‰ËéÐôÿÿ¾N<ÇE€‘1Û黉‹ÿÀ„ýÿÿ‰I‹A¿©€uHÿÈI‰„£I‰ÎéõÿÿA¿E;»€é5A¿O;»é%ÇE€ƒ¾€;E1ä1ÀH‰EˆE1öE1ÿI‹E©€uHÿÈI‰EuL‰ï‰óè<ë‰Þ1ÛM…öL‹­pÿÿÿt I‹©€uHÿÈI‰uL‰÷A‰öèëD‰öM…ÿL‹µxÿÿÿt I‹©€uHÿÈI‰uL‰ÿA‰÷èãêD‰þH…ÛtH‹©€uHÿÈH‰uH‰߉óè¿ê‰ÞH=öŠH
ûð‹U€èsÆþÿ1ÛI‹E©€„øøÿÿéùÿÿA‰A‹EÿÀ„ýÿÿA‰EI‹A¼©€uHÿÈI‰uL‰ÿè^êM‰ïé©öÿÿA¿;1ÀH‰EˆE1äH=€ŠH
…ðD‰þ‰ÚèûÅþÿ1Ûéxøÿÿ¾»:éºíÿÿ¾À:é°íÿÿ¾´:é¦íÿÿH‰ßH‰ËèÿééðòÿÿL‰÷I‰Îèïéécóÿÿ¾­:é|íÿÿèáéA¿Z<ëŒE1öE1äéöÿÿ1ÀH‰EˆA¿Œ;E1äL‹­pÿÿÿéfÿÿÿìÿÿgíÿÿˆíÿÿ­íÿÿcïÿÿÑìÿÿÉìÿÿºìÿÿ„UH‰åAWAVAUATSHƒìH‰óI‰þH‹b¡H‹H‰EÐH…Ò…¯‹ÿÀt‰H‹CH…À„×Hƒøÿ„ÂH‹5úI‹FH‹€L‰÷H…À„ÀÿÐI‰ÄH…À„Ãè–æI‰ÆH…À„åH‹5/ûL‰÷H‰Úè„æ…Àˆ¦L‹=îI‹D$L‹¨€M…í„ÙH=yè‚è…À…ëL‰çL‰þL‰òAÿÕI‰ÇèlèM…ÿ„ÄI‹$©€…HÿÈI‰$…L‰çèoèéúH‹5OùI‹FH‹€L‰÷H…À„ÿÐI‰ÆH…À„I‹FH;矅ÉM‹fM…䄼M‹nA‹$ÿÀuA‹EÿÀuI‹A¿©€t"ë0A‰$A‹EÿÀtâA‰EI‹A¿©€uHÿÈI‰uL‰÷èÊçM‰îL‰eÀHÇEÈJýH÷ØH4(HƒÆÈL‰÷L‰úè_ÿÿI‰ÇM…ätI‹$©€uHÿÈI‰$uL‰çèyçM…ÿ„fI‹©€uHÿÈI‰uL‰÷èVçH‹©€uHÿÈH‰uwH‰ßè<çëmA½=I‹$©€uHÿÈI‰$uL‰çèçA¿ÃM…ötI‹©€uHÿÈI‰uL‰÷èóæH=T‡H
1íD‰îD‰úè¦ÂþÿE1ÿH‹©€tH‹žH‹H;EÐ…ÿL‰øHƒÄ[A\A]A^A_]ÃI‰ÔH‰×èDäH…À„=ýÿÿH5§cE1ÿL‰ç1Òè+O…À…!ýÿÿë¨A½Õ<A¿ÀéqÿÿÿE1äE1ÿé’þÿÿè@åI‰ÄH…À…=ýÿÿA½=A¿ÃéDÿÿÿèåI‰ÆH…À…èýÿÿA½á<A¿Áé"ÿÿÿA½=éÖþÿÿA½õ<A¿ÁI‹©€„íþÿÿéøþÿÿL‰çL‰þL‰òè«äI‰ÇH…À…>ýÿÿë
è–ãH…ÀtA½=é†þÿÿè»åH‹2H‹8H5
vèwãëØf„UH‰åAWAVAUATSHƒìH‰óI‰þH‹rH‹H‰EÐH…Ò…¯‹ÿÀt‰H‹CH…À„×Hƒøÿ„ÂH‹5ì÷I‹FH‹€L‰÷H…À„ÀÿÐI‰ÄH…À„Ãè¦âI‰ÆH…À„åH‹5?÷L‰÷H‰Úè”â…Àˆ¦L‹=êI‹D$L‹¨€M…í„ÙH=uè’ä…À…ëL‰çL‰þL‰òAÿÕI‰Çè|äM…ÿ„ÄI‹$©€…HÿÈI‰$…L‰çèäéúH‹5÷I‹FH‹€L‰÷H…À„ÿÐI‰ÆH…À„I‹FH;÷›…ÉM‹fM…䄼M‹nA‹$ÿÀuA‹EÿÀuI‹A¿©€t"ë0A‰$A‹EÿÀtâA‰EI‹A¿©€uHÿÈI‰uL‰÷èÚãM‰îL‰eÀHÇEÈJýH÷ØH4(HƒÆÈL‰÷L‰úè)[ÿÿI‰ÇM…ätI‹$©€uHÿÈI‰$uL‰çè‰ãM…ÿ„fI‹©€uHÿÈI‰uL‰÷èfãH‹©€uHÿÈH‰uwH‰ßèLãëmA½¨=I‹$©€uHÿÈI‰$uL‰çè(ãA¿M…ötI‹©€uHÿÈI‰uL‰÷èãH=‰ƒH
AéD‰îD‰ú趾þÿE1ÿH‹©€tH‹ҚH‹H;EÐ…ÿL‰øHƒÄ[A\A]A^A_]ÃI‰ÔH‰×èTàH…À„=ýÿÿH59dE1ÿL‰ç1Òè;K…À…!ýÿÿë¨A½j=A¿éqÿÿÿE1äE1ÿé’þÿÿèPáI‰ÄH…À…=ýÿÿA½¤=A¿éDÿÿÿè.áI‰ÆH…À…èýÿÿA½v=A¿é"ÿÿÿA½¦=éÖþÿÿA½Š=A¿I‹©€„íþÿÿéøþÿÿL‰çL‰þL‰òè»àI‰ÇH…À…>ýÿÿë
è¦ßH…ÀtA½©=é†þÿÿèËáH‹B™H‹8H5rè‡ßëØf„UH‰åAWAVAUATSHƒìxH‹ˆ™H‹H‰EÐfWÀf)E°HaïH‰EH¦íH‰E˜H›óH‰E HÇE¨H‹8™H‰]¸H‰]ÀH…É„µHƒú‡äI‰ÏH‰½pÿÿÿHÖH‰…xÿÿÿHaH‰•hÿÿÿHcHÁÿáM‹gM…ä~ZI_L‹5ÝîE1íf.„O9tï„ÿIÿÅM9ìuíE1íf.„K‹tïL‰÷ºèþM…À…ÊIÿÅM9ìuÞèiÞ¾>H…ÀH‹•hÿÿÿ…”ë9H‹k˜Hƒú„uHƒútHƒúuH‹^H‰]ÀH‰½pÿÿÿL‹vL‰u¸éW1ÀH…ÒŸÀLDHâzH
äzHNÈH‹³—H‹8H9æL
{LNÈH‰$H5ÉzHÜj1Àè³Ý¾2>H= €H
2æº	註þÿE1ÿéé
H‹H‰EˆH‰E°I_M‹gM…äŽH‰]€H‹H…ÛŽ L‹-ÝëE1öf.„O9l÷„èIÿÆL9óuíE1öf.„K‹t÷L‰ïºè®L…À…·IÿÆL9óuÞéÅL‹vL‰u¸H‹H‰EˆH‰E°IGM‹gM…äÆé H‹^H‰]ÀL‹vL‰u¸H‹H‰EˆH‰E°M‹gé<H‰½pÿÿÿI‰ÞH‹H‰M°‹ÿÀ„6é/ˆ8þÿÿH‹…xÿÿÿJ‹èH‰E°H‰EˆH…À„þÿÿIÿÌM…äúþÿÿH‹—–I‰ÞéŸxH‹…xÿÿÿN‹4ðM…öt	L‰u¸IÿÌëèOÜH…À…L‹5_–H‹X–H‹E€M…ä~_L‰u€H‹H…Û~zL‹-ŒðE1öf„O9l÷tGIÿÆL9óuñE1öfffff.„K‹t÷L‰ïºè^K…ÀuIÿÆL9óuâë'H‹Mˆ‹ÿÀtKëGxH‹…xÿÿÿJ‹ðH…Ût	H‰]ÀIÿÌëè¤ÛH…À…ïH‹´•L‹u€M…äH‹Mˆ 
‹ÿÀt‰H‰MˆA‹ÿÀtA‰L‹-¦ñH‹=/ãI‹UL‰îè]ÝI‰ÄL;5i•H‰hÿÿÿ„GM…ä„¶A‹$ÿÀtA‰$H‹5PñI‹D$H‹€L‰çH…À„½ÿÐI‰ÅH…À„ÀI‹$©€uHÿÈI‰$uL‰çèÝH‹=åH‹5 èH‹GH‹€H…À„¢ÿÐI‰ÇL‹eˆH…À„¥èiÚDžxÿÿÿcH…À„¡H‰ÃH‹5¨êH‰ÇL‰âèMÚ…ÀˆH‹5ÞèH‰ßL‰òè3Ú…ÀˆL‰u€L‹%8âI‹GL‹°€M…ö„	
H=³lè.ܾß>…À…
L‰ÿL‰æH‰ÚAÿÖI‰ÄèÜM…ä„ÿ	I‹©€uHÿÈI‰uL‰ÿè ÜH‹©€uHÿÈH‰uH‰ßèÜI‹EH;¯“„Ú	1ÛE1ÿH‰]L‰e˜H‹uòH‰E D‰øHÁàH÷ØH4(HƒƘAƒÏL‰ïL‰úè8SÿÿI‰ÇH…ÛtH‹©€uHÿÈH‰uH‰ßèšÛI‹$©€uHÿÈI‰$uL‰çè~ÛM…ÿ„š	I‹E©€L‹uˆH‹pÿÿÿuHÿÈI‰EuL‰ïH‰ËèKÛH‰ÙI‹©€…ÊHÿÈI‰…¾é„M…ä„ÑA‹$ÿÀtA‰$H‹5	ïI‹D$H‹€L‰çH…À„ÿÐI‰ÇH…À„I‹$©€uHÿÈI‰$uL‰çèËÚH‹=@ãH‹5YæH‹GH‹€H…À„áÿÐI‰ÄH…À„äè&ØL‹5{’Džxÿÿÿ[H…À„ÙH‰ÃH‹5^èH‰ÇH‹UˆèØ…ÀˆÝL‹-àI‹D$L‹°€M…ö„{H=…jèÚ¾>…À…L‰çL‰îH‰ÚAÿÖI‰ÅèåÙM…í„sI‹$©€uHÿÈI‰$uL‰çèðÙH‹©€uHÿÈH‰uH‰ßèÖÙI‹GH;‘„N1ÛE1äH‰]L‰m˜H‹EðH‰E D‰àHÁàH÷ØH4(HƒƘAƒÌL‰ÿL‰âèQÿÿI‰ÄH…ÛtH‹©€uHÿÈH‰uH‰ßèjÙI‹E©€uHÿÈI‰EuL‰ïèNÙM…ä„
I‹©€uHÿÈI‰uL‰ÿè+ÙI‹$©€uHÿÈI‰$uL‰çèÙH‹]ˆ‹ÿÀt‰H‹èH‹÷Á€uHÿÉH‰uH‹=ΐèÝØL‹5jíA‹ÿÀt
A‰L‹5YíH‹pÿÿÿH‹©€u@I‰ßH‰]€HÿÈH‰u5L‰ÿH‰ËèšØH‰Ùë%¾Ý>é·¾Þ>é­¾€>E1íéuH‰]€H‹5ýèH‹AH‹€H‰ÏH…À„9ÿÐH‰ÃH…À„<H‹}€H‹GH;Ꮔ­èÚÖH…À„I‰ÅH‹@L‹%§ìH;¸…‚I‹E¨…–Hƒø‡A‹Mƒà¿H)ÇH¯ùHÿÇè7ÖI‰ÄH…À„ÑI‹E©€uHÿÈI‰EuL‰ïè­×¿è×H…À„¬I‰ÅA‹ÿÀtA‰M‰uM‰e èÕH…À„ÖI‰ÄH‹5©éH‰ÇH‹•hÿÿÿèúÔ…ÀˆH‹5câH‹TäL‰çèÜÔ…ÀˆðH‹CL‹¸€M…ÿ„H=ggèâÖ¾!?…À…ÈH‰ßL‰îL‰âAÿ×I‰ÇèÇÖM…ÿ„öH‹©€uHÿÈH‰uH‰ßèÔÖI‹E©€uHÿÈI‰EuL‰ïè¸ÖI‹$©€uHÿÈI‰$uL‰çèœÖL‰÷L‹u€H‹©€„ué}‹ÿÀt‰L‹%ëI‰ýI‹E¨„jþÿÿA‹$ÿÀ„þÿÿA‰$é†þÿÿ¾?ë¾ ?H‹©€uHÿÈH‰uH‰߉óè'Ö‰ÞA¿fM…ä„QDžxÿÿÿfE1ÿ1ÛL‰uˆL‹u€I‹$©€uHÿÈI‰$uL‰çA‰ôèàÕD‰æM…ÿL‹eˆtI‹©€uHÿÈI‰t8H…ÛL‰u€tFH‹©€D‹½xÿÿÿu<HÿÈH‰u4H‰߉óè–Õ‰ÞM‰æM…íu(ëIL‰ÿA‰÷èÕD‰þH…ÛL‰u€uºD‹½xÿÿÿM‰æM…ít#I‹E©€uHÿÈI‰EuL‰ï‰óèFÕ‰ÞM‰æH=íuH
ÛD‰úè÷°þÿE1ÿL‰÷M…öL‹u€tH‹©€u
HÿÈH‰uèÕI‹©€uHÿÈI‰uL‰÷èëÔH‹àŒH‹H;EÐ…ÌL‰øHƒÄx[A\A]A^A_]ÃM‰ôM‰æM…í…RÿÿÿépÿÿÿèxÒ»aA¿Ì>H…À…rL‰ïè¼.ÿÿI‰ÄH…À…)÷ÿÿéYèfÓI‰ÅH…À…@÷ÿÿDžxÿÿÿa¾Î>E1í1ÛM‰çL‹eˆézþÿÿè5ÓI‰ÇL‹eˆH…À…[÷ÿÿL‰u€A¿c¾Ù>éÁþÿÿ¾Û>1ÛéEþÿÿèÓH‰ÃH…À…ÄûÿÿA¿f¾?é·þÿÿ¾?éb¾?E1íéžýÿÿ‰CáºH)ÊHÁèH¯ÂHƒø„ìHƒøþ…öA‹}A‹EHÁàH	ÇH÷ßéÄûÿÿ¾?éL
l^HUHM°L‰ÿH‹µxÿÿÿL‹…hÿÿÿè=…ÀˆÀH‹M°L‹u¸H‹]ÿÀ„¥õÿÿéžõÿÿèÑ»ZA¿o>H…ÀuL‰ïè^-ÿÿI‰ÄH…À…øÿÿH=ÒsH
dÙD‰þ‰ÚèڮþÿE1ÿH‹}ˆH‹©€„çýÿÿéïýÿÿèÛÑI‰ÇH…À…ü÷ÿÿL‹5Ȋ¾q>DžxÿÿÿZE1ÿë*è¯ÑI‰ÄH…À…øÿÿDžxÿÿÿ[¾|>éz¾~>1ÛE1íé•üÿÿ¾?E1íE1äéAüÿÿH;Š„SL‰ïL‰æèÑé’úÿÿL‰ÿL‰æH‰Úè'ÑI‰ÄH…À…öÿÿ¾ß>L‹u€L‹eˆégüÿÿèÐH…À„'L‹u€L‹eˆ¾ß>éGüÿÿI‹]H…Û„öÿÿM‹u‹ÿÀ…`A‹ÿÀ…bI‹EA¿©€„aémA¿a¾þ>L‹eˆécüÿÿL‰çL‰îH‰Úè‡ÐI‰ÅH…À…¡÷ÿÿ¾>E1íL‹5Љéšûÿÿè`ÏH…À„ E1íL‹5m‰¾>éxûÿÿI‹_H…Û„¥÷ÿÿM‹w‹ÿÀ…A‹ÿÀ…I‹A¼©€„éDžxÿÿÿZ¾ >L‹5‰E1í1ÛL‹eˆé@ûÿÿH‰ßL‰îL‰âèÔÏI‰ÇH…À…úÿÿëè¿ÎH…À„¾!?éúÿÿ¾>éâðÿÿA‹}A‹EHÁàH	ÇéåøÿÿH‹gˆH‹@`L‰ïL‰æÿéÕøÿÿ¾>é¬ðÿÿ‰A‹ÿÀ„žþÿÿA‰I‹EA¿©€uHÿÈI‰EuL‰ïènÐM‰õévôÿÿ¾>éhðÿÿ‰A‹ÿÀ„þþÿÿA‰I‹A¼©€uHÿÈI‰uL‰ÿè,ÐM‰÷édöÿÿ¸ò*ÀòAXEèÎé6øÿÿèÐH‹ƒ‡H‹8H5^`èÈÍé¾ýÿÿH‹h‡H‹8H5C`è­ÍéEþÿÿH‹M‡H‹8H5(`è’ÍéËþÿÿ¯îÿÿàïÿÿgðÿÿðÿÿUH‰åAWAVAUATSHƒì8H‰ÓI‰þH‹‚‡H‹H‰EÐH´áH‰E°HÇE¸H‹Q‡H‰UÈH…Ét/I‰ÏHÞH…Û„ÅHƒûuAH‹H‰UÈM‹gM…äŽLé
H…Û„>HƒûuH‹I‹žè‹ÿÀ…1é.I‰ØI÷ÐIÁè?H…ÛHšiH
œiHHÈH‹k†H‹8HÓiL
êÔLHÈHƒìH5iHÄd1ÀSèjÌHƒÄ¾“?H=ƒoH
åÔºiè[ªþÿE1öé
M‹gM…䎔L‰u L‹-«àE1öH‰E¨@O9l÷t;IÿÆM9ôuñE1öfffff.„K‹t÷L‰ïºè~;…Àu
IÿÆM9ôuâëxH‹E¨J‹ðH…Òt	H‰UÈIÿÌëèÓËH…À…#H‹ã…L‹u H‹E¨M…äÆI‹žè‹ÿÀt‰IƒÆHHƒìL‹
´…H=-¯L‰öH‰ÙE1ÀAQjAQAQjAQAQjAQÿŒäHƒÄPI‰ÆH‹M…öt=©€uHÿÈH‰uH‰ßèzÍH‹o…H‹H;EÐ…•L‰ðHƒÄ8[A\A]A^A_]é€uHÿÈH‰uH‰ßè=ÍH=nH
{Ó¾Ê?º¨éŒþÿÿL
%cHU°HMÈL‰ÿH‰ÆI‰ØèŸ6…ÀxH‹UÈI‹žè‹ÿÀ…ÿÿÿéÿÿÿ¾…?é4þÿÿ¾€?é*þÿÿèÒÌ„UH‰åAWAVAUATSHƒìxI‰ÒI‰ýH‹¢„H‹H‰EÐHÚH‰EH)ÞH‰E˜H¾ÞH‰E HÇE¨L‹
ÛàL‰M°L‹ØàL‰]¸H‹E„H‰UÀH…É„¯Iƒú‡äI‰ÌJÖH‰…hÿÿÿHùL‰•`ÿÿÿJcHÁÿáM‹|$M…ÿއL‰xÿÿÿID$H‹€ÙE1öL‰m€L‰MˆH‰…pÿÿÿfDK9\ô„XIÿÆM9÷uíE1öf.„K‹tôH‰ߺèþ8…À…'IÿÆM9÷uÞéFIƒúw9H‹|ƒHeJcHÁÿáH‹VL‹^L‹M‹µèA‹ÿÀ…ééçL‰ÐH÷ÐHÁè?M…ÒL@HïeH
ñeHHÈH‹H‹8HƒìH5èeHµiL
f1ÀARèÉÈHƒÄ¾Q@H=lH
DѺ®躦þÿ1ÛéÝL‰xÿÿÿL‰m€L‹L‰M°ID$M‹|$éL‰m€L‹^L‰]¸L‹L‰M°ID$M‹|$éYH‹VH‰UÀL‹^L‰]¸L‹L‰M°M‹|$éòx*H‹…hÿÿÿJ‹ðH…ÀtH‰E°IÿÏI‰ÁH‹L‚H‹…pÿÿÿë èÈH…ÀL‹MˆH‹0‚H‹…pÿÿÿ…ñM…ÿ~nL‰MˆH‰…pÿÿÿL‹(M…펩H‹°ÛE1öffff.„K9\ôt]IÿÆM9õuñE1öfffff.„K‹tôH‰ߺè7…Àu,IÿÆM9õuâëRL‹m€L‹xÿÿÿM‹µèA‹ÿÀ…-é+x.H‹…hÿÿÿJ‹ðH…ÀtH‰E¸IÿÏI‰ÃL‹MˆH‹gH‹…pÿÿÿë'è9ÇH…ÀL‹xÿÿÿL‹MˆH‹DH‹…pÿÿÿ…ûM…ÿ~bL‰MˆL‰xÿÿÿL‹(M…í~~H‹hÛE1öDK9\ôtOIÿÆM9õuñE1öfffff.„K‹tôH‰ߺè>6…ÀuIÿÆM9õuâë/L‹m€M‹µèA‹ÿÀuXëYxH‹…hÿÿÿJ‹ðH…Òt	H‰UÀIÿÏëè|ÆH…À…CH‹Œ€L‹m€L‹xÿÿÿL‹MˆM…ÿØM‹µèA‹ÿÀtA‰IƒÅHH‹ÑHƒìL‹M€H=†´L‰îL‰ñA¸ARjPÿ5¯Üjÿ5ßÙASjPÿßHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷è
ÈH‹ÿH‹H;EÐ…ºH‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷èÍÇH=ÙhH
ξˆ@ºé½üÿÿL
?fHUHM°L‰çH‹µhÿÿÿL‹…`ÿÿÿè'1…Àx-L‹M°L‹]¸H‹UÀM‹µèA‹ÿÀ…ïþÿÿéíþÿÿ¾8@éTüÿÿ¾=@éJüÿÿ¾1@é@üÿÿ¾*@é6üÿÿè=ÇûÿÿMüÿÿnüÿÿüÿÿœþÿÿ¬ûÿÿ¨ûÿÿ¤ûÿÿUH‰åAWAVAUATSHƒìXI‰ÏI‰ÒH‰ùH‹ï~H‹H‰EÐWÀ)EÀHÒØH‰E HÙH‰E¨HÇE°L‹-¬~L‰mÈM…ÿt>JÖM…ÒtRIƒú„GIƒú…»L‹nL‰mÈL‹L‰MÀI‹_H…ÛŽ@éIƒú„/Iƒú…†L‹né#H‰E˜L‰UH‰M€I‹_H…Û~UIGL‹%0ØE1öH‰EˆO9d÷„IÿÆL9óuíE1öf.„K‹t÷L‰çºèN3…À…ÛIÿÆL9óuÞè¹Ã¾ä@H…ÀL‹Uuc1ÀM…ÒžÀHy`H
{`HNÊH‹J}H‹:HÐËL
«`LNÊA¸I)ÀHƒìH5W`Ht1ÀARè?ÃHƒÄ¾AH=¯fH
ºËºè0¡þÿ1Ûé£H‰E˜L‹L‰MÀIGI‹_H…ÛYéL‹-%}L‹L‹±èA‹ÿÀ…ôéòˆ'ÿÿÿH‹E˜N‹ðL‰MÀM…É„ÿÿÿHÿËH‹M€L‹UH‹EˆH…ÛŽ®L‰MˆL‰UH‰M€L‹ M…ä~lL‹-
×E1öf.„O9l÷t;IÿÆM9ôuñE1öfffff.„K‹t÷L‰ïºèÞ1…Àu
IÿÆM9ôuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËëè3ÂH…À…NL‹-C|H‹M€L‹UH‹E˜L‹MˆH…ۏÞL‹±èA‹ÿÀtA‰HƒÁHH‹ŽØL‹ÇÌHƒìL‹ü{H=¥¦H‰ÎL‰êL‰ñA¸ASjARPjARPjÿ5âÕÿÌÚHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èºÃH‹¯{H‹H;EÐ… H‰ØHƒÄX[A\A]A^A_]é€uHÿÈI‰uL‰÷è}ÃH=°dH
»É¾7Aºgé÷ýÿÿH‰ËL
ÔqHU HMÀL‰ÿH‰ÆM‰ÐèÜ,…Àx"L‹MÀL‹mÈH‰ÙL‹±èA‹ÿÀ…ïþÿÿéíþÿÿ¾ð@é”ýÿÿ¾ë@éŠýÿÿèÃffff.„UH‰åAWAVAUATSHƒìxI‰ÒI‰üH‹ÒzH‹H‰EÐWÀ)E°HµÔH‰EHRÔH‰E˜HçÔH‰E HÇE¨L‹×L‰]¸H‹yzH‰UÀH…É„ºIƒú‡ìI‰ÏJÖH‰…hÿÿÿHáL‰•`ÿÿÿJcHÁÿáL‰]€I‹_H…Û~bIGL‹--ÔE1öH‰…pÿÿÿff.„O9l÷„ÞIÿÆL9óuíE1öf.„K‹t÷L‰ïºè>/…À…©IÿÆL9óuÞ詿¾—AH…ÀL‹•`ÿÿÿ…ë<H‹«yIƒútIƒút
Iƒúu#H‹VL‹^L‹M‹´$èA‹ÿÀ…ÒéÐ1ÀM…ÒŸÀLDH\H
!\HNÈH‹ðxH‹8HvÇL
Q\LNÈHƒìH5\Høz1ÀARèî¾HƒÄ¾½AH=bH
iǺmèߜþÿ1ÛéÁL‰eˆL‹L‰M°IGI‹_H…ÛŽïL‰xÿÿÿL‰]€H‰…pÿÿÿL‹ M…äŽ$L‹-gÒE1ö@O9l÷„ÖIÿÆM9ôuíE1öf.„K‹t÷L‰ïºèÞ-…À…¥IÿÆM9ôuÞéÏL‹^L‰]¸L‹L‰M°IGI‹_éÞH‹VH‰UÀL‹^L‰]¸L‹L‰M°I‹_élˆYþÿÿH‹…hÿÿÿN‹ðL‰M°M…É„AþÿÿL‰eˆHÿËL‹]€H‹ýwH‹…pÿÿÿH…ۏÿÿÿL‹eˆM‹´$èA‹ÿÀ…-é+x5H‹…hÿÿÿJ‹ðH…Àt%H‰E¸HÿËI‰ÃL‹eˆH‹ªwL‹xÿÿÿH‹…pÿÿÿë+èu½H…ÀL‹eˆL‹]€H‹ƒwL‹xÿÿÿH‹…pÿÿÿ…óH…ÛŽ®L‰xÿÿÿL‰]€L‰eˆL‹(M…í~jL‹%˜ÑE1öDO9d÷t;IÿÆM9õuñE1öfffff.„K‹t÷L‰çºèn,…Àu
IÿÆM9õuâëxH‹…hÿÿÿJ‹ðH…Òt	H‰UÀHÿËëè<H…À…GH‹ÐvL‹eˆL‹]€L‹xÿÿÿH…ۏÛM‹´$èA‹ÿÀtA‰IƒÄHHƒìH‹—vH=ð¤L‰æL‰ñA¸Pjÿ5;Çÿ5õÒjÿ5%ÐASjÿ5sÐÿ]ÕHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èK¾H‹@vH‹H;EÐ…±H‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷è¾H=p_H
LľôAº¼éÙüÿÿL
¥wHUHM°L‰ÿH‹µhÿÿÿL‹…`ÿÿÿèh'…Àx.L‹M°L‹]¸H‹UÀM‹´$èA‹ÿÀ…ìþÿÿéêþÿÿ¾¥Aéoüÿÿ¾ªAéeüÿÿ¾žAé[üÿÿ臽/ûÿÿtüÿÿýÿÿýÿÿfff.„UH‰åAWAVAUATSHƒìxI‰ÒI‰ýH‹BuH‹H‰EÐWÀ)E°HÈH‰EHêÇH‰E˜HWÏH‰E HÇE¨H‹ôtH‰UÀH…É„µIƒú‡ÄI‰ÏJÖH‰…pÿÿÿHäL‰•hÿÿÿJcHÁÿáM‹wM…ö~aIGL‹%ŒÇ1ÛH‰Eˆfffff.„M9dß„×HÿÃI9Þuí1Ûff.„I‹tßL‰çºè¾)…À…¢HÿÃI9ÞuÞè)º¾SBH…ÀL‹•hÿÿÿ…RëIƒú„OIƒúu	H‹VéGE1ÀIƒúHÈVH
ÊVHLÈAœÀIƒðH‹‘sH‹8HƒìH5¹VHˁL
çV1ÀAR蚹HƒÄ¾{BéÜL‰­xÿÿÿH‹H‰E€H‰E°IGH‰EˆI‹_I‰ÞH…ۏé]L‰­xÿÿÿL‹VL‰U¸L‹L‰M°IGM‹wM…öŽÚL‰UˆL‰M€L‹(M…íŽøL‹%Í1Ûff.„M9dß„ÀHÿÃI9Ýuí1Ûff.„I‹tßL‰çºèn(…À…HÿÃI9ÝuÞéH‹VH‰UÀL‹VL‰U¸L‹L‰M°M‹wé¡H‹ÒrL‹L‹VM‹µèA‹ÿÀ…˜é–ˆ`þÿÿH‹…pÿÿÿH‹ØH‰E°H…À„HþÿÿH‰E€L‰­xÿÿÿIÿÎH‹EˆH‹H…Û~JL‹%MÅE1ífO9dIÿÅL9ëuíE1íf.„K‹tïL‰çºèž'…ÀuwIÿÅL9ëuâè
¸H…À…H‹½qH‹8HƒìH5åTH÷H
¾TL
UA¸1Àj蹷HƒÄ¾]BH=~[H
4ÀºÁ誕þÿ1ÛéxH‹…pÿÿÿN‹èL‰U¸M…Ò„wÿÿÿIÿÎH‹ŸqL‹M€H‹EˆM…ö&þÿÿL‹­xÿÿÿM‹µèA‹ÿÀuXëYxH‹…pÿÿÿH‹ØH…Òt	H‰UÀIÿÎëè7·H…À…OH‹GqL‹­xÿÿÿL‹M€L‹UˆM…öÚM‹µèA‹ÿÀtA‰IƒÅHHƒìH‹qH=ˆ¬L‰îL‰ñA¸Pjÿ5³Áÿ5mÍjÿ5ÅÃARjÿ5ËÃÿÕÏHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èøH‹¸pH‹H;EÐ…°H‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷膸H=ZH
ľ¾²Bºé†þÿÿL
=~HUHM°L‰ÿH‹µpÿÿÿL‹…hÿÿÿèà!…Àx7L‹M°L‹U¸H‹UÀM‹µèA‹ÿÀ…íþÿÿéëþÿÿ¾[Béþÿÿ¾dBéþÿÿ¾iBé	þÿÿè¸f,ûÿÿ&üÿÿUüÿÿëüÿÿ@UH‰åAWAVAUATSHìˆI‰ÒI‰ýH‹¿oH‹H‰EÐWÀ)EÀ)E°H~ÂH‰E€HcÂH‰EˆHxÆH‰EHÅÉH‰E˜HÇE H‹boH‰UÈH…É„³Iƒú‡»I‰ÏJÖH‰…XÿÿÿH"L‰•PÿÿÿJcHÁÿáM‹wM…ö~_IGL‹%úÁ1ÛH‰…xÿÿÿf„M9dß„:HÿÃI9Þuí1Ûff.„I‹tßL‰çºè.$…À…HÿÃI9ÞuÞ虴»CH…ÀL‹•Pÿÿÿ…hëIƒútjIƒúuH‹Vëe1ÀIƒúœÀH=QH
?QHLÊA¸I)ÀH‹nH‹8HƒìH5-QHlŠL
[Q1ÀARè´HƒÄ»HCéöH‹+nL‹^L‹L‹VM‹µèA‹ÿÀ…¯é­L‰­hÿÿÿH‹H‰…pÿÿÿH‰E°IGH‰…xÿÿÿI‹_I‰ÞH…ۏVé¢L‰­hÿÿÿH‹FH‰…`ÿÿÿH‰E¸H‹H‰…pÿÿÿH‰E°IGH‰…xÿÿÿI‹_I‰ÞH…ۏ°éþL‰­hÿÿÿL‹^L‰]ÀL‹VL‰U¸L‹L‰M°IGM‹wM…öŽˆL‰xÿÿÿL‰•`ÿÿÿL‰pÿÿÿL‹(M…펙L‹%‰Ç1Û€M9dß„eHÿÃI9Ýuí1Ûff.„I‹tßL‰çºè^"…À…4HÿÃI9ÝuÞéBH‹VH‰UÈL‹^L‰]ÀL‹VL‰U¸L‹L‰M°M‹wéKˆýýÿÿH‹…XÿÿÿH‹ØH‰E°H…À„åýÿÿH‰…pÿÿÿL‰­hÿÿÿIÿÎH‹…xÿÿÿH‹H…Û~QL‹%T¿E1íf„O9dïtWIÿÅL9ëuñE1ífffff.„K‹tïL‰çºèž!…Àu&IÿÅL9ëuâè
²H…À…ê»CAºé›xàH‹…XÿÿÿJ‹èH‰E¸H…ÀtÌH‰…`ÿÿÿIÿÎH‹…xÿÿÿH‹H…Û~SL‹%ÖÂE1íff.„O9dIÿÅL9ëuíE1íf.„K‹tïL‰çºèþ …ÀuIÿÅL9ëuâèm±H…À…@»(CAºH‹kH‹8HƒìH5:NHy‡H
NL
aNA¸1ÀARè±HƒÄH=úTH
޹‰޺èþÿ1Ûé*x‡H‹…XÿÿÿN‹èL‰]ÀM…Û„oÿÿÿIÿÎH‹÷jL‹pÿÿÿL‹•`ÿÿÿH‹…xÿÿÿM…öxýÿÿL‹­hÿÿÿM‹µèA‹ÿÀueëfxH‹…XÿÿÿH‹ØH…Òt	H‰UÈIÿÎë肰H…À…iH‹’jL‹­hÿÿÿL‹pÿÿÿL‹•`ÿÿÿL‹xÿÿÿM…öÙM‹µèA‹ÿÀtA‰IƒÅHHƒìH‹MjH=fœL‰îL‰ñA¸Pjÿ51ÁASjÿ5½ARjÿ5
½ÿÉHƒÄPH‰ÃI‹H…Ût@©€uHÿÈI‰uL‰÷è²H‹úiH‹H;EÐ…ÁH‰ØHĈ[A\A]A^A_]é€uHÿÈI‰uL‰÷èűH=oSH
¸¾CºqémþÿÿL
©…HU€HM°L‰ÿH‹µXÿÿÿL‹…Pÿÿÿè…ÀxEL‹M°L‹U¸L‹]ÀH‹UÈM‹µèA‹ÿÀ…êþÿÿéèþÿÿ»&Céþýÿÿ»Céôýÿÿ»/Céêýÿÿ»4Céàýÿÿè1±îùÿÿûÿÿ@ûÿÿ„ûÿÿ+üÿÿUH‰åAWAVAUATSHƒìXI‰ÏI‰ÒH‰ùH‹ïhH‹H‰EÐWÀ)EÀH’»H‰E HÃH‰E¨HÇE°L‹-¬hL‰mÈM…ÿt>JÖM…ÒtRIƒú„GIƒú…»L‹nL‰mÈL‹L‰MÀI‹_H…ÛŽ@éIƒú„/Iƒú…†L‹né#H‰E˜L‰UH‰M€I‹_H…Û~UIGL‹%ðºE1öH‰EˆO9d÷„IÿÆL9óuíE1öf.„K‹t÷L‰çºèN…À…ÛIÿÆL9óuÞ蹭¾ÛCH…ÀL‹Uuc1ÀM…ÒžÀHyJH
{JHNÊH‹JgH‹:HеL
«JLNÊA¸I)ÀHƒìH5WJH‘1ÀARè?­HƒÄ¾÷CH=SQH
ºµºvè0‹þÿ1Ûé£H‰E˜L‹L‰MÀIGI‹_H…ÛYéL‹-%gL‹L‹±èA‹ÿÀ…ôéòˆ'ÿÿÿH‹E˜N‹ðL‰MÀM…É„ÿÿÿHÿËH‹M€L‹UH‹EˆH…ÛŽ®L‰MˆL‰UH‰M€L‹ M…ä~lL‹-
ÁE1öf.„O9l÷t;IÿÆM9ôuñE1öfffff.„K‹t÷L‰ïºèÞ…Àu
IÿÆM9ôuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËëè3¬H…À…NL‹-CfH‹M€L‹UH‹E˜L‹MˆH…ۏÞL‹±èA‹ÿÀtA‰HƒÁHH‹ŽÂL‹ǶHƒìL‹üeH=µ•H‰ÎL‰êL‰ñA¸ASjARPjARPjÿ5¢¸ÿÌÄHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷躭H‹¯eH‹H;EÐ… H‰ØHƒÄX[A\A]A^A_]é€uHÿÈI‰uL‰÷è}­H=TOH
»³¾.Dº½é÷ýÿÿH‰ËL
âŽHU HMÀL‰ÿH‰ÆM‰ÐèÜ…Àx"L‹MÀL‹mÈH‰ÙL‹±èA‹ÿÀ…ïþÿÿéíþÿÿ¾çCé”ýÿÿ¾âCéŠýÿÿè­ffff.„UH‰åAWAVAUATSHƒìxI‰ÒI‰ýH‹ÒdH‹H‰EÐWÀ)E°Hu·H‰EHš»H‰E˜Hç¾H‰E HÇE¨H‹„dH‰UÀH…É„µIƒú‡ÄI‰ÏJÖH‰…pÿÿÿHäL‰•hÿÿÿJcHÁÿáM‹wM…ö~aIGL‹%ü¶1ÛH‰Eˆfffff.„M9dß„×HÿÃI9Þuí1Ûff.„I‹tßL‰çºèN…À…¢HÿÃI9ÞuÞ蹩¾DH…ÀL‹•hÿÿÿ…RëIƒú„OIƒúu	H‹VéGE1ÀIƒúHXFH
ZFHLÈAœÀIƒðH‹!cH‹8HƒìH5IFH\–L
wF1ÀARè*©HƒÄ¾µDéÜL‰­xÿÿÿH‹H‰E€H‰E°IGH‰EˆI‹_I‰ÞH…ۏé]L‰­xÿÿÿL‹VL‰U¸L‹L‰M°IGM‹wM…öŽÚL‰UˆL‰M€L‹(M…íŽøL‹%-½1Ûff.„M9dß„ÀHÿÃI9Ýuí1Ûff.„I‹tßL‰çºèþ…À…HÿÃI9ÝuÞéH‹VH‰UÀL‹VL‰U¸L‹L‰M°M‹wé¡H‹bbL‹L‹VM‹µèA‹ÿÀ…˜é–ˆ`þÿÿH‹…pÿÿÿH‹ØH‰E°H…À„HþÿÿH‰E€L‰­xÿÿÿIÿÎH‹EˆH‹H…Û~JL‹%ý¸E1ífO9dIÿÅL9ëuíE1íf.„K‹tïL‰çºè.…ÀuwIÿÅL9ëuâ蝧H…À…H‹MaH‹8HƒìH5uDHˆ”H
NDL
œDA¸1ÀjèI§HƒÄ¾—DH=‡KH
įºÂè:…þÿ1ÛéxH‹…pÿÿÿN‹èL‰U¸M…Ò„wÿÿÿIÿÎH‹/aL‹M€H‹EˆM…ö&þÿÿL‹­xÿÿÿM‹µèA‹ÿÀuXëYxH‹…pÿÿÿH‹ØH…Òt	H‰UÀIÿÎëèǦH…À…OH‹×`L‹­xÿÿÿL‹M€L‹UˆM…öÚM‹µèA‹ÿÀtA‰IƒÅHHƒìH‹Ÿ`H=¸L‰îL‰ñA¸Pjÿ5C±ÿ5ý¼jÿ5u·ARjÿ5;³ÿe¿HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èS¨H‹H`H‹H;EÐ…°H‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷è¨H=JH
T®¾ìDºé†þÿÿL
ΒHUHM°L‰ÿH‹µpÿÿÿL‹…hÿÿÿèp…Àx7L‹M°L‹U¸H‹UÀM‹µèA‹ÿÀ…íþÿÿéëþÿÿ¾•Déþÿÿ¾žDéþÿÿ¾£Dé	þÿÿ萧f,ûÿÿ&üÿÿUüÿÿëüÿÿ@UH‰åAWAVAUATSHƒì8I‰ÖH‰ûH‹R_H‹H‰EÐH„¹H‰E°HÇE¸H‹!_H‰UÈH…Ét/I‰ÏJöM…ö„ÆIƒþuBH‹H‰UÈM‹gM…äŽLéM…ö„>IƒþuH‹L‹³èA‹ÿÀ…1é/M‰ðI÷ÐIÁè?M…öHiAH
kAHHÈH‹:^H‹8H¢AL
¹¬LHÈHƒìH5PAH“1ÀAVè8¤HƒÄ¾WEH=«HH
³¬ºè)‚þÿ1ÛéM‹gM…䎓H‰] L‹-z¸1ÛH‰E¨@M9lßt;HÿÃI9Üuñ1Ûffffff.„I‹tßL‰ïºèN…Àu
HÿÃI9ÜuâëxH‹E¨H‹ØH…Òt	H‰UÈIÿÌë裣H…À…1H‹³]H‹] H‹E¨M…äÓL‹³èA‹ÿÀtA‰HƒÃHL‹
ºH‹?®HƒìL‹t]H=}•H‰ÞL‰ñE1ÀARjPAQjPAQjPÿO¼HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷è=¥H‹2]H‹H;EÐ…–H‰ØHƒÄ8[A\A]A^A_]é€uHÿÈI‰uL‰÷è¥H=6GH
>«¾ŽEºcéþÿÿL
è›HU°HMÈL‰ÿH‰ÆM‰ðèb…ÀxH‹UÈL‹³èA‹ÿÀ…ÿÿÿéÿÿÿ¾IEé(þÿÿ¾DEéþÿÿ蔤f.„UH‰åAWAVAUATSHƒìXI‰ÏI‰ÒH‰ùH‹_\H‹H‰EÐWÀ)EÀH¯H‰E H¶H‰E¨HÇE°L‹-\L‰mÈM…ÿt>JÖM…ÒtRIƒú„GIƒú…»L‹nL‰mÈL‹L‰MÀI‹_H…ÛŽ@éIƒú„/Iƒú…†L‹né#H‰E˜L‰UH‰M€I‹_H…Û~UIGL‹%`®E1öH‰EˆO9d÷„IÿÆL9óuíE1öf.„K‹t÷L‰çºè¾…À…ÛIÿÆL9óuÞè)¡¾êEH…ÀL‹Uuc1ÀM…ÒžÀHé=H
ë=HNÊH‹ºZH‹:H@©L
>LNÊA¸I)ÀHƒìH5Ç=H[¤1ÀAR诠HƒÄ¾FH=REH
*©ºfè ~þÿ1Ûé£H‰E˜L‹L‰MÀIGI‹_H…ÛYéL‹-•ZL‹L‹±èA‹ÿÀ…ôéòˆ'ÿÿÿH‹E˜N‹ðL‰MÀM…É„ÿÿÿHÿËH‹M€L‹UH‹EˆH…ÛŽ®L‰MˆL‰UH‰M€L‹ M…ä~lL‹-}´E1öf.„O9l÷t;IÿÆM9ôuñE1öfffff.„K‹t÷L‰ïºèN…Àu
IÿÆM9ôuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËë裟H…À…NL‹-³YH‹M€L‹UH‹E˜L‹MˆH…ۏÞL‹±èA‹ÿÀtA‰HƒÁHH‹¶L‹7ªHƒìL‹lYH=åH‰ÎL‰êL‰ñA¸ASjARPjARPjÿ5¬ÿ<¸HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷è*¡H‹YH‹H;EÐ… H‰ØHƒÄX[A\A]A^A_]é€uHÿÈI‰uL‰÷èí H=SCH
+§¾=FºÓé÷ýÿÿH‰ËL
#¢HU HMÀL‰ÿH‰ÆM‰ÐèL
…Àx"L‹MÀL‹mÈH‰ÙL‹±èA‹ÿÀ…ïþÿÿéíþÿÿ¾öEé”ýÿÿ¾ñEéŠýÿÿèw ffff.„UH‰åAWAVAUATSHƒìxI‰ÒI‰ýH‹BXH‹H‰EÐWÀ)E°Hm®H‰EH­H‰E˜HW²H‰E HÇE¨H‹ôWH‰UÀH…É„µIƒú‡ÄI‰ÏJÖH‰…pÿÿÿHäL‰•hÿÿÿJcHÁÿáM‹wM…ö~aIGL‹%ô­1ÛH‰Eˆfffff.„M9dß„×HÿÃI9Þuí1Ûff.„I‹tßL‰çºè¾…À…¢HÿÃI9ÞuÞè)¾œFH…ÀL‹•hÿÿÿ…RëIƒú„OIƒúu	H‹VéGE1ÀIƒúHÈ9H
Ê9HLÈAœÀIƒðH‹‘VH‹8HƒìH5¹9HޱL
ç91ÀAR蚜HƒÄ¾ÄFéÜL‰­xÿÿÿH‹H‰E€H‰E°IGH‰EˆI‹_I‰ÞH…ۏé]L‰­xÿÿÿL‹VL‰U¸L‹L‰M°IGM‹wM…öŽÚL‰UˆL‰M€L‹(M…íŽøL‹%°1Ûff.„M9dß„ÀHÿÃI9Ýuí1Ûff.„I‹tßL‰çºèn…À…HÿÃI9ÝuÞéH‹VH‰UÀL‹VL‰U¸L‹L‰M°M‹wé¡H‹ÒUL‹L‹VM‹µèA‹ÿÀ…˜é–ˆ`þÿÿH‹…pÿÿÿH‹ØH‰E°H…À„HþÿÿH‰E€L‰­xÿÿÿIÿÎH‹EˆH‹H…Û~JL‹%uªE1ífO9dIÿÅL9ëuíE1íf.„K‹tïL‰çºèž
…ÀuwIÿÅL9ëuâè
›H…À…H‹½TH‹8HƒìH5å7H
°H
¾7L
8A¸1Àj蹚HƒÄ¾¦FH=‡?H
4£ºÙèªxþÿ1ÛéxH‹…pÿÿÿN‹èL‰U¸M…Ò„wÿÿÿIÿÎH‹ŸTL‹M€H‹EˆM…ö&þÿÿL‹­xÿÿÿM‹µèA‹ÿÀuXëYxH‹…pÿÿÿH‹ØH…Òt	H‰UÀIÿÎëè7šH…À…OH‹GTL‹­xÿÿÿL‹M€L‹UˆM…öÚM‹µèA‹ÿÀtA‰IƒÅ HƒìH‹TH=¸•L‰îL‰ñA¸Pjÿ5³¤ÿ5m°jÿ5í¨ARjÿ53ªÿղHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èÛH‹¸SH‹H;EÐ…°H‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷膛H=>H
ġ¾ûFº-	é†þÿÿL
P®HUHM°L‰ÿH‹µpÿÿÿL‹…hÿÿÿèà…Àx7L‹M°L‹U¸H‹UÀM‹µèA‹ÿÀ…íþÿÿéëþÿÿ¾¤Féþÿÿ¾­Féþÿÿ¾²Fé	þÿÿè›f,ûÿÿ&üÿÿUüÿÿëüÿÿ@UH‰åAWAVAUATSHƒìXI‰ÏI‰ÒH‰ùH‹¿RH‹H‰EÐWÀ)EÀHŠ£H‰E H߬H‰E¨HÇE°L‹-|RL‰mÈM…ÿt>JÖM…ÒtRIƒú„GIƒú…»L‹nL‰mÈL‹L‰MÀI‹_H…ÛŽ@éIƒú„/Iƒú…†L‹né#H‰E˜L‰UH‰M€I‹_H…Û~UIGL‹%è¢E1öH‰EˆO9d÷„IÿÆL9óuíE1öf.„K‹t÷L‰çºè…À…ÛIÿÆL9óuÞ艗¾WGH…ÀL‹Uuc1ÀM…ÒžÀHI4H
K4HNÊH‹QH‹:H ŸL
{4LNÊA¸I)ÀHƒìH5'4H]¹1ÀARè—HƒÄ¾sGH=<H
ŠŸº2	èuþÿ1Ûé£H‰E˜L‹L‰MÀIGI‹_H…ÛYéL‹-õPL‹L‹±èA‹ÿÀ…ôéòˆ'ÿÿÿH‹E˜N‹ðL‰MÀM…É„ÿÿÿHÿËH‹M€L‹UH‹EˆH…ÛŽ®L‰MˆL‰UH‰M€L‹ M…ä~lL‹-ݪE1öf.„O9l÷t;IÿÆM9ôuñE1öfffff.„K‹t÷L‰ïºè®…Àu
IÿÆM9ôuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËëè–H…À…NL‹-PH‹M€L‹UH‹E˜L‹MˆH…ۏÞL‹±èA‹ÿÀtA‰HƒÁHH‹^¬L‹— HƒìL‹ÌOH=E~H‰ÎL‰êL‰ñA¸ASjARPjARPjÿ5š ÿœ®HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷芗H‹OH‹H;EÐ… H‰ØHƒÄX[A\A]A^A_]é€uHÿÈI‰uL‰÷èM—H=:H
‹¾ªGº”	é÷ýÿÿH‰ËL
%·HU HMÀL‰ÿH‰ÆM‰Ð謅Àx"L‹MÀL‹mÈH‰ÙL‹±èA‹ÿÀ…ïþÿÿéíþÿÿ¾cGé”ýÿÿ¾^GéŠýÿÿèזffff.„UH‰åAWAVAUATSHƒìXI‰ÏI‰ÒH‰ùH‹ŸNH‹H‰EÐWÀ)EÀHjŸH‰E H¿¨H‰E¨HÇE°L‹-\NL‰mÈM…ÿt>JÖM…ÒtRIƒú„GIƒú…»L‹nL‰mÈL‹L‰MÀI‹_H…ÛŽ@éIƒú„/Iƒú…†L‹né#H‰E˜L‰UH‰M€I‹_H…Û~UIGL‹%ȞE1öH‰EˆO9d÷„IÿÆL9óuíE1öf.„K‹t÷L‰çºèþ…À…ÛIÿÆL9óuÞèi“¾HH…ÀL‹Uuc1ÀM…ÒžÀH)0H
+0HNÊH‹úLH‹:H€›L
[0LNÊA¸I)ÀHƒìH50HAÅ1ÀARèï’HƒÄ¾"HH=
8H
j›º™	èàpþÿ1Ûé£H‰E˜L‹L‰MÀIGI‹_H…ÛYéL‹-ÕLL‹L‹±èA‹ÿÀ…ôéòˆ'ÿÿÿH‹E˜N‹ðL‰MÀM…É„ÿÿÿHÿËH‹M€L‹UH‹EˆH…ÛŽ®L‰MˆL‰UH‰M€L‹ M…ä~lL‹-½¦E1öf.„O9l÷t;IÿÆM9ôuñE1öfffff.„K‹t÷L‰ïºèŽ…Àu
IÿÆM9ôuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËëèã‘H…À…NL‹-óKH‹M€L‹UH‹E˜L‹MˆH…ۏÞL‹±èA‹ÿÀtA‰HƒÁHH‹>¨L‹wœHƒìL‹¬KH=…zH‰ÎL‰êL‰ñA¸ASjARPjARPjÿ5zœÿ|ªHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èj“H‹_KH‹H;EÐ… H‰ØHƒÄX[A\A]A^A_]é€uHÿÈI‰uL‰÷è-“H=6H
k™¾YHºü	é÷ýÿÿH‰ËL
	ÃHU HMÀL‰ÿH‰ÆM‰ÐèŒü…Àx"L‹MÀL‹mÈH‰ÙL‹±èA‹ÿÀ…ïþÿÿéíþÿÿ¾Hé”ýÿÿ¾
HéŠýÿÿ跒ffff.„UH‰åAWAVAUATSHƒìXI‰ÏI‰ÒH‰ùH‹JH‹H‰EÐWÀ)EÀHJ›H‰E HŸ¤H‰E¨HÇE°L‹-<JL‰mÈM…ÿt>JÖM…ÒtRIƒú„GIƒú…»L‹nL‰mÈL‹L‰MÀI‹_H…ÛŽ@éIƒú„/Iƒú…†L‹né#H‰E˜L‰UH‰M€I‹_H…Û~UIGL‹%¨šE1öH‰EˆO9d÷„IÿÆL9óuíE1öf.„K‹t÷L‰çºèÞþ…À…ÛIÿÆL9óuÞèI¾µHH…ÀL‹Uuc1ÀM…ÒžÀH	,H
,HNÊH‹ÚHH‹:H`—L
;,LNÊA¸I)ÀHƒìH5ç+HÏ1ÀARèώHƒÄ¾ÑHH=4H
J—º
èÀlþÿ1Ûé£H‰E˜L‹L‰MÀIGI‹_H…ÛYéL‹-µHL‹L‹±èA‹ÿÀ…ôéòˆ'ÿÿÿH‹E˜N‹ðL‰MÀM…É„ÿÿÿHÿËH‹M€L‹UH‹EˆH…ÛŽ®L‰MˆL‰UH‰M€L‹ M…ä~lL‹-¢E1öf.„O9l÷t;IÿÆM9ôuñE1öfffff.„K‹t÷L‰ïºèný…Àu
IÿÆM9ôuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËëèÍH…À…NL‹-ÓGH‹M€L‹UH‹E˜L‹MˆH…ۏÞL‹±èA‹ÿÀtA‰HƒÁHH‹¤L‹W˜HƒìL‹ŒGH=ÕvH‰ÎL‰êL‰ñA¸ASjARPjARPjÿ5Z˜ÿ\¦HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èJH‹?GH‹H;EÐ… H‰ØHƒÄX[A\A]A^A_]é€uHÿÈI‰uL‰÷è
H=2H
K•¾Iºi
é÷ýÿÿH‰ËL
àÌHU HMÀL‰ÿH‰ÆM‰Ðèlø…Àx"L‹MÀL‹mÈH‰ÙL‹±èA‹ÿÀ…ïþÿÿéíþÿÿ¾ÁHé”ýÿÿ¾¼HéŠýÿÿ藎ffff.„UH‰åAWAVAUATSHƒìxI‰ÓI‰ýH‹bFH‹H‰EÐHܛH‰EHéŸH‰E˜H~ H‰E HÇE¨L‹
›¢L‰M°L‹˜¢L‰U¸H‹FH‰UÀH…É„¯Iƒû‡äI‰ÌJÞH‰…hÿÿÿHùL‰`ÿÿÿJc˜HÁÿáM‹|$M…ÿއL‰•xÿÿÿID$H‹@›E1öL‰m€L‰MˆH‰…pÿÿÿfDK9\ô„XIÿÆM9÷uíE1öf.„K‹tôH‰ߺè¾ú…À…'IÿÆM9÷uÞéFIƒûw9H‹<EHeJc˜HÁÿáH‹VL‹VL‹M‹µèA‹ÿÀ…ééçL‰ØH÷ÐHÁè?M…ÛL@H¯'H
±'HHÈH‹€DH‹8HƒìH5¨'HÛØL
Ö'1ÀAS艊HƒÄ¾IH=õ/H
Ҽn
èzhþÿ1ÛéßL‰•xÿÿÿL‰m€L‹L‰M°ID$M‹|$éL‰m€L‹VL‰U¸L‹L‰M°ID$M‹|$éYH‹VH‰UÀL‹VL‰U¸L‹L‰M°M‹|$éòx*H‹…hÿÿÿJ‹ðH…ÀtH‰E°IÿÏI‰ÁH‹DH‹…pÿÿÿë èމH…ÀL‹MˆH‹ðCH‹…pÿÿÿ…óM…ÿ~nL‰MˆH‰…pÿÿÿL‹(M…펩H‹pE1öffff.„K9\ôt]IÿÆM9õuñE1öfffff.„K‹tôH‰ߺèÞø…Àu,IÿÆM9õuâëRL‹m€L‹•xÿÿÿM‹µèA‹ÿÀ…-é+x.H‹…hÿÿÿJ‹ðH…ÀtH‰E¸IÿÏI‰ÂL‹MˆH‹'CH‹…pÿÿÿë'èùˆH…ÀL‹•xÿÿÿL‹MˆH‹CH‹…pÿÿÿ…ýM…ÿ~bL‰MˆL‰•xÿÿÿL‹(M…í~~H‹(E1öDK9\ôtOIÿÆM9õuñE1öfffff.„K‹tôH‰ߺèþ÷…ÀuIÿÆM9õuâë/L‹m€M‹µèA‹ÿÀuXëYxH‹…hÿÿÿJ‹ðH…Òt	H‰UÀIÿÏëè<ˆH…À…EH‹LBL‹m€L‹•xÿÿÿL‹MˆM…ÿÚM‹µèA‹ÿÀtA‰IƒÅ HƒìH‹BH=Í:L‰îL‰ñA¸Pjÿ5¸’ÿ5ržjÿ5¢›ARjÿ5€—ÿڠHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èȉH‹½AH‹H;EÐ…ºH‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷苉H=º,H
ɏ¾ÆIºÇ
é»üÿÿL
cÕHUHM°L‰çH‹µhÿÿÿL‹…`ÿÿÿèåò…Àx-L‹M°L‹U¸H‹UÀM‹µèA‹ÿÀ…íþÿÿéëþÿÿ¾vIéRüÿÿ¾{IéHüÿÿ¾oIé>üÿÿ¾hIé4üÿÿèûˆûÿÿMüÿÿnüÿÿüÿÿœþÿÿ¬ûÿÿ¨ûÿÿ¤ûÿÿUH‰åAWAVAUATSHƒìxI‰ÓI‰ýH‹²@H‹H‰EÐH,–H‰EH9šH‰E˜HΚH‰E HÇE¨L‹
ëœL‰M°L‹èœL‰U¸H‹U@H‰UÀH…É„¯Iƒû‡äI‰ÌJÞH‰…hÿÿÿHùL‰`ÿÿÿJc˜HÁÿáM‹|$M…ÿއL‰•xÿÿÿID$H‹•E1öL‰m€L‰MˆH‰…pÿÿÿfDK9\ô„XIÿÆM9÷uíE1öf.„K‹tôH‰ߺèõ…À…'IÿÆM9÷uÞéFIƒûw9H‹Œ?HeJc˜HÁÿáH‹VL‹VL‹M‹µèA‹ÿÀ…ééçL‰ØH÷ÐHÁè?M…ÛL@Hÿ!H
"HHÈH‹Ð>H‹8HƒìH5ø!H
áL
&"1ÀASèلHƒÄ¾MJH=m*H
TºÌ
èÊbþÿ1ÛéßL‰•xÿÿÿL‰m€L‹L‰M°ID$M‹|$éL‰m€L‹VL‰U¸L‹L‰M°ID$M‹|$éYH‹VH‰UÀL‹VL‰U¸L‹L‰M°M‹|$éòx*H‹…hÿÿÿJ‹ðH…ÀtH‰E°IÿÏI‰ÁH‹\>H‹…pÿÿÿë è.„H…ÀL‹MˆH‹@>H‹…pÿÿÿ…óM…ÿ~nL‰MˆH‰…pÿÿÿL‹(M…펩H‹E1öffff.„K9\ôt]IÿÆM9õuñE1öfffff.„K‹tôH‰ߺè.ó…Àu,IÿÆM9õuâëRL‹m€L‹•xÿÿÿM‹µèA‹ÿÀ…-é+x.H‹…hÿÿÿJ‹ðH…ÀtH‰E¸IÿÏI‰ÂL‹MˆH‹w=H‹…pÿÿÿë'èIƒH…ÀL‹•xÿÿÿL‹MˆH‹T=H‹…pÿÿÿ…ýM…ÿ~bL‰MˆL‰•xÿÿÿL‹(M…í~~H‹x—E1öDK9\ôtOIÿÆM9õuñE1öfffff.„K‹tôH‰ߺèNò…ÀuIÿÆM9õuâë/L‹m€M‹µèA‹ÿÀuXëYxH‹…hÿÿÿJ‹ðH…Òt	H‰UÀIÿÏë茂H…À…EH‹œ<L‹m€L‹•xÿÿÿL‹MˆM…ÿÚM‹µèA‹ÿÀtA‰IƒÅ HƒìH‹d<H=5L‰îL‰ñA¸Pjÿ5ÿ5˜jÿ5ò•ARjÿ5Бÿ*›HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷è„H‹
<H‹H;EÐ…ºH‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷èۃH=2'H
о„JºCé»üÿÿL
•ÝHUHM°L‰çH‹µhÿÿÿL‹…`ÿÿÿè5í…Àx-L‹M°L‹U¸H‹UÀM‹µèA‹ÿÀ…íþÿÿéëþÿÿ¾4JéRüÿÿ¾9JéHüÿÿ¾-Jé>üÿÿ¾&Jé4üÿÿèKƒûÿÿMüÿÿnüÿÿüÿÿœþÿÿ¬ûÿÿ¨ûÿÿ¤ûÿÿUH‰åAWAVAUATSHƒìxI‰ÓI‰ýH‹;H‹H‰EÐH|H‰EH‰”H‰E˜H•H‰E HÇE¨L‹
;—L‰M°L‹8—L‰U¸H‹¥:H‰UÀH…É„¯Iƒû‡äI‰ÌJÞH‰…hÿÿÿHùL‰`ÿÿÿJc˜HÁÿáM‹|$M…ÿއL‰•xÿÿÿID$H‹àE1öL‰m€L‰MˆH‰…pÿÿÿfDK9\ô„XIÿÆM9÷uíE1öf.„K‹tôH‰ߺè^ï…À…'IÿÆM9÷uÞéFIƒûw9H‹Ü9HeJc˜HÁÿáH‹VL‹VL‹M‹µèA‹ÿÀ…ééçL‰ØH÷ÐHÁè?M…ÛL@HOH
QHHÈH‹ 9H‹8HƒìH5HHŒîL
v1ÀASè)HƒÄ¾KH=ä$H
¤‡ºHè]þÿ1ÛéßL‰•xÿÿÿL‰m€L‹L‰M°ID$M‹|$éL‰m€L‹VL‰U¸L‹L‰M°ID$M‹|$éYH‹VH‰UÀL‹VL‰U¸L‹L‰M°M‹|$éòx*H‹…hÿÿÿJ‹ðH…ÀtH‰E°IÿÏI‰ÁH‹¬8H‹…pÿÿÿë è~~H…ÀL‹MˆH‹8H‹…pÿÿÿ…óM…ÿ~nL‰MˆH‰…pÿÿÿL‹(M…펩H‹’E1öffff.„K9\ôt]IÿÆM9õuñE1öfffff.„K‹tôH‰ߺè~í…Àu,IÿÆM9õuâëRL‹m€L‹•xÿÿÿM‹µèA‹ÿÀ…-é+x.H‹…hÿÿÿJ‹ðH…ÀtH‰E¸IÿÏI‰ÂL‹MˆH‹Ç7H‹…pÿÿÿë'è™}H…ÀL‹•xÿÿÿL‹MˆH‹¤7H‹…pÿÿÿ…ýM…ÿ~bL‰MˆL‰•xÿÿÿL‹(M…í~~H‹ȑE1öDK9\ôtOIÿÆM9õuñE1öfffff.„K‹tôH‰ߺèžì…ÀuIÿÆM9õuâë/L‹m€M‹µèA‹ÿÀuXëYxH‹…hÿÿÿJ‹ðH…Òt	H‰UÀIÿÏëèÜ|H…À…EH‹ì6L‹m€L‹•xÿÿÿL‹MˆM…ÿÚM‹µèA‹ÿÀtA‰IƒÅ HƒìH‹´6H=]0L‰îL‰ñA¸Pjÿ5X‡ÿ5“jÿ5BARjÿ5 Œÿz•HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èh~H‹]6H‹H;EÐ…ºH‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷è+~H=©!H
i„¾BKº™é»üÿÿL
ëHUHM°L‰çH‹µhÿÿÿL‹…`ÿÿÿè…ç…Àx-L‹M°L‹U¸H‹UÀM‹µèA‹ÿÀ…íþÿÿéëþÿÿ¾òJéRüÿÿ¾÷JéHüÿÿ¾ëJé>üÿÿ¾äJé4üÿÿè›}ûÿÿMüÿÿnüÿÿüÿÿœþÿÿ¬ûÿÿ¨ûÿÿ¤ûÿÿUH‰åAWAVAUATSHƒìxI‰ÓI‰ýH‹R5H‹H‰EÐHL‹H‰EHaH‰E˜HnH‰E HÇE¨L‹
‹‘L‰M°L‹ˆ‘L‰U¸H‹õ4H‰UÀH…É„¯Iƒû‡äI‰ÌJÞH‰…hÿÿÿHùL‰`ÿÿÿJc˜HÁÿáM‹|$M…ÿއL‰•xÿÿÿID$H‹°ŠE1öL‰m€L‰MˆH‰…pÿÿÿfDK9\ô„XIÿÆM9÷uíE1öf.„K‹tôH‰ߺè®é…À…'IÿÆM9÷uÞéFIƒûw9H‹,4HeJc˜HÁÿáH‹VL‹VL‹M‹µèA‹ÿÀ…ééçL‰ØH÷ÐHÁè?M…ÛL@HŸH
¡HHÈH‹p3H‹8HƒìH5˜H[õL
Æ1ÀASèyyHƒÄ¾ÉKH=]H
ôºžèjWþÿ1ÛéßL‰•xÿÿÿL‰m€L‹L‰M°ID$M‹|$éL‰m€L‹VL‰U¸L‹L‰M°ID$M‹|$éYH‹VH‰UÀL‹VL‰U¸L‹L‰M°M‹|$éòx*H‹…hÿÿÿJ‹ðH…ÀtH‰E°IÿÏI‰ÁH‹ü2H‹…pÿÿÿë èÎxH…ÀL‹MˆH‹à2H‹…pÿÿÿ…óM…ÿ~nL‰MˆH‰…pÿÿÿL‹(M…펩H‹èŒE1öffff.„K9\ôt]IÿÆM9õuñE1öfffff.„K‹tôH‰ߺèÎç…Àu,IÿÆM9õuâëRL‹m€L‹•xÿÿÿM‹µèA‹ÿÀ…-é+x.H‹…hÿÿÿJ‹ðH…ÀtH‰E¸IÿÏI‰ÂL‹MˆH‹2H‹…pÿÿÿë'èéwH…ÀL‹•xÿÿÿL‹MˆH‹ô1H‹…pÿÿÿ…ýM…ÿ~bL‰MˆL‰•xÿÿÿL‹(M…í~~H‹ŒE1öDK9\ôtOIÿÆM9õuñE1öfffff.„K‹tôH‰ߺèîæ…ÀuIÿÆM9õuâë/L‹m€M‹µèA‹ÿÀuXëYxH‹…hÿÿÿJ‹ðH…Òt	H‰UÀIÿÏëè,wH…À…EH‹<1L‹m€L‹•xÿÿÿL‹MˆM…ÿÚM‹µèA‹ÿÀtA‰IƒÅHHƒìH‹1H=]fL‰îL‰ñA¸Pjÿ5¨ÿ5bjÿ5‹ARjÿ5ð†ÿʏHƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷è¸xH‹­0H‹H;EÐ…ºH‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷è{xH="H
¹~¾Lº
é»üÿÿL
ãñHUHM°L‰çH‹µhÿÿÿL‹…`ÿÿÿèÕá…Àx-L‹M°L‹U¸H‹UÀM‹µèA‹ÿÀ…íþÿÿéëþÿÿ¾°KéRüÿÿ¾µKéHüÿÿ¾©Ké>üÿÿ¾¢Ké4üÿÿèëwûÿÿMüÿÿnüÿÿüÿÿœþÿÿ¬ûÿÿ¨ûÿÿ¤ûÿÿUH‰åAWAVAUATSHƒìhI‰ÒH‰ûH‹¢/H‹H‰EÐH4‰H‰E HɉH‰E¨HÇE°L‹
î‹L‰MÀL‹-[/L‰mÈH…ÉtAI‰ÌJÖM…Ò„âIƒú„XIƒúu[H‰E˜L‰U€L‹nL‰mÈL‹L‰MÀM‹|$é6L‹-
/M…Ò„/Iƒút
IƒúuL‹nL‹L‹³èA‹ÿÀ…éM‰ÐIÁè>A÷ÐAƒàM…ÒH|H
~HHÈH‹M.H‹8HƒìH5uHL
£1ÀARèVtHƒÄ¾yLH=dH
Ñ|ºèGRþÿ1ÛéL‰U€M‹|$M…ÿŽ|H‰E˜H‰]ID$H‹ê‡E1öL‰MˆH‰…xÿÿÿfff.„K9\ôtVIÿÆM9÷uñE1öfffff.„K‹tôH‰ߺèNã…Àu%IÿÆM9÷uâëAH‰E˜L‰U€L‹L‰MÀID$M‹|$ëCx$H‹E˜J‹ðH…ÀtH‰EÀIÿÏI‰ÁH‹]H‹…xÿÿÿëèzsH…ÀH‹]L‹MˆH‹…xÿÿÿ…äM…ÿާL‰MˆH‰]L‹(M…í~qH‹²‡E1öffffff.„K9\ôt;IÿÆM9õuñE1öfffff.„K‹tôH‰ߺè~â…Àu
IÿÆM9õuâëxH‹E˜N‹,ðM…ít	L‰mÈIÿÏëèÓrH…À…8L‹-ã,H‹]L‹MˆM…ÿÞL‹³èA‹ÿÀtA‰HƒÃ H‹6‰L‹o}HƒìL‹¤,H=}\H‰ÞL‰êL‰ñA¸ASjARPjARPjÿ52†ÿt‹HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èbtH‹W,H‹H;EÐ…¦H‰ØHƒÄh[A\A]A^A_]é€uHÿÈI‰uL‰÷è%tH=öH
cz¾°LºZéˆýÿÿL
kÿHU HMÀL‰çH‹u˜L‹E€è…Ý…Àx)L‹MÀL‹mÈL‹³èA‹ÿÀ…óþÿÿéñþÿÿ¾cLé)ýÿÿ¾hLéýÿÿ¾\Léýÿÿè©sffffff.„UH‰åAWAVAUATSHƒìxI‰ÒI‰ýH‹r+H‹H‰EÐWÀ)E°HeH‰EHò„H‰E˜H‡…H‰E HÇE¨H‹$+H‰UÀH…É„µIƒú‡ÄI‰ÏJÖH‰…pÿÿÿHäL‰•hÿÿÿJcHÁÿáM‹wM…ö~aIGL‹%ì€1ÛH‰Eˆfffff.„M9dß„×HÿÃI9Þuí1Ûff.„I‹tßL‰çºèî߅À…¢HÿÃI9ÞuÞèYp¾MH…ÀL‹•hÿÿÿ…RëIƒú„OIƒúu	H‹VéGE1ÀIƒúHøH
úHLÈAœÀIƒðH‹Á)H‹8HƒìH5éH¼L

1ÀARèÊoHƒÄ¾7MéÜL‰­xÿÿÿH‹H‰E€H‰E°IGH‰EˆI‹_I‰ÞH…ۏé]L‰­xÿÿÿL‹VL‰U¸L‹L‰M°IGM‹wM…öŽÚL‰UˆL‰M€L‹(M…íŽøL‹%̓1Ûff.„M9dß„ÀHÿÃI9Ýuí1Ûff.„I‹tßL‰çºèžÞ…À…HÿÃI9ÝuÞéH‹VH‰UÀL‹VL‰U¸L‹L‰M°M‹wé¡H‹)L‹L‹VM‹µèA‹ÿÀ…˜é–ˆ`þÿÿH‹…pÿÿÿH‹ØH‰E°H…À„HþÿÿH‰E€L‰­xÿÿÿIÿÎH‹EˆH‹H…Û~JL‹%U‚E1ífO9dIÿÅL9ëuíE1íf.„K‹tïL‰çºèÎ݅ÀuwIÿÅL9ëuâè=nH…À…H‹í'H‹8HƒìH5HèH
î
L
<A¸1ÀjèémHƒÄ¾MH= H
dvº_èÚKþÿ1ÛéxH‹…pÿÿÿN‹èL‰U¸M…Ò„wÿÿÿIÿÎH‹Ï'L‹M€H‹EˆM…ö&þÿÿL‹­xÿÿÿM‹µèA‹ÿÀuXëYxH‹…pÿÿÿH‹ØH…Òt	H‰UÀIÿÎëègmH…À…OH‹w'L‹­xÿÿÿL‹M€L‹UˆM…öÚM‹µèA‹ÿÀtA‰IƒÅHHƒìH‹?'H=ÈYL‰îL‰ñA¸Pjÿ5ãwÿ5ƒjÿ5̀ARjÿ5+}ÿ†HƒÄPH‰ÃI‹H…Ût=©€uHÿÈI‰uL‰÷èónH‹è&H‹H;EÐ…°H‰ØHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷è¶nH=°H
ôt¾nMº§é†þÿÿL
.HUHM°L‰ÿH‹µpÿÿÿL‹…hÿÿÿè؅Àx7L‹M°L‹U¸H‹UÀM‹µèA‹ÿÀ…íþÿÿéëþÿÿ¾Méþÿÿ¾ Méþÿÿ¾%Mé	þÿÿè0nf,ûÿÿ&üÿÿUüÿÿëüÿÿ@UH‰åAWAVAUATSHì˜I‰ÕH‹ò%H‹H‰EÐfWÀf)EÀf)E°H{H‰E€Hó{H‰EˆH8H‰EHõH‰E˜HÇE H‹’%H‰UÈH…É„¬Iƒý‡¸I‰ÏH‰½HÿÿÿJîH‰…xÿÿÿHûJc¨HÁÿáM‹wM…ö~_IGH‹’zE1äH‰…`ÿÿÿ„K9\ç„XIÿÄM9æuíE1äf.„K‹tçH‰ߺè^څÀ…#IÿÄM9æuÞèÉj»ÐMH…À…“ëIƒýtnIƒýu
H‹FH‰EÈëe1ÀIƒýœÀHpH
rHLÊA¸I)ÀH‹8$H‹8HƒìH5`H®
L
Ž1ÀAUèAjHƒÄ»NéH‹^$H‰…`ÿÿÿH‰½HÿÿÿH‹FH‰…XÿÿÿH‰EÀL‹fL‰e¸L‹6L‰u°éµL‰­hÿÿÿH‹H‰…pÿÿÿH‰E°IGH‰…`ÿÿÿM‹oM‰îM…íhé¶L‰­hÿÿÿH‹FH‰…PÿÿÿH‰E¸H‹H‰…pÿÿÿH‰E°IGH‰…`ÿÿÿM‹gM‰æM…äÄéH‹FH‰…XÿÿÿH‰EÀL‹fL‰e¸H‹H‰…pÿÿÿH‰E°IGM‹wM…öŽ¡L‰¥PÿÿÿL‰­hÿÿÿL‹(M…í޲L‹%­}1Ûff.„M9dß„zHÿÃI9Ýuí1Ûff.„I‹tßL‰çºè~؅À…IHÿÃI9ÝuÞéWH‹FH‰EÈH‹NH‰XÿÿÿH‰MÀL‹fL‰e¸H‹H‰pÿÿÿH‰M°M‹wéDˆßýÿÿH‹…xÿÿÿJ‹àH‰E°H‰…pÿÿÿH…À„ÀýÿÿL‰­hÿÿÿIÿÎH‹…`ÿÿÿL‹(M…í~SL‹%Æx1Ûfff.„M9dßtWHÿÃI9Ýuñ1Ûffffff.„I‹tßL‰çºè®×…Àu&HÿÃI9ÝuâèhH…À…ô»ÚMAºéŸxàH‹…xÿÿÿH‹ØH‰E¸H‰…PÿÿÿH…ÀtÅIÿÎH‹…`ÿÿÿL‹ M…ä~WL‹-v{1Ûfff.„M9lß„±HÿÃI9Üuí1Ûff.„I‹tßL‰ïºèׅÀ…€HÿÃI9ÜuÞèygH…À…ô»äMAºH‹!H‹8HƒìH5FH”
H
L
mA¸1ÀARègHƒÄH={
H
šo‰޺¬èEþÿE1ÿé÷x†H‹…xÿÿÿH‹ØH‰EÀH‰…XÿÿÿH…À„gÿÿÿIÿÎH‹û L‹­hÿÿÿL‹¥PÿÿÿH‹…`ÿÿÿM…ö_ýÿÿH‰•`ÿÿÿL‹µpÿÿÿëUxH‹…xÿÿÿH‹ØH…Àt	H‰EÈIÿÎëèfH…À…nH‹ L‹­hÿÿÿL‹¥PÿÿÿH‰…`ÿÿÿM…öL‹µpÿÿÿH‹yH‹˜(¿ÿhL‰÷H‰Æ1Ò1ÉA¸E1ÉÿÓH…À„;I‰ŋÿÀtA‰EI‹E©€uHÿÈI‰EuL‰ïè,hH‹H‹˜(¿ÿhM‰çL‰çH‰Æ1Ò1ÉA¸E1ÉÿÓI‰ÄH…À„òA‹$ÿÀtA‰$I‹$©€uHÿÈI‰$uL‰çèÇgH‹´~H‹˜(¿ÿhH‹½XÿÿÿH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„¨H‰ËÿÀt‰H‹©€uHÿÈH‰uH‰ßèggA‹D$A9EL‰¥xÿÿÿH‰ÙH‰pÿÿÿL‰­hÿÿÿu	C„ŒL‹=pvH‹=ÉlI‹WL‰þè÷fH…À„MI‰ċÿÀtA‰$H‹5HpI‹D$H‹€L‰çH…À„SÿÐI‰ÅH…ÀL‹µpÿÿÿ„VI‹$©€uHÿÈI‰$uL‰çè»fH‹ðuH‹=IlH‹SH‰ÞèwfH…À„"I‰ƋÿÀL‹¥xÿÿÿtA‰H‹5’rI‹FH‹€L‰÷H…À„0ÿÐH‰ÃH…À„3I‹©€uHÿÈI‰uL‰÷è?fH‹CH;è„E1öE1ÿL‰}€H‹…hÿÿÿH‰EˆL‰eD‰ðHÁàH÷ØH4(HƒƈAƒÎH‰ßL‰òèpÝþÿI‰ÆM…ÿtI‹©€uHÿÈI‰uL‰ÿèÒeM…ö„ô
H‹©€uHÿÈH‰uH‰ßè¯eI‹EH;X„Ù
E1ÿ1ÛH‰]€L‰uˆD‰øHÁàH÷ØH4(HƒƈAÿÇL‰ïL‰úèíÜþÿI‰ÄH…ÛtH‹©€uHÿÈH‰uH‰ßèOeI‹©€uHÿÈI‰uL‰÷è5eM…䄨
I‹E©€L‹µpÿÿÿuHÿÈI‰EuL‰ïè	eL;%öt1L;%Ýt(L;%ÜtL‰çèöc‰ÅÀˆgI‹$©€të(1ÛL;%º”ÃI‹$©€uHÿÈI‰$uL‰çè§d…Û…+
L‹=ÔsH‹=-jI‹WL‰þè[dH…ÀL‹¥xÿÿÿ„a
I‰ŋÿÀtA‰EH‹5¥mI‹EH‹€L‰ïH…À„h
ÿÐI‰ÄL‹µpÿÿÿH…À„k
I‹E©€uHÿÈI‰EuL‰ïèdL‹5NsH‹=§iI‹VL‰öèÕcH…À„?
H‰ËÿÀL‹­hÿÿÿt‰H‹5ñoH‹CH‹€H‰ßH…À„K
ÿÐI‰ÆH…À„N
H‹©€uHÿÈH‰uH‰ßèžcI‹FH;G„6
1ÛE1ÿL‰}€H‹…xÿÿÿH‰EˆH‹…pÿÿÿH‰E‰ØHÁàH÷ØH4(HƒƈƒËL‰÷H‰ÚèËÚþÿH‰ÃM…ÿtI‹©€uHÿÈI‰uL‰ÿè-cH…Û„
I‹©€uHÿÈI‰uL‰÷è
cI‹D$H;²„ô	E1öE1ÿL‰}€H‰]ˆD‰ðHÁàH÷ØH4(HƒƈAÿÆL‰çL‰òèFÚþÿI‰ÆM…ÿtI‹©€uHÿÈI‰uL‰ÿè¨bH‹©€uHÿÈH‰uH‰ßèŽbM…ö„Å	I‹$©€uHÿÈI‰$uL‰çèibL;5Vt7L;5=t.L;5<t%L‰÷èVa‰ÅÀL‹¥xÿÿÿˆT
I‹©€të-1ÛL;5”ÃL‹¥xÿÿÿI‹©€uHÿÈI‰uL‰÷èüa…Û…K	L‹=)qH‹=‚gI‹WL‰þè°aH…À„z	I‰ċÿÀtA‰$H‹5kI‹D$H‹€L‰çH…À„€	ÿÐI‰ÅL‹µpÿÿÿH…À„ƒ	I‹$©€uHÿÈI‰$uL‰çètaH‹©pH‹=gH‹SH‰Þè0aH…À„[	I‰ƋÿÀtA‰H‹5‚lI‹FH‹€L‰÷H…À„i	ÿÐH‰ÃH…À„l	I‹©€uHÿÈI‰uL‰÷èÿ`H‹CH;¨„	E1öE1ÿL‰}€H‹…hÿÿÿH‰EˆH‹…pÿÿÿH‰ED‰ðHÁàH÷ØH4(HƒƈAƒÎH‰ßL‰òè)ØþÿI‰ÆM…ÿtI‹©€uHÿÈI‰uL‰ÿè‹`M…ö„T	H‹©€uHÿÈH‰uH‰ßèh`I‹EH;„c	E1ÿ1ÛH‰]€L‰uˆD‰øHÁàH÷ØH4(HƒƈAÿÇL‰ïL‰úè¦×þÿI‰ÄH…ÛtH‹©€uHÿÈH‰uH‰ßè`I‹©€uHÿÈI‰uL‰÷èî_M…ä„2	I‹E©€L‹µpÿÿÿuHÿÈI‰EuL‰ïèÂ_L;%¯t?L;%–t6L;%•t-L‰çè¯^‰ÅÀL‹­hÿÿÿH‹µHÿÿÿˆ?I‹$©€t'ë<1ÛL;%e”ÃL‹­hÿÿÿH‹µHÿÿÿI‹$©€uHÿÈI‰$uL‰çI‰÷èA_L‰þ…Û…	L‹¦èA‹$ÿÀtA‰$HƒÆ L‹
ÄgHƒìH=i-H‹•`ÿÿÿL‰áM‰èjAQAVjAQÿµxÿÿÿjÿ4vHƒÄ@H…À„	I‰ÇI‹$©€…#HÿÈI‰$…L‰çè´^é	L‰÷è©\ò…@ÿÿÿf.‹dšÀ•ÁÁuèT\H…À…IH‹½Xÿÿÿèu\ò…Xÿÿÿf.WdšÀ•ÁÁuè \H…À…"L‰ÿèE\f(Ðf.+dšÀ•ÁÁò…Pÿÿÿuèì[ò•PÿÿÿH…À…óò…@ÿÿÿf/ÂòXÿÿÿ‡O
f/ч—
f.ÁšÀ•ÁÁ„Ô
H‹…HÿÿÿH‹˜è‹ÿÀt‰èÆ[H…À„I‰Æò…Pÿÿÿè­[H…À„I‰Åò…Xÿÿÿè”[H…À„I‰ÄH‹µHÿÿÿHƒÆ H‹fHƒìL‹OH=¸+H‹•`ÿÿÿH‰ÙA¸M‰ñARjPATjPAUjPÿ tHƒÄPH…À„Ã
I‰ÇH‹©€uHÿÈH‰uH‰ßè
]I‹©€uHÿÈI‰uL‰÷èð\I‹E©€uHÿÈI‰EuL‰ïèÔ\I‹$©€L‹µpÿÿÿuHÿÈI‰$L‹­hÿÿÿuéñýÿÿL‹­hÿÿÿL‹¥xÿÿÿI‹E©€uHÿÈI‰EuL‰ïèƒ\M…ätI‹$©€uHÿÈI‰$uL‰çèb\M…ötI‹©€uHÿÈI‰uL‰÷èC\H‹8H‹H;EÐ… 
L‰øHĘ[A\A]A^A_]ÃH=9H
Xb¾HNºøé¶òÿÿ1ÀH‰…pÿÿÿ»ùA¾WNé6
»úA¾fN1ÀH‰…pÿÿÿé
è’Y»
A¾HOH…À…ý	L‰ÿèֵþÿI‰ÄH…À…“ôÿÿéä	è€ZI‰ÅH…ÀL‹µpÿÿÿ…ªôÿÿA¿JOéè=YA¿MOH…ÀL‹¥xÿÿÿuH‰ß胵þÿI‰ÆH…À…ÆôÿÿE1äL‹µpÿÿÿº
é™èZH‰ÃH…À…ÍôÿÿA¿OOº
étL‹{M…ÿ„ÿL‹cA‹ÿÀ…CA‹$ÿÀ…FH‹A¾©€„FéQA¿dOº
é¢I‹]H…Û„õÿÿM‹e‹ÿÀ…LA‹$ÿÀ…NI‹EA¿©€„NéZº
A¿{OéÌH‹=ápH‹5
p1Òè¿þÿ»

H…ÀL‹¥xÿÿÿ„KI‰ÇH‰Ç蛿þÿI‹A¾ŽO©€L‹­hÿÿÿ…v»

A¾ŽOé4èÛW»
A¾ OH…À…L‰ÿè´þÿI‰ÅH…À…õÿÿééèÉXI‰ÄL‹µpÿÿÿH…À…•õÿÿº
A¿¢OE1äéè~WA¿¥OH…ÀL‹­hÿÿÿuL‰÷èijþÿH‰ÃH…À…¨õÿÿL‹µpÿÿÿº
é	èbXI‰ÆH…À…²õÿÿA¿§Oº
E1íé7M‹~M…ÿ„ZM‹nA‹ÿÀ…A‹EÿÀ…I‹»©€„é'A¿¼Oº
E1íéeM‹|$M…ÿ„M‹l$A‹ÿÀ…A‹EÿÀ…"I‹$A¾©€„"é.A¿ÓOº
L‹µpÿÿÿé7H‹=oH‹5Gn1ÒèP½þÿ»
H…À„«I‰ÇH‰Çè׽þÿI‹A¾æO©€…¹»
A¾æOéwèV»
A¾øOH…À…‰L‰ÿèb²þÿI‰ÄH…À…föÿÿépèWI‰ÅL‹µpÿÿÿH…À…}öÿÿA¿úOº
L‹­hÿÿÿé„è½UA¿ýOH…ÀuH‰ßè
²þÿI‰ÆH…À…öÿÿE1äL‹µpÿÿÿº
é è¥VH‰ÃH…À…”öÿÿA¿ÿOº
E1ä1ÛI‹©€uHÿÈI‰uL‰÷A‰Öè€WD‰òH…ÛL‹µpÿÿÿuXëtL‹{M…ÿ„töÿÿL‹cA‹ÿÀ…ÐA‹$ÿÀ…ÓH‹A¾©€„ÓéÞA¿Pº
E1äL‹µpÿÿÿH‹©€uHÿÈH‰uH‰߉ÓèýV‰ÚM…íuXëvI‹]H…Û„öÿÿM‹e‹ÿÀ…¡A‹$ÿÀ…£I‹EA¿©€„£é¯º
A¿+PE1äL‹µpÿÿÿI‹E©€uHÿÈI‰EuL‰ï‰Óè€V‰ÚM…äL‹­hÿÿÿt I‹$©€uHÿÈI‰$uL‰ç‰ÓèTV‰ÚH=qúH
\D‰þè2þÿE1ÿéŽùÿÿH‹=¡lH‹5Úk1Òèۺþÿ»
H…À„>I‰ÇH‰Çèb»þÿI‹A¾>P©€L‹¥xÿÿÿ…=»
A¾>PHÿÈI‰…&L‰ÿèÌUéA¿[Pº
éEÿÿÿA‰A‹$ÿÀ„ºúÿÿA‰$H‹A¾©€uHÿÈH‰uH‰ßè„UL‰ãL‹¥xÿÿÿéMïÿÿA¿Oº
L‹­hÿÿÿéìþÿÿ‰A‹$ÿÀ„²úÿÿA‰$I‹EA¿©€uHÿÈI‰EuL‰ïè*UM‰åé‰ïÿÿA‰A‹EÿÀ„äûÿÿA‰EI‹»©€uHÿÈI‰uL‰÷èðTM‰îL‹­hÿÿÿéYñÿÿA¿×Oº
M‰ôL‹µpÿÿÿéUþÿÿA‰A‹EÿÀ„ÞûÿÿA‰EI‹$A¾©€uHÿÈI‰$uL‰çè’TM‰ìL‹­hÿÿÿé‘ñÿÿA‰A‹$ÿÀ„-ýÿÿA‰$H‹A¾©€uHÿÈH‰uH‰ßèPTL‰ãé`óÿÿA¿/Pº
éÆýÿÿ‰A‹$ÿÀ„]ýÿÿA‰$I‹EA¿©€uHÿÈI‰EuL‰ïèTM‰åéªóÿÿL
õHU€HM°L‰ÿH‹µxÿÿÿM‰èèw½…Àˆ“L‹u°L‹e¸H‹EÀH‰…XÿÿÿH‹EÈH‰…`ÿÿÿé$ëÿÿ»âMéJêÿÿH‹=jH‹5<i1ÒèM¸þÿ»
H…À„¸I‰ÇH‰ÇèԸþÿI‹A¾³N©€…¯»
A¾³NéœH‹=ÁiH‹5òh1Òèû·þÿ»
H…À„nI‰ÇH‰Ç肸þÿI‹A¾ÓN©€…]»
A¾ÓNëMH‹=riH‹5«h1Ò謷þÿ»
H…À„'I‰ÇH‰Çè3¸þÿI‹A¾óN©€…»
A¾óNHÿÈI‰L‹¥xÿÿÿ…÷éÌüÿÿA¿Oº
E1äé.ùÿÿA¿Oº	
E1äE1íéÚúÿÿA¿$Oº

E1äéÇúÿÿA¿.Oº
é·úÿÿ»ØMéîèÿÿ»ëMéäèÿÿ»ðMéÚèÿÿ»ýA¾‡Në{»þA¾‘Nën»ÿA¾›NëaèRE1öE1ÿé~üÿÿA¾ŠOL‹­hÿÿÿëB1ÛE1ÿéùüÿÿE1öE1ÿéLýÿÿA¾âOë%A¾:PëA¾¯NëA¾ÏNëA¾ïNL‹¥xÿÿÿH=ÍõH
ìWD‰ö‰Úèb-þÿE1ÿL‹µpÿÿÿI‹E©€…úôÿÿéäôÿÿäÿÿ7åÿÿlåÿÿ°åÿÿ[æÿÿUH‰åAWAVAUATSHìÈI‰ÕH‰½@ÿÿÿH‹;	H‹H‰EÐfWÀf)E°H¤_H‰EH¹`H‰E˜HNcH‰E HÇE¨H‹ëH‰UÀH…É„¥Iƒý‡¿I‰ÌJîH®$Jc¨HÁÿáH‰pÿÿÿM‹|$M…ÿ~^ID$H‹0_E1öH‰E€f„K9\ô„™IÿÆM9÷uíE1öf.„K‹tôH‰ߺ辽…À…dIÿÆM9÷uÞè)N¾ÀPH…À…7ë$Iƒý„IƒýuH‹FH‰…PÿÿÿH‰EÀéE1ÀIƒýHÄêH
ÆêHLÈAœÀIƒðH‹H‹8L‰,$H5µêH¤ûL
ãê1Àè˜M¾èPé¼L‰­HÿÿÿH‰•PÿÿÿH‹H‰EˆH‰E°ID$H‰E€M‹t$L‰µxÿÿÿM…öëé2L‰­HÿÿÿH‰•PÿÿÿL‹nL‰m¸H‹H‰EˆH‰E°IL$I‹D$H…À’é^L‰­HÿÿÿH‹FH‰…PÿÿÿH‰EÀL‹nL‰m¸H‹H‰EˆH‰E°I‹D$é"H‹H‰…PÿÿÿL‹nL‰m¸H‹H‰EˆH‰E°éˆžþÿÿH‹…pÿÿÿJ‹ðH‰E°H‰EˆH…À„‚þÿÿL‰­HÿÿÿH‹ÂH‰…PÿÿÿIÿÏL‰½xÿÿÿH‹E€L‹0H‹pÿÿÿM…ö~LL‹-G^E1ÿ@O9lü„£IÿÇM9þuíE1ÿf.„K‹tüL‰ïº辻…ÀuvIÿÇM9þuâè-LH…À…vH‹ÝH‹8HÇ$H5éHðùH
ÚèL
(éA¸1Àè×K¾ÊPH=bòH
VTº
èÌ)þÿE1äéfxN‹,ûL‰m¸M…ítƒH‹…xÿÿÿHÿÈH‹M€H…ÀŽÑH‰…xÿÿÿH‰pÿÿÿH‹H…ÛŽ„L‹=í_E1öf.„O9|ôt;IÿÆL9óuñE1öfffff.„K‹tôL‰ÿº辺…Àu
IÿÆL9óuâë0x.H‹…pÿÿÿJ‹ðH…ÀtH‰…PÿÿÿH‰EÀH‹…xÿÿÿHÿÈH‹pÿÿÿë*èûJH…À…ƒH‹H‰…PÿÿÿH‹pÿÿÿH‹…xÿÿÿH…À”HDžhÿÿÿHDžXÿÿÿH‹ØcH‹˜(¿ÿhL‰ïH‰Æ1Ò1ÉA¸E1ÉÿÓI‰ÇH‰…`ÿÿÿH…À„È
A‹ÿÀtA‰I‹©€L‹eˆuHÿÈI‰uL‰ÿè‚LHDž`ÿÿÿL‰½xÿÿÿE‹H‹YcH‹˜(¿ÿhE1öL‰çH‰Æ1Ò1ÉA¸E1ÉÿÓH‰ÃH‰…hÿÿÿH…À„c
‹ÿÀt‰H‹©€L‹µ@ÿÿÿuHÿÈH‰uH‰ßèÿKHDžhÿÿÿHDž`ÿÿÿE…ÿH‰pÿÿÿu
ƒ{„H‹5p[L‹½xÿÿÿL‰ÿºÿcƒøÿ„ûH‹5+ZH‰ߺÿíbƒøÿ„ïL‹­PÿÿÿL;-n„]H‹±ZH‹=
QH‹SH‰Þè8KH…À„ýI‰ƋÿÀtA‰L‰µhÿÿÿH‹5[VI‹FH‹€L‰÷H…À„úÿÐH‰ÃH‰…XÿÿÿH…À„ýI‹©€uHÿÈI‰uL‰÷èùJH‹CH;¢„áE1öE1ÿL‰uL‰m˜H‹H‰E D‰øHÁàH÷ØH4(HƒƘAƒÏH‰ßL‰úè*ÂþÿH‰ÁH‰…`ÿÿÿM…öt I‹©€uHÿÈI‰uI‰ÏL‰÷è‚JL‰ùHDžhÿÿÿH…ÉL‹½xÿÿÿ„ºH‹©€uHÿÈH‰uI‰ÎH‰ßèGJL‰ñ‹ÿÀH‹pÿÿÿt‰H‹©€uHÿÈH‰uI‰ÎH‰ÏèJL‰ñHDž`ÿÿÿE1öHDžXÿÿÿH‹é`I‰ÌH‹y ‹qÿðH‰…PÿÿÿL‹Ë`¿L‰eˆL‰æL‰úH‰Ù1ÀAÿH…À„$I‰ÅH‰…hÿÿÿH;Ž„
H‹‰OH…À„I‹MH9Á„ýH‹‘XH…Ò„wH‹rH…ö~1ÿH9Dú„×HÿÇH9þuíH‹QH‹HH‹ÎH‹8H5Âè1ÀèëFA¼'RÇE€Ž
éÄH‹
`¿L‰þH‰Ú1Àÿ‘H…À„ÔI‰ÆH‰…XÿÿÿH;ׄÎH‹ÒNH…À„ýI‹NH9Á„±H‹‘XH…Ò„¸H‹rH…ö~1ÿf„H9Dú„‚HÿÇH9þuíH‹QH‹HH‹H‹8H5èE1ö1Àè(FA¼äQÇE€‰
1ÀH‰EˆH‹½`ÿÿÿH…ÿtH‹©€u
HÿÈH‰uè8HH‹½hÿÿÿH…ÿtH‹©€u
HÿÈH‰uèHH‹½XÿÿÿH…ÿtH‹©€u
HÿÈH‰uèòGH=<ìH
0ND‰æ‹U€è¥#þÿE1äH‹}ˆH…ÿ„ÚH‹©€„¿éÇL‰ïè°Eò…Hÿÿÿf.’MšÀ•ÁÁuè[EH…À…PL‰çèÚTI‰ÅHƒøÿL‹¥Pÿÿÿuè5EH…À…*H‹=ýVò…Hÿÿÿ¾ÿª^ƒøÿ„WÀòI*ÅH‹=²U¾ÿ‡^ƒøÿ„L;%ÿþ„úH‹BVH‹=›LH‹SH‰ÞèÉFH…À„I‰ƋÿÀtA‰L‰µhÿÿÿH‹5ìQI‹FH‹€L‰÷H…À„ÿÐH‰ÃH‰…XÿÿÿÇE€¦
H…À„I‹©€uHÿÈI‰uL‰÷èƒFH‹CH;,þ„äE1öE1ÿL‰uL‰e˜H‹	þH‰E D‰øHÁàH÷ØH4(HƒƘAƒÏH‰ßL‰ú贽þÿH‰…`ÿÿÿM…öH‰ÁH‰EˆtI‹÷Á€uHÿÉI‰uL‰÷è
FH‹EˆHDžhÿÿÿH…À„ÈH‹÷Á€uHÿÉH‰uH‰ßè×EH‹Eˆ‹ÿÁt‰L‰­0ÿÿÿH‹÷Á€uHÿÉH‰u
H‹}ˆè¨EH‹EˆHDž`ÿÿÿHDžXÿÿÿH‹
{\H‰ÃH‹x ‹pÿ‘ðI‰ÅH‹CH‰E€H‹…@ÿÿÿH‹˜èL‹%£PL‹{L‰ÿL‰æè<EH…À„ H‰ÇH‹@H‹ˆH…Ét}H‰ÞL‰úÿÑH‰…8ÿÿÿH…ÀuxéM‹¶èL‹%QPM‹~L‰ÿL‰æèêDH…À„ÆH‰ÇH‹@H‹ˆH…É„éL‰öL‰úÿÑH‰EˆH…ÀH‹…@ÿÿÿ…àA¼Sé9‹ÿÀH‰½8ÿÿÿt‰H‹…@ÿÿÿH‹˜èH‹5¿OL‹{L‰ÿI‰öèpDH…À„uI‰ÄH‹@H‹ˆH…Ét$L‰çH‰ÞL‰úÿÑH‰…`ÿÿÿH…À„dI‰ÄH‹@ëA‹$ÿÁtA‰$L‰¥`ÿÿÿH;Öû…oM‹|$L‰½hÿÿÿM…ÿ„ZI‹\$A‹ÿÀtA‰‹ÿÀt‰H‰`ÿÿÿI‹$º©€uHÿÈI‰$u
L‰çèÈCºI‰ÜL‰}HÇE˜HÕH÷ØH4(HƒƘL‰çè»þÿH‰ÃH‰…XÿÿÿM…ÿtI‹©€uHÿÈI‰uL‰ÿèpCHDžhÿÿÿH…Û„ƒI‹$©€uHÿÈI‰$uL‰çè@CHDž`ÿÿÿH‹©€uHÿÈH‰uH‰ßèCHDžXÿÿÿèû@H‰…(ÿÿÿM‰îM…íH‹@ÿÿÿL‹­0ÿÿÿL‹}€~<HS H‰•PÿÿÿHƒÃ`E1ä@H‹½Pÿÿÿò…HÿÿÿL‰îH‰ÚèÖ6K‰çIÿÄM9æuÚH‹½(ÿÿÿèŒ@H‹·WL‹¥8ÿÿÿI‹D$L‹°€M…ö„çH=ÂÒè=B…ÀL‹½xÿÿÿ…L‰çH‰Þ1ÒAÿÖH‰Ãè!BH…Û„ïI‹$©€H‹}ˆuHÿÈI‰$uL‰çè(BH‹}ˆH…Û„ŸH‹©€uHÿÈH‰uH‰ßèBH‹}ˆ‹ÿÀt‰E1öéÝ
‹ÿÀH‰}ˆt‰H‹…@ÿÿÿL‹¸èH‹MM‹gL‰çH‰Þè±AH…À„ÁI‰ÆH‹@H‹ˆH…Ét$L‰÷L‰þL‰âÿÑH‰…hÿÿÿH…À„°I‰ÆH‹@ëA‹ÿÁtA‰L‰µhÿÿÿH;ù…|M‹~L‰½`ÿÿÿM…ÿ„hI‹^A‹ÿÀtA‰‹ÿÀt‰H‰hÿÿÿI‹A¼©€uHÿÈI‰uL‰÷èAI‰ÞL‰}HÇE˜JåH÷ØH4(HƒƘL‰÷L‰âè]¸þÿI‰ÄH‰…XÿÿÿM…ÿH‹pÿÿÿtI‹©€uHÿÈI‰uL‰ÿè±@HDž`ÿÿÿM…ä„ÏI‹©€uHÿÈI‰uL‰÷èƒ@HDžhÿÿÿI‹$©€uHÿÈI‰$uL‰çè\@èE@H‰E€H‹@hE1öH‹
1øò…Hÿÿÿë€H‹@H…Àt>L‹8M…ÿtïI9ÏtêA‹ÿÀtA‰M‹wA‹ÿÀtA‰L‰ÿèô=H‰…8ÿÿÿò…HÿÿÿëE1ÿ1ÀH‰…8ÿÿÿH‹…@ÿÿÿHx HP`L‰îèæ3H‰Çè$>H…À„(I‰ÄHDžXÿÿÿH‹E€H‹@hH‹8L‰8H…ÿtH‹©€u
HÿÈH‰uè?M…öL‹½xÿÿÿtI‹©€uHÿÈI‰uL‰÷è[?H‹½8ÿÿÿH…ÿtH‹©€u
HÿÈH‰uè8?Hƒ}ˆ„]H‹5BTH‹}ˆ1ÒèףþÿH‹}ˆI‰ÆH‹©€u
HÿÈH‰uèý>M…ö…
A¼›SÇE€¢
é-1ÀH‰EˆÇE€~
A¼IQE1ö1ÛéöÿÿA¼iQÇE€€
é®A¼“QÇE€„
éìA¼œQÇE€…
éÚH=ãH
æÍ¾òºè>þÿHDžhÿÿÿA¼%Ré1õÿÿè#<H…À…H‰ßèr˜þÿI‰ÆH‰…hÿÿÿH…À…íòÿÿéè=H‰ÃH‰…XÿÿÿH…À…óÿÿÇE€‡
A¼±QëjL‹sL‰µhÿÿÿM…ö„óÿÿL‹cA‹ÿÀtA‰A‹$ÿÀtA‰$L‰¥XÿÿÿH‹A¿©€uHÿÈH‰uH‰ßè²=L‰ãéÈòÿÿÇE€‡
A¼ÆQE1ö1ÀH‰EˆH‹pÿÿÿé-õÿÿH‹õH‹8H5íÜèJ;é<ôÿÿL
éHUHM°L‰çH‰ÞL‹…Hÿÿÿè覅Àˆ«H‹E°H‰EˆL‹m¸H‹EÀH‰…Pÿÿÿé'ðÿÿH=›áH
̾Àº	è×þÿHDžXÿÿÿA¼âQë<H‰ÊH…ÒtaH‹’H9Âuïë`¾ÈPéÀîÿÿH‹UôH‹8H5=Üèš:A¼äQÇE€‰
E1öéLôÿÿE1ÿ1Òéãøÿÿ¾ÑPéîÿÿ¾ÖPéwîÿÿH;”ó…1óÿÿM…ötI‹©€uHÿÈI‰uL‰÷èc<H‹5PNI‹EH‹€L‰ïH…À„ÿÐI‰ÆH‰…hÿÿÿH…À„L‰÷H‹uˆÿSH‰…XÿÿÿH…À„÷I‰ÇI‹©€uHÿÈI‰uL‰÷èö;HDžhÿÿÿI‹©€uHÿÈI‰uL‰ÿèÑ;HDžXÿÿÿH‹…@ÿÿÿL‹°èL‹%ýFM‹~L‰ÿL‰æè–;H…À„ŒH‰ÇH‹@H‹ˆH…Ét L‰öL‰úÿÑH‰…HÿÿÿH…ÀH‹…@ÿÿÿuék‹ÿÀH‰½Hÿÿÿt‰H‹…@ÿÿÿL‹°èH‹vFM‹~L‰ÿH‰Þè';H…À„KI‰ÄH‹@H‹ˆH…Ét7L‰çL‰öL‰úÿÑH‰…hÿÿÿH…ÀH‹pÿÿÿ„—I‰ÄH‹@H;›òt,é’A‹$ÿÁH‹pÿÿÿtA‰$L‰¥hÿÿÿH;sò…kM‹|$L‰½`ÿÿÿM…ÿ„VI‹\$A‹ÿÀtA‰‹ÿÀt‰H‰hÿÿÿI‹$A¾©€uHÿÈI‰$uL‰çèd:I‰ÜH‹pÿÿÿL‰}HÇE˜JõH÷ØH4(HƒƘL‰çL‰ò謱þÿI‰ÆH‰…XÿÿÿM…ÿtI‹©€uHÿÈI‰uL‰ÿè:HDž`ÿÿÿM…ö„GI‹$©€L‹½xÿÿÿuHÿÈI‰$uL‰çèÐ9HDžhÿÿÿI‹©€uHÿÈI‰uL‰÷è«9HDžXÿÿÿè‹7H‰E€Hƒ½PÿÿÿL‹µ@ÿÿÿŽÌMf IƒÆ`1ÛëfHÿÃH;Pÿÿÿ„®I‹…8I‹@H‹€0òH‹0H‹0L‰çL‰òèR-I‹0H‹‰0H‰IÿE Aƒ}~¦1Àë,fH‹Š(HŠ0I‹ŒÅ0HÿA(HÿÀIcMH9ȍvÿÿÿI‹ŒÅ0HÿAI‹”Å0‹JH…Étº€º8t!H‹Š(H‹I8HcI HŠ0ë³f„ƒùu3H‹J0H;Š0‚HÿÁH‰J0I‹ŒÅ0H‹‘0H‘0érÿÿÿ…ɈjÿÿÿH‰ÊHƒÂEf„I‹¼Å0‰ÎH‹L÷(H;Œ÷(|eHÇD÷(I‹ŒÅ0H‹¼ñ(H)¹0NÿHÿʅö½éÿÿÿHÇB0I‹ŒÅ0HÿA(I‹ŒÅ0H‹‘(H+‘0H‘0éÜþÿÿHÿÁH‰L÷(I‹ŒÅ0H‹ÑH‘0é¼þÿÿH‹}€è—5H‹ÂLL‹¥HÿÿÿI‹D$L‹°€M…ö„æH=ÍÇèH7…À…L‰çH‰Þ1ÒAÿÖH‰Ãè37H…Û„çI‹$©€uHÿÈI‰$uL‰çè>7H…Û„¦H‹©€uHÿÈH‰„¶H‹}ˆ‹ÿÀt‰M‰îI‰üH‹pÿÿÿH‹©€u
HÿÈH‰uèï6M…ötI‹©€uHÿÈI‰uL‰÷èÐ6M…ÿtI‹©€uHÿÈI‰uL‰ÿè±6H…ÛtH‹©€uHÿÈH‰uH‰ßè’6H‹‡îH‹H;EÐ…+	L‰àHÄÈ[A\A]A^A_]ÃH‰ßèa6H‹}ˆ‹ÿÀ„@ÿÿÿé9ÿÿÿE1ÿE1öééûÿÿè*5I‰ÆH‰…hÿÿÿH…À…ûùÿÿÇE€
A¼2Rë.ÇE€
A¼4RëH‹:íH‹8L‰æèÍ3A¼ARÇE€
M‰îL‹½xÿÿÿé„íÿÿH‹íH‹8H‰ÞèŸ3HDžhÿÿÿA¼CRL‹½xÿÿÿH‹pÿÿÿë[A¼WRëLL‰çH‰Þ1Òèe4H‰Ãé5þÿÿA¼µRÇE€
M‰îH‹pÿÿÿéíÿÿè:3H…À„1ÛéþÿÿA¼CRL‹½xÿÿÿH‹½HÿÿÿH‹ÇE€
©€u
HÿÈH‰uè,5M‰îéÉìÿÿA¼ôRÇE€ž
é
A¼ýRÇE€Ÿ
éøH‰ÊH…Ò„ÐH‹’H9ÂuëéÌE1ÿE1äéÍóÿÿèŸ2H…À…öH‰ßèîŽþÿI‰ÆH‰…hÿÿÿH…ÀL‹¥Pÿÿÿ…ÑíÿÿéÚèŠ3éâíÿÿA¼¾SéL‹sL‰µhÿÿÿM…ö„ÃL‹cA‹ÿÀtA‰A‹$ÿÀtA‰$L‰¥XÿÿÿH‹A¿©€uHÿÈH‰uH‰ßè94L‰ãL‹¥Pÿÿÿé¾íÿÿA¼ÓSé°H‹LëH‹8L‰æèß1A¼÷SÇE€ª
ë^H‹+ëH‹8L‰öè¾1HDž`ÿÿÿA¼ùSëA¼
TH‹…8ÿÿÿH‹ÇE€ª
©€uHÿÈH‹8ÿÿÿH‰uH‹½8ÿÿÿè 3E1öé2L‰çH‰Þ1ÒèY2H‰ÃL‹½xÿÿÿé4ñÿÿA¼PTÇE€ª
E1öH‹pÿÿÿéëÿÿ1Ûéñÿÿè 1H…À„Ÿ1ÛL‹½xÿÿÿL‹¥8ÿÿÿéîðÿÿA¼àRÇE€œ
éH;)ê…†êÿÿHDžXÿÿÿH‹ABH‹=š8H‹SH‰ÞèÈ2H…À„«I‰NjÿÀtA‰L‰½`ÿÿÿH‹5ë=I‹GH‹€L‰ÿH…À„¨ÿÐH‰ÃH‰…hÿÿÿH…À„«I‹©€uHÿÈI‰uL‰ÿè‰2H‹5vDI‹FH‹€L‰÷H…À„…ÿÐI‰ÄL‹½xÿÿÿH‰…`ÿÿÿÇE€Š
1ÒH…À„jH‹CH;ïé„qE1íL‰mL‰e˜H‹ÏéH‰E ‰ÐHÁàH÷ØH4(HƒƘƒÊH‰ßè©þÿH‰ÁH‰…XÿÿÿM…ít$I‹E©€uHÿÈI‰EuH‰MˆL‰ïèÔ1H‹MˆI‹$©€uHÿÈI‰$uI‰ÍL‰çè±1L‰éHDž`ÿÿÿH…É„	H‹©€uHÿÈH‰uI‰ÌH‰ßè}1L‰á‹ÿÀt‰H‹©€H‹pÿÿÿ…VçÿÿHÿÈH‰…JçÿÿI‰ÌH‰ÏèF1L‰áé7çÿÿè/H…À…H‰ßèT‹þÿI‰ÇH‰…`ÿÿÿH…À…?þÿÿéè÷/H‰ÃH‰…hÿÿÿH…À…UþÿÿA¼ñQÇE€Š
ézèÍ/ésþÿÿ1ÀH‰EˆA¼ôQH‹pÿÿÿéŒèÿÿL‹kM…í„ÒL‹{A‹EÿÀu2A‹ÿÀu6L‰½hÿÿÿH‹©€t9ëGA¼	R1ÀH‰EˆH‹pÿÿÿéAèÿÿA‰EA‹ÿÀtÊA‰L‰½hÿÿÿH‹©€uHÿÈH‰uH‰ßèJ0L‰ûL‹½xÿÿÿºéþÿÿA¼êRÇE€
ëH‹TçH‹8L‰æèç-A¼SÇE€¢
E1ö1ÀH‰EˆL‹½xÿÿÿé˜çÿÿH‹ çH‹8H‰Þè³-HDžhÿÿÿA¼SëA¼'SH‹EˆH‹ÇE€¢
©€…@HÿÈH‹MˆH‰…0H‹}ˆè–/é"HDž`ÿÿÿHDžhÿÿÿHDžXÿÿÿH=ºÓH
®5¾FSº£
èþÿHµXÿÿÿH•hÿÿÿH`ÿÿÿH‹}€è!¤…ÀˆãH‹µXÿÿÿH‹•hÿÿÿH‹`ÿÿÿ¿H‰µ ÿÿÿH‰•ÿÿÿH‰(ÿÿÿ1Àèa.H…À„]I‰ÄH‹]ˆH‰ßH‰Æ1Ò薓þÿH‰…0ÿÿÿH‹©€uHÿÈH‹MˆH‰u	H‹}ˆè´.I‹$©€uHÿÈI‰$uL‰çè˜.Hƒ½0ÿÿÿ„H‹…0ÿÿÿH;pæt;H‹…0ÿÿÿH;Pæt+H‹…0ÿÿÿH;HætH‹½0ÿÿÿè^-‰ÃëA¼[Sé¯1ÛH‹…0ÿÿÿH;#æ”ÃH‹…0ÿÿÿH‹©€uHÿÈH‹0ÿÿÿH‰uH‹½0ÿÿÿè.…Ûxf„{H‹½ ÿÿÿè†òýÿHDžXÿÿÿH‹½ÿÿÿèoòýÿH‹½(ÿÿÿècòýÿHDž`ÿÿÿH‹E€H‹xhL‰öL‰úH‹8ÿÿÿè.¤L‹¥Pÿÿÿ鉿ÿÿA¼hSH‹E€H‹xhL‰öL‰úH‹8ÿÿÿè¤ÇE€¢
E1ö1ÀH‰EˆL‹½xÿÿÿH‹pÿÿÿéøäÿÿèT-H‹ËäH‹8H5¦½è+éÎ÷ÿÿHDžhÿÿÿA¼¯QÇE€‡
éyïÿÿHDž`ÿÿÿÇE€Š
A¼ïQ1ÀH‰EˆL‹½xÿÿÿH‹pÿÿÿé­äÿÿE1í1ÒL‹½xÿÿÿé¢úÿÿHDžhÿÿÿA¼¼SÇE€¦
éHÿÿÿE1öE1ÿévøÿÿH‹)äH‹8H5½èn*éFùÿÿA¼_SéöþÿÿA¼dSéëþÿÿèÎ+H‰ÇH‹µ ÿÿÿH‹•ÿÿÿH‹(ÿÿÿè‰þÿHDžXÿÿÿHDžhÿÿÿHDž`ÿÿÿA¼pSéþÿÿ[ÛÿÿXÜÿÿ”ÜÿÿÍÜÿÿ„UH‰åAWAVAUATSHƒìxI‰ÒI‰ýH‹òãH‹H‰EÐWÀ)E°H]:H‰EHr;H‰E˜H>H‰E HÇE¨H‹¤ãH‰UÀH…É„µIƒú‡ÄI‰ÏJÖH‰…pÿÿÿH<L‰•hÿÿÿJcHÁÿáM‹wM…ö~aIGL‹%ä91ÛH‰Eˆfffff.„M9dß„×HÿÃI9Þuí1Ûff.„I‹tßL‰çºèn˜…À…¢HÿÃI9ÞuÞèÙ(¾ÉTH…ÀL‹•hÿÿÿ…RëIƒú„OIƒúu	H‹VéGE1ÀIƒúHxÅH
zÅHLÈAœÀIƒðH‹AâH‹8HƒìH5iÅH|åL
—Å1ÀARèJ(HƒÄ¾ñTéÜL‰­xÿÿÿH‹H‰E€H‰E°IGH‰EˆI‹_I‰ÞH…ۏé]L‰­xÿÿÿL‹^L‰]¸L‹L‰U°IGM‹wM…öŽÛL‰]ˆL‰U€L‹(M…íŽùL‹%M<1Ûff.„M9dß„ÁHÿÃI9Ýuí1Ûff.„I‹tßL‰çºè—…À…HÿÃI9ÝuÞéžH‹VH‰UÀL‹^L‰]¸L‹L‰U°M‹wé¢H‹‚áL‹L‹^M‹µèA‹ÿÀ…™é—ˆ`þÿÿH‹…pÿÿÿH‹ØH‰E°H…À„HþÿÿH‰E€L‰­xÿÿÿIÿÎH‹EˆH‹H…Û~JL‹%Õ8E1ífO9dï„¥IÿÅL9ëuíE1íf.„K‹tïL‰çºèN–…ÀuxIÿÅL9ëuâè½&H…À…sH‹màH‹8HƒìH5•ÃH¨ãH
nÃL
¼ÃA¸1Àjèi&HƒÄ¾ÓTH=QÍH
ä.º±
èZþÿE1öé;xŽH‹…pÿÿÿN‹èL‰]¸M…Û„vÿÿÿIÿÎH‹NàL‹U€H‹EˆM…ö%þÿÿL‹­xÿÿÿM‹µèA‹ÿÀuXëYxH‹…pÿÿÿH‹ØH…Òt	H‰UÀIÿÎëèæ%H…À…¦H‹ößL‹­xÿÿÿL‹U€L‹]ˆM…ö1M‹µèA‹ÿÀtA‰IƒÅHHƒìH=ŽL‰îL‰ñA¸E1Éjÿ5g0ÿ5!<jÿ5Q7ASjÿ5'6ARÿ?HƒÄPH‰ÃI‹H…Ûtg©€uHÿÈI‰uL‰÷èu'H‰ßè‰5I‰ÆH…ÀttH‹©€uHÿÈH‰uH‰ßèK'H‹@ßH‹H;EÐ…àL‰ðHƒÄx[A\A]A^A_]é€uHÿÈI‰uL‰÷è'H=¹ËH
L-¾(Uºé^þÿÿH=œËH
/-¾6Uºè þÿH‹©€„kÿÿÿévÿÿÿL
–áHUHM°L‰ÿH‹µpÿÿÿL‹…hÿÿÿè8…Àx7L‹U°L‹]¸H‹UÀM‹µèA‹ÿÀ…–þÿÿé”þÿÿ¾ÑTéÅýÿÿ¾ÚTé»ýÿÿ¾ßTé±ýÿÿèX&fÔúÿÿÎûÿÿýûÿÿ“üÿÿfff.„UH‰åAWAVAUATSHƒìhI‰ÒI‰üH‹ÞH‹H‰EÐH3H‰E H98H‰E¨HÇE°L‹^:L‰]ÀL‹-ËÝL‰mÈH…Ét@I‰ÏJÖM…Ò„ãIƒú„XIƒúu[H‰E˜L‰U€L‹nL‰mÈL‹L‰]ÀI‹_é'L‹-{ÝM…Ò„ Iƒút
IƒúuL‹nL‹M‹´$èA‹ÿÀ…	éM‰ÐIÁè>A÷ÐAƒàM…ÒHì¿H
î¿HHÈH‹½ÜH‹8HƒìH5å¿H˜íL
À1ÀARèÆ"HƒÄ¾¯UH=ÊH
A+º	è·þÿE1öé(L‰U€I‹_H…ÛŽlH‰E˜L‰eIGL‹%Ó1E1öL‰]ˆH‰…xÿÿÿffff.„O9d÷tTIÿÆL9óuñE1öfffff.„K‹t÷L‰çº辑…Àu#IÿÆL9óuâë?H‰E˜L‰U€L‹L‰]ÀIGI‹_ëCx$H‹E˜J‹ðH…ÀtH‰EÀHÿËI‰ÃL‹eH‹…xÿÿÿëèì!H…ÀL‹eL‹]ˆH‹…xÿÿÿ….H…ÛŽ™L‰]ˆL‰eL‹(M…í~cL‹%$6E1öO9d÷t;IÿÆM9õuñE1öfffff.„K‹t÷L‰çºèþ…Àu
IÿÆM9õuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËëèS!H…À…L‹-cÛL‹eL‹]ˆH…ۏ5M‹´$èA‹ÿÀtA‰IƒÄ H‹µ7L‹î+HƒìH=#L‰æL‰êL‰ñA¸E1ÉjARPjARPj
ÿ5/0ASÿw:HƒÄPH‰ÃI‹H…Ûtg©€uHÿÈI‰uL‰÷èå"H‰ßèù0I‰ÆH…ÀttH‹©€uHÿÈH‰uH‰ßè»"H‹°ÚH‹H;EÐ…×L‰ðHƒÄh[A\A]A^A_]é€uHÿÈI‰uL‰÷è~"H=}ÇH
¼(¾æUºUéqýÿÿH=`ÇH
Ÿ(¾ôUºZèþýÿH‹©€„kÿÿÿévÿÿÿL
¦êHU HMÀL‰ÿH‹u˜L‹E€讋…Àx*L‹]ÀL‹mÈM‹´$èA‹ÿÀ…œþÿÿéšþÿÿ¾™Uéáüÿÿ¾žUé×üÿÿ¾’UéÍüÿÿèÑ!€UH‰åAWAVAUATSHƒìXI‰ÒI‰üH‹¢ÙH‹H‰EÐWÀ)EÀHm*H‰E HÂ3H‰E¨HÇE°L‹-_ÙL‰mÈH…ÉtAI‰ÏJÖM…ÒtRIƒú„HIƒú…»L‹nL‰mÈL‹L‰]ÀI‹_H…ÛŽ@épIƒú„0Iƒú…†L‹né$H‰E˜L‰UL‰e€I‹_H…Û~UIGL‹%È)E1öH‰EˆO9d÷„IÿÆL9óuíE1öf.„K‹t÷L‰çºèþ…À…ÝIÿÆL9óuÞèi¾PVH…ÀL‹Uuc1ÀM…ÒžÀH)»H
+»HNÊH‹ú×H‹:H€&L
[»LNÊA¸I)ÀHƒìH5»HÉò1ÀARèïHƒÄ¾lVH=SÅH
j&º\èàûýÿE1öéÉH‰E˜L‹L‰]ÀIGI‹_H…ÛZéL‹-Ô×L‹M‹´$èA‹ÿÀ…óéñˆ%ÿÿÿH‹E˜N‹ðL‰]ÀM…Û„ÿÿÿHÿËL‹e€L‹UH‹EˆH…ÛެL‰]ˆL‰UL‰e€L‹(M…í~jL‹%»1E1ö„O9d÷t;IÿÆM9õuñE1öfffff.„K‹t÷L‰çº莌…Àu
IÿÆM9õuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËëèãH…À… L‹-óÖL‹e€L‹UH‹E˜L‹]ˆH…ۏ5M‹´$èA‹ÿÀtA‰IƒÄ H‹=3L‹v'HƒìH=»L‰æL‰êL‰ñA¸E1ÉjARPjARPjÿ5'ASÿÿ5HƒÄPH‰ÃI‹H…Ûtg©€uHÿÈI‰uL‰÷èmH‰ßè,I‰ÆH…ÀttH‹©€uHÿÈH‰uH‰ßèCH‹8ÖH‹H;EÐ…ËL‰ðHƒÄX[A\A]A^A_]é€uHÿÈI‰uL‰÷èH=-ÃH
D$¾£VºµéÐýÿÿH=ÃH
'$¾±Vººè˜ùýÿH‹©€„kÿÿÿévÿÿÿL
=ðHU HMÀL‰ÿH‰ÆM‰Ðè8‡…Àx L‹]ÀL‹mÈM‹´$èA‹ÿÀ…žþÿÿéœþÿÿ¾\VéBýÿÿ¾WVé8ýÿÿèeff.„UH‰åAWAVAUATSHƒìXI‰ÒI‰üH‹2ÕH‹H‰EÐWÀ)EÀH½,H‰E HR/H‰E¨HÇE°L‹-ïÔL‰mÈH…ÉtAI‰ÏJÖM…ÒtRIƒú„HIƒú…»L‹nL‰mÈL‹L‰]ÀI‹_H…ÛŽ@épIƒú„0Iƒú…†L‹né$H‰E˜L‰UL‰e€I‹_H…Û~UIGL‹%,E1öH‰EˆO9d÷„IÿÆL9óuíE1öf.„K‹t÷L‰çº莉…À…ÝIÿÆL9óuÞèù¾
WH…ÀL‹Uuc1ÀM…ÒžÀH¹¶H
»¶HNÊH‹ŠÓH‹:H"L
ë¶LNÊA¸I)ÀHƒìH5—¶H3ú1ÀARèHƒÄ¾)WH=ÁH
ú!º¼èp÷ýÿE1öéÉH‰E˜L‹L‰]ÀIGI‹_H…ÛZéL‹-dÓL‹M‹´$èA‹ÿÀ…óéñˆ%ÿÿÿH‹E˜N‹ðL‰]ÀM…Û„ÿÿÿHÿËL‹e€L‹UH‹EˆH…ÛެL‰]ˆL‰UL‰e€L‹(M…í~jL‹%K-E1ö„O9d÷t;IÿÆM9õuñE1öfffff.„K‹t÷L‰çºèˆ…Àu
IÿÆM9õuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËëèsH…À… L‹-ƒÒL‹e€L‹UH‹E˜L‹]ˆH…ۏ5M‹´$èA‹ÿÀtA‰IƒÄ H‹Í.L‹#HƒìH=[L‰æL‰êL‰ñA¸E1ÉjARPjARPjÿ5Ï)ASÿ1HƒÄPH‰ÃI‹H…Ûtg©€uHÿÈI‰uL‰÷èýH‰ßè(I‰ÆH…ÀttH‹©€uHÿÈH‰uH‰ßèÓH‹ÈÑH‹H;EÐ…ËL‰ðHƒÄX[A\A]A^A_]é€uHÿÈI‰uL‰÷è–H=â¾H
Ô¾`WºóéÐýÿÿH=žH
·¾nWºøè(õýÿH‹©€„kÿÿÿévÿÿÿL
§÷HU HMÀL‰ÿH‰ÆM‰ÐèȂ…Àx L‹]ÀL‹mÈM‹´$èA‹ÿÀ…žþÿÿéœþÿÿ¾WéBýÿÿ¾Wé8ýÿÿèõff.„UH‰åAWAVAUATSHì˜I‰ÒH‹ÂÐH‹H‰EÐWÀ)EÀ)E°Hy'H‰E€H6'H‰EˆHÛ'H‰EHÈ*H‰E˜HÇE L‹-eÐL‰mÈH…É„¶Iƒú‡ÂI‰ÌH‰½HÿÿÿJÖH‰…pÿÿÿHNL‰•XÿÿÿJcHÁÿáM‹t$M…ö~ZID$H‹ì&E1ÿH‰…PÿÿÿfK9\ü„èIÿÇM9þuíE1ÿf.„K‹tüH‰ߺè.……À…³IÿÇM9þuÞè™»ÐWH…ÀL‹•Xÿÿÿ…ëIƒútnIƒúu
L‹nL‰mÈëe1ÀIƒúœÀH9²H
;²HLÊA¸I)ÀH‹ÏH‹8HƒìH5)²HWýL
W²1ÀARè
HƒÄ»Xé’L‹-'ÏH‰½HÿÿÿH‹FH‰…hÿÿÿH‰EÀH‹FH‰…xÿÿÿH‰E¸L‹>L‰}°éVH‹H‰…`ÿÿÿH‰E°ID$H‰…PÿÿÿI‹\$I‰ÞH…ۏïé4H‹FH‰…xÿÿÿH‰E¸H‹H‰…`ÿÿÿH‰E°ID$H‰…PÿÿÿI‹\$I‰ÞH…ۏGé•H‹FH‰…hÿÿÿH‰EÀH‹FH‰…xÿÿÿH‰E¸L‹>L‰}°ID$M‹t$M…öéªL‹nL‰mÈH‹FH‰…hÿÿÿH‰EÀH‹FH‰…xÿÿÿH‰E¸L‹>L‰}°M‹t$éjˆOþÿÿH‹…pÿÿÿJ‹øH‰E°H…À„7þÿÿH‰…`ÿÿÿIÿÎH‹…PÿÿÿH‹H…Û~JL‹=}$E1ífO9|ìtWIÿÅL9ëuñE1ífffff.„K‹tìL‰ÿºèþ‚…Àu&IÿÅL9ëuâèmH…À…Û»ÚWAºé›xàH‹…pÿÿÿJ‹èH‰E¸H‰…xÿÿÿH…ÀtÅIÿÎH‹…PÿÿÿH‹H…Û~SL‹-–$E1ÿff.„O9lü„¬IÿÇL9ûuíE1ÿf.„K‹tüL‰ïºè^‚…ÀuIÿÇL9ûuâèÍH…À…ˆ»äWAºH‹rÌH‹8HƒìH5š¯HÈúH
s¯L
oA¸1ÀARènHƒÄH=&ºH
î‰޺úèbðýÿ1ÛéÛx‡H‹…pÿÿÿJ‹øH‰EÀH‰…hÿÿÿH…À„hÿÿÿIÿÎL‹-PÌL‹½`ÿÿÿH‹…PÿÿÿM…öŽ™L‰½`ÿÿÿL‹(M…í~eH‹s&E1ÿK9\üt;IÿÇM9ýuñE1ÿfffff.„K‹tüH‰ߺèN…Àu
IÿÇM9ýuâëxH‹…pÿÿÿN‹,øM…ít	L‰mÈIÿÎëè H…À…gL‹-°ËL‹½`ÿÿÿM…ö„H‹¡*H‹˜(¿ÿhL‰ÿH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„”H‰ËÿÀt‰H‹©€uHÿÈH‰uH‰ßèXH‰pÿÿÿH‹>*H‹˜(¿ÿhH‹½xÿÿÿH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„KI‰ċÿÀtA‰$M‰þI‹$©€uHÿÈI‰$uL‰çèêH‹×)H‹˜(¿ÿhH‹½hÿÿÿH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„I‰NjÿÀtA‰I‹©€uHÿÈI‰uL‰ÿè‰A‹D$H‹pÿÿÿ9AL‰½`ÿÿÿL‰¥XÿÿÿL‰­@ÿÿÿu
AG„L‹5Ž!H‹=çI‹VL‰öèH…À„Ë
H‰ËÿÀt‰H‹5hH‹CH‹€H‰ßH…À„ê
ÿÐI‰ÇH…À„í
H‹©€uHÿÈH‰uH‰ßèåH‹!H‹=sH‹SH‰Þè¡H…À„Ñ
I‰ċÿÀtA‰$H‹5"I‹D$H‹€L‰çH…À„ß
ÿÐI‰ÆH…À„â
I‹$©€uHÿÈI‰$uL‰çèlH‹¡ H‹=úH‹SH‰Þè(H…À„ð
I‰ŋÿÀtA‰EH‹5II‹EH‹€L‰ïH…À„ÿ
ÿÐI‰ÄH…À„I‹E©€uHÿÈI‰EuL‰ïèôDžPÿÿÿtI‹D$H;’È„ã
E1í1ÛH‰]€H‹…pÿÿÿH‰EˆH‹…XÿÿÿH‰ED‰èHÁàH÷ØH4(HƒƈAƒÍL‰çL‰êèˆþÿI‰ÅH…ÛtH‹©€uHÿÈH‰uH‰ßèvM…턹
I‹$©€uHÿÈI‰$uL‰çèQI‹FH;úÇ„“
1ÛE1äL‰e€L‰mˆH‹…`ÿÿÿH‰E‰ØHÁàH÷ØH4(HƒƈƒËL‰÷H‰Ú腇þÿH‰ÃM…ätI‹$©€uHÿÈI‰$uL‰çèåI‹E©€uHÿÈI‰EuL‰ïèÉH…Û„R
I‹©€uHÿÈI‰uL‰÷è¦I‹GH;OÇ„9
E1äE1öL‰u€H‰]ˆD‰àHÁàH÷ØH4(HƒƈAÿÄL‰ÿL‰âèã†þÿI‰ÄM…ötI‹©€uHÿÈI‰uL‰÷èEH‹©€uHÿÈH‰uH‰ßè+M…ä„
I‹©€uHÿÈI‰uL‰ÿèL;%õÆt1L;%ÜÆt(L;%ÛÆtL‰çèõ
‰ÅÀˆ*I‹$©€të(1ÛL;%¹Æ”ÃI‹$©€uHÿÈI‰$uL‰ç覅ۅ™H‹5H‹pÿÿÿH‹CH‹€H‰ßH…À„áÿÐI‰ÇH‹…XÿÿÿM…ÿ„äL‹5™H‹=òI‹VL‰öè H…À„ÚH‰ËÿÀt‰H‹5ÃH‹CH‹€H‰ßH…À„ëÿÐI‰ÆDžPÿÿÿwH…À„îH‹©€uHÿÈH‰uH‰ßèæ
I‹GH;Å…×I‹_H…Û„ÊM‹o‹ÿÀuA‹EÿÀuI‹A¼©€t ë.‰A‹EÿÀtäA‰EI‹A¼©€uHÿÈI‰uL‰ÿèv
M‰ïH‰]€L‰uˆD‰àHÁàH÷ØH4(HƒƈAÿÄL‰ÿL‰âèDŽþÿH‰…xÿÿÿH…ÛtH‹©€uHÿÈH‰uH‰ßè%
I‹©€H‹XÿÿÿL‹¥pÿÿÿuHÿÈI‰uL‰÷èýL‹µxÿÿÿM…ö„åI‹©€uHÿÈI‰„RL;5¼ÄL‹½`ÿÿÿ„ZH‹¸H…À„I‹NH9Á„=H‹‘XH…Ò„ÑH‹rH…ö~1ÿ€H9Dú„HÿÇH9þuíH‹QH‹HH‹îÃH‹8H5â«1Àè
¾©Y»wM‰ôé·L‰÷èCH‰ÃHƒøÿuèõ	H…À…¶H‹½xÿÿÿè I‰ÇHƒøÿuèÒ	H…À…ŸH‹½hÿÿÿèýI‰ÅHƒøÿuè¯	H…À…ˆIL9èŒgH‹…HÿÿÿL‹°èA‹ÿÀtA‰H‰ßè
H…À„ÅI‰ÄL‰ÿèû	H…À„sI‰ÇL‰ïèç	H…À„xH‰ÃH‹µHÿÿÿHƒÆ HƒìH=H‹•@ÿÿÿL‰ñE1ÀA¹jÿ5”Pjÿ5ÛAWjÿ5	ATÿ™"HƒÄPH…À„2I‰ÅI‹©€uHÿÈI‰uL‰÷èI‹$©€uHÿÈI‰$uL‰çèç
I‹©€uHÿÈI‰uL‰ÿèÍ
H‹©€L‹½XÿÿÿL‹¥pÿÿÿuHÿÈH‰uH‰ßè¥
L‰ïè¹H…ÀL‹µ`ÿÿÿ„³H‰ÃéVL‰ÿè}
L;5bÂL‹½`ÿÿÿ…¦ýÿÿI‹$©€uHÿÈI‰$uL‰çèM
H‹5ºH‹CH‹€H‰ßH…À„3	ÿÐI‰ÇH…À„6	H‹VH‹=¯H‹SH‰ÞèÝ	H…À„3	I‰ƋÿÀtA‰H‹5I‹FH‹€L‰÷H…À„Q	ÿÐH‰ÃH…À„T	I‹©€uHÿÈI‰uL‰÷è¬	I‹GH;UÁ…§M‹wM…ö„šM‹oA‹ÿÀuA‹EÿÀuI‹A¼©€t!ë/A‰A‹EÿÀtãA‰EI‹A¼©€uHÿÈI‰uL‰ÿè:	M‰ïL‰u€H‰]ˆD‰àHÁàH÷ØH4(HƒƈAÿÄL‰ÿL‰â苀þÿI‰ÅM…ötI‹©€uHÿÈI‰uL‰÷èíH‹©€L‹µXÿÿÿuHÿÈH‰uH‰ßèÌM…í„{I‹©€uHÿÈI‰„ŠL;-’ÀL‹½`ÿÿÿ„’H‹ŽH…À„©
I‹MH9ÁtyH‹‘XH…Ò„ã
H‹rH…ö~1ÿH9DútVHÿÇH9þuñH‹QH‹HH‹ҿH‹8H5Ƨ1Àèï¾ÒY»xM‰ìéL‰ÿèL;-ÀL‹½`ÿÿÿ…nÿÿÿI‹©€uHÿÈI‰uL‰÷èíH‹5ZI‹GH‹€L‰ÿH…À„ÆÿÐI‰ÇH…ÀL‰­hÿÿÿ„ÉL‹5ïH‹=H
I‹VL‰öèvH…À„¿H‰ËÿÀt‰H‹5H‹CH‹€H‰ßH…À„åÿÐI‰ÄDžPÿÿÿyH…À„èH‹©€uHÿÈH‰uH‰ßè<I‹GH;å¾…¶I‹_H…Û„©M‹o‹ÿÀuA‹EÿÀuI‹A¾©€t ë.‰A‹EÿÀtäA‰EI‹A¾©€uHÿÈI‰uL‰ÿèÌM‰ïL‹­@ÿÿÿH‰]€L‰eˆD‰ðHÁàH÷ØH4(HƒƈAÿÆL‰ÿL‰òè~þÿI‰ÆH…ÛtH‹©€uHÿÈH‰uH‰ßèxI‹$©€uHÿÈI‰$uL‰çè\M…ö„
I‹©€uHÿÈI‰uL‰ÿè9L;5¾L‹½`ÿÿÿ„)H‹H…À„mI‹NH9Á„H‹‘XH…Ò„E
H‹rH…ö~1ÿf„H9Dú„Ý
HÿÇH9þuíH‹QH‹HH‹N½H‹8H5B¥1Àèk¾ûY»yM‰ôH‹…hÿÿÿH‰…XÿÿÿH‹…xÿÿÿH‰…pÿÿÿI‹$©€u	HÿÈI‰$t>E1íH‹…pÿÿÿH‰…xÿÿÿH‹…XÿÿÿH‰…hÿÿÿM‰þH=ȪH
‰Úè	áýÿ1Ûéñ
‰µHÿÿÿL‰çè(E1íH‹…pÿÿÿH‰…xÿÿÿH‹…XÿÿÿH‰…hÿÿÿM‰þ‹µHÿÿÿë¬E1ä1Ûé÷ÿÿE1äE1öé²ûÿÿ1ÀH‰…xÿÿÿ»a¾KX1ÀH‰…hÿÿÿë!1ÀH‰…hÿÿÿ»b¾ZXH‹…pÿÿÿH‰…xÿÿÿE1öE1íéMÿÿÿ»c¾iXH‹…pÿÿÿH‰…xÿÿÿL‰¥hÿÿÿE1íE1öé#ÿÿÿE1ö1Ûé¢ýÿÿè2H…ÀuL‰÷è…^þÿH‰ÃH…À…"òÿÿE1íH‹…pÿÿÿH‰…xÿÿÿL‰¥hÿÿÿM‰þ»t¾YéÑþÿÿè
I‰ÇH…À…òÿÿ¾YDžPÿÿÿtE1äE1íL‹½`ÿÿÿé}è¸DžPÿÿÿtH…ÀuH‰ßè^þÿI‰ÄH…À…òÿÿ1ÛE1íE1ä¾YéèžI‰ÆH…À…òÿÿ¾YDžPÿÿÿt1ÛE1öI‹$©€uHÿÈI‰$uL‰çA‰ôèsD‰æE1äA½M…ö…™é´è DžPÿÿÿtH…ÀuH‰ßèi]þÿI‰ÅH…À…õñÿÿE1äE1í1۾!YéZèI‰ÄH…À…þñÿÿDžPÿÿÿt¾#YE1ä1Ûé0I‹\$H…Û„òÿÿI‹L$‹ÿÀ…À‹ÿÀ…ÂI‹$A½©€…Í黾8YëGM‹fM…ä„`òÿÿI‹NA‹$ÿÀ…¬‹ÿÀ…°I‹»©€…ºé©¾OYE1äE1í1Ûé—M‹wM…ö„ºòÿÿM‹oA‹ÿÀ…¥A‹EÿÀ…¨I‹A¼©€„¨é³DžPÿÿÿt¾fY1ÛéâH‹=rH‹5³E1í1Òè©fþÿ»uH…À„ÑI‰ÄH‰Çè0gþÿI‹$©€…e»u¾yYHÿÈI‰$…SDžHÿÿÿyYL‹½`ÿÿÿéhüÿÿèI‰ÇH‹…XÿÿÿM…ÿ…óÿÿ¾‹YE1íH‰xÿÿÿ»wé$è.ÿDžPÿÿÿwH…ÀuL‰÷èw[þÿH‰ÃH…À…	óÿÿ1ÛE1íE1侍YéèI‰ÆDžPÿÿÿwH…À…óÿÿ¾Yéå¾¥Y1ÛéÙèãÿI‰ÇH…À…Êöÿÿ¾´YE1íH‰hÿÿÿ»xL‹µ`ÿÿÿéyûÿÿè’þDžPÿÿÿxH…ÀuH‰ßèÛZþÿI‰ÆH…À…±öÿÿ1ÛH‹…xÿÿÿH‰…pÿÿÿE1íE1侶YéãèjÿH‰ÃH…À…¬öÿÿ¾¸YDžPÿÿÿxE1äE1í1ÛH‹…xÿÿÿH‰…pÿÿÿéƒDžPÿÿÿx¾ÎY1ÛH‹…xÿÿÿH‰…pÿÿÿéH‹¡·H‹8H5‰Ÿèæýé¸óÿÿèðþI‰ÇH…ÀL‰­hÿÿÿ…7øÿÿ»y¾ÝYE1íL‹µ`ÿÿÿé†úÿÿèŸýDžPÿÿÿyH…ÀuL‰÷èèYþÿH‰ÃH…À…$øÿÿ1ÛH‹…xÿÿÿH‰…pÿÿÿL‰­XÿÿÿE1íE1ä¾ßYééèpþI‰ÄDžPÿÿÿyH…À…øÿÿ¾áYL‰éE1íH‹…xÿÿÿH‰…pÿÿÿH‰XÿÿÿE1ä馾÷Y1ÛH‹…xÿÿÿH‰…pÿÿÿH‹…hÿÿÿH‰…XÿÿÿE1íE1äéx‰‹ÿÀ„>üÿÿ‰I‹$A½©€u
HÿÈI‰$„hI‰ÌéîÿÿA‰$‹ÿÀ„Püÿÿ‰I‹»©€uHÿÈI‰„EI‰Îévîÿÿ¾jY»tL‹½`ÿÿÿéùÿÿA‰A‹EÿÀ„XüÿÿA‰EI‹A¼©€uHÿÈI‰uL‰ÿèhþM‰ïéÑîÿÿ¾yYE1íH‹…pÿÿÿH‰…xÿÿÿH‹…XÿÿÿH‰…hÿÿÿL‹µ`ÿÿÿéÞøÿÿL
 äHU€HM°L‰çH‹µpÿÿÿL‹…Xÿÿÿè§g…Àˆ©L‹}°H‹E¸H‰…xÿÿÿH‹EÀH‰…hÿÿÿL‹mÈé,êÿÿH‹]µH‹8H5Eè¢ûéõÿÿH‰ÊH…Ò„#H‹’H9Âuëé?óÿÿH‹%µH‹8H5
èjûéÜ÷ÿÿH‰ÊH…Ò„1H‹’H9Âuëéiõÿÿ»âWé¶èÿÿH‹=ÓH‹5E1í1Òè
bþÿH…À„AI‰ÄH‰Çè–bþÿI‹$©€…íDžHÿÿÿ¶XHÿÈI‰$„ðE1íH‹…pÿÿÿH‰…xÿÿÿH‹…XÿÿÿH‰…hÿÿÿL‹µ`ÿÿÿ»l¾¶Xé÷ÿÿ¾ÒXDžPÿÿÿnE1äE1í1ÛE1ÿI‹©€uHÿÈI‰uL‰÷A‰öè¨üD‰öM…ÿt I‹©€uHÿÈI‰uL‰ÿA‰öèƒüD‰öH…ÛL‹½`ÿÿÿtH‹©€uHÿÈH‰uH‰߉óèXü‰ÞM…ít I‹E©€uHÿÈI‰EuL‰ï‰óè3ü‰ÞM…䋝Pÿÿÿ…šöÿÿé©öÿÿ¾ÜXDžPÿÿÿo1ÛE1ÿérøÿÿ¾æXDžPÿÿÿp1Ûé\øÿÿ¾ðXDžPÿÿÿméHøÿÿ»r¾YL‰¥xÿÿÿL‰½hÿÿÿéköÿÿ»ØWéçÿÿH‰ÊH…Ò„žH‹’H9ÂuëéšH;›²„ ñÿÿéïÿÿL‰çI‰Ìèyûé¡êÿÿL‰÷I‰Îèiûé)ëÿÿ»ëWéªæÿÿ»ðWé æÿÿH;U²„<óÿÿééòÿÿ¾¶XE1íH‹…pÿÿÿH‰…xÿÿÿH‹…XÿÿÿH‰…hÿÿÿL‹µ`ÿÿÿ»lé·õÿÿH;²…+õÿÿI‹©€uHÿÈI‰uL‰ÿèâúH‹µHÿÿÿL‹¦èA‹$ÿÀtA‰$HƒÆ L‹
‘	HƒìH=nïL‰êL‰áL‹…xÿÿÿjÿ5é	AVjÿ5/	ÿµhÿÿÿjÿùHƒÄ@H…À„íI‰ÅI‹$©€uHÿÈI‰$uL‰çèYúL‰ïèmH…À„ÏH‰ÃH‹…xÿÿÿI‰ÄL‹½hÿÿÿH…ÀtI‹$©€uHÿÈI‰$uL‰çèúM…ÿtI‹©€uHÿÈI‰uL‰ÿèôùM…ötI‹©€uHÿÈI‰uL‰÷èÕùM…ítI‹E©€uHÿÈI‰EuL‰ïè´ùH‹©±H‹H;EÐ…H‰ØHĘ[A\A]A^A_]þZ»zM‰÷éÕóÿÿ»¾Zéôÿÿ»g¾ŠXë»h¾”Xë
»i¾žXE1íH‹…pÿÿÿH‰…xÿÿÿL‰¥hÿÿÿL‹µ`ÿÿÿéÒóÿÿL‹½`ÿÿÿ»léãóÿÿèù¾uYé¬úÿÿ¾²XéÄýÿÿfÂàÿÿîáÿÿâÿÿ]âÿÿšâÿÿUH‰åAWAVAUATSHƒìXI‰ÒI‰üH‹°H‹H‰EÐWÀ)EÀHMH‰E Hâ
H‰E¨HÇE°L‹-°L‰mÈH…ÉtAI‰ÏJÖM…ÒtRIƒú„HIƒú…»L‹nL‰mÈL‹L‰]ÀI‹_H…ÛŽ@épIƒú„0Iƒú…†L‹né$H‰E˜L‰UL‰e€I‹_H…Û~UIGL‹%¨E1öH‰EˆO9d÷„IÿÆL9óuíE1öf.„K‹t÷L‰çºèe…À…ÝIÿÆL9óuÞè‰õ¾‚ZH…ÀL‹Uuc1ÀM…ÒžÀHI’H
K’HNÊH‹¯H‹:H ýL
{’LNÊA¸I)ÀHƒìH5'’HØí1ÀARèõHƒÄ¾žZH=ñœH
ŠýºèÓýÿE1öéÉH‰E˜L‹L‰]ÀIGI‹_H…ÛZéL‹-ô®L‹M‹´$èA‹ÿÀ…óéñˆ%ÿÿÿH‹E˜N‹ðL‰]ÀM…Û„ÿÿÿHÿËL‹e€L‹UH‹EˆH…ÛެL‰]ˆL‰UL‰e€L‹(M…í~jL‹%ÛE1ö„O9d÷t;IÿÆM9õuñE1öfffff.„K‹t÷L‰çºè®c…Àu
IÿÆM9õuâëxH‹E˜N‹,ðM…ít	L‰mÈHÿËëèôH…À… L‹-®L‹e€L‹UH‹E˜L‹]ˆH…ۏ5M‹´$èA‹ÿÀtA‰IƒÄ H‹]
L‹–þHƒìH=òL‰æL‰êL‰ñA¸E1ÉjARPjARPjÿ5_ASÿ
HƒÄPH‰ÃI‹H…Ûtg©€uHÿÈI‰uL‰÷èõH‰ßè¡I‰ÆH…ÀttH‹©€uHÿÈH‰uH‰ßècõH‹X­H‹H;EÐ…ËL‰ðHƒÄX[A\A]A^A_]é€uHÿÈI‰uL‰÷è&õH=˚H
dû¾ÕZºÒéÐýÿÿH=®šH
Gû¾ãZº×è¸ÐýÿH‹©€„kÿÿÿévÿÿÿL
LëHU HMÀL‰ÿH‰ÆM‰ÐèX^…Àx L‹]ÀL‹mÈM‹´$èA‹ÿÀ…žþÿÿéœþÿÿ¾ŽZéBýÿÿ¾‰Zé8ýÿÿè…ôff.„UH‰åAWAVAUATSHì¸I‰þH‹R¬H‹H‰EÐWÀ)E HEH‰…pÿÿÿHÇþH‰…xÿÿÿHaH‰E€H>þH‰EˆH[H‰EHÇE˜H‹è«H‰]°L‹õL‰E¸L‹
bL‰MÀH…É„ÃHƒú‡òI‰ÍHÖH‰…8ÿÿÿH:H‰•(ÿÿÿHcHÁÿáL‰µPÿÿÿL‰…@ÿÿÿL‰HÿÿÿM‹eM…ä~ZIEL‹5…E1ÿH‰…XÿÿÿO9tý„9IÿÇM9üuíE1ÿf.„K‹týL‰÷ºèŽ`…À…IÿÇM9üuÞèùð¾J[H…ÀH‹•(ÿÿÿ…Àë9HBþHƒøw/H‹ñªH
–HcHÈÿàL‹N L‹FH‹^H‹L‹féñ1ÀHƒúÀLD@HqH
sHLÈH‹BªH‹8H‰$H5jH-õL
˜1ÀèMð¾†[é1L‰…@ÿÿÿL‰HÿÿÿL‰µPÿÿÿH‹H‰…`ÿÿÿH‰E IEH‰…XÿÿÿM‹}L‰½hÿÿÿM…ÿOéœL‹fL‰e¨H‹H‰E IUI‹MH…ɏ9é1L‰…@ÿÿÿL‰µPÿÿÿH‹^H‰]°L‹fL‰e¨H‹H‰E IUI‹MH…ÉŽíL‰¥0ÿÿÿH‰hÿÿÿH‰…`ÿÿÿL‰HÿÿÿH‰•XÿÿÿL‹"M…äŽûL‹5ÕûE1ÿf.„O9tý„¤IÿÇM9üuíE1ÿf.„K‹týL‰÷ºè¾^…ÀuwIÿÇM9üuâé¤L‰HÿÿÿL‰µPÿÿÿL‹FL‰E¸H‹^H‰]°L‹fL‰e¨H‹H‰E IUI‹Mé›L‹N L‰MÀL‹FL‰E¸H‹^H‰]°L‹fL‰e¨H‹H‰E I‹Méox8H‹…8ÿÿÿJ‹øH…Àt(H‰E¸H‹hÿÿÿHÿÉI‰ÀH‹…`ÿÿÿL‹¥0ÿÿÿH‹•Xÿÿÿë1è„îH…ÀL‹…@ÿÿÿH‹…`ÿÿÿH‹hÿÿÿL‹¥0ÿÿÿH‹•Xÿÿÿ…ÝH…É~sL‰¥0ÿÿÿH‰hÿÿÿH‰…`ÿÿÿL‰…@ÿÿÿL‹"M…䎟L‹5¤E1ÿO9týtNIÿÇM9üuñE1ÿfffff.„K‹týL‰÷ºèn]…ÀuIÿÇM9üuâëTL‹µPÿÿÿL‹Hÿÿÿéx?H‹…8ÿÿÿJ‹øH…Àt/H‰EÀH‹hÿÿÿHÿÉI‰ÁL‹µPÿÿÿL‹…@ÿÿÿH‹…`ÿÿÿL‹¥0ÿÿÿë8è‡íH…ÀL‹µPÿÿÿL‹HÿÿÿL‹…@ÿÿÿH‹…`ÿÿÿH‹hÿÿÿL‹¥0ÿÿÿ…ÏH…ÉŽ“L
òH•pÿÿÿHM L‰ïH‹µ8ÿÿÿL‹…(ÿÿÿèóX…Àˆ´H‹E L‹e¨H‹]°L‹E¸L‹MÀéJˆþûÿÿH‹…8ÿÿÿJ‹øH‰E H…À„æûÿÿH‰…`ÿÿÿIÿÌL‰¥hÿÿÿH‹…XÿÿÿL‹8M…ÿ~RL‹5…ùE1äf.„O9tå„¢IÿÄM9çuíE1äf.„K‹tåL‰÷ºèþ[…ÀuuIÿÄM9çuâèmìH…À…óH‹¦H‹8HÇ$H5A‰HñH
‰L
h‰A¸1Àèì¾T[H='”H
–ôºÚèÊýÿ1Àé^x‘H‹…8ÿÿÿN‹$àL‰e¨M…ä„yÿÿÿH‹hÿÿÿHÿÉL‹µPÿÿÿL‹HÿÿÿL‹…@ÿÿÿH‹…`ÿÿÿH‹•XÿÿÿH…ÉŽýL‰µPÿÿÿH‰hÿÿÿH‰…`ÿÿÿL‰…@ÿÿÿL‰HÿÿÿH‰•XÿÿÿL‹:M…ÿŽH‹èÿE1öDK9\õt;IÿÆM9÷uñE1öfffff.„K‹tõH‰ߺè¾Z…Àu
IÿÆM9÷uâë0x.H‹…8ÿÿÿJ‹ðH…ÛtH‰]°H‹hÿÿÿHÿÉL‹HÿÿÿH‹…`ÿÿÿë*èûêH…À…•H‹¥L‹HÿÿÿH‹…`ÿÿÿH‹hÿÿÿH‹•XÿÿÿH…ɏûÿÿL‹µPÿÿÿL‹…@ÿÿÿL‰÷H‰ÆL‰âH‰Ùè§H‹
ФH‹	H;MÐuDHĸ[A\A]A^A_]þi[éWþÿÿ¾b[éMþÿÿ¾R[éCþÿÿ¾n[é9þÿÿ¾[[é/þÿÿèˆìfÖøÿÿ÷ùÿÿ>úÿÿcúÿÿûÿÿYûÿÿùÿÿ{ùÿÿwùÿÿsùÿÿ@UH‰åAWAVAUATSHìÈI‰ÕH‹2¤H‹H‰EÐfWÀf)E°H›úH‰EH`üH‰E˜HEþH‰E HÇE¨H‹â£H‰EÀH…É„¬Iƒý‡ãI‰ÎH‰½8ÿÿÿJîH‰…@ÿÿÿH“Jc¨HÁÿáI‹^H…Û~_IFL‹%"úE1ÿH‰Eˆff.„O9dþ„UIÿÇL9ûuíE1ÿf.„K‹tþL‰çºè®X…À… IÿÇL9ûuÞèé¾€_H…À…×ëAIƒýtIƒýu5H‹FH‰EÀH‰½8ÿÿÿH‹FH‰E¸H‹>H‰}°èjøI‰ÄHƒøÿ…Çé´E1ÀIƒýH—…H
™…HLÈAœÀIƒðH‹`¢H‹8L‰,$H5ˆ…H_L
¶…1Àèk辨_é?H‹FH‰E¸H‹>H‰}°IFI‹^H…ۏvé,fFfE¸H‹>H‰}°I‹^é	L‰­xÿÿÿH‹H‰…HÿÿÿH‰E°IFH‰EˆM‹~L‰ûM…ÿ@鄈âþÿÿH‹…@ÿÿÿJ‹øH‰E°H…À„ÊþÿÿH‰…HÿÿÿL‰­xÿÿÿHÿËH‹EˆL‹8M…ÿ~IL‹-DúE1äO9læ„¢IÿÄM9çuíE1äf.„K‹tæL‰ïºèW…ÀuuIÿÄM9çuâè}çH…À…èH‹-¡H‹8HÇ$H5Q„H(H
*„L
x„A¸1Àè'羊_H=kH
¦ïº¡èÅýÿ1ÛéXx‘H‹…@ÿÿÿJ‹àH‰E¸H…À„yÿÿÿHÿËL‹­xÿÿÿH‹½HÿÿÿH‹EˆH…ÛŽ»H‰½HÿÿÿL‰­xÿÿÿL‹ M…äŽ|L‹-,ûE1ÿf„O9lþt;IÿÇM9üuñE1ÿfffff.„K‹tþL‰ïºèþU…Àu
IÿÇM9üuâë)x'H‹…@ÿÿÿJ‹øH…ÀtH‰EÀHÿËL‹­xÿÿÿH‹½HÿÿÿëèBæH…ÀL‹­xÿÿÿH‹½Hÿÿÿ…yH…ۏ„è­õI‰ÄHƒøÿuèæH…À…RL‹}¸H‹EÀH‰…xÿÿÿHÇE€HDžpÿÿÿH‹ÿL‹°(¿ÿh1ÛL‰ÿH‰Æ1ҹA¸E1ÉAÿÖH‰…`ÿÿÿH‰…HÿÿÿH…À„H‹…Hÿÿÿ‹ÿÀt	H‹Hÿÿÿ‰H‹…HÿÿÿH‹©€uHÿÈH‹HÿÿÿH‰uH‹½Hÿÿÿè‹çHDž`ÿÿÿHÇE€H‹…Hÿÿÿ‹p…ö„®H‹SþL‹­HÿÿÿI‹} ÿðH‰ÃM‹uH‹5”÷L‰ïºÿ†þƒøÿ„ÒH…ÛtxHsÿL‰÷ÿ[þò
ëìòX
íf/ÁvUI‹WH‹òìH9„H‹ŠXH…É„{H‹QH…ÒŽ 
1öf.„H9Dñ„iHÿÆH9òuíéüH‹…xÿÿÿH;ŠžL‰¥(ÿÿÿH‰@ÿÿÿL‰µ ÿÿÿtdèpæH‰…0ÿÿÿH‹@hH‹
\žëf.„H‹@H…À„€L‹8M…ÿtëI9ÏtæA‹ÿÀtA‰I‹O‹ÿÀt‰H‰PÿÿÿL‰ÿèäëZH‰ßè}äH‰E€A½H…À„4H‰ÿè_åH‰…pÿÿÿH…À„!I‰ÄH‰XHÇE€éæ1ÀH‰…PÿÿÿE1ÿ1ÀH‰EˆH‹RõH‹=SëH‹SH‰ÞèåH…À„¿I‰ċÿÀtA‰$L‰e€H‹5þñI‹D$H‹€L‰çH…À„ÀÿÐH‰ÃH‰…`ÿÿÿH…À„ÃI‹$©€uHÿÈI‰$uL‰çèAåH‹CH;꜄©E1öE1äH‹…xÿÿÿL‰uH‰E˜D‰àHÁàH÷ØH4(HƒƘAÿÄH‰ßL‰âèw\þÿI‰ÄH‰…pÿÿÿM…ötI‹©€uHÿÈI‰uL‰÷èÒäHÇE€M…ä„”H‹©€uHÿÈH‰uH‰ßè§äH‹½@ÿÿÿèýâH…À„mH‰ÿèéãH…À„L‰`H‰X HDžpÿÿÿHDž`ÿÿÿHÇE€H‹½PÿÿÿH…ÿI‰ÄtH‹©€u
HÿÈH‰uè0äM…ÿtI‹©€uHÿÈI‰uL‰ÿèäH‹}ˆH…ÿtH‹©€u
HÿÈH‰uèñãH‹&óH‹=éH‹SH‰Þè­ãH…À„‘
I‰ƋÿÀtA‰L‰µpÿÿÿH‹5øI‹FH‹€L‰÷H…À„Ž
ÿÐH‰ÃH‰…`ÿÿÿA½H…À„}
I‹©€uHÿÈI‰uL‰÷èhã¿èÂâH‰…pÿÿÿH…À„P
I‰ÆA‹$ÿÀtA‰$M‰fèÆàH‰E€H…À„<
I‰ÇH‹53îH‹ĚH‰Çè¬à…Àˆ4L‰¥PÿÿÿH‹CL‹ €M…ä„aH=0sè«â¾Åa…À…kH‰ßL‰öL‰úAÿÔI‰ÄèâL‰àL‰eˆM…ä„vH‹©€L‹¥(ÿÿÿuHÿÈH‰uH‰ßèâHDž`ÿÿÿI‹©€uHÿÈI‰uL‰÷èjâHDžpÿÿÿI‹©€uHÿÈI‰uL‰ÿèEâHÇE€H‹Mˆ‹ÿÀt‰H‹YH‹ùH‹y ‹qÿðI‰ÆòI*ÄH‹=Žð¾ÿcùƒøÿ„¯H‹@ÿÿÿH…Ét6L‰ðH	ÈHÁè t.L‰ðH™H÷ùë+¾Äa1Û1ÉE1ÿE1ö1ÀH‰EˆA½é˜1ÀëD‰ð1Ò÷ñH‰…0ÿÿÿH‹…8ÿÿÿL‹°èL‹-ÙìM‹~L‰ÿL‰îèráH…À„pH‰ÇH‹@H‹ˆH…ÉtL‰öL‰úÿÑH‰…hÿÿÿH…ÀuéV‹ÿÀH‰½hÿÿÿt‰H‹…8ÿÿÿL‹°èH‹5YìM‹nL‰ïI‰ôè
áH…À„I‰ÇH‹@H‹ˆH…Ét-L‰ÿL‰öL‰êÿÑH‰E€H…À„nI‰ÇH‹@H;ˆ˜t é†
A‹ÿÁtA‰L‰}€H;l˜…k
M‹oL‰­pÿÿÿM…í„W
M‹wA‹EÿÀtA‰EA‹ÿÀtA‰L‰u€I‹º©€uHÿÈI‰u
L‰ÿèaàºM‰÷L‰mHÇE˜HÕH÷ØH4(HƒƘL‰ÿè®WþÿI‰ÆM…ítI‹E©€uHÿÈI‰EuL‰ïèàHDžpÿÿÿM…ö„I‹©€uHÿÈI‰uL‰ÿèàßHÇE€I‹©€uHÿÈI‰uL‰÷è¾ßè©ÝH‰…XÿÿÿL‹¥0ÿÿÿM…äH‹…8ÿÿÿL‹½(ÿÿÿL‹µ ÿÿÿ~XHH H‰xÿÿÿHƒÀ`H‰…8ÿÿÿL‹­@ÿÿÿIÁåfff.„H‹½xÿÿÿL‰þH‰ÚL‰ñL‹…@ÿÿÿL‹8ÿÿÿèÍØLëIÿÌuÕH‹½XÿÿÿèÝH‹BôL‹­hÿÿÿI‹EL‹°€M…ö„ÔH=NoèÉÞ…ÀL‹¥PÿÿÿL‹}ˆ…ýL‰ïH‰Þ1ÒAÿÖH‰Ãè©ÞH…Û„ÓI‹E©€uHÿÈI‰EuL‰ïè´ÞH…Û„”H‹©€uHÿÈH‰uH‰ßè‘ÞA‹ÿÀtA‰E1öL‰ûHƒ½Hÿÿÿ…ØéÿH‹’H9ÂtH…ÒuïH;b•… L‹5…íH‹=ÞãI‹VL‰öèÞH…À„wH‰ËÿÀt‰H‰`ÿÿÿH‹5èêH‹CH‹€H‰ßH…À„uÿÐI‰ÆH‰…pÿÿÿH…À„xH‹©€uHÿÈH‰uH‰ßèÎÝH‹5ÛèI‹GH‹€L‰ÿH…À„JÿÐI‰ÄH‰…`ÿÿÿ1ÛH…À„=I‹FH;B•„6E1íL‰mL‰e˜H‹ªãH‰E ‰ØHÁàH÷ØH4(HƒƘƒËL‰÷H‰ÚèÏTþÿH‰ÃH‰E€M…ítI‹E©€uHÿÈI‰EuL‰ïè+ÝI‹$©€uHÿÈI‰$uL‰çèÝHDž`ÿÿÿH…Û„I‹©€uHÿÈI‰uL‰÷èáÜHDžpÿÿÿH;Ôt1H;ª”t(H;©”tH‰ßèÃÛA‰ƅÀˆ H‹©€të(E1öH;†”A”ÆH‹©€uHÿÈH‰uH‰ßètÜE…ö„»H‹5xçI‹GH‹€L‰ÿH…À„†
ÿÐI‰ÆH‰E€H…À„‰
H‹5ГL‰÷ºèCÛH‰…pÿÿÿH…À„l
H‰ÃI‹©€uHÿÈI‰uL‰÷èúÛHÇE€H;ߓt+H;Ɠt"H;œtH‰ßèßÚA‰ƅÀy¾‹`é
E1öH;¨“A”ÆH‹©€uHÿÈH‰uH‰ßè–ÛHDžpÿÿÿE…ö„ÒH‹5îI‹GH‹€L‰ÿH…À„ÿÿÐH‰ÃH‰E€A½
H…À„ñH‹CH;õ’…iL‹sL‰µ`ÿÿÿM…ö„UL‹cA‹ÿÀtA‰A‹$ÿÀtA‰$L‰e€H‹A¿©€uHÿÈH‰uH‰ßèéÚL‰ãL‰uHÇE˜JýH÷ØH4(HƒƘH‰ßL‰úè8RþÿI‰ÇH‰…pÿÿÿM…ötI‹©€uHÿÈI‰uL‰÷è“ÚHDž`ÿÿÿM…ÿ„;H‹©€uHÿÈH‰uH‰ßèeÚH‹5âî1ÛL‰ÿ1ÒènÙH‰E€H…À„
I‰ÆI‹©€uHÿÈI‰uL‰ÿè(ÚHDžpÿÿÿL;5
’t*L;5ñ‘t!L;5ð‘tL‰÷è
Ù‰ÅÀy¾´`é«1ÛL;5Ց”ÃI‹©€uHÿÈI‰uL‰÷èÄÙ…ÛtH‹
ÝìHÖìëH‹
ÅìH¾ì‹ÿÂt‰L‹0H‹=ðHÇEHu˜L‰u˜Hº€èíPþÿH‰E€A½H…À„€	H‰ÃH‰Çè¯>þÿH‹©€uHÿÈH‰uH‰ßè9ÙHÇE€¾î`1Û1ÉE1ÿE1ä1ÀH‰EˆH‹½`ÿÿÿH…ÿt?H‹©€u5HÿÈH‰u-L‰½XÿÿÿA‰÷D‰­hÿÿÿI‰ÍèåØL‰éD‹­hÿÿÿD‰þL‹½XÿÿÿH‹}€H…ÿt?H‹©€u5HÿÈH‰u-L‰½XÿÿÿA‰÷D‰­hÿÿÿI‰ÍèØL‰éD‹­hÿÿÿD‰þL‹½XÿÿÿH‹½pÿÿÿH…ÿt?H‹©€u5HÿÈH‰u-L‰½XÿÿÿA‰÷D‰­hÿÿÿI‰ÍèRØL‰éD‹­hÿÿÿD‰þL‹½XÿÿÿH…Ût2H‹©€u(HÿÈH‰u H‰߉óD‰­hÿÿÿI‰ÍèØL‰éD‹­hÿÿÿ‰ÞH…ÉtH‹©€uHÿÈH‰uH‰ωóèæ×‰ÞM…ÿtI‹©€uHÿÈI‰uL‰ÿ‰óèÃ׉ÞH=Ä}H
ÿÝD‰êèw³ýÿ1ÛL‹}ˆHƒ½Hÿÿÿt,H‹…HÿÿÿH‹©€uHÿÈH‹HÿÿÿH‰uH‹½Hÿÿÿèo×M…ÿtI‹©€uHÿÈI‰uL‰ÿèP×M…ötI‹©€uHÿÈI‰uL‰÷è1×M…ätI‹$©€uHÿÈI‰$uL‰çè×M…ÿtI‹©€uHÿÈI‰uL‰ÿèñÖH‹æŽH‹H;EÐ…ÃH‰ØHÄÈ[A\A]A^A_]þð_A½üédH‹=-íH‹5¦ì1Û1Òè];þÿH‰E€A½ÿH…À„ÛI‰ÆH‰Çèß;þÿI‹©€uHÿÈI‰uL‰÷èiÖHÇE€¾
`é¾1`A½éñE1í1ÒéäõÿÿèÔH…À…†H‰ßèS0þÿI‰ÆH‰…pÿÿÿH…À…YòÿÿéqèöÔéjòÿÿ¾ºaë¾½a1Û1ÉE1ÿ顾ÂaéôÿÿèªÓA¾6aH…À…H‰ßèó/þÿI‰ÄH‰E€H…À…&ðÿÿéåè™ÔH‰ÃH‰…`ÿÿÿH…À…=ðÿÿHDž`ÿÿÿA¾8aë|L‹sL‰u€M…ö„FðÿÿL‹kA‹ÿÀtA‰A‹EÿÀtA‰EL‰­`ÿÿÿH‹A¼©€uHÿÈH‰uH‰ßè5ÕL‰ëéðÿÿA¾Maë>L‹e€HDž`ÿÿÿA¾QaM…ätII‹$©€u>HÿÈI‰$u5L‰çèïÔë+A¾SaH‹©€uHÿÈH‰uH‰ßèÍÔHDž`ÿÿÿHÇE€H‹½pÿÿÿH…ÿtH‹©€u
HÿÈH‰uè—ÔHDžpÿÿÿH=zH
ÊÚD‰öºè=°ýÿHu€H•`ÿÿÿHpÿÿÿL‹µ0ÿÿÿL‰÷è<I…Àˆ²H‹xÿÿÿH‹AH;ú‹…‹ÿÀH‹½@ÿÿÿt‰è~ÒDžhÿÿÿH…À„*H‰ÿè`ÓH…À„H‰XH‹xÿÿÿH‰ßH‰…XÿÿÿH‰ÆènÒH…À„I‰ÄH‹©€uHÿÈH‰uH‰ßè°ÓH‹½XÿÿÿH‹©€u
HÿÈH‰uè’ÓH‹}€H…ÿtH‹©€u
HÿÈH‰uèrÓHÇE€H‹½`ÿÿÿH…ÿtH‹©€u
HÿÈH‰uèGÓHDž`ÿÿÿH‹½pÿÿÿH…ÿtH‹©€u
HÿÈH‰uèÓHDžpÿÿÿI‹FhH‹8L‰8H…ÿtH‹©€u
HÿÈH‰uèèÒH‹½PÿÿÿH…ÿH‹]ˆtH‹©€u
HÿÈH‰uèÁÒH…Û„ÇîÿÿH‹©€…¹îÿÿHÿÈH‰…­îÿÿH‰ßé îÿÿ¾yaDžhÿÿÿ1ÀH‰…xÿÿÿ1É1ÀH‰…XÿÿÿI‹FhH‹8L‰8H…ÿt!H‹©€uHÿÈH‰u‰óI‰ÎèHÒL‰ñ‰ÞH‹½PÿÿÿH…ÿL‹uˆt!H‹©€uHÿÈH‰u‰óI‰ÏèÒL‰ù‰ÞM…öt[I‹©€uQH‰@ÿÿÿ‰µ8ÿÿÿHÿÈI‰u	H‹}ˆèåÑE1äH‹xÿÿÿE1ö1ÀH‰EˆD‹­hÿÿÿ‹µ8ÿÿÿL‹½XÿÿÿH‹@ÿÿÿé–øÿÿE1äH‹xÿÿÿE1ö1ÀH‰EˆD‹­hÿÿÿL‹½XÿÿÿépøÿÿH‰ßL‰öL‰úèLÐH‰ÁH‰EˆH…À…¾îÿÿ¾Åa1Û1ÉE1ÿE1ö1ÀH‰EˆL‹¥PÿÿÿA½é+øÿÿ¾ûaA½ëRèÏH…À„ž1Û1ÉE1ÿE1ö1ÀH‰EˆL‹¥PÿÿÿA½¾Åaéé÷ÿÿH‹2ˆH‹8L‰îèÅξbA½#1Û1ÉE1ÿE1öL‹¥Pÿÿÿé¶÷ÿÿL
kéHUHM°L‰÷H‹µ@ÿÿÿM‰èèM:…ÀˆÍH‹}°èüÝI‰ÄHƒøÿ…YèÿÿéFèÿÿH‹»‡H‹8L‰æèNÎHÇE€¾bë¾3bL‹¥PÿÿÿH‹½hÿÿÿH‹A½#©€u>HÿÈH‰u6‰óè;ЉÞë+L‰ïH‰Þ1ÒèøÎH‰ÃL‹¥PÿÿÿL‹}ˆéGñÿÿ¾bA½#1Û1ÉE1ÿE1öéáöÿÿèÄÍH…À„|1Ûéñÿÿ¾¢_évæÿÿ¾ê`é¨öÿÿ¾
aét¾aéj¾ˆ_éNæÿÿè}ÍH…À…PL‰÷èÌ)þÿH‰ÃH‰…`ÿÿÿH…À…rñÿÿé;èoÎI‰ÆH‰…pÿÿÿH…À…ˆñÿÿ¾\`éãèMÎé®ñÿÿ¾_`éÑM‹nM…í„I‹FH‰…8ÿÿÿA‹EÿÀtA‰EH‹8ÿÿÿ‹ÿÀt‰H‰pÿÿÿI‹»©€uHÿÈI‰uL‰÷èùÎL‹µ8ÿÿÿéhñÿÿ¾t`ëc¾‘_étåÿÿ¾–_éjåÿÿE1öE1ÿéáóÿÿè®ÍI‰ÆH‰E€H…À…wòÿÿ¾‡`뾉`1Û1ÉE1ÿE1äE1ö1ÀH‰EˆA½	élõÿÿ¾x`1Û1ÉE1ÿE1äE1ö1ÀH‰EˆA½éIõÿÿèLÍéùòÿÿ¾š`1Û1ÉE1ÿE1äE1öé"õÿÿ¾®`1Ûë¾²`1ÉE1ÿE1äE1ö1ÀH‰EˆA½
éþôÿÿèÎH‰ÏèYÍH‰ÁH‰…xÿÿÿH…ÀH‹½@ÿÿÿ…Òùÿÿ¾…aDžhÿÿÿéXûÿÿ¾‡aéWûÿÿ¾‰a1ÀH‰…XÿÿÿH‰ÙéLûÿÿ¾Ža1Éé@ûÿÿ¾	`éUÿÿÿHDžpÿÿÿ¾¸aA½é•÷ÿÿH‹…H‹8H5æ]èPËéGüÿÿH‹ð„H‹8H5Ë]è5ËéiýÿÿHDž`ÿÿÿ¾Z`A½éçþÿÿE1í1Ûé®ïÿÿváÿÿÈâÿÿ‰âÿÿ®âÿÿfff.„UH‰åAWAVAUATSHìÈI‰ÒI‰þH‹ï„H‹H‰EÐfWÀf)E HÖH‰E°H
ßH‰E¸HÇEÀL‹%ª„L‰e¨H…ÉH‰½hÿÿÿtAI‰ÏJÖM…Ò„áIƒútLIƒú…OL‹fL‰e¨L‹.L‰m I‹_H…ÛŽRéíIƒú„ Iƒú…L‹fL‰e¨éH‰…`ÿÿÿL‹.L‰m MwI‹_H…Û޲L‰­PÿÿÿL‰UM‹.M…펿L‹%KÞE1ö„O9d÷„‰IÿÆM9õuíE1öf.„K‹t÷L‰çºè9…À…XIÿÆM9õuÞéfH‰…`ÿÿÿL‰UI‹_H…Û~WMwL‹-ÒÔE1ä€O9lç„ßIÿÄL9ãuíE1äf.„K‹tçL‰ïºè®8…À…ªIÿÄL9ãuÞèɾøbH…ÀL‹Uu]1ÀM…ÒžÀHÙeH
ÛeHNÊH‹ª‚H‹:H0ÑL
fLNÊA¸I)ÀL‰$H5·eHëï1Àè¡È¾cH=qH
 Ѻ*薦ýÿ1ÛévL‹%¨‚L‹.L‰m éˆXÿÿÿH‹…`ÿÿÿN‹,àL‰m M…í„@ÿÿÿHÿËL‹%t‚L‹UH…ۏNþÿÿL‹µhÿÿÿëRxH‹…`ÿÿÿN‹$ðM…ät	L‰e¨HÿËëèÈH…À…YL‹%.‚L‹µhÿÿÿL‹UH‹…`ÿÿÿL‹­PÿÿÿH…ۏ HÇE€HDžxÿÿÿHDžpÿÿÿL‰ïè.ÉHƒøÿ„Ö
H‰…`ÿÿÿH‹ÖàH‹˜(¿ÿhL‰ïH‰ƺ¹A¸E1ÉÿÓH‰E€H‰ÁH‰…XÿÿÿH…À„—
H‹…Xÿÿÿ‹ÿÀt	H‹Xÿÿÿ‰L‰eH‹…XÿÿÿH‹©€uHÿÈH‹XÿÿÿH‰uH‹½XÿÿÿèXÉHDžxÿÿÿL‹%‚ØH‹=ÛÎI‹T$L‰æèÉH…À„N
H‰ËÿÀt‰H‰]€H‹5WÒH‹CH‹€H‰ßH…À„L
ÿÐH‰…pÿÿÿA¼žH…À„O
H‹©€uHÿÈH‰uH‰ßèÊÈHÇE€H‹÷×H‹=PÎH‹SH‰Þè~ÈH…À„
I‰ŋÿÀtA‰EH‹5ÖI‹EH‹€L‰ïH…À„$
ÿÐH…À„'
I‹M÷Á€uHÿÉI‰MuL‰ïH‰ÃèIÈH‰ØH‹HH;
ï„
M‰÷E1ä1ÛH‰]°H‹XÿÿÿH‰M¸H‹
£ÜH‰MÀD‰áHÁáH÷ÙH4)HƒƸAƒÌI‰ÆH‰ÇL‰âèk?þÿI‰ÄH‰E€H…ÛtH‹©€uHÿÈH‰uH‰ßèÉÇM…ä„ÐI‹©€uHÿÈI‰uL‰÷è¦ÇH‹½pÿÿÿH‹GH;H„ÂE1äE1íL‰m°H‹]€H‰]¸D‰àHÁàH÷ØH4(HƒƸAÿÄI‰þL‰âèØ>þÿI‰ÄH‰…xÿÿÿM…ítI‹E©€uHÿÈI‰EuL‰ïè1ÇH‹©€L‰÷uHÿÈH‰uH‰ßèÇL‰÷HÇE€M…ä„…H‹©€u
HÿÈH‰uèéÆHDžpÿÿÿL;%Ë~t8L;%²~t/L;%±~t&L‰çèËʼnÅÀH‹½`ÿÿÿˆ
I‹$©€t ë61ÛL;%ˆ~”ÃH‹½`ÿÿÿI‹$©€uHÿÈI‰$uL‰çènÆH‹½`ÿÿÿ…Û…îH‹…XÿÿÿH‹@H‰… ÿÿÿL‹eL;%.~t[è)ÆH‰…0ÿÿÿH‹@hH‹
~ëH‹@H…À„H‹H…ÛtëH9Ëtæ‹ÿÀt‰H‹K‹ÿÀt‰H‰8ÿÿÿH‰ßèÝÃëkèBÄH‰…xÿÿÿA¼£H…À„|H‰ÿè!ÅH‰…pÿÿÿH…À„fH‰ÁH‰EˆH‰XHDžxÿÿÿHDžpÿÿÿé	1ÀH‰…8ÿÿÿ1Û1ÀH‰…PÿÿÿL‹5ÕH‹=ËI‹VL‰öè/ÅH…À„E
I‰ŋÿÀtA‰EL‰­xÿÿÿH‹5©ÑI‹EH‹€L‰ïH…À„F
ÿÐH‰E€H…À„I
I‹M÷Á€uHÿÉI‰MuL‰ïI‰ÆèïÄL‰ðH‹HH;
•|„'
1ÒE1íH‰U°M‰çL‰e¸D‰éHÁáH÷ÙH4)HƒƸAÿÅI‰ÆI‰ÔH‰ÇL‰êè!<þÿI‰ÅH‰…pÿÿÿM…ätI‹$©€uHÿÈI‰$uL‰çèzÄHDžxÿÿÿM…í„
I‹©€H‹`ÿÿÿM‰üuHÿÈI‰uL‰÷èBÄH‹`ÿÿÿH‰Ïè•ÂH…À„æI‰ƿèÃH…À„+
L‰hL‰p HDžpÿÿÿHÇE€HDžxÿÿÿH‹½8ÿÿÿH…ÿH‰EˆtH‹©€u
HÿÈH‰uèÇÃH…ÛL‹½hÿÿÿtH‹©€uHÿÈH‰uH‰ßè¡ÃH‹½PÿÿÿH…ÿtH‹©€u
HÿÈH‰uè~ÃL‹-³ÒH‹=ÉI‹UL‰îè:ÃH…À„O	H‰ËÿÀt‰H‰]€H‹5‘×H‹CH‹€H‰ßH…À„M	ÿÐH‰…xÿÿÿA¼ªH…À„P	I‰ÄH‹©€uHÿÈH‰uH‰ßèùÂH‹.ÒH‹=‡ÈH‹SH‰ÞèµÂH…À„'	I‰ŋÿÀtA‰EL‰m€H‹5RÎI‹EH‹€L‰ïH…À„#	ÿÐH…À„&	L‰çI‹M÷Á€uHÿÉI‰MuL‰ïH‰ÃèyÂH‰ØL‰çH‹OH;
zH‹Mˆ„ïE1í1ÛL‰m°H‰M¸I‰ÆH‰E	ØHÁàH÷ØH4(HƒƸƒËI‰üH‰Úè§9þÿH‰…pÿÿÿM…ít#I‹M÷Á€uHÿÉI‰MuL‰ïH‰ÃèÿÁH‰ØHÇE€I‹÷Á€L‰çuHÿÉI‰uL‰÷H‰ÃèÓÁL‰çH‰ØH…À„½H‹÷Á€uHÿÉH‰uH‰Ãè©ÁH‰ØHDžxÿÿÿ‹ÿÁt‰HDžpÿÿÿL‹hH‹
qØH‹x H‰…Hÿÿÿ‹pÿ‘ðI‰ÄM‰þM‹¿èH‹5¡ÌI‹_H‰ßH‰uè9ÁH…À„RH‰ÇH‹@H‹ˆH…ÉtL‰þH‰ÚÿÑH‰ÇH…Àu
é=‹ÿÀt‰H‰½@ÿÿÿM‹¶èH‹5+ÌM‹~L‰ÿH‰uèÛÀH…À„)H‰ÃH‹@H‹ˆH…Ét0H‰ßL‰öL‰úÿÑH‰…xÿÿÿH…À„H‰ÃH‹@H;Vxt!éw‹ÿÁt‰H‰xÿÿÿH;9x…[L‹{M…ÿ„NL‹sA‹ÿÀtA‰A‹ÿÀtA‰L‰µxÿÿÿH‹º©€uHÿÈH‰u
H‰ßè4ÀºL‰óL‰}°HÇE¸HÕH÷ØH4(HƒƸH‰ßè7þÿI‰ÆH‰…pÿÿÿM…ÿtI‹©€uHÿÈI‰uL‰ÿèܿM…ö„CH‹©€uHÿÈH‰uH‰ß蹿HDžxÿÿÿI‹©€uHÿÈI‰uL‰÷蔿HDžpÿÿÿèt½H‰…(ÿÿÿM…äH‹`ÿÿÿŽ©H…ÉŽ{Hƒ…hÿÿÿHA‰ÏAƒçH‰ÎHƒæüHÍH‰…0ÿÿÿ1ÿL‰¥8ÿÿÿH‰u˜H‹hÿÿÿL‹µ ÿÿÿë!fffff.„H×L­0ÿÿÿL9ç=H‰½PÿÿÿWÉE1äòMòCæH‰ßè}¡òMH‹•`ÿÿÿòCDåòXÈIÿÄL9âuÎò–Äò^Á1ÀHƒúsL‹¥8ÿÿÿH‹½Pÿÿÿë{f.„L‹¥8ÿÿÿH‹u˜H‹½Pÿÿÿfffff.„òALÅòYÈòALÅòALÅòYÈòALÅòALÅòYÈòALÅòALÅòYÈòALÅHƒÀH9Æu¯M…ÿ„ÿÿÿHÅLè1Éf„òÈòYÈòÈHÿÁI9ÏuêéÕþÿÿ1ÀfWÀò
·Ã€f(Ñò^ÐHÈL9à|ðH‹½(ÿÿÿ袻H‹ÍÒL‹¥@ÿÿÿI‹D$L‹°€M…ö„>H=ØMèS½…À…hL‹¥@ÿÿÿL‰çH‰Þ1ÒAÿÖH‰Ãè7½H…Û„7I‹$©€H‹HÿÿÿuHÿÈI‰$uL‰çè;½H‹HÿÿÿH…Û„éH‹©€uHÿÈH‰uH‰ßè½H‹Hÿÿÿ‹ÿÀt‰H‰ËH‹}ˆHƒ½Xÿÿÿt8H‹…XÿÿÿH‹©€u'HÿÈH‹•XÿÿÿH‰uI‰þH‹½XÿÿÿI‰Ï迼L‰ùL‰÷H…Ét&H‹©€uHÿÈH‰uI‰þH‰ÏI‰Ï蔼L‰ùL‰÷H…ÿtH‹©€uHÿÈH‰uI‰Îèo¼L‰ñH…ÉtH‹©€uHÿÈH‰uH‰ÏèM¼H‹BtH‹H;EÐ…S
H‰ØHÄÈ[A\A]A^A_]Ã1ÒE1ÿéîûÿÿ»ZcA¼š1ÀH‰E˜ë1ÀH‰E˜»dcA¼›1ÒE1í1É1ÀH‰Eˆ1ÀH‰…Xÿÿÿé¬袹H…À…I
L‰çèñþÿH‰ÃH‰E€H…À…›òÿÿé4
藺H‰…pÿÿÿA¼žH…À…±òÿÿ»ucéIèR¹H…ÀuH‰ßè¥þÿI‰ÅH…À…Ûòÿÿ1ÀH‰E˜1ÒE1í1É1ÀH‰Eˆ»xcé!è7ºH…À…Ùòÿÿ»zc1ÀH‰E˜1ÒéùH‹XH…Û„·	L‹p‹ÿÁ…5A‹ÿÁ…7H‹A¼÷Á€„6éA»c1ÀH‰E˜E1í1É1ÀH‰EˆA¼žL‰òéL‹oM…í„1óÿÿH‹_A‹EÿÀtA‰E‹ÿÀt‰H‰pÿÿÿH‹A¼©€u
HÿÈH‰u胺H‰ßéóòÿÿ»¦céÖH‹=ÞÐH‹5gÐ1ÒèþÿH‰…xÿÿÿA¼ŸH…À„äH‰ÃH‰Çè—þÿH‹©€uHÿÈH‰uH‰ßè!ºHDžxÿÿÿ»¹céÊèӷH…À…¬L‰ïè"þÿH‰ÃH‰E€H…À…šöÿÿé—èȸH‰…xÿÿÿA¼ªH…À…°öÿÿ»d1ÀH‰E˜1ÒE1í1Éé€èv·H…À…gH‰ßèÅþÿI‰ÅH‰E€H…À…ÄöÿÿéRèk¸H…À…Úöÿÿ»”dëmL‹oL‰m€M…í„6L‹wA‹UÿÂtA‰UA‹ÿÂtA‰L‰µxÿÿÿH‹»÷€uHÿÊH‰uI‰Äè¹L‰àH‹MˆL‰÷L‹½hÿÿÿé®öÿÿ»ªd1ÀH‰E˜1ÒE1í1ÉA¼ªé»H‹pH‹8H‹u詶»àdA¼°1ÀH‰E˜1ÒE1íH‹Hÿÿÿé†H‹âoH‹8H‹uèt¶HDžxÿÿÿ»âdë»ödH‹HÿÿÿH‹½@ÿÿÿH‹A¼°©€u6HÿÈH‰u.è`¸H‹Hÿÿÿë L‰çH‰Þ1Òè·H‰Ãéäúÿÿ»eA¼°1ÀH‰E˜1ÒE1íéøèîµH…À„û1ÛL‹¥@ÿÿÿé­úÿÿèҵH…À…úL‰÷è!þÿI‰ÅH‰…xÿÿÿH…>
d…¡òÿÿé迶H‰E€H…À…·òÿÿHÇE€¾déH‹PH‰•xÿÿÿH…Ò„ÅòÿÿL‹p‹
ÿÁt‰
A‹ÿÁtA‰L‰u€H‹A½÷Á€…oH‰U˜HÿÉH‰uH‰Çè]·L‰ðH‹U˜é{òÿÿ¾!dL‰÷M‰üëcL‹­xÿÿÿHÇE€¾%dM…íL‹½hÿÿÿtoI‹E©€udHÿÈI‰Eu[L‰ïA‰õè·D‰îHDžxÿÿÿH‹½pÿÿÿH…ÿuMëh¾'dL‰÷H‹©€L‹½hÿÿÿuHÿÈH‰uA‰õè6D‰îHÇE€HDžxÿÿÿH‹½pÿÿÿH…ÿtH‹©€uHÿÈH‰uA‰õ脶D‰îHDžpÿÿÿH=¥\H
´¼º¦è*’ýÿHµxÿÿÿHU€HpÿÿÿH‹½0ÿÿÿè,+…Àˆ³I‹D$H;ðm…EA‹$ÿÀH‹½`ÿÿÿtA‰$èp´A¼¨H…À„NI‰ſèVµH…À„IL‰hL‹mL‰ïH‰E˜H‰Æèj´H‰ÁH‰EˆH…À„3I‹E©€uHÿÈI‰EuL‰ï覵H‹}˜H‹©€u
HÿÈH‰u苵H‹½xÿÿÿH…ÿtH‹©€u
HÿÈH‰uèhµHDžxÿÿÿH‹}€H…ÿtH‹©€u
HÿÈH‰uè=µHÇE€H‹½pÿÿÿH…ÿtH‹©€u
HÿÈH‰uèµHDžpÿÿÿH‹…0ÿÿÿH‹@hH‹8H‰H…ÿtH‹©€u
HÿÈH‰uèڴH‹½8ÿÿÿH…ÿH‹PÿÿÿtH‹©€u
HÿÈH‰u谴H…Û„)ñÿÿH‹©€…ñÿÿHÿÈH‰…ñÿÿH‰ßéñÿÿA¾NdA¼§1ÀH‰E˜1ÀH‰EE1íH‹…0ÿÿÿH‹@hH‹8H‰H…ÿtH‹©€u
HÿÈH‰uè=´H‹½8ÿÿÿH…ÿH‹PÿÿÿtH‹©€u
HÿÈH‰uè´H…ÛtH‹©€uHÿÈH‰uH‰ßèô³1ÉH‹U1ÀH‰EˆD‰ó鱉A‹ÿÁ„ÉøÿÿA‰H‹A¼÷Á€uHÿÉH‰uH‰Ç诳L‰ðL‹½hÿÿÿésëÿÿ»ªc1ÀH‰E˜1ÒE1í1É1ÀH‰EˆA¼žëQL
vØHU°HM L‰ÿH‰ÆM‰Ðèÿ…ÀˆaL‹m L‹e¨é.éÿÿ»Þcë»àc1ÀH‰E˜1ÒE1í1É1ÀH‰EˆH‹}€H…ÿI‰Ît#H‹©€uHÿÈH‰u‰]H‰Óè³H‰ڋ]H‹½xÿÿÿH…ÿt#H‹©€uHÿÈH‰u‰]H‰ÓèײH‰ڋ]H‹½pÿÿÿH…ÿt#H‹©€uHÿÈH‰u‰]H‰Ó訲H‰ڋ]M…ít(I‹E©€uHÿÈI‰EuL‰ïA‰ÝH‰Óè{²H‰ÚD‰ëH…ÒtH‹©€uHÿÈH‰uH‰×èV²H‹}˜H…ÿtH‹©€u
HÿÈH‰uè6²H=eXH
t¸‰ÞD‰âèêýÿ1ÛH‹}ˆL‰ñHƒ½Xÿÿÿ…õÿÿéIõÿÿL‰ðé$íÿÿ¾céçÿÿ¾ÿbéçÿÿèç±L‰çè%±H‰ÁH‰EH…ÀH‹½`ÿÿÿ…¯ûÿÿA¾ZdA¼¨é8ýÿÿA¾\d1ÀH‰E˜é3ýÿÿA¾^d1ÀH‰E˜é%ýÿÿA¾cdéýÿÿHÇE€»scA¼žé*þÿÿE1ä1Ûé¶ýÿÿ1ÀH‰E˜»µcéþÿÿHÇE€»dA¼ªéy÷ÿÿHÇE€»’dé&øÿÿE1í1ÛéøÿÿH‹›hH‹8H5vAèà®éêøÿÿ¾
dHÇE€HDžxÿÿÿH‹½pÿÿÿH…ÿ…=úÿÿéUúÿÿfUH‰åAWAVAUATSHƒìHH‰ÓI‰þH‹²hH‹H‰EÐHÜÄH‰E°HÇE¸H…Ét+I‰ÏHÞH…ÛtWHƒû…ÀH‹6H‰uÈM‹gM…ä~éIHƒû…¡H‹6L‰÷è“ôH‹
LhH‹	H;MÐ…ìHƒÄH[A\A]A^A_]ÃH‰E¨L‰u M‹gM…ä~QL‹-PÄE1öDO9l÷„½IÿÆM9ôuíE1öf.„K‹t÷L‰ïºè.…À…ˆIÿÆM9ôuÞ虭H…Àt¾óeë<H‹FgH‹8H‰$H5nJHáH
XJL
³µA¸1ÀèD­¾fH=ÞUH
õº¿è9‹ýÿ1ÀH‹
`gH‹	H;MЄÿÿÿèX¯ˆzÿÿÿH‹E¨J‹4ðH‰uÈH…ö„eÿÿÿIÿÌL‹u H‹E¨M…äŽÄþÿÿL
‰àHU°HMÈL‰ÿH‰ÆI‰Øè¢…Àx	H‹uÈéšþÿÿ¾øeéjÿÿÿff.„UH‰åAWAVAUATSHƒìXH‰ÓI‰ÿH‹ÂfH‹H‰EÐHìÂH‰E°HÇE¸H…ÉH‰}t/I‰ÎHÞH…Û„AHƒû…¨H‹>H‰}¨M‹nM…í~éDHƒû…‰H‹>H‰}¨H‹Oö«…\H‹_´H9Á„LH‹‘XH…Ò„*H‹JH…É~1öH9Dò„#HÿÆH9ñuíH‰}˜L‹%B½H‹=›³I‹T$L‰æèȭH…À„öI‰NjÿÀtA‰H‹5B·I‹GH‹€L‰ÿH…À„
ÿÐI‰ÄH…À„I‹©€uHÿÈI‰uL‰ÿ藭I‹D$H;?e„E1ö1ÛH‹E˜H‰]°H‰E¸D‰ðHÁàH÷ØH4(HƒƸAÿÆL‰çL‰òèÐ$þÿH‰E H…ÛtH‹©€uHÿÈH‰uH‰ßè1­Hƒ} „äI‹$©€uHÿÈI‰$uL‰çè
­H‹5§»H‹} H‹GH‹€H…À„ÉÿÐI‰ÄH…À„ÌH‹5jÁ1ÛL‰ç1Òèæ«H…À„ÀI‰ÆI‹$©€uHÿÈI‰$uL‰ç袬L;5d„L;5rd„L;5md„õL‰÷胫‰ÅÀL‹} ˆxI‹©€„ëéöH‰E M‹nM…í~SL‹%rÀE1ÿ€O9dþ„ÔIÿÇM9ýuíE1ÿf.„K‹tþL‰çºèN…À…ŸIÿÇM9ýuÞ蹩H…Àt¾Újë<H‹fcH‹8H‰$H5ŽFHñáH
xFL
ӱA¸1Àèd©¾êjH=TRH
㱺<èY‡ýÿ1Ûé1ÛL;5qc”ÃL‹} I‹©€uHÿÈI‰uL‰÷è\«…Û…dH‹5ñ¹I‹GH‹€L‰ÿH…À„£ÿÐI‰ÄH…À„¦H‹5µ¿I9ôt0I‹D$H;¼b…©I‹D$Hƒàú1ÛHƒøu1ÛAƒ|$”Ãë»I‹$©€uHÿÈI‰$uL‰çè˪L‹=ºH‹=Y°I‹WL‰þ自I‰ąÛ„:M…ä„wA‹$ÿÀtA‰$H‹5†¸I‹D$H‹€L‰çH…À„ÿÐI‰ÇH…À„„I‹$©€uHÿÈI‰$uL‰çèHªI‹GH;ña„hE1ö1ÛL‹e H‰]°L‰e¸H‹E˜H‰EÀD‰ðHÁàH÷ØH4(HƒƸAƒÎL‰ÿL‰òèy!þÿI‰ÆH…ÛtH‹©€uHÿÈH‰uH‰ßè۩M…ö„CI‹©€uHÿÈI‰uL‰ÿ踩L;5¥a„úL;5ˆa„íL;5ƒa„àL‰÷虨‰ÅÀˆlI‹©€„ÖéáM…ä„ZA‹$ÿÀtA‰$H‹5œ²I‹D$H‹€L‰çH…À„dÿÐH‰ÃH…À„gI‹$©€uHÿÈI‰$uL‰çè©H‹5ûºL‹e I‹D$H‹€L‰çH…À„BÿÐI‰ÆH‰]˜ÇEŒ}H…À„31ÛL‰÷1ö1Ò1ÉèîH…À„(I‰ÇI‹©€uHÿÈI‰uL‰÷蜨¿èö§H…À„ÿI‰ÆL‰xè
¦H…À„ûI‰ÇH‹¦·H‹=ÿ­H‹SH‰Þè-¨H…À„æ‹ÿÁt‰H‹5ã´H‹HH‹‰I‰ÅH‰ÇH…É„îÿÑH‰ÃH…À„ñI‹E©€uHÿÈI‰EuL‰ïèû§H‹5³L‰ÿH‰Ú腥…ÀˆÕH‹©€uHÿÈH‰uH‰ßèǧH‹E˜H‹@H‹˜€H…Û„!H=ò7èm§…À…BH‹}˜L‰öL‰úÿÓI‰ÅèW§M…í„H‹}˜H‹©€u
HÿÈH‰uèc§I‹©€uHÿÈI‰uL‰÷èI§I‹©€uHÿÈI‰uL‰ÿè/§H‹5,¹H‹}H‹GH‹€H…À„ÉÿÐI‰ÇH…À„ÌI‹GH;«^…I‹_H…Û„M‹g‹ÿÀ…×A‹$ÿÀ…ÙI‹A¾©€„Ùéä1ÛL;5œ^”ÃI‹©€uHÿÈI‰uL‰÷苦…Û„H‹¸µH‹=¬H‹SH‰Þè?¦H…À„ŽI‰NjÿÀtA‰H‹5©¯I‹GH‹€L‰ÿH…À„ÿÐI‰ÄH…À„ I‹©€uHÿÈI‰uL‰ÿè¦I‹D$H;¶]„’1ÛE1öL‹mL‰u°H‹E H‰E¸‰ØHÁàH÷ØH4(HƒƸÿÃL‰çH‰ÚèEþÿH‰ÃM…ötI‹©€uHÿÈI‰uL‰÷觥H…Û„zI‹$©€uHÿÈI‰$uL‰ç肥H‹} H‹©€uHÿÈH‰uèg¥ëL‰ãL‹mH‹5[·I‹EH‹€L‰ïH…À„À	ÿÐI‰ÄE1íH…À„Ã	I‹D$H;×\…Ä	M‹t$M…ö„Ý	M‹|$A‹ÿÀuA‹ÿÀuI‹$A½©€t ë/A‰A‹ÿÀtãA‰I‹$A½©€uHÿÈI‰$uL‰ç躤M‰üL‰u°H‰]¸D‰èHÁàH÷ØH4(HƒƸAÿÅL‰çL‰êèþÿI‰ÇM…ötI‹©€uHÿÈI‰uL‰÷èm¤M…ÿ„	I‹$©€uHÿÈI‰$uL‰çèH¤I‹©€uHÿÈI‰uL‰ÿè.¤‹ÿÀt‰E1íI‰ÜI‹$©€„^éj¾‚l1ÿL‹e˜I‹$©€H‰]uHÿÈI‰$uI‰ýL‰ç‰óèܣL‰ï‰ÞM‰ôM…ö‹]Œt(I‹$©€uHÿÈI‰$uI‰ýL‰çA‰ö誣L‰ïD‰öE1íM…ÿL‹e t,I‹©€u"HÿÈI‰u‰]ŒH‰ûL‰ÿA‰öèu£H‰ߋ]ŒD‰öH…ÿtH‹©€uHÿÈH‰uA‰öèM£D‰öH‹}H…ÿtH‹©€uHÿÈH‰uA‰öè'£D‰öH=ÓIH
b©‰ÚèÛ~ýÿ1ÛM…ä…Fé]‰A‹$ÿÀ„'üÿÿA‰$I‹A¾©€uHÿÈI‰uL‰ÿè͢M‰çH‰]°L‰m¸D‰ðHÁàH÷ØH4(HƒƸAÿÆL‰ÿL‰òèþÿI‰ÆH…ÛL‹e tH‹©€uHÿÈH‰uH‰ßè|¢M…ö„J
I‹©€uHÿÈI‰uL‰ÿèY¢I‹©€uHÿÈI‰uL‰÷è?¢L‰çL‰îè`¬H…À„
H‰ÃI‹$©€„férH‹‰H9ÁtH…ÉuïH;Y…åóÿÿI‰ýL‹=(±H‹=§I‹WL‰þ诡H…À„ÎI‰ċÿÀtA‰$H‹5«I‹D$H‹€L‰çH…À„ÔÿÐI‰ÇH…À„×I‹$©€uHÿÈI‰$uL‰çèz¡I‹GH;#Y„¹E1ö1ÛH‰]°L‰m¸D‰ðHÁàH÷ØH4(HƒƸAÿÆL‰ÿL‰òè¸þÿI‰ÄH…ÛtH‹©€uHÿÈH‰uH‰ßè¡M…ä„•I‹©€uHÿÈI‰uL‰ÿè÷ H‹5ô²H‹}H‹GH‹€H…À„kÿÐI‰ÇE1íH…À„nI‹GH;pX…mI‹_H…Û„vM‹w‹ÿÀuA‹ÿÀuI‹A½©€të,‰A‹ÿÀtåA‰I‹A½©€uHÿÈI‰uL‰ÿèZ M‰÷H‰]°L‰e¸D‰èHÁàH÷ØH4(HƒƸAÿÅL‰ÿL‰êè«þÿI‰ÆH…ÛtH‹©€uHÿÈH‰uH‰ßè
 M…ö„ÂI‹©€uHÿÈI‰uL‰ÿèêŸI‹©€uHÿÈI‰uL‰÷èПA‹$ÿÀtA‰$E1íL‰ãI‹$©€uHÿÈI‰$uL‰ç袟M…ítI‹E©€uHÿÈI‰EuL‰ï聟H‹vWH‹H;EÐ…ÄH‰ØHƒÄX[A\A]A^A_]ÈcóÿÿH‹E J‹<øH‰}¨H…ÿ„NóÿÿIÿÍH‹E M…íŽÍðÿÿL
UÕHU°HM¨L‰÷H‰ÆI‰Øè¯…Àˆ H‹}¨éŸðÿÿèɜ»0kA¾lH…À…L‰ÿè
ùýÿI‰ÄH…À…ýÿÿé距I‰ÇH…À…)ýÿÿ»l¾2kéxI‹_H…Û„:ýÿÿM‹g‹ÿÀupA‹$ÿÀurI‹A¾©€tv遾Gk»léÖèTI‰ÇE1íH…À…’ýÿÿA¾Ukºmé:1Ûéëýÿÿ¾ik»méŸE1í1ÛéÒýÿÿ‰A‹$ÿÀtŽA‰$I‹A¾©€uHÿÈI‰uL‰ÿèûM‰çéüÿÿ躛»‹kA¾pH…ÀuL‰çèøýÿI‰ÇH…À…íïÿÿH=yDH
¤‰ÞD‰òé òÿÿ虜I‰ÄH…À…ðïÿÿ¾k»pE1äE1í1ÿ1ÀH‰EéìùÿÿI‹\$H…Û„ñïÿÿM‹|$‹ÿÀ…@A‹ÿÀ…BI‹$A¾©€„AéM»p¾¢k1ÀH‰E1ÿE1ÿ1ÀH‰E éVùÿÿè	œI‰ÄH…À…4ðÿÿA¾°kºqéŠÇEŒq¾²kéÚH‹=³H‹5³E1í1Òè”þÿH…À„+H‰ÃH‰Çè þÿH‹A¾Ãk©€uHÿÈH‰uH‰ß褜E1íL‹e ºré„èz›I‰ÄH…À…ZñÿÿA¾ÕkºuE1íL‹e é\¾ßjé¼ðÿÿH;öS„¦L‰çºèc›H‰Ç諦‰ÅÀ‰Nñÿÿ»u¾×kémèí™A¾âkH…ÀuL‰ÿè:öýÿI‰ÄH…À…qñÿÿE1íL‹e ºwéâèؚI‰ÇH…À…|ñÿÿÇEŒw¾äké·I‹_H…Û„‹ñÿÿM‹g‹ÿÀ…ÌA‹$ÿÀ…ÎI‹A¾©€„ÎéÙ¾ùk»wéìýÿÿègšI‰ÄE1íH…À…=öÿÿA¾6lºyI‰ÜéJE1öéšöÿÿÇEŒy¾Jl1ÿE1ÿE1öH‰] 1Ûé1÷ÿÿE1íE1öépöÿÿ‰A‹ÿÀ„¾ýÿÿA‰I‹$A¾©€uHÿÈI‰$uL‰çèõšM‰üémíÿÿ¾´kÇEŒqéÕE1ö1Ûéøÿÿ虘A¾lH…À…%H‰ßèâôýÿI‰ÇH…ÀL‹e …RôÿÿE1íºxéŠ耙I‰ÄH…À…`ôÿÿ¾
l»xE1í1ÿ1ÀH‰EL‹e éÒöÿÿL‹mM‹t$M…ö„ÐM‹|$A‹ÿÀ…eA‹ÿÀ…hI‹$»©€„gésÇEŒx¾l1Û1ÿE1ÿE1öéöÿÿèЗA¾llH…ÀuL‰ÿèôýÿI‰ÄH…À…ŽðÿÿE1íL‹e º}éÅ軘H‰ÃH…À…™ðÿÿ»}¾nl1ÀH‰E1ÿE1ÿéÝõÿÿ萘é¶ðÿÿ¾ql1Û1ÿE1ÿë¾slë¾vl1Û1ÿE1öétõÿÿ¾{l1Û1ÿE1ÿécõÿÿè/—H…ÀuH‰ßè‚óýÿH…ÀL‹e …ñÿÿ1Û1ÿL‹e˜¾}lé6õÿÿè˜H‰ÃH…À…ñÿÿ¾l1ÛL‹e˜L‰ïéõÿÿ¾ýkÇEŒwE1ÿ1ÿ1ÀH‰EM‰ôM…ö‹]Œ…!õÿÿéDõÿÿ‰A‹$ÿÀ„2ýÿÿA‰$I‹A¾©€uHÿÈI‰uL‰ÿ趘M‰çé|îÿÿ¸ò*ÀfA.D$›À”Á Á¶Ùé§íÿÿH‹}˜L‰öL‰úèM—I‰ÅH…À…õðÿÿ¾„l1Ûé`ôÿÿè.–H…À„Û1Û1ÿL‹e˜¾„léFôÿÿè.—I‰ÇH…À…4ñÿÿA¾“lº~ë¾§l»~é‰úÿÿA¾µlºH=¾>H
MžD‰öèÅsýÿ1ÛI‹$©€„5øÿÿéAøÿÿA‰A‹ÿÀ„˜ýÿÿA‰I‹$»©€uHÿÈI‰$uL‰ç豗M‰üé¶ñÿÿ誗A¾¿kéøúÿÿE1íL‹e ºxéyÿÿÿ1ÛE1öé‹ñÿÿH‹ûNH‹8H5Ö'è@•é
ÿÿÿffffff.„UH‰åAWAVAUATSHƒìA‰ÔH‰óI‰ÿHÇEÐHÇEÈH‹Gö€«tJA¾E…äu-Iƒt&I‹OH‰MÐH‹ˆNH‹8H52E1öH‰Ú1À蟔D‰ðHƒÄ[A\A]A^A_]ÃLuÈLmÐL‰ÿL‰öL‰ê1ÉèQ”…Àt1H‹EÐH‹@ö€«uÛH‹+NH‹8H5•1E1öH‰Ú1ÀèB”ë¡A¾E…äu–H‹MÐH…Étéjÿÿÿf„UH‰åAWAVAUATSHƒìHL‰MÀM‰ÆH‰M°I‰×H‰u H‰ûHÇEÐHÇEÈHÇE¸N,ÂH‹GH‹€¨H‰E˜JÅH‰E¨H‹}ÐH…ÿtH‹©€uHÿÈH‰uèç•HÇEÐH‹}ÈH…ÿtH‹©€uHÿÈH‰tLffff.„HÇEÈ÷E˜uOH‰ßHu¸HUÐHMÈè%“…À„VI‹UH‹EÐH…Òu]é±èp•HÇEÈ÷E˜t¼ff.„H‹E¸H;CH‹LÃH‰MÐH‹M H‹ÁH‰MÈHÿÀH‰E¸I‹UH‹EÐH…ÒtYH‹M¨DH9tI‹THƒÁH…Òuíë;ff.„H‹EÈH‹U°H‰
HÇEÐHÇEÈ1ÿH…ÿ…Ïþÿÿéäþÿÿ@‹ÿÁu*H‹EȋÿÁu,H‹EÐH‹@ö€«u2é®f.„‰H‹EȋÿÁtԉH‹EÐH‹@ö€«„I‹EH…ÀtUL‹e¨ëè)’H…À…ÈK‹D'IƒÄH…Àt3H‹8H‹GH‹uÐH;Fuá踓…ÀxÊuÖH‹EÈH‹M°J‰!Kƒ<'…þÿÿM9ýtbIÁæ1Ûëè͑H…Àup„HƒÃI9Þt?I‹H‹H‹uÐH9ñtH‹AH;FuÝH‰ÏèQ“…Àx¿uÏH‹MÐH‹DKH‹8H5W/ëH‹1KH‹8H‹MÐH5¹.H‹UÀ1ÀèF‘H‹}ÐH…ÿtH‹©€u
HÿÈH‰uèl“H‹}ȻÿÿÿÿH…ÿtH‹©€u»ÿÿÿÿHÿÈH‰uèB“‰ØHƒÄH[A\A]A^A_]ÃH‹}ÐH…ÿtH‹©€u
HÿÈH‰uè“H‹}È1ÛH…ÿtÄH‹©€uº1ÛHÿÈH‰u°ë©H‹uJH‹8H5ß-H‹UÀ1À莐H‹}ÐH…ÿ…DÿÿÿéVÿÿÿfffff.„UH‰åAVS‰ÓH9÷„H‹OH‹FH;
_JukH;VJubH‹WH;V…oH‹FHƒøÿtH‹OHƒùÿt	H9Á…RD‹G D‰ÀÁèƒà‹N A‰ÉAÁéAƒáD9È….AöÀ …ºH‹8éÇH‹ëIH1ÐH1ÑH‹þII‰øI1ÐH1òH	Ê”ÁI	À„ï„É…ç‰Úè‘H…Àt8H‰ÃH;ÐIt7H;·It.H;¶It%H‰ßèАA‰ÆH‹©€t,é­A¾ÿÿÿÿé¢E1öH;IA”ÆH‹©€…†HÿÈH‰u~H‰ßèw‘ëtE1ÉAöÀ@A”ÁIÁáLÏHƒÇ(öÁ uH‹v8ëE1ÀöÁ@A”ÀIÁàLÆHƒÆ(ƒøtƒøu¶D¶ë·D·ë‹D‹D9ÁuHƒúuE1öƒûëE1öƒûA”ÆD‰ð[A^]ÃH¯ÐèP‘1É1҅À”Á•ƒûDÑD¶òë×@UH‰åAVSH…ÿu#豐I‰ÆH‹@`1ÛH…Àt	H‹xH…ÿuC‰Ø[A^]ÃH‰óH‹©€u
HÿÈH‰u苐H‹HH‹8H5,H‰Ú1Àè*Ž»ÿÿÿÿë½H‹ÞGH‹0è†ïýÿ…Àt1ÛL‰÷1ö1Ò1Éèòìýÿ똻ÿÿÿÿë‘f„UH‰åAVSèH‰ÃH‹@`E1öH…Àt	H‹xH…ÿuD‰ð[A^]ÃH‹}GH‹0è%ïýÿ…ÀtE1öH‰ß1ö1Ò1ÉèìýÿëÒA¾ÿÿÿÿëÊfDUH‰åAWAVATSI‰öH‰ûH‹GH;\GtoH;sG„»L‹xhL‹`pM…䄁Iƒ|$tyL‰÷èðH…À„3I‰ÆH‰ßH‰ÆAÿT$H‰ÃI‹©€…ŸHÿÈI‰…“L‰÷èLé†L‰ðM…öyL‰ð…ÒtH‹CLð…ÉtH;CsrH‹KH‹KÿÀuVëVM…ÿt]IƒtVM…öy…Òu{I‹GH‰ßL‰ö[A\A^A_]ÿàL‰ðM…öyL‰ð…ÒtH‹CLð…ÉtH;CsH‹\ËÿÀt‰H‰Ø[A\A^A_]ÃL‰÷èH…Àt\I‰ÆH‰ßH‰Æ蒍H‰ÃI‹©€„)ÿÿÿëÆI‹H…É„yÿÿÿH‰ßÿÑH…ÀxIÆégÿÿÿH‹ÎEH‹8茅Àt
èÿ‹éJÿÿÿ1Ûë‡@UH‰åAVSI‰ö迋H‰ÃH…Àt‹ÿÀt‰H‰Ø[A^]Ãèä‹H…ÀuîI‹Fö€«uH‹[EH‹8L‰öèƋëͿL‰ö1ÀèMH…Àt¹I‰ÆH‹0EH‹8L‰ö蛋I‹©€ušHÿÈI‰u’L‰÷词ëˆf„UH‰åAVSH‹Gö€«„²H‹GHƒøv@‰CáºH)ÊHÁèH¯ÂHƒøtAHƒøþuU‹_‹GHÁàH	ø€HƒÈH9ÃsJ÷Ûëa‹Oƒà»H)ÃH¯ÙHcÃH9ØtGë*‹_‹GHÁàH	ÃH‰ØH%€uë+è]‹H‰ÃHcÃH9ØtH‹aDH‹8H5»)辊»ÿÿÿÿ‰Ø[A^]Ãè1H…ÀtêI‰ÆH‰Çè!ÿÿÿ‰ÃI‹©€uØHÿÈI‰uÐL‰÷詌ëÆUH‰åH‹Gö€«t
‹ÿÀt‰H‰ø]ÃH‹@`H…Àt0H‹€€H…Àt$ÿÐH…ÀtH‰ÇH‹@H;DtÏH5E)]é)èŠH…ÀuH‹ÈCH‹8H5()èŠ1ÿH‰ø]ÃfUH‰åSPH‰ûH‹GL‹@ö€«u H‰ñH‹ŒCH‹8H5«)H‰Ê1À覉ë$H‹CH‹8Hæ(¾L‰Á1À讉…ÀtH‹©€uHÿÈH‰uH‰ß謋1ÛH‰ØHƒÄ[]Ãfff.„UH‰åSPH‰ËH‰øH‹
mCëff.„H‹@H…Àt.H‹8H…ÿtïH9ÏtêH‰:‹ÿÀt‰H‹GH‰‹ÿÁt‰è5‰ëHÇHÇ1ÀH‰HƒÄ[]Ãffffff.„UH‰åAWAVATSHƒì H‰ËI‰ÖI‰ôI‰ÿHÇEÈHÇEØH‹`H‰}ÐIÇG`H…ÿtH‹GH‰EȋÿÁt‰H‹}Ð豈H‰EØH}ÈHuÐHUØèlˆIƒ`…ãH‹uØH…öt"H‹}Ð腈…ÀˆÉH‹EØH…Àt‹ÿÁt‰H‹EÈH…Àt‹ÿÁt‰H‹EÐH…Àt‹ÿÁt
‰H‹EÐë1ÀH‹MÈI‰$I‰H‹MØH‰I‹OhH‹H‰H‹}ÈH…ÿtH‹©€u
HÿÈH‰uè
ŠH‹}ØH…ÿtH‹©€u
HÿÈH‰uèê‰E1öH…ÛtH‹©€uHÿÈH‰uH‰ßèȉD‰ðHƒÄ [A\A^A_]ÃIÇ$IÇHÇH‹}Èè5NýÿH‹}Ðè,NýÿH‹}Øè#NýÿA¾ÿÿÿÿë·ff.„UH‰åAVSH‰ËI‰öH‰øH‹?H‰H…ÿtH‹©€u
HÿÈH‰uèB‰M…ötI‹©€uHÿÈI‰t#H…Ût+H‹©€u!HÿÈH‰uH‰ß[A^]é‰L‰÷è‰H…ÛuÕ[A^]ÃfUH‰åAVSH‹Gö€«toH‹GHƒøv3‰CáºH)ÊHÁèH¯ÂHƒøt,Hƒøþu;‹_‹GHÁàH	ÃH÷Ûë!‹Oƒà»H)ÃH¯Ùë
‹_‹GHÁàH	ÃH‰Ø[A^]Ã[A^]édžèÈûÿÿH…Àt*I‰ÆH‰ÇèhÿÿÿH‰ÃI‹©€uÍHÿÈI‰uÅL‰÷è?ˆë»HÇÃÿÿÿÿë²UH‰åAWAVAUATSHƒìI‰ÔH‹WL‹jpM…í„$I‹EH…À„H‰ûH…ÉtH‹1H‰ßHƒÄ[A\A]A^A_]ÿàE‰ÎH‰uÈE…Àt'1ÿè9†1ÉI‰ÇH…À„öM…äH‰EÐtI‹4$E1äë3L‹=–?1ÀM…äH‰EÐuåE…ö„ŸH‹}Èèõ…H‰ÆI‰ÄH…À„ÃH‹c?L‰ÿèFI‰ÇH‹}ÐH…ÿtH‹©€u
HÿÈH‰uèL‡M…ätI‹$©€uHÿÈI‰$uL‰çè+‡M…ÿtWH‰ßL‰þAÿUH‰ÁI‹©€uBHÿÈI‰u:L‰ÿH‰Ëèü†H‰Ùë*H‹5Ü>é5ÿÿÿH‹RH‹l>H‹8H5&1À艄1ÉH‰ÈHƒÄ[A\A]A^A_]ÃH‹}ÐèNKýÿëáfff.„UH‰åAWAVAUATSHìøM‰ÇH‰MˆI‰ôH‹{>H‹H‰EÐH‰•øþÿÿHDžðþÿÿHÇE€HÇEHDžxÿÿÿ‹ÿÀ…F‹ÿÀ…JH‰}¨A‹ÿÀtA‰L‹5^•H‹=·‹I‹VL‰öèå…H…ÀL‰½ ÿÿÿ„AKH‰ËÿÀt‰H‰]€H‹5EH‹CH‹€H‰ßH…À„FKÿÐI‰ÆA¿©H…À„IKH‹©€uHÿÈH‰uH‰ß褅¿èþ„H‰E€H…À„7KA‹$ÿÁtA‰$L‰`èƒH‰EH…À„@KH‰ÃH‹5åL‹=>=H‰ÇL‰úèë‚…ÀˆpL‰½@ÿÿÿL‹}€I‹FL‹¨€M…í„[KH=kèæ„…À…ÒKL‰÷L‰þH‰ÚAÿÕH‰ÃèЄH…Û„§KH‰xÿÿÿI‹©€uHÿÈI‰uL‰÷èքH‹}€H‹©€u
HÿÈH‰u軄HÇE€H‹}H‹©€u
HÿÈH‰u蘄HÇEL‹­xÿÿÿI‹$©€uHÿÈI‰$uL‰çèm„HDžxÿÿÿH‹5ÿ’I‹EH‹€L‰ïH…À„¦JÿÐH‰ÃH‰…xÿÿÿA¿ªH…À„•JH‹5®˜H9ó„ÃH‹CH;º;…ýOD‹sAƒæé«A‰$‹ÿÀ„¶ýÿÿ‰H‰}¨A‹ÿÀ…°ýÿÿé®ýÿÿL‰¥Xÿÿÿ».21ÀH‰…hÿÿÿE1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰…ÿÿÿA¿©é[A¾H‹©€uHÿÈH‰„’HDžxÿÿÿE…öL‰­Xÿÿÿ„šèƒI‰ÆH‹@hH‹
ø:ëfDH‹@H…Àt4L‹8M…ÿtïI9ÏtêA‹ÿÀtA‰I‹O‹ÿÀt‰H‰HÿÿÿL‰ÿ迀ë1ÀH‰…HÿÿÿE1ÿ1ÀH‰…`ÿÿÿH‹?’H‹=@ˆH‹SH‰Þèn‚H…ÀL‰µÿÿÿ„.OI‰ċÿÀtA‰$L‰eH‹5äŽI‹D$H‹€L‰çH…À„)OÿÐH‰E€H…À„,OI‹$©€uHÿÈI‰$uL‰çè-‚HÇEH‹5úŽI‹EH‹€L‰ïH…À„üNÿÐI‰ÆH…À„ÿNI‹FH;¢9…HM‹fM…ä„HM‹nA‹$ÿÀuA‹EÿÀuI‹»©€t!ë/A‰$A‹EÿÀtãA‰EI‹»©€uHÿÈI‰uL‰÷臁M‰îL‹­XÿÿÿL‰e°HÇE¸HÝH÷ØH4(HƒƸL‰÷H‰ÚèÏøýÿH‰EM…ät I‹$©€uHÿÈI‰$uL‰çè.H‹EH…À„=NI‹©€uHÿÈI‰uL‰÷èH‹E€H‹HH;
¬8„NE1äE1íL‰m°H‹EH‰E¸H‹}€D‰àHÁàH÷ØH4(HƒƸAÿÄL‰âè;øýÿH‰…xÿÿÿM…ítI‹E©€uHÿÈI‰EuL‰ï藀H‹}H‹©€u
HÿÈH‰uè|€HÇEHƒ½xÿÿÿL‹­Xÿÿÿ„âMH‹}€H‹©€u
HÿÈH‰uèD€HÇE€H‹…xÿÿÿH‰…ÿÿÿHDžxÿÿÿH‹½HÿÿÿH…ÿtH‹©€u
HÿÈH‰uè€M…ÿtI‹©€uHÿÈI‰uL‰ÿèáH‹½`ÿÿÿH…ÿtH‹©€u
HÿÈH‰uè¾H‹5C”H‹½ÿÿÿºèÂ~H‰EA¿°H…À„pNH;€7t5H;g7t,H;f7t#H‰Çè€~…ÀˆRd‰ÃH‹EH‹÷Á€të#1ÛH;@7”ÃH‹÷Á€uHÿÉH‰„nHÇE…Û„vH‹WŽH‹=°„H‹SH‰ÞèÞ~H…À„3]‹ÿÁt‰H‰E€H‹50H‹HH‹‰H‰ÇH…É„1]ÿÑH‰…xÿÿÿH…À„4]H‹}€H‹©€u
HÿÈH‰uè¨~HÇE€H‹…xÿÿÿH‹H1ÛH;
@6„þ\H‹E€H‰E°H‹…øþÿÿH‰E¸H‹½xÿÿÿ‰ØHÁàH÷ØH4(HƒƸÿÃH‰ÚèÍõýÿH‰EH‹}€H…ÿtH‹©€u
HÿÈH‰uè-~H‹EHÇE€H…À„ñ\H‹½xÿÿÿH‹©€u
HÿÈH‰uèú}HDžxÿÿÿH‹}H‹5p’H9÷L‹µ ÿÿÿ„&H‹GH;u5…h‹_÷ӃãH‹©€„éH‰ßè }HDžxÿÿÿE…öL‰­Xÿÿÿ…fúÿÿH‹5"ŒI‹EH‹€L‰ïH…À„6^ÿÐH‰ÃH‰EA¿²1ÀH‰…`ÿÿÿH…Û„^H‹5ӑH9ót;H‹CH;Û4…¹gH‹CHƒàú¹H‰`ÿÿÿHƒøu1{•ÀH‰…`ÿÿÿH‹©€uHÿÈH‰uH‰ßèå|HÇEƒ½`ÿÿÿ…Û]H‹5½ŽI‹EH‹€L‰ïH…À„‰^ÿÐH‰ÃH‰EA¿µH…À„{^H‰ß1ö1Ò1Éè¸ìÿÿH‰…xÿÿÿH…À„®^H‹©€uHÿÈH‰uH‰ßèb|HÇEH‹xÿÿÿHDžxÿÿÿH‰ÈH‰ÿÿÿH;
ÐL‹µ ÿÿÿ…³L‹5_‹H‹=¸I‹VL‰öèæ{H…À„oH‰ËÿÀt‰H‰]H‹55ŒH‹CH‹€H‰ßH…À„&oÿÐH‰E€A¿¶H…À„)oH‹©€uHÿÈH‰uH‰ßè«{HÇEH‹E€H‹H1ÛH;
F3„÷nH‹EH‰E°H‹…øþÿÿH‰E¸H‹}€‰ØHÁàH÷ØH4(HƒƸÿÃH‰ÚèÖòýÿH‰…xÿÿÿH‹}H…ÿtH‹©€u
HÿÈH‰uè3{H‹…xÿÿÿHÇEH…À„ánH‹}€H‹©€u
HÿÈH‰uè{HÇE€H‹½xÿÿÿH‹5vH9÷L‹µ ÿÿÿ„7H‹GH;{2…¬r‹_÷ӃãH‹©€„é$1ÛH‹©€u
HÿÈH‰uè•zHÇE…Û„H‹=òH‹5³1Òè,ßýÿH‰EH…À„×}H‰Çè·ßýÿH‹}H‹©€u
HÿÈH‰uè@zHÇE»3E1öE1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿA¿±éÉuH‰Çè¼yHÇE…Û…ŠúÿÿL‹µ ÿÿÿë,1ÛH‹©€u
HÿÈH‰uèŠyHDžxÿÿÿ…Û…mH‹\1I9Þ„®L‰÷è“xHƒøÿ„<HI‰ÄH‹‡ˆH‹=à~H‹SH‰ÞèyH…À„mH‹ÿÁt‰H‰E€H‹5p‹H‹HH‹‰H‰ÇH…É„kHÿÑH‰EA¿¼H…À„nHH‹}€H‹©€u
HÿÈH‰uèÕxHÇE€H‹ˆH‹=[~H‹SH‰Þè‰xH…À„rHI‰ƋÿÀtA‰H‹5„I‹FH‹€L‰÷H…À„ÛHÿÐH…À„ÞHI‰ÇI‹©€uHÿÈI‰uL‰÷èXxH‹‡H‹=æ}H‹SH‰ÞèxH…À„åHI‰ƋÿÀtA‰H‹5¶ƒI‹FH‹€L‰÷H…À„NIÿÐH‰ÃH…ÀL‰ù„QII‹©€uHÿÈI‰uL‰÷èàwL‰ùH‹AH;†/„’IE1ÿE1öL‰u°H‰]¸D‰øHÁàH÷ØH4(HƒƸAÿÇI‰ÍH‰ÏL‰úèïýÿH‰E€M…ötI‹©€uHÿÈI‰uL‰÷èxwH‹©€A¿¼uHÿÈH‰uH‰ßèXwHƒ}€„TII‹E©€uL‰ïHÿÈI‰Euè1wH‹}€H‹5b‚H‹GH‹€H…À„ˆIÿÐH‰ÃL‹­ÿÿÿH…À„‹IH‹}€H‹©€u
HÿÈH‰uèâvHÇE€H‹EH‹HE1öH;
|.„WIH‹E€H‰E°H‰]¸H‹}D‰ðHÁàH÷ØH4(HƒƸAÿÆL‰òèîýÿH‰…xÿÿÿH‹}€H…ÿtH‹©€u
HÿÈH‰uènvHÇE€H‹©€uHÿÈH‰uH‰ßèLvHƒ½xÿÿÿ„*IH‹}H‹©€u
HÿÈH‰uè#vHÇEH‹xÿÿÿHDžxÿÿÿL‹½ ÿÿÿI‹WH‹ó{H9ÂtaH‹ŠXH…ÉtGH‹QH…Ò~1ö€H9Dñt<HÿÆH9òuñH‰8ÿÿÿé"1ÉH‰8ÿÿÿéy
H‹’H9ÂtH…ÒuïH;Ÿ,uÌL‹5ƄH‹={I‹VL‰öèMuH…À„—X‹ÿÁt‰H‰EH‹5/‚H‹HH‹‰H‰ÇH…É„ØXÿÑI‰ÇH…À„ÛXH‹}H‹©€u
HÿÈH‰uèuHÇEH‹5 €H‹½ ÿÿÿH‹GH‹€H…À„áXÿÐH‰E1ÒH…ÀL‰ù„×XHÇE€H‹AH;~,„YI‰ÎH‹E€H‰E°H‹EH‰E¸H‹ÞzH‰E	ÐHÁàH÷ØH4(HƒƸƒÊL‰÷èìýÿH‰…xÿÿÿH‹}€H…ÿtH‹©€u
HÿÈH‰uèctHÇE€H‹}H‹©€u
HÿÈH‰uè@tHÇEHƒ½xÿÿÿ„¾XI‹©€uHÿÈI‰uL‰÷ètH‹½xÿÿÿH;=ö+t5H;=Ý+t,H;=Ü+t#èùr…Àˆ±cA‰ÆH‹½xÿÿÿH‹©€të%E1öH;=µ+A”ÆH‹©€u
HÿÈH‰uè¦sHDžxÿÿÿE…ö„ñH‹=ǂèòNýÿA¿¿H…À„¼^H‰ÇH‹5EH‹@H‹€I‰ÿH…À„_ÿÐH‰EH…À„
_I‹©€uL‰ÿHÿÈI‰uè-sH‹=b‚èNýÿH‰E€H…À„)_H‹5‘~H‹HH‹‰H‰ÇH…É„V_ÿÑI‰ÅH…À„Y_H‹}€H‹©€u
HÿÈH‰uèÍrHÇE€H‹5Ò}H‹½ ÿÿÿH‹GH‹€H…À„__ÿÐH‰E€1ÒH…ÀM‰è„U_I‹@H;8*„›_E1öL‰u°H‹E€H‰E¸‰ÐHÁàH÷ØH4(HƒƸÿÂM‰ÅL‰ÇèÍéýÿI‰ÇL‰÷èâ6ýÿH‹}€H‹©€u
HÿÈH‰uè+rHÇE€M…ÿ„r_L‰ùI‹E©€uL‰ïHÿÈI‰EuèûqL‰ùH‹5-}H‹AH‹€H‰ÏH…À„¤_ÿÐI‰ÆH…À„§_I‹©€uHÿÈI‰uL‰ÿè²qH‹EH‹HH;
W)„ë_E1íE1ÿL‰}°L‰u¸H‹}D‰èHÁàH÷ØH4(HƒƸAÿÅL‰êèêèýÿH‰…xÿÿÿL‰ÿèû5ýÿI‹©€uHÿÈI‰uL‰÷èEqHƒ½xÿÿÿL‹½ ÿÿÿ„Ó_H‹}H‹©€u
HÿÈH‰uèqHÇE‹ÿÀt‰H‰]H‹½xÿÿÿH‰޺è	pH…À„Ï_H‰ÁH;Î(tQH;
µ(tHH;
´(t?H‰ÏI‰ÎèËoL‰ñA‰ƅÀˆfH‹©€t4ëBH‰8ÿÿÿL‹­ÿÿÿL‹½ ÿÿÿéðE1öH;
q(A”ÆH‹©€uHÿÈH‰uH‰Ïè_pE…ö„"H‹xÿÿÿ‹H…xÿÿÿÿÂL‹­ÿÿÿt‰L‹0H‹}H‹©€u
HÿÈH‰uèpHÇEH‹½xÿÿÿH‹©€u
HÿÈH‰uèõoL‰µxÿÿÿA‹ÿÀtA‰I‹©€uHÿÈI‰uL‰÷èÊoH‹…xÿÿÿH‰…8ÿÿÿH‹©€uHÿÈH‰uH‰ßè¢oHDžxÿÿÿH‹„†H‹˜(¿ÿhL‰ÿH‰Æ1Ò1ÉA¸E1ÉÿÓH‰…xÿÿÿH…À„•BH‰ËH‰ßÿÀt	‰H‹½xÿÿÿH‹©€uHÿÈH‰t0HDžxÿÿÿI‹©€u5HÿÈI‰u-L‰ÿè
oH;ò&u%ë:èýnHDžxÿÿÿI‹©€tËH;Í&tH‹5ÔtH‰ßè|w…À„ÜMH‹CL‹sH‹5]}H‹€H‰ßH…À„MBÿÐI‰ÀA¿Å1ÀM…À„ABH‹5ƒI9ðt.I‹@H;%&…ØMI‹HHƒáú¸Hƒùu
1ÀAƒx•ÀI‹÷Á€uHÿÉI‰uI‰ÇL‰Çè8nL‰ø…À…2BH‹5b€H‹CH‹€H‰ßH…À„ÉBÿÐI‰ÇH…À„ÌBL‰ÿL‰îºè
mH‰…xÿÿÿH…À„÷BI‹©€uHÿÈI‰uL‰ÿèÇmH‹½xÿÿÿH;=­%L‹­8ÿÿÿt5H;=%t,H;=Œ%t#è©l…Àˆ+SA‰ÇH‹½xÿÿÿH‹©€të%E1ÿH;=e%A”ÇH‹©€u
HÿÈH‰uèVmHDžxÿÿÿE…ÿ…£BL‰÷L‰æÿz„f)… ÿÿÿL‹=c|H‹=¼rI‹WL‰þèêlH…À„CI‰ƋÿÀtA‰H‹5´yI‹FH‹€L‰÷H…À„yCÿÐH‰EA¿ÊH…À„|CI‹©€uHÿÈI‰uL‰÷è²lf(… ÿÿÿè­jE1äH…À„”CI‰ÆH‹EH‹HH;
;$„DE1ÿL‰}°L‰u¸H‹}D‰àHÁàH÷ØH4(HƒƸAÿÄL‰âèÑãýÿH‰…xÿÿÿM…ÿtI‹©€uHÿÈI‰uL‰ÿè/lI‹©€uHÿÈI‰uL‰÷èlHƒ½xÿÿÿA¿Ê„éCH‹}H‹©€u
HÿÈH‰uèækHÇEH‹½xÿÿÿH;=Ä#t5H;=«#t,H;=ª#t#èÇj…Àˆ»QA‰ÆH‹½xÿÿÿH‹©€të%E1öH;=ƒ#A”ÆH‹©€u
HÿÈH‰uètkHDžxÿÿÿE…ö…CH‹=•zèÀFýÿH‰EA¿ÌH…À„iDH‹5ÖxH‹HH‹‰H‰ÇH…É„nEÿÑI‰ÆH…À„qEH‹}H‹©€u
HÿÈH‰uèújHÇEH‹57|I‹FH‹€L‰÷H…À„{EÿÐH‰EH…À„~EI‹©€uHÿÈI‰uL‰÷è«jH‹50E1äH‰ß1Òè³iH…À„’EI‰ÆH‹EH‹HH;
0"…ÅEL‹xM…ÿ„FH‹@A‹ÿÁtA‰‹ÿÁt‰H‹}H‰EH‹A¼©€u
HÿÈH‰uè.jL‰}°L‰u¸H‹}D‰àHÁàH÷ØH4(HƒƸAÿÄL‰âèáýÿH‰…xÿÿÿL‰ÿè’.ýÿI‹©€uHÿÈI‰uL‰÷èÜiHƒ½xÿÿÿA¿Ì„EH‹}H‹©€u
HÿÈH‰uè­iHÇEH‹½xÿÿÿH;=‹!t5H;=r!t,H;=q!t#èŽh…ÀˆÊOA‰ÆH‹½xÿÿÿH‹©€të%E1öH;=J!A”ÆH‹©€u
HÿÈH‰uè;iHDžxÿÿÿE…ö…ÔDf(… ÿÿÿò\ónfToègH‰…xÿÿÿA¿ÎH…À„HEH‰ÇL‰îºèhH‰EH…À„vEH‹½xÿÿÿH‹©€u
HÿÈH‰uè¹hHDžxÿÿÿH‹}H;=— L‹­Xÿÿÿt2H;=w t)H;=v t è“g…Àˆ;OA‰ÆH‹}H‹©€të%E1öH;=R A”ÆH‹©€u
HÿÈH‰uèChHÇEE…ö…EL‹¥øþÿÿL;% H‰ ÿÿÿ„ÙH‹ô‹ÿÀt	H‹
ç‰HÇEA‹$L‰áÿÀtA‰$H‹øþÿÿH‰HÿÿÿH‹wH‹=jmH‹SH‰Þè˜gH…À„ÿ>‹ÿÁt‰H‰EH‹5êwH‹HH‹‰H‰ÇH…É„ý>ÿÑH‰…xÿÿÿA¿ÖH…À„?H‹}H‹©€u
HÿÈH‰uè\gHÇE¿è®fH‰EH…À„p?H‹•Hÿÿÿ‹
ÿÁt‰
H‹EH‰Pè±dH…À„ü?I‰ÅH‹JvH‹=£lH‹SH‰ÞèÑfH…À„e@H‰NjÿÀt‰H‹5„sH‹GH‹€I‰ÿH…À„¨@ÿÐH‰E€H…ÀM‰è„«@I‹©€uL‰ÿHÿÈI‰uèfM‰èH‹5§qH‹U€L‰Çè#d…ÀA¿Öˆ&H‹}€H‹©€u
HÿÈH‰uè^fHÇE€L‹µxÿÿÿH‹]I‹FL‹¸€M…ÿ„%FH=zöèõe…À…LFL‰÷H‰ÞL‰êAÿ×H‰ÃèßeH…Û„!FH‰]€H‹½xÿÿÿH‹©€L‹µXÿÿÿH‹ ÿÿÿL‰éuHÿÈH‰uèÓeL‰éHDžxÿÿÿH‹}H‹©€uHÿÈH‰uèªeL‰éHÇEH‹©€uHÿÈH‰uH‰Ïè…eH‹½øþÿÿH‹E€H‰…øþÿÿH‹©€M‰õu
HÿÈH‰uèYeHÇE€H‹.H‰…@ÿÿÿé€H‹
+H‰ÈH‰@ÿÿÿ‹ÿÀt	H‹
‰HÇEH‹Ãj‹ÿÀt	‰H‹´jH‹y‹ÿÁH‰•Hÿÿÿt	‰H‹wyH‹½øþÿÿH‰…øþÿÿH‹©€u
HÿÈH‰uè¾dH‹}ˆH;=§„ÊH;=Š„½H;=…„°èžc…ÀˆE…À„¯H;c„qH‹5oH‹CH‹€H‰ßH…À„}KÿÐH‰ÃA¿ÞH…À„€KHÇEH‹CH;à…®AH‹CH‰EH…À„AL‹{‹ÿÁ…yA‹ÿÀ…{H‹A¾©€„zé…1ÀH;=ΔÀ…QÿÿÿH‹½øþÿÿH‹µÿÿÿºèÓbH‰E€A¿èH…À„cLH;‘„vH;t„iH;o„\H‰Çè…b…ÀˆhV‰ÃH‹E€H‹÷Á€„NéY»é51ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äM‰è1Òé_H‹5sH‹}¨H‹GH‹€H…À„cSÿÐH‰EH‹
ÀH‰ ÿÿÿA¿æH…À„JS¿èbH‰…xÿÿÿH…À„:SH‹
)w‹ÿÂt‰H‹…xÿÿÿH‹
wH‰HH‹ÿÿÿ‹ÿÀt‰H‹…xÿÿÿH‰H èô_H…À„ûRH‰ÃH‹5tH‰ÇH‹•HÿÿÿèÞ_…Àˆ´H‹}H‹µxÿÿÿH‰ÚèãÆýÿH‰E€H…À„ÚWH‹}H‹©€u
HÿÈH‰uèÿaHÇEH‹½xÿÿÿH‹©€u
HÿÈH‰uèÙaL‰¥èþÿÿHDžxÿÿÿH‹©€uHÿÈH‰uH‰ßè­aL‹}€HÇE€H‹†H‰… ÿÿÿ錉A‹ÿÀ„…ýÿÿA‰H‹A¾©€uHÿÈH‰uH‰ßè^aL‰ûA¿ÞH‹EH‰E°HÇE¸JõH÷ØH4(HƒƸH‰ßL‰òè£ØýÿH‰E€H‹}H…ÿtH‹©€u
HÿÈH‰uèaH‹E€HÇEH…À„9HL‰¥èþÿÿH‹©€uHÿÈH‰uH‰ßèÍ`L‹e€HÇE€L‰çHÇÆÿÿÿÿº1Éè×ÐÿÿH‰E€A¿ßH…À„ðGM‰îM‰åL‰çH‰Æè+_H‰ÁH‰…XÿÿÿH…ÀH‹]¨„HH‹}€H‹©€u
HÿÈH‰uèU`HÇE€I‹E©€uHÿÈI‰EuL‰ïè1`H‹5qH‹CH‹€H…ÀM‰õH‰ß„HÿÐH‰E€A¿à1ÛH…ÀH‹•Hÿÿÿ„HHÇEH‹HH;
“uLH‹HH‰MH…Ét?H‹@‹ÿÂt‰‹ÿÁt‰H‹}€H‰E€H‹»©€u
HÿÈH‰uè˜_H‹•HÿÿÿH‹EH‰E°H‰U¸H‹}€‰ØHÁàH÷ØH4(HƒƸÿÃH‰ÚèâÖýÿI‰ÄH‹}èö#ýÿHÇEM…ä„`GH‹}€H‹©€u
HÿÈH‰uè._HÇE€H‹5ËpH‹½XÿÿÿH‹GH‹€H…À„yGÿÐH‰ÃA¿áH…À„|G¿èJ^H‰E€H…À„vGA‹$ÿÁtA‰$H‹E€L‰`èP\H‰EH…À„aGH‹5ÈpH‹!pH‰Çè9\…ÀˆuH‹u€H‹UH‰ßèAÃýÿH‰…xÿÿÿH…À„ÚMH‹©€uHÿÈH‰uH‰ßè[^H‹}€H‹©€u
HÿÈH‰uè@^HÇE€H‹}H‹©€u
HÿÈH‰uè^HÇEL‹µxÿÿÿHDžxÿÿÿH‹=8mèc9ýÿH‰…xÿÿÿA¿äH…À„WMH‹56gH‹HH‹‰H‰ÇH…É„KMÿÑH‰EH…À„NMH‹½xÿÿÿH‹©€u
HÿÈH‰uè–]HDžxÿÿÿ¿èå\H‰…xÿÿÿH…À„MA‹ÿÁt
A‰H‹…xÿÿÿL‰pèçZH‰E€H…À„MH‹5ÇgH‹ H‰ÇèÐZ…Àˆ‘H‹}H‹µxÿÿÿH‹U€èÔÁýÿH…À„ãQH‰ÃH‹}H‹©€u
HÿÈH‰uèñ\HÇEH‹½xÿÿÿH‹©€u
HÿÈH‰uèË\HDžxÿÿÿH‹}€H‹©€u
HÿÈH‰uè¥\HÇE€H‹5
fH‹CH‹€H‰ßH…À„eQÿÐH‰E€H…À„hQH‹©€uHÿÈH‰uH‰ßèV\¿è°[H…À„PQH‰ÃH‹å‹ÿÁt‰H‰Cè¸YH‰…xÿÿÿH…À„7QH‹5-fH‹ÎoH‰ÇèžY…Àˆ€H‹}€H‹•xÿÿÿH‰Þè£ÀýÿH‰EH…À„òSH‹}€H‹©€u
HÿÈH‰uè¿[HÇE€H‹©€uHÿÈH‰uH‰ßè[H‹½xÿÿÿH‹©€u
HÿÈH‰uè[HDžxÿÿÿL‹}I‹©€uHÿÈI‰uL‰÷èV[HÇE1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ö1ÀH‰…ÿÿÿ1ÀH‰…`ÿÿÿ1ÒéS1ÛH;”ÃH‹÷Á€uHÿÉH‰uH‰ÇèúZHÇE€…Û…³CH‹½øþÿÿH‹5ho1ÒèñYH‰E€A¿ëH…À„1DH;¯t<H;–t3H;•t*H‰Çè¯Y…ÀˆœM‰ÃH‹E€H‹÷Á€L‹µ ÿÿÿt ë.1ÛH;h”ÃH‹÷Á€L‹µ ÿÿÿuHÿÉH‰uH‰ÇèOZHÇE€…Û…¸CL;5$„nL‹5giH‹=À_I‹VL‰öèîYH…À„¹JH‰ËÿÀt‰H‹5‰dH‹CH‹€H‰ßH…À„KÿÐH‰…xÿÿÿA¿ïH…À„KH‹©€uHÿÈH‰uH‰ßè´YH‹59nH‹½ ÿÿÿºè¸XE1öH…À„ÝJH‰ÃHÇEH‹…xÿÿÿH‹HH;
'„ÄJH‹EH‰E°H‰]¸H‹½xÿÿÿD‰ðHÁàH÷ØH4(HƒƸAÿÆL‰òè¹ÐýÿH‰E€H‹}H…ÿtH‹©€u
HÿÈH‰uèYHÇEH‹©€uHÿÈH‰uH‰ßè÷XHƒ}€„¥JH‹½xÿÿÿH‹©€u
HÿÈH‰uèÎXHDžxÿÿÿH‹}€H‹µøþÿÿ1ÒèÍWH‰…xÿÿÿH…À„dJH‹}€H‹©€u
HÿÈH‰uè†XHÇE€H‹½xÿÿÿH;=d„#H;=G„H;=B„	è[W…ÀˆøO‰ÃH‹½xÿÿÿH‹©€L‹µ ÿÿÿ„ûéL‰e˜I‰ػ‹61ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿL‹¥XÿÿÿL‰­Xÿÿÿ1ÀH‰E éÉSH‹5‰gH‹}¨H‹GH‹€H…À„­NÿÐH‰E€H‹
„H‰ ÿÿÿA¿1ÛH…À„’NHÇEH‹HH;
!uEH‹HH‰MH…Ét8H‹@‹ÿÂt‰‹ÿÁt‰H‹}€H‰E€H‹»©€u
HÿÈH‰uè&WH‹EH‰E°H‹…ÿÿÿH‰E¸H‹}€‰ØHÁàH÷ØH4(HƒƸÿÃH‰ÚèpÎýÿH‰…xÿÿÿH‹}è€ýÿHÇEHƒ½xÿÿÿ„êMH‹}€H‹©€u
HÿÈH‰uè³VHÇE€H‹½xÿÿÿE1öH•øþÿÿ1ö1ÉE1ÀE1ÉèWÎÿÿH‰E€H…À„¤MH‹½xÿÿÿH‹©€u
HÿÈH‰uè`VHDžxÿÿÿL‹}€HÇE€H‹56hI‹GH‹€˜L‰ÿH…À„˜MH‹•HÿÿÿÿÐH‹
H‰ ÿÿÿE1ö…ÀˆéL‰¥èþÿÿ1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ö1ÀH‰…ÿÿÿ1ÀH‰…`ÿÿÿ1ÒE1ä1ÀH‰…XÿÿÿH‹…èþÿÿH;¬
H‰•PÿÿÿH‰uˆL‰e˜tM‰üéII‹_H‹5˜[H‰ßèP¶ýÿ…ÀtáH‹5ebH‹ƒL‰ÿH…À„£MÿÐH‰…xÿÿÿ1ÛH…À„¦MHÇEH‹HH;

uKH‹HH‰MH…Ét>H‹@‹ÿÂt‰‹ÿÁt‰H‹½xÿÿÿH‰…xÿÿÿH‹»©€u
HÿÈH‰uèUH‹EH‰E°H‹iH‰E¸H‹½xÿÿÿ‰ØHÁàH÷ØH4(HƒƸÿÃH‰ÚèIÌýÿH‰E€H‹}è\ýÿHÇEHƒ}€„øLH‹½xÿÿÿH‹©€u
HÿÈH‰uèTHDžxÿÿÿL‹e€I‹©€uHÿÈI‰uL‰ÿèfTHÇE€H‹5ûbI‹EH‹€L‰ïH…À„_>ÿÐH‰E€A¿H…ÀL‰e „P>H‹5¬hE1öH‰Ç1Òè?\…Àˆ>>‰ÃH‹}€H‹©€u
HÿÈH‰uèîSHÇE€…ÛL‹½ ÿÿÿtA‹$ÿÀtA‰$M‰æéH‹…èþÿÿH;¥„ãH‹5PbI‹D$H‹€L‰çH…À„LÿÐH‰E€A¿H…À„LH‹5hE1öH‰Ç1Òè—[…ÀˆL‰ÃH‹}€H‹©€u
HÿÈH‰uèFSHÇE€…ÛL‹½ ÿÿÿ„_H‹=dbè.ýÿH‰E€A¿H…À„ÎKH‹5%^H‹HH‹‰H‰ÇH…É„ºKÿÑH‰…xÿÿÿH…À„½KH‹}€H‹©€u
HÿÈH‰uèÅRHÇE€èHPH‰E€H…À„’KH‹5¸]I‹EH‹€L‰ïH…À„~KÿÐH‰EH…À„KH‹}€H‹5‡]H‰ÂèP…ÀˆxH‹}H‹©€u
HÿÈH‰uèHRHÇEH‹½xÿÿÿH‹5ÆgH‹U€èå¶ýÿH‰EH…À„`KH‹½xÿÿÿH‹©€u
HÿÈH‰uèþQHDžxÿÿÿH‹}€H‹©€u
HÿÈH‰uèØQHÇE€H‹]HÇEL‰ïL‰æèå[H‰EA¿H…ÀH‰]¨„ðJH‹5OWH‰ßH‰Âè¾P…ÀˆÝJH‹}H‹©€u
HÿÈH‰uèmQHÇEL‹u¨A‹ÿÀL‹½ ÿÿÿ„¨A‰é 1ÛH;=2	”ÃH‹©€L‹µ ÿÿÿu
HÿÈH‰uèQHDžxÿÿÿ…Û…×BH‹e‹ÿÁt	‰H‹€eH‰…ðþÿÿH‹5j[I‹FH‹€L‰÷H…À„KCÿÐH‰E€A¿òH…À„NCH‹HH;
c…‰5H‹XH…Û„|5H‹@‹ÿÁt‰‹ÿÁt‰H‹}€H‰E€H‹A¾©€u
HÿÈH‰uècPH‰]°HÇE¸H‹}€JõH÷ØH4(HƒƸL‰òè´ÇýÿH‰…xÿÿÿH‰ßèÅýÿHƒ½xÿÿÿ„¹BH‹}€H‹©€u
HÿÈH‰uèPHÇE€H‹…xÿÿÿH‰…ÿÿÿH‹½ ÿÿÿH‹©€u
HÿÈH‰uèÌOHDžxÿÿÿH‹=ö^è!+ýÿH‰…xÿÿÿA¿óH…À„GBH‹5äcH‹HH‹‰H‰ÇH…É„0BÿÑH‰E€H…À„3BH‹½xÿÿÿH‹©€u
HÿÈH‰uèTOHDžxÿÿÿ¿è£NH‰…xÿÿÿH…À„÷AH‹•Hÿÿÿ‹
ÿÁt	‰
H‹…xÿÿÿH‰Pè LH…À„ÖAH‰ÃH‹5ZH‹¢H‰ÇèŠL…Àˆ®H‹}€H‹µxÿÿÿH‰Ú菳ýÿH‰EH…À„“DH‹}€H‹©€u
HÿÈH‰uè«NHÇE€H‹½xÿÿÿH‹©€u
HÿÈH‰uè…NHDžxÿÿÿH‹©€uHÿÈH‰uH‰ßè`NH‹}HÇEH‹5q_H‹GH‹€H…ÀH‰ùH‰½Pÿÿÿ„	DÿÐH‰ÃA¿ôH…À„DHDžxÿÿÿH‹CH;¹…\=H‹CH‰…xÿÿÿH…À„H=L‹{‹ÿÁ…gA‹ÿÀ…iH‹A¾©€„hésH‹M‹HEÿÂL‹­ÿÿÿ…eÝÿÿébÝÿÿL‰e˜L‰u »§6E1ÀéI‰ػÞ61ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E L‰­XÿÿÿëZI‰ػÁ71ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‹…ÿÿÿH‰… ÿÿÿL‰­Xÿÿÿ1ÀH‰E 1ÀH‰E˜E1äéÕHL‰ïL‰æèñVH‰EH…À„fEI‰ÆHÇE1ÀH‰E¨L‹¥XÿÿÿL‰­XÿÿÿH‹½ÿÿÿH‹@ÿÿÿL‹­8ÿÿÿH…ÿ…ýIéJ‰A‹ÿÀ„—þÿÿA‰H‹A¾©€uHÿÈH‰uH‰ßèFLL‰ûH‹…xÿÿÿH‰E°HÇE¸JõH÷ØH4(HƒƸH‰ßL‰òèŽÃýÿH‰EH‹½xÿÿÿèžýÿHDžxÿÿÿHƒ}„3BH‹©€uHÿÈH‰uH‰ßèÒKH‹EH‰…`ÿÿÿHÇEH‹½ðþÿÿH‹µøþÿÿ1ÒèÆJH‰EH…À„IBE1ö1ÉH‰ÿÿÿ1Û1ö1ÉE1ÿL‰¥èþÿÿëCff.„HDžxÿÿÿH‹½ðþÿÿH‹µøþÿÿ1ÒèpJH‰EH…ÀH‹uˆH‹ ÿÿÿ„ÚL‰½pÿÿÿH‰hÿÿÿH‰ÿÿÿH;H‰uˆtFH;÷t=H;öt4H‰ÇèJ…ÀH‹]¨ˆÀ(A‰ÇH‹EH‹uˆH‹÷Á€H‹•Pÿÿÿt'ëAE1ÿH;¾A”ÇH‹]¨H‹÷Á€H‹•PÿÿÿuHÿÉH‰uH‰Çè JH‹uˆH‹•PÿÿÿHÇEE…ÿ„¾H‹5ðZH‹CH‹€H‰ßH…À„çÿÐI‰ÄH…À„NH‹½øþÿÿH‹µðþÿÿèIH‰…xÿÿÿH…À„gHÇE€E1íH‹ÖI9D$…‰I‹D$H‰E€H…À„wM‹|$‹ÿÁu&A‹ÿÀu(I‹$A½©€t+ë<fff.„‰A‹ÿÀtØA‰I‹$A½©€uHÿÈI‰$u
L‰çè¦IfH‹E€H‰E°H‹…xÿÿÿH‰E¸D‰èHÁàHu¸H)ÆAÿÅL‰ÿL‰êèñÀýÿH‰EH‹}€èýÿHÇE€H‹½xÿÿÿH‹©€L‹¥ÿÿÿuHÿÈH‰uè;I€HDžxÿÿÿHƒ}L‹­pÿÿÿ„I‹©€uHÿÈI‰uL‰ÿèýHf„H‹]H‹½ÿÿÿè€
ýÿHÇEH‹½ðþÿÿH‹5Z]ºèàGH‰EH…À„^H;¤t:H;‹t1H;Št(H‰Çè¤G…Àˆ¢&A‰ÇH‹EH‹÷Á€të)@E1ÿH;^A”ÇH‹÷Á€uHÿÉH‰„£	HÇEE…ÿtvH‹½`ÿÿÿ1öH•ðþÿÿ1ÉA¸E1Éèî¿ÿÿH‰EH…À„¥%H‹š\H‹½ÿÿÿH‰Æè-G…Àˆ¥%H‹}H‹©€uHÿÈH‰u
èÜG„HÇEH‹=Wè,#ýÿH…À„|I‰ÇH‹5YRH‹@H‹€L‰ÿH…À„.	ÿÐH‰…xÿÿÿH…À„gI‹©€uHÿÈI‰uL‰ÿèjGfDH‹…xÿÿÿH‹
ÿH9H„þE1ÿE1äL‰}°H‹…ÿÿÿH‰E¸H‹½xÿÿÿD‰àHÁàHu¸H)ÆAÿÄL‰â蓾ýÿH‰EL‰ÿè§ýÿHƒ}„H‹½xÿÿÿH‹©€L‹¥ÿÿÿuHÿÈH‰uèÛF€HDžxÿÿÿL‹}L‰çèYýÿHÇEL‰ÿHÇÆÿÿÿÿº1Éè˶ÿÿH‰EH…À„´L‰ÿH‰Æè+EH‰…xÿÿÿH…À„®H‹}H‹©€uHÿÈH‰u
è\F„HÇEL‹¥xÿÿÿI‹©€uHÿÈI‰uL‰ÿè+F€HDžxÿÿÿH‹5¾WI‹D$H‹€L‰çH…À„ÿÐH‰…xÿÿÿH…À„L¿èBEH‰EH…À„S‹ÿÁt‰H‹EH‰XèLCH…À„SI‰ÇH‹5ÅWH‹WH‰Çè6C…Àˆü	H‹½xÿÿÿH‹uL‰úè;ªýÿH‰E€H…À„0H‹½xÿÿÿH‹©€u
HÿÈH‰uèTEHDžxÿÿÿH‹}H‹©€uHÿÈH‰uè.Ef.„L‰¥ÿÿÿHÇEI‹©€uHÿÈI‰uL‰ÿèûD€L‹e€H‹}ˆèƒ	ýÿHÇE€H‹=Tè? ýÿH‰E€H…À„¢
H‹5{XH‹HH‹‰H‰ÇH…É„ÏÿÑI‰ÇH…À„˜
H‹}€H‹©€uHÿÈH‰uèDff.„HÇE€¿èÆCH‰E€H…À„u
A‹$ÿÁtA‰$H‹E€L‰`èÌAH‰EH…À„q
H‹5ŒUH‰ÇH‹üèµA…Àˆ³H‹u€H‹UL‰ÿ轨ýÿH‰…xÿÿÿH…À„U
I‹©€uHÿÈI‰uL‰ÿè×CH‹}€H‹©€uHÿÈH‰u
è¹CDHÇE€H‹}H‹©€uHÿÈH‰uè‘Cffff.„HÇEH‹½xÿÿÿH‹GH;.û…¡H‹WHƒú…ÜH‹GH‰EHƒÇ H‹H‰M€‹ÿÂu‹ÿÀuH‹½xÿÿÿH‹©€t!ë0‰H‹M€‹ÿÀtá‰H‹½xÿÿÿH‹©€uHÿÈH‰u	èøB@HDžxÿÿÿH‹EH‰… ÿÿÿH‹½hÿÿÿènýÿHÇEL‹}€L‰ïèZýÿHÇE€H‹5óTI‹GH‹€L‰ÿH…À„ÿÐH‰E€H…À„[HÇEH‹
.úH9H…êH‹HH‰MH…É„ÙH‹@‹ÿÂt‰‹ÿÁt‰H‹}€H‰E€H‹A½©€uHÿÈH‰uè&BfH‹EH‰E°HÇE¸H‹}€JíHu¸H)ÆL‰êèu¹ýÿH‰…xÿÿÿH‹}è…ýÿHÇEHƒ½xÿÿÿ„ÜH‹}€H‹©€uHÿÈH‰u	è¸A@HÇE€H‹½xÿÿÿH‹©€uHÿÈH‰uèŽAf.„HDžxÿÿÿH‹5¦TI‹D$H‹€L‰çH…À„vÿÐH‰E€H…À„‹HÇEE1íH‹
íøH9HuOH‹HH‰MH…ÉtBH‹@‹ÿÂt‰‹ÿÁt‰H‹}€H‰E€H‹A½©€uHÿÈH‰uèí@f„H‹EH‰E°L‰}¸H‹}€D‰èHÁàHu¸H)ÆAÿÅL‰êè7¸ýÿH‰…xÿÿÿH‹}èGýÿHÇEHƒ½xÿÿÿ„H‹}€H‹©€uHÿÈH‰uèz@fDHÇE€H‹½xÿÿÿI‹$©€L‹­`ÿÿÿH‰ùH‰}ˆuHÿÈI‰$uL‰çè;@H‹}ˆHDžxÿÿÿH‹5^RH‹GH‹€H…À„AÿÐH‰…xÿÿÿH…À„Î
H‹½ðþÿÿH‰Æè…>H‰E€H…À„å
H‹½xÿÿÿH‹©€uHÿÈH‰uèÂ?fffff.„HDžxÿÿÿL‰ïH‹uˆH•ðþÿÿHM€èîH…ÀˆKH‹}€H‹©€uHÿÈH‰uèo?ff.„HÇE€H‹5‘QH‹}ˆH‹GH‹€H…À„ŠÿÐH‰E€H…À„f
H‹½ðþÿÿH‰Æè½=H‰…xÿÿÿH…À„z
H‹}€H‹©€u
HÿÈH‰uèô>HÇE€H‹½ðþÿÿH‹…xÿÿÿH‰…ðþÿÿH‹©€L‹­Xÿÿÿ…NóÿÿHÿÈH‰…Bóÿÿè±>é8óÿÿH‰Çè¤>HÇEE…ÿ…QöÿÿéÂöÿÿM‰çéâôÿÿE1íéZüÿÿèe=I‰ÄH…À…ôÿÿé_èO=H‰…xÿÿÿH…À…Ïöÿÿé1L‹xM…ÿ„õöÿÿH‹@A‹ÿÁtA‰‹ÿÁt‰H‹½xÿÿÿH‰…xÿÿÿH‹A¼©€…ÃöÿÿHÿÈH‰…·öÿÿèø=é­öÿÿèÚ<H‰…xÿÿÿH…À…ö÷ÿÿé=èÀ<I‰ÇH…À….ùÿÿéÁH;`õ„è¯<H…À„?@I‰ÇH‹½xÿÿÿH‹©€u
HÿÈH‰uè‡=HDžxÿÿÿI‹GL‹¨àL‰ÿAÿÕH‰EH‰… ÿÿÿH…À„@L‰ÿAÿÕH‰E€H…À„@L‰ÿAÿվH‰Çè]¬ÿÿ…Àˆ6I‹©€L‹­pÿÿÿ…+úÿÿHÿÈI‰…úÿÿL‰ÿè=éúÿÿèâ;H‰E€H…À…`úÿÿé¶èË;H‰E€H…À…‡ûÿÿé
è´;H‰…xÿÿÿH…À…¼üÿÿé…èš;H‰E€H…À…sýÿÿéÔH‹WHƒú…H‹H‹H‰EHƒÇé0ùÿÿL‰e˜L‰u I‰ػ·61ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿL‹¥XÿÿÿL‰­Xÿÿÿé%8L‰} »{9A¿E1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E˜L‰­XÿÿÿE1äéÊ7‹ÿÀt‰I‰×E1äH‹…ÿÿÿH‰…XÿÿÿH‹…ÿÿÿH‰… ÿÿÿéÈåÿÿM‰øA¿û1É1ÀH‰E¨H‰ڻƒ81ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿéc7M‰øA¿ü1É1ÀH‰E¨L‰eˆH‰ڻŸ8ë.E1À1É1ÀH‰E¨L‰½pÿÿÿA¿ÿH‹… ÿÿÿH‰…hÿÿÿH‰ڻ'91ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿL‹¥ÿÿÿéð6»:E1À1ÉE1ö1ÀH‰E¨L‹¥XÿÿÿL‰­XÿÿÿH‹•ÿÿÿéÃ6è…8H…À…@4L‰÷èԔýÿH‰ÃH‰E€H…À…¨´ÿÿL‰¥Xÿÿÿé+4ès9I‰ÆA¿©H…À…·´ÿÿL‰¥Xÿÿÿ»$21ÀH‰…pÿÿÿE1À1ÉE1öëL‰¥Xÿÿÿ»'21ÀH‰…pÿÿÿE1À1É1ÀH‰E¨1ÀH‰…hÿÿÿë)L‰¥Xÿÿÿ»,21ÀH‰…hÿÿÿE1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜éµ51ÛE1äéP¸ÿÿL‰÷L‰þH‰Úè8H‰…xÿÿÿH…À…¿´ÿÿL‰¥Xÿÿÿ»/2éӵÿÿè…8éRµÿÿ»>21ÀH‰…hÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿépè7H…À„3L‰¥XÿÿÿHDžxÿÿÿ»/21ÀH‰E¨E1À1É1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿé[µÿÿ»8A¿öE1À1É1ÀH‰E¨1ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿL‰­Xÿÿÿéл8A¿öM‰à1É1ÀH‰E¨1ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿé›»8M‰øA¿ö1ÉE1ö1ÀH‰E¨1ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿH‹•ÿÿÿé^4A¿÷E1À1É1ÀH‰E¨H‰ڻ%8é¾üÿÿA¿ùE1À1É1ÀH‰E¨H‰ڻF8é üÿÿM‰øA¿ù1É1ÀH‰E¨H‰ڻH8é‚üÿÿA¿ùE1À1ÉE1ö1ÀH‰E¨H‰ڻ]8éÍüÿÿE1À1É1ÀH‰E¨H‰ڻk8ëE1À1É1ÀH‰E¨H‰ڻm81ÀH‰E 1ÀH‰E˜M‰üA¿úé+üÿÿA¿ûE1À1É1ÀH‰E¨H‰ڻz8éüÿÿA¿ûE1À1É1ÀH‰E¨H‰ڻ|8éãûÿÿA¿ûE1À1É1ÀH‰E¨H‰ڻ8éÅûÿÿM‰øA¿û1É1ÀH‰E¨H‰ڻ„8é§ûÿÿA¿üE1À1É1ÀH‰E¨L‰eˆH‰ڻ“8éñûÿÿA¿üE1À1É1ÀH‰E¨L‰eˆH‰ڻ•8éÏûÿÿM‰øA¿ü1É1ÀH‰E¨L‰eˆH‰ڻ˜8é­ûÿÿM‰øA¿ü1É1ÀH‰E¨L‰eˆH‰ڻ8é‹ûÿÿM‰øA¿ü1É1ÀH‰E¨L‰eˆH‰ڻ 8éiûÿÿHƒúŒ H‹ýíH‹8H5fÒº1Àè
4A¿üE1À1ÉE1ö1ÀH‰E¨L‰eˆH‰ڻ«8éûÿÿE1À1É1ÀH‰E¨L‰½pÿÿÿA¿ýH‹… ÿÿÿH‰…hÿÿÿL‰eˆH‰ڻß8éæúÿÿE1À1ÉE1ö1ÀH‰E¨L‰½pÿÿÿA¿ýH‹… ÿÿÿH‰…hÿÿÿL‰eˆH‰ڻó8ëlE1À1É1ÀH‰E¨L‰½pÿÿÿA¿þH‹… ÿÿÿH‰…hÿÿÿL‰eˆH‰ڻ9éxúÿÿE1À1ÉE1ö1ÀH‰E¨L‰½pÿÿÿA¿þH‹… ÿÿÿH‰…hÿÿÿL‰eˆH‰ڻ91ÀH‰E H‹…ÿÿÿH‰… ÿÿÿ1ÀH‰E˜L‹¥ÿÿÿé31E1À1É1ÀH‰E¨L‰½pÿÿÿA¿ÿH‹… ÿÿÿH‰…hÿÿÿH‰ڻ"9éêùÿÿE1À1É1ÀH‰E¨L‰½pÿÿÿA¿ÿH‹… ÿÿÿH‰…hÿÿÿH‰ڻ$9é·ùÿÿE1À1É1ÀH‰E¨L‰½pÿÿÿA¿H‹… ÿÿÿH‰…hÿÿÿH‰ڻ19é„ùÿÿE1À1É1ÀH‰E¨L‰½pÿÿÿA¿H‹… ÿÿÿH‰…hÿÿÿH‰ڻ39éQùÿÿE1ÀH‰Ê1É1ÀH‰E¨L‰½pÿÿÿH‰•hÿÿÿH‰Ú1ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿL‰­XÿÿÿA¿õ»ô7L‹¥ÿÿÿé0H; ë„rH‰ߺè
3H‰ÇèU>A‰ƅÀ‰Ž°ÿÿ»@21ÀH‰…hÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E L‰­Xÿÿÿ1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰…ÿÿÿA¿ªé_/è!1H…À…§3H‰ßèpýÿI‰ÄH‰EH…À…½°ÿÿé’3è2H‰E€H…À…԰ÿÿHÇE€»]2éäèò1I‰ÆH…À…±ÿÿ»`2E1öH‹}€H…ÿu}鏻t2H‹}€H…ÿujëL‹hM…í„ձÿÿH‹@A‹MÿÁtA‰M‹ÿÁt‰H‹}€H‰E€H‹A¼©€…§±ÿÿHÿÈH‰…›±ÿÿè‚2鑱ÿÿ»‹2E1öH‹}€H…ÿtH‹©€u
HÿÈH‰uèU2HÇE€M…ötI‹©€uHÿÈI‰uL‰÷è.2L‹µÿÿÿH‹}H…ÿtH‹©€u
HÿÈH‰uè2HÇEH‹½xÿÿÿH…ÿtH‹©€u
HÿÈH‰uèÜ1HDžxÿÿÿI‹F`Džÿÿÿ­H…À„­,H‹5/HH‹xH9÷„º+H‹FH‹€¨©…?+H‹Oö«€„+ö‡«@„û*%€„ð*ö†«@„ã*H‹‡XH…À„+H‹HH…ÉŽ0,1ÒH9tЄD+HÿÂH9Ñuíé,»Ú2éA¿º»­31ÀH‰…PÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿL‰­Xÿÿÿ1ÀH‰E éøè‰.H…À…11H‰ßè؊ýÿH‰E€H…À…|·ÿÿé1è/H‰EA¿¼H…À…’·ÿÿ»¹31ÀH‰E E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿégèÿ-H…ÀuH‰ßèRŠýÿI‰ÆH…À…|·ÿÿ1ÀH‰E E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E˜L‰­XÿÿÿE1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿ»¼3éª+èŒ.H…À…"·ÿÿ»¾31ÀH‰E E1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿé†è-H…ÀuH‰ßèj‰ýÿI‰ÆH…À…	·ÿÿ1ÀH‰E˜E1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿ»Á3L‰ùA¿¼éÂ*è¤-H‰ÃH…ÀL‰ù…¯¶ÿÿ»Ã31ÀH‰E˜E1À1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿA¿¼é?*L‹qM…ö„a¶ÿÿL‹iA‹ÿÀ…}A‹EÿÀ…€H‹A¿©€„€é‹»Ù31ÀH‰E˜E1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿL‰é1Òé)èq,H‰ÃL‹­ÿÿÿH…À…u¶ÿÿ»Ý3ë\H‹HH‰M€H…É„˜¶ÿÿH‹@‹ÿÂt‰‹ÿÁt‰H‹}H‰EH‹A¾©€…h¶ÿÿHÿÈH‰…\¶ÿÿè-éR¶ÿÿ»ó31ÀH‰E˜E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E é»ž4A¿Á1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿE1Àé^(è@+髽ÿÿ1ÀH‰…HÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»·4éH‹=hBH‹5AA1Ò袐ýÿA¿ÆH…À„ª,I‰ÆH‰Çè(‘ýÿI‹©€uHÿÈI‰uL‰÷è²+1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ»È4éK'è-*I‰ÇH…À…4½ÿÿ1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»Ú4éÊ1ÀH‰…@ÿÿÿM‰ø1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»Ü4éH‹=AH‹5í?1ÒèFýÿH‰…xÿÿÿA¿ÈH…À„•+H‰ÇèȏýÿH‹½xÿÿÿH‹©€u
HÿÈH‰uèN*HDžxÿÿÿE1öE1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»í4éè¿'H…ÀuL‰ÿè„ýÿI‰ÆH…À…ۼÿÿ1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…HÿÿÿA¿Ê»5ém%èO(H‰EA¿ÊH…À…„¼ÿÿ1ÀH‰…@ÿÿÿM‰ð1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»
5éŸE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»
5éÇè&H…À…*H‰ßèЂýÿH‰EH…À…êÀÿÿé
*èy'H‰…xÿÿÿA¿ÖH…À…Áÿÿ»Ú5é' L‹xM…ÿ„è)H‹@A‹ÿÁtA‰‹ÿÁt‰H‹}H‰EH‹A¼©€…°»ÿÿHÿÈH‰…¤»ÿÿè(隻ÿÿ1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»"5ég»Ý5é}H‹=0>H‹5=1ÒèjŒýÿH‰…xÿÿÿA¿ËH…À„()H‰ÇèìŒýÿH‹½xÿÿÿH‹©€u
HÿÈH‰uèr'HDžxÿÿÿE1öE1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»55é)»â5E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿéôÙÿÿ1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»G5é'
èT$H…ÀuH‰ß觀ýÿH‰ÇH…À…ˆ¿ÿÿ1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä»ä5éÃÿÿè%H‰E€H…ÀM‰è…U¿ÿÿ»æ5E1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äL‰ùA¿Öéº!èœ$I‰ÆH…À…ºÿÿ1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»I5éóè@$H‰EH…À…‚ºÿÿ1ÀH‰…@ÿÿÿM‰ð1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»L5é–E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»O5é¾E1ÿé{ºÿÿ1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»c5éø
E1äE1ÿé%ºÿÿH‹=À:H‹5±91ÒèúˆýÿH‰…xÿÿÿA¿ÍH…À„&H‰Çè|‰ýÿH‹½xÿÿÿH‹©€u
HÿÈH‰uè$HDžxÿÿÿ1ÀH‰E¨E1À1ÉE1ö1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»v5é¹
1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»ˆ5éû	E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»Š5é#
H‹=ƒ9H‹5|81Ò轇ýÿH‰EA¿ÏH…À„%H‰ÇèBˆýÿH‹}H‹©€u
HÿÈH‰uèË"HÇE1ÀH‰E¨E1À1ÉE1ö1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»›5é…	E1öéÁÿÿA¿øE1À1É1ÀH‰E¨H‰ڻ18éÕæÿÿA¿øE1À1É1ÀH‰E¨H‰ڻ38é·æÿÿ»õ7E1À1É1ÀH‰E¨1ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿL‰­XÿÿÿA¿õH‹•ÿÿÿL‹¥ÿÿÿéïA¿÷E1À1É1ÀH‰E¨H‰ڻ&8éOæÿÿè“H…À… %H‰ßèâ{ýÿH‰E€H…À…¶¢ÿÿé%è‹ H‰…xÿÿÿH…À…̢ÿÿ»ä2ëfH‹HH‰M€H…É„ñ¢ÿÿH‹@‹ÿÂt‰‹ÿÁt‰H‹½xÿÿÿH‰…xÿÿÿH‹»©€u
HÿÈH‰uè9!L‹­XÿÿÿA¿°顢ÿÿ»ù21ÀH‰…`ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Òé1ÀH‰…HÿÿÿA¿ÃE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1ÒH‰ ÿÿÿ»­41ÀH‰…`ÿÿÿé&H;0Ø„jL‰ǺL‰…ÿÿÿè–H‰ÇèÞ*L‹…ÿÿÿ…À‰
²ÿÿ1ÀH‰…Hÿÿÿ1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»¹4é¦L‰÷H‰ÞL‰êèÒH‰E€H…À…õ¹ÿÿ»ë51ÉE1ö1ÀH‰E¨ë&è¬H…À„¿#HÇE€»ë51ÀH‰E¨1ÉE1ö1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äA¿Öéq¼ÿÿ»6A¿ÜE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿéFÒÿÿèé¡ÿÿ»*3E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Òé·H‹=b5H‹5+41Ò蜃ýÿH‰EH…À„Ö"H‰ÃH‰Çè$„ýÿH‹©€uHÿÈH‰uH‰ßè®HÇE»;3E1öE1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰…ÿÿÿA¿³é.èéo¡ÿÿ»N31ÀH‰…PÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰E L‰­Xÿÿÿéìãÿÿ»P31ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜L‰­XÿÿÿE1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰…ÿÿÿE1ÀéUH…Òx.H‹ØÔH‹8HƒúHR#H
-¸HDÈH5T¹1Àè×A¿üE1À1ÉE1ö1ÀH‰E¨L‰eˆH‰Ú1ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿ»«8L‹¥ÿÿÿéÜèžH…À…I!L‰÷èívýÿH‰EH…À…R§ÿÿA¿¾1ÀH‰…HÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1ÒH‰8ÿÿÿ»4éÃûÿÿèSI‰ÇH…À…%§ÿÿ1ÀH‰…HÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰8ÿÿÿ»
4é&è÷é§ÿÿ1ÀH‰…HÿÿÿE1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E H‰8ÿÿÿ»4éÓH‹AH‰E€H…À„‚ L‹q‹ÿÁ…ÑA‹ÿÀ…ÓI‹º©€…°¦ÿÿéÑ1ÀH‰…HÿÿÿE1ÀL‰ñE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰8ÿÿÿ»%4é61ÛE1öé³Êÿÿ»Û2E1À1Ò1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E L‰­Xÿÿÿ1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿé¦A‰A‹EÿÀ„€ìÿÿA‰EH‹A¿©€uHÿÈH‰uH‰ÏènL‰é頢ÿÿ1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»Þ41ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…HÿÿÿA¿Çéù1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»&5ëF1ÀH‰…@ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰ ÿÿÿ»g51ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…HÿÿÿéEE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰ ÿÿÿ»Œ5L‰­Xÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿéyè½H‰ÃA¿ÞH…À…€´ÿÿ»/6éoI‰ػC6é*Ëÿÿ»Q6E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E L‰­XÿÿÿéÁ»S6E1ÀM‰ô1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E L‰¥Xÿÿÿ1ÀH‰E˜M‰ìéÿèáéâ·ÿÿ»`6ë»t6E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿL‹¥XÿÿÿL‰­Xÿÿÿ1ÀH‰E 1ÀH‰E˜éèrH‰ÃA¿áH…À…„¸ÿÿL‰e˜»‚6E1ÀéO¿ÿÿL‰e˜I‰ػ„6é>¿ÿÿL‰e˜I‰ػ‰6é-¿ÿÿ»û6éñH‹=¤-H‹5¥,1ÒèÞ{ýÿH‰E€H…À„H‰Çèi|ýÿH‹}€H‹©€u
HÿÈH‰uèòHÇE€»71ÀH‰E¨E1À1ÉE1ö1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äA¿éé–»7éAH‹=ô,H‹5ý+1Òè.{ýÿH‰E€H…À„­H‰Çè¹{ýÿH‹}€H‹©€u
HÿÈH‰uèBHÇE€»-71ÀH‰E¨E1À1ÉE1ö1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äA¿ìéæèÈé™Áÿÿ»Å9éçÚÿÿ»Ç9E1À1ÉéàÚÿÿH;SÍ„/
ºèÃH‰Çè …Àˆñ‰ÃH‹}é 
1Àò*Àf.C›À”Á ÁD¶ñé ’ÿÿH;Í„%
H‰ߺèrH‰ÇèºH‰…`ÿÿÿ…À‰@˜ÿÿ»,31ÀH‰…`ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…Pÿÿÿ1ÀH‰E L‰­Xÿÿÿ1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰…ÿÿÿA¿²éÀ1ÀH‰…HÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰8ÿÿÿ»441ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…@ÿÿÿéTè6H‰EH…À…ö ÿÿ1ÀH‰…HÿÿÿE1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰8ÿÿÿ»64é1ÀH‰…HÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰8ÿÿÿ»94éÑè‡I‰ÅH…À…§ ÿÿ1ÀH‰…HÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰8ÿÿÿ»;4éuè+陠ÿÿ1ÀH‰…Hÿÿÿ1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E H‰8ÿÿÿ»>4é#M‹pM…ö„wM‹xA‹ÿÀ…ûA‹ÿÀ…þI‹E©€„ýé	1ÀH‰…Hÿÿÿ1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰8ÿÿÿ»S41ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…@ÿÿÿM‰è1ÒA¿¿é;èI‰ÆH…À…Y ÿÿ1ÀH‰…HÿÿÿE1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰8ÿÿÿ»W41ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…@ÿÿÿL‰ùA¿¿é·
L‹xM…ÿ„ ÿÿH‹@A‹ÿÁtA‰‹ÿÁt‰H‹}H‰EH‹A½©€…ܟÿÿHÿÈH‰…ПÿÿèbéƟÿÿ1ÀH‰…HÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰8ÿÿÿ»m4ëF1ÀH‰…HÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰8ÿÿÿ»s41ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…@ÿÿÿA¿¿é¨E1öéXÄÿÿL‰e˜I‰ػŒ6év¸ÿÿL‰e˜L‰u »›6éêÂÿÿè_H‰EH…À…²²ÿÿL‰e˜L‰u »6éÆÂÿÿL‰e˜L‰u » 6é´ÂÿÿL‰e˜L‰u »¥6é¢Âÿÿ1ÀH‰…HÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿH‰8ÿÿÿ»)41ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…@ÿÿÿA¿¾éÉA‹ÿÀ„-ôÿÿA‰I‹º©€…ښÿÿL‰ùHÿÈI‰uL‰ÿ舺齚ÿÿèe镬ÿÿ»Ò6é$»Ô6é»Ü6éè
H…À…ðL‰÷èliýÿH‰ÃH…ÀL‹­Xÿÿÿ…)µÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜L‰­XÿÿÿéÉèÂ
H‰…xÿÿÿA¿ïH…À…ò´ÿÿI‰ػK7é5Áÿÿ»N7écH‹HH‰MH…É„+µÿÿH‹@‹ÿÂt‰‹ÿÁt‰H‹½xÿÿÿH‰…xÿÿÿH‹A¾©€u
HÿÈH‰uèYL‹­XÿÿÿA¿ïéڴÿÿ»b7é÷»f7éíH‹= $H‹5±#1ÒèÚrýÿH‰…xÿÿÿH…À„H‰ÇèbsýÿH‹½xÿÿÿH‹©€u
HÿÈH‰uèè
HDžxÿÿÿ»w71ÀH‰E¨E1À1ÉE1ö1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äA¿ðé‰	èkH‰E€A¿òH…À…²¼ÿÿ»“7é»§7黵7ë%è8H‰E€H…À…ͽÿÿ»·7ë»º7뻿7E1Àéô¿ÿÿ¸ò*ÀfA.@šÀ•ÁÁ¶Á鯞ÿÿ»ü6éµ»7é«è¸
H…À…±L‰÷ègýÿH‰ÃH‰EH…ÀL‹­Xÿÿÿ…̐ÿÿA¿¶»c3é¦Ûÿÿè›H‰E€A¿¶H…À…אÿÿ»e3ë`H‹HH‰MH…É„øÿÿH‹@‹ÿÂt‰‹ÿÁt‰H‹}€H‰E€H‹»©€u
HÿÈH‰uèLL‹­XÿÿÿA¿¶鮐ÿÿ»z31ÀH‰…PÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿéñÿÿH‹=c"H‹54!1ÒèpýÿH‰…xÿÿÿH…À„ñH‰Çè%qýÿH‹½xÿÿÿH‹©€u
HÿÈH‰uè«HDžxÿÿÿ»3E1öE1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿA¿·é1L‰e˜L‰u »¨6錽ÿÿè
H‰E€H…À…˜®ÿÿL‰e˜L‰u I‰ػ­6é‰ÎÿÿL‰e˜L‰u »°6éS½ÿÿL‰e˜L‰u I‰ػµ6ébÎÿÿA‰A‹ÿÀ„øÿÿA‰I‹E©€uHÿÈI‰EuL‰ïèŸ
M‰øºé˜ÿÿ1ÀH‰…HÿÿÿE1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…PÿÿÿH‰8ÿÿÿ»t4ézùÿÿI‰ػß6鵼ÿÿI‰ػÂ7éö¼ÿÿè
	H‰ÃA¿ôH…À…ô»ÿÿ»Ñ7E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰E H‹…ÿÿÿH‰… ÿÿÿL‰­XÿÿÿéۼÿÿI‰ػå71ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰E H‹…ÿÿÿH‰… ÿÿÿL‰­Xÿÿÿ1ÀH‰E˜E1äA¿ôéYE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿL‰­XÿÿÿE1äA¿õ»ô7éýèßéK±ÿÿ»V9鞻j9锻n9E1À1É1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E é¹ÌÿÿH‹•Hÿÿÿè©é`²ÿÿ1Àò*Àf.GšÀ•ÁÁ¶ÙL‹­XÿÿÿL‹µ ÿÿÿH‹©€„®ÿÿ鶍ÿÿ»h7E1Àé:ÿÿ¸WÀò*Àf.CšÀ•ÁÁ¶Áé‹ÿÿH;²¿„ºè"H‰Çèj…ÀˆŠ‰ÃH‹½xÿÿÿéL‰e˜L‰u I‰ػ¸6éiËÿÿèºH‰…xÿÿÿ1ÛH…À…Z²ÿÿ»š9ë»®9E1À1ÉE1ö1ÀH‰E¨L‰} L‹¥XÿÿÿL‰­XÿÿÿA¿H‹•ÿÿÿéƒèeH‰E€A¿H…À…ç³ÿÿ»î9évÌÿÿ»ð9éŠñÿÿ»8:A¿é\Ìÿÿ»ý9éRÌÿÿèH‰…xÿÿÿH…À…C´ÿÿ»ÿ9é3Ìÿÿ»:é)ÌÿÿèöH‰EH…À…´ÿÿ»:é
Ìÿÿ1Àò*Àf.GšÀ•ÁÁ¶ÙL‹­XÿÿÿL‹µ ÿÿÿH‹©€„*ÿÿé2ÿÿ»:éÌËÿÿ»:ë»:E1À1ÉE1öéÁËÿÿM‰øA¿ü1É1ÀH‰E¨L‰eˆH‰ڻÈ8éfËÿÿè2ënL‰¥XÿÿÿHÇE€A¿©»"2éèËÿÿè¸cýÿëHL‹­XÿÿÿL‹µÿÿÿH…ÿt)H‹¿H9÷uïë=H‹¦½H‹8H5–èëéÌÌÿÿ1ÀH;5½”ÀL‹­XÿÿÿL‹µÿÿÿ„ßH=4¥H
*‰޺­èžáüÿHµxÿÿÿHU€HML‰÷è§zÿÿ…Àˆ—L‹% H‹ÙI‹D$L‹°€M…ö„ H=ӕèNDžÿÿÿ¯…À…¼L‰çH‰Þ1ÒAÿÖH‰Ãè/H…Û„‹H‰ßèªjýÿH‹Džÿÿÿ¯©€L‹µÿÿÿuHÿÈH‰uH‰ßè#»¿2ëDžÿÿÿ®»¯2I‹FhH‹8L‰8H…ÿtH‹©€u
HÿÈH‰uèçH‹½HÿÿÿH…ÿD‹½ÿÿÿtH‹©€u
HÿÈH‰uè½H‹½`ÿÿÿH…ÿtBH‹©€u8HÿÈH‰uèš1ÀH‰EˆE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿésÊÿÿ1ÀH‰EˆE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜L‰­XÿÿÿE1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰…ÿÿÿH‰•ÿÿÿH‹}€H…ÿtCH‹©€u9HÿÈH‰u1M‰ÅL‰¥ÿÿÿM‰ôA‰ÞD‰ûI‰Ïè¾L‰ùA‰ßD‰óM‰æL‹¥ÿÿÿM‰èM…öt2I‹©€u(HÿÈI‰u L‰÷M‰ÆA‰ÝD‰ûI‰Ïè}L‰ùA‰ßD‰ëM‰ðH‹}H…ÿt/H‹©€u%HÿÈH‰uM‰ÆA‰ÝD‰ûI‰ÏèEL‰ùA‰ßD‰ëM‰ðH‹½xÿÿÿH…ÿt/H‹©€u%HÿÈH‰uM‰ÆA‰ÝD‰ûI‰Ïè
L‰ùA‰ßD‰ëM‰ðH…Ét H‹©€uHÿÈH‰uH‰ÏM‰ÆèÜM‰ðM…ÀtI‹©€uHÿÈI‰uL‰ÇèºH=¢H
ø‰ÞD‰úènÞüÿE1öH‹½ÿÿÿH‹@ÿÿÿL‹½ ÿÿÿL‹­8ÿÿÿH…ÿtH‹©€u
HÿÈH‰uègM…ítI‹E©€uHÿÈI‰EuL‰ïèFH…ÛtH‹©€uHÿÈH‰uH‰ßè'H‹½HÿÿÿH…ÿH‹pÿÿÿL‹­`ÿÿÿtH‹©€u
HÿÈH‰uèöM…ätI‹$©€uHÿÈI‰$uL‰çèÕH‹}˜H…ÿtH‹©€u
HÿÈH‰uèµH‹} H…ÿL‹¥XÿÿÿtH‹©€u
HÿÈH‰uèŽH‹½ðþÿÿH…ÿtH‹©€u
HÿÈH‰uèkH‹½PÿÿÿH…ÿtH‹©€u
HÿÈH‰uèHM…ítI‹E©€uHÿÈI‰EuL‰ïè'H‹½ÿÿÿH…ÿtH‹©€u
HÿÈH‰uèH‹}ˆH…ÿL‹­hÿÿÿtH‹©€u
HÿÈH‰uèÝM…ítI‹E©€uHÿÈI‰EuL‰ïè¼H…ÛtH‹©€uHÿÈH‰uH‰ßèH‹}¨H…ÿtH‹©€u
HÿÈH‰uè}M…ätI‹$©€uHÿÈI‰$uL‰çè\H‹½øþÿÿH…ÿtH‹©€u
HÿÈH‰uè9M…ÿtI‹©€uHÿÈI‰uL‰ÿèH‹¸H‹H;EÐuL‰ðHÄø[A\A]A^A_]ÃèöÿL‰çH‰Þ1Òè±þH‰ÃH…À…úÿÿDžÿÿÿ¯ëè’ýH…À„ÅL‹­Xÿÿÿ»»2L‹µÿÿÿé˜úÿÿHÇE»[2E1öH‹}€H…ÿ…Íÿÿé.ÍÿÿHÇE€A¿¼»·31ÀH‰E E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿL‰­XÿÿÿéÏÏÿÿ1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E H‰ ÿÿÿ»Ä4écÒÿÿE1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E H‰ ÿÿÿ»é4éHÇE»Ø5A¿ÖéßÿÿE1äéï‘ÿÿE1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E H‰ ÿÿÿ»15é–E1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E H‰ ÿÿÿ»r5ëJE1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E H‰ ÿÿÿ»—51ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÉénùÿÿA¿üE1À1É1ÀH‰E¨L‰eˆH‰ڻÀ8é6ÂÿÿE1öëA¾I‹©€uHÿÈI‰uL‰ÿè"ýèélÿÿ…Àu5Hƒ½ ÿÿÿH‹ž´H‹8Hþ—H
HDÈH5™L‰ò1ÀèžúA¿üE1À1ÉE1ö1ÀH‰E¨L‰eˆH‰Ú1ÀH‰E 1ÀH‰E˜H‹…ÿÿÿH‰… ÿÿÿ»Ð8L‹¥ÿÿÿ飸ÿÿHÇE€»â2éjÛÿÿ»
31ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿA¿±E1ÀéøÿÿH‹•³H‹8H5pŒèÚùé&Üÿÿ»731ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰…ÿÿÿA¿³E1Àé…÷ÿÿHÇEA¿¾1ÀH‰E˜E1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1ÒH‰8ÿÿÿ»41ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E é4âÿÿI‰Î1ÒéP†ÿÿ»7E1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äA¿é1Éé½öÿÿ»)7E1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äA¿ì1Éédöÿÿ1ÒéڇÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äA¿ï»I7éöÿÿ»s7E1ÀE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1äA¿ð1Éé«õÿÿ»ý21ÀH‰…`ÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿA¿°é7õÿÿHÇEA¿¶»c31ÀH‰…PÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿéÈÿÿ»‹31ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿA¿·E1Àéqôÿÿ»~31ÀH‰…PÿÿÿE1À1ÉE1ö1ÀH‰E¨1ÀH‰…pÿÿÿ1ÀH‰…hÿÿÿ1ÀH‰Eˆ1Ò1ÀH‰…`ÿÿÿ1ÀH‰E 1ÀH‰E˜E1ä1ÀH‰…Hÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…8ÿÿÿA¿¶éýóÿÿH‹u¯H‹8H5Pˆèºõé øÿÿf„UH‰åH9÷t-H‹GH;l¯u.H‹OH…ÒtHƒáú1ÀHƒùuJ1”À]ø]Ãá‰È]ÃH;%¯tºè™öH‰Ç]éàòH*Âf.G›À”Á Á¶Á]Ãf„UH‰åSPH…öt_H‹G»H9ðtHH‹ˆXH…Ét_H‹QH…Ò~1ÿH9tùt*HÿÇH9úuñH‹PH‹NH‹’®H‹8H5†–1Û1Àè­ô‰ØHƒÄ[]ÃH‹g®H‹8H5O–è¬ô1ÛëÝH‰ÁH…ÉtH‹‰H9ñuïëÇH;5¿­t¾ëšff.„UH‰åAWAVATSH‰óH‹GL‹`pM…äteIƒ|$t]I‰þH‹5c®H‰÷H…ÒtH‹:H…ÉtH‹1H‹I®èªõH…Àt`I‰ÇL‰÷H‰ÆH‰ÚAÿT$‰ÃI‹©€uHHÿÈI‰u@L‰ÿè&öë6H‹PH‹¥­H‹8H…ÛHî•H
ܕHDÈH5¤•1Àè­ó»ÿÿÿÿ‰Ø[A\A^A_]Ãffffff.„UH‰åH‹OH‹AhH‹IpH…ÉtH‹IH…Ét]ÿáH…Àt
Hƒxt]é]éç€UH‰åAVSH…ÿteH‰ûH;=r­t)H;Y­t H;X­tH‰ßèrôA‰ÆH‹©€të(E1öH;=­A”ÆH‹©€uHÿÈH‰uH‰ßè+õD‰ð[A^]ÃA¾ÿÿÿÿëð€UH‰åAWAVATSH‰óI‰þH‹FH;¤¬uYH‹CHƒø‡„‹KƒàA¿I)ÇL¯ùIƒÿÿuè–òIÇÇÿÿÿÿH…À…ŠL‰÷L‰þº¹[A\A^A_]éÉdÿÿH‰ßè?óH…ÀtÁI‰ÄH‰ÇèáòI‰ÇI‹$©€u¢HÿÈI‰$u™L‰çèfô돉CáºH)ÊHÁèH¯ÂHƒøþtbHƒøurD‹{‹CHÁàI	ÇévÿÿÿH‹
•«H‹1H‰ÇèÞñ…Àt(H‹CH‹Xè»ñH‹Z«H‹8H5ç“H‰Ú1Àè¬ñ1À[A\A^A_]ÃD‹{‹CHÁàI	ÇI÷ßéüþÿÿH‰ßè%òI‰Çéìþÿÿffff.„UH‰åAWAVSHƒìH‹œ«H‹H‰EàH‹Gö€«€„I‰öH‰ûH‹5çýH‹€H;)«uU1ҹèAóI‰ÇH…ÀtUHÇEÐHuØL‰uØHº€L‰ÿè±jýÿH‰ÃI‹©€uMHÿÈI‰uEL‰ÿèóë;H…ÀtYÿÐI‰ÇH…Àu°èNýÿè«ðH‹CH‹PH‹zªH‹8H5ÿ’1Û1Àè•ðH‹ЪH‹H;EàuH‰ØHƒÄ[A^A_]Ãè¾òèŸñI‰ÇH…À…Pÿÿÿ랐UH‰åAVSH‹Gö€«toH‹GHƒøv3‰CáºH)ÊHÁèH¯ÂHƒøt,Hƒøþu;‹_‹GHÁàH	ÃH÷Ûë!‹Oƒà»H)ÃH¯Ùë
‹_‹GHÁàH	ÃH‰Ø[A^]Ã[A^]éwðèxeÿÿH…Àt*I‰ÆH‰ÇèhÿÿÿH‰ÃI‹©€uÍHÿÈI‰uÅL‰÷èïñë»HÇÃÿÿÿÿë²UH‰åAWAVAUATSHƒìI‰þH‹ũH‹H‰EÐH‹÷H‹=P÷H‹SH‰Þè~ñH…À„õI‰NjÿÀtA‰H‹5XþI‹GH‹€L‰ÿH…À„÷ÿÐH‰ÃI‹H…Û„ú©€uHÿÈI‰uL‰ÿèMñH‹CH;ö¨„õE1ÿE1äL‰eÀL‰uÈD‰øHÁàH÷ØH4(HƒÆÈAÿÇH‰ßL‰úèŠhýÿI‰ÇM…ätI‹$©€uHÿÈI‰$uL‰çèêðM…ÿ„ÍH‹©€uHÿÈH‰t9L;=¼¨tAL;=£¨t8L;=¢¨t/L‰ÿè¼ï‰ÅÀˆ¾I‹©€t)ë/H‰ßèŽðL;={¨u¿1ÛL;=p¨”ÃI‹©€uHÿÈI‰t]…ÛteL‰÷ègH‰ÃHƒøÿuèîH…À…ÕH‰ßèžîI‰ÆH…À„;H‹%¨H‹H;EÐ…þL‰ðHƒÄ[A\A]A^A_]ÃL‰ÿèð…Ûu›H‹5kùI‹FH‹€L‰÷H…À„BÿÐI‰ÇH…À„Eè]íA¼uH…À„BH‰ÃH‹5ÐùH‹qH‰ÇèAí…Àˆ“L‹5ZI‹GL‹ €M…ä„$H=Åè@ïA½\…À…?L‰ÿL‰öH‰ÚAÿÔI‰Æè$ïM…ö„I‹©€uHÿÈI‰uL‰ÿè1ïH‹©€…óþÿÿHÿÈH‰…çþÿÿH‰ßèïéÚþÿÿA½[I‹©€uHÿÈI‰uL‰ÿèêîH…ÛtH‹©€uHÿÈH‰uH‰ßèËîH=¨“H
	õD‰îD‰âè~ÊüÿE1öézþÿÿèqìA¼rA½H…ÀuÉH‰ßè¸HýÿI‰ÇH…À…íüÿÿë³èeíH‰ÃI‹H…Û…ýÿÿA¼rA½©€uŒHÿÈI‰u„L‰ÿéwÿÿÿL‹cM…ä„þüÿÿL‹kA‹$ÿÀuXA‹EÿÀu\H‹A¿©€t`ënA¼rA½&H‹©€„ÿÿÿé*ÿÿÿA¼tA½@éÿÿÿA¼rA½*ë`A‰$A‹EÿÀt¤A‰EH‹A¿©€uHÿÈH‰uH‰ßè¦íL‰ëéhüÿÿè…ìI‰ÇH…À…»ýÿÿA¼uA½Wé±þÿÿA½Y1ÛékþÿÿA¼sA½5é“þÿÿL‰ÿL‰öH‰ÚèìI‰ÆH…À…ùýÿÿA½\A¼ué/þÿÿèúêH…ÀtA¼uéþÿÿèíH‹–¤H‹8H5q}èÛêëØffff.„UH‰åAVSH‹Gö€«toH‹GHƒøv3‰CáºH)ÊHÁèH¯ÂHƒøt,Hƒøþu;‹_‹GHÁàH	ÃH÷Ûë!‹Oƒà»H)ÃH¯Ùë
‹_‹GHÁàH	ÃH‰Ø[A^]Ã[A^]éÇêèÈ_ÿÿH…Àt*I‰ÆH‰ÇèhÿÿÿH‰ÃI‹©€uÍHÿÈI‰uÅL‰÷è?ìë»HÇÃÿÿÿÿë²UH‰åAWAVAUATSHìˆL‰ËL‰EI‰ÏH‰•pÿÿÿI‰õI‰þH‹þ£H‹H‰EЋÿÀ…'H‹…pÿÿÿ‹ÿÀ…+¿è&êH…À„4I‰ÄH‹ïþ‹ÿÁH‰]˜L‰u¨t	‰H‹ØþI‹L$H‰L‹5	ûè(é¾Ê[ÇE aH…À„³H‰ÃH‹5ñL‰÷H‰ÂL‰áE1Àè éI‰ÆH‹©€uHÿÈH‰uH‰ßèKëM…ö„ŒI‹$©€uHÿÈI‰$uL‰çè&ëH‹5KþL‰÷è3ÁüÿH…À„¡H‰ËÿÀt‰H‹©€uHÿÈH‰t|H‰PÿÿÿI‹©€…€HÿÈI‰uxL‰÷èÌêënA‰EH‹…pÿÿÿ‹ÿÀ„ÕþÿÿH‹pÿÿÿ‰¿èòèH…À…ÌþÿÿH=hH
×ð¾Å[ºaèHÆüÿ1Ûé½(H‰ßèmêH‰PÿÿÿI‹©€t€H‹‘ùH‹=êïH‹SH‰ÞèêH…À„I‰ċÿÀtA‰$H‹5óI‹D$H‹€L‰çH…À„OÿÐH‰ÃH…À„RI‹$©€uHÿÈI‰$uL‰çèãéH‹CH;Œ¡„QE1äE1öL‰u°L‰m¸D‰àHÁàH÷ØH4(HƒƸAÿÄH‰ßL‰âè aýÿH‰…hÿÿÿM…ötI‹©€uHÿÈI‰uL‰÷è~éHƒ½hÿÿÿ„.H‹©€uHÿÈH‰tI‹E©€u&HÿÈI‰EuL‰ïèBéëH‰ßè8éI‹E©€tÚL‹%bøH‹=»îI‹T$L‰æèèèH…À„áH‰ËÿÀL‹­pÿÿÿt‰H‹5LòH‹CH‹€H‰ßH…À„ÿÐI‰ÄH…À„H‹©€uHÿÈH‰uH‰ßè±èI‹D$H;Y „E1ö1ÛH‰]°L‰m¸D‰ðHÁàH÷ØH4(HƒƸAÿÆL‰çL‰òèî_ýÿH‰EˆH…ÛtH‹©€uHÿÈH‰uH‰ßèOèHƒ}ˆ„I‹$©€u	HÿÈI‰$tI‹E©€u&HÿÈI‰EuL‰ïèèëL‰çè
èI‹E©€tÚL;=äŸtgI‹Oö«L‹mˆ…ºH‹îíH9Á„ªH‹‘XH…Ò„ŒH‹JH…É~1öfH9Dò„‚HÿÆH9ñuíA‹ÿÀtA‰L‰øéŒ1ÿèØåH…ÀL‹mˆu|1ÀH‰E€¾/\A¾gL‰­pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…xÿÿÿ1ÀH‰EˆE1ä1ÀH‰E¨éí(H‹‰H9ÁtH…ÉuïH;5žu†¿èmåH…À„=A‹ÿÁtA‰H‹HL‰9H‰…XÿÿÿH‹5éøL‹½hÿÿÿI‹GH‹€L‰ÿH…À„áÿÐI‰ÆH…À„äL‰÷èõåHƒøÿ„áH‰ÃI‹©€uHÿÈI‰uL‰÷èšæHƒû…ËH‹5}øI‹EH‹€L‰ïH…À„#ÿÐI‰ÆH…À„&L‰÷èåHƒøÿ„H‰ÃI‹©€uHÿÈI‰„­
Hƒû…µ
H‹5øI‹EH‹€L‰ïH…À„*ÿÐI‰ÆH…À„-L‰÷1ö1Ò1Éè!VÿÿH…À„%I‰ÄI‹©€uHÿÈI‰uL‰÷èÏåH‹5¼÷I‹EH‹€L‰ïH…À„ÿÐI‰ÆH…À„¾L‰÷1Ò1Éè¾UÿÿH…À„I‹÷Á€uHÿÉI‰uL‰÷H‰ÃèkåH‰ØL‰çH‰ÃH‰ƺèqäH…À„üI‰ÆI‹$©€uHÿÈI‰$uL‰çè-åH‹©€uH‰ßHÿÈH‰uèåL;5t0L;5çœt'L;5æœtL‰÷èä‰ÅÀˆÑ#I‹©€të&1ÛL;5Ŝ”ÃI‹©€uHÿÈI‰uL‰÷è´ä…Û…2H‹5™öI‹GH‹€L‰ÿH…À„ÿÐI‰ÆH…À„„L‰÷1ö1Ò1ÉèžTÿÿH…À„|H‰ÃI‹©€uHÿÈI‰uL‰÷èLäH‹59öI‹EH‹€L‰ïH…À„XÿÐI‰ÆH…À„[L‰÷1ö1Ò1Éè>TÿÿH…À„hI‰ÄI‹©€uHÿÈI‰uL‰÷èìãH‰ßL‰æºèøâH…À„RI‰ÆH‹©€uHÿÈH‰uH‰ßè¶ãI‹$©€uHÿÈI‰$uL‰çèšãL;5‡›t0L;5n›t'L;5m›tL‰÷è‡â‰ÅÀˆf"I‹©€të&1ÛL;5L›”ÃI‹©€uHÿÈI‰uL‰÷è;ã…Û…ÙH‹½XÿÿÿH‹GH‹HpH…É„0H‹IH…É„#H‹5ë÷ÿÑH…À„I‰ÆH‹@H;’š….I‹Hƒø…!ÿÀA‰L‰u€I‹©€uHÿÈI‰uL‰÷è¸âH‹5¥ôI‹GH‹€L‰ÿH…À„àÿÐI‰ÄH…À„ãL‰ç1ö1Ò1ÉèªRÿÿH…À„ØI‰ÆI‹$©€uHÿÈI‰$uL‰çèVâH‹M€H‹AH‹I H9Á~'HÑùH9È~A‹ÿÁtA‰H‹U€H‹JL‰4ÁHÿÀH‰BëH‹}€L‰öèVàƒøÿ„:!I‹©€uHÿÈI‰uL‰÷èïáH‹5”ôH‹}¨H‹GH‹€H…À„JÿÐH‰ÃE1öH…À„MH‹CH;h™…HL‹sM…ö„PL‹{A‹ÿÀuA‹ÿÀuH‹A¼©€të-A‰A‹ÿÀtäA‰H‹A¼©€uHÿÈH‰uH‰ßèPáL‰ûL‹½hÿÿÿL‰u°H‹E€H‰E¸L‰â‰ÐHÁàH÷ØH4(HƒƸÿÂH‰ßè˜XýÿI‰ÄM…ötI‹©€uHÿÈI‰uL‰÷èúàM…ä„–H‹©€uHÿÈH‰uH‰ßè×àH‹5,òI‹D$H‹€L‰çH…À„rÿÐH‰ÃH…À„uI‹$©€uHÿÈI‰$uL‰çèŽàH‹5{òI‹GH‹€L‰ÿH…À„ÿÐI‰ÄH…À„L‰ç1ö1Ò1Éè€PÿÿH…À„÷I‰ÆI‹$©€uHÿÈI‰$uL‰çè,àH‹CH;՗…ŠL‹{M…ÿ„}L‹kA‹ÿÀuA‹EÿÀuH‹A¼©€t!ë/A‰A‹EÿÀtãA‰EH‹A¼©€uHÿÈH‰uH‰ßèºßL‰ëL‹mˆL‰}°H‹LôH‰E¸L‰uÀD‰àHÁàH÷ØH4(HƒƸAƒÌH‰ßL‰âèûVýÿH‰…xÿÿÿM…ÿtI‹©€uHÿÈI‰uL‰ÿèYßI‹©€uHÿÈI‰uL‰÷è?ßHƒ½xÿÿÿL‹½hÿÿÿ„H‹©€uHÿÈH‰uH‰ßèßH‹5}èI‹EH‹€L‰ïH…À„
ÿÐH‰ÃH…À„
L‹5îH‹=räI‹VL‰öè ÞH…À„H‰NjÿÀt‰M‰üH‹5¸éH‹GH‹€I‰ÿH…À„CÿÐI‰ÆH…À„FI‹©€uL‰ÿHÿÈI‰uèmÞH‹CH;–…[ÇE ‹L‹{M…ÿ„NL‹kA‹ÿÀuA‹EÿÀuH‹A¼©€t!ë/A‰A‹EÿÀtãA‰EH‹A¼©€uHÿÈH‰uH‰ßèôÝL‰ëL‰}°L‰u¸D‰àHÁàH÷ØH4(HƒƸAÿÄH‰ßL‰âèEUýÿI‰ÅM…ÿtI‹©€uHÿÈI‰uL‰ÿè§ÝI‹©€L‹¥PÿÿÿuHÿÈI‰uL‰÷è†ÝL‰­pÿÿÿM…íL‹­hÿÿÿ„€H‹©€uHÿÈH‰uH‰ßèUÝH‹}ˆH‹©€L‹­pÿÿÿu
HÿÈH‰uè3ÝA‹$ÿÀtA‰$I‹D$H;ϔ„xE1öL‰ãE1ÿL‰}°L‰m¸D‰ðHÁàH÷ØH4(HƒƸAÿÆH‰ßL‰òè`TýÿI‰ÆM…ÿtI‹©€uHÿÈI‰uL‰ÿèÂÜM…öL‹m„ZH‹©€L‹½hÿÿÿuHÿÈH‰uH‰ßè”ÜI‹FH;M”…aI‹VHƒú…ÊIFIV L‰ñHƒÁ(L‹"H‹H‹H‰E¨‹ÿÀu"A‹$ÿÀu$H‹E¨‹ÿÀu(I‹©€H‰Uˆt.ë<‰A‹$ÿÀtÜA‰$H‹E¨‹ÿÀtØH‹M¨‰I‹©€H‰UˆuHÿÈI‰uL‰÷èõÛH‹5RèL‰ïºè-Iÿÿ…Àˆƒ„ÔH‹5ÐïL‰ïºèIÿÿA¾…Àˆkt"H‹5ìL‰ïºèçHÿÿ…Àˆ;…EH‹=Âêèí¶üÿH…À„<I‰ÆH‹5šäH‹@H‹€L‰÷H…À„+ÿÐH…ÀL‹­pÿÿÿ„.H‰…`ÿÿÿI‹©€uHÿÈI‰uL‰÷è$ÛH‹=Yê脶üÿH…À„#I‰ÆH‹5	æH‹@H‹€L‰÷H…À„<ÿÐH‰ÃH…À„?I‹©€uHÿÈI‰uL‰÷èÆÚH‹53ãH‹}¨H‹GH‹€H…À„3ÿÐI‰ÆH…À„6L‰÷L‰æèDÙH…À„<I‰ÅI‹©€uHÿÈI‰uL‰÷èhÚH‹CH;’„<E1öE1ÿL‰}°L‰m¸H‹E¨H‰EÀD‰ðHÁàH÷ØH4(HƒƸAƒÎH‰ßL‰òèœQýÿI‰ÆL‰ÿ豞üÿI‹E©€uHÿÈI‰EuL‰ïèùÙM…öL‹­hÿÿÿ„%H‹©€uHÿÈH‰uH‰ßèÏÙ¿è)ÙH…ÀH‹pÿÿÿ„øH‰ÃL‰p‹ÿÀt‰H‰K è-×H…À„ðI‰ÆH‹5ëH‰ÇL‹}˜L‰úè×ÇE “…Àˆ‰H‹5éâL‰÷L‰úèöօÀˆvL‹½`ÿÿÿL‰ÿH‰ÞL‰òèù=ýÿH…À„«H‰ÇI‹©€H‰ùH‰}˜uHÿÈI‰uL‰ÿèÙH‹}˜H‹©€uHÿÈH‰uH‰ßèòØH‹}˜I‹©€M‰ïuHÿÈI‰uL‰÷èÑØH‹}˜H;=º„ýH;=„ðH;=˜„ãè±×…Àˆ»…À…˜éÝL‰÷è„ØHƒû„KòÿÿH‹=çîH‹58î1Òè!=ýÿºpH…À„G
H‰ÃH‰Çè¨=ýÿH‹¾É\©€uHÿÈH‰u
H‰ßè-ؾÉ\1ÀH‰E€E1öE1ÀE1ä1ÀH‰E¨1ÀH‰E˜L‹mˆºpéì1ÀH‰E˜H‹=.çèY³üÿH…À„oI‰ÆH‹5ÞâH‹@H‹€L‰÷H…À„^ÿÐH‰ÃH…À„aI‹©€uHÿÈI‰uL‰÷è›×H‹=Ðæèû²üÿH…À„_H‰ÇÇE œH‹5ÉéH‹@H‹€H…ÀL‹µxÿÿÿI‰ÿ„FÿÐI‰ÅH…ÀL‹Eˆ„II‹©€uL‰ÿHÿÈI‰uè+×I‹EH;Ԏ„8E1ÿE1öL‰}°L‰e¸D‰ðHÁàH÷ØH4(HƒƸAÿÆL‰ïL‰òèhNýÿI‰ÆL‰ÿè}›üÿM…ö„OI‹E©€uHÿÈI‰EuL‰ïè¼ÖH‹5©ìL‰÷èÙàÿÿH…À„:I‰ÇI‹©€uHÿÈI‰uL‰÷è‡ÖL‰ÿH‹u¨è1ÕH…À„7I‰ÆI‹©€uHÿÈI‰uL‰ÿèUÖH‹CH;þ„EE1ÿE1íL‰m°H‹…xÿÿÿH‰E¸L‰uÀD‰øHÁàH÷ØH4(HƒƸAƒÏH‰ßL‰úè†MýÿI‰ÇL‰ï蛚üÿI‹©€uHÿÈI‰uL‰÷èåÕM…ÿ„5H‹©€L‹µxÿÿÿuHÿÈH‰uH‰ßè»ÕI‹©€uHÿÈI‰uL‰÷è¡ÕL‰ÿH‹µhÿÿÿè0ÔH…À„
I‰ÆI‹©€uHÿÈI‰uL‰ÿèlÕH‹}€è­ÓH…À„õH‰ÃH‹5DçI‹FH‹€˜H…ÀL‹½hÿÿÿL‰÷H‰Ú„áÿЅÀH‹½pÿÿÿL‹EˆˆäH‹©€uHÿÈH‰uH‰ßèÕL‹EˆA‹ÿÀtA‰L‰óH‹½Pÿÿÿé¾L^ë¾M^1ÀH‰E1ÒL‹EˆI‹©€u*HÿÈI‰u"L‰…hÿÿÿL‰÷I‰ÖA‰÷è¤ÔL‹…hÿÿÿD‰þL‰òH‰ÙL‰çM‰ïH‰U˜H‰ËM‰ýI‰üH…ÉL‹µxÿÿÿH‹`ÿÿÿt4H‹©€u*HÿÈH‰u"H‰ßL‰ÃA‰÷H‰`ÿÿÿèGÔH‹`ÿÿÿD‰þI‰ØM‰ïH…ÉH‹½pÿÿÿ‹U H‹]tBH‹©€u8HÿÈH‰u0H‰½pÿÿÿH‰ÏH‰]L‰ÃA‰õ‰U èöÓH‹½pÿÿÿ‹U D‰îI‰ØH‹]I‰ýH…Û„ÃH‹©€…²é¡1ÀH;=®‹”À…¶ûÿÿH‹5¬çH‹}ºèæ@ÿÿ…ÀˆÁ„ËH‹=‘çèì®üÿH…À„H‰ÃH‹5içH‹@H‹€H‰ßH…À„ÿÐI‰ÆH…À„H‹©€uHÿÈH‰uH‰ßè.ÓH‹5éL‰÷1ÒèÙ7ýÿH…À„H‰ÃI‹©€uHÿÈI‰uL‰÷è÷ÒH‹©€…ðúÿÿHÿÈH‰…äúÿÿH‰ßèÕÒé×úÿÿ1ÀH‰…PÿÿÿM‰ï1ÀH‰…Xÿÿÿé!1ÀH‰…PÿÿÿM‰ï1ÀH‰…Xÿÿÿ1ÀH‰E€1ÀH‰…xÿÿÿE1À1ÿE1É1ÒE1ö1É1ÀH‰E¨1ÀH‰E¾Ê[éoÇE a¾Í[1ÀH‰E1ÀH‰…`ÿÿÿ1Û1Ò1ÀH‰E¨E1äE1À1ÀH‰…xÿÿÿ1ÀH‰E€1ÀH‰…Xÿÿÿ1ÀH‰…PÿÿÿéQýÿÿèãÏA¾dH…ÀuH‰ßè0,ýÿI‰ÄH…À…Ìçÿÿ1ÀH‰…XÿÿÿM‰ï1ÀH‰E€1ÀH‰…xÿÿÿ1ÀH‰EˆE1ä1ÀH‰E¨1ÀH‰E˜¾Û[éwè¥ÐH‰ÃH…À…®çÿÿ¾Ý[ÇE d1ÀH‰…XÿÿÿM‰ï1ÀH‰E€1ÀH‰…xÿÿÿéhL‹sM…ö„¢çÿÿH‹KA‹ÿÀ…ß‹ÿÀ…âH‹A¼©€…ìéÛ¾ò[ÇE d1ÀH‰…Xÿÿÿé–èïÎA¾eH…ÀL‹­pÿÿÿuL‰çè5+ýÿH‰ÃH…À…èÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E€1ÀH‰…xÿÿÿ1ÀH‰EˆE1ä1ÀH‰E¨1ÀH‰E˜L‹½hÿÿÿ¾\éxè¦ÏI‰ÄH…À…ãçÿÿ¾\ÇE e1ÀH‰…XÿÿÿL‹­hÿÿÿ1ÀH‰E€E1öé}I‹\$H…Û„–M‹l$‹ÿÀ…A‹EÿÀ…I‹$A¾©€„é"¾\ÇE e1ÀH‰…Xÿÿÿ1ÀH‰E€1ÀH‰…xÿÿÿE1À1ÿE1É1ÒE1ö1É1ÀH‰E¨1ÀH‰EL‹½hÿÿÿéøèÝÎI‰ÆH…À…éÿÿ¾}\ºméüÇE m¾\éH‹=2æH‹5{å1Òèl4ýÿH…À„ÑH‰ÃH‰Çèø4ýÿH‹¾\©€uHÿÈH‰u
H‰ßè}Ͼ\1ÀH‰E€E1öE1ÀE1ä1ÀH‰E¨1ÀH‰E˜L‹mˆºné<è6ÎI‰ÆH…À…Úèÿÿ¾¡\écÇE o¾£\1ÀH‰E1ÀH‰…`ÿÿÿ1Û1Ò1ÀH‰E¨E1äE1À1ÀH‰…xÿÿÿ1ÀH‰E€L‰­pÿÿÿM‰ýé úÿÿH‹PH‹l†H‹8H5n1ÀH‰E€1ÀèƒÌ¾	]ºxéæL‰÷èøÍH‰ÁH‰E€H…À…ÐëÿÿÇE x¾]éiÿÿÿE1äE1ÿéÓîÿÿA‰‹ÿÀ„ýÿÿ‰H‹A¼©€uHÿÈH‰„…H‰Ëé‡äÿÿ‰A‹EÿÀ„êýÿÿA‰EI‹$A¾©€uHÿÈI‰$uL‰çèÎM‰ìL‹­pÿÿÿévåÿÿ1ÀH‰E€¾Å\E1öE1ÀE1ä1ÀH‰E¨1ÀH‰E˜L‹mˆéÔ
èÎÌI‰ÆH…À…Óçÿÿ¾«\ºoéí1ÀH‰EÇE o¾­\éŽþÿÿè—ÌI‰ÆH…À…üçÿÿÇE o¾°\1ÀH‰E€L‰­pÿÿÿéòûÿÿÇE o1ÀH‰E€¾²\L‰­pÿÿÿ1ÀH‰…xÿÿÿE1À1ÿE1É1ÒéDÇE o¾µ\1ÀH‰E€L‰­pÿÿÿ1ÀH‰…xÿÿÿE1À1ÿE1É1ÒE1ö1ÀH‰E¨1ÀH‰EH‰ÙéèôËI‰ÆH…À…|èÿÿ¾Û\ºqé1ÀH‰EÇE q¾Ý\é´ýÿÿè½ËI‰ÆH…À…¥èÿÿ¾à\ÇE q1ÀH‰E€L‰èM‰ýH‰…pÿÿÿéüÿÿ1ÀH‰EÇE q¾â\1ÀH‰…`ÿÿÿéjýÿÿ¾å\ÇE q1ÀH‰E€L‰­pÿÿÿ1ÀH‰…xÿÿÿé"H‹=ÇâH‹5 â1Òè1ýÿH…À„vH‰ÃH‰Çè1ýÿH‹¾÷\©€uHÿÈH‰u
H‰ßè̾÷\1ÀH‰E€E1öE1ÀE1ä1ÀH‰E¨1ÀH‰E˜L‹mˆºréѾ	]ºx1ÀH‰E€E1öE1ÀE1ä1ÀH‰E¨1ÀH‰E˜é§è¡ÊI‰ÄH…À…éÿÿ¾]ºyëÉ1ÀH‰…xÿÿÿ¾]ÇE yëfèmÊH‰ÃE1öH…À…³éÿÿ¾']ºzë•E1äE1öéêÿÿ¾;]é3E1öE1äéêÿÿè-ÊH‰ÃH…À…‹êÿÿ¾?]ÇE z1ÀH‰…xÿÿÿL‰­pÿÿÿE1À1ÿE1É1ÒE1ö1É1ÀH‰E¨1ÀH‰EI‹$©€uSHÿÈI‰$H‹pÿÿÿu>L‰…hÿÿÿH‰½`ÿÿÿL‰çH‰MˆI‰Չu˜M‰ÌèÀÊM‰áH‹½`ÿÿÿL‹…hÿÿÿ‹u˜L‰êH‹MˆI‰ÝëL‹­pÿÿÿH‹E¨H‰…`ÿÿÿH‰ËL‰M¨I‰üL‰­pÿÿÿM‰ýM…ö…¦õÿÿéÞõÿÿèSÉI‰ÄH…À…ùéÿÿ¾B]ë61ÀH‰…xÿÿÿ¾D]ÇE zL‰­pÿÿÿE1À1ÿE1É1ÒE1öH‰Ùéÿÿÿ¾Z]ÇE zE1öL‰èM‰ýH‰…pÿÿÿE1ÀE1ä1ÀH‰E¨1ÀH‰E˜1É1ÀH‰EézõÿÿèÏÈH‰ÃH…À…óêÿÿ¾h]º‹E1ÀE1ä1ÀH‰E¨1ÀH‰E˜L‹µxÿÿÿéœèvÇH…ÀuL‰÷èÉ#ýÿH‰ÇH…À…ÛêÿÿÇE ‹E1ÀL‰èM‰ýH‰…pÿÿÿE1ä1ÀH‰E¨1ÀH‰E˜1É1ÀH‰EL‹µxÿÿÿ¾j]éäôÿÿè9ÈI‰ÆH…À…ºêÿÿÇE ‹¾l]E1ÀL‰èM‰åH‰…pÿÿÿE1ä1ÀH‰E¨1ÀH‰E˜1ÀH‰EL‹µxÿÿÿL‰ùé“ôÿÿÇE ‹E1ÿE1äéþêÿÿ¾‚]E1ÀH‹EˆH‰…pÿÿÿ钾W\ºi1ÀH‰…Xÿÿÿ1ÀH‰E€E1öE1ÀE1ä1ÀH‰E¨1ÀH‰E˜L‹½hÿÿÿéŠM‹|$M…ÿ„zëÿÿI‹\$A‹ÿÀ…é‹ÿÀ…ìI‹$A¾©€…Tëÿÿéé¾£]ÇE ŒE1ÀL‹­hÿÿÿE1ä1ÀH‰E¨1ÀH‰E˜1É1ÀH‰EL‹µxÿÿÿé´óÿÿH;¿„OL‰÷èÇH…À„NH‰ÃI‹©€uHÿÈI‰uL‰÷èçÇH‹CL‹°àH‰ßAÿÖH
ÍbH‰M H‰ÁH‰EˆH…À„H‰ßAÿÖH…À„I‰ÄH‰ßAÿÖH‰ÁH‰E¨H…À„H‰ßAÿ־H‰Çè¬6ÿÿ…ÀˆùH‹©€…uëÿÿI‰ÞHÿÈH‰…fëÿÿéYëÿÿ¾ê]A¾Žéó¾ô]éé¾^A¾“éÙèÆH…ÀL‹­pÿÿÿ…ÒëÿÿÇE “¾^1ÀH‰E1ÀH‰…`ÿÿÿ1Û1ÒL‹EˆM‰ýé!òÿÿº“¾!^1Û1ÀH‰E˜L‹µxÿÿÿL‹EˆH‹`ÿÿÿL‰ïH‹©€„òÿÿéÐòÿÿè™ÅH‰ÃH…À…Áëÿÿ¾#^ÇE “1ÒL‹EˆL‰çL‹M¨M‰ôE1ö1ÉH‹…`ÿÿÿélûÿÿè[ÅI‰ÆH…À…Êëÿÿ¾&^ÇE “1ÀH‰E˜M‰ýé·¾(^ÇE “1ÒL‹EˆL‰çL‹M¨M‰ôE1öH‰ÙH‹…`ÿÿÿéûÿÿL‹{M…ÿ„·ëÿÿH‹KA‹ÿÀ…ó‹ÿÀ…öH‹A¾©€…øH‰M HÿÈH‰uH‰ßèÍÅH‹] ésëÿÿ¾>^ëÇE “¾B^1ÀH‰E1ÛéÓðÿÿ¾J^ÇE “1ÀH‰E˜1ÀH‰EL‹µxÿÿÿL‹EˆH‹`ÿÿÿéñÿÿ¾·^A¾œéèLÄH‰ÃH…À…ŸíÿÿÇE œ¾¹^1ÀH‰E1ÀH‰…`ÿÿÿ1ÛL‹EˆM‰ýH‹U˜é\ðÿÿÇE œ¾¼^1ÉM‰ýéèøÃI‰ÅH…ÀL‹Eˆ…·íÿÿ¾¾^1ÀH‰EL‹­hÿÿÿL‰ùétðÿÿM‹}M…ÿ„»íÿÿI‹MA‹ÿÀ…å‹ÿÀ…èI‹EA¾©€…êH‰M HÿÈI‰EuL‰ïè’ÄL‹m éuíÿÿ¾Ó^ÇE œE1öL‹EˆL‰çL‹M¨M‰ìëLÇE œ¾×^1ÀH‰E1ÀH‰…`ÿÿÿL‹EˆL‹­hÿÿÿH‹U˜épïÿÿ¾Ú^ÇE œE1öL‹EˆL‰çL‹M¨M‰üH‰Ù1ÀH‰E¨1ÀH‰EL‹½hÿÿÿH‹U˜éùÿÿL‹kM…í„®íÿÿH‹KA‹EÿÀ…-‹ÿÀ…1H‹A¿©€…3H‰M HÿÈH‰uH‰ßè°ÃH‹] éiíÿÿ¾ð^ÇE œ1ÉL‹­hÿÿÿ1ÀH‰EL‹µxÿÿÿL‹Eˆéïÿÿ¾þ^A¾L‰½xÿÿÿéL‰µxÿÿÿ¾
_A¾žéèk…ÀH‹½pÿÿÿL‹Eˆ‰îÿÿ¾_ºžH‹©€uHÿÈH‰„ÆI‰ýH=âhH
QÉL‰ÃèɞüÿI‰Ø1ÛL‰­pÿÿÿM‰ýH‹½PÿÿÿH…ÿt.H‹©€uHÿÈH‰uM‰ÅèÈÂM‰èM‰ýH‹½XÿÿÿH…ÿuë)H‹½XÿÿÿH…ÿtH‹©€uHÿÈH‰uM‰ÇèŽÂM‰øH‹}€H…ÿtH‹©€uHÿÈH‰uM‰ÇèhÂM‰øM…öt I‹©€uHÿÈI‰uL‰÷M‰ÆèCÂM‰ðM…ÀtI‹©€uHÿÈI‰uL‰Çè!ÂM…äL‹u¨tI‹$©€uHÿÈI‰$uL‰çèüÁM…ötI‹©€uHÿÈI‰uL‰÷èÝÁH‹}˜H…ÿtH‹©€u
HÿÈH‰uè½ÁM…ítI‹E©€uHÿÈI‰EuL‰ïèœÁH‹½pÿÿÿH…ÿtH‹©€u
HÿÈH‰uèyÁH‹nyH‹H;EÐ…€H‰ØHĈ[A\A]A^A_]ÃH‰½pÿÿÿH‰ßL‰ÃA‰õL‰½hÿÿÿA‰×è1ÁD‰úL‹½hÿÿÿD‰îI‰ØL‹­pÿÿÿéþÿÿ¾¸\ÇE oë¾è\ÇE q1ÀH‰E€1ÀH‰…xÿÿÿE1À1ÿE1É1Ò1É1ÀH‰E¨1ÀH‰Eé6öÿÿÇE y¾]1ÀH‰E1ÀH‰…`ÿÿÿ1Û1Ò1ÀH‰E¨E1äE1À1ÀH‰…xÿÿÿéœñÿÿA‰‹ÿÀ„øÿÿ‰I‹$A¾©€…fãÿÿHÿÈI‰$…YãÿÿL‰çè]ÀéLãÿÿ¾ú]1ÀH‰E˜éH‹=µÖH‹5Ö1ÀH‰E˜1Òèé$ýÿA¾H…À„AH‰ÃH‰Çèo%ýÿH‹©€…¬1ÉH‰M˜A½
^A¾HÿÈH‰„ëL‹½hÿÿÿ¾
^éH‰ßH‰Ëè˿éúÕÿÿI‹VHƒúuI‹FHPHHéEãÿÿHƒú|PH‹2wH‹8H5›[1ÀH‰Eº1Àè<½ÇE Œ¾­]1ÀH‰…`ÿÿÿ1Û1Ò1ÀH‰E¨E1äE1ÀM‰ýéŠêÿÿÇE ŒH…Òˆ;H‹ÒvH‹8HƒúHLÅH
'ZHDÈH5N[1ÀH‰E1Àè˼éA‰‹ÿÀ„
ùÿÿ‰H‹A¾©€„ùÿÿH‰ËéäÿÿA‰‹ÿÀ„úÿÿ‰I‹EA¾©€„úÿÿI‰Íé¡çÿÿA‰E‹ÿÀ„Ïúÿÿ‰H‹A¿©€„ÍúÿÿH‰ËéKèÿÿ¾N^é¨éÿÿH‰]¾Ñ]ÇE ŒE1À1ÿE1É1ÒE1öH‹Mˆé[óÿÿ¾
^1ÀH‰E˜L‹½hÿÿÿH=dH
…ÄD‰òèý™üÿ1ÛH‹½PÿÿÿL‹µxÿÿÿL‹EˆH‹©€„7ûÿÿéEûÿÿ1ÀH‰E1ÀH‰…`ÿÿÿ1Û1Ò1ÀH‰E¨E1äE1ÀM‰ý¾­]ééÿÿ¾]^A¾”늾h^A¾•ézÿÿÿH‹=.ÔH‹5ŸÓ1Òèh"ýÿA¾™H…À„ÊH‰ÃH‰Çèî"ýÿH‹©€uA½š^A¾™HÿÈH‰txL‹½hÿÿÿ¾š^éÿÿÿ¾r^A¾–éÿÿÿè:¼I‰ÆH…À…úéÿÿ¾t^º–L‹µxÿÿÿL‹EˆH‹½pÿÿÿH‹©€„öùÿÿéýùÿÿ1ÀH‰EÇE –¾^éº÷ÿÿH‰ßèô¼L‹½hÿÿÿD‰îéžþÿÿèæ¼E1ö1Ûéºîÿÿ1ÀH‰E€¾‹\éTíÿÿ1ÀH‰E€¾ó\é¯ðÿÿÇE Œ¾Ç]1ÀH‰Eé)ýÿÿE1äE1öëA¾H¦ÂH‰E E1äëA¾H‹©€uHÿÈH‰uH‰ßèa¼è(,ÿÿ…ÀuH‹åsH‹8H5wXL‰òH‹M 1Àèó¹ÇE Œ¾Ù]E1?A¹ºA¾¸H‰E¨¸H‰E¸H‰…`ÿÿÿM…äL‹½hÿÿÿH‹Mˆ…äðÿÿéOçÿÿ¾^é…ýÿÿ¾–^é{ýÿÿDUH‰åAWAVAUATSHì¨I‰ôI‰ýH‹ŸsH‹H‰EÐHÇEHÇE¸HÇE¨HÇE°HDžhÿÿÿHDžXÿÿÿHDž`ÿÿÿH‰÷臺HƒøÿtMI‰ÆI‹L$H‹:ÁH9ÁL‰eˆtjH‹‘XH…Òt;H‹rH…öŽ_1ÿfDH9DútBHÿÇH9þuñéC»FfA¿í1ÒéH‰ÊH…ÒtH‹’H9Âuïë
H;Ýq…H‹5PÆH‹L‰çH…À„?ÿÐI‰ÄH‰EH…À„BH‹5ÄÎI‹D$H‹€L‰çH…À„3ÿÐH‰ÃH‰E¸A¿ñH…À„%I‹$©€uHÿÈI‰$uL‰çèLºHÇEH;1rt5H;rt,H;rt#H‰ßè1¹A‰DžÀL‹eˆˆxH‹©€të,E1ÿH;ðqA”ÇL‹eˆH‹©€uHÿÈH‰uH‰ßèڹHÇE¸E…ÿ„’I‹L$H‹¹¿H9Á„œI‹D$H‹
¤¿H9È„'H‹XH…Ò„¹H‹rH…ö~1ÿH9Lú„HÿÇH9þuíL‹=ÎÁH‹=ÿ¾I‹WL‰þè-¹H…À„H‰ËÿÀt‰H‰]°L‰çH‰Þè>¸ƒøÿ„A‰ÇH‹©€uHÿÈH‰„ÓHÇE°E…ÿL‰­pÿÿÿ…öL‹=ÿÌH‹=ˆ¾I‹WL‰þ趸H…À„•H‰ËÿÀt‰H‰]°H‹5½ÌH‹CH‹€H‰ßH…À„“ÿÐH‰E¸A¿&H‰E€H…À„„H‹©€uHÿÈH‰uH‰ßèw¸¿èѷH‰E°H…À„_I‰ÇH‹šÌ‹ÿÁt	‰H‹‹ÌI‰GI‹|$H‹5ÃÆH‹GH‹€H…À„)ÿÐH‰ÃH‰E¨H…À„,H‹CH;Òo…-‹ÿÀt‰H‰]I‰ÜH‹©€uHÿÈH‰uH‰ßè׷HÇE¨A‹D$ »¨@u"Áèƒà1Ƀø•ÁÁáÉÿÿƒø»ÿEÙI‹|$M‰g H‹Ç‹ÿÁt	‰H‹ÇHÇÖL‰} I‰G(‰Þè"·H…À„Ù
1Ɂû“AûL	A¿DCùAWÿAƒÿ¹Eʋp @öÆ H‰E˜…H‹@8éH‹5µÅH‹€L‰çH…À„ 
ÿÐH‰ÃH‰E¸A¿ôH…À„’
H‹5sËH9ót/H‹CH;{n…’H‹CHƒàúE1ÿHƒøuE1ÿƒ{A”ÇëA¿H‹©€uHÿÈH‰uH‰ß苶HÇE¸E…ÿ„ÆüÿÿH‹5¯ÈI‹D$H‹€L‰çH…À„[ÿÐH‰ÃH‰E¸H…À„^H;6nt1H;nt(H;ntH‰ßè6µA‰DžÀˆœH‹©€të(E1ÿH;ùmA”ÇH‹©€uHÿÈH‰uH‰ßèçµHÇE¸E…ÿ„"üÿÿL;%»m„H‹¾»H…À„?I‹L$H9Á„{H‹‘XH…Ò„ÂH‹rH…ö~!1ÿfff.„H9Dú„FHÿÇH9þuíH‹QH‹HH‹îlH‹8H5âT1Àè³1һfA¿øéWH‰ßè7µHÇE°E…ÿL‰­pÿÿÿ…é üÿÿ1Ò@öÆ@”ÂHÁâHÐHƒÀ(H‰…xÿÿÿI¼ÿÿÿÿÿÿÿIÓì‰ÈH‰…PÿÿÿH‹E H‹PH‹ZH…ÛtfI9܈‹J ‰ÈÁèƒàöÁ uH‹r8D9øt+H‹}˜1ö1ÉI‰Ø蠴ë21ööÁ@@”ÆHÁæHÖHƒÆ(D9øuÕH‰ÚH‹PÿÿÿHÓâH‹½xÿÿÿèشH‹E H‹P L‹jM…ítvL‰àL)èH9ØŒ™
‹J ‰ÈÁèƒàöÁ uH‹r8D9øt,H‹}˜H‰Þ1ÉM‰èè"´ë81ööÁ@@”ÆHÁæHÖHƒÆ(D9øuÔH‰ßH‹PÿÿÿHÓçH½xÿÿÿL‰êHÓâèT´LëH‹E H‹P(L‹BM…ÀtmM)ÄI9ÜŒ
‹J ‰ÈÁèƒàöÁ uH‹r8D9øt)H‹}˜H‰Þ1É衳ë81ööÁ@@”ÆHÁæHÖHƒÆ(D9øu×H‹PÿÿÿHÓãH‹½xÿÿÿHßIÓàL‰ÂèӳL‹}˜L‰}H‹} H‹©€u
HÿÈH‰uèJ³¿褲H‰E°H…À„šH‰ÃL‰xH‹ÉÉ‹ÿÁt‰H‰C 褰H‰EH…À„xI‰ÄH‹5YÅH‹ŠÇH‰Ç芰…ÀˆFH‹E€H‹@L‹¸€M…ÿ„›H=C茲…À…¶H‹}€H‰ÞL‰âAÿ×I‰Åèu²M…턊L‰m¨H‹}€H‹©€u
HÿÈH‰uè}²HÇE¸H‹©€uHÿÈH‰uH‰ßè[²HÇE°I‹$©€uHÿÈI‰$uL‰çè7²HÇEI‹E©€uHÿÈI‰EuL‰ïè²HÇE¨L‹­pÿÿÿI‹èL‹%B½L‹{L‰ÿL‰æè۱H…À„ÓH‰ÇH‹@H‹ˆH…ÉtH‰ÞL‰úÿÑH‰E˜H…Àu鼋ÿÀH‰}˜t‰M‹½èL‹-ϼM‹gL‰çL‰î耱H…À„œH‰ÃH‹@H‹ˆH…Ét-H‰ßL‰þL‰âÿÑH‰EH…À„‹H‰ÃH‹@H;þht鯋ÿÁt‰H‰]H;äh…­L‹cL‰e°M…䄜L‹kA‹$ÿÀtA‰$A‹EÿÀtA‰EL‰mH‹A¿©€uHÿÈH‰uH‰ßèٰL‰ëL‰eÀHÇEÈJýH÷ØH4(HƒÆÈH‰ßL‰úè((ýÿI‰ÅH‰E¨M…ätI‹$©€uHÿÈI‰$uL‰ç脰HÇE°M…í„­H‹©€uHÿÈH‰uH‰ßèY°HÇEI‹E©€L‹eˆuHÿÈI‰EuL‰ïè1°è°H‰…HÿÿÿH‹@hH‹
hë
@H‹@H…ÀtAH‹8H…ÿtïH9ÏtêH‰½Xÿÿÿ‹ÿÀt‰H‹OH‰hÿÿÿ‹ÿÀt‰H‰PÿÿÿH‰}€è­ë'HDžXÿÿÿHDžhÿÿÿ1ÀH‰E€1ÀH‰…Pÿÿÿ1ÀH‰…xÿÿÿH‰…`ÿÿÿM~ÿM…ÿŽÐL‰u H‹½pÿÿÿHƒÇ H‰½pÿÿÿL‰þèf~L‰çI‰ÆH‰Æ1Ò1Éè„ÿÿH…À„nL‰áI‰ÄH‰ËH‰ÏL‰þ1Ò1ÉècÿÿH…À„aI‰ÅH‰ßL‰þL‰âè™'…ÀˆYI‹$©€M‰ïuHÿÈI‰$uL‰çèö®L‹eˆL‰çL‰öL‰úè`'…Àˆ5I‹©€L‹u uHÿÈI‰„4IƒÆþ…THÇE¨HÇEH‹½PÿÿÿH…ÿtH‹©€u
HÿÈH‰u腮HDžhÿÿÿH‹}€H…ÿL‹u˜H‹xÿÿÿtH‹©€u
HÿÈH‰uèO®HDžXÿÿÿH…ÛtH‹©€uHÿÈH‰uH‰ßè%®HDž`ÿÿÿM…ötcH‹5*ÃL‰÷1ÒèÀýÿH‰ÃH‰…`ÿÿÿI‹©€uHÿÈI‰uL‰÷èà­H…Û„0H‹©€uHÿÈH‰uH‰ß轭HDž`ÿÿÿE1äéæ"I‹D$ép»wiA¿,1Òé¦L‰ÿ膭IƒÆþuéÃþÿÿ€L‹u IÿÎM…öެþÿÿH‹½pÿÿÿL‰öèQ|I‰ÅL‰çH‰Æ1Ò1ÉèoÿÿH…À„H‰ÃL‰çL‰ö1Ò1ÉèTÿÿH…À„“I‰ÇL‰çL‰u L‰öH‰Úè†%…ÀˆH‹©€uHÿÈH‰uH‰ßèè¬@L‹eˆL‰çL‰îL‰úèN%…Àx'I‹©€…LÿÿÿHÿÈI‰…@ÿÿÿL‰ÿ謬é3ÿÿÿ1ÛA½Ýië"E1ÿ1ÛL‹e˜A½×iëE1ÿA½ÙiëA½ÛiL‹e˜1ÿèqüÿHÇE°L‰ÿèüpüÿHÇEH‹}¸èëpüÿHÇE¸H‰ßèÛpüÿHÇE¨H=RH
u²D‰îº1èè‡üÿHuHU¨HM°H‹½Hÿÿÿèð ÿÿ…Àˆ²L‹}L‹u¨H‹M°¿L‰þL‰òH‰Mˆ1ÀèD«H‰E¸H…ÀL‹m€„:"H‰ÃL‰çH‰Æ1ÒèuýÿL‰çI‰ÄH‹©€u
HÿÈH‰u蜫H‹©€uHÿÈH‰uH‰ß肫HÇE¸M…ä„ì!L;%^ct,L;%Ect#L;%DctL‰çè^ª‰Ãë»õiL‹m€é‘1ÛL;%'c”ÃI‹$©€uHÿÈI‰$uL‰çè«…Ûx`„!L‰ÿèžoüÿHÇEL‰÷èŽoüÿHÇE¨H‹}ˆè}oüÿHÇE°H‹…HÿÿÿH‹xhH‹µPÿÿÿL‰êH‹xÿÿÿèD!ÿÿE1äéì»jH‹…HÿÿÿH‹xhH‹µPÿÿÿL‰êH‹xÿÿÿè!ÿÿA¿.1Òé•E1äE1ÿéœùÿÿèY©I‰ÄH‰EH…À…¾ïÿÿA¿ñ»VféØè4©éÅïÿÿ»Xf1ÒéOH‹=¤ÀH‹55À1ÒèÞýÿH‰E¸A¿òH…À„,!H‰ÃH‰Çè`ýÿH‹©€uHÿÈH‰uH‰ßèê©HÇE¸»mf1Òéî
H‰ÂH…Ò„EH‹’H9ÊuëéAH‹aH‹8H50Pè{§H‹}˜H‹©€u
HÿÈH‰u舩HÇEA¿'»ZiE1ä1ÒH‹}¸H…ÿ…ÀéØèE¨éXòÿÿ»…f1Òé`
è§H…À…f L‰ÿè^ýÿH‰ÃH‰E°H…À…ãïÿÿéQ »+iA¿$1Òé#
H‹8`H‹8L‰æè˦»˜iA¿.1Òéÿ	H‹`H‹8L‰î触HÇE»šië»®iH‹}˜H‹A¿.©€uHÿÈH‰„S1Òé²	»[f1ÒE1äA¿ñé³H;
Š_…ïÿÿH‹5­ºH‹€L‰çH…À„¢ÿÐH‰ÃH‰E¨A¿
H…À„”H‹5˼H9ótH‹CH;Û_…°D‹{AƒçëA¿H‹©€uHÿÈH‰t$E…ÿt,H‹ç_‹ÿÀ„dH‹Ö_‰éVH‰ßèۧE…ÿuÔH‹5s¶I‹D$H‹€L‰çH…À„"ÿÐH‰ÃH‰E¨A¿H…À„H‹5,¼H9ót/H‹CH;4_…7H‹CHƒàúE1ÿHƒøuE1ÿƒ{A”ÇëA¿H‹©€uHÿÈH‰uH‰ßèD§HÇE¨E…ÿL‰­pÿÿÿ„ºH‹59²I‹D$H‹€L‰çH…À„ú
ÿÐI‰ÄH‰E¨H…À„ý
H‹5hºI‹D$H‹€L‰çH…À„å
ÿÐH‰ÃH‰E¸H…À„è
I‹$©€uHÿÈI‰$uL‰ç讦L‹=ãµH‹=<¬I‹WL‰þèj¦H…À„°
I‰ċÿÀtA‰$L‰e¨H‹5÷µI‹D$H‹€L‰çH…À„­
ÿÐI‰ÅH‰E°H…À„°
I‹$©€uHÿÈI‰$uL‰çè-¦HÇE¨H‹©€uHÿÈH‰uH‰ßè¦HÇE¸I‹E©€uHÿÈI‰EuL‰ïèç¥L9ë…lH‹ã¹H‹=l«H‹SH‰Þ蚥H…À„,I‰ċÿÀtA‰$L‰e°H‹5Ÿ¹I‹D$H‹€L‰çH…À„'ÿÐH‰ÃH‰E¸A¿H…À„I‹$©€uHÿÈI‰$uL‰çèW¥èâ¢H‰E°H…À„÷
I‰ÄH‹5—·H‹ȹH‰ÇèȢ…Àˆ/L‹=1»H‹CL‹¨€M…í„øH=L5èǤ…À…H‰ßL‰þL‰âAÿÕI‰Å豤M…í„çL‰m¨H‹©€uHÿÈH‰uH‰ß躤HÇE¸I‹$©€uHÿÈI‰$uL‰ç薤I‹E©€uHÿÈI‰EuL‰ïèz¤HÇE¨L‹=§³H‹=ªI‹WL‰þè.¤H…À„ÐH‰ËÿÀt‰H‰]°H‹5]¯H‹CH‹€H‰ßH…À„ÎÿÐI‰ÄH‰E¸A¿H…À„ÀH‹©€uHÿÈH‰uH‰ßèð£H‹5ºH‹EˆH‹HH‹AhH‹IpH…É„*H‹IH…É„H‹}ˆÿÑH‰ÃH‰E°1ÒH…À„mI‹D$H;S[„eE1íL‰mÀH‰]ȉÐHÁàH÷ØH4(HƒÆÈÿÂL‰çèïýÿH‰E H‰E¨M…ítI‹E©€uHÿÈI‰EuL‰ïèJ£HÇEH‹©€uHÿÈH‰uH‰ßè(£HÇE°Hƒ} L‹­pÿÿÿ„CI‹$©€uHÿÈI‰$uL‰çèò¢HÇE¸HÇE¨I‹èL‹% ®L‹{L‰ÿL‰æ蹢H…À„ýH‰ÇH‹@H‹ˆH…ÉtH‰ÞL‰úÿÑH‰E˜H…Àuéæ‹ÿÀH‰}˜t‰M‹½èL‹-­­M‹gL‰çL‰îè^¢H…À„ÁH‰ÃH‹@H‹ˆH…Ét-H‰ßL‰þL‰âÿÑH‰E¸H…À„°H‰ÃH‹@H;ÜYt靋ÿÁt‰H‰]¸H;ÂY…„L‹cL‰e°M…ä„sL‹kA‹$ÿÀtA‰$A‹EÿÀtA‰EL‰m¸H‹A¿©€uHÿÈH‰uH‰ß跡L‰ëL‰eÀHÇEÈJýH÷ØH4(HƒÆÈH‰ßL‰úèýÿI‰ÅH‰E¨M…ätI‹$©€uHÿÈI‰$uL‰çèb¡HÇE°M…í„ÒH‹©€L‹eˆuHÿÈH‰uH‰ßè3¡HÇE¸I‹E©€uHÿÈI‰EuL‰ïè¡èø H‰E€H‹xhHµ`ÿÿÿH•XÿÿÿHhÿÿÿèTÿÿIÿÎM…öL‹½pÿÿÿŽIƒÇ L‰½pÿÿÿë5@L‹eˆL‰çM‰þL‰þH‹U è*…ÀL‹½pÿÿÿˆÛIÿÎM…öŽÓL‰ÿL‰öè„oI9ÆtäH‰ÃL‰çH‰Æ1Ò1ÉèÿÿA½H…À„‚I‰ÄH‹} H‹50XH‰ÂèzŸ…ÀˆkM‰÷I‹$©€uHÿÈI‰$u	L‰çè% L‹uˆL‰÷L‰þ1Ò1Éè=ÿÿA½ H…À„0I‰ÄL‰÷H‰ÞH‰Âèm…ÀˆI‹$©€…ÿÿÿHÿÈI‰$…	ÿÿÿL‰çèşéüþÿÿHÇE¨H‹½`ÿÿÿèHdüÿHDž`ÿÿÿH‹½Xÿÿÿè1düÿHDžXÿÿÿH‹½hÿÿÿèdüÿHDžhÿÿÿHƒ}˜tnH‹5´H‹}˜1ÒèýÿH‹}˜H‰ÃH‰…hÿÿÿH‹©€L‹e u
HÿÈH‰uè1ŸH…Û„¤H‹©€uHÿÈH‰uH‰ßèŸHDžhÿÿÿé:L‹e é1»h1ÒA¿E1äé»©hë »«h뻵hë»·hë»ÁhA½!E1ä1ÿèKcüÿHÇE°H‹}è:cüÿHÇE1ÿè+cüÿHÇE¸L‰çècüÿHÇE¨H=ÐDH
µ¤‰ÞD‰êè+züÿHu¨HU¸HM°H‹}€è6ÿÿ…Àˆ´L‹}¨L‹u¸H‹]°¿L‰þL‰òH‰Ù1À苝H‰EH…À„ÒI‰ÅL‹e˜L‰çH‰Æ1Òè¼ýÿL‰çI‰ÄH‹©€u
HÿÈH‰uèãI‹E©€uHÿÈI‰EuL‰ïèǝHÇEM…ä„~L;%£Ut)L;%ŠUt L;%‰UtL‰ç補A‰Åë»Ùhé•E1íL;%nUA”ÅI‹$©€uHÿÈI‰$uL‰çèZE…íxaL‹e „"L‰ÿèßaüÿHÇE¨L‰÷èÏaüÿHÇE¸H‰ßè¿aüÿHÇE°H‹µ`ÿÿÿH‹•XÿÿÿH‹hÿÿÿH‹E€H‹xhè…ÿÿé0»æhL‹e H‹µ`ÿÿÿH‹•XÿÿÿH‹hÿÿÿH‹E€H‹xhèUÿÿA¿1Òéê	裛éVôÿÿ»µg1Òé¾ýÿÿH…À„¬Hƒx„¡H‹}ˆèu§ÿÿéÇøÿÿE1äE1ÿéÅúÿÿH;T„H‰ߺè{›H‰ÇèæÿÿA‰DžÀ‰3ôÿÿ»·g1ÒE1äA¿
ée	H;ÌS„ØH‰ߺè9›H‰Ç聦ÿÿA‰DžÀ‰eåÿÿ»‡fé†èçšH‰ÃH‰E¸H…À…¢åÿÿ»Žfég1ÛL‹e˜A½×iE1ÿéVïÿÿE1ÿA½ÙiL‰ãéAïÿÿL‰ãL‹e˜M‰ïA½Ûié0ïÿÿ»$jA¿.1Òé­üÿÿè|šéÖóÿÿ»Ög1Òé—üÿÿèF™H…À…·L‰ÿè•õüÿH‰ÃH‰E°H…À…÷ÿÿé¢è;šé*÷ÿÿ»'h1ÒéVüÿÿ»*héLüÿÿM‹l$L‰mM…í„‚M‹|$A‹EÿÀtA‰EA‹ÿÀtA‰L‰}¸I‹$º©€…HÿÈI‰$uL‰çèޚM‰üA¿ºé5÷ÿÿ»?h1Òé×ûÿÿH‹ìQH‹8L‰æè˜»NhA¿ëGH‹ÍQH‹8L‰îè`˜HÇE¸»Phë»dhH‹}˜H‹A¿©€u
HÿÈH‰uèYš1ÒL‹e é|èIš1ÒéZûÿÿè	˜H…À…¤L‰ÿèXôüÿH‰ÃH‰E°H…À…Táÿÿéèþ˜éeáÿÿ»9i1Òéûÿÿ»Diëèá˜H‰ÃH‰E¨H…À…Ôáÿÿ»Li1ÒA¿'éëúÿÿH;xQ…PH‹kQH‰ßÿPXI‰ÄH‰EH…À…¸áÿÿA¿'»Nié$ðÿÿ»eié˜A¿,»uié
ðÿÿ»f1ÒE1äA¿ôé˜1ÀWÀò*Àf.C›À”Á ÁD¶ùé2ñÿÿH;àP„‰H‰ߺèM˜H‰Ç蕣ÿÿA‰DžÀL‹eˆ‰¼ñÿÿ»Øgëèú—I‰ÄH‰E¨H…À…òÿÿ»ßgëcèޗH‰ÃH‰E¸H…À…òÿÿ»ágëG袖H…À…pL‰ÿèñòüÿI‰ÄH‰E¨H…À…;òÿÿ»ägë蕗I‰ÅH‰E°H…À…Pòÿÿ»æg1ÒE1äA¿é²»ié±ûÿÿH‹÷OH‹8H5ß7è<–»fA¿ø1Òéjùÿÿ¸ò*Àf.C›À”Á ÁD¶ùéŽáÿÿH‹}€H‰ÞL‰âèò–I‰ÅH‰E¨H…À…|åÿÿëèٕH…À„ÓHÇE¨»€i1ÒE1äA¿&éM‰üA¿éCôÿÿH‰ÊH…Ò„‰H‹’H9ÂuëH‰ÈL‹eˆé…¸WÀò*Àf.C›À”Á ÁD¶ùL‹eˆé1ðÿÿèV•H…À…¡H‰ßè¥ñüÿI‰ÄH‰E°H…À…¿ñÿÿéŒèK–éÑñÿÿ»ùg1Òéføÿÿ»héTøÿÿH;INL‹eˆ…ÂáÿÿH‰ÈI‹L$H‰MˆH‹5$ªH‹€L‰çH…À„ÿÐI‰ÇH‰E¸H…À„L‰ÿ1ö1Ò1ÉèÿÿH‰EH…À„H‰ÃI‹©€uHÿÈI‰uL‰ÿèÖHÇE¸H‰ßè¿
ÿÿH‰E˜Hƒøÿuèp”H…À…cH‹©€uHÿÈH‰uH‰ß聖H‹5Ž¡I‹D$H‹€L‰çH…À„©ÿÐI‰ÇH‰EH…À„¬H‹5-£I‹GH‹€L‰ÿH…À„žÿÐH‰ÃH‰E¸H…À„¡I‹©€uHÿÈI‰uL‰ÿè–HÇEH‰ßè
ÿÿI‰ÄHƒøÿu贓H…À…¹H‹©€uHÿÈH‰uH‰ßèŕL‹=ú¤H‹=S›I‹WL‰þ聕H…À„-H‰ËÿÀt‰H‰]¸H‹5¨ H‹CH‹€H‰ßH…À„+ÿÐH‰EH…À„.H‰…xÿÿÿH‹©€uHÿÈH‰uH‰ßèE•L‰¥PÿÿÿL‰ç蘓H‰E¸A¿ÿH…À„ûH‰ÿèz”H‰E¨H…À„íI‰ÄH‰X荒H‰E¸H…À„ÞI‰ÇH‹"¤H‹={šH‹SH‰Þ詔H…ÀL‰}€„¾H‰NjÿÀt‰M‰ïH‹5M¡H‹GH‹€I‰ýH…À„ÅÿÐH‰ÃH‰E°H…À„ÈI‹E©€uHÿÈI‰EuL‰ïèl”H‹5yŸH‹}€H‰Úèõ‘…ÀˆoM‰ýH‹©€uHÿÈH‰uH‰ßè4”L‹½xÿÿÿI‹GH‹˜€H…Û„oH=\$èד…À…“L‰ÿL‰æH‹U€ÿÓH‰ÃèSH…Û„hH‰] H‰]°I‹©€uHÿÈI‰uL‰ÿèƓHÇEI‹$©€uHÿÈI‰$uL‰ç袓HÇE¨H‹}€H‹©€u
HÿÈH‰uè“HÇE¸HÇE°L‹e L;%PK„»H‹S™H…À„îI‹L$H9Á„H‹‘XH…Ò„jH‹rH…ö~1ÿH9Dú„vHÿÇH9þuíH‹QH‹HH‹ŽJH‹8H5‚21À諐1һëfA¿ë»Úf1ÒE1äA¿ÿH‹}H…ÿtH‹©€uHÿÈH‰uI‰Ö诒L‰òH‹}¸H…ÿtH‹©€uHÿÈH‰uI‰Ö艒L‰òH‹}¨H…ÿtH‹©€uHÿÈH‰uI‰Öèc’L‰òH…ÒtH‹©€uHÿÈH‰uH‰×èA’H‹}°H…ÿtH‹©€u
HÿÈH‰uè!’H=z8H
_˜‰ÞD‰úèÕmüÿ1ÛéTèéI‰ÇH‰E¸H…À…òúÿÿ»§fA¿ù1ÒéóòÿÿA¿ù»©f1ÒE1äH‹}¸H…ÿ…ÿÿÿé3ÿÿÿ蠐I‰ÇH‰EH…À…TûÿÿA¿ú»·féèÿÿè{H‰ÃH‰E¸H…À…_ûÿÿ»¹féTè<H…À…	L‰ÿè‹ëüÿH‰ÃH‰E¸H…À…¼ûÿÿé	è1H‰EH…À…ÒûÿÿA¿ÿ»Éfé³çÿÿ»Ìf1Òé4òÿÿ»Îfé5þÿÿ»Ófé+þÿÿèώH…ÀuH‰ßè"ëüÿH‰ÇH…À…/üÿÿ1ÒE1äA¿ÿ»Õféþÿÿ輏H‰ÃH‰E°H…À…8üÿÿ»×fE1äA¿ÿL‰êéØýÿÿL‰ÿL‰æH‹U€èiH‰E°H‰E H…À…ªüÿÿ»Üfé£ýÿÿèGŽH…À„\HÇE°»ÜféƒýÿÿH‹ÝGH‹8H5Å/è"Ž»ëfA¿1Òéfýÿÿ»¬fA¿ù1Òé>ñÿÿ»¼f1ÒE1äA¿úé?ýÿÿH‰ßL‰þL‰âèюI‰ÅH‰E¨H…À…ëÿÿë踍H…À„HÇE¨»h1ÒE1äA¿éôüÿÿH‰ÊH…ÒtH‹’H9Âuïë
H;µF…’üÿÿI‹D$H‰…HÿÿÿL‰­pÿÿÿI‹èL‹-ΚL‹{L‰ÿL‰îègH…À„H‰ÇH‹@H‹ˆH…Ét H‰ÞL‰úÿÑH‰…xÿÿÿH…ÀH‹pÿÿÿuéð‹ÿÀH‹pÿÿÿH‰½xÿÿÿt‰L‹¹èL‹%GšM‹oL‰ïL‰æèøŽH…À„»H‰ÃH‹@H‹ˆH…Ét!H‰ßL‰þL‰êÿÑH‰E¸H…À„ªH‰ÃH‹@ë‹ÿÁt‰H‰]¸H;hF…JL‹{L‰}¨M…ÿ„9L‹cA‹ÿÀtA‰A‹$ÿÀtA‰$L‰e¸H‹A½©€uHÿÈH‰uH‰ßè_ŽL‰ãL‰}ÀHÇEÈJíH÷ØH4(HƒÆÈH‰ßL‰êè®ýÿI‰ÅH‰E°M…ÿL‹¥PÿÿÿtI‹©€uHÿÈI‰uL‰ÿèŽHÇE¨M…í„ÕH‹©€uHÿÈH‰uH‰ßèڍHÇE¸I‹E©€uHÿÈI‰EuL‰ï趍HÇE°藍H‹@hëffffff.„H‹@H…ÀtDH‹H…ÛtïH;hEtæH‰Xÿÿÿ‹ÿÀt‰H‹KH‰hÿÿÿ‹ÿÀt‰H‰@ÿÿÿH‰ßè?‹ë#HDžXÿÿÿHDžhÿÿÿ1Û1ÀH‰…@ÿÿÿ1ÀH‰0ÿÿÿH‰…8ÿÿÿH‰…`ÿÿÿIÿÎIƒüudM…öL‹­pÿÿÿH‹EˆL‹e˜L‹½HÿÿÿŽÂIƒÅ L‰ãI¯ÞHÃI÷ÜfL‰ïL‰öèÅ[H‹UˆH¯E˜H‹I‰H‹H‰I‹H‰LãIÿÎuÐë}M…öL‹½Hÿÿÿ~qHƒ…pÿÿÿ H‹E˜I‰ÅM¯îLmˆH÷ØH‰E€@H‹½pÿÿÿL‰öèa[H¯E˜H‹MˆHL‰ÿH‰ÞL‰â谌H‰ßL‰îL‰â袌L‰ïL‰þL‰â蔌Lm€IÿÎu±H‹
D‹ÿÀt‰H‹©€L‹e L‹­xÿÿÿH‹0ÿÿÿL‹µ8ÿÿÿuHÿÈH‰uH‹=ÐCèߋHÇE°H‹½@ÿÿÿH…ÿtH‹©€u
HÿÈH‰u贋HDžhÿÿÿH…ÛtH‹©€uHÿÈH‰uH‰ß芋HDžXÿÿÿM…ötI‹©€uHÿÈI‰uL‰÷è`‹H‹u I‹EL‹°€M…ö„hH=ˆè‹…À…{L‰ïH‰Þ1ÒAÿÖH‰ÃèîŠH…Û„fH‰`ÿÿÿI‹E©€uHÿÈI‰EuL‰ïèòŠH…Û„!H‹©€uHÿÈH‰uH‰ßèϊHDž`ÿÿÿH‹©B‹ÿÀt	H‹œB‰M…ätI‹$©€uHÿÈI‰$uL‰ç荊H‹‚BH‹H;EÐ…KH‰ØHĨ[A\A]A^A_]ÃE1ÿE1íéýûÿÿH‹†AH‹8L‰î舻öfë}H‹mAH‹8L‰æèˆHÇE¸»øfë»gH‹…xÿÿÿH‹©€uHÿÈH‹xÿÿÿH‰uH‹½xÿÿÿèî‰1ÒA¿L‹e é÷ÿÿL‰ïH‰Þ1Ò螈H‰Ãé³þÿÿ»‹gA¿1Òéäöÿÿ1Ûéšþÿÿèv‡H…À„¦1ÛL‹e L‹­xÿÿÿézþÿÿ»ùiéÚÞÿÿ»þiéÐÞÿÿèΈH‰ÇL‰þL‰òH‹MˆèæüÿHÇEHÇE¨HÇE°»
jé—Þÿÿ»ÝhéIìÿÿ»âhé?ìÿÿè/‰è|ˆH‰ÇL‰þL‰òH‰Ùè¿åüÿHÇE¨HÇE¸HÇE°»îhéìÿÿH‹}ˆè4•ÿÿé&åÿÿ»ifE1ä1ÒéöÿÿHÇE°»)iA¿$1ÒéÒéÿÿHÇE°»%hA¿1Òé¸éÿÿE1í1ÒA¿éúäÿÿHÇE°»7iA¿&1ÒéŽéÿÿH;@…¾H‹þ?éžîÿÿHÇE¨»ägé·ïÿÿHÇE¸»ÇfA¿ÿ1ÒéIéÿÿH‹®?H‹8H5‰èó…éðÿÿH‹“?H‹8H5nè؅é‰÷ÿÿH‹x?H‹8H5S轅é?þÿÿHÇE°»÷gA¿1ÒéÞèÿÿH‹C?H‹8H5舅éÈ÷ÿÿH‹5hH‰ßèv†I‰ÄH‰EH…À…›ÏÿÿéÞíÿÿUH‰åAWAVATSH‰ÓI‰þH‹OH;
?tnH‹AhL‹apM…ätCIƒ|$t;H‰÷豅H…À„·I‰ÇL‰÷H‰ÆH‰ÚAÿT$‰ÃI‹©€u_HÿÈI‰uWL‰ÿëMH…ÀtXH‹@(H…ÀtOL‰÷H‰Ú[A\A^A_]ÿàI‹FH‹<ð‹ÿÁt‰I‹FH‰ðH‹»©€u
HÿÈH‰uèƉØ[A\A^A_]ÃH‰÷è…H…Àt#I‰ÇL‰÷H‰ÆH‰ÚèɅ‰ÃI‹©€„hÿÿÿëŻÿÿÿÿë¾fffff.„UH‰åH‹G‹ÿÁt‰H‹G]Ãf.„UH‰åAVSH‰ûH…öt3I‰öA‹ÿÀtA‰H‹{H‹©€u
HÿÈH‰uè†L‰s1À[A^]ÃL‹5÷=A‹ÿÀuÉëÊfffff.„UH‰åAVSH‹5J–èلH…Àt;I‰ÆH‰Ç1öè5ƒH‰ÃH…Àu
莃H…Àt&I‹©€uHÿÈI‰uL‰÷装ë1ÛH‰Ø[A^]ÃH‹=H‹8H5Ñ-èYƒI‹©€tÄë֐UH‰åAWAVAUATSHìèE‰ÅI‰ÌI‰ÖI‰÷H‹I=H‹H‰EÐH‰Öè0„H…À„›H‰ÃH‹@ö€«€u H‹ª<H‹8H5V.L‰úL‰ñ1ÀèBëQH‹C H‹K(H…É„D‰âƒâA¹LEÊL9ÉLOÉIÁM9ásmH‹b<H‹8H5).L‰úL‰ñM‰à1Àèn‚H‹©€uHÿÈH‰uH‰ß蚄1ÛH‹<H‹H;EÐujH‰ØHÄè[A\A]A^A_]ÃE1ÉIÁM9ár“AƒýuÊL9àvÅH‰$H*.L­ÿÿÿ¾ÈL‰ïL‰ùM‰ðM‰á1Àèû‚1ÿL‰î1Òè‚…Ày‹éjÿÿÿè„DUH‰åAWAVAUATSPI‰ÌH‰UÐI‰÷I‰þH5‚.è߂A½ÿÿÿÿH…À„H‰ÃH‰ÇL‰þèTH…ÀtNI‰ÅH‰ÇL‰æè)…ÀtwL‰ïL‰æèH‹MÐH‰H…ÀtNH‹E1í©€…´E1íHÿÈH‰…¥é˜H‹Â:L‹ L‰÷è÷H5.L‰çH‰ÂL‰ù1ÀèH‹©€A½ÿÿÿÿtQëeH‹Ç:H‹H‰EÐL‰÷踁I‰ÆL‰ï聀H5é-H‹}ÐL‰òL‰ùM‰àI‰Á1À轀H‹©€A½ÿÿÿÿuA½ÿÿÿÿHÿÈH‰uH‰ßè݂D‰èHƒÄ[A\A]A^A_]ÀUH‰åAWAVAUATSPI‰ÌH‰UÐI‰÷I‰þH52-菁A½ÿÿÿÿH…À„H‰ÃH‰ÇL‰þè€H…ÀtNI‰ÅH‰ÇL‰æèÙ…ÀtwL‰ïL‰æèÄH‹MÐH‰H…ÀtNH‹E1í©€…´E1íHÿÈH‰…¥é˜H‹r9L‹ L‰÷觀H5	3L‰çH‰ÂL‰ù1Àè¾H‹©€A½ÿÿÿÿtQëeH‹w9H‹H‰EÐL‰÷èh€I‰ÆL‰ïè1H5ñ2H‹}ÐL‰òL‰ùM‰àI‰Á1ÀèmH‹©€A½ÿÿÿÿuA½ÿÿÿÿHÿÈH‰uH‰ß荁D‰èHƒÄ[A\A]A^A_]ÀUH‰åAWAVAUATSHƒì8H‰ÓH‹U9H‹H‰EÐHÿ’H‰EÀHÇEÈL‹%$9L‰e¸H…Ét/I‰ÎHÞH…Û„³Hƒûu4L‹&L‰e¸M‹nM…íŽ;éH…Û„-HƒûuL‹&L‰e¸éI‰ØI÷ÐIÁè?H…ÛHzH
|HHÈH‹K8H‹8H³L
ʆLHÈH‰$H5aHX¢1ÀèK~¾ŠmH=x4H
ʆº³è@\üÿE1öéÆM‹nM…펕L‹%’E1ÿH‰E°ffff.„O9dþt;IÿÇM9ýuñE1ÿfffff.„K‹tþL‰çºè^íþÿ…Àu
IÿÇM9ýuâëxH‹E°N‹$øM…ät	L‰e¸IÿÍëè³}H…À… L‹%Ã7H‹E°M…íYH‹GH‹=X…H‹SH‰Þè†H…À„ôI‰ŋÿÀtA‰EH‹5g‰I‹EH‹€L‰ïH…À„ùÿÐI‰ÆA¿ÅH…À„üI‹E©€uHÿÈI‰EuL‰ïèLH‹ñ…H‹=ڄH‹SH‰ÞèH…À„ÍI‰ŋÿÀtA‰EL‰÷L‰îè~ƒøÿ„߉ÃI‹©€uHÿÈI‰t!M‰çI‹E©€u)HÿÈI‰Eu L‰ïèÕ~ëL‰÷èË~M‰çI‹E©€t×L‹%:H‹=K„I‹T$L‰æèx~I‰ƅÛ„çM…ö„rA‹ÿÀtA‰H‹51I‹FH‹€L‰÷H…À„zÿÐI‰ÄH…À„}I‹©€uHÿÈI‰uL‰÷è>~I‹D$H;æ5„f1ÛE1öH‰]ÀL‰}ÈD‰ðHÁàH÷ØH4(HƒÆÈAÿÆL‰çL‰òè{õüÿI‰ÆH…ÛtH‹©€uHÿÈH‰uH‰ßèÝ}M…ö„QI‹$©€…HÿÈI‰$…L‰çéM…ö„dA‹ÿÀtA‰M‰üH‹5g‡I‹FH‹€L‰÷H…À„lÿÐI‰ÇH…À„oI‹©€uHÿÈI‰uL‰÷èT}I‹_‹ÿÀt‰I‹_I‹©€uHÿÈI‰uL‰ÿè*}HÇEÀHuÈL‰eÈHº€H‰ßè„ôüÿH…À„I‰ÄH‹5яH‹@H‹€L‰çH…À„
ÿÐI‰ÅH…À„
I‹$©€uHÿÈI‰$uL‰çè´|L‹51H‹=B‚I‹VL‰öèp|H…À„ÞI‰ċÿÀtA‰$H‹5Q†I‹D$H‹€L‰çH…À„ãÿÐI‰ÆA¿ÉH…À„æI‹$©€uHÿÈI‰$uL‰çè5|H‹5
I‹FH‹€˜L‰÷L‰êH…À„³ÿЅÀˆ¶I‹E©€uHÿÈI‰EuL‰ïèî{I‹©€uHÿÈI‰uL‰÷èÔ{L‹5¹3A‹ÿÀ„ýL‹5§3A‰éîèzyA¿ÅH…ÀuH‰ßèÇÕüÿI‰ÅH…À…õûÿÿ1۾ºmé¥èjzI‰ÆA¿ÅH…À…üÿÿ¾¼mE1öE1äéqè#yH…ÀuH‰ßèvÕüÿI‰ÅH…À…"üÿÿE1äA¿Å1۾¿mé¾ÁmE1äé1èãxH…ÀuL‰çè6ÕüÿI‰ÆH…À…züÿÿ1ÛA¿Æ¾ÎméèÓyI‰ÄH…À…ƒüÿÿ¾ÐmA¿ÆE1ä1Ûé¡I‹\$H…Û„ŒüÿÿM‹l$‹ÿÀ…%A‹EÿÀ…'I‹$A¾©€„'é3A¿Æ¾åm1ÛéqL
*œHUÀHM¸L‰÷H‰ÆI‰Øèðãþÿ…ÀˆL‹e¸éyúÿÿè
xH…ÀuL‰çè]ÔüÿI‰ÆH…ÀM‰ü…ˆüÿÿ1ÛA¿È¾þmé2è÷xI‰ÇH…À…‘üÿÿ¾nA¿ÈE1äM‰õE1ö1Ûé˜A¿É¾néöè»xI‰ÅH…À…óüÿÿA¿É¾né³èzwA¿ÉH…ÀuL‰÷èÇÓüÿI‰ÄH…À…ýÿÿE1öE1ä¾në6èixI‰ÆA¿ÉH…À…ýÿÿ¾nE1öëè~x…À‰Jýÿÿ¾nE1äI‹E©€uHÿÈI‰EuL‰ïA‰õè-yD‰îM…öt I‹©€uHÿÈI‰uL‰÷A‰öèyD‰öM…ät"I‹$©€uHÿÈI‰$uL‰çA‰öèáxD‰öH=Ê,H
D‰úè”TüÿE1öH…ÛtH‹©€uHÿÈH‰uH‰ßè¦xH‹›0H‹H;EÐubL‰ðHƒÄ8[A\A]A^A_]ÉA‹EÿÀ„ÙýÿÿA‰EI‹$A¾©€uHÿÈI‰$uL‰çèPxM‰ìé!úÿÿ¾|mé²÷ÿÿ¾wmé¨÷ÿÿè5xff.„UH‰åAWAVSPL‹5—ˆH‹=¨}I‹VL‰öèÖwH…Àt`I‰NjÿÀtA‰H‹5¼I‹GH‹€L‰ÿH…À„ªÿÐH‰ÃI‹H…Û„­©€uHÿÈI‰uL‰ÿè©wH‰ØHƒÄ[A^A_]Ãèbu»`nH…À…‘H‹=%}H‹GH‹€L‰öH;(/…1ҹè<wI‰ÇH…À…_ÿÿÿèuH…ÀuMH‹¡.H‹8H5L‰ò1Àèãtë0èvH‰ÃI‹H…Û…Sÿÿÿ»bn©€uHÿÈI‰uL‰ÿè÷vH=ü*H
5}‰޺ãè©Rüÿ1Ûé-ÿÿÿH…Àt"ÿÐI‰ÇH…À…ÔþÿÿèÚÑüÿè…tH…Àu½ékÿÿÿè–uI‰ÇH…À…¯þÿÿëÙ„UH‰åAWAVAUATSHƒì8H‰ÓH‹u.H‹H‰EÐHG€H‰E°HÇE¸H…Ét/I‰ÏHÞH…Û„Hƒû…{L‹6L‰uÈM‹oM…í~éåHƒû…\L‹6L‹=›†H‹=¬{I‹WL‰þèÚuH…À„ãH‰ËÿÀt‰H;Õ-„HH‹P|H…À„ñH‹KH9Á„+H‹‘XH…Ò„øH‹rH…ö~1ÿ€H9Dú„þHÿÇH9þuíH‹QH‹HH‹-H‹8H51Àè+sH…ÛtH‹©€uHÿÈH‰uH‰ßèRuH=})H
{¾ùnºþé¿H‰E¨M‹oM…í~RL‹5ý~E1äf.„O9tç„¢IÿÄM9åuíE1äf.„K‹tçL‰÷ºè.âþÿ…ÀuuIÿÄM9åuâèrH…Àt¾»në<H‹J,H‹8H‰$H5rHŴH
\L
·zA¸1ÀèHr¾ËnH=´(H
Çzºåè=PüÿE1öé,x‘H‹E¨N‹4àL‰uÈM…öt€IÿÍH‹E¨M…íŽ(þÿÿL
[´HU°HMÈL‰ÿH‰ÆI‰ØèÅÝþÿ…Àˆ2L‹uÈéúýÿÿèßqH…ÀuL‰ÿè2ÎüÿH‰ÃH…À…
þÿÿH=%(H
8z¾÷né£þÿÿH‹_+H‹8H5Gè¤qH…Û…WþÿÿélþÿÿH‰ÊH…ÒtH‹’H9Âuïë
H;­*…
þÿÿH‹CH‰ßL‰öÿH…ÀtoH‹÷Á€uHÿÉH‰uH‰ÇèosL‹5T+A‹ÿÀt
L‹5F+A‰H‹©€uHÿÈH‰uH‰ßè=sH‹2+H‹H;EÐuHL‰ðHƒÄ8[A\A]A^A_]ÃH=F'H
Yy¾oºÿèÊNüÿE1öH‹©€t¤벾Àné\þÿÿèærfff.„UH‰åAWAVAUATSPH‰óH…Ò…{èEpI‰ÆH…À„™‹ÿÀt‰L‹%ƒH‹=/xI‹T$L‰æè\rH…À„rI‰NjÿÀtA‰H‹5VƒI‹GH‹€L‰ÿH…À„qÿÐI‰ÄH…À„tI‹©€uHÿÈI‰uL‰ÿè+rL‰÷è¡oH…À„TI‰ÇI‹D$L‹¨€M…í„GH=EèÀq…À…YL‰çH‰ÞL‰úAÿÕI‰ÅèªqM…í„2I‹$©€u	HÿÈI‰$t&I‹©€u.HÿÈI‰u&L‰ÿè£qH‹©€të,L‰çèqI‹©€tÒH‹©€uHÿÈH‰uH‰ßèkqI‹©€uHÿÈI‰uL‰÷èQqL‰èHƒÄ[A\A]A^A_]ÃI‰ÖH5(´H‰׺èÔÙþÿ…ÀtL‰÷èšnI‰ÆH…À…gþÿÿE1íëºèÒnA½`oH…ÀuL‰çèËüÿI‰ÇH…À…vþÿÿE1ÿëèÉoI‰ÄH…À…ŒþÿÿA½boE1äë7A½eoE1ÿë,L‰çH‰ÞL‰úè{oI‰ÅH…À…Ðþÿÿë
èfnH…ÀtGA½goL‰ÿè#5üÿL‰çè5üÿH=Ð$H
½vD‰îºè0LüÿE1íH‹©€„ØþÿÿéãþÿÿH‹Ë'H‹8H5¦ènë¡fUH‰åAWAVAUATSPH‰óH…Ò…{è¥mI‰ÆH…À„™‹ÿÀt‰L‹%~€H‹=uI‹T$L‰æè¼oH…À„rI‰NjÿÀtA‰H‹5¶€I‹GH‹€L‰ÿH…À„qÿÐI‰ÄH…À„tI‹©€uHÿÈI‰uL‰ÿè‹oL‰÷èmH…À„TI‰ÇI‹D$L‹¨€M…í„GH=¥ÿè o…À…YL‰çH‰ÞL‰úAÿÕI‰Åè
oM…í„2I‹$©€u	HÿÈI‰$t&I‹©€u.HÿÈI‰u&L‰ÿèoH‹©€të,L‰çèïnI‹©€tÒH‹©€uHÿÈH‰uH‰ßèËnI‹©€uHÿÈI‰uL‰÷è±nL‰èHƒÄ[A\A]A^A_]ÃI‰ÖH5ù±H‰׺è4×þÿ…ÀtL‰÷èúkI‰ÆH…À…gþÿÿE1íëºè2lA½ÆoH…ÀuL‰çèÈüÿI‰ÇH…À…vþÿÿE1ÿëè)mI‰ÄH…À…ŒþÿÿA½ÈoE1äë7A½ËoE1ÿë,L‰çH‰ÞL‰úèÛlI‰ÅH…À…Ðþÿÿë
èÆkH…ÀtGA½ÍoL‰ÿèƒ2üÿL‰çè{2üÿH=K"H
tD‰îºèIüÿE1íH‹©€„ØþÿÿéãþÿÿH‹+%H‹8H5þèpkë¡UH‰åH‰øH‹?ÿPÁèó*ÀóYL±]ÃfUH‰åH‰øH‹?]ÿ`fUH‰åAWAVATSH…ö~%H‰ÓI‰öI‰ÿE1ä@I‹?AÿWòBãIÿÄM9æuë[A\A^A_]ÃfUH‰åAWAVATSH…ö~7H‰ÓI‰öI‰ÿE1ä@I‹?AÿWÁèWÀó*ÀóY¿°óB£IÿÄM9æuÙ[A\A^A_]ÃUH‰åAWAVATSHƒì H‰ûL5§²L= ºL%™îf„H‹;ÿS‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYÎI;Ï‚…©øt[AÿòAÄòAÌòMØò\ÑòUÐH‹;f)EÀÿSòYEÐòXEØòEØf(EÀfW8°èElf/EØf(EÀ†sÿÿÿë#H‹;ÿSfW°èJlò
&°ò\Èf(ÁHƒÄ [A\A^A_]ÐUH‰åAWAVAUATSHƒì8H‰U°H‰u¸H…öŽêI‰ÿE1äL-¡±Hš¹L5“íëAI‹?AÿWfW¢¯èÙkò
µ¯ò\Èf)MÀH‹E°f(EÀòBàIÿÄL;e¸„ŒI‹?AÿW‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYDÍH;Ëf)EÀr´©øtˆAÿòAÆòAÎòMÐò\ÑòU¨I‹?AÿWòYE¨òXEÐòEÐf(EÀfWù®èkf/EІyÿÿÿéXÿÿÿHƒÄ8[A\A]A^A_]ÃDUH‰åAWAVATSHƒì H‰ûL5—ÀL=ÄL%‰ôf„H‹;ÿS‰ÁÑé‰ÂÁê	WÀó*¶ÉóAYŽA;‚¢©þthAÿóA„óAŒóMÜó\ÑóUØH‹;)EÀÿSÁèWÀó*ÀóYÿ­óYEØóXEÜóEÜ(EÀW-®è0j/EÜ(EÀ†jÿÿÿë3H‹;ÿSÁèWÀó*ÀóY¸­Wù­è&jó
¨­ó\È(ÁHƒÄ [A\A^A_]ÄUH‰åAWAVAUATSHƒì(H‰U°H‰u¸H…öŽI‰ÿE1äL-q¿HjÃL5cóëQI‹?AÿWÁèWÀó*ÀóY0­Wq­èžió
 ­ó\È)MÀH‹E°(EÀóB IÿÄL;e¸„šI‹?AÿW‰ÁÑé‰ÂÁê	WÀó*¶ÉóAYD;‹)EÀrº©þ„zÿÿÿAÿóA†óAŽóMÔó\ÑóUÐI‹?AÿWÁèWÀó*ÀóY¬óYEÐóXEÔóEÔ(EÀW»¬è¾h/EÔ†lÿÿÿéKÿÿÿHƒÄ([A\A]A^A_]ÄUH‰åAWAVATSH…ö~:H‰ÓI‰öI‰ÿE1ä@I‹?AÿW(
R¬WÁè†hWC¬BãIÿÄM9æuÖ[A\A^A_]Ãffff.„UH‰åAWAVATSH…ö~RH‰ÓI‰öI‰ÿE1ä@I‹?AÿWÁèWÀó*ÀóY¯«Wð«óZÀèhWЫòZÀóB£IÿÄM9æu¾[A\A^A_]ÃDUH‰åAWAVAUATSHƒì(H‰ûL%uÅL-nÍL=gÕ€H‹;ÿSI‰ÆH‰ÁHÁé	H¸ÿÿÿÿÿÿH!ÁWÀòH*ÁA¶ÆòAYÄA÷ÆtfW@«I;LÅf)EÀ‚èH…ÀtkHÿòAÏòAÇòMÐò\ÑòU¸H‹;ÿSòYE¸òXEÐòEÐf(MÀf(ÁòY«òYÁèñff/EІTÿÿÿé‡ffffff.„H‹;ÿSf(
²ªfWÁèåfòYѪf)EÀH‹;ÿSfWŽªèÅff(UÀf(ÈfW
xªò\Èf(ÂòYÂf/Èv¦òX–ªA÷ÆtfWMªf)UÀ(EÀHƒÄ([A\A]A^A_]ÃDUH‰åAWAVATSH…ö~&H‰ÓI‰öI‰ÿE1ä@L‰ÿèXþÿÿòBãIÿÄM9æuê[A\A^A_]ÐUH‰åAWAVAUATSHƒì(H‰ûL=µÛL%®ßL-§ã€H‹;ÿSA‰ƉÁÁé	WÀó*ÁA¶ÆóAY‡A÷ÆtW¡©A;„)E°‚H…Àt~HÿóATóAL…óMÐó\ÑóUÌH‹;ÿSÁèWÀó*ÀóY©óYEÌóXEÐóZÀòEÐ(E°WÉóZÈ(ÁòYF©òYÁè'ef/EІJÿÿÿéšDH‹;ÿSÁèWÀó*Àó
°¨óYÁ(
í¨WÁèeóY¨)E°H‹;ÿSÁèWÀó*ÀóYy¨Wº¨èçd(U°(ÈW
§¨ó\È(ÂóYÂ/Èv‡óXS¨A÷ÆtW¨)U°(E°HƒÄ([A\A]A^A_]ÄUH‰åAWAVATSH…ö~&H‰ÓI‰öI‰ÿE1ä@L‰ÿè8þÿÿóB£IÿÄM9æuê[A\A^A_]ÐUH‰åAWAVAUATSHƒìXf.ÇiH‰ûšÀ•ÁÁ…ºA¾ÿÿÿÿL=¹©L%²±L-«åff.„H‹;ÿS‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYÏI;Ìf)EÀ‚Ç©ø„5B1òATÅòALÍòM ò\ÑòUÐH‹;ÿSòYEÐòXE òE f(EÀfWA§èNcf/E †qÿÿÿéefWÒfWÉf)MÀf.›À”DÁ…FòÕhf/ІÕòE¸A¾ÿÿÿÿL=ɨ¸WÀò*ÀòEL%±°L-ªäëe„òEò\Ãò^Âèäbf)E fW¡¦òihf(ËòU¸ò\ÊòYÂòXÁf(Ëò^ÊèÝbf(MÀò\M f/ȃ—H‹;ÿSòE˜„H‹;ÿS‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYÏI;Ìf)EÀ‚‚©øtWB1òATÅòALÍòM ò\ÑòUÐH‹;ÿSòYEÐòXE òE f(EÀfWեèâaf/E †uÿÿÿë'H‹;ÿSfW²¥èéaò
ťò\Èf)MÀò
dgf(ÁòU¸ò\Âò]˜f/¸þÿÿò^Êf(ÃèÑaf(Èf(EÀf/Á‚õþÿÿf)MÀé‡H‹;ÿSfW@¥èwaò
S¥ò\Èf(Áédf(Êò^
Z¥ò\x	WÉò*ÈòE¸òYÈWÀòQÁò^ÐòU I¿ÿÿÿÿÿÿL%>L-¹Æf„H‹;ÿSI‰ÆH‰ÁHÁé	L!ùWÒòH*ÑA¶ÆòAYÄA÷ÆtfWš¤I;LÅ‚ïH…ÀtjHÿH`ÎòÊòÂòEÐò\ÈòM˜H‹;f)UÀÿSòYE˜òXEÐòEÐf(EÀòYi¤òYEÀèI`f(UÀf/EІWÿÿÿé‚fH‹;ÿSf(
¤fWÁèE`òY1¤f)EÀH‹;ÿSfWî£è%`f(UÀf(ÈfW
أò\Èf(ÂòYÂf/Èv¦òXö£A÷ÆtfW­£ffff.„òE òYÂòX_efWÉf/ȃ±þÿÿf(ÈòYÈòYÈòMÐH‹;f)UÀÿSf(MÀòYÉf(ÑòY˜£fWH£òYÑò
eòXÑf/ÐwZèc_òE˜f(EÀòYk£òEò
ÞdòEÐò\ÈòMˆè1_òXEˆòYE¸òMòYMÀòXÈf/M˜†þÿÿòE¸òYEÐë
f)EÀf(EÀHƒÄX[A\A]A^A_]ÃUH‰åAWAVAUATSHƒìH.p¢H‰ûšÀ•ÁÁ…ÅA¾ÿÿÿÿL=Z´L%S¸L-Lèfff.„H‹;ÿS‰ÁÑé‰ÂÁê	WÀó*¶ÉóAYA;Œ)E°‚C©þ„cB1óAT…óALóM ó\ÑóUÈH‹;ÿSÁèWÀó*ÀóY¸¡óYEÈóXE óE (E°Wæ¡èé]/E †gÿÿÿéÒóZÈfWÒf.ÊšÀ•ÁÁuWÀòZÂé´óp¡/ІóEÔA¾ÿÿÿÿL=]³L%V·L-Oçëbffff.„(Áó\Ãó^Âè˜])E WU¡ó¡(ËóUÔó\ÊóYÂóXÁ(Ëó^Êè‰](M°ó\M /ȃH‹;ÿSÁèWÀó*ÀóY» óEÄfffff.„H‹;ÿS‰ÁÑé‰ÂÁê	WÀó*¶ÉóAYA;Œ)E°‚§©þtlB1óAT…óALóM ó\ÑóUÈH‹;ÿSÁèWÀó*ÀóY< óYEÈóXE óE (E°Wj èm\/E †kÿÿÿë=f„H‹;ÿSÁèWÀó*ÀóYðŸW1 è^\ó
àŸó\È)M°ó
ܟ(ÁóUÔó\Âó]Ä/Šþÿÿó^Ê(ÃèJ\(È(E°/Á‚Ãþÿÿ)M°éÕH‹;ÿSÁèWÀó*ÀóYuŸW¶Ÿèã[ó
eŸó\È(Áé¡(Êó^
^Ÿó\Áó
VŸóEÔóYÈWÀóQÁó^ÐóU L=6ÑL%/ÕL-(Ù„H‹;ÿSA‰ƉÁÁé	WÒó*ÑA¶ÆóAY‡A÷Æt
(!ŸWÐA;„‚4H…À„‹HÿóALóAD…óEÈó\ÈóMÄH‹;)U°ÿSÁèWÀó*ÀóYˆžóYEÄóXEÈóZÀòEÈ(E°WÉóZÈ(ÁòY¿žòYÁè Z(U°f/EȆ?ÿÿÿéªf.„H‹;ÿSÁèWÀó*Àó
 žóYÁ(
]žWÁè‡ZóY
ž)E°H‹;ÿSÁèWÀó*ÀóYéW*žèWZ(U°(ÈW
žó\È(ÂóYÂ/Èv‡óXÝA÷ÆtWïffffff.„óE óYÂóX—WÉ/ȃsþÿÿ(ÈóYÈóYÈóMÈH‹;)U°ÿS(M°ÁèWÀó*ÀóYKóYÉ(ÑóYXW}óYÑó
9óXÑ/ÐwXè›YóEÄ(E°óY*óE˜ó

óEÈó\ÈóMœèjYóXEœóYEÔóM˜óYM°óXÈ/MĆÀýÿÿóEÔóYEÈë)E°(E°HƒÄH[A\A]A^A_]Ãffff.„UH‰åH‰øH‹?ÿPHÑè]Ãfffff.„UH‰åH‰øH‹?ÿPÑè]Ãffffff.„UH‰åH‰øH‹?ÿPHÑè]Ãfffff.„UH‰åH‰øH‹?]ÿ`fUH‰åAVSHƒì f.^›À”ÁfW҄Á…}f.“œ›À”DÁ…gò
…œf/Èv¸WÉò*Èò\ÈòH,Ùë1ÛWÒòH*ÓòXÐò
º]òEàò^ÊòYÉòEœòYÁòXAœòYÁòX=œòYÁòX9œòYÁòX5œòYÁòX1œòYÁòX-œòYÁòX)œòYÁòX%œòYÁòX!œòUèò^Âò
¨›òœòYÙòXØò]Ðf(Âò\ÁòEØf(ÂècWf(ÐòEèòYUØòXUÐò\Ðò
v›f/MàvIH…Û~DA¾fff.„òUàò\³\òEèòEèè
WòUàò\ÐòEèIÿÆI9Þ~Îf(ÂHƒÄ [A^]ÐUH‰åHƒìòMøòEðèéîÿÿòYEøòXEðHƒÄ]Ãf„UH‰åAWAVATSHƒì0òE¸H‰ûL5BœL=;¤L%4Ø@H‹;ÿS‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYÎI;Ïf)EÀrx©øtMAÿòAÄòAÌòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfWܙèéUf/EØv€ë$H‹;ÿSfWè÷Uò
әò\Èf)MÀòE¸òYEÀHƒÄ0[A\A^A_]ÃUH‰åHƒìòMøòEðH‰øH‹?ÿPòYEøòXEðHƒÄ]ÃDUH‰åHƒìòMøè>ñÿÿòYEøHƒÄ]ÃUH‰åHƒìóMüè~öÿÿóYEüHƒÄ]ÃUH‰åSHƒì(H‰ûòÜZòEèf/ÐòMØ‚ïf(Âf/Ñ‚áòª™f/Eèv;f/Áv5H‹;ÿSòMèòUØòXÑòYÐ1Àf/Ê—ÀWÀò*ÀHƒÄ([]ÃfDH‹;ÿSòEðH‹;ÿSòEàò
RZò^MèòEðèÙTòEÐò
6Zò^MØòEàè½Tò]ÐòXÃò
Zf/Èr òMðòXMàf/
†˜vŒòUð1ÀWÉò*Èf/ÁvFò^Øf(ÃHƒÄ([]ÃH‰ßòEèèìïÿÿòEðH‰ßòEØèÚïÿÿòMðòXÁò^Èf(ÁHƒÄ([]Ãf(ÂèÿSò^EèòEðòEàèëSòMðò^EØf/Èf(Ñwf(Ðò\ÊòMðò\ÂòEÐf(Áè”SòEàòEÐè…SòXEàèŸSòMðò\Èf(ÁèiSHƒÄ([]ÃUH‰åò^¤—è/ïÿÿòY——]ÃDUH‰åSHƒìòMèòEàH‰ûò^r—èýîÿÿò
e—òYÁòUèòYÂòEðò^Ñf(ÂH‰ßèÓîÿÿòY;—òYEàòMðò^Èf(ÁHƒÄ[]ÃfUH‰åSPH‰ûèëÿÿòEðH‰ßèõêÿÿòMðò^Èf(ÁHƒÄ[]ÐUH‰åAWAVATSHƒì0òE¸H‰ûL5R˜L=K L%DÔ@H‹;ÿS‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYÎI;Ïf)EÀrx©øtMAÿòAÄòAÌòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfWì•èùQf/EØv€ë$H‹;ÿSfWЕèRò
ã•ò\Èf)MÀf(EÀò^E¸HƒÄ0[A\A^A_]é½Qffffff.„UH‰åAWAVATSHƒì0fWÉf.Á›À”DÁt	fWÀéãH‰ûòE¸L57—L=0ŸL%)Óf„H‹;ÿS‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYÎI;Ïf)EÀrx©øtMAÿòAÄòAÌòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfW̔èÙPf/EØv€ë$H‹;ÿSfW°”èçPò
Ôò\Èf)MÀò
bVò^M¸f(EÀèéPHƒÄ0[A\A^A_]ÃfDUH‰åAWAVATSHƒì0òE¸H‰ûL52–L=+žL%$Ò@H‹;ÿS‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYÎI;Ïf)EÀrx©øtMAÿòAÄòAÌòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfW̓èÙOf/EØv€ë$H‹;ÿSfW°“èçOò
Óò\Èf)MÀ(EÀW“è¨OWƒ“ò
KUò^M¸è×OHƒÄ0[A\A^A_]Ã@UH‰åSHƒìf)MàòEðH‰ûf.„H‹;ÿSf/‚“sf/€“væòXÀèSOòYEàë*ò
n“ò\Èò\Èf(Áè3Of(MàfW
ð’òYÁòXEðHƒÄ[]ÃUH‰åSHƒìf)MàòEðH‰ûf.„H‹;ÿSf(Èò~Tf(Âò\Áf/ÐvàèÑNfW“’èÄNf(MàfW
’òYÁòXEðHƒÄ[]ÐUH‰åSHƒìòMðòEèH‰ûf.„H‹;ÿSf/š’vðò
Tò\Èò^ÁèaNòYEðòXEèHƒÄ[]Ãf.„UH‰åHƒìòMøòEðèIæÿÿòYEøòXEðèüMHƒÄ]Ã@UH‰åAWAVATSHƒì0òE¸H‰ûL5¢“L=››L%”Ï@H‹;ÿS‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYÎI;Ïf)EÀrx©øtMAÿòAÄòAÌòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfW<‘èIMf/EØv€ë$H‹;ÿSfW ‘èWMò
3‘ò\Èf)MÀf(EÀòY]‘WÉòQÈòE¸òYÁHƒÄ0[A\A^A_]ÃUH‰åSHƒìòEðH‰ûèåÿÿòEà¸ò*ÈòMèòEðò^ÁH‰ßè–èÿÿòMðò^MèòQÉòYMàòQÀò^Èf(ÁHƒÄ[]ÃUH‰åAWAVAUATSHìˆH‰û¸
ò*Èf/Á‚¼WÉòQÈòMÀf)…`ÿÿÿèsLòUÀòY‘òX‘ò
‘òYÊòX
üòM¨f(Êf(Úò\
ïòïò^ÑòXëòUˆòE¸WÉò*Èò]Àf(Ãòpÿÿÿò\Áò
ò^Èò¼ò\ÁòE€f(›fW…`ÿÿÿf)…PÿÿÿA¿ëò…xÿÿÿò\Ãf/E°ƒ1H‹;ÿSf(Èò§ò\Èf)M°H‹;ÿSòEÈf(M°f(ÁfT2Qòzò\ÐòUÐò…pÿÿÿòYE¨ò^ÂòXEÀòYÁòX…`ÿÿÿòXèKòUÈòMÐòL,ðf/
ûròE€f/ƒ’M…öˆXÿÿÿòáf/Áv
f/ч@ÿÿÿf(ÂèÖJòEÈòEˆèÇJòXEÈòE°òMÐòYÉòE¨ò^ÁòXEÀè¡JWÉòI*ÎòU°ò\ÐòU°òYMòXPÿÿÿIFWÒòH*Ðf.P›À”ÁfWۄÁòxÿÿÿ…šþÿÿf.rŽ›À”DÁ…„þÿÿòdŽf/ÂvWÀòA*Çò\ÂòL,àëE1äò
¨OWÀòI*ÄòXÂò^Èf(ØòYÉf(ÁòY$ŽòX$ŽòYÁòX ŽòYÁòXŽòYÁòXŽòYÁòXŽòYÁòXŽòYÁòXŽòYÁòXŽòYÁòXŽò^Ãò
f(áòY%ôòXàòeÈf(Ãò]Ðò\Ùò] òU˜èEIòMÐf(ØòY] òX]Èò\ÙòXf/E˜†eýÿÿM…äŽ\ýÿÿA½fDò]Èò\
“NòMÐf(ÁèëHò]ÈòMÐò\ØIÿÅM9å~ÏéýÿÿE1öWÉòA*Îf.Á›À”DÁuIfWyŒè†HòEÈò7NIÇÆÿÿÿÿòEÐH‹;ÿSòMÐòYÈòMÐòEÐIÿÆf/EÈwØL‰ðHĈ[A\A]A^A_]ÃUH‰åSPH‰û¸ò*Ðò\Ñò^ÑòUðèìãÿÿòYEðH‰ßHƒÄ[]éiûÿÿf„UH‰åAWAVAUATSHìøI‰×H‰óI‰þƒ:ò…èþÿÿtI9_ufA.G›À”DÁ…ìI‰_òAGAÇòSMf(Êò\Èf/Èf(Èwf(Êò\ÈòMÀòAOò\ÑòU°WÀòH*ÃòAW òYÁòXÁòEÐòAG(èSGòL,àM‰g0WÀòH*ÃòYEÀòU°òYÂòQÀò
4ŒòYÊòY0Œò\ÁèGò]°òUÀò%-‹òXÄòAG8WÉòI*ÌòXÌòAO@f(áò\àòAgHòM f(éòXèòAoPWÉòI*ÌòX
Ћò5Ћò^ñòX5̋òAwXò}ÐfD(ÇòD\Äf(
_Šf)¥@ÿÿÿfWÌòYÊòXÏfD(×òD^Áò=™ŠfA(àò^çòD
÷KòAXáòAYàòAg`fD(ÅòE\Âò­`ÿÿÿf(ÍòYËòD^ÁfA(Èò^ÏòAXÉòAYÈòAOhòYþòAXùf)…0ÿÿÿòYøòApf(Æòeˆò^Äò½pÿÿÿòXÇòAGxòµPÿÿÿòMò^ñòE€òXðòµxÿÿÿòA·€ò]°òUÀWÀòH*ÃòYÂòYÃòE¸I‹>AÿVòY…xÿÿÿòEÐI‹>AÿVòeÐf(Øf(…0ÿÿÿf/à†*HCIL$H‰M˜H‰…XÿÿÿL)àH‰… ÿÿÿH‰ØL)àH‰…(ÿÿÿë_„f/ê†
WÀòH*ÃòYEÀòYE°òE¸I‹>AÿVòY…xÿÿÿòEÐI‹>AÿVòeÐf(Øf(…0ÿÿÿf/à†žf/¥pÿÿÿvò]Èf(ÃòeÐè²DòMÐf/M€†Ìò^Eò`ÿÿÿò\Èf(ÁèvDòL,øI9ßòmÈòEЏTÿÿÿf.-Šˆ›À”DÁ…>ÿÿÿò\E€òYèòYméѐò\àòPÿÿÿò^áòX¥@ÿÿÿòYÙWÉòI*Ìò´IòXÚò\ÌòX
$ˆfT
ÌIò^Èò\Ùf/Ú‡Ôþÿÿf(Äò]ÈèÐCòmÈòL,øë`ò^EˆòX…@ÿÿÿè²CòL,øM…ÿòmÈòEЈþÿÿf.-ƇšÀ•ÁÁ„zþÿÿò\…pÿÿÿòYèòYmˆffffff.„ò]Àòe¸M‰ýM)åL‰èH÷ØIHÅHƒø‚lWÀòH*Àf(̹WÒò*Ñò^
\‡ò\Êf/Ȇ>WÀòH*Àf(Èò^
‡òX
*ˆòYÈò^ÄòX
"ˆò^ÌòX
‡òYÈòMÐL‰èI¯ÅH÷ØWÉòH*ȸWÀò*ÀòYÄò^ÈòMÈf(Åè¯Bò]ÈòUÐf(Èf(Ãò\Âf/Á‡}òXÚf/ˇeýÿÿIGWÒòH*ÐòU¸WíòH*m˜WäòH*¥ ÿÿÿò¥hÿÿÿH‹…XÿÿÿL)øWÀòH*ÀòEÐf(ÚòYÚòÿÿÿò­ÿÿÿf(ÝòYÝòÿÿÿòYäò¥ÿÿÿòYÀò…øþÿÿf(Åò^ÂòðþÿÿèçAWÉòH*(ÿÿÿòEÈòX
è…òM¨ò…hÿÿÿò^EÐè·AòYE¨òMÈòYM òXÈòMÈWÀòI*ÅòE¨òEÐòYEÀòM¸òYM°ò^ÁèuAòYE¨òXEÈò•†f(Ëòµÿÿÿò^Îò%…†f(Ôò\Ñò^Öò-y†f(Íò\Êò^Îf(þò5i†f(Öò\Ñò^×ò=]†f(Ïò\Êò^ÿÿÿòDL†òA^ÈòXÈf(ÃòDÿÿÿòA^Áf(Ôò\ÐòA^Ñf(Åò\ÂòA^Áf(Öò\ÐòA^Ñf(Çò\Âò^…hÿÿÿòA^ÀòXÁf(ËòDÿÿÿòA^Éf(Ôò\ÑòA^Ñf(Íò\ÊòA^Éf(Öò\ÑòA^Ñf(Ïò\Êò^M¸òA^ÈòXÈf(Ãòøþÿÿò^Ãf(Ôò\Ðò^Óf(Åò\Âò^Ãf(Öò\Ðò^Óf(Çò\Âò^EÐòA^ÀòXÁòðþÿÿf/ȇÐúÿÿéՐf(Ãò^E°WÉòH*XÿÿÿòYÈò_EM9ç~?L9}˜úÿÿH‹E˜òDE@WÛòH*Øf(áò^ãò\àòYÔHÿÀL9ø~àé[úÿÿUúÿÿIGò	EL9à@úÿÿòøD„WÛòH*Øf(áò^ãò\àò^ÔHÿÀL9à~àéúÿÿfWó‚òYÃòXE òXÄè?òL,øL)ûò…èþÿÿf/ƒIFßH‰ØHÄø[A\A]A^A_]ÃòAWòA_ M‹g0òAG8)…0ÿÿÿòAG@òE òAGH)…@ÿÿÿòAGPò…`ÿÿÿòAGXò…PÿÿÿòAG`òEˆòAGhòEòAGpò…pÿÿÿòAGxòE€òA‡€ò…xÿÿÿé øÿÿf.„UH‰åAWAVATSHƒì I‰×òEÈH‰óI‰þƒ:tI9_uòEÈfA.G›À”DÁ…]I‰_òMÈòAOAÇòCò\ÁòEÐòAG WÉòH*ËòMØèÆ=òYEØè˜=òeÐòAGòH*ëòYmÈòH*ӸWÉò*Èf(ÝòYÜòXÙòQÛòYà‚òAoXòXÝf/Úv
WÉòH*Ëëf(ÕòYÔòXÑWÉòQÊòY
«‚òXÍòEØòL,áM‰g0I‹>AÿVòMØf/Ávn1ÉòeÐë>fDH‰ÚH)ÊWÒòH*Òò\ÁòYUÈWÛòH*ØòYÑòYÜò^Óf(Êf/ÁH‰Áv)HAL9à~¿I‹>AÿVòeÐòMØ1Àf/ÁH‰ÁwÛë1ÀHƒÄ [A\A^A_]ÃòAGòEØòAG òEÐM‹g0éRÿÿÿUH‰åSPH…ötWÉóZÉf.Á›À”DÁt1ÛH‰ØHƒÄ[]ÃH‰óò
i€f/Èr(WÉòH*ËòYÈòŸf/ÑrBH‰ÞHƒÄ[]éÛýÿÿò
³Aò\ÈWÀòH*ÃòYÁòkf/ÐrH‰Þf(Áè©ýÿÿëH‰ÞHƒÄ[]éÉóÿÿH‰Þf(Áè½óÿÿH)ÃégÿÿÿDUH‰åSHƒìf.É›À”DÁuóaóZÀHƒÄ[]Ãf(ÐH‰û1ÀWÀò*Àf.ÈšÀ•ÁÁuò^ H‰ßf(Â靸WÀò*Àf/ÐvOò\Ðò^vH‰ßf(ÂòMèèõÖÿÿòY]òEðH‰ßè@ÓÿÿòMèòQÉòXÁòYÀòXEðHƒÄ[]Ãò^
+H‰ßf(ÁòUðè:îÿÿHÀWÀòH*ÀòMðòXÈò^
þ~f(ÁH‰ßè‚ÖÿÿòYê~HƒÄ[]ÃUH‰åSHƒìòMðòEàH‰û(ÊèÒþÿÿòMðòYÁòEèò^
¬~f(ÁH‰ßè0ÖÿÿòY˜~òYEàòMèò^Èf(ÁHƒÄ[]Ãffffff.„UH‰åSHƒìòMàòEè¸ò*ØH‰ûòYÙf(Ðò^ÓòUðè+ÒÿÿòUèf(ÚòYØòYظWÀò*ÀòYEàf(ËòYËòYÃòXÁòQÀò\ØòY]ðòXÚò]ðH‹;ÿSòeðò]èf(ËòXÌf(Óò^Ñf/Ðrf(ÄHƒÄ[]ÃòYÛò^Üf(ÃHƒÄ[]Ãffffff.„UH‰åSHƒìHf.É›À”DÁuó}óZÀHƒÄH[]ÃH‰ûòã>f/Ñv;¸WÀò*ÀòEðH‹;ÿS¸WÉò*ÈòYEðò\ÁòY‘~HƒÄH[]Ãòj~f/ÑòEèvò>ò^ÑòMØòXÑòUàéò@~f/т׸ò*à¸WÒò*ÐòYÑòYÑòXÔòQêòXì¸WÒò*Ðf(ÚòYÝòQÛò\ëf(ÚòMØòYÙò^ëf(ÍòYÍòXÌòYêò^ÍòMà¸WÀò*ÀòE8WÀò*ÀòE°1ÀWÀò*ÀòEЀH‹;ÿSòY’}èÙ7òMàf(ÑòYÐòXUÀòXÁò^ÐòU¸ò\ÊòYMØòMðH‹;ÿSòM°ò]ðò\ËòYËò\Èf/MÐs&f(Ëò^Èf(Áè¢7òXEÀò\Eðf/EЂwÿÿÿH‹;ÿSòEðòE¸èB7f(Èò†{f/EðvfW
'{òEè1ÀWÒò*ÐòUðòXÈf)MÀf(=fTÁò·|òX¸WÉò*ÈòYÊè7òMðf/MÀò\Œ|†©ýÿÿ¸ÿÿÿÿWÉò*ÈòYÁHƒÄH[]Ãòw<ò^ÑWÉòQÊòMðH‰ßèßÎÿÿòYEðòXEèò
5|f/Èv¸WÉò*ÈòY
#|òXÁf/|†4ýÿÿ¸WÉò*ÈfW
=zòY
õ{òXÈf(ÁHƒÄH[]ÃfDUH‰åSHƒìHf(Èf)EÀH‰ûf(zfWÁè66òEàH‹;ÿSf(UÀf/Âr¸HƒÄH[]øWÉò*ÈòMèëDH‹;ÿSf(UÀf/ƒ–òEðH‹;ÿSòYEàè´5òMðf(ÐfW…yf(ÂòYÂf/Árnf(Áf)U°èŸ5òEØf(E°è5òMØò^ÈòXMèf(Áèg5òH,ÀH…ÀŽuÿÿÿòEðf.€yšÁ•ÂÊ„Zÿÿÿé6ÿÿÿ¸HƒÄH[]Ã1Àf/ÊHƒÐHƒÄH[]ÄUH‰åHƒìòEðH‰øò
¨:ò\ÈòMøH‹?ÿPò]øòUð¸f/Âv%¸f(Êff.„òYÓòXÊHÿÀf/ÁwïHƒÄ]Ãf„UH‰åAWAVATSHƒì@f)E H‰ûL5BzL=;‚L%4¶@H‹;ÿS‰ÁÁé¶ÉH‰ÂHÁêWÀòH*ÂòAYÎI;Ïf)EÀrx©øtMAÿòAÄòAÌòMØò\ÑòU¸H‹;ÿSòYE¸òXEØòEØf(EÀfWÜwèé3f/EØv€ë$H‹;ÿSfWÀwè÷3ò
Ówò\Èf)MÀf(
¢wf(EÀfWÁf)EÀf(E fWÁèÂ3f(MÀò^Èf(Áèz3f/4yrH¸ÿÿÿÿÿÿÿëòH,ÀHƒÄ@[A\A^A_]Ãfff.„UH‰åHƒìH‰øf/ýxrRò
ó8ò\ÈòMøH‹8òEðÿPò]øòUð¸f/Âv¸f(ʐòYÓòXÊHÿÀf/ÁwïHƒÄ]ÃH‰ÇHƒÄ]éLþÿÿfff.„UH‰åAVSHƒì f(ÈH‰ûò\
v8òþvòMàèú2òEØI¾ÿÿÿÿÿÿÿDH‹;ÿSò
B8ò\ÈòMèH‹;ÿSòEÐò
>8ò^MàòEèè­2èf2f(ÐWÀòI*Æf/Ðw°òø7f/Âw¢ò
ê7f(Áò^ÂòXÁòMàòUèèe2òeèòUÐòYÔf(Èò-µ7ò\ÍòYÊò]Øf(Óò\Õò^Êò^Ãf/Á‚>ÿÿÿòH,ÄHƒÄ [A^]ÃUH‰åHƒì0H‰øf(Úò\ØòUàò\ÑòEèò\Èf(Áò^ÃòEØòYËòMøòYÓòUðH‹?ÿPòMØf/ÈròMøòYÈòQÉòEèòXÁHƒÄ0]Ãò
7ò\ÈòYMðòQÉòEàò\ÁHƒÄ0]Ãff.„UH‰åAWAVSPH…ö„~H‰óI‰þH‰ðHÑèH	ðH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈI‰ÇIÁï I	ÇH‰ðHÁè u#I‹>AÿVD!øH9Øwñë"ffffff.„I‹>AÿVL!øH9Øwñë1ÀHƒÄ[A^A_]ÃfUH‰åAWAVATSH‰óH…Ò„I‰ÌI‰×I‰þH‰ÐHÁè u¸ÿÿÿÿI9Çu4I‹>AÿVëCIƒÿÿtGE„ÀtQf„I‹>AÿVL!àL9øwñHÃéÂE„Àtx@I‹>AÿVD!àD9øwñ‰ÀHÃé I‹>AÿVHÃé‘MgI‹>AÿVI÷äH‰ÑL9øwxH‰ÆI÷×L‰ø1ÒI÷ôH9òveI‰×fff.„I‹>AÿVI÷äI9ÇwñH‰ÑëBEgI‹>AÿV‰ÁI¯ÌA9Ïr(A÷×D‰ø1ÒA÷ô9ÊvA‰×@I‹>AÿV‰ÁI¯ÌA9ÏwîHÁé HËH‰Ø[A\A^A_]Ãff.„UH‰åAWAVATS‰ó…ÒtyA‰×I‰þƒúÿuI‹>AÿVÃëcE„ÀtA‰̐I‹>AÿVD!àD9øwñÃëGEgI‹>AÿV‰ÁI¯ÌD9ùw)A÷×D‰ø1ÒA÷ô9ÊvA‰×DI‹>AÿV‰ÁI¯ÌA9ÏwîHÁé ىˉØ[A\A^A_]Ãff.„UH‰åAWAVAUATSP…Ò„îM‰ÎA‰ÔI‰ÿH‹]úÿÿuAƒ>tm·C‰A‹ÿÈëtE„	uÔt9A‰ÍA‹ëf·C‰A‹ÿÈA‰·fD!éfD9áv,…ÀuáI‹?AÿW‰¸ëÜEL$Aƒ>t0·C‰A‹ÿÉë7MԉÎëfI‹?A‰ôAÿWD‰æ‰¸A‰f3ëJI‹?E‰ÍAÿWE‰é‰¹A‰‹3·þE·éA¯ýD·ÇE9èsA÷ÔD‰à1ÒfA÷ñD·âE9àrBÁï‹uÔþ·ÆHƒÄ[A\A]A^A_]Ãf.„Áî‰3A‹ÿÉA‰‹3·þA¯ý·ÇD9às¾…ÉuÞI‹?AÿW‰¹ëØfffff.„UH‰åAWAVAUATSP…Ò„)M‰ÎA‰ÔI‰ÿH‹]úÿuAƒ>thÁ+A‹ÿÈërE„	uÔt7A‰ÍA‹ë!DI‹?AÿW‰¸A‰¶D éD8áv#…ÀtàÁ+A‹ÿÈëäED$Aƒ>t3Á+A‹ÿÉë=MԉÎé¦I‹?A‰ôAÿWD‰æ‰¸A‰@3é‡I‹?E‰ÅAÿWE‰è‰¹A‰‹¶òE¶èA¯õ@¶þD9ïsSAöÔA¶ÄAöð¶Ä9ÇsB‰Çë.fDA‰üI‹?AÿWD‰ç‰¹A‰‹¶òA¯õ@¶Æ9øs…ÉtÔÁê‰A‹ÿÉëÜÁî@uÔ@¶ÆHƒÄ[A\A]A^A_]Ãfffff.„…Òt<UH‰åAVSL‰ËL‹uAƒ9t	AÑ.‹ÿÈëH‰øH‹?ÿPA‰¸‰A¶6@€æ[A^]@¶ÆÃff.„UH‰åAWAVAUATSHƒì(M‰ÏH…ÒtXI‰ÕI‰üH‰ÐHÁè L‰}¸H‰MÈH‰uÐuW¸ÿÿÿÿI9Å…ÕH…ÉŽA1ÛI‹<$AÿT$‰ÀHEÐI‰ßHÿÃH9]ÈuäéH…ÉŽHƒùƒ1ÿéõIƒýÿ„1E„À„aH…ÉŽåL‰èHÑèL	èH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÃHÁë H	ÃE1öff.„I‹<$AÿT$H!ØL9èwïHEÐK‰÷IÿÆL;uÈuÞéuE„À„fH…ÉŽcL‰èHÑèL	èH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÃHÁë 	ÃE1öf.„I‹<$AÿT$!ØD9èwð‰ÀHEÐK‰÷IÿÆL;uÈuÝéôfHnÆfpÀDHQüH‰×HÁïHÿljøƒàHƒúƒ71Òé{H…É޽1Ûffffff.„I‹<$AÿT$HEÐI‰ßHÿÃH9]ÈuæéH…ÉŽ„MuL‰èH÷ÐH‰EÀ1ÛëfDHMÐH‹E¸H‰ØHÿÃH;]È„SI‹<$AÿT$I÷æH‰ÑL9èwÓH‰ÆH‹EÀ1ÒI÷öH9òvÂI‰×ffffff.„I‹<$AÿT$I÷æI9ÇwïH‰ÑëšH…ÉŽýEuD‰è÷ЉEÀ1ÛëHÁé HMÐH‹E¸H‰ØHÿÃH;]È„ÏI‹<$AÿT$‰ÁI¯ÎA9ÍrϋEÀ1ÒA÷ö9ÊvÃA‰×I‹<$AÿT$‰ÁI¯ÎA9ÏwìëªHƒçü1Ò@óA×óAD×óAD× óAD×0óAD×@óAD×PóAD×`óAD×pHƒÂHƒÇüu¿H‰ÏHƒçüH…Àt)I×HƒÂHÁàE1À@óBDðóBIƒÀ L9ÀuêH9ÏtDI‰4ÿHÿÇH9ùuôHƒÄ([A\A]A^A_]ÃDUH‰åAWAVAUATSHƒì(M‰υÒ„‰A‰ÕI‰üƒúÿH‰MȉuÔ„E„À„³H…ÉŽèD‰èH‰ÁHÑéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÃHÁë	ÃE1öfDI‹<$AÿT$!ØD9èwðEÔC‰·IÿÆL;uÈuàé‡H…ÉŽ~Hƒùƒ®1ÿéaH…ÉŽd1ÛfDI‹<$AÿT$EÔA‰ŸHÿÃH9]Èuçé>H…ÉŽ5EuD‰è÷ЉEÄ1ÛL‰}¸ë DHÁé MÔH‹E¸‰˜HÿÃH;]È„I‹<$AÿT$‰ÁI¯ÎD9éwыEÄ1ÒA÷ö9ÊvÅA‰×fI‹<$AÿT$‰ÁI¯ÎA9ÏwìëªfnÆfpÀHQøH‰×HÁïHÿljøƒàHƒús1ÒëUHƒçü1Òfffff.„óA—óAD—óAD— óAD—0óAD—@óAD—PóAD—`óAD—pHƒÂ HƒÇüu¿H‰ÏHƒçøH…Àt)I—HƒÂHÁàE1À@óBDðóBIƒÀ L9ÀuêH9ÏtDA‰4¿HÿÇH9ùuôHƒÄ([A\A]A^A_]ÃDUH‰åAWAVAUATSHƒì(L‰MÐH‰uȅÒ„¢A‰ÕI‰üfAƒýÿ„®E„ÀH‰M¸„ôH…ÉŽ”A·ÅH‰ÁHÑéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁé	ÁA‰ÎAÁîA	ÎE1ÿ1É1ÀH‹]ÐëÁèÿɉÂD!òfD9êv…ÉuìI‹<$AÿT$¹‰ÂD!òfD9êwãUÈfB‰{IÿÇL;}¸uÒéH…ÉŽH‰ÏHƒÿƒ$1ÉéÙH…ÉŽóI‰Î1Û1É1Àë4fff.„I‹<$AÿT$¹H‹UÈÂH‹uÐf‰^HÿÃI9Þ„´…ÉtÔÁèÿÉëÛH…ÉŽ AE‰EÄD·øA÷ÕE1ö1ö1Éë)ffff.„Áï}ÈH‹EÐfB‰<pIÿÆL;u¸„`…ötÁéÿÎëf„I‹<$AÿT$‰~·ùA¯ÿD·ÇE9øs°D‰è1Òf÷uÄ·ÚA9Ør1ëffff.„I‹<$AÿT$‰~·ùA¯ÿ·Ç9؃nÿÿÿ…ötÚÁéÿÎëãI‰øfnEÈòpÀfpÀHWðH‰ÑHÁéHÿIȃàHƒú0s1ÒH‹uÐëIHƒáü1ÒH‹uÐfDóVóDVóDV óDV0óDV@óDVPóDV`óDVpHƒÂ@HƒÁüuÇL‰ÁHƒáðH…Àt/HVHƒÂHÁà1öffff.„óD2ðó2HƒÆ H9ðuìL9Át#H‹EÐH‹UÈffffff.„f‰HHÿÁH9ÏuôHƒÄ([A\A]A^A_]ÃDUH‰åAWAVAUATSHƒì(L‰MÀH‰ËH‰uȅÒ„A‰ÕI‰üA€ýÿ„¦E„À„æH…ÛŽ”A¶ÅH‰ÁHÑéH	ÁH‰ÈHÁè	ÈA‰ÆAÁîA	ÆE1ÿ1É1ÀëÁèÿɉÂD òD8êv…ÉuíI‹<$AÿT$¹‰ÂD òD8êwäUÈH‹uÀBˆ>IÿÇI9ßuÑé'H…ÛŽ¶uÈH‹}ÀH‰ÚHƒÄ([A\A]A^A_]é6"H…ÛŽ÷E1ö1É1Àë#@ÁèÿÉH‹UÈÂH‹uÀBˆ6IÿÆL9ó„Ë…ÉuÝI‹<$AÿT$¹ëÒH…ÛŽ®AE‰E¼D¶ðAöÕE1ÿA¶Åf‰EÖ1Ò1ÉI‰ÝëfÁî@uÈH‹EÀBˆ48IÿÇL‰èM9ïtp…ÒtÁéÿÊëff.„I‹<$AÿT$‰z¶ñA¯ö@¶þD9÷s°·EÖöu¼¶Ü9ßrë ÁéÿʶñA¯ö@¶Æ9ØsŒ…ÒuèI‹<$AÿT$‰zëÛHƒÄ([A\A]A^A_]ÀUH‰åAWAVATSH…É~GM‰ÎH‰˄ÒtFI‰ÿE1ä1É1Àë'f.„I‹?AÿW¹‰€âCˆ&IÿÄL9ãt
…ÉtßÑèÿÉëå[A\A^A_]Ã@¶öL‰÷H‰Ú[A\A^A_]é© f„UH‰åAWAVAUATSHƒì(L‰MÈI‰ÖI‰÷H‰}ÐL‰ÀL‰E¸M`ÿM…äŽEI‰ÍòÒ%1ÛWÒë0ff.„1ÀI‰ÞI)ÇM…ÿŽ$òA\\ÝHÿÃI9Ü„òADÝò^ÃM…ÿtËWÉóZÊf.Á›À”DÁu¶ò
îcf/Èò]Àr,WÉòI*ÏòYÈòef/ÑrNH‹}ÐL‰þH‹UÈèYáÿÿëLò
/%WÒòI*×ò\ÈòYÑòçdf/ÂrAH‹}ÐL‰þf(ÁH‹UÈèáÿÿë?H‹}ÐL‰þH‹UÈè;×ÿÿò]ÀfWÒI‰ÞI)ÇM…ÿ$ÿÿÿëFH‹}ÐL‰þf(ÁH‹UÈè×ÿÿò]ÀfWÒH‰ÁL‰øH)ÈI‰ÞI)ÇM…ÿìþÿÿëM…ÿ~	H‹E¸M‰|ÆøHƒÄ([A\A]A^A_]ÃUH‰åSHƒìH‰ûƒtòCÇCHÇCHƒÄ[]ÃH‹H‹8ÿPòY¿bòX?$òEðH‹H‹8ÿPò
¡bf(ÐòYÑò$òXÐf(ÂòYÂòMðòYÉòXÈòà#f/Èsšf.
Zb›À”DÁuˆf(ÁòUàòMèèòY½«ò^EèWÒòQÐòMðòYÊòKÇCòEàòYÂHƒÄ[]Ãfff.„UH‰åH‹H‹8ÿPò
[#ò\Èf(Áè´fWva]Ã@UH‰åSHƒìXf./#H‰ûšÀ•ÁÁu-H‹H‹8ÿPò
#ò\Èf(ÁèjfW,aHƒÄX[]Ãf(ÐfWÀf.ЛÀ”DÁuãò×"f/Ú†ø¸WÀò*ÀòEèòUðë!Df(Ìò^Êf(Ãè5f(MÀf/Ès˜H‹H‹8ÿPòEÐH‹H‹8ÿPò
u"ò\Èf(ÁèÎò]ÐfW‹`f)EÀò%N"f(ÄòMðò\Áf/Ãf(Ñs‡òEèò\Ãò^Âè‹f)EÐfWH`ò"f(ËòUðò\ÊòYÂòXÁf(Ëò^Êè„f(MÀò\MÐf/È‚FÿÿÿéÙþÿÿf(Ãò^9`¸	ò*Èò\ÐòYÊWÀòQÁf(Ëò^ÈòM¨òUðffffff.„‹Cë<ff.„òSÇCHÇC1ÀòE¨òYÂòXÃfWÉf/Ȃ߅ÀuËff.„H‹H‹8ÿPf(Èò»_òYÈò7!òXÈòMÀH‹H‹8ÿPf(ÈòY
‘_òX
!f(ÑòYÑòEÀòYÀòXÂf/Ü sšf.Z_›À”DÁuˆòMÐòEèèòUÐò¬ òY´¨ò^EèòQÀòMÀòYÈòKÇCòYиéÿÿÿ„f(ÈòYÈòYÈòMÀH‹H‹8òUÐÿPòMÐòYÉf(ÑòY´^fWd^òYÑòX( f/ÐwvèƒòEèòEÐòY‹^òE°ò
þòEÀò\ÈòM¸èQòãòXE¸òUðòYÂòM°òYMÐòXÈf/Mè†,þÿÿòYUÀf(ÂHƒÄX[]ÃòEðòYEÀHƒÄX[]Ãff.„UH‰åHƒìòMøè>üÿÿòYEøHƒÄ]ÃUH‰åHƒìòEøH‹H‹8ÿPò
Rò\Èf(Áè«fWm]ò^Eøèu¸WÉò*Èò\ÁHƒÄ]Ãffff.„fWÉf.Á›À”DÁtfWÀÃUH‰åHƒìH‹H‹8òEøÿPò
Ûò\Èf(Áè4fWö\ò
¾ò^MøèJHƒÄ]Ãfffff.„UH‰åHƒìòEð¸WÀò*ÀòEøH‹H‹8ÿPò
qò\Èf(ÁèÊè¡òUøò\Ðò
Nò^Mðf(ÂèÖHƒÄ]Ãf.„UH‰åò^´\èßúÿÿòY§\]ÃDUH‰åHƒìòEøH‰øH‹?ÿPfW"\èYòYõ¥òQÀòYEøHƒÄ]ÃfDUH‰åSHƒì(f(Ð1ÀWÀò*Àf.ÈH‰ûšÀ•ÁÁu#ò^1\H‰ßf(ÂèUúÿÿòY\HƒÄ([]øWÀò*Àf/ÐòMèvGò\Ðò^ó[H‰ßf(Âèúÿÿf(ÈòY
Û[ƒ{„ŒòSÇCHÇCé;H‹;f(Áò^©[òUðè¿ÊÿÿHÀWÀòH*ÀòMðòXÈò^
ƒ[f(ÁH‰ßè§ùÿÿòMèf.ÉòYf[›À”DÁ…;ÿÿÿóàZóZÀHƒÄ([]ÃòMÐH‹H‹8ÿPf(Èò+[òYÈòX
§òMðH‹H‹8ÿPò‘f(ÈòY
ýZòXÊf(ÁòYÁòUðòYÒòXÐòLf/Ðs–f.ÆZ›À”DÁu„f(ÂòMØòUàè‡òUØòY$¤ò^EàòQÀòMðòYÈòKÇCòYÐòMÐòEèòQÀòXÂòYÀòXÁHƒÄ([]ÐUH‰åSHƒìòMðòEàH‰û(ÊèâýÿÿòMðòYÁòEèò^
,Zf(ÁH‰ßèPøÿÿòYZòYEàòMèò^Èf(ÁHƒÄ[]Ãffffff.„UH‰åSHƒì8H‰û¸ò*ÐòYÑf(àò^âƒòEètòSÇCHÇCéÔòMÈòeðH‹H‹8ÿPòYYòXòEàH‹H‹8ÿPòqYf(ÈòYÊòéòXÈf(ÁòYÁòUàòYÒòXÐò°f/Ðsšf.*Y›À”DÁuˆf(ÂòMÐòUØèëòUÐòYˆ¢ò^EØòQÀòMàòYÈòKÇCòYÐòEèòeðòMÈf(ØòYڸò*èòYÚòYéf(ÓòYÓòYëòXêWÉòQÍò\ÙòYãòXàòeðH‹H‹8ÿPòeðò]èf(ËòXÌf(Óò^Ñf/Ðrf(ÄHƒÄ8[]ÃòYÛò^Üf(ÃHƒÄ8[]Ãffffff.„UH‰åSHƒì(H‰ûƒtòSÇCHÇCéÙòEØòMÐff.„H‹H‹8ÿPòYïWòXoòEðH‹H‹8ÿPòÑWf(ÈòYÊòIòXÈf(ÁòYÁòUðòYÒòXÐòf/Ðsšf.ŠW›À”DÁuˆf(ÂòMàòUèèKòUàòYè ò^EèòQÀòMðòYÈòKÇCòYÐòMÐòEØòYÊòXÈf(ÁHƒÄ([]Ãf„UH‰åSHƒì(H‰ûƒtòSÇCHÇCéÙòEØòMÐff.„H‹H‹8ÿPòYÏVòXOòEðH‹H‹8ÿPò±Vf(ÈòYÊò)òXÈf(ÁòYÁòUðòYÒòXÐòðf/Ðsšf.jV›À”DÁuˆf(ÂòMàòUèè+òUàòYȟò^EèòQÀòMðòYÈòKÇCòYÐòMÐòEØòYÊòXÈf(Áè½HƒÄ([]Ã@UH‰åSHƒì(H‰ûƒòEàt)òKòMðÇCHÇCéÏff.„H‹H‹8ÿPòY¯UòX/òEèH‹H‹8ÿPò‘Uf(ÈòYÊò	òXÈf(ÁòYÁòUèòYÒòXÐòÐf/Ðsšf.JU›À”DÁuˆf(ÂòMðòUØèòY­žò^EØòQÀòMèòYÈòKÇCòMðòYÈòMðòEà¸WÉò*ÈòMèò^ÁH‰ßèóÿÿòMàò^MèòQÉòYMðòQÀò^Èf(ÁHƒÄ([]Ãf„UH‰åSPH‰û¸ò*Ðò\Ñò^ÑòUðè¼òÿÿòYEðH‹;HƒÄ[]é™Ãÿÿf„UH‰åSHƒì(H‰ûƒ„êòCòEàÇCHÇCH‹H‹8ÿPòY/TòX¯òEèH‹H‹8ÿPòTf(ÈòYÊò‰òXÈf(ÁòYÁòUèòYÒòXÐòPf/Ðsšf.ÊS›À”DÁuˆf(ÂòMðòUØè‹òUðòY(ò^EØòQÀòMèòYÈòKÇCòYÐòMàéÍfff.„H‹H‹8ÿPòY_SòXßòEðH‹H‹8ÿPòASòUðf(ÈòYËò´òXÈf(ÁòYÁf(ÚòYÚòXØò|f/Øs–f.öR›À”DÁu„f(ÃòMàò]èè·òUðòMàòYOœò^EèòQÀòYÐòYÈÇCHÇCò^Êf(ÁHƒÄ([]ÃUH‰åSHƒì(H‰ûòüf/ÐòMà‚¶f/Ñ‚¬òEÐfffff.„H‹H‹8ÿPòEðH‹H‹8ÿPòEèò
¬ò^MÐòEðè3òEØò
ò^MàòEèèòeØòtf(ÌòXÈf/Ñr–ò]ðf(ÌòXÈ1ÀWÒò*Ðf/ÊvEòXÄò^àf(ÄHƒÄ([]ÃH‰ßèïïÿÿòEðH‰ßòEàèÝïÿÿòMðòXÁò^Èf(ÁHƒÄ([]Ãf(Ãèb
ò^EÐòEðòEèèN
f(Ðò^UàòEðf/Âf(Èwf(Âò\ÈòMðò\ÐòUØf(ÁèóòEèòEØèäòXEèèþòMðò\Èf(ÁèÈHƒÄ([]Ãffffff.„UH‰åSHƒìòMèòEàH‰ûò^âPè
ïÿÿò
ÕPòYÁòUèòYÂòEðò^Ñf(ÂH‰ßèãîÿÿòY«PòYEàòMðò^Èf(ÁHƒÄ[]ÃfUH‰åHƒìòEøH‹H‹8ÿPò
âò\Èf(Áè;fWýOòYEøHƒÄ]ÃfUH‰åSPH‰óò
/Pf/Èr(WÉòH*ËòYÈòeQf/ÑrBH‰ÞHƒÄ[]é¡Íÿÿò
yò\ÈWÀòH*ÃòYÁò1Qf/ÐrH‰Þf(ÁèoÍÿÿëH‰ÞHƒÄ[]éÃÿÿH‰Þf(ÁèƒÃÿÿH)ÃH‰ØHƒÄ[]ÃfDUH‰åAWAVAUATSHƒìhI‰ÍI‰÷I‰üHƒùŒÝI9×I‰ÐMLÇJ:L‰ùH‰ÖIO÷H‰uÈH‰ÇL)ïL9ïL‰îH‰} LLïòI*ÀL‰E¸òH*Èò^Áò
²ò\ÈòI*ÕòYÐf(êL)èWÒòH*Ðò%OH‰u˜òH*ÞòYÚòYØJD:ÿWÀòH*ÀòYÙò^ØòXÜWÉòQËòMÐòh˜òYÁòXd˜ò…xÿÿÿòXìòm°M}WÉòI*ÏMpWÀòI*ÆòYÁH‰MH‰U¨HD
WÉòH*Èò^ÁèM
òH,ØHCWÀòH*À賱ÿÿòEÀL‰u€I)ÞWÀòI*Æ蚱ÿÿòXEÀòEÀI)ßWÀòI*Ç耱ÿÿòXEÀòEÀH‹EÈL)èI‰ÇHØHÿÀH‹]¸WÀòH*ÀèU±ÿÿI9ÝILÝWÉòH*ËòXEÀòE8WÀò*ÀòX
XòM¸òEÈòYEÐòXE°è“	f/E¸†µWÀòH*ÃòX$é´M…íŽL9úL‰øHLÂòH*ÀH‰U¨J:M‰îòE°f(Èf/
pMvFI‹<$òMÐAÿT$WÉòH*ËòUÐò^ÑòXÂè	òMÐòH,ÀWÀòH*Àò\ÈHÿËIÿÎu°òE°ò\ÁòH,ÀI)ÅL9}¨LMèL‰èéqòEÈòYEÐòXE°è¿òE¸IÿǸWÀò*ÀòEˆfI‹<$AÿT$òEÐI‹<$AÿT$òMÐò\¬LòY…xÿÿÿò^ÁòXE°fWÉf/ÈwÁf/E¸sºèYòH,ØHCWÀòH*À迯ÿÿòEÈH‹E€H)ØWÀòH*À覯ÿÿòXEÈòEÈM‰îI)ÞIFWÀòH*À腯ÿÿòXEÈòEÈJ;WÀòH*Àèj¯ÿÿòMÐòXEÈòUÀò\Ðò§•ò\ÁòYÁòXŸ•f/Ðs<f(Áò\ÂòYÁf/Eˆƒÿÿÿf(ÁòUÐèªòYÌKòMÐf/È‚ÝþÿÿH‹EH;E¨IOÞH)ØH‹M H;M˜HMÃë1ÀHƒÄh[A\A]A^A_]Ãffffff.„UH‰å]閺ÿÿfDUH‰å]éFÔÿÿfDUH‰åHƒìH‰øf/½Lr
H‰ÇHƒÄ]éîÑÿÿH‹8òEðÿPfWËJèòEø¸WÀò*Àò\EðèáòMøò^Èf(ÁèŸòH,ÀHƒÄ]Ãfffff.„UH‰å]é6æÿÿfDUH‰åSHƒìXf.É›À”DÁuóAJóZÀHƒÄX[]ÃH‰ûòf/Ñv;¸WÀò*ÀòEðH‹;ÿS¸WÉò*ÈòYEðò\ÁòYÁKHƒÄX[]ÃòšKf/ÑòEèòM¨vòªò^ÁòXÁòEàëm¸WÀò*8WÒò*ÐòYÑòYÑòXÐòQâòXà¸WÒò*Ðf(ÚòYÜòQÛò\ãf(ÚòYÙò^ãf(ÌòYÌòXÈòYâò^ÌòMà¸WÀò*ÀòE8WÀò*ÀòE°1ÀWÀò*ÀòEØfffff.„H‹;ÿSòYÒJèòMàf(ÑòYÐòXUÀòXÁò^ÐòU¸ò\ÊòYM¨òMðH‹;ÿSòM°ò]ðò\ËòYËò\Èf/MØs&f(Ëò^Èf(ÁèâòXEÀò\Eðf/EØ‚wÿÿÿH‹;ÿSòEðòE¸è‚f(ÈòÆHf/EðvfW
gHòEè1ÀWÒò*ÐòUðòXÈf)MÀf(C
fTÁò÷IòX¸WÉò*ÈòYÊèHòMðf/MÀò\ÌI†¹ýÿÿ¸ÿÿÿÿWÉò*ÈòYÁHƒÄX[]Ãffffff.„UH‰åSHƒì8f(ÈòEðH‰ûò“	ò\ÁèðòEØH‹;ÿSòUðf/Âr¸HƒÄ8[]øWÉò*ÈòMàëDH‹;ÿSòUðf/ƒ–òEèH‹;ÿSòYEØèhòUèò
	ò\Èf(ÁòYÁf/Ârnf(ÂòMÐè_òEÈòEÐèPòMÈò^ÈòXMàf(Áè'òH,ÀH…ÀŽuÿÿÿòEèf.@GšÁ•ÂÊ„Zÿÿÿé6ÿÿÿ¸HƒÄ8[]Ã1Àf/ÑHƒÐHƒÄ8[]Ãÿ%²ùÿ%´ùÿ%¶ùÿ%¸ùÿ%ºùÿ%¼ùÿ%¾ùÿ%Àùÿ%Âùÿ%Äùÿ%Æùÿ%Èùÿ%Êùÿ%Ìùÿ%Îùÿ%Ðùÿ%Òùÿ%Ôùÿ%Öùÿ%Øùÿ%Úùÿ%Üùÿ%Þùÿ%àùÿ%âùÿ%äùÿ%æùÿ%èùÿ%êùÿ%ìùÿ%îùÿ%ðùÿ%òùÿ%ôùÿ%öùÿ%øùÿ%úùÿ%üùÿ%þùÿ%úÿ%úÿ%úÿ%úÿ%úÿ%
úÿ%úÿ%úÿ%úÿ%úÿ%úÿ%úÿ%úÿ%úÿ%úÿ%úÿ% úÿ%"úÿ%$úÿ%&úÿ%(úÿ%*úÿ%,úÿ%.úÿ%0úÿ%2úÿ%4úÿ%6úÿ%8úÿ%:úÿ%<úÿ%>úÿ%@úÿ%Búÿ%Dúÿ%Fúÿ%Húÿ%Júÿ%Lúÿ%Núÿ%Púÿ%Rúÿ%Túÿ%Vúÿ%Xúÿ%Zúÿ%\úÿ%^úÿ%`úÿ%búÿ%dúÿ%fúÿ%húÿ%júÿ%lúÿ%núÿ%púÿ%rúÿ%túÿ%vúÿ%xúÿ%zúÿ%|úÿ%~úÿ%€úÿ%‚úÿ%„úÿ%†úÿ%ˆúÿ%Šúÿ%Œúÿ%Žúÿ%úÿ%’úÿ%”úÿ%–úÿ%˜úÿ%šúÿ%œúÿ%žúÿ% úÿ%¢úÿ%¤úÿ%¦úÿ%¨úÿ%ªúÿ%¬úÿ%®úÿ%°úÿ%²úÿ%´úÿ%¶úÿ%¸úÿ%ºúÿ%¼úÿ%¾úLÇúASÿ%w·héæÿÿÿh!éÜÿÿÿh6éÒÿÿÿhOéÈÿÿÿhké¾ÿÿÿh„é´ÿÿÿh™éªÿÿÿh°é ÿÿÿhÃé–ÿÿÿhßéŒÿÿÿhþé‚ÿÿÿhéxÿÿÿh#énÿÿÿh9édÿÿÿhUéZÿÿÿhhéPÿÿÿh{éFÿÿÿhšé<ÿÿÿh¯é2ÿÿÿhÓé(ÿÿÿhôéÿÿÿhéÿÿÿh#é
ÿÿÿh;éÿÿÿhPéöþÿÿhiéìþÿÿh†éâþÿÿh éØþÿÿhÁéÎþÿÿhâéÄþÿÿhûéºþÿÿhé°þÿÿh*é¦þÿÿh?éœþÿÿhSé’þÿÿhnéˆþÿÿh‰é~þÿÿh¨étþÿÿhÆéjþÿÿhïé`þÿÿhéVþÿÿh&éLþÿÿh=éBþÿÿhPé8þÿÿhfé.þÿÿhé$þÿÿh—éþÿÿh²éþÿÿhÌéþÿÿháéüýÿÿh÷éòýÿÿhéèýÿÿh)éÞýÿÿhBéÔýÿÿh]éÊýÿÿhréÀýÿÿhŽé¶ýÿÿh±é¬ýÿÿhÈé¢ýÿÿhÞé˜ýÿÿhøéŽýÿÿhé„ýÿÿh-ézýÿÿhCépýÿÿhYéfýÿÿhƒé\ýÿÿh›éRýÿÿh»éHýÿÿh×é>ýÿÿhðé4ýÿÿhé*ýÿÿh(é ýÿÿhAéýÿÿhWéýÿÿhséýÿÿh‹éøüÿÿh éîüÿÿh½éäüÿÿhÖéÚüÿÿhõéÐüÿÿhéÆüÿÿh$é¼üÿÿhDé²üÿÿh`é¨üÿÿhxéžüÿÿh‘é”üÿÿh¥éŠüÿÿh¿é€üÿÿhØévüÿÿhìélüÿÿh	ébüÿÿh	éXüÿÿh2	éNüÿÿhG	éDüÿÿh`	é:üÿÿhz	é0üÿÿh“	é&üÿÿh¬	éüÿÿhÅ	éüÿÿhâ	éüÿÿhÿ	éþûÿÿh#
éôûÿÿhF
éêûÿÿh\
éàûÿÿh‡
éÖûÿÿh¥
éÌûÿÿhÃ
éÂûÿÿhá
é¸ûÿÿhé®ûÿÿhé¤ûÿÿhHéšûÿÿheéûÿÿh‰é†ûÿÿh é|ûÿÿhÆérûÿÿhÚéhûÿÿhóé^ûÿÿhéTûÿÿh
éJûÿÿhé@ûÿÿh%é6ûÿÿh2é,ûÿÿh@é"ûÿÿhNéûÿÿh[éûÿÿhhéûÿÿhtéúúÿÿh‚éðúÿÿh‘éæúÿÿhžéÜúÿÿh­éÒúÿÿh¼éÈúÿÿhËé¾úÿÿhÚé´úÿÿhæéªúÿÿð?:Œ0âŽyE>q¬‹Ûhð?ð¿ê-™—q=ÿÿÿÿÿÿÿÿÿÿÿÿÿÿnumpy.random.mtrandnumpy/random/mtrand.pyxCannot take a larger sample than population when 'replace=False'DeprecationWarningFewer non-zero entries in p than sizeImportErrorIndexErrorInvalid bit generator. The bit generator must be instantized._MT19937MT19937Negative dimensions are not allowedOverflowErrorProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.
In future version, providing byteorder will raise a ValueErrorRandomStateRandomState.binomial (line 3353)RandomState.bytes (line 805)RandomState.chisquare (line 1910)RandomState.choice (line 841)RandomState.dirichlet (line 4394)RandomState.exponential (line 500)RandomState.f (line 1729)RandomState.gamma (line 1645)RandomState.geometric (line 3772)RandomState.gumbel (line 2764)RandomState.hypergeometric (line 3834)RandomState.laplace (line 2670)RandomState.logistic (line 2888)RandomState.lognormal (line 2974)RandomState.logseries (line 3969)RandomState.multinomial (line 4257)RandomState.multivariate_normal (line 4058)RandomState.negative_binomial (line 3505)RandomState.noncentral_chisquare (line 1986)RandomState.noncentral_f (line 1823)RandomState.normal (line 1454)RandomState.pareto (line 2354)RandomState.permutation (line 4668)RandomState.poisson (line 3593)RandomState.power (line 2561)RandomState.rand (line 1177)RandomState.randint (line 679)RandomState.randn (line 1221)RandomState.random_integers (line 1289)RandomState.random_sample (line 385)RandomState.rayleigh (line 3090)RandomState.seed (line 228)RandomState.shuffle (line 4543)RandomState.standard_cauchy (line 2075)RandomState.standard_exponential (line 577)RandomState.standard_gamma (line 1563)RandomState.standard_normal (line 1385)RandomState.standard_t (line 2150)RandomState.tomaxint (line 621)RandomState.triangular (line 3244)RandomState.uniform (line 1050)RandomState.vonmises (line 2265)RandomState.wald (line 3167)RandomState.weibull (line 2457)RandomState.zipf (line 3676)Range exceeds valid boundsRuntimeWarningSequenceShuffling a one dimensional array subclass containing objects gives incorrect results for most array subclasses.  Please use the new random number API instead: https://numpy.org/doc/stable/reference/random/index.html
The new API fixes this issue. This version will not be fixed due to stability guarantees of the API.TThis function is deprecated. Please call randint(1, {low} + 1) insteadThis function is deprecated. Please call randint({low}, {high} + 1) insteadTypeErrorUnsupported dtype %r for randintUserWarningValueError()*.?a'a' and 'p' must have same size'a' cannot be empty unless no samples are takena must be 1-dimensionala must be 1-dimensional or an integera must be greater than 0 unless no samples are takenaddall__all__allclosealphaalpha <= 0anyarangeargsarrayarray is read-onlyasarrayastype at 0x{:X}atolbbg_type
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        bit_generatorbitgenbool_
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        can only re-seed a MT19937 BitGeneratorcapsulecastingcheck_validcheck_valid must equal 'warn', 'raise', or 'ignore'
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        __class____class_getitem__cline_in_tracebackcollections.abccopycount_nonzerocovcov must be 2 dimensional and squarecovariance is not symmetric positive-semidefinite.cumsumdfdfdendfnum
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        disabledotemptyempty_likeenable__enter__epsequal__exit__
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        finfoflagsfloat64format
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gaussgc
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        getget_state and legacy can only be used with the MT19937 BitGenerator. To silence this warning, set `legacy` to False.greater
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        has_gausshigh
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        idignore__import__index_initializingint16int32int64int8intpisenabledisfiniteisnanisnativeisscalarissubdtypeitemitemsizekappakeykwargsllam
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        leftleft > modeleft == rightlegacylegacy can only be True when the underlyign bitgenerator is an instance of MT19937._legacy_seedinglengthlessless_equalloclocklogical_or
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        low__main__may_share_memorymeanmean and cov must have same lengthmean must be 1 dimensionalmodemode > right_mt19937mu
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        n__name__nbadndim
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        newbyteorderngoodngood + nbad < nsamplenonc
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        npnsamplenumpy.core.multiarray failed to importnumpy.core.umath failed to importnumpy.linalgobject_' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.operatorp'p' must be 1-dimensional
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _pickle
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        _poisson_lam_maxpos
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        probabilities are not non-negativeprobabilities contain NaNprobabilities do not sum to 1prodpvalspvals must be a 1-d sequence__pyx_vtable__raise_rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        __randomstate_ctorrangeravel
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        reducereplacereshapereturn_indexreversedrightrtolscalesearchsorted
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        set_state can only be used with legacy MT19937 state instances.shape
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        sidesigmasingletonsizesort__spec__sqrtstacklevel
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        statestate dictionary is not valid.state must be a dict or a tuple.__str__stridessubtractsumsum(pvals[:-1]) > 1.0sum(pvals[:-1].astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.svdtake__test__tobytestol
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        <u4uint16uint32uint64uint8
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        uniqueunsafe
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        warnwarnings
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        writeablexx must be an integer or at least 1-dimensionalyou are shuffling a 'zeros
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        __reduce__seed
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        get_state
        get_state(legacy=True)

        Return a tuple representing the internal state of the generator.

        For more details, see `set_state`.

        Parameters
        ----------
        legacy : bool, optional
            Flag indicating to return a legacy tuple state when the BitGenerator
            is MT19937, instead of a dict. Raises ValueError if the underlying
            bit generator is not an instance of MT19937.

        Returns
        -------
        out : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            If legacy is True, the returned tuple has the following items:

            1. the string 'MT19937'.
            2. a 1-D array of 624 unsigned integer keys.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If `legacy` is False, or the BitGenerator is not MT19937, then
            state is returned as a dictionary.

        See Also
        --------
        set_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        set_state
        set_state(state)

        Set the internal state of the generator from a tuple.

        For use if one has reason to manually (re-)set the internal state of
        the bit generator used by the RandomState instance. By default,
        RandomState uses the "Mersenne Twister"[1]_ pseudo-random number
        generating algorithm.

        Parameters
        ----------
        state : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The `state` tuple has the following items:

            1. the string 'MT19937', specifying the Mersenne Twister algorithm.
            2. a 1-D array of 624 unsigned integers ``keys``.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If state is a dictionary, it is directly set using the BitGenerators
            `state` property.

        Returns
        -------
        out : None
            Returns 'None' on success.

        See Also
        --------
        get_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        For backwards compatibility, the form (str, array of 624 uints, int) is
        also accepted although it is missing some information about the cached
        Gaussian value: ``state = ('MT19937', keys, pos)``.

        References
        ----------
        .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
           623-dimensionally equidistributed uniform pseudorandom number
           generator," *ACM Trans. on Modeling and Computer Simulation*,
           Vol. 8, No. 1, pp. 3-30, Jan. 1998.

        random_sample
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        random
        random(size=None)

        Return random floats in the half-open interval [0.0, 1.0). Alias for
        `random_sample` to ease forward-porting to the new random API.
        beta
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        .. note::
            New code should use the `~numpy.random.Generator.beta`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.


        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        See Also
        --------
        random.Generator.beta: which should be used for new code.
        exponential
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        standard_exponential
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        randint
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        bytes
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        choice
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        uniform
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        randn
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        random_integers
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        standard_normal
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        normal
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        standard_gamma
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gamma
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        f
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        noncentral_f
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        chisquare
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        noncentral_chisquare
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        standard_cauchy
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        standard_t
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        vonmises
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        pareto
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        weibull
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        power
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        laplace
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        gumbel
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        logistic
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        lognormal
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        rayleigh
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        wald
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        triangular
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        binomial
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        negative_binomial
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        poisson
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        zipf
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        geometric
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        hypergeometric
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        logseries
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        multivariate_normal
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        multinomial
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        dirichlet
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        shuffle
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        permutation
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _bit_generatortypenumpydtypedouble
    seed(seed=None)

    Reseed the singleton RandomState instance.

    Notes
    -----
    This is a convenience, legacy function that exists to support
    older code that uses the singleton RandomState. Best practice
    is to use a dedicated ``Generator`` instance rather than
    the random variate generation methods exposed directly in
    the random module.

    See Also
    --------
    numpy.random.Generator
    get_bit_generator
    Returns the singleton RandomState's bit generator

    Returns
    -------
    BitGenerator
        The bit generator that underlies the singleton RandomState instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random`` namespace. This function, and its counterpart set method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    set_bit_generator
    numpy.random.Generator
    set_bit_generator
    Sets the singleton RandomState's bit generator

    Parameters
    ----------
    bitgen
        A bit generator instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random``namespace. This function, and its counterpart get method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    get_bit_generator
    numpy.random.Generator
    sample
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    ranf
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    €3ÉNö@SŒ¾¤Ýi@€?@@Aޓ=?À€€€€€€ƒ»~)ÙÉ@à¿Áè lªƒѿ3­	‚´;
@@mÅþ²{ò ?à?@@5gGö¿…8–þÆ?—SˆBž¿¤A¤Az?<™ٰj_¿$ÿ+•K?88C¿  J?lÁlÁf¿UUUUUUµ?´¾dÈñgý?°̶Œe€¥*=
ףp=@˜nƒÀÊí?[¶Ö	m™?h‘í|?5®¿333333@rŠŽäòò?$—ÿ~ûñ?B>è٬ú@rù鷯í?…ëQ¸…Û?ìQ¸…ë±?9´Èv¾ŸŠ?ffffff@Âõ(\@š™™™™™.@€4@ôýÔxé&Á?ä?UUUUUUÅ?€a@ÀX@€`@à|@¸Ê@€MA$@>@ñh㈵øä>€„.A-DTû!	À-DTû!	@àCUUUUUUÕ?Á]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛe'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msyÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒx€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî93?Írû?q¼ÓëÃì?@Àmtrandnameloader__loader__origin__file__parent__package__submodule_search_locations__path__Interpreter change detected - this module can only be loaded into one interpreter per process.Module 'mtrand' has already been imported. Re-initialisation is not supported.builtinscython_runtime__builtins__init numpy.random.mtrandnumpy/__init__.cython-30.pxdcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%ddoes not match4294967296name '%U' is not definedBitGeneratornumpy.random.mtrand.RandomState._initialize_bit_generator while calling a Python objectNULL result without error in PyObject_Callcalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionnumpy.random.mtrand.RandomState
    RandomState(seed=None)

    Container for the slow Mersenne Twister pseudo-random number generator.
    Consider using a different BitGenerator with the Generator container
    instead.

    `RandomState` and `Generator` expose a number of methods for generating
    random numbers drawn from a variety of probability distributions. In
    addition to the distribution-specific arguments, each method takes a
    keyword argument `size` that defaults to ``None``. If `size` is ``None``,
    then a single value is generated and returned. If `size` is an integer,
    then a 1-D array filled with generated values is returned. If `size` is a
    tuple, then an array with that shape is filled and returned.

    **Compatibility Guarantee**

    A fixed bit generator using a fixed seed and a fixed series of calls to
    'RandomState' methods using the same parameters will always produce the
    same results up to roundoff error except when the values were incorrect.
    `RandomState` is effectively frozen and will only receive updates that
    are required by changes in the internals of Numpy. More substantial
    changes, including algorithmic improvements, are reserved for
    `Generator`.

    Parameters
    ----------
    seed : {None, int, array_like, BitGenerator}, optional
        Random seed used to initialize the pseudo-random number generator or
        an instantized BitGenerator.  If an integer or array, used as a seed for
        the MT19937 BitGenerator. Values can be any integer between 0 and
        2**32 - 1 inclusive, an array (or other sequence) of such integers,
        or ``None`` (the default).  If `seed` is ``None``, then the `MT19937`
        BitGenerator is initialized by reading data from ``/dev/urandom``
        (or the Windows analogue) if available or seed from the clock
        otherwise.

    Notes
    -----
    The Python stdlib module "random" also contains a Mersenne Twister
    pseudo-random number generator with a number of methods that are similar
    to the ones available in `RandomState`. `RandomState`, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    See Also
    --------
    Generator
    MT19937
    numpy.random.BitGenerator

    numpy.random.mtrand.RandomState.__repr__numpy.random.mtrand.RandomState.__str____repr____getstate____setstate__tomaxintat leastat mostexactly%.200s() takes %.8s %zd positional argument%.1s (%zd given)s%.200s() keywords must be strings%s() got an unexpected keyword argument '%U'numpy.random.mtrand.RandomState.__getstate__numpy.random.mtrand.RandomState.__setstate__%s() got multiple values for keyword argument '%U'numpy.random.mtrand.RandomState.__reduce__too many values to unpack (expected %zd)need more than %zd value%.1s to unpacknumpy.random.mtrand.RandomState.seednumpy.random.mtrand.RandomState.get_statenumpy.random.mtrand.RandomState.set_statevalue too large to convert to intintan integer is required__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)numpy.random.mtrand.RandomState.random_samplenumpy.random.mtrand.RandomState.randomnumpy.random.mtrand.RandomState.betanumpy.random.mtrand.RandomState.exponentialnumpy.random.mtrand.RandomState.standard_exponentialnumpy.random.mtrand.RandomState.tomaxintnumpy.random.mtrand.RandomState.randintnumpy.random.mtrand.RandomState.bytes'%.200s' object is unsliceablenumpy.random.mtrand.RandomState.choiceMissing type objectCannot convert %.200s to %.200s'%.200s' object does not support slice %.10sassignmentdeletioncannot fit '%.200s' into an index-sized integer'%.200s' object is not subscriptablenumpy.random.mtrand.RandomState.uniformnumpy.random.mtrand.RandomState.randnumpy.random.mtrand.RandomState.randnnumpy.random.mtrand.RandomState.random_integersnumpy.random.mtrand.RandomState.standard_normalnumpy.random.mtrand.RandomState.normalnumpy.random.mtrand.RandomState.standard_gammanumpy.random.mtrand.RandomState.gammanumpy.random.mtrand.RandomState.fnumpy.random.mtrand.RandomState.noncentral_fnumpy.random.mtrand.RandomState.chisquarenumpy.random.mtrand.RandomState.noncentral_chisquarenumpy.random.mtrand.RandomState.standard_cauchynumpy.random.mtrand.RandomState.standard_tnumpy.random.mtrand.RandomState.vonmisesnumpy.random.mtrand.RandomState.paretonumpy.random.mtrand.RandomState.weibullnumpy.random.mtrand.RandomState.powernumpy.random.mtrand.RandomState.laplacenumpy.random.mtrand.RandomState.gumbelnumpy.random.mtrand.RandomState.logisticnumpy.random.mtrand.RandomState.lognormalnumpy.random.mtrand.RandomState.rayleighnumpy.random.mtrand.RandomState.waldnumpy.random.mtrand.RandomState.triangularnumpy.random.mtrand.RandomState.binomialnumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3numpy.random.mtrand.RandomState.negative_binomialnumpy.random.mtrand.int64_to_longnumpy.random.mtrand.RandomState.poissonnumpy.random.mtrand.RandomState.zipfnumpy.random.mtrand.RandomState.geometricnumpy.random.mtrand.RandomState.hypergeometricnumpy.random.mtrand.RandomState.logseriesnumpy.random.mtrand.RandomState.multivariate_normalnumpy.random.mtrand.RandomState.multinomialnumpy.random.mtrand.RandomState.dirichletnumpy.random.mtrand.RandomState.shufflejoin() result is too long for a Python stringnumpy.random.mtrand.RandomState.permutation__init__numpy.random.mtrand.RandomState.__init__hasattr(): attribute name must be stringbase class '%.200s' is not a heap typeextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typemultiple bases have vtable conflict: '%.200s' and '%.200s'invalid vtable found for imported typeboolcomplexflatiterbroadcastndarraygenericnumberintegersignedintegerunsignedintegerinexactfloatingcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequence%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectnumpy.random._commonPOISSON_LAM_MAXLEGACY_POISSON_LAM_MAXMAXSIZEuint64_t__pyx_capi__%.200s does not export expected C variable %.200sC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)numpy.random._bounded_integers_rand_uint64PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintint (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)check_array_constraintint (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)kahan_sumdouble (double *, npy_intp)double_fillPyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)validate_output_shapePyObject *(PyObject *, PyArrayObject *)contPyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)discPyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)cont_broadcast_3PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)discrete_broadcast_iii%.200s does not export expected C function %.200sC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)cannot import name %Snumpy.import_arraynumpy.core._multiarray_umath_ARRAY_API_ARRAY_API is not PyCapsule object_ARRAY_API is NULL pointermodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%x . Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem .FATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimenumpy.random.mtrand.seednumpy.random.mtrand.get_bit_generatornumpy.random.mtrand.set_bit_generatornumpy.random.mtrand.samplenumpy.random.mtrand.ranf%s (%s:%d)numpy/random/mtrand.cpython-312-iphonesimulator.so.p/numpy/random/mtrand.pyx.c44ÑX!a`3XXHÆXl¼ 0Z`Z€_°h@k°kq`qx`ð°ðÐñ@òóÀôÀöPù€ùPúðúüÐü0€ 
àðàÀPðp	€
 `
@žðž € à¡ð¢°£ ¨`© @ p(0(°)Ð*à+ -ð-p/°/P11Ð<@=ð> ?@€@PBpBC@FGÀGÀH I€MÀMWPY°` a`bàbðcd0egÐi jàt`uwx0xà{ }p‰°‰PŠ€Ž0‚ɌɖɠɪɴɾÉÈÉÒÉÜÉæÉðÉúÉÊÊÊ"Ê,Ê6Ê@ÊJÊTÊ^ÊhÊrÊ|ʆʐʚʤʮʸÊÂÊÌÊÖÊàÊêÊôÊþÊËËË&Ë0Ë:ËDËNËXËbËlËvË€ËŠË”ËžË¨Ë²Ë¼ËÆËÐËÚËäËîËøËÌÌÌ Ì*Ì4Ì>ÌHÌRÌ\ÌfÌpÌz̶̢̘̬̄̎ÌÀÌÊÌÔÌÞÌèÌòÌüÌÍÍÍ$Í.Í8ÍBÍLÍVÍ`ÍjÍtÍ~͈͒ͦ͜ͰͺÍÄÍÎÍØÍâÍìÍöÍÎ
ÎÎÎ(Î2Î<ÎFÎPÎZÎdÎnÎx΂ΌΖΠΪδξÎW	`Î	ÀÄ	€3`6ÿÿÿÿÿÿÿÿ´ê€G‚P		ÐP 			`R‚0		ç	 Vð	X	ÀX`	Z	ðp/00p4D(Z	7à7@Ç	Î	`8@qc	@BDzc	PB‚‡c	 D‚©ê@H‚´ê0S‚Àê7íÀX‚Pí@ò0e‚Pò[ùÐq‚pù$t‚0éPx‚ðeÐ}‚€ ‚‚@”c	à„‚€Ó‚àV'P»‚`'þ)`Ä‚*ß7°Ê‚ð7Fpß F‘J`ã JÐSPç‚àS_Pù‚_Šg0ü‚ grwà‚w¯‚‚ώ‚àŽüœ‚€ªà‚ªг‚ð³À€!‚ÀQÊp$‚`Êâې(‚ðÛóè.‚é÷ø02‚ùîP6‚ðp:‚Ò" @‚à"6ÐE‚6€B€K‚B^T0Q‚pT^`U‚ ^jàZ‚ j¬tw‚ÀtЃàœ‚ðƒp‘"‚€‘›0§‚›Y§ «‚p§ë®°‚¯n¿Ð‚€¿€Ë€Ô‚ Ë”á Ü‚ áñíàû‚îaú ‚pú ÿ‚0ÿ 	€B B"`‡HpREppRASASASASAppp p(p SDpp(pphRBRBRBRBRASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASAp S>@_PyBaseObject_TypeQq@_PyBool_Type@_PyCFunction_Type@_PyCapsule_Type@_PyDict_Type@_PyExc_AttributeError@_PyExc_DeprecationWarning@_PyExc_Exception@_PyExc_ImportError@_PyExc_IndexError@_PyExc_KeyError@_PyExc_NameError@_PyExc_OverflowError@_PyExc_RuntimeError@_PyExc_StopIteration@_PyExc_SystemError@_PyExc_TypeError@_PyExc_ValueError@_PyFloat_Type@_PyList_Type@_PyLong_Type@_PyMethod_Type@_PyObject_GenericGetAttr@_PyTuple_Type@_PyUnicode_Type@_Py_Version@__Py_EllipsisObject@__Py_FalseStruct@__Py_NoneStruct@__Py_TrueStruct@___stack_chk_guard@dyld_stub_binderr>@_PyBytes_FromStringAndSizer>@_PyCMethod_Newr>@_PyCapsule_GetNamer>@_PyCapsule_GetPointerr >@_PyCapsule_IsValidr(>@_PyCapsule_Newr0>@_PyCode_NewEmptyr8>@_PyDict_Copyr@>@_PyDict_GetItemStringrH>@_PyDict_GetItemWithErrorrP>@_PyDict_NewrX>@_PyDict_Nextr`>@_PyDict_SetItemrh>@_PyDict_SetItemStringrp>@_PyDict_Sizerx>@_PyErr_Clearr€>@_PyErr_ExceptionMatchesrˆ>@_PyErr_Formatr>@_PyErr_GivenExceptionMatchesr˜>@_PyErr_NormalizeExceptionr >@_PyErr_Occurredr¨>@_PyErr_SetObjectr°>@_PyErr_SetStringr¸>@_PyErr_WarnExrÀ>@_PyErr_WarnFormatrÈ>@_PyEval_RestoreThreadrÐ>@_PyEval_SaveThreadrØ>@_PyException_GetTracebackrà>@_PyException_SetTracebackrè>@_PyFloat_AsDoublerð>@_PyFloat_FromDoublerø>@_PyFrame_Newr€>@_PyGC_Disablerˆ>@_PyGC_Enabler>@_PyImport_AddModuler˜>@_PyImport_GetModuler >@_PyImport_GetModuleDictr¨>@_PyImport_ImportModuler°>@_PyImport_ImportModuleLevelObjectr¸>@_PyInterpreterState_GetIDrÀ>@_PyList_AppendrÈ>@_PyList_AsTuplerÐ>@_PyList_NewrØ>@_PyLong_AsLongrà>@_PyLong_AsSsize_trè>@_PyLong_FromLongrð>@_PyLong_FromSsize_trø>@_PyLong_FromStringr€>@_PyMem_Mallocrˆ>@_PyMem_Reallocr>@_PyModuleDef_Initr˜>@_PyModule_GetDictr >@_PyModule_GetNamer¨>@_PyModule_NewObjectr°>@_PyNumber_Addr¸>@_PyNumber_InPlaceAddrÀ>@_PyNumber_InPlaceTrueDividerÈ>@_PyNumber_IndexrÐ>@_PyNumber_LongrØ>@_PyNumber_Multiplyrà>@_PyNumber_Remainderrè>@_PyNumber_Subtractrð>@_PyOS_snprintfrø>@_PyObject_Callr€>@_PyObject_CallFinalizerFromDeallocrˆ>@_PyObject_Formatr>@_PyObject_GC_IsFinalizedr˜>@_PyObject_GC_UnTrackr >@_PyObject_GetAttrr¨>@_PyObject_GetAttrStringr°>@_PyObject_GetItemr¸>@_PyObject_GetIterrÀ>@_PyObject_HashrÈ>@_PyObject_IsInstancerÐ>@_PyObject_IsTruerØ>@_PyObject_Notrà>@_PyObject_RichComparerè>@_PyObject_SetAttrrð>@_PyObject_SetAttrStringrø>@_PyObject_SetItemr€>@_PyObject_Sizerˆ>@_PyObject_VectorcallDictr>@_PySequence_Containsr˜>@_PySequence_Listr >@_PySequence_Tupler¨>@_PySlice_Newr°>@_PyThreadState_Getr¸>@_PyTraceBack_HererÀ>@_PyTuple_NewrÈ>@_PyTuple_PackrÐ>@_PyType_IsSubtyperØ>@_PyType_Modifiedrà>@_PyType_Readyrè>@_PyUnicode_AsUTF8rð>@_PyUnicode_Comparerø>@_PyUnicode_Concatr€>@_PyUnicode_Decoderˆ>@_PyUnicode_Formatr>@_PyUnicode_FromFormatr˜>@_PyUnicode_FromStringr >@_PyUnicode_FromStringAndSizer¨>@_PyUnicode_InternFromStringr°>@_PyUnicode_Newr¸>@_PyUnstable_Code_NewWithPosOnlyArgsrÀ>@_PyVectorcall_FunctionrÈ>@_Py_EnterRecursiveCallrÐ>@_Py_LeaveRecursiveCallrØ>@__PyDict_GetItem_KnownHashrà>@__PyDict_NewPresizedrè>@__PyObject_GenericGetAttrWithDictrð>@__PyObject_GetDictPtrrø>@__PyThreadState_UncheckedGetr€>@__PyType_Lookuprˆ>@__PyUnicode_FastCopyCharactersr>@__Py_Deallocr˜@___stack_chk_failr @_acosr¨@_ceilr°@_cosr¸@_exprÀ@_expfrÈ@_expm1rÐ@_floorrØ@_fmodrà@_freerè@_logrð@_log1prø@_log1pfr€@_logfrˆ@_mallocr@_memcmpr˜@_memcpyr @_memsetr¨@_powr°@_powf_PyInit_mtrandàfàf à°®0 
À
Рp °`°°î P pÀÀ`pÀp0Р ÀÀ P€ pÐРðð ÀÀ€°àà#IÐÀ)ðð€$à° €Ð
 €ð €   °°°°°€°9ÐJàððð€@ð À>À8ð/ð°à ` €€€ €ÀН€°Ð@€àÀð	Àð`Àh `€àÐÐАÀ   @Pð À`p€@ @à
à   °0ð0  Ð p0€ €p`0€`à@ÐÀÀpР°pÀ€  À ààP Àðð€ €0° `pp @€p°  Ð@Рp@ °€€3¤`6½É
çà’ ˜+ð˜Oœi žwŸ‰0 ¦`¤Â$Öð«û #
À#3
$b
0%‡
 % 
`&Ã
 (æ
€(ð(8°)I *‘°,Ìà,°-P.)p/^00—p4ϐ7à78`8q@¢p@¿@BPBI D†@HÂ0SøÀX30enÐq­tåPxÐ}X‚žà„ØP»H`Ä€°Ê¹pßï`ã&PçgPù¨0üàà WŠÈàI€!Šp$Ɛ(.802qP6¨p:á @ÐES€KŽ0QÈ`UþàZ:wtàœ·"ð0§& «a°¡ÐÜ€Ô" Ü`àûœ Ö 1/2L@6d 8‚À8” 9«°:ÁP;ÕP<ïÐ<`=.à=C€?Z@vÀ@PBÇ Ñß ÑïPÒ Ó `Ó@àÓY@ÕvPÖ‹×¹ÜÑÀÜ 0
Q pAh €B«  Bî Cÿ €C!àD4!0FQ!€Gx!ÐP¬!`Rà! V	"ÀX0"`[K"€[d"[‚"Ð[¢" \¿"]á"0^#@_$#€`J#à`r#PaŠ#Ðb§#cÁ#°dà#ðd÷#Pj$0p'$Pp>$ppS$p`$ po$Pr~$€r’$ps¢$ s°$ÀsÀ$àsÍ$°uß$Ðué$@v%pv%pw %x.% y>% zM%z^%ðzp% {% |”%€|¤%à€¾% Ô%ðŠï%°Œ&p&€Ž2&ðŽ?&P&à’b&”{&€”—&©&@–¶&P—É&ð—Ú&˜ñ&Й'pš1'ЛP'0n'€Š' ¡¦'`£Â'P¦Ý'@¨÷'((`ª(`«6(«M(@¯[(`¯j(/z(0°ˆ( °š(0«(±È(³Ý(p³ê( µù(@¶)`·)°¸8)ð¸P):])`¼g)м{)½“)°½±)àÁÈ)ðÁÜ)Âõ)€Â*Â!* Å3*`Ï]*°Ïy*ÐÏ£*öϸ*ÐÌ*Ðö*NÐ+WÐ+`ÐD+„Ð[+ Ð…+kÑš+€ÑÂ+°Ñæ+ÐÑ,Ò4, Ò],PÒ‡,€Ò¨, ÒÍ,ÀÒö,ðÒ-ÓE-@Ól-`Ó”-Ó½-ÀÓæ-ðÓ. Ô9.PÔc.€Ô.°Ô·.àÔÝ.Õ/ Õ-/PÕT/pÕy/Õ/°ÕÃ/ÐÕè/ðÕ0 Ö<0PÖd0€Ö‡0 Ö®0ÀÖØ0ðÖ1 ×+1P×U1€×1°×¦1Ð×Ð1Ø÷1 Ø2PØC2pØj2ØŽ2°Ø²2ËØÊ2ÚØÜ2ðØ3.Ú30Ú;3€Úg3ÌÚz3àÚ£3Û¸3
ÛÌ3ÛØ3Ûä3Ûñ3Ûý3 Û
4"Û40Û:4PÛc4€Û„4 Û®4ÐÛ×4Üä4	Üñ4
Ü5Ü5Ü!5$Ü25/Ü?53ÜO5:Ü]5?Ül5P܈5cÜ™5kÜ©5rܺ5}ÜÈ5‚ÜÓ5„Üä5Ü
6“ë$6¡ë46¨ëB6°ëk6Pî•6xî¦6€î·6ˆîÌ6 îö6àî7 øH7ïW7n7 Š7@£7P±7UÈ7cÕ7pÿ7 )8Ó98ÚE8ÝT8ãc8ð‹8Qœ8Y©8]¸8cÌ8nÜ8uë8ø8ƒ9‰9 >9@g9\,v9b,…9h,–9p,¦9€,Ï98Þ9•8ê9 8:@ : @J:•@[: @„:ÁS—:ËS¥:ÐSÎ:>dÚ:Adê:Hdú:Sd	;Yd;gd.;md=;sdL;ydZ;~dh;ƒd{;d;–dœ;œd®;¥dÀ;®dÔ;¹dâ;¾dô;Çd<Íd<Ñd <Ød+<Úd8<àd`<²rn<·r<Ãr•<Ñr¥<àrÏ<@sç<Ps÷<Ws=\s=gs&=ks4=psH=€sq=ðš=Ã=¶Ð=ºÞ=Нø=á>ð0> žT>;žb>@žv>Mž‡>Vž“>`ž¼>*å>´Àð>¶Àþ>¿À?ÄÀ?ÐÀC?PÎY?]Îh?p΄?‡Î’?Î»? Úä?è
@â÷@å÷*@ð÷S@ ø}@Bø“@Oø£@`øË@"ùÝ@+ùè@0ù	APù2AP	ZA@jAP’AP«Aa¸ApáA`&B&.B°&UBÎ&cBÓ&rBà&˜Bý&¬B'»B'ËB 'óB +C 7DCP@mCpK•C0R¯CCR¾CIRÍCPRöCp\Dw\D\*D‡\@D”\RD\aD£\oD¨\~D®\”DÀ\¼D@_åD€_ôD_E@d*EEd9EKdLEUdZEZdhE_dvEhd„Emd˜E€dÀEÐnèEsF0~8F°†aF2˜pF@˜—F`˜ÀF˜ÍF‰˜ÞF‘˜ðFš˜ýF ˜G?G˜™LGœ™ZG¡™hGª™yG²™†G¯G ŸØG¬©äG°©ôG·©H¾©Hũ#HЩLHï·\Hö·lH¸•HŽH{ÐËH€ÐÝHÐI~ÞIˆÞ$IÞNIÀÞkIÖÞzIàÞ£IÀêÚIPíJPòRJpù’J0ËJðK€@K@‡K€ÂKàüK`'4L*mLð7§L FÞL JMàSXM_šM gÓMwNLNàŽ€N¿NªûNð³BOÀ„O`ÊÁOðÛüOé5PùoP§PáPà"Q6UQB‘QpTÌQ ^R j@RÀt{Rðƒ¿R€‘ùR›0Sp§lS¯­S€¿éS Ë0T áoTî¬TpúçT0ÿ&UP	MU 	‚U0		·Uð	áU`		Và	Và	Và	)Và"	3Và&	>Và.	IVà6	TVà>	^VàB	hVàF	rVàJ	}VàR	‡V	@Ä	–V	PÄ	§V	ÀÄ	¾V	ðÄ	òV	øÄ	W	Å	QW	8Å	‡W	XÅ	²W	xÅ	ÛW	˜Å	
X	@Ç	<X	Î	nX
PÎ	šX`Î	©X€Î	²XˆÎ	äXÎ	Y`ß	Yhß	,Ypß	EYxß	cY€ß	xYˆß	šYß	·Y˜ß	ÒY ß	êY¨ß	Z°ß	Z¸ß	PZÐß	‚ZØß	¯Zàß	ÕZèß	âZðß	[øß	R[à	Š[à	Á[à	ú[à	3\ à	l\(à	¤\0à	Û\8à	]@à	8]Hà	p]Pà	§]Xà	Ù]`à	ÿ]hà	7^pà	r^xà	«^€à	Õ^ˆà	é^à	ý^˜à	d_d¥_d²_fgö¬g.`3$`3$ N`3.€3d`$€3$àN€3.`6¤$`6$0WN`6.½$$0N.
É$
$ N
.à’ç$à’$@Nà’. ˜$ ˜$ÐN ˜.ð˜+$ð˜$ Nð˜.œO$œ$Nœ. ži$ ž$pN ž.Ÿw$Ÿ$ NŸ.0 ‰$0 $0N0 .`¤¦$`¤$`N`¤.$Â$$$0N$.ð«Ö$ð«$0wNð«. #û$ #$ N #.À#
$À#$PNÀ#.$3
$$$ N$.0%b
$0%$pN0%. %‡
$ %$ÀN %.`& 
$`&$ÀN`&. (Ã
$ ($`N (.€(æ
$€($pN€(.ð($ð($ÀNð(.°)8$°)$pN°). *I$ *$N *.°,‘$°,$0N°,.à,Ì$à,$ÐNà,.°-$°-$ N°-.P.$P.$ NP..p/)$p/$ÀNp/.00^$00$@N00.p4—$p4$ Np4.7Ï$7$PN7.à7$à7$€Nà7.`88$`8$ N`8.@q$@$pN@.p@¢$p@$ÐNp@.@B¿$@B$N@B.PB$PB$PNPB. DI$ D$ N D.@H†$@H$ð
N@H.0SÂ$0S$N0S.ÀXø$ÀX$pNÀX.0e3$0e$ N0e.Ðqn$Ðq$ÀNÐq.t­$t$ÀNt.Pxå$Px$€NPx.Ð}$Ð}$0NÐ}.‚X$‚$àN‚.à„ž$à„$àNà„.Ø$$$N.P»$P»$	NP».`ÄH$`Ä$PN`Ä.°Ê€$°Ê$ÀN°Ê.pß¹$pß$ðNpß.`ãï$`ã$ðN`ã.Pç&$Pç$NPç.Pùg$Pù$àNPù.0ü¨$0ü$°N0ü.àà$à$ Nà. $$N.W$$€N.Š$$ÐN.àÈ$à$ Nà.$$€N.€!I$€!$ðN€!.p$Š$p$$ Np$.(Æ$($€N(..$.$ N..028$02$ N02.P6q$P6$ NP6.p:¨$p:$°Np:. @á$ @$°N @.ÐE$ÐE$°NÐE.€KS$€K$°N€K.0QŽ$0Q$0N0Q.`UÈ$`U$€N`U.àZþ$àZ$°NàZ.w:$w$P%Nw.àœt$àœ$àNàœ."·$"$pN".0§ð$0§$pN0§. «&$ «$pN «.°a$°$ N°.С$Ð$pNÐ.€ÔÜ$€Ô$ N€Ô. Ü"$ Ü$@N Ü.àû`$àû$@Nàû. œ$ $ðN .Ö$$N. 1$ 1$ðN 1.2/$2$°N2.@6L$@6$àN@6. 8d$ 8$ N 8.À8‚$À8$`NÀ8. 9”$ 9$N 9.°:«$°:$ N°:.P;Á$P;$NP;.P<Õ$P<$€NP<.Ð<ï$Ð<$NÐ<.`=$`=$€N`=.à=.$à=$ Nà=.€?C$€?$€N€?.@Z$@$ÀN@.À@v$À@$NÀ@.PB$PB$ЎNPB. ÑÇ$ Ñ$€N Ñ. Ñß$ Ñ$°N Ñ.PÒï$PÒ$ÐNPÒ. Ó$ Ó$@N Ó.`Ó $`Ó$€N`Ó.àÓ@$àÓ$`NàÓ.@ÕY$@Õ$N@Õ.PÖv$PÖ$ÀNPÖ.׋$×$ðN×.ܹ$Ü$ÀNÜ.ÀÜÑ$ÀÜ$p0NÀÜ.0
 $0
$@4N0
.pAQ $pA$NpA.€Bh $€B$ N€B. B« $ B$`N B.Cî $C$€NC.€Cÿ $€C$`N€C.àD!$àD$PNàD.0F4!$0F$PN0F.€GQ!$€G$P	N€G.ÐPx!$ÐP$NÐP.`R¬!$`R$ÀN`R. Và!$ V$ N V.ÀX	"$ÀX$žNÀX3*&`Ï]*&°Ïy*&ÐÏ£*&öϸ*&ÐÌ*&Ðö*&NÐ+&WÐ+&`ÐD+&„Ð[+& Ð…+&kÑš+&€ÑÂ+&°Ñæ+&ÐÑ,&Ò4,& Ò],&PÒ‡,&€Ò¨,& ÒÍ,&ÀÒö,&ðÒ-&ÓE-&@Ól-&`Ó”-&Ó½-&ÀÓæ-&ðÓ.& Ô9.&PÔc.&€Ô.&°Ô·.&àÔÝ.&Õ/& Õ-/&PÕT/&pÕy/&Õ/&°ÕÃ/&ÐÕè/&ðÕ0& Ö<0&PÖd0&€Ö‡0& Ö®0&ÀÖØ0&ðÖ1& ×+1&P×U1&€×1&°×¦1&Ð×Ð1&Ø÷1& Ø2&PØC2&pØj2&ØŽ2&°Ø²2&ËØÊ2&ÚØÜ2&ðØ3&.Ú3&0Ú;3&€Úg3&ÌÚz3&àÚ£3&Û¸3&
ÛÌ3&ÛØ3&Ûä3&Ûñ3&Ûý3& Û
4&"Û4&0Û:4&PÛc4&€Û„4& Û®4&ÐÛ×4&Üä4&	Üñ4&
Ü5&Ü5&Ü!5&$Ü25&/Ü?5&3ÜO5&:Ü]5&?Ül5&P܈5&cÜ™5&kÜ©5&rܺ5&}ÜÈ5&‚ÜÓ5&„Üä5&Ü
6&“ë$6&¡ë46&¨ëB6&°ëk6&Pî•6&xî¦6&€î·6&ˆîÌ6& îö6&àî7& øH7&ïW7&n7& Š7&@£7&P±7&UÈ7&cÕ7&pÿ7& )8&Ó98&ÚE8&ÝT8&ãc8&ð‹8&Qœ8&Y©8&]¸8&cÌ8&nÜ8&uë8&ø8&ƒ9&‰9& >9&@g9&\,v9&b,…9&h,–9&p,¦9&€,Ï9&8Þ9&•8ê9& 8:&@ :& @J:&•@[:& @„:&ÁS—:&ËS¥:&ÐSÎ:&>dÚ:&Adê:&Hdú:&Sd	;&Yd;&gd.;&md=;&sdL;&ydZ;&~dh;&ƒd{;&d;&–dœ;&œd®;&¥dÀ;&®dÔ;&¹dâ;&¾dô;&Çd<&Íd<&Ñd <&Ød+<&Úd8<&àd`<&²rn<&·r<&Ãr•<&Ñr¥<&àrÏ<&@sç<&Ps÷<&Ws=&\s=&gs&=&ks4=&psH=&€sq=&ðš=&Ã=&¶Ð=&ºÞ=&Нø=&á>&ð0>& žT>&;žb>&@žv>&Mž‡>&Vž“>&`ž¼>&*å>&´Àð>&¶Àþ>&¿À?&ÄÀ?&ÐÀC?&PÎY?&]Îh?&p΄?&‡Î’?&Î»?& Úä?&è
@&â÷@&å÷*@&ð÷S@& ø}@&Bø“@&Oø£@&`øË@&"ùÝ@&+ùè@&0ù	A&Pù2A&P	ZA&@jA&P’A&P«A&a¸A&páA&`&B&&.B&°&UB&Î&cB&Ó&rB&à&˜B&ý&¬B&'»B&'ËB& 'óB& +C& 7DC&P@mC&pK•C&0R¯C&CR¾C&IRÍC&PRöC&p\D&w\D&\*D&‡\@D&”\RD&\aD&£\oD&¨\~D&®\”D&À\¼D&@_åD&€_ôD&_E&@d*E&Ed9E&KdLE&UdZE&ZdhE&_dvE&hd„E&md˜E&€dÀE&ÐnèE&sF&0~8F&°†aF&2˜pF&@˜—F&`˜ÀF&˜ÍF&‰˜ÞF&‘˜ðF&š˜ýF& ˜G&?G&˜™LG&œ™ZG&¡™hG&ª™yG&²™†G&¯G& ŸØG&¬©äG&°©ôG&·©H&¾©H&ũ#H&ЩLH&ï·\H&ö·lH&¸•H&ŽH&{ÐËH&€ÐÝH&ÐI&~ÞI&ˆÞ$I&ÞNI&ÀÞkI&ÖÞzI&àÞ£I&ÀêÚI&PíJ&PòRJ&pù’J&0ËJ&ðK&€@K&@‡K&€ÂK&àüK&`'4L&*mL&ð7§L& FÞL& JM&àSXM&_šM& gÓM&wN&LN&àŽ€N&¿N&ªûN&ð³BO&À„O&`ÊÁO&ðÛüO&é5P&ùoP&§P&áP&à"Q&6UQ&B‘Q&pTÌQ& ^R& j@R&Àt{R&ðƒ¿R&€‘ùR&›0S&p§lS&¯­S&€¿éS& Ë0T& áoT&î¬T&púçT&0ÿ&U&P	MU& 	‚U&0		·U&ð	áU&`	–V&	PÄ	§V&	ÀÄ	¾V&	ðÄ	òV&	øÄ	W&	Å	QW&	8Å	‡W&	XÅ	²W&	xÅ	ÛW&	˜Å	
X&	@Ç	<X&	Î	nX šX&`Î	©X&€Î	²X&ˆÎ	äX&Î	Y&`ß	Y&hß	,Y&pß	EY&xß	cY&€ß	xY&ˆß	šY&ß	·Y&˜ß	ÒY& ß	êY&¨ß	Z&°ß	Z&¸ß	PZ&Ðß	‚Z&Øß	¯Z&àß	ÕZ&èß	âZ&ðß	[&øß	R[&à	Š[&à	Á[&à	ú[&à	3\& à	l\&(à	¤\&0à	Û\&8à	]&@à	8]&Hà	p]&Pà	§]&Xà	Ù]&`à	ÿ]&hà	7^&pà	r^&xà	«^&€à	Õ^&ˆà	é^&à	ý^&˜à	dx`dì`dü`fTö¬g.`[0"$`[$ N`[.€[K"$€[$N€[.[d"$[$@N[.Ð[‚"$Ð[$PNÐ[. \¢"$ \$ðN \.]¿"$]$ N].0^á"$0^$N0^.@_#$@_$@N@_.€`$#$€`$`N€`.à`J#$à`$pNà`.Par#$Pa$€NPa.ÐbŠ#$Ðb$@NÐb.c§#$c$ Nc.°dÁ#$°d$@N°d.ðdà#$ðd$`Nðd.Pj÷#$Pj$àNPj.0p$$0p$ N0p.Pp'$$Pp$ NPp.pp>$$pp$ Npp.pS$$p$Np. p`$$ p$°N p.Pro$$Pr$0NPr.€r~$$€r$ðN€r.ps’$$ps$0Nps. s¢$$ s$ N s.Às°$$Às$ NÀs.àsÀ$$às$ÐNàs.°uÍ$$°u$ N°u.Ðuß$$Ðu$pNÐu.@vé$$@v$0N@v.pv%$pv$Npv.pw%$pw$ Npw.x %$x$Nx. y.%$ y$€N y. z>%$ z$pN z.zM%$z$`Nz.ðz^%$ðz$0Nðz. {p%$ {$N {. |%$ |$`N |.€|”%$€|$`N€|.à€¤%$à€$@Nà€. ¾%$ $Ð	N .ðŠÔ%$ðŠ$ÀNðŠ.°Œï%$°Œ$ÀN°Œ.p&$p$Np.€Ž&$€Ž$pN€Ž.ðŽ2&$ðŽ$ÐNðŽ.?&$$ N.à’P&$à’$0Nà’.”b&$”$pN”.€”{&$€”$@N€”.—&$$€N.@–©&$@–$N@–.P—¶&$P—$ NP—.ð—É&$ð—$ Nð—.˜Ú&$˜$@N˜.Йñ&$Й$ NЙ.pš'$pš$`Npš.Л1'$Л$`NЛ.0P'$0$PN0.€n'$€$ N€. ¡Š'$ ¡$@N ¡.`£¦'$`£$ðN`£.P¦Â'$P¦$ðNP¦.@¨Ý'$@¨$€N@¨.(÷'$($•N(	V&à	V&à	V&à	)V&à"	3V&à&	>V&à.	IV&à6	TV&à>	^V&àB	hV&àF	rV&àJ	}V&àR	d¦adbd*bfUö¬g.`ª($`ª$N`ª.`«($`«$0N`«.«6($«$°N«.@¯M($@¯$ N@¯.`¯[($`¯$`N`¯./j($/$pN/.0°z($0°$pN0°. °ˆ($ °$ N °.0š($0$@N0.±«($±$N±.³È($³$pN³.p³Ý($p³$°Np³. µê($ µ$ N µ.@¶ù($@¶$ N@¶.`·)$`·$PN`·.°¸)$°¸$@N°¸.ð¸8)$ð¸$ÐNð¸.:P)$:$ N:.`¼])$`¼$pN`¼.мg)$м$@Nм.½{)$½$ N½.°½“)$°½$0N°½.àÁ±)$àÁ$NàÁ.ðÁÈ)$ðÁ$NðÁ.ÂÜ)$Â$€NÂ.€Âõ)$€Â$N€Â.Â*$Â$NÂ. Å!*$ Å$(N Åd`3þ$þ1þLþ^þmþ€þ–þ©þ¸þÈþÙþæþüþþ!þ.þ>þTþaþnþ{þ“þ¡þ¾þØþèþùþ
þþ*þ@þSþiþƒþ”þ§þ¹þÉþÚþïþþþ+þ<þNþhþ‚þ”þ¨þ¶þÃþÑþÞþòþþþ5þWþqþ€þþœþ©þ¸þÊþÛþïþþþþ,þ;þMþ_þqþ…þ“þ¨þÄþÔþãþöþ
þþ,þ;þ^þoþˆþþ¶þÈþàþòþþþ(þ9þGþ]þoþ‡þ™þ¨þÁþÖþçþùþþþ+þ8þFþTþfþwþ…þ—þªþ¼þÎþàþöþ	þ)	þE	þT	þd	þˆ	þŸ	þ¶	þÍ	þÙ	þô	þ	
þ+
þA
þ^
þn
þ
þš
þ®
þ¿
þÏ
þß
ñ

 '.4:?FNT\dltyËÍÎÏÐÑÓÔÕÖרÙÚÛÝÞßàáâãäåæçèö÷øùûüýþÿ	
 !"$%&'()*+,-./0123456789;<=>?@ABCDEFGIJKLNOPQRSTUZ\]^_`abcdefghijklmnÉÊÌÒÜéêëìíîïðñòóôõú
#:HMVWXY[oËÍÎÏÐÑÓÔÕÖרÙÚÛÝÞßàáâãäåæçèö÷øùûüýþÿ	
 !"$%&'()*+,-./0123456789;<=>?@ABCDEFGIJKLNOPQRSTUZ\]^_`abcdefghijklmn _PyInit_mtrand_PyBaseObject_Type_PyBool_Type_PyBytes_FromStringAndSize_PyCFunction_Type_PyCMethod_New_PyCapsule_GetName_PyCapsule_GetPointer_PyCapsule_IsValid_PyCapsule_New_PyCapsule_Type_PyCode_NewEmpty_PyDict_Copy_PyDict_GetItemString_PyDict_GetItemWithError_PyDict_New_PyDict_Next_PyDict_SetItem_PyDict_SetItemString_PyDict_Size_PyDict_Type_PyErr_Clear_PyErr_ExceptionMatches_PyErr_Format_PyErr_GivenExceptionMatches_PyErr_NormalizeException_PyErr_Occurred_PyErr_SetObject_PyErr_SetString_PyErr_WarnEx_PyErr_WarnFormat_PyEval_RestoreThread_PyEval_SaveThread_PyExc_AttributeError_PyExc_DeprecationWarning_PyExc_Exception_PyExc_ImportError_PyExc_IndexError_PyExc_KeyError_PyExc_NameError_PyExc_OverflowError_PyExc_RuntimeError_PyExc_StopIteration_PyExc_SystemError_PyExc_TypeError_PyExc_ValueError_PyException_GetTraceback_PyException_SetTraceback_PyFloat_AsDouble_PyFloat_FromDouble_PyFloat_Type_PyFrame_New_PyGC_Disable_PyGC_Enable_PyImport_AddModule_PyImport_GetModule_PyImport_GetModuleDict_PyImport_ImportModule_PyImport_ImportModuleLevelObject_PyInterpreterState_GetID_PyList_Append_PyList_AsTuple_PyList_New_PyList_Type_PyLong_AsLong_PyLong_AsSsize_t_PyLong_FromLong_PyLong_FromSsize_t_PyLong_FromString_PyLong_Type_PyMem_Malloc_PyMem_Realloc_PyMethod_Type_PyModuleDef_Init_PyModule_GetDict_PyModule_GetName_PyModule_NewObject_PyNumber_Add_PyNumber_InPlaceAdd_PyNumber_InPlaceTrueDivide_PyNumber_Index_PyNumber_Long_PyNumber_Multiply_PyNumber_Remainder_PyNumber_Subtract_PyOS_snprintf_PyObject_Call_PyObject_CallFinalizerFromDealloc_PyObject_Format_PyObject_GC_IsFinalized_PyObject_GC_UnTrack_PyObject_GenericGetAttr_PyObject_GetAttr_PyObject_GetAttrString_PyObject_GetItem_PyObject_GetIter_PyObject_Hash_PyObject_IsInstance_PyObject_IsTrue_PyObject_Not_PyObject_RichCompare_PyObject_SetAttr_PyObject_SetAttrString_PyObject_SetItem_PyObject_Size_PyObject_VectorcallDict_PySequence_Contains_PySequence_List_PySequence_Tuple_PySlice_New_PyThreadState_Get_PyTraceBack_Here_PyTuple_New_PyTuple_Pack_PyTuple_Type_PyType_IsSubtype_PyType_Modified_PyType_Ready_PyUnicode_AsUTF8_PyUnicode_Compare_PyUnicode_Concat_PyUnicode_Decode_PyUnicode_Format_PyUnicode_FromFormat_PyUnicode_FromString_PyUnicode_FromStringAndSize_PyUnicode_InternFromString_PyUnicode_New_PyUnicode_Type_PyUnstable_Code_NewWithPosOnlyArgs_PyVectorcall_Function_Py_EnterRecursiveCall_Py_LeaveRecursiveCall_Py_Version__PyDict_GetItem_KnownHash__PyDict_NewPresized__PyObject_GenericGetAttrWithDict__PyObject_GetDictPtr__PyThreadState_UncheckedGet__PyType_Lookup__PyUnicode_FastCopyCharacters__Py_Dealloc__Py_EllipsisObject__Py_FalseStruct__Py_NoneStruct__Py_TrueStruct___stack_chk_fail___stack_chk_guard_acos_ceil_cos_exp_expf_expm1_floor_fmod_free_log_log1p_log1pf_logf_malloc_memcmp_memcpy_memset_pow_powfdyld_stub_binder___pyx_pymod_create___pyx_pymod_exec_mtrand_Py_XDECREF___Pyx_modinit_type_init_code___Pyx_modinit_type_import_code___Pyx_modinit_variable_import_code___Pyx_modinit_function_import_code___Pyx_ImportDottedModule___Pyx_Import___Pyx_ImportFrom___pyx_f_5numpy_import_array___Pyx__GetModuleGlobalName___Pyx_AddTraceback___Pyx_CreateStringTabAndInitStrings___Pyx_GetBuiltinName___Pyx_PyObject_GetAttrStrNoError___Pyx_PyObject_GetAttrStr_ClearAttributeError___Pyx_PyErr_ExceptionMatchesInState___Pyx_ErrRestoreInState___Pyx_PyErr_ExceptionMatchesTuple___Pyx_PyErr_GivenExceptionMatches___Pyx_inner_PyErr_GivenExceptionMatches2___Pyx_PyErr_GivenExceptionMatchesTuple___Pyx_IsSubtype___pyx_f_5numpy_6random_6mtrand_11RandomState__initialize_bit_generator___pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss___pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw___Pyx_PyObject_Call___Pyx_Raise___pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState___pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr_____pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str_____pyx_tp_traverse_5numpy_6random_6mtrand_RandomState___pyx_tp_clear_5numpy_6random_6mtrand_RandomState___pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init_____pyx_tp_new_5numpy_6random_6mtrand_RandomState___Pyx_PyObject_FastCallDict___pyx_specialmethod___pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr_____pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate_____pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate_____pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce_____pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed___pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state___pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state___pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample___pyx_pw_5numpy_6random_6mtrand_11RandomState_21random___pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta___pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential___pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential___pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint___pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint___pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes___pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice___pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform___pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand___pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn___pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers___pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma___pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma___pyx_pw_5numpy_6random_6mtrand_11RandomState_53f___pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f___pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare___pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare___pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy___pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t___pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises___pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto___pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull___pyx_pw_5numpy_6random_6mtrand_11RandomState_71power___pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace___pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel___pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic___pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal___pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh___pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald___pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular___pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson___pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf___pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric___pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric___pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries___pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet___pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle___pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation___Pyx_CheckKeywordStrings___Pyx_ParseOptionalKeywords___Pyx_PyUnicode_Equals___Pyx_IternextUnpackEndCheck___Pyx_IterFinish___Pyx_GetItemInt_Fast___Pyx_PyDict_GetItem___Pyx_PyInt_As_int___Pyx_PyNumber_IntOrLong___Pyx_PyNumber_IntOrLongWrongResultType___Pyx__ExceptionSave___Pyx__GetException___Pyx__ExceptionReset___Pyx_PyInt_As_Py_intptr_t___Pyx_PyObject_GetSlice___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice___Pyx_PyInt_BoolEqObjC___Pyx_TypeTest___Pyx_PyObject_SetSlice___Pyx_PyObject_GetItem___Pyx_PyObject_IsTrueAndDecref___Pyx_PyObject_GetIndex___Pyx_PyObject_GetItem_Slow___Pyx_PyInt_As_long___pyx_f_5numpy_6random_6mtrand_int64_to_long___Pyx_PyInt_As_int64_t___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle___Pyx_SetItemInt_Fast___pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generator___pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator___Pyx_GetVtable___Pyx_ImportType_3_0_12___Pyx_ImportVoidPtr_3_0_12___Pyx_ImportFunction_3_0_12___pyx_pw_5numpy_6random_6mtrand_1seed___pyx_pw_5numpy_6random_6mtrand_3get_bit_generator___pyx_pw_5numpy_6random_6mtrand_5set_bit_generator___pyx_pw_5numpy_6random_6mtrand_7sample___pyx_pw_5numpy_6random_6mtrand_9ranf_random_standard_uniform_f_random_standard_uniform_random_standard_uniform_fill_random_standard_uniform_fill_f_random_standard_exponential_random_standard_exponential_fill_random_standard_exponential_f_random_standard_exponential_fill_f_random_standard_exponential_inv_fill_random_standard_exponential_inv_fill_f_random_standard_normal_random_standard_normal_fill_random_standard_normal_f_random_standard_normal_fill_f_random_standard_gamma_random_standard_gamma_f_random_positive_int64_random_positive_int32_random_positive_int_random_uint_random_loggam_random_normal_random_exponential_random_uniform_random_gamma_random_gamma_f_random_beta_random_chisquare_random_f_random_standard_cauchy_random_pareto_random_weibull_random_power_random_laplace_random_gumbel_random_logistic_random_lognormal_random_rayleigh_random_standard_t_random_poisson_random_negative_binomial_random_binomial_btpe_random_binomial_inversion_random_binomial_random_noncentral_chisquare_random_noncentral_f_random_wald_random_vonmises_random_logseries_random_geometric_search_random_geometric_inversion_random_geometric_random_zipf_random_triangular_random_interval_random_bounded_uint64_random_buffered_bounded_uint32_random_buffered_bounded_uint16_random_buffered_bounded_uint8_random_buffered_bounded_bool_random_bounded_uint64_fill_random_bounded_uint32_fill_random_bounded_uint16_fill_random_bounded_uint8_fill_random_bounded_bool_fill_random_multinomial_legacy_gauss_legacy_standard_exponential_legacy_standard_gamma_legacy_gamma_legacy_pareto_legacy_weibull_legacy_power_legacy_chisquare_legacy_rayleigh_legacy_noncentral_chisquare_legacy_noncentral_f_legacy_wald_legacy_normal_legacy_lognormal_legacy_standard_t_legacy_negative_binomial_legacy_standard_cauchy_legacy_beta_legacy_f_legacy_exponential_legacy_random_binomial_legacy_random_hypergeometric_legacy_random_poisson_legacy_random_zipf_legacy_random_geometric_legacy_random_multinomial_legacy_vonmises_legacy_logseries___pyx_k_Cannot_take_a_larger_sample_than___pyx_k_DeprecationWarning___pyx_k_Fewer_non_zero_entries_in_p_than___pyx_k_ImportError___pyx_k_IndexError___pyx_k_Invalid_bit_generator_The_bit_ge___pyx_k_MT19937___pyx_k_MT19937_2___pyx_k_Negative_dimensions_are_not_allo___pyx_k_OverflowError___pyx_k_Providing_a_dtype_with_a_non_nat___pyx_k_RandomState___pyx_k_RandomState_binomial_line_3353___pyx_k_RandomState_bytes_line_805___pyx_k_RandomState_chisquare_line_1910___pyx_k_RandomState_choice_line_841___pyx_k_RandomState_dirichlet_line_4394___pyx_k_RandomState_exponential_line_500___pyx_k_RandomState_f_line_1729___pyx_k_RandomState_gamma_line_1645___pyx_k_RandomState_geometric_line_3772___pyx_k_RandomState_gumbel_line_2764___pyx_k_RandomState_hypergeometric_line___pyx_k_RandomState_laplace_line_2670___pyx_k_RandomState_logistic_line_2888___pyx_k_RandomState_lognormal_line_2974___pyx_k_RandomState_logseries_line_3969___pyx_k_RandomState_multinomial_line_425___pyx_k_RandomState_multivariate_normal___pyx_k_RandomState_negative_binomial_li___pyx_k_RandomState_noncentral_chisquare___pyx_k_RandomState_noncentral_f_line_18___pyx_k_RandomState_normal_line_1454___pyx_k_RandomState_pareto_line_2354___pyx_k_RandomState_permutation_line_466___pyx_k_RandomState_poisson_line_3593___pyx_k_RandomState_power_line_2561___pyx_k_RandomState_rand_line_1177___pyx_k_RandomState_randint_line_679___pyx_k_RandomState_randn_line_1221___pyx_k_RandomState_random_integers_line___pyx_k_RandomState_random_sample_line_3___pyx_k_RandomState_rayleigh_line_3090___pyx_k_RandomState_seed_line_228___pyx_k_RandomState_shuffle_line_4543___pyx_k_RandomState_standard_cauchy_line___pyx_k_RandomState_standard_exponential___pyx_k_RandomState_standard_gamma_line___pyx_k_RandomState_standard_normal_line___pyx_k_RandomState_standard_t_line_2150___pyx_k_RandomState_tomaxint_line_621___pyx_k_RandomState_triangular_line_3244___pyx_k_RandomState_uniform_line_1050___pyx_k_RandomState_vonmises_line_2265___pyx_k_RandomState_wald_line_3167___pyx_k_RandomState_weibull_line_2457___pyx_k_RandomState_zipf_line_3676___pyx_k_Range_exceeds_valid_bounds___pyx_k_RuntimeWarning___pyx_k_Sequence___pyx_k_Shuffling_a_one_dimensional_arra___pyx_k_T___pyx_k_This_function_is_deprecated_Plea___pyx_k_This_function_is_deprecated_Plea_2___pyx_k_TypeError___pyx_k_Unsupported_dtype_r_for_randint___pyx_k_UserWarning___pyx_k_ValueError___pyx_k__4___pyx_k__5___pyx_k__53___pyx_k__6___pyx_k__62___pyx_k_a___pyx_k_a_and_p_must_have_same_size___pyx_k_a_cannot_be_empty_unless_no_sam___pyx_k_a_must_be_1_dimensional___pyx_k_a_must_be_1_dimensional_or_an_in___pyx_k_a_must_be_greater_than_0_unless___pyx_k_add___pyx_k_all___pyx_k_all_2___pyx_k_allclose___pyx_k_alpha___pyx_k_alpha_0___pyx_k_any___pyx_k_arange___pyx_k_args___pyx_k_array___pyx_k_array_is_read_only___pyx_k_asarray___pyx_k_astype___pyx_k_at_0x_X___pyx_k_atol___pyx_k_b___pyx_k_bg_type___pyx_k_binomial_n_p_size_None_Draw_sam___pyx_k_bit_generator___pyx_k_bitgen___pyx_k_bool___pyx_k_bytes_length_Return_random_byte___pyx_k_can_only_re_seed_a_MT19937_BitGe___pyx_k_capsule___pyx_k_casting___pyx_k_check_valid___pyx_k_check_valid_must_equal_warn_rais___pyx_k_chisquare_df_size_None_Draw_sam___pyx_k_choice_a_size_None_replace_True___pyx_k_class___pyx_k_class_getitem___pyx_k_cline_in_traceback___pyx_k_collections_abc___pyx_k_copy___pyx_k_count_nonzero___pyx_k_cov___pyx_k_cov_must_be_2_dimensional_and_sq___pyx_k_covariance_is_not_symmetric_posi___pyx_k_cumsum___pyx_k_df___pyx_k_dfden___pyx_k_dfnum___pyx_k_dirichlet_alpha_size_None_Draw___pyx_k_disable___pyx_k_dot___pyx_k_empty___pyx_k_empty_like___pyx_k_enable___pyx_k_enter___pyx_k_eps___pyx_k_equal___pyx_k_exit___pyx_k_exponential_scale_1_0_size_None___pyx_k_f_dfnum_dfden_size_None_Draw_sa___pyx_k_finfo___pyx_k_flags___pyx_k_float64___pyx_k_format___pyx_k_gamma_shape_scale_1_0_size_None___pyx_k_gauss___pyx_k_gc___pyx_k_geometric_p_size_None_Draw_samp___pyx_k_get___pyx_k_get_state_and_legacy_can_only_be___pyx_k_greater___pyx_k_gumbel_loc_0_0_scale_1_0_size_N___pyx_k_has_gauss___pyx_k_high___pyx_k_hypergeometric_ngood_nbad_nsamp___pyx_k_id___pyx_k_ignore___pyx_k_import___pyx_k_index___pyx_k_initializing___pyx_k_int16___pyx_k_int32___pyx_k_int64___pyx_k_int8___pyx_k_intp___pyx_k_isenabled___pyx_k_isfinite___pyx_k_isnan___pyx_k_isnative___pyx_k_isscalar___pyx_k_issubdtype___pyx_k_item___pyx_k_itemsize___pyx_k_kappa___pyx_k_key___pyx_k_kwargs___pyx_k_l___pyx_k_lam___pyx_k_laplace_loc_0_0_scale_1_0_size___pyx_k_left___pyx_k_left_mode___pyx_k_left_right___pyx_k_legacy___pyx_k_legacy_can_only_be_True_when_the___pyx_k_legacy_seeding___pyx_k_length___pyx_k_less___pyx_k_less_equal___pyx_k_loc___pyx_k_lock___pyx_k_logical_or___pyx_k_logistic_loc_0_0_scale_1_0_size___pyx_k_lognormal_mean_0_0_sigma_1_0_si___pyx_k_logseries_p_size_None_Draw_samp___pyx_k_low___pyx_k_main___pyx_k_may_share_memory___pyx_k_mean___pyx_k_mean_and_cov_must_have_same_leng___pyx_k_mean_must_be_1_dimensional___pyx_k_mode___pyx_k_mode_right___pyx_k_mt19937___pyx_k_mu___pyx_k_multinomial_n_pvals_size_None_D___pyx_k_multivariate_normal_mean_cov_si___pyx_k_n___pyx_k_name___pyx_k_nbad___pyx_k_ndim___pyx_k_negative_binomial_n_p_size_None___pyx_k_newbyteorder___pyx_k_ngood___pyx_k_ngood_nbad_nsample___pyx_k_nonc___pyx_k_noncentral_chisquare_df_nonc_si___pyx_k_noncentral_f_dfnum_dfden_nonc_s___pyx_k_normal_loc_0_0_scale_1_0_size_N___pyx_k_np___pyx_k_nsample___pyx_k_numpy_core_multiarray_failed_to___pyx_k_numpy_core_umath_failed_to_impor___pyx_k_numpy_linalg___pyx_k_object___pyx_k_object_which_is_not_a_subclass___pyx_k_operator___pyx_k_p___pyx_k_p_must_be_1_dimensional___pyx_k_pareto_a_size_None_Draw_samples___pyx_k_permutation_x_Randomly_permute___pyx_k_pickle___pyx_k_poisson_lam_1_0_size_None_Draw___pyx_k_poisson_lam_max___pyx_k_pos___pyx_k_power_a_size_None_Draws_samples___pyx_k_probabilities_are_not_non_negati___pyx_k_probabilities_contain_NaN___pyx_k_probabilities_do_not_sum_to_1___pyx_k_prod___pyx_k_pvals___pyx_k_pvals_must_be_a_1_d_sequence___pyx_k_pyx_vtable___pyx_k_raise___pyx_k_rand_2___pyx_k_rand_d0_d1_dn_Random_values_in___pyx_k_randint_low_high_None_size_None___pyx_k_randn_d0_d1_dn_Return_a_sample___pyx_k_random_integers_low_high_None_s___pyx_k_random_sample_size_None_Return___pyx_k_randomstate_ctor___pyx_k_range___pyx_k_ravel___pyx_k_rayleigh_scale_1_0_size_None_Dr___pyx_k_reduce_2___pyx_k_replace___pyx_k_reshape___pyx_k_return_index___pyx_k_reversed___pyx_k_right___pyx_k_rtol___pyx_k_scale___pyx_k_searchsorted___pyx_k_seed_seed_None_Reseed_a_legacy___pyx_k_set_state_can_only_be_used_with___pyx_k_shape___pyx_k_shuffle_x_Modify_a_sequence_in___pyx_k_side___pyx_k_sigma___pyx_k_singleton___pyx_k_size___pyx_k_sort___pyx_k_spec___pyx_k_sqrt___pyx_k_stacklevel___pyx_k_standard_cauchy_size_None_Draw___pyx_k_standard_exponential_size_None___pyx_k_standard_gamma_shape_size_None___pyx_k_standard_normal_size_None_Draw___pyx_k_standard_t_df_size_None_Draw_sa___pyx_k_state___pyx_k_state_dictionary_is_not_valid___pyx_k_state_must_be_a_dict_or_a_tuple___pyx_k_str___pyx_k_strides___pyx_k_subtract___pyx_k_sum___pyx_k_sum_pvals_1_1_0___pyx_k_sum_pvals_1_astype_np_float64_1___pyx_k_svd___pyx_k_take___pyx_k_test___pyx_k_tobytes___pyx_k_tol___pyx_k_tomaxint_size_None_Return_a_sam___pyx_k_triangular_left_mode_right_size___pyx_k_u4___pyx_k_uint16___pyx_k_uint32___pyx_k_uint64___pyx_k_uint8___pyx_k_uniform_low_0_0_high_1_0_size_N___pyx_k_unique___pyx_k_unsafe___pyx_k_vonmises_mu_kappa_size_None_Dra___pyx_k_wald_mean_scale_size_None_Draw___pyx_k_warn___pyx_k_warnings___pyx_k_weibull_a_size_None_Draw_sample___pyx_k_writeable___pyx_k_x___pyx_k_x_must_be_an_integer_or_at_least___pyx_k_you_are_shuffling_a___pyx_k_zeros___pyx_k_zipf_a_size_None_Draw_samples_f___pyx_doc_5numpy_6random_6mtrand_11RandomState_12seed___pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state___pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_state___pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_sample___pyx_doc_5numpy_6random_6mtrand_11RandomState_20random___pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta___pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential___pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential___pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxint___pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint___pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes___pyx_doc_5numpy_6random_6mtrand_11RandomState_34choice___pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniform___pyx_doc_5numpy_6random_6mtrand_11RandomState_38rand___pyx_doc_5numpy_6random_6mtrand_11RandomState_40randn___pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integers___pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma___pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma___pyx_doc_5numpy_6random_6mtrand_11RandomState_52f___pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_f___pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare___pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare___pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy___pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t___pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises___pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto___pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull___pyx_doc_5numpy_6random_6mtrand_11RandomState_70power___pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace___pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel___pyx_doc_5numpy_6random_6mtrand_11RandomState_76logistic___pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormal___pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleigh___pyx_doc_5numpy_6random_6mtrand_11RandomState_82wald___pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangular___pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_90poisson___pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf___pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometric___pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric___pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries___pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet___pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle___pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutation___pyx_doc_5numpy_6random_6mtrand_seed___pyx_doc_5numpy_6random_6mtrand_2get_bit_generator___pyx_doc_5numpy_6random_6mtrand_4set_bit_generator___pyx_doc_5numpy_6random_6mtrand_6sample___pyx_doc_5numpy_6random_6mtrand_8ranf_we_double_ke_double_we_float_ke_float_wi_double_ki_double_fi_double_wi_float_ki_float_fi_float_fe_double_fe_float__dyld_private___pyx_moduledef___pyx_moduledef_slots___Pyx_check_single_interpreter.main_interpreter_id___pyx_mdef_5numpy_6random_6mtrand_1seed___pyx_mdef_5numpy_6random_6mtrand_3get_bit_generator___pyx_mdef_5numpy_6random_6mtrand_5set_bit_generator___pyx_mdef_5numpy_6random_6mtrand_7sample___pyx_mdef_5numpy_6random_6mtrand_9ranf___pyx_type_5numpy_6random_6mtrand_RandomState___pyx_methods_5numpy_6random_6mtrand_RandomState___pyx_getsets_5numpy_6random_6mtrand_RandomState___pyx_module_is_main_numpy__random__mtrand___pyx_methods___pyx_m___pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX___pyx_mstate_global_static___pyx_builtin_id___pyx_builtin_ValueError___pyx_builtin_TypeError___pyx_builtin_RuntimeWarning___pyx_builtin_range___pyx_builtin_DeprecationWarning___pyx_builtin_OverflowError___pyx_builtin_UserWarning___pyx_builtin_reversed___pyx_builtin_IndexError___pyx_builtin_ImportError___pyx_vtable_5numpy_6random_6mtrand_RandomState___pyx_vtabptr_5numpy_6random_6mtrand_RandomState___pyx_f_5numpy_6random_7_common_double_fill___pyx_f_5numpy_6random_7_common_cont_PyArray_API___pyx_f_5numpy_6random_17_bounded_integers__rand_int32___pyx_f_5numpy_6random_17_bounded_integers__rand_int64___pyx_f_5numpy_6random_17_bounded_integers__rand_int16___pyx_f_5numpy_6random_17_bounded_integers__rand_int8___pyx_f_5numpy_6random_17_bounded_integers__rand_uint64___pyx_f_5numpy_6random_17_bounded_integers__rand_uint32___pyx_f_5numpy_6random_17_bounded_integers__rand_uint16___pyx_f_5numpy_6random_17_bounded_integers__rand_uint8___pyx_f_5numpy_6random_17_bounded_integers__rand_bool___pyx_f_5numpy_6random_7_common_kahan_sum___pyx_f_5numpy_6random_7_common_cont_broadcast_3___pyx_f_5numpy_6random_7_common_check_array_constraint___pyx_f_5numpy_6random_7_common_validate_output_shape___pyx_f_5numpy_6random_7_common_check_constraint___pyx_f_5numpy_6random_7_common_disc___pyx_f_5numpy_6random_7_common_discrete_broadcast_iii___pyx_vtabptr_5numpy_6random_13bit_generator_SeedSequence___pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX___pyx_vp_5numpy_6random_7_common_MAXSIZE___pyx_code_cache.0___pyx_code_cache.1___pyx_code_cache.2/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-imv9wko1/numpy/random/mtrand.cpython-312-iphonesimulator.so.p/numpy/random/mtrand.pyx.c/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-imv9wko1/numpy/random/mtrand.cpython-312-iphonesimulator.so.p/meson-generated_numpy_random_mtrand.pyx.c.o___pyx_pymod_create/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-imv9wko1/../numpy/random/src/distributions/distributions.c/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-imv9wko1/numpy/random/mtrand.cpython-312-iphonesimulator.so.p/src_distributions_distributions.c.o/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-imv9wko1/../numpy/random/src/legacy/legacy-distributions.c/Users/appveyor/projects/mobile-forge/build/cp312/numpy/1.26.4/.mesonpy-imv9wko1/numpy/random/mtrand.cpython-312-iphonesimulator.so.p/src_legacy_legacy-distributions.c.o