Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / _generator.cpython-312.so
Size: Mime:
ELF(4`
4 	(444   ø	 ø	@ ø	 8
 8
à@8ý	8}
8}
(X@,ø	,8
,8
ÀÀRåtd ø	 8
 8
àQåtdTTT¼¼pô=ô=ô=88„Androidr27c12479018GNUšÓ§@ŠUö¿Žl¦®Cçþ=ARd}¤·ÃÔé3BUlz‡“­ÉÑÞñü	,>Qbr’©¾Úïÿ-=Nes~‰¾Öæòÿ5CYrˆž¬¾Óíú
0>J[tš­Îßô4CSdvŠ¡±ÂÒàíù:O]nŠœ©µ¼ÁÐßîÿ(5I]u‡š­´ÂÏàí	'	;	M	c	{	Œ	š	«	ú	¸
Ä
×
£·ÉÞî

?
Ÿ
½
Ö
ç
ö
.G[o„Ÿ´æ÷*4GWi™«½Ýë	k„š®ºÈØò+>Q_l~’–œ¢©®²·¼ÀÅËÏÔÙOV^“/À	>³á¦	6AØ	XÛ	9˜	LƒaÄ	f¡®	ÉË	v[
¹Ê	g
9Ê	€˜	~	nqÉÎ	4‰˜	ìn­ž	`áý©	®1Ñ	61¡¨	"Du°	LÐåÌ	nËgÑ	âæIÔ	/é(è
½©	&Ûå±	RíIÅ	p'­¯	x­
?Ì	¦mã©	>ùÚ	<Çó¦	£È	ZÍÖ	t6%°	P7É	4(
y™	eé°	üÊ™Ø	–W1	L&
I¶	0‘
ɜ	dx
9Ý	¨Þáá	œ
ɨ	ôn
}›	—ɫ	&
 	,¨qÃ	ðTp	(L
9²	Ó	§	˜	
ª	°q­	,Ž
¹Ç	ê9…š	ø‡½¦	RSÎ	v÷
}ž	0Ѧ	zï«	VÄE¬	*ýq¬	üUÕ	x¾		˜	0I
œ	<uÇÄ	|ëٗ	(?9 	8Uq£	L1Ù	Èðy¶	HýÏ	4e r c
mc
mÙ €$002@€HTŠ
(¤„@•
€ T@€P  @€	£!‰
D©°D"ÙÜåéîôùûÿؔÎ"Œ´—ù`c ‘tkøˆ’e$ëŽW~¢¡“D\~”ñHÊÌH)/á«ï\Ñ=§Âß	Ì讋S³Ìî(ç‚`GÆn…s‰TL±Ñ³ÅÆ÷kúäPeߺa«8¯p6ÖÇkΑÒ(²y¾M¡d䞓8±çƒÏt`³×A•tbÞºSNDp3`%Ÿsžޣ{éRÐmL ,,ݪ¼<¬X§†…­+ñ*²ˆO”jüSÆpғšP{Þ`ýµSâàh”“øCYd˜ˆ¥¥÷mÌ#má«ïä9jg#Jݼã2ÙùбêÓ75:
	.Ìڟ“{·K€Øf™|‰’vŠ6ž}ڃ1<ÿ¡·Ø__cxa_finalize__cxa_atexit__register_atforkPyInit__generatorPyModuleDef_InitPyThreadState_GetPyInterpreterState_GetIDPyErr_SetStringPyObject_GetAttrStringPyModule_NewObject_Py_DeallocPyModule_GetDictPyDict_SetItemStringPyErr_ExceptionMatchesPyErr_ClearPyExc_ImportErrorPyExc_AttributeError_Py_NoneStructPyImport_AddModulePyObject_SetAttrStringPyOS_snprintfPyErr_WarnExPyTuple_NewPyBytes_FromStringAndSizePyUnicode_FromStringAndSizestrrchrPyType_ReadyPyExc_RuntimeErrorPy_VersionPyErr_FormatPyFloat_FromDoublePyLong_FromLongPyLong_FromStringPyEval_GetBuiltinsPyObject_GetItemPyObject_IsTruePyErr_OccurredPyObject_SetAttrPyImport_GetModuleDictPyDict_GetItemString_PyThreadState_UncheckedGetPyObject_RichComparePyExc_TypeError_Py_TrueStruct_Py_FalseStructPyDict_SetItemPyType_ModifiedPyObject_GetAttrPyThread_allocate_lockPyCMethod_NewPyList_NewPyDict_New_PyDict_NewPresized_PyObject_GenericGetAttrWithDictPyObject_GenericGetAttrPyExc_NameErrorPySlice_NewPyTuple_Pack_Py_EllipsisObjectPyUnstable_Code_NewWithPosOnlyArgsPyCapsule_NewPyImport_ImportModulePyException_GetTracebackPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyExc_SystemError_PyObject_GetDictPtr_PyDict_GetItem_KnownHashPyObject_NotPyCode_NewEmptyPyUnicode_FromFormatPyUnicode_AsUTF8PyMem_ReallocPyFrame_NewPyTraceBack_HerePyException_SetTracebackPyMem_MallocPyErr_NormalizeExceptionPyImport_GetModulePyImport_ImportModuleLevelObjectPyModule_GetNamePyUnicode_FromStringPyUnicode_ConcatPyCapsule_GetPointerPyExc_ModuleNotFoundErrorPyCapsule_TypePyExc_Exception_PyObject_GC_NewPyObject_GC_TrackPyObject_GC_UnTrackPyObject_ClearWeakRefsPyObject_GC_DelPyTuple_GetSlicePyTuple_GetItemPyObject_FreePyMethod_NewPyDict_SizePyDict_NextPyMem_FreePyErr_NoMemoryPyUnicode_InternFromStringPyExc_RuntimeWarningPyObject_HashPyUnicode_DecodePyErr_GivenExceptionMatchesPyBaseObject_TypePyGC_DisablePyGC_Enablemallocfree_PyType_LookupPyDict_DelItemPyNumber_IndexPyLong_AsSsize_tPyList_TypePyLong_TypePyObject_GetIterPyTuple_TypePyExc_StopIterationPyExc_OverflowErrorPyExc_ZeroDivisionErrorPyGILState_EnsurePyGILState_ReleasePyBytes_FromStringstrlenPyMethod_TypePyNumber_AddPySequence_TuplePyBytes_TypePyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyNumber_InPlaceAddPyCapsule_IsValidPyVectorcall_FunctionPyObject_VectorcallDictPyCFunction_TypePyList_AppendPyUnicode_FormatPyNumber_Remainderrandom_standard_uniform_fillrandom_standard_uniform_fill_fPyUnicode_Typerandom_betarandom_exponentialrandom_standard_exponential_fillrandom_standard_exponential_inv_fillrandom_standard_exponential_fill_frandom_standard_exponential_inv_fill_fPyBool_TypePyLong_FromSsize_tPyFloat_AsDoublerandom_uniformrandom_standard_normal_fillrandom_standard_normal_fill_frandom_normalrandom_standard_gammarandom_standard_gamma_frandom_gammarandom_frandom_noncentral_frandom_chisquarerandom_noncentral_chisquarerandom_standard_cauchyrandom_standard_trandom_vonmisesrandom_paretorandom_weibullrandom_powerrandom_laplacerandom_gumbelrandom_logisticrandom_lognormalrandom_rayleighrandom_waldrandom_triangularrandom_binomialPyLong_FromLongLongPyEval_SaveThreadPyEval_RestoreThreadPyErr_SetObjectPyNumber_SubtractPyNumber_TrueDividePyNumber_Multiplyrandom_negative_binomialPyFloat_Typerandom_poissonrandom_zipfrandom_geometricrandom_hypergeometricrandom_logseriesPyObject_Sizerandom_intervalPyNumber_InPlaceMultiplyPyObject_SetItemPyList_AsTuplePyUnicode_ComparememcmpPyLong_AsLongPyErr_WarnFormatPyExc_DeprecationWarningPyObject_IsSubclassPyObject_CallObjectPyException_SetCausePyNumber_InPlaceTrueDividePyNumber_FloorDividePyLong_FromUnsignedLongLongrandom_bounded_uint64PyExc_ValueErrorPyObject_FormatPyLong_AsLongLongPyExc_IndexErrorvsnprintf_Py_FatalErrorFuncPySequence_ListPyNumber_NegativePyNumber_MatrixMultiplyPyExc_UnboundLocalErrorPyNumber_AbsolutePyLong_FromSize_t_PyLong_Copyrandom_multinomialPyUnicode_New_PyUnicode_FastCopyCharactersPyNumber_Orrandom_multivariate_hypergeometric_countrandom_multivariate_hypergeometric_marginalsPyObject_RichCompareBoolPyLong_AsUnsignedLongPyObject_IsInstancePyErr_FetchPyErr_RestorePyObject_MallocPyExc_NotImplementedErrorPyExc_BufferErrorPyUnicode_FromOrdinalPyBuffer_ReleasePyThread_free_lockPyObject_GetBufferPyIndex_CheckPySlice_TypePyCapsule_GetNamePySequence_Containscosfloorexpm1log1pfexpflogceilacosexpexp2log1ppowfmodlogfpowflogfactorialrandom_standard_uniform_frandom_standard_uniformrandom_standard_exponentialrandom_standard_exponential_frandom_standard_normalrandom_standard_normal_frandom_positive_int64random_positive_int32random_positive_intrandom_uintrandom_loggamrandom_gamma_frandom_binomial_btperandom_binomial_inversionrandom_geometric_searchrandom_geometric_inversionrandom_buffered_bounded_uint32random_buffered_bounded_uint16random_buffered_bounded_uint8random_buffered_bounded_boolrandom_bounded_uint64_fillrandom_bounded_uint32_fillrandom_bounded_uint16_fillrandom_bounded_uint8_fillrandom_bounded_bool_fillmemcpymemmovememsetlibm.soLIBClibc.solibpython3.12.so 8
$8
(8
L}
X}
\}
p}
x}
œ}
¨}
¼}
Ð}
ì}
ð}
~
~
~
~
`~
d~
€~
¨~
¬~
°~
¼~
À~
Ä~
Ð~
Ô~
Ø~
ä~
è~
ì~
ø~
ü~




 
$
(
4
8
H
L
\
`
p
t
„
ˆ
˜
œ
¬
°
´
À
Ä
È
Ô
Ø
Ü
è
ì
ð
ü
€
0€
<€
P€
h€
|€
€€
„€
˜€
 €
¸€



(
,
<
D
h
p

Ё
܁
ð
 ‚
$‚
8‚
X‚
`‚
 ‚
¬‚

Ȃ
̂
؂
ä‚
ð‚
ô‚
ƒ
ƒ
0ƒ
pƒ
|ƒ
¼ƒ

ă
؃
„
4„
8„
D„
H„
T„
X„
d„
h„
t„
x„
€„
„„
ˆ„
„
”„
˜„
 „
¤„
¨„
°„
´„
¸„

Ą
Ȅ
Є
Ԅ
؄
à„
ä„
è„
ð„
ô„
ø„
…
…
…
…
…
…
 …
$…
(…
0…
4…
8…
@…
D…
H…
P…
T…
X…
`…
d…
h…
p…
t…
x…
€…
„…
ˆ…
…
”…
˜…
 …
¤…
¨…
°…
´…
¸…

ą
ȅ
Ѕ
ԅ
؅
à…
ä…
è…
ð…
ô…
ø…
†
†
†
†
†
†
 †
$†
(†
0†
4†
8†
@†
D†
H†
P†
T†
X†
`†
d†
h†
p†
t†
x†
۠
„†
ˆ†
†
Ӡ
˜†
 †
¤†
¨†
°†
´†
¸†

Ć
Ȇ
І
Ԇ
؆
à†
ä†
è†
ð†
ô†
ø†
‡
‡
‡
‡
‡
‡
 ‡
$‡
(‡
0‡
D‡
H‡
P‡
X‡
\‡
`‡
€‡
¸‡
ć
à‡
ä‡
è‡
ì‡
ô‡
ø‡
ˆ
ˆ
ˆ
ˆ
4ˆ
8ˆ
\ˆ
`ˆ
lˆ
pˆ
|ˆ
€ˆ
œˆ
¨ˆ
Ĉ
Ȉ
̈
Ј
؈
܈
èˆ
ìˆ
øˆ
üˆ
‰
‰
‰
‰
(‰
,‰
8‰
<‰
X‰
\‰
l‰
p‰
€‰
„‰
”‰
˜‰
¨‰
¬‰
¼‰
	
Љ
ԉ
ä‰
è‰
ø‰
ü‰
 Š
$Š
0Š
4Š
PŠ
TŠ
`Š
dŠ
pŠ
tŠ
€Š
„Š
Š
”Š
œŠ
 Š
¤Š
¬Š
°Š
´Š
¼Š


Ċ
̊
Њ
Ԋ
܊
àŠ
äŠ
ìŠ
ðŠ
ôŠ
üŠ
‹
‹
‹
‹
‹
‹
 ‹
$‹
,‹
0‹
4‹
<‹
@‹
D‹
L‹
P‹
T‹
\‹
`‹
d‹
l‹
p‹
t‹
|‹
€‹
„‹
Œ‹
‹
”‹
œ‹
 ‹
¤‹
¬‹
°‹
´‹
¼‹

ċ
̋
Ћ
ԋ
܋
à‹
ä‹
ì‹
ð‹
ô‹
ü‹
Œ
Œ
Œ
Œ
Œ
Œ
 Œ
$Œ
,Œ
0Œ
4Œ
<Œ
@Œ
DŒ
LŒ
PŒ
TŒ
\Œ
`Œ
dŒ
lŒ
pŒ
tŒ
|Œ
€Œ
„Œ
ŒŒ
Œ
”Œ
œŒ
 Œ
¤Œ
¬Œ
°Œ
´Œ
¼Œ

Č
̌
Ќ
Ԍ
܌
àŒ
äŒ
ìŒ
ðŒ
ôŒ
üŒ






 
$
,
0
4
<
@
D
L
P
T
\
ì8
ð8
ô8
ø8
ü8
9
*9
+9
,9
69
79
:9
B9
U 9
V$9
W(9
f,9
j09
s49
t89
v<9
w@9
xD9
yH9
~L9
P9
ˆ\9
Œx9
à9
—ø9
 ü9
§:
ª:
°:
½:
¾:
ÄX9
ܜ9
ݼ9
ÞØ9
ßè9
àì9
áˆ9
éÈ9
ê|9
ï¬9
ð°9
ñÀ9
ò”9
ôÄ9
ùh9
ûÐ9
üÜ9
ÿt9
ð9
d9
p9
 9
„9
¤9
Ì9
ä9
	`9
¸9
ô9

€9
˜9
¨9
´9
T9
l9
Ô9
Œ9
9
œê¤ê êœê ê¸ê€¬	 :
$:
(:
,:
0:
4:
8:
<:
@:
	D:

H:
L:
P:

T:
X:
\:
`:
d:
h:
l:
p:
t:
x:
|:
€:
„:
ˆ:
 Œ:
!:
"”:
#˜:
$œ:
% :
&¤:
'¨:
(¬:
)°:
-´:
.¸:
/¼:
0À:
1Ä:
2È:
3Ì:
4Ð:
5Ô:
6Ø:
8Ü:
9à:
;ä:
<è:
=ì:
>ð:
?ô:
@ø:
Aü:
C;
D;
E;
F;
G;
H;
I;
J;
K ;
L$;
M(;
N,;
O0;
P4;
Q8;
R<;
S@;
TD;
XH;
YL;
ZP;
[T;
\X;
]\;
^`;
_d;
`h;
al;
bp;
ct;
dx;
e|;
g€;
h„;
iˆ;
kŒ;
l;
m”;
n˜;
oœ;
p ;
q¤;
r¨;
u¬;
z°;
{´;
|¸;
}¼;
À;
ۀ;
‚È;
ƒÌ;
„Ð;
…Ô;
†Ø;
‡Ü;
‰à;
Šä;
‹è;
ì;
Žð;
ô;
ø;
ü;
<
Ù<
<
‘<
’<
“<
”<
•<
– <
	$<
(<
˜,<
ó0<
™4<
š8<
›<<
œ@<
D<
žH<
ŸL<
¡P<
¢T<
£X<
¤\<
¥`<
¦d<
ëh<
¨l<
©p<
«t<
¬x<
­|<
®€<
¯„<
±ˆ<
²Œ<
³<
ý”<
´˜<
µœ<
¶ <
¤<
õ¨<
·¬<
¸°<
¹´<
º¸<
»¼<
¼À<
¿Ä<
ÀÈ<
ÁÌ<
ÂÐ<
ÃÔ<
ÅØ<
ÆÜ<
Çà<
Èä<
Éè<
Êì<
Ëð<
Ìô<
Íø<
Îü<
Ï=
Ð=
Ñ=
Ò=
Ó=
Ô=
Õ=
=
þ =
æ$=
(=
ú,=
Ö0=
×4=
Ø4294967296name '%U' is not definedexactlyMissing type object
        Gets the bit generator instance used by the generator

        Returns
        -------
        bit_generator : BitGenerator
            The bit generator instance used by the generator
        value too large to perform divisioncopy_fortran_rand_int16Expected a dimension of size %zu, got %zumemviewslice is already initialized!numpy.random._generator.Generator.noncentral_ftuple'NoneType' object is not iterableView.MemoryView._unellipsifymemviewsliceobjView.MemoryView.memoryview.copyView.MemoryView.memoryview_copySeedSequence%.200s() takes no arguments (%zd given)__name__ must be set to a string objectsetting function's dictionary to a non-dict%s() got multiple values for keyword argument '%U'__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)'long''unsigned long'numpy.random._generator.Generator.poissonnumpy.random._generator.Generator.logseries__getattr__Argument '%.200s' must not be None00010203040506070809101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899View.MemoryView.__pyx_unpickle_Enum__set_statendarray_rand_bool_rand_int32does not matchShared Cython type %.200s has the wrong size, try recompilingnumpy.random._generator.Generator.choicetoo many values to unpack (expected %zd)'double''long double'numpy.random._generator.Generator.gumbelView.MemoryView.pybuffer_indexView.MemoryView.memoryview.is_c_contigflexiblevalidate_output_shapePyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)C function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)numpy.core._multiarray_umathnumpy.random._generator.Generator.__str__%.200s() keywords must be stringsBuffer dtype mismatch, expected %s%s%s but got %snumpy.random._generator.Generator.noncentral_chisquareView.MemoryView.memoryview.shape.__get__View.MemoryView.memoryview.suboffsets.__get__View.MemoryView.memoryview.itemsize.__get__View.MemoryView._memoryviewslice.__reduce_cython__complexfloating__qualname__need more than %zd value%.1s to unpacknumpy.random._generator.Generator.standard_normalnumpy.random._generator.Generator.multivariate_hypergeometricobject of type 'NoneType' has no len()multiple bases have vtable conflict: '%.200s' and '%.200s'View.MemoryView.Enum.__setstate_cython__View.MemoryView.memoryview.assign_item_from_objectView.MemoryView.memoryview.ndim.__get__View.MemoryView.memoryview.size.__get__integer%.200s does not export expected C function %.200sloader__package__func_docat most%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random._generator.Generator.__reduce__Item size of buffer (%zu byte%s) does not match size of '%s' (%zu byte%s)can't convert negative value to size_tView.MemoryView.array.__getattr__PyObject_GetBuffer: view==NULL argument is obsoleteView.MemoryView.memoryview.__reduce_cython__floatingLEGACY_POISSON_LAM_MAXdiscPyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)module was compiled against NumPy C-API version 0x%x (NumPy 1.20) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.numpy.random._generator.Generator.__repr__numpy.random._generator.Generator.__setstate__an integer is requiredexception causes must derive from BaseExceptionnumpy.random._generator.Generator.standard_exponentialassignmentBuffer dtype mismatch, expected '%s' but got %s in '%s.%s'numpy.random._generator.Generator.standard_t'NoneType' object is not subscriptableView.MemoryView.Enum.__init__View.MemoryView.array_cwrapperView.MemoryView.memoryview.base.__get__POISSON_LAM_MAX_rand_uint8_rand_int64numpy._core._multiarray_umath_ARRAY_API is NULL pointercannot fit '%.200s' into an index-sized integerExpected a dimension of size %zu, got %dBuffer and memoryview are not contiguous in the same dimension.numpy.random._generator.Generator.paretonumpy.random._generator.Generator.shuffleView.MemoryView.array.__reduce_cython__View.MemoryView.memoryview.__getbuffer__View.MemoryView.memoryview.nbytes.__get__%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectPython objectSeedlessSequencePyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)_ARRAY_APIFATAL: module compiled as unknown endianfunc_closure'complex double'a structnumpy.random._generator.Generator.laplaceinteger division or modulo by zeroView.MemoryView.memview_sliceView.MemoryView._memoryviewslice.assign_item_from_objectnumpy.random._bounded_integers__file__parentsubmodule_search_locations__pyx_fatalerrornumpy.PyArray_MultiIterNew3numpy.random._generator.Generator.multivariate_normalArgument '%.200s' has incorrect type (expected %.200s, got %.200s)View.MemoryView._allocate_buffernumpy.random._generator.memoryviewView.MemoryView.memoryview_fromslicesuboffsetsnbytes_rand_int8check_array_constraintPyObject *(PyObject *, PyArrayObject *)func_dictNULL result without error in PyObject_Callnumpy.random._generator.Generator.exponentialnumpy.random._generator.Generator.integers'long long'numpy.random._generator.Generator.powerView.MemoryView.array.get_memviewExpected %s, got %.200sView.MemoryView.Enum.__reduce_cython__View.MemoryView.memoryview.convert_item_to_objectis_c_contigcheck_constraintdouble (double *, npy_intp)__loader___cython_3_0_12func_name__globals____repr__'bool''short'View.MemoryView.slice_memviewslicedouble_fillView.MemoryView.__pyx_unpickle_Enum
    Generator(bit_generator)

    Container for the BitGenerators.

    `Generator` exposes a number of methods for generating random
    numbers drawn from a variety of probability distributions. In addition to
    the distribution-specific arguments, each method takes a keyword argument
    `size` that defaults to ``None``. If `size` is ``None``, then a single
    value is generated and returned. If `size` is an integer, then a 1-D
    array filled with generated values is returned. If `size` is a tuple,
    then an array with that shape is filled and returned.

    The function :func:`numpy.random.default_rng` will instantiate
    a `Generator` with numpy's default `BitGenerator`.

    **No Compatibility Guarantee**

    `Generator` does not provide a version compatibility guarantee. In
    particular, as better algorithms evolve the bit stream may change.

    Parameters
    ----------
    bit_generator : BitGenerator
        BitGenerator to use as the core generator.

    Notes
    -----
    The Python stdlib module :external+python:mod:`random` contains
    pseudo-random number generator with a number of methods that are similar
    to the ones available in `Generator`.
    It uses Mersenne Twister, and this bit generator can
    be accessed using `MT19937`. `Generator`, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    Examples
    --------
    >>> from numpy.random import Generator, PCG64
    >>> rng = Generator(PCG64())
    >>> rng.standard_normal()
    -0.203  # random

    See Also
    --------
    default_rng : Recommended constructor for `Generator`.
    'unsigned short''unsigned int''unsigned long long'Unexpected format string character: '%c'numpy.random._generator.Generator.gammanumpy.random._generator.Generator.logisticnumpy.random._generator.Generator.waldView.MemoryView._err_extentsView.MemoryView.memoryview.setitem_indexedView.MemoryView.memoryview.copy_fortranView.MemoryView.memoryview.strides.__get__flatiterPyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)__defaults__changes to cyfunction.__kwdefaults__ will not currently affect the values used in function calls'float'a pointerView.MemoryView.transpose_memsliceView.MemoryView.memoryview.__setitem__float_fillintUnexpected end of format string, expected ')'numpy.random._generator.Generator.permutedView.MemoryView.array.memview.__get__expected bytes, NoneType foundhasattr(): attribute name must be stringis_f_contignumpy.random._generator._memoryviewslicenumberC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)_rand_uint64%s (%s:%d)numpy.random._generator._check_bit_generatorcython_runtime%.200s() takes exactly one argument (%zd given)numpy.random._generator.Generator.beta'int'Buffer not compatible with direct access in dimension %d.numpy.random._generator.Generator.uniform__init__numpy.random._generator.Enum%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject_rand_uint16PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)numpy/random/_generator.cpython-312.so.p/numpy/random/_generator.pyx.ccannot import name %S__path__numpy.random._generator.Generator.spawnBuffer exposes suboffsets but no stridesnumpy.random._generator.Generator.geometricinvalid vtable found for imported typeView.MemoryView.memoryview_copy_contentscharacterufuncmodule compiled against ABI version 0x%x but this version of numpy is 0x%xShared Cython type %.200s is not a type object__code__function's dictionary may not be deleted__kwdefaults__ must be set to a dict objectView.MemoryView.memoryview_cwrapper'complex float'numpy.random._generator.Generator.binomialBitGeneratorUnable to initialize pickling for %.200sView.MemoryView._err_dimView.MemoryView.memoryview.setitem_slice_assign_scalarbyte string is too long'NoneType' is not iterableView.MemoryView._memoryviewslice.convert_item_to_object_rand_uint32originnumpy/__init__.cython-30.pxdcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%ddeletionView.MemoryView.memoryview_copy_from_slice%.200s() needs an argumentModule '_generator' has already been imported. Re-initialisation is not supported.Expected %d dimension(s), got %dnumpy.random._generator.Generator.fnumpy.random._generator.Generator.rayleighnumpy.random._generator.Generator.triangularView.MemoryView.memoryview.__cinit__int (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)instance exception may not have a separate valueBuffer acquisition: Expected '{' after 'T'Does not understand character buffer dtype format string ('%c')uint64_tView.MemoryView.get_slice_from_memviewView.MemoryView.memoryview.__setstate_cython__View.MemoryView.memoryview.T.__get___ARRAY_API is not PyCapsule objectnumpy.random._generator.default_rngfunc_globalsfunc_codenumpy.random._generator.Generatorcalling %R should have returned an instance of BaseException, not %R'%.200s' object does not support slice %.10s'complex long double'unparsable format stringnumpy.random._generator.Generator.permutationView.MemoryView.array.__setstate_cython__View.MemoryView._memoryviewslice.__setstate_cython__%.200s.%.200s is not a type objectkahan_sum__closure____qualname__ must be set to a string objectat leastnumpy.random._generator.Generator.bytesa stringExpected a comma in format string, got '%c'numpy.random._generator.Generator.standard_gammanumpy.random._generator.Generator.weibullnumpy.random._generator.Generator.multinomialView.MemoryView.memoryview.get_item_pointerView.MemoryView.memoryview.setitem_slice_assignmentView.MemoryView.assert_direct_dimensionsunsignedintegerMAXSIZEcontnumpy.import_arraybuiltins%.200s() takes no keyword argumentsfunc_defaults__defaults__ must be set to a tuple objectBuffer not C contiguous.extension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typeSubscript deletion not supported by %.200stypePyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)_generator_cython_3_0_12.cython_function_or_methodunbound method %.200S() needs an argument__annotations__ must be set to a dict object'%.200s' object is unsliceableendnumpy.random._generator.Generator.zipfnumpy.random._generator.arrayView.MemoryView.memoryview.is_f_contigbroadcast%.200s does not export expected C variable %.200sFATAL: module compiled as little endian, but detected different endianness at runtimeinit numpy.random._generator__doc__changes to cyfunction.__defaults__ will not currently affect the values used in function callsBig-endian buffer not supported on little-endian compiler'unsigned char'Buffer dtype mismatch; next field is at offset %zd but %zd expectedAcquisition count is %d (line %d)base class '%.200s' is not a heap typenumpy.random.bit_generatornumpy.random._commoncont_broadcast_3discrete_broadcast_iiiInterpreter change detected - this module can only be loaded into one interpreter per process.__builtins__<cyfunction %U at %p>__kwdefaults__ while calling a Python object%s() got an unexpected keyword argument '%U'raise: exception class must be a subclass of BaseException'signed char'numpy.random._generator.Generator.normalnumpy.random._generator.Generator.standard_cauchynumpy.random._generator.Generator.vonmisesnumpy.PyArray_MultiIterNew2View.MemoryView.array.__getbuffer__View.MemoryView.copy_data_to_tempCannot copy memoryview slice with indirect dimensions (axis %d)Bad call flags for CyFunction'%.200s' object is not subscriptableCannot convert %.200s to %.200sExpected %d dimensions, got %dPython does not define a standard format string size for long double ('g')..numpy.random._generator.Generator.chisquarenumpy.random._generator.Generator.lognormalnumpy.random._generator.Generator.negative_binomialnumpy.random._generator.Generator.hypergeometricnumpy.random._generator.Generator.dirichletView.MemoryView.array.__cinit__View.MemoryView._err_no_memoryView.MemoryView._err__debug__buffer dtype'char'View.MemoryView.array.__getitem____cinit__View.MemoryView.memoryview.__repr__complexsignedintegerinexactkeywords must be strings__annotations__numpy.random._generator.Generator.randomBuffer has wrong number of dimensions (expected %d, got %d)Cannot handle repeated arrays in format stringlocal variable '%s' referenced before assignmentjoin() result is too long for a Python stringnumpy.random._generator.Generator.__init__View.MemoryView.array.__setitem__View.MemoryView.memoryview.is_sliceView.MemoryView.memoryview.__getitem__View.MemoryView.memoryview.__str__Internal class for passing memoryview slices to Pythongeneric__pyx_capi__int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)cont_fnamenumpy.random._generatorView.MemoryViewnumpy/random/_generator.pyx<stringsource>__reduce____module____name____dict___is_coroutine: [:-1]) > 1.0[...,:-1]AASCIIAll dimensions preceding dimension %d must be indexed and not slicedAssertionErrorAxis argument is only supported on ndarray objectsBuffer view does not expose stridesCan only create a buffer that is contiguous in memory.Cannot assign to read-only memoryviewCannot create writable memory view from read-only memoryviewCannot index with type 'Cannot take a larger sample than population when replace is FalseCannot transpose memoryview with indirect dimensionsConstruct a new Generator with the default BitGenerator (PCG64).

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator, RandomState}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then all values must be non-negative and will be
        passed to `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a `SeedSequence` instance.
        Additionally, when passed a `BitGenerator`, it will be wrapped by
        `Generator`. If passed a `Generator`, it will be returned unaltered.
        When passed a legacy `RandomState` instance it will be coerced to a `Generator`.

    Returns
    -------
    Generator
        The initialized generator object.

    Notes
    -----
    If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator`
    is instantiated. This function does not manage a default global instance.

    See :ref:`seeding_and_entropy` for more information about seeding.

    Examples
    --------
    `default_rng` is the recommended constructor for the random number class
    `Generator`. Here are several ways we can construct a random 
    number generator using `default_rng` and the `Generator` class. 

    Here we use `default_rng` to generate a random float:
 
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> print(rng)
    Generator(PCG64)
    >>> rfloat = rng.random()
    >>> rfloat
    0.22733602246716966
    >>> type(rfloat)
    <class 'float'>
     
    Here we use `default_rng` to generate 3 random integers between 0 
    (inclusive) and 10 (exclusive):
        
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> rints = rng.integers(low=0, high=10, size=3)
    >>> rints
    array([6, 2, 7])
    >>> type(rints[0])
    <class 'numpy.int64'>
    
    Here we specify a seed so that we have reproducible results:
    
    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> print(rng)
    Generator(PCG64)
    >>> arr1 = rng.random((3, 3))
    >>> arr1
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    If we exit and restart our Python interpreter, we'll see that we
    generate the same random numbers again:

    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> arr2 = rng.random((3, 3))
    >>> arr2
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    Dimension %d is not directEllipsisEmpty shape tuple for cython.arrayFewer non-zero entries in p than sizeGeneratorGenerator.__getstate__Generator.__reduce__Generator.__setstate___Generator__generator_ctorGenerator.betaGenerator.beta (line 366)Generator.binomialGenerator.binomial (line 2974)Generator.bytesGenerator.bytes (line 708)Generator.chisquareGenerator.chisquare (line 1646)Generator.choiceGenerator.choice (line 743)Generator.dirichletGenerator.dirichlet (line 4419)Generator.exponentialGenerator.exponential (line 447)Generator.fGenerator.f (line 1469)Generator.gammaGenerator.gamma (line 1390)Generator.geometricGenerator.geometric (line 3426)Generator.gumbelGenerator.gumbel (line 2421)Generator.hypergeometricGenerator.hypergeometric (line 3493)Generator.integersGenerator.integers (line 581)Generator.laplaceGenerator.laplace (line 2335)Generator.logisticGenerator.logistic (line 2540)Generator.lognormalGenerator.lognormal (line 2623)Generator.logseriesGenerator.logseries (line 3636)Generator.multinomialGenerator.multinomial (line 3960)Generator.multivariate_hypergeometricGenerator.multivariate_hypergeometric (line 4204)Generator.multivariate_normalGenerator.multivariate_normal (line 3720)Generator.negative_binomialGenerator.negative_binomial (line 3130)Generator.noncentral_chisquareGenerator.noncentral_chisquare (line 1727)Generator.noncentral_fGenerator.noncentral_f (line 1571)Generator.normalGenerator.normal (line 1193)Generator.paretoGenerator.pareto (line 2061)Generator.permutationGenerator.permutation (line 4919)Generator.permutedGenerator.permuted (line 4625)Generator.poissonGenerator.poisson (line 3255)Generator.powerGenerator.power (line 2234)Generator.randomGenerator.random (line 303)Generator.rayleighGenerator.rayleigh (line 2735)Generator.shuffleGenerator.shuffle (line 4786)Generator.spawnGenerator.spawn (line 245)Generator.standard_cauchyGenerator.standard_cauchy (line 1804)Generator.standard_exponentialGenerator.standard_exponential (line 527)Generator.standard_gammaGenerator.standard_gamma (line 1298)Generator.standard_normalGenerator.standard_normal (line 1121)Generator.standard_tGenerator.standard_t (line 1870)Generator.triangularGenerator.triangular (line 2873)Generator.uniformGenerator.uniform (line 1014)Generator.vonmisesGenerator.vonmises (line 1977)Generator.waldGenerator.wald (line 2804)Generator.weibullGenerator.weibull (line 2136)Generator.zipfGenerator.zipf (line 3337)HYPERGEOM_MAXImportErrorIncompatible checksums (0x%x vs (0x82a3537, 0x6ae9995, 0xb068931) = (name))IndexErrorIndex out of bounds (axis %d)Indirect dimensions not supportedInsufficient memory for multivariate_hypergeometric with method='count' and sum(colors)=%dInvalid bit generator. The bit generator must be instantiated.Invalid mode, expected 'c' or 'fortran', got Invalid shape in axis KMT19937MemoryError<MemoryView of %r at 0x%x><MemoryView of %r object>NoneNotImplementedErrorOOut of bounds on buffer access (axis Output size OverflowErrorPCG64PickleErrorProbabilities are not non-negativeProbabilities contain NaNProbabilities do not sum to 1. See Notes section of docstring for more information.Providing a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.RandomStateRange exceeds valid boundsRuntimeWarningSequenceStep may not be zero (axis %d)TypeErrorUnable to convert item to objectUnsupported dtype %r for integersUnsupported dtype %r for randomUnsupported dtype %r for standard_exponentialUnsupported dtype %r for standard_normalUnsupported dtype %r for standard_gammaUserWarningValueErrorWhen method is 'count', sum(colors) must not exceed %dWhen method is "marginals", sum(colors) must be less than 1000000000.(?.*)_aa and p must have same sizea cannot be empty unless no samples are takena must be a positive integer unless no samples are takena must be a sequence or an integer, not a_originalabcaccaddahighallallcloseallocate_bufferalowalphaalpha < 0alpha_arralpha_csum_arralpha_csum_dataalpha_data and anyarangearrarrayarray is read-onlyasarrayascontiguousarrayastype.astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.asyncio.coroutines at 0x{:X}atolaxaxisaxlenaxstrideb
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution. It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        Examples
        -------- 
        The beta distribution has mean a/(a+b). If ``a == b`` and both 
        are > 1, the distribution is symmetric with mean 0.5.

        >>> rng = np.random.default_rng()
        >>> a, b, size = 2.0, 2.0, 10000
        >>> sample = rng.beta(a=a, b=b, size=size)
        >>> np.mean(sample)
        0.5047328775385895  # may vary
        
        Otherwise the distribution is skewed left or right according to
        whether ``a`` or ``b`` is greater. The distribution is mirror
        symmetric. See for example:
        
        >>> a, b, size = 2, 7, 10000
        >>> sample_left = rng.beta(a=a, b=b, size=size)
        >>> sample_right = rng.beta(a=b, b=a, size=size)
        >>> m_left, m_right = np.mean(sample_left), np.mean(sample_right)
        >>> print(m_left, m_right)
        0.2238596793678923 0.7774613834041182  # may vary
        >>> print(m_left - a/(a+b))
        0.001637457145670096  # may vary
        >>> print(m_right - b/(a+b))
        -0.0003163943736596009  # may vary

        Display the histogram of the two samples:
        
        >>> import matplotlib.pyplot as plt
        >>> plt.hist([sample_left, sample_right], 
        ...          50, density=True, histtype='bar')
        >>> plt.show()
        
        References
        ----------
        .. [1] Wikipedia, "Beta distribution",
               https://en.wikipedia.org/wiki/Beta_distribution

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function (PMF) for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p, size = 10, .5, 10000  
        >>> s = rng.binomial(n, p, 10000)

        Assume a company drills 9 wild-cat oil exploration wells, each with
        an estimated probability of success of ``p=0.1``. All nine wells fail. 
        What is the probability of that happening?

        Over ``size = 20,000`` trials the probability of this happening 
        is on average:

        >>> n, p, size = 9, 0.1, 20000
        >>> np.sum(rng.binomial(n=n, p=p, size=size) == 0)/size
        0.39015  # may vary

        The following can be used to visualize a sample with ``n=100``, 
        ``p=0.4`` and the corresponding probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.stats import binom
        >>> n, p, size = 100, 0.4, 10000
        >>> sample = rng.binomial(n, p, size=size)
        >>> count, bins, _ = plt.hist(sample, 30, density=True)
        >>> x = np.arange(n)
        >>> y = binom.pmf(x, n, p)
        >>> plt.plot(x, y, linewidth=2, color='r')

        bit_genboth ngood and nbad must be less than %dbufbuf_ptr
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        Notes
        -----
        This function generates random bytes from a discrete uniform 
        distribution. The generated bytes are independent from the CPU's 
        native endianness.
        
        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.bytes(10)
        b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp'  # random

        capsulecastingcdfcheck_validcheck_valid must equal 'warn', 'raise', or 'ignore'
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=1}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        The distribution of a chi-square random variable
        with 20 degrees of freedom looks as follows:
        
        >>> import matplotlib.pyplot as plt
        >>> import scipy.stats as stats
        >>> s = rng.chisquare(20, 10000)
        >>> count, bins, _ = plt.hist(s, 30, density=True)
        >>> x = np.linspace(0, 60, 1000)
        >>> plt.plot(x, stats.chi2.pdf(x, df=20))
        >>> plt.xlim([0, 60])
        >>> plt.show()

        
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        ``p`` must sum to 1 when cast to ``float64``. To ensure this, you may wish
        to normalize using ``p = p / np.sum(p, dtype=float)``.

        When passing ``a`` as an integer type and ``size`` is not specified, the return
        type is a native Python ``int``.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a uniform random sample from a 2-D array along the first
        axis (the default), without replacement:

        >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False)
        array([[3, 4, 5], # random
               [0, 1, 2]])

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        cholesky__class____class_getitem__cline_in_tracebackcntcollectionscollections.abccolorscolors must be a one-dimensional sequence of nonnegative integers not exceeding %d.colors_ptr<contiguous and direct><contiguous and indirect>copytocountcount_nonzerocovcov must be 2 dimensional and squarecovariance is not symmetric positive-semidefinite.csumcumsumcutoffddefault_rng (line 4991)dfdfdendfnumdiric
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               https://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> rng = np.random.default_rng()
        >>> s = rng.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        disable_dmax_lam_dndot_dp_dtypedtype_is_objecteighemptyempty_likeenableencodeendpoint__enter__enumerateepsequalerrorexc__exit__
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        Assume a company has 10000 customer support agents and the time 
        between customer calls is exponentially distributed and that the 
        average time between customer calls is 4 minutes.

        >>> scale, size = 4, 10000
        >>> rng = np.random.default_rng()
        >>> time_between_calls = rng.exponential(scale=scale, size=size)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/size
        >>> y = ((time_between_calls < 4).sum())/size
        >>> x - y
        0.08  # may vary

        The corresponding distribution can be visualized as follows:

        >>> import matplotlib.pyplot as plt
        >>> scale, size = 4, 10000
        >>> rng = np.random.default_rng()
        >>> sample = rng.exponential(scale=scale, size=size)
        >>> count, bins, _ = plt.hist(sample, 30, density=True)
        >>> plt.plot(bins, scale**(-1)*np.exp(-scale**-1*bins), linewidth=2, color='r')
        >>> plt.show()

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> rng = np.random.default_rng()
        >>> s = rng.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.
        
        The corresponding probability density function for ``n = 20`` 
        and ``m = 20`` is:
        
        >>> import matplotlib.pyplot as plt
        >>> from scipy import stats
        >>> dfnum, dfden, size = 20, 20, 10000
        >>> s = rng.f(dfnum=dfnum, dfden=dfden, size=size)
        >>> bins, density, _ = plt.hist(s, 30, density=True)
        >>> x = np.linspace(0, 5, 1000)
        >>> plt.plot(x, stats.f.pdf(x, dfnum, dfden))
        >>> plt.xlim([0, 5])
        >>> plt.show()
        
        _factorfinal_shapefinfoflagsflat_foundfleftfloat32float64fmodefoundfrightfullfuncg
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> rng = np.random.default_rng()
        >>> s = rng.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, _ = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gcgen__generator_ctor
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        References
        ----------

        .. [1] Wikipedia, "Geometric distribution",
               https://en.wikipedia.org/wiki/Geometric_distribution

        Examples
        --------
        Draw 10,000 values from the geometric distribution, with the 
        probability of an individual success equal to ``p = 0.35``:

        >>> p, size = 0.35, 10000
        >>> rng = np.random.default_rng()
        >>> sample = rng.geometric(p=p, size=size)

        What proportion of trials succeeded after a single run?

        >>> (sample == 1).sum()/size
        0.34889999999999999  # may vary

        The geometric distribution with ``p=0.35`` looks as follows:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(sample, bins=30, density=True)
        >>> plt.plot(bins, (1-p)**(bins-1)*p)
        >>> plt.xlim([0, 25])
        >>> plt.show()
        
         (got got differing extents in dimension greater
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, _ = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        hash_sethasobjecthigh_highhigh - lowhigh - low range exceeds valid bounds
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function (PMF) for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        iididxidx_dataignore__imatmul____import___inindex_initializingint16int32int64int8
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               https://arxiv.org/abs/1805.10941.

        intpinvaccinvalid_colors is not compatible with broadcast dimensions of inputs is_scalarisenabledisfiniteisnanisnativeisscalarissubdtypeititemitemsize <= 0 for cython.arrayjkkappalam
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> rng = np.random.default_rng()
        >>> s = rng.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        leftleft > modeleft == rightlengthlesslnbadlngoodlnsampleloclocklogical_or
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> rng = np.random.default_rng()
        >>> s = rng.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, bins=50, label='Sampled data')

        #   plot sampled data against the exact distribution

        >>> def logistic(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> logistic_values  = logistic(bins, loc, scale)
        >>> bin_spacing = np.mean(np.diff(bins))
        >>> plt.plot(bins, logistic_values  * bin_spacing * s.size, label='Logistic PDF')
        >>> plt.legend()
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, _ = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> rng = np.random.default_rng()
        >>> s = rng.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> bins = np.arange(-.5, max(s) + .5 )
        >>> count, bins, _ = plt.hist(s, bins=bins, label='Sample count')

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> centres = np.arange(1, max(s) + 1)
        >>> plt.plot(centres, logseries(centres, a) * s.size, 'r', label='logseries PMF')
        >>> plt.legend()
        >>> plt.show()

        low_low__main__marginalsmask_masked__matmul__maxmax_indexmax_lam_arrmay_share_memorymeanmean and cov must have same lengthmean and cov must not be complexmean must be 1 dimensionalmemory allocation failed in permutedmethodmethod must be "count" or "marginals".method must be one of {'eigh', 'svd', 'cholesky'}mnarrmnixmodemode > rightmsg_mt19937mumultin
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : array-like of floats
            Probabilities of each of the ``p`` different outcomes with shape
            ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must
            sum to 1 (however, the last element is always assumed to account
            for the remaining probability, as long as
            ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1
            dimension where pvals.shape[-1] > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn each with ``p`` elements. Default
            is None where the output size is determined by the broadcast shape
            of ``n`` and all by the final dimension of ``pvals``, which is
            denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it
            must be compatible with the broadcast shape ``b``. Specifically,
            size must have ``q`` or more elements and size[-(q-j):] must equal
            ``bj``.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape size, if provided. When size is
            provided, the output shape is size + (p,)  If not specified,
            the shape is determined by the broadcast shape of ``n`` and
            ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of
            the multinomial, ``p``, so that that output shape is
            ``(b0, b1, ..., bq, p)``.

            Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn
            from the distribution.

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die

        >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6])
        array([[2, 1, 4, 3, 0, 0],
               [3, 3, 3, 6, 1, 4]], dtype=int64)  # random

        Generate categorical random variates from two categories where the
        first has 3 outcomes and the second has 2.

        >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]])
        array([[0, 0, 1],
               [0, 1, 0]], dtype=int64)  # random

        ``argmax(axis=-1)`` is then used to return the categories.

        >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]]
        >>> rvs = rng.multinomial(1, pvals, size=(4,2))
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The same output dimension can be produced using broadcasting.

        >>> rvs = rng.multinomial([[1]] * 4, pvals)
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])

        
        multivariate_normal(mean, cov, size=None, check_valid='warn',
                            tol=1e-8, *, method='svd')

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (the squared standard deviation,
        or "width") of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

        - Spherical covariance (`cov` is a multiple of the identity matrix)
        - Diagonal covariance (`cov` has non-negative elements, and only on
          the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> x, y = rng.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        This function internally uses linear algebra routines, and thus results
        may not be identical (even up to precision) across architectures, OSes,
        or even builds. For example, this is likely if ``cov`` has multiple equal
        singular values and ``method`` is ``'svd'`` (default). In this case,
        ``method='cholesky'`` may be more robust.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:

        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = rng.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()

        nn_arrn_childrenn too large or p too small, see Generator.negative_binomial Notesn_uint32n_uniqnbad
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        Because this method internally calls ``Generator.poisson`` with an
        intermediate random value, a ValueError is raised when the choice of 
        :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled
        intermediate distribution exceeding the max acceptable value of the 
        ``Generator.poisson`` method. This happens when :math:`p` is too low 
        (a lot of failures happen for every success) and :math:`n` is too big (
        a lot of successes are allowed).
        Therefore, the :math:`n` and :math:`p` values must satisfy the constraint:

        .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1},

        Where the left side of the equation is the derived mean + 10 sigma of
        a sample from the gamma distribution internally used as the :math:`lam`
        parameter of a poisson sample, and the right side of the equation is
        the constraint for maximum value of :math:`lam` in ``Generator.poisson``.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> rng = np.random.default_rng()
        >>> s = rng.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        negative dimensions are not allowed__new__newngoodngood + nbad < nsamplenino default __reduce__ due to non-trivial __cinit__nonc
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> rng = np.random.default_rng()
        >>> s = rng.normal(mu, sigma, 1000)

        Verify the mean and the standard deviation:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.0  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> rng = np.random.default_rng()
        >>> rng.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        normalize_axis_indexnpnsampnsamplensample must be an integernsample must be nonnegative.nsample must not exceed %dnsample > sum(colors)num_colorsnum_variatesnumpy._core.multiarray failed to importnumpy._core.umath failed to importnumpy.lib.array_utilsnumpy.linalgnumpy.randomobj' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.offsetoffsetsoleftomodeononbadongoodonsampleoperatororderorightout must be a numpy arrayout must have the same shape as xpp_arrp must be 1-dimensionalp_sumpack
        pareto(a, size=None)

        Draw samples from a Pareto II (AKA Lomax) distribution with
        specified shape.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the Pareto II distribution.

        See Also
        --------
        scipy.stats.pareto : Pareto I distribution
        scipy.stats.lomax : Lomax (Pareto II) distribution
        scipy.stats.genpareto : Generalized Pareto distribution

        Notes
        -----
        The probability density for the Pareto II distribution is

        .. math:: p(x) = \frac{a}{{x+1}^{a+1}} , x \ge 0

        where :math:`a > 0` is the shape.

        The Pareto II distribution is a shifted and scaled version of the
        Pareto I distribution, which can be found in `scipy.stats.pareto`.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 3.
        >>> rng = np.random.default_rng()
        >>> s = rng.pareto(a, 10000)

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.linspace(0, 3, 50)
        >>> pdf = a / (x+1)**(a+1)
        >>> plt.hist(s, bins=x, density=True, label='histogram')
        >>> plt.plot(x, pdf, linewidth=2, color='r', label='pdf')
        >>> plt.xlim(x.min(), x.max())
        >>> plt.legend()
        >>> plt.show()

        parr_pcg64
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        
        permuted(x, axis=None, out=None)

        Randomly permute `x` along axis `axis`.

        Unlike `shuffle`, each slice along the given axis is shuffled
        independently of the others.

        Parameters
        ----------
        x : array_like, at least one-dimensional
            Array to be shuffled.
        axis : int, optional
            Slices of `x` in this axis are shuffled. Each slice
            is shuffled independently of the others.  If `axis` is
            None, the flattened array is shuffled.
        out : ndarray, optional
            If given, this is the destination of the shuffled array.
            If `out` is None, a shuffled copy of the array is returned.

        Returns
        -------
        ndarray
            If `out` is None, a shuffled copy of `x` is returned.
            Otherwise, the shuffled array is stored in `out`,
            and `out` is returned

        See Also
        --------
        shuffle
        permutation
        
        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        Create a `numpy.random.Generator` instance:

        >>> rng = np.random.default_rng()

        Create a test array:

        >>> x = np.arange(24).reshape(3, 8)
        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        Shuffle the rows of `x`:

        >>> y = rng.permuted(x, axis=1)
        >>> y
        array([[ 4,  3,  6,  7,  1,  2,  5,  0],  # random
               [15, 10, 14,  9, 12, 11,  8, 13],
               [17, 16, 20, 21, 18, 22, 23, 19]])

        `x` has not been modified:

        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        To shuffle the rows of `x` in-place, pass `x` as the `out`
        parameter:

        >>> y = rng.permuted(x, axis=1, out=x)
        >>> x
        array([[ 3,  0,  4,  7,  1,  6,  2,  5],  # random
               [ 8, 14, 13,  9, 12, 11, 15, 10],
               [17, 18, 16, 22, 19, 23, 20, 21]])

        Note that when the ``out`` parameter is given, the return
        value is ``out``:

        >>> y is x
        True

        pipickle_picklepix
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The probability mass function (PMF) of Poisson distribution is

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> lam, size = 5, 10000
        >>> s = rng.poisson(lam=lam, size=size)

        Verify the mean and variance, which should be approximately ``lam``:
        
        >>> s.mean(), s.var()
        (4.9917 5.1088311)  # may vary

        Display the histogram and probability mass function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import stats
        >>> x = np.arange(0, 21)
        >>> pmf = stats.poisson.pmf(x, mu=lam)
        >>> plt.hist(s, bins=x, density=True, width=0.5)
        >>> plt.stem(x, pmf, 'C1-')
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        _poisson_lam_maxpop_sizepop_size_i
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        prodpsdpvalspvals must have at least 1 dimension and the last dimension of pvals must be greater than 0.__pyx_PickleError__pyx_checksum__pyx_result__pyx_state__pyx_type__pyx_vtable__raise
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` use `uniform`
        or multiply the output of `random` by ``(b - a)`` and add ``a``::

            (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        uniform : Draw samples from the parameterized uniform distribution.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        randomsrandoms_datarangeravel
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        reduce__reduce_ex__registerreplaceresreshaperesultretreturn_indexreversedright__rmatmul__rngrtolsafescalesearchsortedseedselfset_size
        shuffle(x, axis=0)

        Modify an array or sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        See Also
        --------
        permuted
        permutation

        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> arr
        array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        >>> rng.shuffle(arr)
        >>> arr
        array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])

        sidesigmasize_islice_reprslicessort
        spawn(n_children)

        Create new independent child generators.

        See :ref:`seedsequence-spawn` for additional notes on spawning
        children.

        .. versionadded:: 1.25.0

        Parameters
        ----------
        n_children : int

        Returns
        -------
        child_generators : list of Generators

        Raises
        ------
        TypeError
            When the underlying SeedSequence does not implement spawning.

        See Also
        --------
        random.BitGenerator.spawn, random.SeedSequence.spawn :
            Equivalent method on the bit generator and seed sequence.
        bit_generator :
            The bit generator instance used by the generator.

        Examples
        --------
        Starting from a seeded default generator:

        >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}"
        >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501
        >>> rng = np.random.default_rng(entropy)

        Create two new generators for example for parallel execution:

        >>> child_rng1, child_rng2 = rng.spawn(2)

        Drawn numbers from each are independent but derived from the initial
        seeding entropy:

        >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform()
        (0.19029263503854454, 0.9475673279178444, 0.4702687338396767)

        It is safe to spawn additional children from the original ``rng`` or
        the children:

        >>> more_child_rngs = rng.spawn(20)
        >>> nested_spawn = child_rng1.spawn(20)

        __spec__sqrtstacklevel
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              https://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> s = rng.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> rng = np.random.default_rng()
        >>> n = rng.standard_exponential((3, 8000))

        
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> rng = np.random.default_rng()
        >>> s = rng.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, _ = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * rng.standard_normal(size=...)
            rng.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 # random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> s = rng.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        startstatestatusstepstop__str__stride<strided and direct><strided and direct or indirect><strided and indirect>structsubtractsumsum(colors) must not exceed the maximum value of a 64 bit signed integer (%d)sum(pvalssvdswapaxessysszttaketemptemp_arr__test__to_shuffletobytestoltotaltotsize
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> h = plt.hist(rng.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        <u4uint16uint32uint64uint8unable to allocate array data.unable to allocate shape and strides.
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The high limit may be included in the returned array of 
            floats due to floating-point rounding in the equation 
            ``low + (high-low) * random_sample()``.  high - low must be 
            non-negative.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> s = rng.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        uniform_samplesuniqueunique_indicesunpackupdatevvalval_arrval_datavariatesvariates_ptrversion_info
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and concentration (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Concentration of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the concentration,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and concentration
        >>> rng = np.random.default_rng()
        >>> s = rng.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> h = plt.hist(rng.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        warnwarnings
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> def weibull(x, n, a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)
        >>> count, bins, _ = plt.hist(rng.weibull(5., 1000))
        >>> x = np.linspace(0, 2, 1000)
        >>> bin_spacing = np.mean(np.diff(bins))
        >>> plt.plot(x, weibull(x, 1., 5.) * bin_spacing * s.size, label='Weibull PDF')
        >>> plt.legend()
        >>> plt.show()

        writeablexx_ptryou are shuffling a 'zeroszig
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function (PMF) for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> rng = np.random.default_rng()
        >>> s = rng.zipf(a, size=n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        __getstate____setstate__spawn
        spawn(n_children)

        Create new independent child generators.

        See :ref:`seedsequence-spawn` for additional notes on spawning
        children.

        .. versionadded:: 1.25.0

        Parameters
        ----------
        n_children : int

        Returns
        -------
        child_generators : list of Generators

        Raises
        ------
        TypeError
            When the underlying SeedSequence does not implement spawning.

        See Also
        --------
        random.BitGenerator.spawn, random.SeedSequence.spawn :
            Equivalent method on the bit generator and seed sequence.
        bit_generator :
            The bit generator instance used by the generator.

        Examples
        --------
        Starting from a seeded default generator:

        >>> # High quality entropy created with: f"0x{secrets.randbits(128):x}"
        >>> entropy = 0x3034c61a9ae04ff8cb62ab8ec2c4b501
        >>> rng = np.random.default_rng(entropy)

        Create two new generators for example for parallel execution:

        >>> child_rng1, child_rng2 = rng.spawn(2)

        Drawn numbers from each are independent but derived from the initial
        seeding entropy:

        >>> rng.uniform(), child_rng1.uniform(), child_rng2.uniform()
        (0.19029263503854454, 0.9475673279178444, 0.4702687338396767)

        It is safe to spawn additional children from the original ``rng`` or
        the children:

        >>> more_child_rngs = rng.spawn(20)
        >>> nested_spawn = child_rng1.spawn(20)

        random
        random(size=None, dtype=np.float64, out=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` use `uniform`
        or multiply the output of `random` by ``(b - a)`` and add ``a``::

            (b - a) * random() + a

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        uniform : Draw samples from the parameterized uniform distribution.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.random()
        0.47108547995356098 # random
        >>> type(rng.random())
        <class 'float'>
        >>> rng.random((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * rng.random((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        beta
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution. It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        Examples
        -------- 
        The beta distribution has mean a/(a+b). If ``a == b`` and both 
        are > 1, the distribution is symmetric with mean 0.5.

        >>> rng = np.random.default_rng()
        >>> a, b, size = 2.0, 2.0, 10000
        >>> sample = rng.beta(a=a, b=b, size=size)
        >>> np.mean(sample)
        0.5047328775385895  # may vary
        
        Otherwise the distribution is skewed left or right according to
        whether ``a`` or ``b`` is greater. The distribution is mirror
        symmetric. See for example:
        
        >>> a, b, size = 2, 7, 10000
        >>> sample_left = rng.beta(a=a, b=b, size=size)
        >>> sample_right = rng.beta(a=b, b=a, size=size)
        >>> m_left, m_right = np.mean(sample_left), np.mean(sample_right)
        >>> print(m_left, m_right)
        0.2238596793678923 0.7774613834041182  # may vary
        >>> print(m_left - a/(a+b))
        0.001637457145670096  # may vary
        >>> print(m_right - b/(a+b))
        -0.0003163943736596009  # may vary

        Display the histogram of the two samples:
        
        >>> import matplotlib.pyplot as plt
        >>> plt.hist([sample_left, sample_right], 
        ...          50, density=True, histtype='bar')
        >>> plt.show()
        
        References
        ----------
        .. [1] Wikipedia, "Beta distribution",
               https://en.wikipedia.org/wiki/Beta_distribution

        exponential
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        Assume a company has 10000 customer support agents and the time 
        between customer calls is exponentially distributed and that the 
        average time between customer calls is 4 minutes.

        >>> scale, size = 4, 10000
        >>> rng = np.random.default_rng()
        >>> time_between_calls = rng.exponential(scale=scale, size=size)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/size
        >>> y = ((time_between_calls < 4).sum())/size
        >>> x - y
        0.08  # may vary

        The corresponding distribution can be visualized as follows:

        >>> import matplotlib.pyplot as plt
        >>> scale, size = 4, 10000
        >>> rng = np.random.default_rng()
        >>> sample = rng.exponential(scale=scale, size=size)
        >>> count, bins, _ = plt.hist(sample, 30, density=True)
        >>> plt.plot(bins, scale**(-1)*np.exp(-scale**-1*bins), linewidth=2, color='r')
        >>> plt.show()

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        standard_exponential
        standard_exponential(size=None, dtype=np.float64, method='zig', out=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        method : str, optional
            Either 'inv' or 'zig'. 'inv' uses the default inverse CDF method.
            'zig' uses the much faster Ziggurat method of Marsaglia and Tsang.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        Examples
        --------
        Output a 3x8000 array:

        >>> rng = np.random.default_rng()
        >>> n = rng.standard_exponential((3, 8000))

        integers
        integers(low, high=None, size=None, dtype=np.int64, endpoint=False)

        Return random integers from `low` (inclusive) to `high` (exclusive), or
        if endpoint=True, `low` (inclusive) to `high` (inclusive). Replaces
        `RandomState.randint` (with endpoint=False) and
        `RandomState.random_integers` (with endpoint=True)

        Return random integers from the "discrete uniform" distribution of
        the specified dtype. If `high` is None (the default), then results are
        from 0 to `low`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is 0 and this value is
            used for `high`).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is np.int64.
        endpoint : bool, optional
            If true, sample from the interval [low, high] instead of the
            default [low, high)
            Defaults to False

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        Notes
        -----
        When using broadcasting with uint64 dtypes, the maximum value (2**64)
        cannot be represented as a standard integer type. The high array (or
        low if high is None) must have object dtype, e.g., array([2**64]).

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.integers(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0])  # random
        >>> rng.integers(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> rng.integers(5, size=(2, 4))
        array([[4, 0, 2, 1],
               [3, 2, 2, 0]])  # random

        Generate a 1 x 3 array with 3 different upper bounds

        >>> rng.integers(1, [3, 5, 10])
        array([2, 2, 9])  # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> rng.integers([1, 5, 7], 10)
        array([9, 8, 7])  # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> rng.integers([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7],
               [ 1, 16,  9, 12]], dtype=uint8)  # random

        References
        ----------
        .. [1] Daniel Lemire., "Fast Random Integer Generation in an Interval",
               ACM Transactions on Modeling and Computer Simulation 29 (1), 2019,
               https://arxiv.org/abs/1805.10941.

        bytes
        bytes(length)

        Return random bytes.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        Notes
        -----
        This function generates random bytes from a discrete uniform 
        distribution. The generated bytes are independent from the CPU's 
        native endianness.
        
        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.bytes(10)
        b'\xfeC\x9b\x86\x17\xf2\xa1\xafcp'  # random

        choice
        choice(a, size=None, replace=True, p=None, axis=0, shuffle=True)

        Generates a random sample from a given array

        Parameters
        ----------
        a : {array_like, int}
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated from np.arange(a).
        size : {int, tuple[int]}, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn from the 1-d `a`. If `a` has more
            than one dimension, the `size` shape will be inserted into the
            `axis` dimension, so the output ``ndim`` will be ``a.ndim - 1 +
            len(size)``. Default is None, in which case a single value is
            returned.
        replace : bool, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array_like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.
        axis : int, optional
            The axis along which the selection is performed. The default, 0,
            selects by row.
        shuffle : bool, optional
            Whether the sample is shuffled when sampling without replacement.
            Default is True, False provides a speedup.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if p is not 1-dimensional, if
            a is array-like with a size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size.

        See Also
        --------
        integers, shuffle, permutation

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        ``p`` must sum to 1 when cast to ``float64``. To ensure this, you may wish
        to normalize using ``p = p / np.sum(p, dtype=float)``.

        When passing ``a`` as an integer type and ``size`` is not specified, the return
        type is a native Python ``int``.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> rng = np.random.default_rng()
        >>> rng.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to rng.integers(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> rng.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> rng.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to rng.permutation(np.arange(5))[:3]

        Generate a uniform random sample from a 2-D array along the first
        axis (the default), without replacement:

        >>> rng.choice([[0, 1, 2], [3, 4, 5], [6, 7, 8]], 2, replace=False)
        array([[3, 4, 5], # random
               [0, 1, 2]])

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> rng.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> rng.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        uniform
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than high.  The high limit may be included in the returned array of 
            floats due to floating-point rounding in the equation 
            ``low + (high-low) * random_sample()``.  high - low must be 
            non-negative.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        integers : Discrete uniform distribution, yielding integers.
        random : Floats uniformly distributed over ``[0, 1)``.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> s = rng.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        standard_normal
        standard_normal(size=None, dtype=np.float64, out=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is not None,
            it must have the same shape as the provided size and must match the type of
            the output values.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * rng.standard_normal(size=...)
            rng.normal(mu, sigma, size=...)

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.standard_normal()
        2.1923875335537315 # random

        >>> s = rng.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = rng.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * rng.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        normal
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        :meth:`normal` is more likely to return samples lying close to the
        mean, rather than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> rng = np.random.default_rng()
        >>> s = rng.normal(mu, sigma, 1000)

        Verify the mean and the standard deviation:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.0  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> rng = np.random.default_rng()
        >>> rng.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        standard_gamma
        standard_gamma(shape, size=None, dtype=np.float64, out=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.
        dtype : dtype, optional
            Desired dtype of the result, only `float64` and `float32` are supported.
            Byteorder must be native. The default value is np.float64.
        out : ndarray, optional
            Alternative output array in which to place the result. If size is
            not None, it must have the same shape as the provided size and
            must match the type of the output values.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> rng = np.random.default_rng()
        >>> s = rng.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, _ = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gamma
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> rng = np.random.default_rng()
        >>> s = rng.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, _ = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        f
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> rng = np.random.default_rng()
        >>> s = rng.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.
        
        The corresponding probability density function for ``n = 20`` 
        and ``m = 20`` is:
        
        >>> import matplotlib.pyplot as plt
        >>> from scipy import stats
        >>> dfnum, dfden, size = 20, 20, 10000
        >>> s = rng.f(dfnum=dfnum, dfden=dfden, size=size)
        >>> bins, density, _ = plt.hist(s, 30, density=True)
        >>> x = np.linspace(0, 5, 1000)
        >>> plt.plot(x, stats.f.pdf(x, dfnum, dfden))
        >>> plt.xlim([0, 5])
        >>> plt.show()
        
        noncentral_f
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> rng = np.random.default_rng()
        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = rng.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = rng.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        chisquare
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=1}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

        The distribution of a chi-square random variable
        with 20 degrees of freedom looks as follows:
        
        >>> import matplotlib.pyplot as plt
        >>> import scipy.stats as stats
        >>> s = rng.chisquare(20, 10000)
        >>> count, bins, _ = plt.hist(s, 30, density=True)
        >>> x = np.linspace(0, 60, 1000)
        >>> plt.plot(x, stats.chi2.pdf(x, df=20))
        >>> plt.xlim([0, 60])
        >>> plt.show()

        noncentral_chisquare
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> rng = np.random.default_rng()
        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(rng.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(rng.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        standard_cauchy
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              https://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> s = rng.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        standard_t
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> s = rng.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        vonmises
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and concentration (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Concentration of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the concentration,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and concentration
        >>> rng = np.random.default_rng()
        >>> s = rng.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        pareto
        pareto(a, size=None)

        Draw samples from a Pareto II (AKA Lomax) distribution with
        specified shape.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the Pareto II distribution.

        See Also
        --------
        scipy.stats.pareto : Pareto I distribution
        scipy.stats.lomax : Lomax (Pareto II) distribution
        scipy.stats.genpareto : Generalized Pareto distribution

        Notes
        -----
        The probability density for the Pareto II distribution is

        .. math:: p(x) = \frac{a}{{x+1}^{a+1}} , x \ge 0

        where :math:`a > 0` is the shape.

        The Pareto II distribution is a shifted and scaled version of the
        Pareto I distribution, which can be found in `scipy.stats.pareto`.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 3.
        >>> rng = np.random.default_rng()
        >>> s = rng.pareto(a, 10000)

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.linspace(0, 3, 50)
        >>> pdf = a / (x+1)**(a+1)
        >>> plt.hist(s, bins=x, density=True, label='histogram')
        >>> plt.plot(x, pdf, linewidth=2, color='r', label='pdf')
        >>> plt.xlim(x.min(), x.max())
        >>> plt.legend()
        >>> plt.show()

        weibull
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> s = rng.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> def weibull(x, n, a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)
        >>> count, bins, _ = plt.hist(rng.weibull(5., 1000))
        >>> x = np.linspace(0, 2, 1000)
        >>> bin_spacing = np.mean(np.diff(bins))
        >>> plt.plot(x, weibull(x, 1., 5.) * bin_spacing * s.size, label='Weibull PDF')
        >>> plt.legend()
        >>> plt.show()

        power
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = rng.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats  # doctest: +SKIP
        >>> rvs = rng.power(5, 1000000)
        >>> rvsp = rng.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + Generator.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        laplace
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> rng = np.random.default_rng()
        >>> s = rng.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        gumbel
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = rng.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = rng.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, _ = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        logistic
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> rng = np.random.default_rng()
        >>> s = rng.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, bins=50, label='Sampled data')

        #   plot sampled data against the exact distribution

        >>> def logistic(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> logistic_values  = logistic(bins, loc, scale)
        >>> bin_spacing = np.mean(np.diff(bins))
        >>> plt.plot(bins, logistic_values  * bin_spacing * s.size, label='Logistic PDF')
        >>> plt.legend()
        >>> plt.show()

        lognormal
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = rng.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> rng = rng
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + rng.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, _ = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        rayleigh
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> rng = np.random.default_rng()
        >>> values = hist(rng.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = rng.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        wald
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> h = plt.hist(rng.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        triangular
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> h = plt.hist(rng.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        binomial
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function (PMF) for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> n, p, size = 10, .5, 10000  
        >>> s = rng.binomial(n, p, 10000)

        Assume a company drills 9 wild-cat oil exploration wells, each with
        an estimated probability of success of ``p=0.1``. All nine wells fail. 
        What is the probability of that happening?

        Over ``size = 20,000`` trials the probability of this happening 
        is on average:

        >>> n, p, size = 9, 0.1, 20000
        >>> np.sum(rng.binomial(n=n, p=p, size=size) == 0)/size
        0.39015  # may vary

        The following can be used to visualize a sample with ``n=100``, 
        ``p=0.4`` and the corresponding probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.stats import binom
        >>> n, p, size = 100, 0.4, 10000
        >>> sample = rng.binomial(n, p, size=size)
        >>> count, bins, _ = plt.hist(sample, 30, density=True)
        >>> x = np.arange(n)
        >>> y = binom.pmf(x, n, p)
        >>> plt.plot(x, y, linewidth=2, color='r')

        negative_binomial
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval (0, 1].

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution. Must satisfy 0 < p <= 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        Because this method internally calls ``Generator.poisson`` with an
        intermediate random value, a ValueError is raised when the choice of 
        :math:`n` and :math:`p` would result in the mean + 10 sigma of the sampled
        intermediate distribution exceeding the max acceptable value of the 
        ``Generator.poisson`` method. This happens when :math:`p` is too low 
        (a lot of failures happen for every success) and :math:`n` is too big (
        a lot of successes are allowed).
        Therefore, the :math:`n` and :math:`p` values must satisfy the constraint:

        .. math:: n\frac{1-p}{p}+10n\sqrt{n}\frac{1-p}{p}<2^{63}-1-10\sqrt{2^{63}-1},

        Where the left side of the equation is the derived mean + 10 sigma of
        a sample from the gamma distribution internally used as the :math:`lam`
        parameter of a poisson sample, and the right side of the equation is
        the constraint for maximum value of :math:`lam` in ``Generator.poisson``.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> rng = np.random.default_rng()
        >>> s = rng.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        poisson
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        Notes
        -----
        The probability mass function (PMF) of Poisson distribution is

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> lam, size = 5, 10000
        >>> s = rng.poisson(lam=lam, size=size)

        Verify the mean and variance, which should be approximately ``lam``:
        
        >>> s.mean(), s.var()
        (4.9917 5.1088311)  # may vary

        Display the histogram and probability mass function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import stats
        >>> x = np.arange(0, 21)
        >>> pmf = stats.poisson.pmf(x, mu=lam)
        >>> plt.hist(s, bins=x, density=True, width=0.5)
        >>> plt.stem(x, pmf, 'C1-')
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = rng.poisson(lam=(100., 500.), size=(100, 2))

        zipf
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function (PMF) for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> rng = np.random.default_rng()
        >>> s = rng.zipf(a, size=n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        geometric
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        References
        ----------

        .. [1] Wikipedia, "Geometric distribution",
               https://en.wikipedia.org/wiki/Geometric_distribution

        Examples
        --------
        Draw 10,000 values from the geometric distribution, with the 
        probability of an individual success equal to ``p = 0.35``:

        >>> p, size = 0.35, 10000
        >>> rng = np.random.default_rng()
        >>> sample = rng.geometric(p=p, size=size)

        What proportion of trials succeeded after a single run?

        >>> (sample == 1).sum()/size
        0.34889999999999999  # may vary

        The geometric distribution with ``p=0.35`` looks as follows:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(sample, bins=30, density=True)
        >>> plt.plot(bins, (1-p)**(bins-1)*p)
        >>> plt.xlim([0, 25])
        >>> plt.show()
        
        hypergeometric
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative and
            less than 10**9.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative and
            less than 10**9.
        nsample : int or array_like of ints
            Number of items sampled.  Must be nonnegative and less than
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        multivariate_hypergeometric : Draw samples from the multivariate
            hypergeometric distribution.
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function (PMF) for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        The arguments `ngood` and `nbad` each must be less than `10**9`. For
        extremely large arguments, the algorithm that is used to compute the
        samples [4]_ breaks down because of loss of precision in floating point
        calculations.  For such large values, if `nsample` is not also large,
        the distribution can be approximated with the binomial distribution,
        `binomial(n=nsample, p=ngood/(ngood + nbad))`.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution
        .. [4] Stadlober, Ernst, "The ratio of uniforms approach for generating
               discrete random variates", Journal of Computational and Applied
               Mathematics, 31, pp. 181-189 (1990).

        Examples
        --------
        Draw samples from the distribution:

        >>> rng = np.random.default_rng()
        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = rng.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = rng.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        logseries
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.

        Notes
        -----
        The probability mass function for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> rng = np.random.default_rng()
        >>> s = rng.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> bins = np.arange(-.5, max(s) + .5 )
        >>> count, bins, _ = plt.hist(s, bins=bins, label='Sample count')

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> centres = np.arange(1, max(s) + 1)
        >>> plt.plot(centres, logseries(centres, a) * s.size, 'r', label='logseries PMF')
        >>> plt.legend()
        >>> plt.show()

        multivariate_normal
        multivariate_normal(mean, cov, size=None, check_valid='warn',
                            tol=1e-8, *, method='svd')

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (the squared standard deviation,
        or "width") of the one-dimensional normal distribution.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.
        method : { 'svd', 'eigh', 'cholesky'}, optional
            The cov input is used to compute a factor matrix A such that
            ``A @ A.T = cov``. This argument is used to select the method
            used to compute the factor matrix A. The default method 'svd' is
            the slowest, while 'cholesky' is the fastest but less robust than
            the slowest method. The method `eigh` uses eigen decomposition to
            compute A and is faster than svd but slower than cholesky.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

        - Spherical covariance (`cov` is a multiple of the identity matrix)
        - Diagonal covariance (`cov` has non-negative elements, and only on
          the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> rng = np.random.default_rng()
        >>> x, y = rng.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        This function internally uses linear algebra routines, and thus results
        may not be identical (even up to precision) across architectures, OSes,
        or even builds. For example, this is likely if ``cov`` has multiple equal
        singular values and ``method`` is ``'svd'`` (default). In this case,
        ``method='cholesky'`` may be more robust.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> rng = np.random.default_rng()
        >>> x = rng.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        We can use a different method other than the default to factorize cov:

        >>> y = rng.multivariate_normal(mean, cov, (3, 3), method='cholesky')
        >>> y.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = rng.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()

        multinomial
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        Parameters
        ----------
        n : int or array-like of ints
            Number of experiments.
        pvals : array-like of floats
            Probabilities of each of the ``p`` different outcomes with shape
            ``(k0, k1, ..., kn, p)``. Each element ``pvals[i,j,...,:]`` must
            sum to 1 (however, the last element is always assumed to account
            for the remaining probability, as long as
            ``sum(pvals[..., :-1], axis=-1) <= 1.0``. Must have at least 1
            dimension where pvals.shape[-1] > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn each with ``p`` elements. Default
            is None where the output size is determined by the broadcast shape
            of ``n`` and all by the final dimension of ``pvals``, which is
            denoted as ``b=(b0, b1, ..., bq)``. If size is not None, then it
            must be compatible with the broadcast shape ``b``. Specifically,
            size must have ``q`` or more elements and size[-(q-j):] must equal
            ``bj``.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape size, if provided. When size is
            provided, the output shape is size + (p,)  If not specified,
            the shape is determined by the broadcast shape of ``n`` and
            ``pvals``, ``(b0, b1, ..., bq)`` augmented with the dimension of
            the multinomial, ``p``, so that that output shape is
            ``(b0, b1, ..., bq, p)``.

            Each entry ``out[i,j,...,:]`` is a ``p``-dimensional value drawn
            from the distribution.

        Examples
        --------
        Throw a dice 20 times:

        >>> rng = np.random.default_rng()
        >>> rng.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]])  # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> rng.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3],
               [2, 4, 3, 4, 0, 7]])  # random

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        Now, do one experiment throwing the dice 10 time, and 10 times again,
        and another throwing the dice 20 times, and 20 times again:

        >>> rng.multinomial([[10], [20]], [1/6.]*6, size=(2, 2))
        array([[[2, 4, 0, 1, 2, 1],
                [1, 3, 0, 3, 1, 2]],
               [[1, 4, 4, 4, 4, 3],
                [3, 3, 2, 5, 5, 2]]])  # random

        The first array shows the outcomes of throwing the dice 10 times, and
        the second shows the outcomes from throwing the dice 20 times.

        A loaded die is more likely to land on number 6:

        >>> rng.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26])  # random

        Simulate 10 throws of a 4-sided die and 20 throws of a 6-sided die

        >>> rng.multinomial([10, 20],[[1/4]*4 + [0]*2, [1/6]*6])
        array([[2, 1, 4, 3, 0, 0],
               [3, 3, 3, 6, 1, 4]], dtype=int64)  # random

        Generate categorical random variates from two categories where the
        first has 3 outcomes and the second has 2.

        >>> rng.multinomial(1, [[.1, .5, .4 ], [.3, .7, .0]])
        array([[0, 0, 1],
               [0, 1, 0]], dtype=int64)  # random

        ``argmax(axis=-1)`` is then used to return the categories.

        >>> pvals = [[.1, .5, .4 ], [.3, .7, .0]]
        >>> rvs = rng.multinomial(1, pvals, size=(4,2))
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The same output dimension can be produced using broadcasting.

        >>> rvs = rng.multinomial([[1]] * 4, pvals)
        >>> rvs.argmax(axis=-1)
        array([[0, 1],
               [2, 0],
               [2, 1],
               [2, 0]], dtype=int64)  # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> rng.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62])  # random

        not like:

        >>> rng.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        multivariate_hypergeometric
        multivariate_hypergeometric(colors, nsample, size=None,
                                    method='marginals')

        Generate variates from a multivariate hypergeometric distribution.

        The multivariate hypergeometric distribution is a generalization
        of the hypergeometric distribution.

        Choose ``nsample`` items at random without replacement from a
        collection with ``N`` distinct types.  ``N`` is the length of
        ``colors``, and the values in ``colors`` are the number of occurrences
        of that type in the collection.  The total number of items in the
        collection is ``sum(colors)``.  Each random variate generated by this
        function is a vector of length ``N`` holding the counts of the
        different types that occurred in the ``nsample`` items.

        The name ``colors`` comes from a common description of the
        distribution: it is the probability distribution of the number of
        marbles of each color selected without replacement from an urn
        containing marbles of different colors; ``colors[i]`` is the number
        of marbles in the urn with color ``i``.

        Parameters
        ----------
        colors : sequence of integers
            The number of each type of item in the collection from which
            a sample is drawn.  The values in ``colors`` must be nonnegative.
            To avoid loss of precision in the algorithm, ``sum(colors)``
            must be less than ``10**9`` when `method` is "marginals".
        nsample : int
            The number of items selected.  ``nsample`` must not be greater
            than ``sum(colors)``.
        size : int or tuple of ints, optional
            The number of variates to generate, either an integer or a tuple
            holding the shape of the array of variates.  If the given size is,
            e.g., ``(k, m)``, then ``k * m`` variates are drawn, where one
            variate is a vector of length ``len(colors)``, and the return value
            has shape ``(k, m, len(colors))``.  If `size` is an integer, the
            output has shape ``(size, len(colors))``.  Default is None, in
            which case a single variate is returned as an array with shape
            ``(len(colors),)``.
        method : string, optional
            Specify the algorithm that is used to generate the variates.
            Must be 'count' or 'marginals' (the default).  See the Notes
            for a description of the methods.

        Returns
        -------
        variates : ndarray
            Array of variates drawn from the multivariate hypergeometric
            distribution.

        See Also
        --------
        hypergeometric : Draw samples from the (univariate) hypergeometric
            distribution.

        Notes
        -----
        The two methods do not return the same sequence of variates.

        The "count" algorithm is roughly equivalent to the following numpy
        code::

            choices = np.repeat(np.arange(len(colors)), colors)
            selection = np.random.choice(choices, nsample, replace=False)
            variate = np.bincount(selection, minlength=len(colors))

        The "count" algorithm uses a temporary array of integers with length
        ``sum(colors)``.

        The "marginals" algorithm generates a variate by using repeated
        calls to the univariate hypergeometric sampler.  It is roughly
        equivalent to::

            variate = np.zeros(len(colors), dtype=np.int64)
            # `remaining` is the cumulative sum of `colors` from the last
            # element to the first; e.g. if `colors` is [3, 1, 5], then
            # `remaining` is [9, 6, 5].
            remaining = np.cumsum(colors[::-1])[::-1]
            for i in range(len(colors)-1):
                if nsample < 1:
                    break
                variate[i] = hypergeometric(colors[i], remaining[i+1],
                                           nsample)
                nsample -= variate[i]
            variate[-1] = nsample

        The default method is "marginals".  For some cases (e.g. when
        `colors` contains relatively small integers), the "count" method
        can be significantly faster than the "marginals" method.  If
        performance of the algorithm is important, test the two methods
        with typical inputs to decide which works best.

        Examples
        --------
        >>> colors = [16, 8, 4]
        >>> seed = 4861946401452
        >>> gen = np.random.Generator(np.random.PCG64(seed))
        >>> gen.multivariate_hypergeometric(colors, 6)
        array([5, 0, 1])
        >>> gen.multivariate_hypergeometric(colors, 6, size=3)
        array([[5, 0, 1],
               [2, 2, 2],
               [3, 3, 0]])
        >>> gen.multivariate_hypergeometric(colors, 6, size=(2, 2))
        array([[[3, 2, 1],
                [3, 2, 1]],
               [[4, 1, 1],
                [3, 2, 1]]])

        dirichlet
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than zero

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               https://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> rng = np.random.default_rng()
        >>> s = rng.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        permuted
        permuted(x, axis=None, out=None)

        Randomly permute `x` along axis `axis`.

        Unlike `shuffle`, each slice along the given axis is shuffled
        independently of the others.

        Parameters
        ----------
        x : array_like, at least one-dimensional
            Array to be shuffled.
        axis : int, optional
            Slices of `x` in this axis are shuffled. Each slice
            is shuffled independently of the others.  If `axis` is
            None, the flattened array is shuffled.
        out : ndarray, optional
            If given, this is the destination of the shuffled array.
            If `out` is None, a shuffled copy of the array is returned.

        Returns
        -------
        ndarray
            If `out` is None, a shuffled copy of `x` is returned.
            Otherwise, the shuffled array is stored in `out`,
            and `out` is returned

        See Also
        --------
        shuffle
        permutation
        
        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        Create a `numpy.random.Generator` instance:

        >>> rng = np.random.default_rng()

        Create a test array:

        >>> x = np.arange(24).reshape(3, 8)
        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        Shuffle the rows of `x`:

        >>> y = rng.permuted(x, axis=1)
        >>> y
        array([[ 4,  3,  6,  7,  1,  2,  5,  0],  # random
               [15, 10, 14,  9, 12, 11,  8, 13],
               [17, 16, 20, 21, 18, 22, 23, 19]])

        `x` has not been modified:

        >>> x
        array([[ 0,  1,  2,  3,  4,  5,  6,  7],
               [ 8,  9, 10, 11, 12, 13, 14, 15],
               [16, 17, 18, 19, 20, 21, 22, 23]])

        To shuffle the rows of `x` in-place, pass `x` as the `out`
        parameter:

        >>> y = rng.permuted(x, axis=1, out=x)
        >>> x
        array([[ 3,  0,  4,  7,  1,  6,  2,  5],  # random
               [ 8, 14, 13,  9, 12, 11, 15, 10],
               [17, 18, 16, 22, 19, 23, 20, 21]])

        Note that when the ``out`` parameter is given, the return
        value is ``out``:

        >>> y is x
        True

        shuffle
        shuffle(x, axis=0)

        Modify an array or sequence in-place by shuffling its contents.

        The order of sub-arrays is changed but their contents remains the same.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.
            It is only supported on `ndarray` objects.

        Returns
        -------
        None

        See Also
        --------
        permuted
        permutation

        Notes
        -----
        An important distinction between methods ``shuffle``  and ``permuted`` is 
        how they both treat the ``axis`` parameter which can be found at 
        :ref:`generator-handling-axis-parameter`.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> arr = np.arange(10)
        >>> arr
        array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
        >>> rng.shuffle(arr)
        >>> arr
        array([2, 0, 7, 5, 1, 4, 8, 9, 3, 6]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        >>> arr = np.arange(9).reshape((3, 3))
        >>> arr
        array([[0, 1, 2],
               [3, 4, 5],
               [6, 7, 8]])
        >>> rng.shuffle(arr, axis=1)
        >>> arr
        array([[2, 0, 1], # random
               [5, 3, 4],
               [8, 6, 7]])

        permutation
        permutation(x, axis=0)

        Randomly permute a sequence, or return a permuted range.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.
        axis : int, optional
            The axis which `x` is shuffled along. Default is 0.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        Examples
        --------
        >>> rng = np.random.default_rng()
        >>> rng.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> rng.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        >>> rng.permutation("abc")
        Traceback (most recent call last):
            ...
        numpy.exceptions.AxisError: axis 0 is out of bounds for array of dimension 0

        >>> arr = np.arange(9).reshape((3, 3))
        >>> rng.permutation(arr, axis=1)
        array([[0, 2, 1], # random
               [3, 5, 4],
               [6, 8, 7]])

        s'vhluoutbit_generator_bit_generator__reduce_cython____setstate_cython__memviewshapeformatcopycfortranTbasestridesndimitemsizesizeboolnumpydtypedouble__pyx_unpickle_Enumdefault_rngdefault_rng(seed=None)
Construct a new Generator with the default BitGenerator (PCG64).

    Parameters
    ----------
    seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator, RandomState}, optional
        A seed to initialize the `BitGenerator`. If None, then fresh,
        unpredictable entropy will be pulled from the OS. If an ``int`` or
        ``array_like[ints]`` is passed, then all values must be non-negative and will be
        passed to `SeedSequence` to derive the initial `BitGenerator` state. One may also
        pass in a `SeedSequence` instance.
        Additionally, when passed a `BitGenerator`, it will be wrapped by
        `Generator`. If passed a `Generator`, it will be returned unaltered.
        When passed a legacy `RandomState` instance it will be coerced to a `Generator`.

    Returns
    -------
    Generator
        The initialized generator object.

    Notes
    -----
    If ``seed`` is not a `BitGenerator` or a `Generator`, a new `BitGenerator`
    is instantiated. This function does not manage a default global instance.

    See :ref:`seeding_and_entropy` for more information about seeding.

    Examples
    --------
    `default_rng` is the recommended constructor for the random number class
    `Generator`. Here are several ways we can construct a random 
    number generator using `default_rng` and the `Generator` class. 

    Here we use `default_rng` to generate a random float:
 
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> print(rng)
    Generator(PCG64)
    >>> rfloat = rng.random()
    >>> rfloat
    0.22733602246716966
    >>> type(rfloat)
    <class 'float'>
     
    Here we use `default_rng` to generate 3 random integers between 0 
    (inclusive) and 10 (exclusive):
        
    >>> import numpy as np
    >>> rng = np.random.default_rng(12345)
    >>> rints = rng.integers(low=0, high=10, size=3)
    >>> rints
    array([6, 2, 7])
    >>> type(rints[0])
    <class 'numpy.int64'>
    
    Here we specify a seed so that we have reproducible results:
    
    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> print(rng)
    Generator(PCG64)
    >>> arr1 = rng.random((3, 3))
    >>> arr1
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    If we exit and restart our Python interpreter, we'll see that we
    generate the same random numbers again:

    >>> import numpy as np
    >>> rng = np.random.default_rng(seed=42)
    >>> arr2 = rng.random((3, 3))
    >>> arr2
    array([[0.77395605, 0.43887844, 0.85859792],
           [0.69736803, 0.09417735, 0.97562235],
           [0.7611397 , 0.78606431, 0.12811363]])

    Á]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛe'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msyÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒx€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9ï9úþB.æ? *ú«ü?ù,’|§l	@ÉyD<d&@ÊÏ:'Q@0Ì-óá!@
·ü‚Ž5%@Ï÷§!‰š)@M•u5.@t:?—€1@CÕºü3@Î2;œZ6@B*ßó09@FÓ?¦6æ;@„ÿ«>@:5/?¦À@@RîÕò2B@…96S«C@¾wízõ*E@©r4d¨°F@O¨«O<H@Ej…‹§ÍI@NrdK@çeÍ"vM@”g|q¡N@ïO~¶®#P@@3ñøP@1r‘SsÐQ@åÐY‹ ªR@@Zžýæ…S@„ ”›µcT@JÎ:c|CU@º–HG,%V@Xá·W@Xg²yîW@–=$Á(ÕX@£WR÷ö½Y@˜–Ân¨Z@¢+p\…”[@¡œ†0‚\@î>fq]@Oºîb^@ñœ¦+NT_@ŸݭC÷#`@©¤~{ž`@kbbç¯a@Y¥SȐ•a@Ãn“b@1ëÝIb@5cèa
c@Û“ø‹‹c@ͦ3š˜
d@¯\>Šd@‡ànz
e@sÚ9J‹e@FGGʪf@yyuð™Žf@IJC g@YÜ&ÿ”g@¹oF¦h@¡® ·›h@aÇçQL i@½¤áãa¥i@	F~xö*j@&—P±j@¯×Ùö”7k@!¶ß+›¾k@÷VÌøFl@‘¥Îl@¶·¸„tVm@pZ ÷Nßm@ïk9išhn@HQñOUòn@ƒaÆ,~|o@b4nʼnp@+e‹ÿ	Ip@còÛ¿Žp@)±V¨Ôp@*“øÅq@6GãÇaq@¬á�§q@>m#FJîq@ÕFKæ.5r@b)ÇÿC|r@WÐr‰Ãr@V…]ý
s@r‰ Rs@GIÑýqšs@÷
>6qâs@j£B±*t@A=ðört@fIw|»t@d¯'Í-u@X¦+{
Mu@ìÄ#
–u@ZGDßu@í;# (v@b”‡´%rv@¶iv{Իv@ŸØ¬w@¾÷ç«Ow@\&Áәw@}6û-#äw@h͙.x@þÄk?7yx@–'ûÃx@_Ã*åy@³ÈÑìôYy@Ì1¸*¥y@^TT„ðy@,{»L<z@:I$®¦‡z@À|*&nÓz@µ
dY{@룴hk{@
aö™·{@Íúf¯î|@&"™ùeP|@
4ŠŠÿœ|@ê0h»é|@¸÷“^˜6}@™—ƒ}@¤Þ)ó¶Ð}@L§¹÷~@ŸåàÈ0ê„ÿ/áýÿÿêPãÿ/ÿ/á áŸå Ÿåà àÀ0êàÿÿÿT0Ÿå0à¿0ê@ÔÔÔÔHxDLðڸJTðµ¯-éFLð€é€hLð„é‚JzDÒécê5Ðp@Y@CÐ}H~IxDyDhhLðxé ½èð½Oðÿ3ÂéX@Y@Cðà€uHxD@hP±hoð@B‘Bð£€1`½èð½nI FyDLð`é(ð™€FLðbé)hoð@B‘BÐ9)`ÑF(FLð^é0F(ퟘ�FLð^é(ð­€_IF FyDLð>é(yÐ\IF(F2FyDLðTé1hoð@B‘BÐ91`сF0FLð8éHF(ñŽ€RI FyDLð é(eÐPIF(F2FyDLð6é1hoð@B‘BÐ91`сF0FLðéHF(pÔGI FyDLðé(RÐDIF(F2FyDLðé1hoð@B‘BÐ91`сF0FLðþèHF(SÔ;I FyDLðæè(?ÐF8HxDh„BÐ7I(F"FyDLðøèÅà%!hoð@B@F‘BÐ9!`Ñ FLðØè@F…»½èð½ +à HxDhhLðäè³Lðèè’çHxDhhLðÚèȱLðÞè¥çHxDhhLðÐèx±LðÔè¸çHxDhhLðÆè(±LðÊè@F½èð½@Fðµú ½èð½¿zTÄyQûÿüqXûÿæ%ûÿ˜2ûÿ<ØCûÿ8/ûÿ(/ûÿe%ûÿæ.ûÿ‚-@ûÿ¿¿ðµ¯-épŒL"Íé
"|DÍé"Íé	"ah±B𾀆H†IxDyDhhLðFèOðÿ0A°½èð½``oð@Bh‘B¿1`LðVè|N(¢F~D³F0`ð˜„hoð@B‘B¿1`uHxDLðbè(ð•€hoð@B‘B¿1`oIp`yDFLðRè(ð€hoð@B‘B¿1`hIchrhyD°`FLðHè(ñƒ€dHOöÿqxDhh ê±ñCÐ_I¬_JÀóF_KyD%zD{DÍé0 FÍéQÈ!#–Lð.è !F"%&Lð.è(ñŒ€ %Lð0è(ËøðH„NH!\FxDLð,è(ËøðC„JH!xDLð*è(`að@„FHxDKðòï賀Fhoð@AˆB¿0Èø@L.!|Dæh0FLðè(¿F@F1FKð¢ïH³F@h@m°ñÿ?@ó€€6IyD‚à A°½èð½3K%u`&{DLö»Xâ0K%µ`&{DLö¼Xâ-K%&Lö½X{Dâ+K¥a{Dâ*HxDhhKðšï(hÐKðžï&HxDKðâï(`Ô$M@F1F}D*FKð ï(VÔ(h\Foð@AˆB¿0(`Øøoð@AˆBWÐOàKLöÈX{DÖáÖoj
ùBûÿ°aòHûÿÃ;ûÿèNûÿÌ·UûÿœAûÿ©ûÿlUûÿXUûÿ¯/ûÿ¸PÜ>ûÿUûÿUûÿñTûÿéTûÿ¨4P$PTûÿ(i!iˆBÐðIyDðH2FxDhhKðŽï(hoð@AˆB@ð(‚%\FØøoð@AˆBÐ8Èø¿@FKðï-¥að{	ðbûŸíàQìKðtï(Äøü
ðVƒŸíÝQìKðjï(ÄøðKƒ·îQìKð^ï(Äøð@ƒŸíÔQìKðTï(Äøð5ƒŸíÐQìKðHï(Äøð*ƒ %KðHï(Äøð:ƒ &Kð>ï(Äøðƒ Kð6ï(Äøðƒ
 Kð.ï(Äøðƒ Kð&ï(Äø ðû‚2 Kðï(Äø$ðó‚Iö•Àò®`Kðï(Äø(ðè‚Cò7PÀö*Kðï(Äø,ð݂Hö1Àö0Kðþî(Äø0ð҂£H!"xDKðúî(Äø4ðǂOðÿ0Kðêî(Äø8ð¾‚Kðòîp³F˜H	!xDKð´î8³F F)FKðîîF(hoð@AˆBÐ8(`¿(FKðJ FKðæî!hoð@B‘BÐ9!`ÑF FKð:î(FAÐUFÊø(àUFÊø(`KðÖî(@ð¥‚(h^FH±Öø´&Öø`hhKðÐî(ñEKðÔî(ð™‚uIFyDKðÔî@¹sI FjhyDKðî(ñí‚ð'ø(ñ%ððù(ñ.ðqþð§þ(ñ€‚ðäÿ(ñ‚‚ðÿù(ñ„‚ðZú(ñ†‚Kð°îFl©
ª«ðÊûÖø"¨hOððìû(VIyD‰FVIyD‘UIyD‘ðo‚AhŠlÖø°*ðo‚GF(
ðk‚(hoð@AˆBÐ8(`¿(FKð²íÛø%0F"•Kðzî(ðY‚0hoð@AˆBÐ80`¿0FKðœíHFÙø!
‘…B¿™	hB@ðĀ(°ú€ð@	Êà3K%{D&LöÐX˜(¿hoð@B‘B@ð‚€
˜(¿hoð@B‘BiÑ	˜(¿hoð@B‘BiÑPFÚø(FÐÛø…ð±úñI	C	ÑHAF2FxDð¨ûÚø(>Ð!oð@BÊøh‘B6Ð9`3ÑKðFí0àûÿð
š™™™™™¹?:Œ0âŽyE>q¬‹Ûhð?öûÿeOûÿÛQûÿÍQûÿZX>åPûÿNGûÿKðÄí8¹éHéIxDyDhhKðüìÚø )¿Oðÿ0A°½èð½9`’ÑFKðí#Fç9`’ÑFKðúì#Fç9`ôz¯FKðòì#Ftç8\F(`Ñ(FKðèì%Øøoð@AˆB?ôحÏåÍK&LöùX%{DTçÊK&LöîX%{DMçÈK&LöûX%{DFç™	hB?ô7¯(FKðbí(ñ††)hoð@B^F‘BÐ9)`ÑF(FKð²ì0F^FÚø QF!(‘OÐÖøF"%ðµú(ðç‚AhŠlÖø<*ð傐GF(
ðá‚(hoð@AˆBÐ8(`¿(FKð„ì YFphÛøÄ‚l0F*ðЂGUF(ðт0hoð@D BÐ80`¿0FKðhìèh™é`%h
•¡BÐ9`¿Kð\ì•^F6àÖøF"%ðeú(ð*†AhŠlÖøÄ*ð'†G(
ð(†)hoð@D¡BÐ9)`ÑF(FKð4ì0F^FÚø%ÊøRF•h BÐ8`¿FKð"ì
•˜ð0þ
˜$”ð+þ˜
”ð'þ”UFKðÚìFl©
ª«ðôùèhÖødBh’l*ðހGF(	ðî€poÖødÐø„KðÎì(ñä€	˜oð@Bh‘BÐ9`¿Kðèëpo!	‘KðÂìèhÖøàBh’l*ðŀGF(	ðƀpoÖøàÐø„Kð¦ì(ñ¼€	˜oð@Bh‘BÐ9`¿KðÀëpo$	”Kðšì˜ðÉý
˜”ðÅý˜
”ðÁý”»à7K%&Lö¹X{D"æ4KLöçX{Dæ3K%{D&LöçXæ0K&LöÌX{Dæ.K&LöÍX{D
æ,K&LöÎX{Dæ*K{Dæç*KLöéX%{Dûå(K&LöòX%{Dôå%K&OôNH%{Díå#K&Löh%{Dæå K&Löh%{DßåK&Löh%{DØåd Lö f%ðA½Kð<ìŽåd Lö"fð8½d Lö%fð3½ÊÌFûÿ‹Oûÿ}OûÿoOûÿ'MûÿMûÿMûÿMûÿ÷LûÿëLûÿåLûÿÙLûÿËLûÿ½Lûÿ¯Lûÿ¡Lûÿ“LûÿKð
ìF(	ô!¯
àÞK&LöôX%{D‘åKðüëF(	ô:¯˜ðý% •ðý	˜
•ðýàkåc	•(¿hoð@B‘B@ð
« lËðüUFÖø "°oðÿø(	ðF(i)aoð@Bh‘BÐ9`¿KðÚê°o"Öø$	’ðçø(	ðð€Fhiiaoð@Bh‘BÐ9`¿KðÂê°o"Öø(	’ðÏø(	ðà€F¨i©aoð@Bh‘BÐ9`¿Kðªê°o"Öø,	’ð·ø(	ðЀFèiéaoð@Bh‘BÐ9`¿Kð’ê°o"Öø0	’ðŸø(	ðF(j)boð@Bh‘BÐ9`¿Kðzê 	KðfëŒL|D `Kðbë``Kð^ë `Kð\ëà`KðXë aKðVë`aKðRë aKðPëàañ NÌNèNNÀKðëFl©
ª«ð8øèh^FÛødBh’l*ퟜ�GF(	ð«€Öø€ÖødÐø„Kðë(ñ €	˜oð@Bh‘BÐ9`¿Kð*êÖø€!	‘KðëèhÖøàBh’l*ퟀ�GF(	ð€Öø€ÖøàÐø„Kðæê(vÔ	˜oð@Bh‘BÐ9`¿KðêÖø€$	”KðÚê˜ð	ü
˜”ðü˜
”ðü”và9`¿KðèéïæFK%@ò5Lööh{D[äCK%Oô›vLöx{DSä@K%@ò7Löx{DKä=K%OôvLö x{DCä:K%@ò;Lö.x{Dÿ÷;¼Kð¤êF(	ôx¯!àe Lö2fðœ»Kð˜êåe Lö4fð”»KðêUF(ô/­e Lö7f%ð‡»Kð‚êF(	ô¯˜ð£û% •ðžû	˜
•ðšûàkåc	•(¿hoð@B‘BBð’‚Ýé2™ lðûUFKð<ê€Fl©
ª«ðWÿÙøèhˆB¿šhBÑ@°ú€ð@	à¿LûÿÆdµIûÿ¥Iûÿ•Iûÿ…IûÿuIûÿšhBçÐKðêé(ñé‚(hÐèhYFÛøBh’l*ðɂG(	ðقÛø€@ò	‘!‘©Èò	JF1Fðœø(ðƂ	˜oð@Dh¡BÐ9`¿Kðé˜%	•h¡BÐ9`¿KðéPF•ÚøYFÛøBh’l*𞂐G(ðŸ‚ÛøtJF‘!‘1Fðhø(	ð’‚˜h¡BÐ9`¿Kðèè	˜•h¡BÐ9`¿KðÞè	•˜ðëú
˜$”ðæú˜
”ðâú”N!Ûøô"#~D\F0FKð¾é(	ð=‚àOFÔøÐ hKðé(ñ²	˜oð@Bh‘BÐ9`¿KðªèÛø,!\F	‘ðµú(	ð3‚FÔø, hKðré(ñ›	˜oð@Bh‘BÐ9`¿KðŒèÛøÐ
!\F	‘ð–ú(	ðU‚FÔøÐ hKðRé(ñ„	˜oð@Bh‘BÐ9`¿Kðlè %	 Kðfé(	ð¬‚ÛøÄ]Foð@C
hšB¿P`	˜ÕøÄÀh"`ÕøD	™ð?û(ðš‚	˜oð@Bh‘BÐ9`¿Kð>è˜"ÛøÄ\F	’ðZû(	ð‹‚FÔøÄ hKðé(ñE	˜oð@Dh¡BÐ9`¿Kðè˜%	•h¡BÐ9`¿KðèÛøä\F•ðú(ðs‚FÔø¼ hKðÜè(ñ$˜oð@Bh‘BÐ9`¿Jðöï % Kððè(ðf‚Ûø¸]Foð@C
hšB¿P`˜Õø¸Àh"`Õøð™ðÈú(	ðT‚˜oð@Bh‘BÐ9`¿JðÈï	˜"Ûø¸\F’ðãú(ðE‚FÔø¸ hKðŽè(ñހ˜oð@Dh¡BÐ9`¿Jð¨ï	˜%•h¡BÐ9`¿Jðœï 	•%Kð˜è(	ð.‚Ûø ]Foð@C
hšB¿P`	˜Õø Àh"`Õøh%	™ðoú(ð‚	˜oð@Bh‘BÐ9`¿Jðnï˜"Ûø \F	’ðŠú(	ð‚FÔø  hKð4è(ñ€	˜oð@Dh¡BÐ9`¿JðNï˜%	•h¡BÐ9`¿JðDï •%Kð>è(ðóÛøx]Foð@C
hšB¿P`˜ÕøxÀh"`Õø%™ðú(	ðà˜oð@Bh‘BÐ9`¿Jðï	˜"Ûøx\F’ð1ú(ðЁFÔøx hJðÜï(ñ;€˜oð@Dh¡BÐ9`¿Jðöî	˜%•h¡BÐ9`¿Jðêî	•ðqú0ð»Úø$íQìJðTï(	ð·FÛøpÛø”Ðø„Jð¨ï(ñ€	˜oð@Bh‘BÐ9`¿JðÂîÛøp!\F	‘JðšïÛøôÛøÛøÜ Ûøü7Íéñ!ðü(	ðñF oÔøˆÐø„Jðxï(ñæ‡	˜oð@Bh‘BÐ9`¿Jð’îÛøp!\F	‘JðjïÛøøÛøÛøä Ûøü7Íéñ !ðÑû(	ðҁF oÔø`Ðø„JðHï(ñ¾‡	˜oð@Bh‘BÐ9`¿JðbîÛøp!\F	‘Jð:ïÛøüÛøÛøà Ûøü7Íéñ0!ð¡û(	ð³FÛøpÛøÐø„Jðï(ñ•‡	˜oð@Bh‘BÐ9`¿Jð0îÛøp!\F	‘Jð
ïÛøÛøÛøì!Ûøü7Íéñ@!ðpû(	ð“FÛøpÛø˜Ðø„Jðæî(ñl‡	˜oð@Bh‘BÐ9`¿JðîÛøp!\F	‘JðØîÛø¼ðèû(	ð~AhŠlYFÛøD*ðG(ð€	˜oð@Bh‘BÐ9`¿JðØí˜!Ëø<Ûø¼	‘‘ðÂû(ðlAhŠlYFÛøD*ðiG(	ðj˜oð@Bh‘BÐ9`¿Jð²í  Jðöí(ð_™hoð@A"hŠB¿2"`Ä`˜	ša hˆB¿0 `˜DaÛøÛøÛøÔ!Ûøü7ÍéñP!	•ðÛú(	ð@™oð@BÁdhB
Ð0`˜h‘BÐ9`¿JðpíÛøp#	šÛøÜÐø„“Jð<î(ñˆ	˜oð@Bh‘BÐ9`¿JðVíÛøp!]F	‘Jð0îÛøÛøÛøì Ûøü7Íéñ`!ð–ú(	ð
FXFÛøPoð@CÐdh™B¿1`	šÛøpÛøÄÐø„Jðî(ñ—†	˜oð@Bh‘BÐ9`¿JðíÛøp!]F	‘JðòíÛøÛø!Ûøü7ÛøM}DÍé!(FðXú(	ðá€à¿~HFXFÛøXoð@CÐdh™B¿1`	šÛøpÛøÐø„Jð¾í(ñf†	˜oð@Bh‘BÐ9`¿JðØìÛøp!^F	‘Jð°íÛø¼ðÀú(	ð½€AhŠlYFÛøD*𾀐G(ð¿€	˜oð@Bh‘BÐ9`¿Jð°ì˜!Ëø@Ûø¼	‘‘ðšú(ð«€AhŠlYFÛøD*𨀐G(	ð©€˜oð@Bh‘BÐ9`¿JðŠì  JðÎì(ðž€"hoð@A&ŠB¿2"`Ä`˜	šaXFÛøð
hŠB¿Q`XFÛøð
™Haoð@A hˆB¿0 `˜„aÛøÛøÛøü!Ûøü7Íéñ!	–ð¥ù(	ðq€™oð@BÁdhB
Ð0`˜h‘BÐ9`¿Jð:ìÛøp#	šÛø´Ðø„“Jðí(ñ÷…	˜oð@Bh‘BÐ9`¿Jð ìÛøp!^F	‘JðúìÛø¼ð	ú(	ðI€AhŠlYFÛøð*ðJ€G(ðK€	˜oð@Bh‘BÐ9`¿Jðúë˜!ËøDÛø¼	‘‘ðãù(ð7€AhŠlYFÛøð*ð4€G(	ð5€˜oð@Bh‘BÐ9`¿JðÔë  Jðì(ð*€"hoð@A&ŠB¿2"`Ä` hˆB¿0 `˜a˜™	šhJaoð@Bh‘B¿1`™ˆaÛøÛøÛøL!Ûøü7Íéñ !	–ðòø(	ð€™oð@BÁdhB
Ð0`˜h‘BÐ9`¿Jð†ëÛøp#	šÛøøÐø„“JðTì(ñ¹…	˜oð@Bh‘BÐ9`¿JðnëÛøp!^F	‘JðFìÛøÛøÛøü Ûøü7Íéñ0!ð­ø(	ð·FÛøpÛøðÐø„Jð"ì(ñ¨…	˜oð@Bh‘BÐ9`¿Jð<ëÛøp!^F	‘JðìÛøÛøÛø!Ûøü7Íéñ@!ð|ø(	ð¯‡FXFÛøloð@CÐdh™B¿1`	šÛøpÛø Ðø„Jðæë(ñ|…	˜oð@Bh‘BÐ9`¿JðëÛøp!^F	‘JðØëÛø ÛøÛøü7Ûø$"ÍéñP!ð?ø(	ð„‡FXFÛøtoð@CÐdh™B¿1`	šÛøpÛø|Ðø„Jð¨ë(ñ_…	˜oð@Bh‘BÐ9`¿JðÂêÛøp!^F	‘JðœëÛø¼ð«ø(	ðd‡AhŠlYFÛøD*ðe‡G(ðf‡	˜oð@Bh‘BÐ9`¿Jðœê˜!ËøHÛø¼	‘‘ð…ø(ðR‡AhŠlYFÛøD*ðO‡G(	ðP‡˜oð@Bh‘BÐ9`¿Jðvê  Jð¸ê(ðE‡"hoð@A&ŠB¿2"`Ä`˜	ša hˆB¿0 `˜DaÛø$ÛøÛø"Ûøü7Íéñ`!	–ðŸÿ(	ð'‡™oð@BÁdhB
Ð0`˜h‘BÐ9`¿Jð4êÛøp#	šÛøÄÐø„“Jðë(ñՄ	˜oð@Bh‘BÐ9`¿JðêÛøp!]F	‘JðôêÛøÛø¤!Ûøü7Ûø(M}DÍé!(FðYÿ(	ðó†àðBFXFÛøtoð@CÐdh™B¿1`	šÛøpÛø°Ðø„JðÀê(ñ²„	˜oð@Bh‘BÐ9`¿JðÚéÛøp!^F	‘Jð²êÛø¼ðÂÿ(	ðІAhŠlYFÛøD*ðцG(ð҆	˜oð@Bh‘BÐ9`¿Jð²é˜!ËøLÛø¼	‘‘ðœÿ(ð¾†AhŠlYFÛøD*𻆐G(	ð¼†˜oð@Bh‘BÐ9`¿JðŒé  JðÐé(ð±†"hoð@A&ŠB¿2"`Ä`˜	ša hˆB¿0 `˜DaÛø,ÛøÛø"Ûøü7Íéñ!	–ð¶þ(	ðþ†™oð@BÁdhB
Ð0`˜h‘BÐ9`¿JðJéÛøp#	šÛø¼Ðø„“Jðê(ñ#„	˜oð@Bh‘BÐ9`¿Jð2éÛøp!^F	‘Jð
êÛø0ÛøÛø,!Ûøü7Íéñ !ðqþ(	ðˆFXFÛøXoð@CÐdh™B¿1`	šÛøpÛølÐø„JðÚé(ñQ„	˜oð@Bh‘BÐ9`¿JðôèÛøp!^F	‘JðÎéÛø4ÛøÛø$!Ûøü7Íéñ0!ð4þ(	ð †FXFÛøPoð@CÐdh™B¿1`	šÛøpÛø Ðø„Jðžé(ñ%„	˜oð@Bh‘BÐ9`¿Jð¸èÛøp!^F	‘JðéÛø8ÛøÛøœ!Ûøü7Íéñ@!ð÷ý(	ðu†FXFÛøPoð@CÐdh™B¿1`	šÛøpÛø¨Ðø„Jð`é(ñùƒ	˜oð@Bh‘BÐ9`¿JðzèÛøp!^F	‘JðTéÛø<ÛøÛø!Ûøü7ÍéñP!ðºý(	ðJ†FXFÛøPoð@CÐdh™B¿1`	šÛøpÛøÐø„Jð$é(ñ̓	˜oð@Bh‘BÐ9`¿Jð>èÛøp!^F	‘JðéÛø@ÛøÛø”!Ûøü7Íéñ`!ð}ý(	ð†FXFÛøPoð@CÐdh™B¿1`	šÛøpÛø Ðø„Jðæè(ñӃ	˜oð@Bh‘BÐ9`¿JðèÛøp!]F	‘JðÚèÛøÛøô!Ûøü7ÛøDM}DÍé!(Fð?ý(	ðó…à,?FXFÛøPoð@CÐdh™B¿1`	šÛøpÛø¬Ðø„Jð¦è(ñ¤ƒ	˜oð@Bh‘BÐ9`¿IðÀïÛøp!^F	‘Jð˜èÛøHÛøÛøü7Ûø"Íéñ!ðÿü(	ðŅFXFÛøPoð@CÐdh™B¿1`	šÛøpÛøÌÐø„Jðhè(ñyƒ	˜oð@Bh‘BÐ9`¿Ið‚ïÛøp!^F	‘Jð\èÛøLÛøÛøü7Ûø,"Íéñ !ðÂü(	ðš…FXFÛøPoð@CÐdh™B¿1`	šÛøpÛø¸Ðø„Jð,è(ñƒ	˜oð@Bh‘BÐ9`¿IðFïÛøp!^F	‘JðèÛøPÛøÛø¬!Ûøü7Íéñ0!ð…ü(	ðo…FXFÛøPoð@CÐdh™B¿1`	šÛøpÛø\Ðø„Iðîï(ñ…ƒ	˜oð@Bh‘BÐ9`¿IðïÛøp!^F	‘IðâïÛøTÛøÛøü7Ûø<"Íéñ@!ðHü(	ðD…FXFÛøPoð@CÐdh™B¿1`	šÛøpÛøÔÐø„Ið²ï(ñZƒ	˜oð@Bh‘BÐ9`¿IðÌîÛøp!^F	‘Ið¤ïÛøXÛøÛøÌ!Ûøü7ÍéñP!ðü(	ð…FXFÛøPoð@CÐdh™B¿1`	šÛøpÛø Ðø„Iðtï(ñ/ƒ	˜oð@Bh‘BÐ9`¿IðŽîÛøp!^F	‘IðhïÛø\ÛøÛøT!Ûøü7Íéñ`!ðÎû(	ðî„FXFÛøtoð@CÐdh™B¿1`	šÛøpÛø\Ðø„Ið8ï(ñƒ	˜oð@Bh‘BÐ9`¿IðRîÛøp!]F	‘Ið*ïÛøÛø<!Ûøü7Ûø`M}DÍé!(Fðû(	ð„à¿><FXFÛøtoð@CÐdh™B¿1`	šÛøpÛø˜Ðø„Iðöî(ñƒ	˜oð@Bh‘BÐ9`¿IðîÛøp!^F	‘IðèîÛødÛøÛø\!Ûøü7Íéñ!ðOû(	ð“„FXFÛøtoð@CÐdh™B¿1`	šÛøpÛø”Ðø„Ið¸î(ñڂ	˜oð@Bh‘BÐ9`¿IðÒíÛøp!^F	‘Ið¬îÛøhÛøÛød!Ûøü7Íéñ !ðû(	ðh„FXFÛøtoð@CÐdh™B¿1`	šÛøpÛøœÐø„Ið|î(ñKƒ	˜oð@Bh‘BÐ9`¿Ið–íÛøp!^F	‘IðnîÛølÛøÛøÜ!Ûøü7Íéñ0!ðÕú(	ð=„FXFÛøXoð@CÐdh™B¿1`	šÛøpÛøôÐø„Ið>î(ñ ƒ	˜oð@Bh‘BÐ9`¿IðXíÛøp!^F	‘Ið2îÛøpÛøÛøü7Ûø4"Íéñ@!ð˜ú(	ð„FXFÛøPoð@CÐdh™B¿1`	šÛøpÛøÀÐø„Iðî(ñõ‚	˜oð@Bh‘BÐ9`¿IðíÛøp!^F	‘IðôíÛøtÛøÛøü7Ûø"ÍéñP!ð[ú(	ðçƒFXFÛøPoð@CÐdh™B¿1`	šÛøpÛøTÐø„IðÄí(ñʂ	˜oð@Bh‘BÐ9`¿IðÞìÛøp!^F	‘Ið¸íÛøxÛøÛøô Ûøü7Íéñ`!ðú(	ð¼ƒFXFÛøPoð@CÐdh™B¿1`	šÛøpÛøÌÐø„Iðˆí(ñŸ‚	˜oð@Bh‘BÐ9`¿Ið¢ìÛøp!]F	‘IðzíÛøÛøŒ!Ûøü7Ûø|M}DÍé!(Fðàù(	ðƒà¿N9FXFÛøPoð@CÐdh™B¿1`	šÛøpÛøpÐø„IðFí(ño‚	˜oð@Bh‘BÐ9`¿Ið`ìÛøp!^F	‘Ið8íÛø€ÛøÛøÄ!Ûøü7Íéñ!ðŸù(	ðaƒFXFÛøXoð@CÐdh™B¿1`	šÛøpÛøŒÐø„Iðí(ñD‚	˜oð@Bh‘BÐ9`¿Ið"ìÛøp!^F	‘IðüìÛø„ÛøÛøü7ÛøD"Íéñ !ðbù(	ð6ƒFXFÛøPoð@CÐdh™B¿1`	šÛøpÛøôÐø„IðÌì(ñ‚	˜oð@Bh‘BÐ9`¿IðæëÛøp!^F	‘Ið¾ìÛøˆÛøÛø4!Ûøü7Íéñ0!ð%ù(	ðƒFXFÛøPoð@CÐdh™B¿1`	šÛøpÛø€Ðø„IðŽì(ñî	˜oð@Bh‘BÐ9`¿Ið¨ëÛøp!^F	‘Ið‚ìÛøŒÛøÛøD!Ûøü7Íéñ@!ðèø(	ðւFXFÛøPoð@CÐdh™B¿1`	šÛøpÛø¸Ðø„IðRì(ñÁ	˜oð@Bh‘BÐ9`¿IðlëÛøp!^F	‘IðDìÛøÛøÛøl!Ûøü7ÍéñP!ð«ø(	ðª‚FXFÛøPoð@CÐdh™B¿1`	šÛøpÛø¤Ðø„Iðì(ñ˜	˜oð@Bh‘BÐ9`¿Ið.ëÛøp!	‘IðìIð.ì(	ð„‚Ûø*ÛøôIðôë(ñŠÛø”ÛøÛø„!Ûøü7Íéñ`!ð`ø(ðy‚ÛøÈ,YFÂdoð@Ah‹B¿X`˜	šehˆBÐ0`	˜oð@Bh‘BÐ9`¿IðèêÛøp#šÛø8Ðø„	“Ið¶ë(ñ]˜oð@Bh‘BÐ9`¿IðÐêÛøp!]F‘Ið¨ëÛøÛøt!Ûøü7Ûø˜M}DÍé!(Fðø(ð8‚à¿6FXFÛøPoð@CÐdh™B¿1`šÛøpÛø(Ðø„Iðtë(ñ-˜oð@Bh‘BÐ9`¿IðŽêÛøp!^F‘IðfëÛøœÛøÛø|!Ûøü7Íéñ!ðÍÿ(ð‚FXFÛøÔoð@CÐdh™B¿1`šÛøpÛø0Ðø„Ið6ë(ñ˜oð@Bh‘BÐ9`¿IðPêÛøp!^F‘Ið*ëÛø ÛøÛø!Ûøü7Íéñ !ðÿ(ðF‚FXFÛøPoð@CÐdh™B¿1`šÛøpÛø´Ðø„Iðúê(ñ׀˜oð@Bh‘BÐ9`¿IðêÛøp!‘IðîêIðë(ð ‚Ûø¬"FIðÚê(ñʀ˜"FÛø8IðÒê(ñӀÛø¤ÛøÛø¼!Ûøü7Íéñ0!ð=ÿ(	ð‚™oð@BehB
Ð0`˜h‘BÐ9`¿IðÒéÛøp#	šÛøtÐø„“Iðžê(ñ²€	˜oð@Bh‘BÐ9`¿Ið¸éÛøp!\F	‘Ið’êÛø¨ÛøÛøä!Ûøü7Íéñ@!ðøþ(	ðɁFXFÛøäoð@CÐdh™B¿1`	šÛøpÛøpÐø„Iðbê(ñ‡€	˜oð@Bh‘BÐ9`¿Ið|éÛøp!\F	‘IðTêÛø¬ÛøÛø´!Ûøü7ÍéñP!ð»þ(	ð•FXFÛøäoð@CÐdh™B¿1`	šÛøpÛølÐø„Ið$ê(ñ\€	˜oð@Bh‘BÐ9`¿Ið>éÛøp!\F	‘IðêÛø°ÛøÛøü7ÛøŒ$Íéñ`!ð~þ(	ðaFXFÛøPoð@CÐdh™B¿1`	šÛøŒÛøIðêé(ñ3€	˜oð@Bh‘BÐ9`¿IðéÛøŒ!	‘ðñþ(	ð?ChZFÛøÛøø'Ûl+ð>˜G(ñ?	˜oð@Bh‘BÐ9`¿Iðàè 	- Iðìé(	ð4Ûøœ)ÛøðIðªé(ñ€	˜Ûøà(ÛøØIð é(ñ€	˜ÛøÈ#ÛøðIð–é(ñ%€	˜Ûø%Ûø IðŒé(ñ,€	˜Ûø¸)ÛøIð‚é(ñ3€	˜Ûøü%ÛøPIðxé(ñ	˜Ûøô#ÛøIðné(ñÿ€	˜Ûø$$ÛøIðdé(ñý€	˜Ûø€*Ûø(IðZé(ñû€	˜ÛøÈ)ÛøIðPé(ñù€	˜Ûø´'Ûø¨IðFé(ñ÷€	˜ÛøÀ)ÛøIð<é(ñõ€	˜Ûøp%Ûø0Ið2é(ñó€	˜Ûø$%Ûø(Ið(é(ññ€	˜Ûø¬'Ûø Iðé(ñï€	˜Ûø$ÛøIðé(ñí€	˜Ûø¤'Ûø˜Ið
é(ñë€	˜Ûø°)ÛøøIðé(ñé€	˜ÛøÐ)ÛøIðöè(ñç€	˜Ûø¼*Ûø0Iðìè(ñå€	˜Ûø`(Ûø°Iðâè(ñã€	˜ÛøØ*Ûø@IðØè(ñá€	˜Ûø¤(ÛøÐIðÎè(ñ߀	˜Ûø`&ÛøXIðÄè(ñ݀	˜Ûøœ%Ûø@Iðºè(ñۀ	˜Ûø˜&Ûø`Ið°è(ñـ	˜Ûø &ÛøhIð¦è(ñ׀	˜Ûøø(ÛøàIðœè(ñՀ	˜ÛøÄ*Ûø8Ið’è(ñӀ	˜ÛøX*Ûø Iðˆè(ñр	˜ÛøÐ#ÛøøIð~è(ñπ	˜Ûøt'ÛøIðtè(ñ̀	˜Ûø(ÛøÈIðjè(ñˀ	˜Ûøø*ÛøHIð`è(ñɀ	˜Ûø„%Ûø8IðVè(ñǀ	˜Ûø¼%ÛøHIðLè(ñŀ	˜Ûø¨&ÛøpIðBè(ñÀ	˜Ûø<'ÛøˆIð8è(ñ@	˜Ûø,'ÛøxIð.è(ñ¿€	˜Ûø4'Ûø€Ið$è(ñ½€	˜Ûø¸$ÛøIðè(ñ»€	˜Ûøx(ÛøÀIðè(ñ¹€	˜Ûøt)ÛøèIðè(ñ·€	˜Ûøp(Ûø¸Hðüï(ñµ€	˜ÛøÄ ÛøHðòï(ñ³€	šÛø<ÛøHðèï(ñ±€	˜oð@Bh‘B}ô»©ý÷ð¹ùK&Mò%{Dý÷x¹öK%&Mò{Dý÷p¹óK%&Mò{Dý÷h¹9`¿Hðæîý÷g½ìK%&Mò3{Dý÷Y¹éK%&Mò@{Dý÷Q¹æK%&MòT{Dý÷I¹ãK&Mòi{Dý÷B¹áK&Mò~{Dý÷;¹ÞK%Ä&Mò”{Dý÷3¹ÛK%Ú&Mò¡{Dý÷+¹ØK%Ý&Mò®{Dý÷#¹ÕK%ä&Mò»{Dý÷¹ÒK%õ&MòÈ{Dý÷¹ÏK%@ò/Mòï{Dý÷
¹ÌK%Oô·vMòý{Dý÷¹ÈK&Mò%{Dý÷ù¸ÅK%@ò¿Mò{Dý÷ð¸HðZï(	}ô6­
à¾K%&Mò{Dý÷á¸HðJï(}ôa­˜ðmø$ ”ðhø	˜
”ðdøØø<Èø<@	”(¿hoð@B‘BÑ«Øø@ËðÍÿý÷o½9`¿Hð:îñçd Lö'fà£K%@ò&Mò5{Dý��K%&Mò{Dý÷ ¸g LöQf	àHðï(
}ôةg LöSf(Fð#ø
˜Íø,€ðø‘H1F‘KšxD{DÍø(€ðTü
©ª	« Fðäþ(,Ô˜oð@BSFhhB¿0`ÚøÊøh‘BÐ9`¿Hðäí
˜ðóÿ˜%
•ðîÿ	˜•ðêÿ	•Ýé
!› lð^ÿUF^Fý÷º¹Ýé2™ lðTÿqK%h&Lövh{Dý÷<¸nK%@òE&Mò_{Dý÷3¸jK&Mò){Dý÷,¸hKMò.&%{Dý÷-¸eK%&Mò1{Dý÷¸bK%Oô1vMòl{Dý÷¸^KMò>&%{Dý÷¸[K%@òç&Mòz{Dý÷¸XKMòJ&{Dý÷¸UK%&MòO{Dü÷ó¿RKMòR&%{Dü÷ô¿OK%@òö6Mòˆ{Dü÷â¿LK&Mò_{Dü÷ۿIKMòd&{Dü÷ݿGK&Mòg{Dü÷ͿDK%@òaFMò¯{Dü÷ĿAKMòt&{Dü÷ƿ>K&Mòy{Dü÷¶¿<KMò|&{Dü÷¸¿9K%@ò©FMò½{Dü÷¦¿6K%,&Mò‰{Dü÷ž¿3K%Ä&Mò’{Dü÷–¿0K%@òVMòä{Dü÷¿ï#ûÿÃ#ûÿ³#ûÿ•#ûÿ…#ûÿu#ûÿg#ûÿY#ûÿI#ûÿ9#ûÿ)#ûÿ#ûÿ	#ûÿ÷"ûÿå"ûÿñ"ûÿÃ"ûÿ¥"ûÿ3"ûÿ#"ûÿ×!ûÿ"ûÿw!ûÿI!ûÿ;!ûÿ+!ûÿ!ûÿ	!ûÿù ûÿç ûÿÙ ûÿÉ ûÿ¹ ûÿ§ ûÿ™ ûÿ‹ ûÿ} ûÿk ûÿ] ûÿO ûÿA ûÿ/ ûÿ ûÿ ûÿýûÿöK%Ú&MòŸ{Dü÷+¿óK%@ònVMòò{Dü÷"¿ðK%Ý&Mò¬{Dü÷¿íK%@ò½VOôRH{Dü÷¿éK%ä&Mò¹{Dü÷	¿æK%@ò#fMò({Dü÷¿ãK%õ&MòÆ{Dü÷ø¾àK%@ònfMò({Dü÷ï¾ÜK%@ò/MòÓ{Dü÷æ¾HðPí(}ô€®ÖKMòÕ{DàÔKMòÛ{DàHð@í(	}ô–®ÐK%@ò/MòÝ{Dü÷ǾÌKMòà{D@ò/%ü÷ǾÉK%@ò/Mòë{Dü÷µ¾ÅK%@ò¿fMò*({Dü÷¬¾ÂK%Oô·vMòú{Dü��K%@òvMò8({Dü��K%@ò¿Mò{Dü��K%@òNvMòF({Dü��K%@ò&Mò{Dü÷¾Hðèì(}ôA¯­KMò{Dà¬KMò{DàHðØì(	}ôW¯§K%@ò&Mò {Dü÷`¾¤KMò#{D@ò&%ü÷`¾ K%@ò&Mò1{Dü÷N¾K%@ò¹vMòT({Dü÷E¾™K%@òE&Mò@{Dü÷<¾Hð¦ì(}��KMòB{Dà‘KMòH{DàHð–ì(	}ô˯K%@òE&MòJ{Dü÷¾‰KMòM{D@òE&%ü÷¾†K%@òE&Mò[{Dü÷¾‚K%@ö
Mòb({Dü÷¾K%Oô1vMòj{Dü÷ù½{K%@öXMòp({Dü÷ð½xK%@òç&Mòw{Dü÷ç½tK%@öºMò~({Dü÷޽qK%@òö6Mò…{Dü÷սmK%@öMòŒ({Dü÷̽jK%@òaFMò“{Dü÷ýHð,ì(~ôš¨cKMò•{DàbKMò›{DàHðì(	~ô°¨]K%@òaFMò{Dü÷¤½ZKMò {D@òaF%ü÷¤½VK%@òaFMò«{Dü÷’½SK%@öuMòš({Dü÷‰½OK%@ò©FMòº{Dü÷€½LK%@öìMò¨({Dü÷w½HK%@òVMòÈ{Dü÷n½HðØë(~ô.©BKMòÊ{Dà@KMòÐ{DàHðÈë(	~ôD©<K%@òVMòÒ{Dü÷O½8KMòÕ{D@òV%ü÷O½¿9ûÿ'ûÿûÿûÿõûÿãûÿÓûÿÁûÿ¯ûÿ—ûÿûÿqûÿeûÿMûÿ;ûÿ)ûÿûÿûÿóûÿáûÿÉûÿ¿ûÿ£ûÿ—ûÿûÿmûÿ[ûÿCûÿ9ûÿûÿûÿùûÿçûÿÕûÿÃûÿ±ûÿŸûÿûÿ{ûÿiûÿQûÿGûÿ+ûÿûÿûÿõûÿãûÿÑûÿ¿ûÿ§ûÿûÿûÿuûÿýK%@òVMòà{Dü÷ҼúK%@ö?&Mò¶({Dü÷ɼöK%@ònVMòï{Dü÷<óK%@ö¯&MòÄ({Dü÷·¼ïK%@ò½VMòý{Dü÷®¼ìK%@öô&MòÒ({Dü÷¥¼èK%@ò#fMò({Dü÷œ¼åK%@ö96Mòà({Dü÷“¼áK%@ònfMò({Dü÷мÞK%@öž6Mòî({Dü÷¼ÚK%@ò¿fMò'({Dü÷x¼×K%@ö:FMòü({Dü÷o¼ÓK%@òvMò5({Dü÷f¼ÐK%@ö·FMò
8{Dü÷]¼ÌK%@òNvMòC({Dü÷T¼ÉK%@ö	VMò8{Dü÷K¼ÅK%@ò¹vMòQ({Dü÷B¼ÂK%@öbVMò&8{Dü÷9¼¾K%@ö
Mò_({Dü÷0¼»K%@ö¥VMò48{Dü÷'¼·K%@öXMòm({Dü÷¼´K%@ö4fMòB8{Dü÷¼°K%@öºMò{({Dü÷¼­K%@öˆfMòO8{Dü÷¼©K%@öMò‰({Dü÷ú»¦K%@öˆfMòU8{Dü÷ñ»¢K%@öuMò—({Dü÷軟K%@öxvMòc8{Dü÷߻›K%@öìMò¥({Dü÷ֻ˜K%AòlMòq8{Dü÷ͻ”K%@ö?&Mò³({Dü÷Ļ‘K%AòCMò8{Dü��K%@ö¯&MòÁ({Dü��K%Aò&MòŒ8{Dü��K%@öô&MòÏ({Dü��K%Aò&Mò8{Dü÷—»K%@ö96MòÝ({Dü÷Ž»|K%Aò&Mò’8{Dü÷…»xK%@öž6Mòë({Dü÷|»uK%Aò²&Mò 8{Dü÷s»qK%@ö:FMòù({Dü÷j»nK%Aò76Mò®8{Dü÷a»jK%@ö·FMò8{Dü÷X»gK%Aò6Mò¼8{Dü÷O»cK%@ö	VMò8{Dü÷F»`K%@öbVMò#8{Dü÷=»\K&MòÐ8%{Dü÷5»YK%@ö¥VMò18{Dü÷,»VK&MòÑ8%{Dü÷$»SK%@ö4fMò?8{Dü÷»OK%@öˆfMòM8{Dü÷»LK&MòÒ8%{Dü÷
»IKMòP8@öˆf%{Dü÷
»EK&MòÓ8%{Dü÷ùºBKMò`8@öxv%{Dü÷ùº?K&MòÔ8%{Dü÷èº<KMòn8Aòl%{Dü÷躇ûÿuûÿcûÿQûÿ?ûÿ-ûÿûÿ	ûÿ÷ûÿåûÿÓûÿÁûÿ¯ûÿûÿ‹ûÿyûÿgûÿUûÿCûÿ1ûÿûÿ
ûÿûûÿéûÿ×ûÿÅûÿ³ûÿ¡ûÿûÿ}ûÿkûÿYûÿGûÿ5ûÿ#ûÿûÿÿûÿíûÿÛûÿÉûÿ·ûÿ¥ûÿ“ûÿûÿoûÿ]ûÿMûÿ;ûÿ+ûÿûÿûÿ÷ûÿåûÿÕûÿÃûÿ³ûÿ¡ûÿÎKMò|8AòC%{Dü÷mºËKMòŠ8Aò&%{Dü÷dºÇK%Aò&MòŽ8{Dü÷RºÄK%Aò²&Mò8{Dü÷IºÀK%Aò76Mò«8{Dü÷@º½K%Aò6Mò¹8{Dü÷7º¹K%Aòß6MòÄ8{Dü÷.ºHð`è(~õn³K%Aòß6MòÆ8{Dü÷ º°K&MòÎ8%{Dü÷º­K&MòÕ8%{Dü÷ºªK&MòÖ8%{Dü÷º§K&Mò×8%{Dü÷º¤K&MòØ8%{Dü÷ø¹¡K&MòÙ8%{Dü÷ð¹žK&MòÚ8%{Dü÷蹛K&MòÛ8%{Dü÷๘K&MòÜ8%{Dü÷ع•K&MòÝ8%{Dü÷й’K&MòÞ8%{Dü÷ȹK&Mòß8%{Dü÷9ŒK&Mòà8%{Dü��K&Mòá8%{Dü��K&Mòâ8%{Dü��K&Mòã8%{Dü��K&Mòä8%{Dü÷˜¹}K&Mòå8%{Dü÷¹zK&Mòæ8%{Dü÷ˆ¹wK&Mòç8%{Dü÷€¹tK&Mòè8%{Dü÷x¹qK&Mòé8%{Dü÷p¹nK&Mòê8%{Dü÷h¹kK&Mòë8%{Dü÷`¹hK&Mòì8%{Dü÷X¹eK&Mòí8%{Dü÷P¹bK&Mòî8%{Dü÷H¹_K&Mòï8%{Dü÷@¹\K&Mòð8%{Dü÷8¹YK&Mòñ8%{Dü÷0¹VK&Mòò8%{Dü÷(¹SK&Mòó8%{Dü÷ ¹PK%Mòô8&{Dü÷¹MK%Mòõ8&{Dü÷¹JK%Mòö8&{Dü÷¹GK%Mò÷8&{Dü÷¹DK%Mòø8&{Dü÷ø¸AK%Mòù8&{Dü÷ð¸>K%Mòú8&{Dü÷è¸;K%Mòû8&{Dü÷à¸8K%Mòü8&{Dü÷ظ5K%Mòý8&{Dü÷и¿«ûÿ™ûÿ‡ûÿuûÿcûÿQûÿ?ûÿ#ûÿûÿûÿóûÿãûÿÓûÿÃûÿ³ûÿ£ûÿ“ûÿƒûÿsûÿcûÿSûÿCûÿ3ûÿ#ûÿûÿûÿóûÿãûÿÓûÿÃûÿ³ûÿ£ûÿ“ûÿƒûÿsûÿcûÿSûÿCûÿ3ûÿ#ûÿûÿûÿóûÿãûÿÓûÿÃûÿ³ûÿ£ûÿ“ûÿƒûÿ(¿hoð@B‘BÐ9`¿Gð½pG¿ðµ¯MøÞN~DphÞIÖøìHBhyD
h!F’lªB@ðî€"#Gðâî(ðð€×JqhzDÖø(IÐbFHh‚lF!FªB@ðç€"#GðÎî(ðé€qhBFÈø0ÖøðBHh‚lF!FªB@ð߀"#Gðºî(ðî€qhBFÈø4ÖøÄEHh‚lF!FªB@ðր"#Gð¦î(ðè€qhBFÈø8ÖøÐBHh‚lF!FªB@ðЀ"#Gð’î(ðâ€qhBFÈø<ÖøœBHh‚lF!FªB@ðʀ"#Gð~î(ð܀qhBFÈø@ÖøÀBHh‚lF!FªB@ðĀ"#Gðjî(ðրqhBFÈøDÖø|BHh‚lF!FªB@ð¾€"#GðVî(ðЀqhBFÈøHÖø @Hh‚lF!FªB@ð¸€"#GðBî(ð¹€ÖøìÈøLFð
ü(ÈøPðÖøŒðü(ÈøTð·€ÖøØðûû(Èøð®€Öøðòû(ÈøXð¥€ÖøÌðéû(Èø\ðœ€ÖøXðàû(Èø`ð“€ÖøPð×û(ÈødðŠ€ ]ø‹ð½*ퟠ�G(ô¯ðü^HxDñ,ià*ퟀ�G(ô¯ðüñ0]à*zАG(ô"¯ðüñ4Rà*uАG(ô+¯ðõûñ8Gàñ4Dà*mАG(ô1¯ðçûñ<9àñ86à*eАG(ô7¯ðÙûñ@+àñ<(à*]АG(ô=¯ðËûñDàñ@à*UАG(ôC¯ð½ûñHàñDà*MАG(ôI¯ð¯ûñLàñHGðí@¹'H"F'IxDyDhhGðÌì (`Oðÿ0]ø‹ð½Gð<í(ô‰®uçGð6í(ô˜®}çGð0í(��çGð*í(��çGð$í(ô®çGðí(ôЮ—çGðí(ôޮŸçGðí(ô쮧çGðí(ôú®¯ç¿ÒbȤ(‚*€ÅÙÐúÿðµ¯-é¿° GðRìL(|DÄøTðj„à,Ôø8oð@C
hšB¿P`Ôø8ÔøTJÁ`zDh=FFGðí(ÄøPðL„à‚ÄÔø(+ Ôø,Ôø0;Gð
í(ÄøXð;„Ôøè Gðí(Äø\ð1„Ôøì Gðöì(Äø`ð'„Ôøh Gðìì(Äødð„Ôø´ Gðâì(Äøhð„Ôø Ôø4+GðÖì(Äølð„Ôø0 GðÌì(ÄøpðýƒÔø, GðÂì(ÄøtðóƒÔøP Gð¸ì(ÄøxðéƒÔø( Gð®ì(Äø|ð߃Ôø¬ Gð¤ì(Äø€ðՃÔø¨ Gðšì(Äø„ð˃Ôø° Gðì(ÄøˆðCÔø¼ Gð†ì(ÄøŒð·ƒÔøx Gð|ì(Äøð­ƒÔøÔ Gðrì(Äø”ð£ƒ=™ 
FFGðfì(Äø˜ð˜ƒáh Gð^ì(ÄøœðƒÔø´ GðTì(Äø ð…ƒÔø¼ GðJì(Äø¤ð{ƒÔøh Gð@ì(Äø¨ðqƒÔø Gð6ì(Äø¬ðgƒÔøl Gð,ì(Äø°ð]ƒÔøP Gð"ì(Äø´ðSƒÔøŒ Gðì(Äø¸ðIƒÔøü Gðì(Äø¼ð?ƒÔøä Gðì(ÄøÀð5ƒÔøè Gðúë(ÄøÄð+ƒÔøt Gððë(ÄøÈð!ƒÔøà Gðæë(ÄøÌðƒÔø GðÜë(ÄøÐð
ƒHÔøxxDBl GðÎë(ÄøÔðƒà>$Ôøx GðÂë(ÄøØðó‚Ôø¸ Gð¸ë(ÄøÜðé‚Ôøø Gð®ë(Äøàð߂ÔøÌ Gð¤ë(ÄøäðՂÔøÐ Gðšë(Äøèð˂Ôøü Gðë(ÄøìðBÔøØ Gð†ë(Äøðð·‚Ôø` Gð|ë(Äøôð­‚Ôø< Gðrë(Äøøð£‚Ôø@ Gðhë(Äøüð™‚Ôøì Gð^ë(Äøð‚Ôøˆ GðTë(Äøð…‚HÔøxDh GðFë(Äøðx‚àöÀÔø¤ Gð:ë(Äøðk‚Ôø$ Gð0ë(Äøða‚Ôø 
FGð$ë(ÄøðV‚ÔøD Gðë(ÄøðL‚Ôø@ Gðë(ÄøðB‚Ôøô Gðë(Äø ð8‚Ôøð Gðüê(Äø$ð.‚Ôøø Gðòê(Äø(ð$‚ÔøT Gðèê(Äø,ð‚ÔøX GðÞê(Äø0ð‚ÔøÄhÔøÀ(ÔøÈ8ÔøÌÔø¼Íé GðÊê(Äø4ðüFÔéZÔøи!ÔøšHxDGðÚé(ð2à¿Æûÿ€F Íé
° !"#>”Íé›Íé¨ÍéÍé¥ÍéVÍéUGð¤êØøoð@B‘BÐ9ÈøÑF@FGð^é F>œ(Äøðð½ÔøX Gð‚ê(Äø8ð³FÔéºÔøˆ•!ÔøˆHxDGðé(ðì€à4ûÿFÚ Íé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»Gð\ê)hoð@B‘BÐ9)`ÑF(FGðé F>œ(ÄøôðwÔøÔ# ÔøXGð:ê(Äø<ðkFÔéºÔø`™!ÔøˆHxDGðHé(ð§€à¤ûÿFÝ Íé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»Gðê)hoð@B‘BÐ9)`ÑF(FGðÐè F>œ(Äøøð/Ôøè  ÔøXGðòé(Äø@ð#FÔéºÔø™!ÔøˆHxDGðé(ðb€àûÿFä Íé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»GðÌé)hoð@B‘BÐ9)`ÑF(FGðˆè F>œ(Äøüðç€Ôøh5 ÔøL'ÔøXGð¨é(ÄøDðـFÔéºÔø˜™!ÔøˆHxDGð¶è(ð€à€ûÿFõ Íé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»Gð‚é)hoð@B‘BÐ9)`ÑF(FGð>è F>œ(Äø
ð€ÔøÔ4Ôø„)ÔøXÔø4ZÔøØÔø8h ÍéeGðTé(ÄøHð†€FÔéºÔøܘ!ÔøˆHxDGðdè(ðˇà¿ÚûÿF@ò/Íé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»Gð,é)hoð@B‘BÐ9)`ÑF(FFðèï F>œ(Äø
ðH€Ôø #Ôø¸3ÔøXÔø„	 Gðé(ÄøLð7€FÔéºÔøē!ÔøˆHxDGðè(ð‡à<ûÿFOô·pÍé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»GðÞè)hoð@B‘BÐ9)`ÑF(FFðšï F>œ(Äø
ðú‡=™ GðÀè(ÄøPðñ‡ÔøH) ÔøXÔø„9Gð²è(ÄøTðã‡FÔéºÔø•!ÔøˆHxDFðÀï(ð.‡à”ûÿF@ò¿Íé
 !"#Íé‰Íé¥ÍéÍé«Íé¶Íé»GðŒè)hoð@B‘BÐ9)`ÑF(FFðHï F>œ(Äø
ð§‡Ôø =šGðjè(ÄøXðœ‡ÔøÔ4Ôø„)ÔøXÔø8XÔøØÔøôf ÍéeGðTè(Äø\ð…‡FÔéºÔø´™!ÔøˆHxDFðbï(ðӆàØûÿF@ò Íé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»Gð,è)hoð@B‘BÐ9)`ÑF(FFðèî F>™(Áø
ðH‡>˜ÑøÔäÑøøTÐø„I>˜ÑøØÄÑø¨5ÐøÀf>˜Ñø¬&ÑøXÐø 		 ”>œÍéåÍéÆFðòï(Äø`ð$‡FÔéºÔøø•!ÔøˆHxDFðï(ðu†à¿ûÿF@òE Íé
 !"Íé 	#Íé‰Íé¥Íé«Íé¶Íé»FðÊï)hoð@B‘BÐ9)`ÑF(FFð†î F>œ(Äø
ðæ†Ôøp& ÔøT7ÔøXFð¦ï(Äødð؆FÔéºÔøð“!ÔøˆHxDFð¶î(ð,†à¿~ûÿFOô1pÍé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»Fð~ï)hoð@B‘BÐ9)`ÑF(FFð:î F>™(Áø
ðš†ÑéÇ Ñø„Z<Ñø89Ñø¤/Ñø„	;ÑøX	:Ñø	8ÑøD7Ñø¬6Ñøp	5Ñøœ
4Ñø,
3Ñø„2Ñøˆ	1Ñø˜0Ñøœ-ÑøÌ,Ñø@+Ñø\	*Ñø¼)Ñø (Ñøˆ'ÑøT&Ñøh	%Ñø$>˜.’ÑøÈeÐøXE>˜ÑøXçÑø¶Ðø8…>˜>šÑø•Ðøà:>˜Ñøˆ¤>™Ðø€Ç>˜Ñø„Òø)ÐøŒ
 ¨€è`@.˜/˜'˜&˜Íé%˜$˜-˜,˜	+˜
*˜)˜(˜
9˜0˜8˜7˜6˜5˜4˜3˜"’2˜!‘Íéƒ<šÝé:1˜& ”>œÍøxÀÍéšFð¸î(Äøhðê…FÔéºÔø ”!ÔøˆHxDFðÈí(ðA…à¿¢ûÿF@òç Íé
 !"Íé &#Íé‰Íé¥Íé«Íé¶Íé»Fðî)hoð@B‘BÐ9)`ÑF(FFðLí F>œ(Äø
ð¬…	HÔøxDh Íé=™FFðjî(Äølð›…à¿4·>˜ÔøHÃÔøX“Ôø|ƒÔø¨5Ôø¬åÔø¬&Ôø°¦ÔøXÐø„I>˜”>œÐøV>˜Ðø8i>˜–Ðø4
¨€è ¨€èE Fð8î(Äøpði…FÔéºÔø|š!ÔøˆHxDFðFí(ðÄà ÿúÿF@òö0Íé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»Fðî)hoð@B‘BÐ9)`ÑF(FFðÌì F>œ(Äø 
ð,…Ôøü Ôø+=›Fðîí(Äøtð…ÔøØÔøÔ4Ôø„)ÔøXÔø8hÍé` FðÚí(Äøxð…FÔéºÔøę!ÔøˆHxDFðèì(ðh„àäþúÿF@òa@Íé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»Fð²í)hoð@B‘BÐ9)`ÑF(FFðnì F>œ(Äø$
ð΄ÔøH9Ôø„&ÔøXÔø„	 FðŒí(Äø|ð½„FÔéºÔø°—!ÔøˆHxDFðšì(ð„àHþúÿF@ò©@Íé
 !"Íé #Íé‰Íé¥Íé«Íé¶Íé»Fðdí)hoð@B‘BÐ9)`ÑF(FFð ì F>™(Áø(
ð€„>œÑøÔÑøØdÔø8HÑødUÑø„9Ñøh)ÑøXÍé >œÍéVFð2í(Äø€ðd„F FÔéJ!Ðø¼™OðÐøˆHxDFð>ì(ðăàýúÿF@òPÍé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDFðí)hoð@B‘BÐ9)`ÑF(FFðÄë F>œ(Äø,
ð$„ÔøH9ÔøXÔøh)Ôø„	 Fðâì(Äø„ð„F FÔéJ!Ðøl•ÐøˆHxDFððë(ðyƒà¿òüúÿF@ònPÍé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDFð¸ì)hoð@B‘BÐ9)`ÑF(FFðtë F>œ(Äø0
ðԃÔøœ4Ôø¤$ÔøXÔø„	 Fð’ì(ÄøˆðÃF FÔéJ!Ðø •ÐøˆHxDFð ë(ð-ƒà¿RüúÿF@ò½PÍé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDFðhì)hoð@B‘BÐ9)`ÑF(FFð$ë F>œ(Äø4
ð„ƒÔø„iÔøœ4Ôø¤$ÔøXÔø˜Íé Fð>ì(ÄøŒðpƒF FÔéJ!Ðø¨—ÐøˆHxDFðLë(ðނà¬ûúÿF@ò#`Íé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDFðì)hoð@B‘BÐ9)`ÑF(FFðÒê F>œ(Äø8
ð2ƒÔø„9 Ôø”$ÔøXFðòë(Äøð$ƒF FÔéJ!Ðø”ÐøˆHxDFðë(ð›‚àûúÿF@òn`Íé
 !"#Íé‰Íé¥Íé°Íé¤ÍéFÍéDFðÌë)hoð@B‘BÐ9)`ÑF(FFðˆê F>œ(Äø<
ðç‚Ôø˜7Ôø”$ÔøXÔø„	 Fð¤ë(Äø”ðւF FÔéJ!Ðø —ÐøˆHxDFð²ê(ðQ‚àxúúÿF@ò¿`Íé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDFð|ëF(hoð@AˆBÐ8(`¿(FFð8ê>œ.Äø@mð™‚ÔøX Ôø„)Fð\ë(Äø˜ð‚F FÔéJ!Ðø¬™ÐøˆHxDFðjê(ð‚à¿æùúÿF@òpÍé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDFð2ëF(hoð@AˆBÐ8(`¿(FFðîé>˜.ÀøDmðO‚ÐéI!ÐøÌiÐøˆÐø¬HxDFð,ê(ðҁà¿jùúÿF@òNpÍé
` !"#Íé†Íé•Íé°Íé”ÍéJÍéDFðöêF(hoð@AˆBÐ8(`¿(FFð²é>œ.ÄøHmð‚ÔøH6Ôø'ÔøXÔø„	 FðÐê(Äøœð‚F FÔéJ!Ðø¸šÐøˆHxDFðÞé(ðˆà¿ÎøúÿF@ò¹pÍé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDFð¦êF(hoð@AˆBÐ8(`¿(FFðbé>œ.ÄøLmðÁÔø„9 Ôø #ÔøXFð„ê(Äø ðµF FÔéJ!Ðø\˜ÐøˆHxDFð’é(ð@à¿6øúÿF@ö
Íé
 !"#Íé‰Íé¥Íé°Íé¤ÍéFÍéDFð\êF(hoð@AˆBÐ8(`¿(FFðé>˜.ÀøPmðxÐéI!ÐøÔjÐøˆÐø ¬HxDFðTé(ðà¼÷úÿF@öXÍé
` !"#Íé†Íé•Íé°Íé”ÍéJÍéDFð êF(hoð@AˆBÐ8(`¿(FFðÜè>˜.ÀøTmð<ÐéI!Ðø hÐøˆÐø ¬HxDFðé(ðπàD÷úÿF@öºÍé
` !"#Íé†Íé•Íé°Íé”ÍéJÍéDFðäéF(hoð@AˆBÐ8(`¿(FFð è>˜.ÀøXmðÐéI!Ðø\fÐøˆÐø|¬HxDFðÜè(ð—€àÌöúÿF@öÍé
` Íé° !"#Íé†Íé•Íé”ÍéJÍéDFð¦éF(hoð@AˆBÐ8(`¿(FFðbè>˜.Àø\mðÀÐéI!Ðø˜eÐøˆÐø|¬HxDFð è(ð^€à¿RöúÿF@öuÍé
` Íé° !"#Íé†Íé•Íé”ÍéJÍéDFðhéF(hoð@AˆBÐ8(`¿(FFð$è>˜.Àø`mð…€ÐéI!Ðø”fÐøˆÐø|¬HxDFðbè(ð$€à¿ÖõúÿF@öìÍé
` Íé° !"#Íé†Íé•Íé”ÍéJÍéDFð*éF(hoð@AˆBÐ8(`¿(FEðæï>œ.ÄødmðG€Ôø|9ÔøØ&ÔøXÔø„	 Fðé(Äø¤ð6€F FÔéJ!Ðøœ–ÐøˆHxDFðè(ðهà8õúÿF@ö? Íé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDFðÜèF(hoð@AˆBÐ8(`¿(FEð˜ï>˜.Àøhmðù‡ÐéI!ÐøôhÐøˆÐøT¬HxDEðÖï(ð ‡࿾ôúÿF@ö¯ Íé
` !"#Íé†Íé•Íé°Íé”ÍéJÍéDFð èF(hoð@AˆBÐ8(`¿(FEð\ï>œ.Äølmð¼‡ÔøH9ÔøØ&ÔøXÔø„	 Fðzè(Äø¨ð«‡F FÔéJ!ÐøÐøˆHxDEðˆï(ðV‡à¿"ôúÿF@öô Íé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDFðPèF(hoð@AˆBÐ8(`¿(FEðï>œ.Äøpmðm‡Ôø<ÅÔøH…Ôø\åÔø–Ôø7Ôød&ÔøXÔø,	Ôø„YÔøhÔø¨>œè! Ôø4H”>œÍéŽÍéjFðè(Äø¬ðD‡F FÔéJ!ÐøTšÐøˆHxDEð ï(ðó†àTóúÿF@ö90Íé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDEðêïF(hoð@AˆBÐ8(`¿(FEð¦î>˜.Àøtmð‡ÐøD<‘Ðøè¨Ðø<ÄÐøä¸ÐøЄÐøÀåÐøVÐøܕÐø„Ðø@7ÐøX)>˜èFÐø0FF>˜<›”ÐøLh>˜>œÍé^ÐøHÍéËÍø Íé	` Eðžï(Äø°ðІF FÔéJ!Ðø̓OðÐøˆHxDEðªî(ð†àhòúÿF@öž0Íé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDEðtïF(hoð@AˆBÐ8(`¿(FEð0î>œ.Äøxmð‘†ÔøÀÄÔøLXÔøĄÔøÐäÔø–Ôø„	ÔøD8Ôø@'ÔøXÔøHg>œÍé	 ÍéŽÔøÐFÍéÅÍéd>œEð8ï(Äø´ði†F FÔéJ!Ðøp—ÐøˆHxDEðFî(ð †࿞ñúÿF@ö:@Íé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDEðïF(hoð@AˆBÐ8(`¿(FEðÊí>œ.Äø|mð+†Ôø„9 ÔøT&ÔøXEðìî(Äø¸ð†F FÔéJ!ÐøŒ˜ÐøˆHxDEðúí(ð؅à¿ñúÿF@ö·@Íé
 !"#Íé‰Íé¥Íé°Íé¤ÍéFÍéDEðÄîF(hoð@AˆBÐ8(`¿(FEð€í>˜.Àø€mðà…ÐéI!ÐøôjÐøˆÐø ¬HxDEð¼í(ðŸ…àŒðúÿF@ö	PÍé
` !"#Íé†Íé•Íé°Íé”ÍéJÍéDEðˆîF(hoð@AˆBÐ8(`¿(FEðDí>œ.Äø„mð¤…ÔøD( ÔøXÔø„9Eðdî(Äø¼ð–…F FÔéJ!Ðø€•ÐøˆHxDEðrí(ðY…àøïúÿF@öbPÍé
 !"#Íé‰Íé¥Íé°Íé¤ÍéFÍéDEð>îF(hoð@AˆBÐ8(`¿(FEðúì>œ.ÄøˆmðZ…>>žÔød7Ôø„'ÔøXÔøÄçÔø„¹ÔøL¢Ôø–Ôø ÈÔø$Ôø(ˆ>œÕø|VÖø€fÔøxFÍé
 ÍéF>œÍéëÍé©Íé…Eðøí(ÄøÀð*…F FÔéJ!Ðø¸•OðÐøˆHxDEðí(ðï„àïúÿF@ö¥PÍé
 Íé° !"
#Íé‰Íé¥Íé¤ÍéFÍéDEðÎíF(hoð@AˆBÐ8(`¿(FEðŠì>˜.ÀøŒmðë„ÐéI!Ðø¤fÐøˆÐø¼¬HxDEðÈì(ð¶„à¿¢îúÿF@ö4`Íé
` !"#Íé†Íé•Íé°Íé”ÍéJÍéDEð’íF(hoð@AˆBÐ8(`¿(FEðNì>˜.Àømð®„Ðø9‘Ðøp<‘ÐøØÐø(¤ÐøàTÐøX	:>˜>›>œÐø„™>˜>š;‘ÐøH
8>˜>™Ôø¬È¬Ðøô7>˜ÓøP6Ñø@Ðøh	6>˜Òø´*ÍøÐø(å>˜Ðø,e>˜Ðøàº>˜ÐøŠ>˜Íø€Ðø\
„è'
¨©€èP:«9˜8˜7˜6˜>œèA ËEð$í(ÄøÄðU„F FÔéJ!Ðø8—OðÐøˆHxDEð0ì(ð"„à¿ríúÿF@öˆ`Íé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDEðøìF(hoð@AˆBÐ8(`¿(FEð´ë>œ.Äø”mð„ÔøÌ* Ôø;=™EðÖì(ÄøÈð„Ôøˆ9ÔøÀ8Ôø07Ôø°<Ôø@;ÔøX	:Ôø(
6Ôø5Ôø|4Ôød3Ôø2>˜Ôø„¹Ôø4ÊÔø§ÔøhÔø8ZÔøˆèÐølG>˜>›>šÐø‡>˜Óø$7>™ÐøŒ™>˜Òøh)Íé#:«Ðø7˜Íé	9˜8˜6˜5˜4˜Ñø3˜‘2˜Ë Íé
äÍøHÀÍée>œÍé¨Íø°Eðjì(ÄøÌðœƒF FÔéJ!Ðø(—OðÐøˆHxDEðvë(ðmƒàìúÿF@öxpÍé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDEð@ìF(hoð@AˆBÐ8(`¿(FEðüê>˜.Àø˜mð]ƒÐøH<‘Ðø¶ÐøÄÐøPÄÐøÀçÐøX	:>˜>š;‘Ðø„I>˜>™Òøh)Ðøô6>˜Ñø	‘Ðøܗ>˜Íé>Ýé:Ðøà‡>˜”Íø(°ÐøLZ>˜>œÍé•Ðø̦>˜Íø€ÍéÊÐø¨j>˜Íé&<šÐø¬
 Eðäë(ÄøÐðƒF FÔéJ!Ðø0—OðÐøˆHxDEððê(ðê‚à¿òêúÿFAòlÍé
 Íé° !"#Íé‰Íé¥Íé¤ÍéFÍéDEð¸ëF(hoð@AˆBÐ8(`¿(FEðtê>œ.ÄøœmðՂÔø¸& =™Eð˜ë(ÄøÔðʂÔø@8Ôø\=Ôød9Ôøh;>˜>™>šÐølC>˜>›Ñø|”Ðøpã>˜>™>Ðø„	<>˜Íéä
ñ,ÑøÐøX	:>˜Òø˜*Óøh9Ðø@7>˜Õø°Ä>œÐøD†>˜ÐøPj>˜Íé†Ðø%>˜Íø Ðø º>˜Ðø¤

8˜Žè7˜9˜:™Ýé<2Íé;˜Íé	 Eð<ë(ÄøØðn‚F FÔéH!Ðø´”Oð
Ðø¸òHxDEðHê(ðG‚FAòCÍé
 !"#Íé¹Íé†Íé Íé„ÍéEÍéDEðëF0hoð@AˆBÐ80`¿0FEðÒé>˜-Àø ]ð3‚ÐéêÃÐéìŽÐøà*ÐøX>˜>ÍéÈÐø8H>˜Õø4U”Ðø8¦>˜>œÍéêÐøè³>˜Ðø0f>˜Íé¶Ðø@š>˜ÍøÐøÜ	Íé
 EðÐê(ÄøÜð‚F FÔéH!Ðøt˜Oð
Ðø¸½HxDEðÜé(ð߁FAò Íé
 Íé  !"
#Íé¹Íé†Íé„ÍéEÍéDEðªêF0hoð@AˆBÐ80`¿0FEðfé>˜-Àø¤]ðƁÐéúÎÐøäŠÐø¬3Ðøà*ÐøX>˜>ÍéŽÐøÀE>˜Õø@g>Ðø@¦>˜ÕøìY”Ðø8– >œÍé¦ÍéYÍøÀEðjê(Äøàð›F FÔéH!Ðøp™Oð
Ðø¸ËHxDEðvé(ð|FAò² Íé
 !"#Íé¹Íé†Íé Íé„ÍéEÍéDEðDêF0hoð@AˆBÐ80`¿0FEðé>œ-Äø¨]ð`Ôø Eð$ê(ÄøäðVÔøÈeÔø¬3Ôøà*ÔøXÔø€ÔøYÍé •Eðê(Äøèð?F FÔéH!Ðøl˜Ðø¸ŸHxDEðé(ð&FAò70Íé
 !"#Íé¹Íé†Íé Íé„ÍéEÍéDEðêéF0hoð@AˆBÐ80`¿0FEð¦è>œ-Äø¬]ðÔøx% ÔøTEðÈé(Äøìðú€F FÔéH!ÐøŒ”Ðø¸}HxDEðÖè(ðå€FAò0Íé
 Íé  !"#Íé¹Íé†Íé„ÍéEÍéDEð¤éF0hoð@AˆBÐ80`¿0FEð`è>˜-Àø°]ð ?°½èð½õO`µàöô@²àöø@¯àöü@¬àõP`©àöP¦àöP£àöP àõQ`àöPšàöP—àöP”àõR`‘àö$PŽàö(P‹à>˜ö,P‡à>˜õS`ƒà>˜ö4Pà>˜ö8P{࿤éúÿÌèúÿ>˜ö<Prà>˜õT`nà>˜öDPjà>˜öHPfà>˜öLPbà>˜õU`^à>˜öTPZà>˜öXPVà>˜ö\PRà>˜õV`Nà>˜ödPJà>˜öhPFà>˜ölPBà>˜õW`>à>˜ötP:à>˜öxP6à>˜ö|P2à>˜õX`.à>˜ö„P*à>˜öˆP&à>˜öŒP"à>˜õY`à>˜ö”Pà>˜ö˜Pà>˜öœPà>˜õZ`à>˜ö¤P
à>˜ö¨Pà>˜ö¬Pà>˜õ[`!`Oðÿ0?°½èð½¿þçúÿJçúÿÀæúÿHoð@LIxDyDhÈ`hbEÑÁéÁébpGSacE`ÑÁéÁépG“HacE`ìÐÓˆacE`òÐÈacE`¿bpGbQ`aE¿‘`pG°›þðµ¯-遰‡M‡H}DxD(g	ð8ø(ñþ€*oÒø‚L(|D¿‘l hBd¿*o~NÕøØ~DphDðâï(ñç€zH2FzIxDhgyDBøhR`	ðø(ñـ0F!€Fh0"¡FnoEðXèF(ðɀÖø„"FÕøÔDðäï(ñ¿€ hoð@AˆBÐ8 `¿ FDðþîho	ð
ù(ñ±€hoLFFF	ðú(ñ©€]HxD¨gðÛÿ(񡀨oÐø)¿‚l!hŠBd¿¨o	ðú(ñ‘€RLSKSI|DSH{D¢FyDxD„FQHxD†FQHDø@?PKxD4gPJƒFég{DOHzDONxDÄøÀ~Df`FFñˆè
HFLFð ÿ(fÔèo
ñ@Ðø)¿‚l!hŠBdAF¿èo	ð„ø(TÔèo	ð«ø(OÔèo	ð¾ù(JÔ9I:HyDxD9HŠFxDƒF8HxD†F7HqgxD„F˜è]]ÁèošÎø€pFÊéËÊø Åø€àðbÿ((ÔÕø€Ðø)¿‚lÙøŠBd¿Õø€&IyD	ðDø(ÔÕø€	ðjø(ÔÕø€	ð|ù°ñÿ?Ý °½èð½ Fý÷YøOðÿ0°½è𽿶ïhâ8›býöâçNã†ýW—âãѱs¬3¦©¥a£ _œôû3²¯± äQ±–ûðµ¯Mø‚°ÜHxDDðRï(ðžÙIFÙJ #yDzDÍé0 FOôæs>ðØùÔM(}Dèaðv hoð@AˆBÐ8 `¿ FDðèíÍHxDDð,ï(ðxÊIFÊJ #yDzDÍé0 F#>ð³ù((bðS hoð@AˆBÐ8 `¿ FDðÄí¾HxDDðï(ðU¼IF¼J #yDzDÍé0 F#>ðù(hbð0 hoð@AˆBÐ8 `¿ FDð¢í°HxDDðæî(ð2­IOð­J&yD#zDFÍéh>ðmù(¨bð
§I F§J@ò$SyDÍéhzD>ð^ù(èbðþ€¡I F¡J˜#yDÍéhzD>ðPù((cðð€œI FœJ,#yDÍéhzD>ðBù(hcð‗IOð—J FyD#zDÍéh>ð2ù(¨cðҀ‘I F‘J#yDÍéhzD>ð$ù(ècðŒI FŒJ#yDÍéhzD>ðù((d𶀇I F‡J#yDÍéhzD>ðù(hd𨀂I F‚J#yDÍéhzD>ðúø(¨dðš€}I F}J#yDÍéhzD>ðìø(èdðŒ€xI FxJ#yDÍéhzD>ðÞø((e~ÐtI FtJ#yDÍéhzD>ðÑø(heqÐoI FoJ#yDÍéhzD>ðÄø(¨edÐkI FkJ#yDÍéhzD>ð·ø(èeWÐfI fJ#yDÍé0zD F|#>ð¨ø((fHÐ hoð@AˆBÐ8 `¿ FDðºì[HxDDðþí(KÐYI0#YJFyDÍéhzD>ðŠøhfX³UI FUJ #yDÍéhzD>ð~ø¨fø±Ðø„8ð¨ùOIyD`¸±NI NJ#yDÍé0zD F#>ðhøèfH± hoð@AˆBÑ °]ø‹ð½ hoð@AˆBÑOðÿ0°]ø‹ð½8 `Oðÿ0а]ø‹ð½Oðÿ0°]ø‹ð½8 `OððÑF FDðZì(F°]ø‹ð½ÔúÿzÔúÿÎÕúÿíDÔúÿ.Ôúÿë0ÿÿþÓúÿèÓúÿ…Þúÿ|0ÿÿf0ÿÿh0ÿÿD0ÿÿ±Ãúÿ(0ÿÿðÖúÿ0ÿÿR¨úÿî/ÿÿñßúÿÐ/ÿÿ^Åúÿ´/ÿÿ~­úÿ˜/ÿÿuÝúÿ|/ÿÿ‚Òúÿ`/ÿÿKÝúÿD/ÿÿɮúÿ*/ÿÿ2«úÿ/ÿÿš¨úÿö.ÿÿãÈúÿÜ.ÿÿÓÈúÿi×úÿW×úÿÐÉúÿ?×úÿ©£úÿ"ø×úÿ€´úÿ°µ¯%HxDDð4툳F#H$I$KxDñ$yD{D F>ð5ø(Ô M F I K}DyDñT{D>ð(ø(ÔIñXK FyD{D>ðø(Ô hoð@AˆB	Ñ °½ hoð@AˆBÑOðÿ0°½8 `Oðа½8 `Oðÿ0¿°½F FDð¦ë(F°½ðÕúÿÆöí°úÿ-ÿÿ&÷€¬úÿò,ÿÿîÏúÿÍËúÿ°µ¯HxDDðÔì(ðŽMFŽIŽK}DyDñ{D>ðLø(ñò€ŠIñ‰K FyD{D>ð@ø(ñ怆Iñ …K FyD{D>ð4ø(ñڀ‚Iñ$K FyD{D>ð(ø(ñ΀~Iñ(}K FyD{D>ðø(ñ€zIñyK FyD{D>ðø(ñ¶€vIñuK FyD{D>ðø(ñª€rIñqK FyD{D=ðøÿ(ñž€nIñmK FyD{D=ðìÿ(ñ’€ hoð@AˆBÐ8 `¿ FDðëdHxDDðTì(ð…€bIñDaKFyD{D=ðÎÿ(tÔ^Iñ<^K FyD{D=ðÃÿ(iÔ[Iñ0ZK FyD{D=ð¸ÿ(^ÔWHXIXKxDñxyD{D F=ð«ÿ(QÔTI FTK*FyD{D=ð¡ÿ(GÔQIñ@PK FyD{D=ð–ÿ(<ÔMI*MK FyD{D=ðŒÿ(2ÔJIñLJK FyD{D=ðÿ('ÔGIñ4FK FyD{D=ðvÿ(ÔCIñ8CK FyD{D=ðkÿ(Ô@IñP?K FyD{D=ð`ÿ(Ô hoð@AˆB	Ñ °½ hoð@AˆBÑOðÿ0°½8 `OðÑà8 `Oðÿ0¿°½F FDðrê(F°½¿å³úÿ~ö*Âúÿy²úÿSÈúÿa²úÿ¤ÃúÿI²úÿñ¯úÿ1²úÿ4¤úÿ²úÿͯúÿ²úÿ¤úÿé±úÿ¤Ÿúÿѱúÿv´úÿ¹±úÿ0Ôúÿåµúÿ^Ûúÿ/´úÿ:ÉúÿjÌúÿȵúÿÂô9¶úÿz¾úÿs¿úÿd¾úÿm¤úÿê³úÿäÍúÿ_ÂúÿUªúÿXªúÿúÚúÿA¤úÿiÓúÿÏúÿdÓúÿýÎúÿ°µ¯FFHxDhh(¿ BÑ[h+÷Ñ ``(`°½`oð@Bh“B¿3`Ch`h‘B¿1`DðBë(`°½¿ðµ¯MøF@hF
Fl„±HxDDð6븹0F)FBF GFDð6ë F\±]ø‹ð½0F)FBF]ø‹½èð@Dðþ¸Dðnê± ]ø‹ð½HIxDyDhhDð¢é ]ø‹ð½¿¢ÒúÿB²úÿðµ¯-é…°F’F‰FDðlêÉJ€F¹ñzD’”9Аh(ð€Øø<`$Èø<@~±thoð@A hˆB¿0 `ui-±(hˆB¿0(`à%hDðîêšÒø8µK{D›F¸±ÊhhDðêê3ÛøˆB>аIyD	hˆB;ÐDðæê(¿Oð	4àOð	Sàhðø³DðØêÝøÀF¤KXF)ÛøÜø {D¿hoð@AŠBÔÐÍø ‚FPÌøÑ`FDð<éPFÝø ÆçDðVé˜Ûø Ðø8€hDðÞéOð	.¿pi¨B@ðցØø<Èø<`(¿hoð@B‘B@ðö€,¿ hoð@AˆB@ðô€-¿(hoð@AˆB@ðó€ÓF¹ñ¿Éñ}I»ñyD‘¿Hn((Ñ@FØø<€VFOð
¸ñÀø< =ÐØø oð@AÚøˆB¿0ÊøØø@|³ hˆB¿0 `™¹ñ+ј2FDð\êFFàÉmLñ™€ëÄRhZEÍÛ,ð‘€%àU#FBF€ò‹€bëÒrëbëÂ^hF^EðÜíۀà$™¹ñÓÐÇHKFÇJxDzDDð6ê(ðFDð8ê(ðð€F˜2FDð êF(hoð@AˆBÐ8(`¿(FDðŒè¹ñð怸ñ¿Øø B@ðN™ÈkÁø<€ˆF(¿hoð@B‘B@ðºñ¿Úøoð@AˆB@ð,¿ hoð@AˆB@ð»ñ²Fð“€hn(ðÕø\<ñJÔëÁdFRhZERÛ)BÐ%àe
F•BF=ÚJëÒrëbëÄSh"F[EñÜîÛ3àFh"^E¸¿2ŠB¿ö2¯ëÂIhYEô,¯Pø2Sà9`¿Dð èç8 `¿ FDðèç8(`¿(FDðèçZ䦏ˆJvñCh$[E¸¿4dEÚëÄIhYEð̀)nŒE
Ññ@éDðé8³™Ñø\ÀÁéP¤E
ÝëÌbF+FUø:Søm¢BÅéaFõÜ™@ø4ëÄÀø°ñÈeÙøoð@AˆB¿0Éø˜IF#h@FDðhéF(¿Äø  FDðhéÙøoð@AˆB)Ð8Éø%ÑHF!à(hoð@AˆBÐ8(`Ñ(FCð¢ïºñ¿Úøoð@AˆB%Ѹñ¿Øøoð@AˆBÐ8ÈøÑ@FCðˆï,¿ hoð@AˆBѰ½èð½8 `øÑ F°½è½èð@Cð¢¾8Êø¿PFCðlïÑç9`¿Cðfïòæ8Êø¿PFCð^ïôæ8 `¿ FCðVï»ñ²Fô÷®ˆç0F)FDðé$æOôpDð週›@!"Ãé!oð@AXfÀé›ÙøˆB¿0Éø²FÝø€iç@F!FDðæè¬æPø4oð@B@ø4hBíÐ8`êÑFCðïæ灼úÿL¿úÿðµ¯Mø„°FÀkF!˜FF‘ácÍéX±Ahoð@C‘
hšB¿2
`DðN萨©ªDðÀèàk(lÑ™q±˜Dð¨è(eÔ˜(¿hoð@B‘B1¿`˜(¿hoð@B‘B1¿`˜@±hoð@B‘B¿1`˜à š™2`(`Èø!lh`˜(¿hoð@B‘Bј(¿hoð@B‘BÑô± hoð@AˆBÑ °]ø‹ð½8 `Ð °]ø‹ð½9`¿CðœîÞç9`¿Cð–î,àÑ °]ø‹ð½ FCðŒî °]ø‹ð½˜!1`)`Èøü÷‘ø˜ü÷Žø˜ü÷‹øOðÿ0°]ø‹𽰵¯„FhÌø (¿hoð@EªBÑ)¿hoð@BBÑ+¿hoð@AˆBѰ½:`íÑF
FCðPî)F#Fæç8`êÑFFCðFî#Fäç8`¿°½F½è°@Cðk½ðµ¯Mø*F¿Pi˜B6Ñàkâc(¿hoð@F²BÑ)¿hoð@BBÑ+¿hoð@AˆBÑ]ø‹ð½:`ëÑF
FCðî)F#Fäç8`èÑFFCðî#Fâç8`æÑF]ø‹½èð@Cð*½ˆFFFFFCð¬ï*FAF3F½ç¿ðµ¯-é‚°€FCð¶ïfL(|D]ЁF@hdKÔø {D‚lHFhªBYÑ"#CðìîF(DÐph¢FÔøä‚lªBTÑ0F"#%$CðÚîà±VIyD	hˆBÐTJzDhB
ÐSJzDhBÐFCðPîF(FàA±úñI	)xÑ$F0hoð@AˆBÐ80`¿0FCðšíd¹&(hoð@AˆBÐ8(`¿(FCðŒí6»CðªíHF°½èð½Cð*î(¿Cðží/à*TАGF(¦Ñð·üèç0F*QАG(¬Ñð®ü%$0hoð@AˆBÅÑÊç0hoð@D BÐ80`¿0FCðZíÙø BTFÐ8ÉøÑHFCðNíCðTîOð	(½Ð!hF@F*F#ÍøCðïF(hoð@AˆB®Ð8(`¿(FCð2íHF°½èð½F(hoð@AˆB”љçCðîF(ôP¯§çCðî(ôY¯ªç¿äÜrˆ0ˆ*ˆˆðµ¯Mø‚°FˆFFCðîð±FH"FCFxD–h(FCðÒî!hoð@B‘BÐ9!`а]ø‹ð½F FCðêì(F°]ø‹ð½ °]ø‹ð½¿Ûðµ¯-éF@hF‚l(F"±G0±½èð½Cð´í(øÑ%HxDhhCðÜì8³Cðàì(FCðžîp³Cð¢îX³FHxDÐøHFCð¢î8³!FFCðœî8³FCðxî€F(Fû÷¶þ0Fû÷³þHFû÷°þ@F¸ñÉÑH"FIxDyDhhCðí ½èð½OðOð	àOð&%ÛçOð%×ç¿,†ŠÚƅo·úÿðµ¯-é„° ÍéCð4í‚FlÅIyD	hh,¿ŒBÑ@h(÷ÑOð	$Oðà!hoð@@B¿1!`ÔøÙøB¿HÉø FCð–í€F³HxDCðˆíF`³³I0FyDCð*ìF0hoð@AˆBÐ80`¿0FCð.ì-mЫHihxDhB%ЩH©IxDyDhhCðì(hoð@AˆBZÐ8(`WÑ(FCðìSà›HxDhhCð$ì(KÐCð(ì—HxDCðLíF(ÁÑAà(F!Cðôí–Noð@B~Dðb)h‘BÐ9)`Ñ(FCðîëðj±h€G°ñَHñjxDhhh€GŒIF(FOðryDà…H†IxDyDhhCð¸ëàðjÐøL€G
(°dó€F€HI"xDyDhhCð.ì‚HxDhÚø<	hðeû˜³~HEö³1~K@òBxD{Dÿ÷üù©ª«PFÿ÷Œü(&ÔwHxJxDzDÐø\Pn"ÿ÷¬ù(ð³€!"F!ð~ú(hoð@AˆBÐ8(`¿(FCð†ëEöÝ5@òFàEö³5@òFàEöÍ5@òFÚø@IF"FCFÿ÷ýü˜(¿hoð@B‘Bј(¿hoð@B‘Bј(¿hoð@B‘BÑTH)FTK2FxD{Dÿ÷¢ùOðÿ0°½èð½9`¿CðFëÛç9`¿Cð@ëÝç9`¿Cð:ëßçðjÐøH€G(л8H8IxDyDWç¹ñ¿Ùøoð@AˆB"Ñ,¿ hoð@AˆB#Ѹñ)ÐØøoð@AˆB	Ñ °½èð½(H)IxDyD4ç8ÈøÐ °½èð½8Éø¿HFCðúêÔç8 `¿ FCðòê¸ñÕÑ °½èð½@FCðèê °½èð½EöÙ5[ç¿p…ӡúÿè„Ηúÿ@¤úÿ…ꄽúÿdçP„¡úÿl„ó¶úÿ*„ˆúÿƒ/¢úÿ¼‚\ÂúÿH„úÿոúÿ\Ø6æ
¿úÿ!¸úÿðµ¯-é€FEHF‘FxDF€iCðžìF ,qÐ`a-¦dOð coð@CÄé„¿(hoð@AˆB0¿(`Äé"%aÙø¹h˜B¿0ÉøÄé
’!câa
høhšB¿2
`(¿hoð@B‘B1¿`!`cÄéadÄéÄéáe@ò!Øø@(
Ý@ò‚!ˆB
Ђ(Ð(ÑHxD
à(
Ð(ÑHxDàHxDàHxDà  a FCðDì F½èð½HIxDyDhhCðê hoð@AˆBÐ8 `Ð$ F½èð½ FCð ê$ F½èð½`ÖyÖ×ý×.Åúÿ£×е¯FHâh!FxDhCðzë@±hoð@B‘BÑн1`нCðžê(¿ F½èÐ@ðݸ н¿(Õе¯FCðöë`i(¿ FCðøë Fðìø F½èÐ@Cð¹¿FH‘jxDCð¹aÂúÿðµ¯Mø‚°Ðø<ñЋh1*AÑF#°]ø‹½èð@`GF‚lð* ъh€F
FF!CðÔë(KÐF(F!CðÔ뀳F@F"F3Fðù!hoð@B‘BÐ9!`
а]ø‹ð½Ãh
FF3F°]ø‹½èð@†áF FCð„é(F°]ø‹ð½–h.ºÐ’
FaFð
ú°]ø‹ð½ hoð@AˆBÐ8 `¿ FCðhéHIxDØø( yDhhCðÎé °]ø‹ð½vè½úÿðµ¯-éF€kF
F±!F¨G°»0i±!F¨Gˆ»0j±!F¨G`»pj±!F¨G8»°j±!F¨G»ðj±!F¨Gè¹0k±!F¨G9pk±!F¨G˜¹ði±!F¨Gp¹ðl±!F¨GH¹0m±!F¨G ¹ðm(±!F¨G±½èð½Öø<€¸ñÐ1l)ÛOð	à1l	ñ	 ‰EëÚXø)(öÐ!F¨G(ñÐâç ½èð½ðµ¯MøF€kX±!oð@B¡ch‘BÐ9`¿CðÞè iX±!oð@B!ah‘BÐ9`¿CðÐè jX±!oð@B!bh‘BÐ9`¿CðÂè`jX±!oð@Babh‘BÐ9`¿Cð´è jX±!oð@B¡bh‘BÐ9`¿Cð¦èàjX±!oð@Bábh‘BÐ9`¿Cð˜è kX±!oð@B!ch‘BÐ9`¿CðŠè`kX±!oð@Bach‘BÐ9`¿Cð|èài!áa(¿hoð@B‘BÑàl ±!oð@Bádh‘B
Ð9`¿Cðdèà9`¿Cð^èàl(êÑ mX±!oð@B!eh‘BÐ9`¿CðLè mX±!oð@B¡eh‘BÐ9`¿Cð>èàmX±!oð@Báeh‘BÐ9`¿Cð0èåkí± l(Û&oð@Hà l6†BÚUø&(¿hAEôÐ9`¿Cðèîçåk(FCðJê àc ]ø‹ð½)¿BðP¿hoð@B‘B¿1`pGðµ¯MøF‚hF‘hð9)CØÒøÀßèð@&@@@.;±€FFfFCð.ê´F(>Ñ F)F]ø‹½èð@`G€F+±FfFCðê´Fx»«h+;Ñ F!]ø‹½èð@`G F)FF]ø‹½èð@`G€F+±FfFCðê´F¨¹«h+)Ñéh F]ø‹½èð@`GHIxDyDhhBðï ]ø‹ð½HØø xDIhyDhhCðè ]ø‹ð½HØø xD
IhyDà	HØø xDIhyDhhBðòï ]ø‹ð½¿Î{‰úÿ¾{‚ªúÿ|õ¿úÿì{»·úÿðµ¯-鉰ƒF¸hFFˆF„hà€Cðé(zЂF>±PF1FUø+9@ø+ùÑ FBð–ï(nÐF ©¸hª«Cð”é
ë†	³¨Íé[€è@ñ
ñ
Oð€Uoð@HËF™SFÑé @mBE¿2
`™@
hBE¿2
`™˜ªFø¸hKø©Cðhé(âÑ
ñ
-Ýé[šè@9ÐXFQF2F+FÀG€F(hoð@AˆBÐ8(`¿(FBðüî,Ûoð@Eà	ñ	<
ÐÙøh©BöÐ9`¿BðêîðçPFCð>é@F	°½èð½Cð>éàPFCð2éOð@F	°½èð½HIxDyDhhBð´îOð(hoð@AˆBÁÑÆç¿NzÕÀúÿF€joð@ChšB¿2`ˆjpG¿е¯FÀj@±hoð@B‘B¿1`àjн hÀh0±Cðˆè(àbîÑ нIoð@CyDhhšBìÐhQ`нÎyFH)oð@CxD¿hh˜B¿0`ÐjÑb(¿hoð@B‘BÑ pG9`úрµoFBðnî½è€@ pG¿®yе¯F@j@±hoð@B‘B¿1``jн hhCð¼è(`bïÑ н¿€µoFñ±Jh’øW ÒÕ
hoð@CšB¿2
`BjAb*¿hoð@AˆBÑ €½8`¿FBð.î €½HIxDyDhhBðîOðÿ0€½¿yî†úÿF€joð@ChšB¿2`ˆjpG¿€µoFñ±Jh’øW ÒÕ
hoð@CšB¿2
`‚jb*¿hoð@AˆBÑ €½8`¿FBððí €½HIxDyDhhBðÎíOðÿ0€½¿„xz²úÿе¯Fj@±hoð@B‘B¿1` jнBðÖî( bñÑ н¿€µoFñ±Jh’øW ’Õ
hoð@CšB¿2
`jb*¿hoð@AˆBÑ €½8`¿FBð¨í €½HIxDyDàHIxDyDhhBð‚íOðÿ0€½ôw«úÿêw†úÿFkoð@ChšB¿2`kpG¿Hoð@BxDhh‘B¿1`pG¿žwIoð@B@kyD(¿hh‘B¿1`pG€wе¯FÀl8±hoð@B‘B¿1`н`m0± FðŒù(ÔàlîçHxDhêç н:w°µ¯FH)xDh¿hBÐHh
FøW@!ÕH"IxDyDhhBðlí(hoð@AˆB¿0(`àlåd(¿hoð@B‘BÑ °½9`¿Bðí °½HIxDyDhhBðôìOðÿ0°½"wÎvӲúÿ8w#·úÿе¯Fm8±hoð@B‘B¿1`н`m0± Fð&ù(Ô mîçHxDhêç нnv°µ¯FH)xDh¿hBÐHh
FøW€!ÕH"IxDyDhhBðí(hoð@AˆB¿0(` m%e(¿hoð@B‘BÑ °½9`¿Bð°ì °½HIxDyDhhBðŽìOðÿ0°½Vvv?©úÿlvž¢úÿе¯F€m8±hoð@B‘B¿1`нBð’í± eòç н€µoF"‰±K{Dh™BÐJh’øW ’Õ
hoð@CšB¿2
`
Fm‚e)¿hoð@BBÑ €½8`¿FBð^ì €½HIxDyDhhBð<ìOðÿ0€½žu^uþ³úÿðµ¯-é‚°FÀm(MєøHÔ8IyDhoð@ChšBMÑàe°½èð½2N ~DÖø†Bð*í(RÐFØøoð@I!HE¿0Èøèh"+FÀø€Öøœ‘BðêíF(hHEÐ8(`¿(FBðìn³phAF‚l0F’³Gàeoð@B1h‘BÐH0`¿0FBðöëàmȱhoð@B‘B¿1`àm°½èð½hQoð@Bàe‘B`¿1`°½èð½BðøëIyD˜ç °½èð½Bð¶ìÊç,uxÉ\tе¯AmFˆGرÂhoð@Aâdh‹B¿3`i"eh‹B¿Y`hoð@B‘BÐ9`¿Bð¦ë нOðÿ0н¿ðµ¯-é­õQ]°üIîFOô€POô€xyD.ø€öø"CòD@Cò0FNø öô"CòLNø õ/bCòKNø öì"Còô3Nø öè"Cò:Nø öä"Còà3Nø õ.bCòÌ3Nø öÜ#Cò¸2Nø0öØ#Cò¤2Nø0öÔ#Cò|2Nø
0õ-c@öì%Nø0öÌ#Còh2Nø0öÈ#CòT2Nø0öÄ#OôMRNø0Cò,3õ,bNø Cò3ö¼"Nø Cò3ö¸"Nø Còð#ö´"Nø CòÜ#õ+bNø CòÈ#ö¬"Nø Cò´#ö¨"Nø Cò #ö¤"Nø CòŒ#õ*bNø Còx#öœ"Nø Còd#ö˜"Nø CòP#ö”"Nø Cò<#õ)bNø Cò(#öŒ"Nø Cò#öˆ"Nø OôHSö„"Nø Còìõ(bNø CòØö|"Nø CòÄöx"Nø Cò°öt"Nø Còœõ'bNø Còˆöl"Nø Còtöh"Nø Cò`öd"Nø CòLõ&bNø Cò8ö\"Nø Cò$öX"Nø CòöT"Nø Còüõ%bNø CòèöL"Nø CòÔöH"Nø OôCSöD"Nø Cò¬õ$bNø Cò˜ö<"Nø Cò„ö8"Nø Còpö4"Nø Cò\õ#bNø CòHö,"Nø Cò4ö("Nø Cò ö$"Nø Còõ"bNø Böøsö"Nø Böäsö"Nø BöÐsö"Nø Bö¼sõ!bNø Bö¨sö"Nø Bö”sö"Nø Oô>Sö"Nø Bölsõ bNø BöXsöüNø BöDsöøNø Bö0söôNø BösõbNø BösöìNø BöôcöèNø BöàcöäNø BöÌcõbNø Bö¸cöÜNø Bö¤cöØNø BöcöÔNø Bö|cõbNø BöhcöÌNø BöTcöÈNø Oô9SöÄNø Bö,cõbNø Böcö¼Nø Böcö¸Nø BöðSö´Nø ð¸BÈBöÜSõbNø BöÈSö¬Nø Bö´Sö¨Nø Bö Sö¤Nø BöŒSõbNø BöxSöœNø BödSö˜Nø BöPSö”Nø Bö<SõbNø Bö(SöŒNø BöSöˆNø Oô4Sö„Nø BöìCõbNø BöØCö|Nø BöÄCöxNø Bö°CötNø BöœCõbNø BöˆCölNø BötCöhNø Bö`CödNø BöLCõbNø Bö8Cö\Nø Bö$CöXNø BöCöTNø Böü3õbNø Böè3öLNø BöÔ3öHNø Oô/SöDNø Bö¬3õbNø Bö˜3ö<Nø Bö„3ö8Nø Böp3ö4Nø Bö\3õbNø BöH3ö,Nø Bö43ö(Nø Bö 3ö$Nø Bö3õbNø Böø#öNø Böä#öNø BöÐ#öNø Bö¼#õbNø Bö¨#öNø Bö”#öNø Oô*SöNø Böl#õbNø BöX#öüNø BöD#öøNø Bö0#öôNø Bö#õbNø Bö#öìNø BöôöèNø BöàöäNø BöÌõbNø Bö¸öÜNø Bö¤öØNø BööÔNø Bö|õ
bNø BöhöÌNø BöTöÈNø Oô%SöÄNø Bö,õbNø Böö¼Nø Böö¸Nø Böðö´Nø BöÜõbNø BöÈö¬Nø Bö´ö¨Nø Bö ö¤Nø BöŒõ
bNø BöxöœNø Bödö˜Nø BöPö”Nø Bö<õ	bNø Bö(öŒNø BööˆNø Oô Sö„Nø BòìsõbNø BòØsö|Nø BòÄsöxNø Bò°sötNø BòœsõbNø BòˆsölNø BòtsöhNø Bò`södNø BòLsõbNø Bò8sö\Nø Bò$söXNø BòsöTNø BòücõbNø BòècöLNø BòÔcöHNø OôSöDNø Bò¬cõbNø Bò˜cö<Nø Bò„cö8Nø Bòpcö4Nø Bò\cõbNø BòHcö,Nø Bò4cö(Nø Bò cö$Nø BòcõbNø BòøSöNø BòäSöNø BòÐSöNø Bò¼SõbNø Bò¨SöNø Bò”SöNø OôSöNø BòlSõbNø BòXSòürNø BòDSõÿbNø Bò0SòôrNø BòSõþbNø BòSòìrNø BòôCõýbNø BòàCòärNø BòÌCõübNø Bò¸CòÜrNø Bò¤CõûbNø BòCòÔrNø Bò|CõúbNø BòhCòÌrNø BòTCõùbNø OôSòÄrNø Bò,CõøbNø BòCò¼rNø BòCõ÷bNø Bòð3ò´rNø BòÜ3õöbNø BòÈ3ò¬rNø Bò´3õõbNø Bò 3ò¤rNø BòŒ3õôbNø Bòx3òœrNø Bòd3õóbNø BòP3ò”rNø Bò<3õòbNø Bò(3òŒrNø Bò3õñbNø OôSò„rNø Bòì#õðbNø BòØ#ò|rNø BòÄ#õïbNø Bò°#òtrNø Bòœ#õîbNø Bòˆ#òlrNø Bòt#õíbNø Bò`#òdrNø BòL#õìbNø Bò8#ò\rNø Bò$#õëbNø Bò#òTrNø BòüõêbNø BòèòLrNø BòÔõébNø OôSòDrNø Bò¬õèbNø Bò˜ò<rNø Bò„õçbNø Bòpò4rNø Bò\õæbNø BòHò,rNø Bò4õåbNø Bò ò$rNø BòõäbNø BòøòrNø BòäõãbNø BòÐòrNø Bò¼õâbNø Bò¨òrNø Bò”õábNø OôSòrNø BòlõàbNø BòXòübNø BòDõßbNø Bò0òôbNø BòõÞbNø BòòìbNø AöôsõÝbNø OôÿSòäbNø AöÌsõÜbNø Aö¸sòÜbNø Aö¤sõÛbNø AösòÔbNø Aö|sõÚbNø AöhsòÌbNø AöTsõÙbNø OôúSòÄbNø Aö,sõØbNø Aösò¼bNø Aösõ×bNø Aöðcò´bNø AöÜcõÖbNø AöÈcò¬bNø Aö´cõÕbNø OôõSò¤bNø AöŒcõÔbNø AöxcòœbNø AödcõÓbNø AöPcò”bNø Aö<cõÒbNø Aö(còŒbNø AöcõÑbNø OôðSò„bNø AöìSõÐbNø AöØSò|bNø AöÄSõÏbNø Aö°SòtbNø AöœSõÎbNø AöˆSòlbNø AötSõÍbNø OôëSòdbNø AöLSõÌbNø Aö8Sò\bNø Aö$SõËbNø AöSòTbNø AöüCõÊbNø AöèCòLbNø AöÔCõÉbNø OôæSòDbNø Aö¬CõÈbNø Aö˜Cò<bNø Aö„CõÇbNø AöpCò4bNø Aö\CõÆbNø AöHCò,bNø Aö4CõÅbNø OôáSò$bNø AöCõÄbNø Aöø3òbNø Aöä3õÃbNø AöÐ3òbNø Aö¼3õÂbNø Aö¨3òbNø Aö”3õÁbNø OôÜSòbNø Aöl3õÀbNø AöX3òüRNø AöD3õ¿bNø Aö03òôRNø Aö3õ¾bNø Aö3òìRNø Aöô#õ½bNø Oô×SòäRNø AöÌ#õ¼bNø Aö¸#òÜRNø Aö¤#õ»bNø Aö#òÔRNø Aö|#õºbNø Aöh#òÌRNø AöT#õ¹bNø OôÒSòÄRNø Aö,#õ¸bNø Aö#ò¼RNø Aö#õ·bNø Aöðò´RNø AöÜõ¶bNø AöÈò¬RNø Aö´õµbNø OôÍSò¤RNø AöŒõ´bNø AöxòœRNø Aödõ³bNø AöPò”RNø Aö<õ²bNø Aö(òŒRNø Aöõ±bNø OôÈSò„RNø Aöìõ°bNø AöØò|RNø AöÄõ¯bNø Aö°òtRNø Aöœõ®bNø AöˆòlRNø Aötõ­bNø OôÃSòdRNø AöLõ¬bNø Aö8ò\RNø Aö$õ«bNø AöòTRNø AòüsõªbNø AòèsòLRNø AòÔsõ©bNø Oô¾SòDRNø Aò¬sõ¨bNø Aò˜sò<RNø Aò„sõ§bNø Aòpsò4RNø Aò\sõ¦bNø AòHsò,RNø Aò4sõ¥bNø Oô¹Sò$RNø Aòsõ¤bNø AòøcòRNø Aòäcõ£bNø AòÐcòRNø Aò¼cõ¢bNø Aò¨còRNø Aò”cõ¡bNø Oô´SòRNø Aòlcõ bNø AòXcòüBNø AòDcõŸbNø Aò0còôBNø AòcõžbNø AòcòìBNø AòôSõbNø Oô¯SòäBNø AòÌSõœbNø Aò¸SòÜBNø Aò¤Sõ›bNø AòSòÔBNø Aò|SõšbNø AòhSòÌBNø AòTSõ™bNø OôªSòÄBNø Aò,Sõ˜bNø AòSò¼BNø AòSõ—bNø AòðCò´BNø AòÜCõ–bNø AòÈCò¬BNø Aò´Cõ•bNø Oô¥Sò¤BNø AòŒCõ”bNø AòxCòœBNø AòdCõ“bNø AòPCò”BNø Aò<Cõ’bNø Aò(CòŒBNø AòCõ‘bNø Oô Sò„BNø Aòì3õbNø AòØ3ò|BNø AòÄ3õbNø Aò°3òtBNø Aòœ3õŽbNø Aòˆ3òlBNø Aòt3õbNø Oô›SòdBNø AòL3õŒbNø Aò83ò\BNø Aò$3õ‹bNø Aò3òTBNø Aòü#õŠbNø Aòè#òLBNø AòÔ#õ‰bNø Oô–SòDBNø Aò¬#õˆbNø Aò˜#ò<BNø Aò„#õ‡bNø Aòp#ò4BNø Aò\#õ†bNø AòH#ò,BNø Aò4#õ…bNø Oô‘Sò$BNø Aò#õ„bNø AòøòBNø AòäõƒbNø AòÐòBNø Aò¼õ‚bNø Aò¨òBNø Aò”õbNø OôŒSòBNø Aòlõ€bNø AòXõrNø AòDõ~rNø Aò0õ}rNø Aòõ|rNø Aòõ{rNø AòôõzrNø Oô‡SõyrNø AòÌõxrNø Aò¸õwrNø Aò¤õvrNø AòõurNø Aò|õtrNø AòhõsrNø AòTõrrNø Oô‚SõqrNø Aò,õprNø AòõorNø AòõnrNø ë#üL “tOð	|DÂéE‚%Ó`ëöL&t|DÂéE¢ø€%Ó`ëñLOðt|D‚ÂéIÓ`ëíLOðt|DÂéE¢ø€%Ó`Còô2çLrD|DÂéE“t%‚Ó`Còà2ãLrD|DÂéFt	&¢ø€Ó`CòÌ2ÞLrD|DÂéEt
%¢ø€Ó`Cò¸2ÙLrD|DÂéEt@öT¢ø€Ó`Cò¤2ÓMrD}DÂéT“t%‚Ó`ë
ÏLOð
t|DÂéE¢ø€%Ó`Cò|2ÉLrD|Dt¢ø€ÂéFÓ`Còh2ÅLrD|Dt‚T`ÂéSCòT2rDÂéE@öZ$t¢ø€Ó`õMR»M“t}D‚ÂéTÓ`Cò,2¸LrD|DÂéKt@öD¢ø€Ó`Cò2²MrD}DÂéT“t%‚Ó`Cò2®LrD|Dt¢ø€ÂéFÓ`Còð"©LrD|DÂéEt
%¢ø€Ó`CòÜ"¤LrD|Dt¢ø€ÂéEÓ`CòÈ" LrD|Dt¢ø€ÂéEÓ`Cò´"›LrD|Dt¢ø€ÂéFÓ`Cò "—LrD|DÂéFt&¢ø€Ó`CòŒ"’LrD|Dt¢ø€ÂéJÓ`Còx"LrD|Dt¢ø€ÂéIÓ`Còd"‰LrD|DT`$tÂéC$¢ø€CòP"ƒMrD}Dt¢ø€ÂéVÓ`Cò<"MrD}Dt¢ø€ÂéVÓ`Cò("zMrD}DÂéTt$¢ø€Ó`Cò"uMrD}DÂéVtõHU¢ø€Ó`qJ¨tzDÅé$Còì¥ø€ë`rDlN@öâ“t&$~D‚ÂéeÓ`CòØgMrD}DÂéZtOð
¢ø€Ó`CòÄbMrD}DÂéT“t$¢ø€Ó`Cò°]MrD}DÂéT“t$¢ø€Ó`CòœXMrD}Dt¢ø€Âé\Ó`CòˆSMrD}Dt¢ø€U`ÂéCCòtOMrD}Dt¢ø€ÂéTÓ`Cò`JMrD}DÂéTt$¢ø€Ó`CòLEMrD}D“t‚ÂéYÓ`Cò8AMrD}DU`”`@öot$¢ø€Ó`Cò$;NrD~DÂée“t&‚Ó`Cò7MrD}DÂéTt$¢ø€Ó`Còü2MrD}Dt¢ø€U`ÂéCCòè-MrD}DÂé\tðV¸QÙüÿïaþÿÙüÿÙüÿÕØüÿ¹ØüÿŸØüÿ}ØüÿWËüÿ+ÄýÿËüÿËüÿÀüÿ"þÿ:´üÿ-®ýÿWôþÿé³üÿƳüÿ§³üÿˆ³üÿh³üÿN³üÿ6³üÿ³üÿø²üÿӲüÿ´²üÿ޲üÿ¨üÿ²*ýÿ>¨üÿ¨üÿé§üÿ̧üÿ¯§üÿ’§üÿv§üÿdòþÿםüÿn*þÿ¡üÿ…üÿOð¢ø€Ó`CòÔýMrD}DÂéYtõCU¢ø€Ó`øJ¨tzDÅé$Cò¬¥ø€ë`rDôM	$t}D¢ø€ÂéVÓ`Cò˜ïMrD}Dt¢ø€U`ÂéCCò„ëMrD}DÂéTt$¢ø€Ó`CòpæMrD}Dt¢ø€Âé[Ó`Cò\áMrD}Dt¢ø€Âé[Ó`CòHÝMrD}DÂéZtOð
¢ø€Ó`Cò4×MrD}DÂéCt	$¢ø€U`Cò ÒMrD}Dt¢ø€ÂéYÓ`CòÎMrD}Dt¢ø€U`ÂéCBöørÉMrD}Dt‚ÂéYÓ`BöärrDt¢ø€ÂéYÓ`BöÐrÁMrD}DU`
%“tÂéSN%‚Bö¼r¼NrD~DÂée“t&‚Ó`Bö¨r·MrD}DÂéYtOð	¢ø€Ó`Bö”r²MrD}DÂéTtõ>U¢ø€$Ó`­J¨tzDj`"¥ø€Åé#Bölr¨MrD}DÂéc“t&¢ø€U`BöXr£MrD}Dt¢ø€U`ÂécBöDrŸMrD}DÂéT“t!$¢ø€Ó`Bö0ršMrD}DÂéT“t$¢ø€Ó`Bör•MrD}DÂéT“t$¢ø€Ó`BörMrD}Dt¢ø€U`ÂéCBöôb‹MrD}DÂéVt&¢ø€Ó`Böàb†MrD}Dt¢ø€Âé[Ó`BöÌb‚MrD}Dt¢ø€Âé[Ó`Bö¸b}MrD}DÂéTt$¢ø€Ó`Bö¤bxMrD}Dt¢ø€U`ÂécBöbtMrD}DÂéVtAòe¢ø€Ó`Bö|bnNrD~D“t‚ÂéeÓ`BöhbjMrD}DU`t@ö¢ø€ÂéÃBöTbeNrD~DÂée“tõ9U‚Ó`aJ¨tzDj`Bö,b¥ø€ÅéCrD\N@öÓ5“t~D‚ÂéeÓ`BöbXMrD}DU`%tÂéS@òŠU¢ø€BöbRNrD~D“t‚ÂéeÓ`BöðRNMrD}DÂéZt@ö¢ø€Oð
Ó`BöÜRGNrD~D“t‚ÂéeÓ`BöÈRCMrD}DÂéTt$¢ø€Ó`Bö´R>MrD}DÂé\tOð	¢ø€Ó`Bö R9MrD}Dt¢ø€Âé[Ó`BöŒR4MrD}DU`t@òe¢ø€ÂéÃBöxR/NrD~DÂée“t&‚ðW¸¿·œüÿ™œüÿvœüÿYœüÿ:œüÿœüÿœüÿê›üÿ͛üÿ±›üÿ’›üÿx›üÿH›üÿâšüÿȚüÿ¥šüÿ†šüÿï úÿðþÿ+šüÿò™üÿřüÿ¦™üÿˆ™üÿk™üÿP™üÿ3™üÿ™üÿù˜üÿzˆüÿ×ýÿ8üÿÊ/ýÿ7süÿÙGýÿmüÿˆýÿ>düÿèýÿdüÿècüÿÉcüÿ•]üÿÓ`BödRüMrD}Dt¢ø€ÂéYÓ`BöPR÷MrD}Dt¢ø€Âé[Ó`Bö<RóMrD}Dt¢ø€U`ÂécBö(RîMrD}Dt¢ø€ÂéZÓ`BöRêMrD}DÂéVtõ4U¢ø€Ó`åJ¨tzDÅé+BöìB¥ø€ë`rDáMt}D‚ÂéYÓ`BöØBrDt¢ø€ÂéYÓ`BöÄBÙMrD}DÂé[t@òƒe¢ø€Ó`Bö°BÓNrD~DÂée“t
&‚Ó`BöœBÏMrD}DÂéCt$¢ø€U`BöˆBÊMrD}Dt‚ÂéYÓ`BötBrDÂéYOð	t¢ø€Ó`Bö`BÀMrD}DÂéTt$¢ø€Ó`BöLB»MrD}DÂéct&¢ø€U`Bö8B¶MrD}Dt¢ø€Âé\Ó`Bö$B²MrD}Dt¢ø€U`ÂéCBöB­MrDÍø<}DÂéTt7$¢ø€Ó`õ€R­øŒpÊ"Íøl/9"Íød-"Íø,õ<røŸMÍø,õ=r}DÍø \Íø$¬Íø(<­ø,Œø.˜MÍø0,"}DÍø4\Íø8,õ>rÍø<<F%­ø@ŒøBÍøD,JÍøLL$zDÍøH,õ?rÍøP<­øTøV<ÍøX,ˆJÍø`\zDÍø\,Íød<õ@r­øhøj<‚MÍøl,õAr}DÍøp\ÍøtLÍøx<­ø|ø~<{MÍø€,õBr}DÍø„\ÍøˆÍøŒ<­øø’<tMÍø”,õCr}DÍø˜\ÍøœLÍø <­ø¤Œø¦mMÍø¨,õDr}DÍø¬\Íø°LÍø´<­ø¸øº<fMÍø¼,õEr}DÍøÀ\ÍøÄLÍøÈ<­ø̌øÎ_MÍøÐ,õFr}DÍøÔ\ÍøØLÍøÜ<­øàøâ<XMÍøä,õGr}DÍøè\ÍøìLÍøð<­øôøö<QMÍøø,õHr}DÍøü\ÍøMÍø=­øø

JMÍø-õIr}DÍø -õJrÍø]ÍøMÍø(M$Íø=­øø
Íø$]Íø,=­ø0
ø2
Íø4-:JÍø<M.$zDÍø8-õKrÍø@=­øD
øF=ÍøH-3JÍøPM)$zDÍøL-õLrÍøT=­øX
øZ=Íø\-+J,MzDÍø`-}DõMrÍøô_Íøh=­øl
øn=Íøp-$JÍøxM
õ\dzDðD¸	Ûüÿ²\üÿ•\üÿt\üÿW\üÿ®ìþÿ%\üÿü[üÿ_Uüÿøßþÿóëþÿ­ëþÿÊÙüÿÎTüÿ³Tüÿ”TüÿɷúÿۛúÿŽ·úÿ¥·úÿ˷úÿ:›úÿ·úÿo·úÿQ·úÿ­éþÿ·úÿõ¶úÿ׶úÿ™¶úÿ“¶úÿ£¶úÿ̸úÿ²¶úÿÍøt-Íø|=õNr­ø€
ø‚=üMÍø„-õOr}DÍøŒ­Íøˆ]Oð
Íø=­ø”ø–
ôMÍø˜-õPr}DÍøœ]Íø mÍø¤=­ø¨øª
íMÍø¬-õQr}DÍø°]Íø´mÍø¸=­ø¼ø¾
æMÍøÌ=}DdÄ$­øЍõRrøÒ
áMÍøÔ-õSr}DÍøØ]ÍøÜMÍøà=­ø䍍øæ
ÚMÍøè-õTr}DÍøðmÍøì]&Íøô=­øøøú
ÓMÍøü-õUr}DÍøÎÍø^
õklÍø>­øŽøËMÍø.õVr}DÍø^ÍønÍø>­ø Žø"ÄMÍø$.õWr}DÍø(^Íø,¾Íø0>­ø4Žø6½MÍø8.õXr}DÍø@NÍø<^
$ÍøD>­øHŽøJµMÍøL.õYr}DÍøP^ÍøTNÍøX>­ø\ø^>®MÍø`.õZr}DÍøhNÍød^$Íøl>­øpŽør§MÍøt."}DÍø|.Íøx^õ[rÍø€>­ø„Žø†ŸMÍøˆ.õ\r}DÍønÍøŒ^&Íø”>­ø˜Žøš˜MÍøœ.õ]r}DÍø ^Íø¤žÍø¨>­ø¬Žø®‘MÍø¼>}DŒè$õ^r­øÀOðøÂ>‹MÍøÄ.õ_r}DÍøÈ^ÍøÌNÍøÐ>­øԎøÖ„MÍøØ.õ`r}DÍøÜ^ÍøàÎÍøä>­ø莍øê}MÍøì.õar}DÍøôNÍøð^
õpdÍøø>­øüŽøþuMÍø?}D„è$õbr­ø$øÍø/nJÍøO$zDÍø/Íø ?õcr­ø$ø&?hMÍø(/"}DÍø0/õdrÍø,_Íø4?­ø8ø:Íø</_JÍøDO
õudzDÍø@/ÍøH?õer­øLøNXMÍø\?}D„è$õfr­ø`
õzløbBöü4Íød/PJQMzDÍøh/}DÍøà_Íøp?õgr­øtøv?JMÍøx/õhr}DÍø€oÍø|_ëÍø„?­øˆøŠBMÍøŒ/õir}DÍø_Íø”ŸÍø˜?­øœøž?;MÍø¬?}DŒè$õjr­ø°Oð	ø²5MÍø´/"}DÍø¼/Íø¸_õkrÍøÀ?­øďøÆ.MÍøÈ/õlr}DÍøÌ_õmuÍøÜ/ÍøпAòÍøÔ?rD­ø؏øÚÍøð_Íøä¯Íøè?­øìð>¸/¶úÿ¶úÿúµúÿâµúÿʵúÿ°µúÿ’µúÿwµúÿgµúÿLµúÿ0µúÿµúÿµúÿï´úÿݴúÿ̴úÿ²´úÿ–´úÿ}´úÿa´úÿG´úÿ<´úÿ´úÿ´úÿ÷³úÿæ´úÿ›´úÿŠ´úÿy´úÿ`´úÿ?´úÿøîÍøøÏÍøü?ûLüM|Dt`
$°tÆéC$¦ø€AòTëAòvD}DU`ÂéC¢ø€t@ö×"ÆéTAò,Ëø tDó`0‚°tõ‚VêJêMzDb`"}DÄé#¤ø€ tBöè4°ttD¦ø€ÆéRó`âJ‹ø0zDËø «øAòhËø0rDÜM@ö¹{ÜN}DÄé£~DÂélAò¤ t ‚vDe`©FÓ`Aò|¢ø€Oð
ÒLOðt|Dt`ÐJëAòzDÄé+ã`ë ‚ËJ£tzDËø "‹øËé#"«ø€OðÆé#Aò¸°trD¦ø€&ÀLt|DT`BöÔ4¢ø€ÂécAòÌtD»NrDÄøOð	~DV` tAò¤ø€ëÄé“õ‡VÂ飢ø€t°J°LzDr`)"|Dl`AòôÆé#tD0‚«J³t&zDb`" tÄé#Aò¤ø€rD¨t¥ø€ë`ÅøÀ@òg%¡Lt|DÂéI¢ø€Oð	Ó`õ/RœLt|DÂéJAò0‚Ó`tD˜Jã`zDÄé% ‚AòD£tAòX”JtDuDzD tj`Äé&AòlÅécrD¥ø€¨tõŒU ‚ã`‹Lt|D¢ø€ÂéLÓ`Aò”ÅéLBö¬4¨trD(‚tDë`‚MƒN}DÄé[~DÂélAòÐëAò¨ t¤ø€vDã`Oð
Ó`Oð¢ø€twJwLzDr`|Dl`Æé“Aò¼¦ø€tDrJ°tAòøzDb`" tÄé#4"Åé#Aò䤸€rD«t(‚@öÜhLt|D¢ø€T`ÂéÃBö˜2dLrD|DÂéJtë¢ø€Aò&Ó`vD^Jã`zDÄé% ‚õ‘U£tAòZJÆé³zDr`¦ø€WJ°tAò4&zDÅé$AòH"«t(‚ëë`rDQM	& t}D¤ø€e`ÄécBö„4ttD‚ÂéVÓ`Aò\"HMrDHN}D t~DÂél¤ø€Aò˜&ÄéYëã`Aòp&Ó`vD¢ø€Oðt=J>LzDr`"|Dl`Aò„$Æé#tD¦ø€8J°tõ–VzDb`"Åé“Äé#Aò¬" trD¤ø€Oð	¨t¥ø€.Lt|D¢ø€T`ÂéÃBöp2*LrD*M|DÂéL}Dt¢ø€ðN¸÷Lüÿo³úÿ©ãþÿ}ßüÿ³úÿ]Lüÿ¤$þÿÊâþÿ–½úÿ=ÍúÿˆâþÿáâþÿËÌúÿòÌúÿØÌúÿûýÿ0KüÿŽÌúÿâþÿ·ÎúÿKáþÿ“ÎúÿkÎúÿwÎúÿQÎúÿ¹lýÿ#Jüÿ9Îúÿýÿí×úÿÜçúÿ™Iüÿ»çúÿ—çúÿ¶çúÿ‰çúÿxçúÿýHüÿhçúÿOðÓ`"u`Aòü%Æé#uD¦ø€³tAòÔ&ýJvDýLzDÆé+|Dl`ó`Aòè$¦ø€tDøJ°tT&zDÄé&"£tª`Aò2ã`rD ‚Aò$6¨t¥ø€ë`%îL“t|DÂéE¢ø€$Ó`Bö\2êMrD}DÂéCtë‚&U`åJã`zDÄé&AòL6¤ø€£tëàJAò86àLvDzD‹ø|DËéLÆé*Aòt2ó`rD¦ø€õ›T°tOð	«ø€Ëø0ÔN t~D¤ø€f`Äé“BöH4ttD‚ÂéiÓ`Aòˆ2ÌNrDÄéYAòÄ5~DV`& tÂécAòœ6¤ø€uDã`vD¢ø€Oð	tÁJÂLzDr`|Dl`Æé“Aò°4¦ø€tD½J°t%&zDÄé&3"£tÅé#AòØ2ã`rD ‚«t(‚µLt|DÂéJ¢ø€Bö44Ó`Aòì2°MrD°NtD}DOð
~De`Aò(EV` tuD¤ø€õ VÄéÃÂ飢ø€t¦J¦LzDÆé*|Dl`ó`AòD¦ø€tD¡JOð
°t&zDb`" tÄé#"ª`Aò<B¤ø€rD¨t¥ø€ë`—L“t|DT`‚Bö 4ÂéctD“MAòPB“NrD}De`
% tÄéS%¤ø€AòdDtD~DV`Äée&ÂéSAòxE¢ø€uDt tã` ‚AòŒD„JtD¨tzDj`Äé&õ¥RÅéc¥ø€Bö5 tuD ‚ã`{Lt|D¢ø€ÂéFÓ`Aò´BwNrD¨tÂéJ~DÅéi@ö;4¥ø€Oð	ë`AòUÓ`ë‚AòÈEtëkJAòðEËø@Oð
zDÆé,ó`Oð
¦ø€°tëAòÜEbJcLuDzD°t|DÅé)t`Böø$ë`tD¥ø€Oð	¨t¦ø€ÆéÃYJ‹ø0zDËø «øAòRËø0rDTMOðSN}De`~DAòTUV`Aò,V tuD¤ø€vDÄé“Â鳂“tJJKLzDÆé,|Dl`ó`õªT¦ø€OðEJ°tzDb`" tÄé#Åé#AòhR¤ø€rD¨t¥ø€=Lt|DÂéI¢ø€Böä$Ó`Aò|R8MrD8NtD}DÓ`~DÄé[Aò¸UÂéjAòV t¤ø€uDã`vD¢ø€Oð	t-J.LzDr`|Dl`Æé“Aò¤T¦ø€tD)J°tðQ¸¿¬æúÿçúÿ—æúÿÎæúÿËGüÿºæúÿ¬Þþÿ°æúÿ‹æúÿeæúÿKæúÿpæúÿ3æúÿkæúÿ°FüÿNæúÿ-æúÿ÷ÝþÿæúÿðåúÿFüÿÖåúÿ¯åúÿ‘åúÿ‘Eüÿ£úÿ%åúÿ?»þÿÿäúÿêDüÿðúÿüïúÿðúÿêïúÿøÛþÿ\Düÿ®ïúÿ¦Ûþÿ‰ïúÿÂîúÿõ¯VzDÄé," tª`AòÌRã`rD¤ø€Oð¨t¥ø€ë`üLt|D¢ø€T`ÂéÃBöÐ"øMrDÆéLOð
}DÂéZAòet¢ø€uDÓ`Oð
ó`0‚°tAòôVîJvDîLzDÆé)|Dl`ó`Aòd¦ø€tDéJOð		°t&zDb`" tÄé#Aò0b¤ø€rD«t(‚ë`®`àLt|DÂéFBö¼$¢ø€Ó`AòDbÛMtDÛNrD}DÄé[Oð	~DV`AòXf tõ´U¤ø€vDã`Âé³¢ø€tÐJÑLzDr`|Dl`AòldÆéæø€tDÌJ°tzDÄé,OðAò”b trDã`¤ø€¨t¥ø€ë`ÅøÀÃLt|DT`¢ø€Bö¨$Âé£Aò¨b¾MrD¾NtD}DÓ`~DÄé[ÂéjAòøe të¤ø€Aò¼eã`ë¢ø€@öi4tAòäe±JOð
Ëø@zDÆé,ó`Oð¦ø€°tëAòÐe©J©LuDzD°t|DÅé)t`Bö”$ë`tD¥ø€Oð	¨t¦ø€ÆéàJ‹ø0zDËø «øAòrËø0rDšMOðšN}De`%~DÄéSAòHuV`uD t@ö9v¤ø€Âé“¢ø€‘Lt|Dl`Jõ¹TzDÄé&ã`Aò4v ‚vD‹JÅéÃOðzDr`"£tÆé#Aò\r°trD¦ø€¨t¥ø€õ*ULt|D¢ø€T`ÂéÃAòpr}LrD}N|Dl`$~DÂélAò„v¨tvD¥ø€ÅéCAò¬uÓ`uD¢ø€tsJtLzDr`|Dl`Aò˜tÆé³¦ø€tDoJ°t&zDÄé, tõ¾Rã`¤ø€¨t¥ø€ë`®`gLt|DÂéF¢ø€Böl$Ó`AòÔrbMrDbNtD}DÓ`~DÄé[AòèuÂél tuD¤ø€&ã`¢ø€ZLt"|Dl`¨tAöÅé#tD¥ø€AòüuSJuD tzD¨tj`Äé&Aö$ÅécrD¥ø€ ‚ã`LLt|DÂéL¢ø€BöX$Ó`Aö8GMtDGNrD}De`%~D t¤ø€ÄéS@öÂéeBöD%Ó`ë¢ø€AöLtë:JAöˆËø@zDr`Æé£¦ø€°të4JõÃU4LzDÅé*|Dt`Aötë`¥ø€tD/JOð
¨t@ö5zDÄé)ÆéÃOð
	ðR¸±îúÿ Cüÿrîúÿ}îúÿXîúÿHîúÿ’Büÿ)îúÿîúÿîúÿþíúÿäíúÿýAüÿÊíúÿ–íúÿzíúÿµßüÿWíúÿIAüÿIýÿ»ûÿpøúÿûÿ}ûÿå×þÿgûÿEûÿRûÿ4ûÿ"ûÿ–ˆúÿ
ûÿk×þÿ[×þÿ®ûÿ°?üÿ’ûÿcûÿNûÿû;ýÿ1ûÿ tOðã`¤ø€Aöœ°ttD¦ø€Aö°üJvD‹ø0zD«øËø0Ëø Oð	÷Jã`zDÄé% ‚AöØ£tuDóJóLzDr`"|Dl`AöÄÆé#tD0‚îJ³tAözDb`" tÄé#"Åé#Aöì¤ø€rD¨tvD¥ø€@öXãLt|D¢ø€T`Âé“Bö0"ßLrD|DT`tõÈT¢ø€Âé³ÛJã`zDÄé%Aö< ‚£tuD×J×LzDr`|Dl`Æé£Aö(¦ø€tDÒJ°tzDb`$"£tÅé#AöPÄéÃrD ‚«t(‚ËLt|DT`$¢ø€ÂéCBö$ÇMAödtDÆNrD}De`%~DÂélÄéSõÍU tAò&¤ø€OðÓ`¢ø€¼Lt|Dl`AöxºJtDzDÄé&AöŒã`vD ‚¶JÅé“Oð	zDÆé+Aö´£t°trDó`¦ø€&¨t¥ø€­Lt|DT`¢ø€Bö$ÂécAöȨMtD¨NrD}De`%~D t¤ø€ÄéSAö$ÂéeëÓ`AöÜ¢ø€ëtAò¬$›JËø@Aö$zDj`ÅéÃë(‚Aöð«ttD”J•MzDb`&"}DÄé#" ‚£tBöô°ttD¦ø€u`Æé#ŒJ‹ø0zDËø «øAö,"Ëø0rD‡M‡N}DÄéZ t~D¤ø€Aöh%ã`$V`õÒVÂéCuD¢ø€Oð
t}J}LzDr`"|Dl`AöT$Æé#tD¦ø€xJ°tzDb`" t¢`	"ª`Aö|"ã`rD¤ø€¨t¥ø€ë`oLt|DT`$‚ÂéCAö"kMBöàkNrDtD}D~DV`e`%&ÄéSBöÌ t¤ø€ëÂécAö¤%¢ø€ët@ò«t]JAö¸%Ëø@uDzDÆé,ó`Oð¦ø€°tõ×VVJVLzDÅé*|Dt`AöÌ$ë`¥ø€tDQJOð
¨tzDÄé)Oð	 tã`Aöô"¤ø€rD°t¦ø€ó`ÆøAö6FLvDFM|D‹ø0}DU`Aö05«øËø0uDËø@OðÂéâø€t<J=LzDÆé,|Dl`ó`Aö4¦ø€tD8J°t	&zDÄé,AöD2 tã`rD¤ø€Oð¨t¥ø€ë`Åø @öÕE-LÂécAöl6|DtðU¸¿]5üÿCûÿIûÿJûÿ.ûÿ
Lþÿ³ùýÿíûÿÃüÿ4ûÿûÿ"ûÿM4üÿÊýÿ*ûÿÔûÿ×)ûÿÈ)ûÿ·3üÿ«)ûÿ{)ûÿl)ûÿêRþÿh)ûÿ3üÿô;ûÿÎ;ûÿÏ;ûÿµ;ûÿœ;ûÿ|2üÿ…;ûÿS;ûÿD;ûÿH;ûÿ*;ûÿ+*üÿ
;ûÿè:ûÿî:ûÿÒ:ûÿ¿éüÿ¢ø€vDT`Bö¸üLrD|DT`AöX4t¢ø€tDÂéÃ÷Jã`zDÄé%Aö”5 ‚£tuDóJôLzDÆé*|Dl`ó`õÜT¦ø€Oð

îJ°t&zDÄé,Aö¨2 tã`rD¤ø€Oð	¨t¥ø€ë`Åø°8%äLt|DÂéI¢ø€Oð	Ó`Bö¤ßLrD|DT`Aö¼4–`ttD‚AöÐ6Ó`vDÙJã`zDÄé%Aöø5 ‚£tuDÕJÖLzDr`|Dl`Æé£Aöä4¦ø€tDÑJ°tõáVzDÄé*AöB£tã`rD ‚Oð
¨t¥ø€ë`ÅøÀÇLt|DÂéI¢ø€Oð	Ó`BöÂLrDÂM|DÂéK}DÆé\Aö\Et¢ø€uDÓ`Oðó`¦ø€°tAö4F¸JvD¸LzDÆé,|Dl`ó`AöHD¦ø€tD³J°tzDb`" tª`AöpBÄé³rD¤ø€¨t¥ø€ë`«Lt|DT`$¢ø€ÂéCBö|§MAö„BtD¦NrD}De`%~DÂélÄéSAö˜F tvD¤ø€õæUÓ`Oð¢ø€t›J›LzDr`"|Dl`Aö¬DÆé#tD¦ø€–J³tzDb`" tÄé#Åé#AöÔB¤ø€rD¨t¥ø€BöhLuDt|D¢ø€T`Âé£AöèBˆNrD¨t~DÅék¥ø€&ë`AöüEÂéJuDÓ`Oð‚€Lt|DÅéL¨tAö$Të`tD¥ø€AöUzJuD tOðzD¨tj`Äé&Aö8RÅécrD¥ø€& ‚@ö¶Eã`pLÂécõëV|Dt¢ø€T`BöTkLrD|DT`AöLTt¢ø€tDÂé³fJã`zDÄé%AöˆU ‚£tuDbJbLzDr`|Dl`Æé“AötT¦ø€tD]J°tzDÄé+"£tª`AöœRã`rD ‚«t(‚ë`õ%UULt|D¢ø€T`ÂéÃAö°RQLrDQN|Dl`
$~DÂéiAöÄV¨tvD¥ø€ÅéCAöìUÓ`uD¢ø€tGJHLzDÆé*|Dl`AöØTó`¦ø€tDCJOð	
°tzDÄé, tõðRã`Oð¤ø€¨t¥ø€ë`Åø Bö,8LuDt|D¢ø€T`ÂéÃAöb4NrD¨t~Dn`&ÂéL¥ø€@öDÅécAödeÓ`ë‚Aö(etðR¸[ÅüÿÑ9ûÿ’Fûÿ˜FûÿyFûÿҁúÿ[(üÿ1FûÿUFûÿeFûÿAFûÿ.Fûÿ¾'üÿFûÿóEûÿFûÿâEûÿÌEûÿÅÏþÿ™ÏþÿƒEûÿžEûÿ†Eûÿ`Eûÿ›&üÿlÎþÿ
Eûÿ·ýÿ&üÿ¸DûÿZQûÿgQûÿEQûÿ;Qûÿ~%üÿ&QûÿQûÿ
QûÿëPûÿÏPûÿá$üÿëüJAöPeËø@zDÆé)ó`¦ø€°tëöJAö<euDõLzD°tj`"|DÆéJÅé#Bö¥ø€tD¨tOð

¦ø€ó`ìJ‹ø0zDËø «øAöxbËø0rDæMçN}De`% tÄéSBöë¤ø€]$~DV`AòÚËø@AöŒdÂé£tD¢ø€AöÈetÙJã`zDÄé& ‚ë£tõõUÔJÕLzDÅé*|Dt`Aö´dë`¥ø€tD¨t@ö‚2ÎM£t}DÄéRAöÜbã` ‚rD°t¦ø€ÆéÃAöðfÇLvDÇM|D‹ø0}DÂéY«øAöuËø0uDËø@Ó`¢ø€t¾J¾LzDr`|D	"l`AötÆé#tD¦ø€¹J°tõúVzDÄé* tAö,rã`rD ‚¨t¥ø€Å铱Lt|DT`$¢ø€ÂéCBöð¬MrD¬L}DU`t|D©F%ÂéSAö¸u‚"t`uDÆé#¦ø€°tAö|vëAöTv JvD LzDÆé,|DËø@ó`Aöht¦ø€tD›J@ò°t&zDÄé*" tËø Aörã`rD¤ø€Oð
‹ø«ø€Ëø0OðŽLt|DT`BöÜ¢ø€ÂécAö¤rtDˆNrD¤øÀOð~DÄø#tOð	Äé³õÿTV`Âéâø€t~JÅélAöÌvzDb`ë`vD(‚OðyJ¨t#%zDÆé%!"³t¢`Aöôró`rD0‚&£t ‚ã`qL“t|DÂéF‚BöÈÓ`BòmNtDmMrD~Df`%&}DU`BòDÂécBò tvD¤ø€uDÄé“tcJcLzDr`"|Dl`Bò0Æé#tD¦ø€^J°tzDb`'" tÅé#BòXÄé“rD¤ø€«t(‚2%VL“t|DÂéE‚Bö´Ó`BòlQMrDQNtD}DÓ`~DÄéZÂékBö  të¤ø€õUã`@öÂD¢ø€Bò”tvDEJËø@zDÅé*ë`¥ø€¨tBò¼@JuD@LzDÆé*|Dl`ó`Bò¨¦ø€tD;J°t&zDb`
"£tÄé#"ª`BòÐ ‚rD¨t¥ø€ë`2L3M|D‹ø0}DÂé\Bòä«øËø0uDËø@OðÓ`Oð¢ø€ðP¸ßOûÿÈOûÿÝÓýÿ¥Oûÿ#üÿ•ßýÿV[ûÿŸ]þÿ–wûÿúkûÿš"üÿVwûÿ7wûÿFwûÿ wûÿwûÿ"üÿùvûÿÒvûÿÚvûÿ´vûÿ˜vûÿ‡vûÿ…vûÿNvûÿpvûÿæ üÿkvûÿ›ÉþÿkvûÿNvûÿXvûÿ[ üÿlvûÿ>vûÿ+vûÿzúÿvûÿ	üÿ÷uûÿüLt	"|Dl`¨tBòÅé#tD¥ø€BòøöJuD tzD¨tj`Äé&Bò ÅécrD¥ø€ ‚ã`îLt|DÂéI¢ø€BöŒÓ`Bò4éMrDéNtD}D¢ø€~De`%V`&¥`ÂécBòp tuD¤ø€Aò›Fã`Oð	ÞLt|Dl`BòHÜJtDzDÄé&Bò\ã`vD ‚ØJ£tzDr`"°tÆé#Aòo2¦ø€Bò¬Åé#Bò„«trD(‚Aö4ÎLvDt|DT`$¢ø€ÂéCBöxÉLrD|DT`Bò˜t¢ø€tDÂéÃÄJã`zDÄé% ‚BòÔ£tuDÀJÀLzDÅé“|Dl`õTr`Æé³Oð	Äé+Bòè¦ø€rD°tBò& tvDã` ‚¨t¥ø€B%²Lt|DÂéL¢ø€Oð	Ó`Böd­LrD|DT`Bòüt¢ø€tDÂéèJã`zDÄé%Bò8% ‚£tuD¤J¤LzDÆé,|Dl`ó`Bò$$¦ø€tDŸJ°tzDb`" tÄé#BòL"¤ø€rD¨t¥ø€Å飗Lt|DÂéL¢ø€OðÓ`Bò`"’NëBöPë~DJn`&ÅéczD¨tBòˆ&¥ø€Bö<ëBòt%uDÄé*ã`vD¤ø€ t@öU$Ëø@Åé*ë`(‚¨tBò°%~JuD~LzDÆé*|Dl`ó`Bòœ$¦ø€tDyJOð
°tBòØ&zDb`" tÄé#Aò>Åé#BòÄ"¤ø€rD«tvD(‚nLoM|DËø@$$}DU`Bòì%‹ø0uD«øËø0OðÂéC‚“teJeLzDr`Bò2|Dl`rDÆéÃõT¦ø€°t&¨t¥ø€Åé“\M t}D¤ø€e`ÄécBö(ttD‚ÂéVÓ`Bò(2TMrDTN}DÄé\ t~D¤ø€BòP5ã`$V`Bò<6ÂéCvD‚uD“tOðIJJLzDr`|D3"l`Bòd4Åé#Bòx2Æé³rD¦ø€tD°t&«t¥ø€?M t}D¤ø€e`ÄécBöttD‚ÂéVÓ`BòŒ27MrD7N}DÄéYOð	~DV`BòÈ5 tuD¤ø€Oô%fã`Âé“¢ø€.Lt|Dl`Bò 4,JtDzDÄé&Bò´6ã`vD ‚(JðP¸+uûÿuûÿùtûÿm£ýÿ9~þÿO‰ûÿ¨tûÿ–’þÿwdþÿ8üÿ@œûÿ`µûÿ\µûÿ(µûÿ«üÿµûÿ1µûÿívúÿ µûÿ$wúÿüÿմûÿ¾Åþÿ´ûÿ˜þÿüÿ‚Äûÿ€Äûÿ€Äûÿ`Äûÿ@&þÿ8Äûÿ'Äûÿ&Äûÿ-Äûÿüÿ¯Yýÿ0ÎûÿÔÃûÿúBýÿ£tzDr`
"°tÆé#@öÜ2¦ø€BòFÅé#BòÜ2«trD(‚OôqeüLvDt|D¢ø€T`ÂéÃõ RøLt|DÂéJBòð4¢ø€Ó`tDóJOð
ã`zDÄé% ‚Bò,E£tuDîJïLzDÆé)|Dl`BòDó`¦ø€tDêJOð	°tzDÄé+ tõRã`¤ø€¨t¥ø€ë`Åø BòìuàLuDt|D¢ø€T`Âé“BòTBÜNrD¨t~DÅélÂéIBòhF¥ø€vDë`BòEÓ`uD‚OðtOð	ÑJÑLzDr`|Dl`Bò|DÆéÃ0‚tDÍJ³t&zDÄé&ÅéÃBò¤B£trDã`Oð ‚«t(‚ÅL“t|DT`BòØt‚Âé“Bò¸BÀMtDÀNrD}DÄé[ t~D¤ø€BòÄuã`$V`ëÂéCBòÌE¢ø€uDt@ö·´JBòàFËø@vDzDj`
"¥ø€Åé#¨tBòU­JuD­LzDÆé*BòôB|Dl`rDó`õZ¦ø€§L°t(&|DÂéF“t
&Ó`‚#"ª`BòR«trD(‚ë`ŸL M|D‹ø0}DÂéYBòXU«øËø0Oð	Ëø@ëBò0UÓ`¢ø€uDt”J”LzDj`|DËø@ÅécBòDT¥ø€tDJ¨tzDÄé&"£tËø BòlRã`rD ‚&‹ø«ø€Ëø0…LÂéc&|D“t¢ø€T`Bò°rLrDM|DT`	$tÂéCBòœt¢ø€"ëÊé#@ò"RBò”T}DÊøPªø€tDŠøÂ%Ëø rJã`zDÄé%BòÐUë
Bò¨U ‚£tuDlJmLzDj`|DÊø@Åé“Bò¼T¥ø€tDgJÊéÃOð	zDb`"¨tÄé#BòäR trD¤ø€Šøªø€^L^M|D‹ø0}DU`Bò e«øËø0ë
Ëø@BòøUÂécuD¢ø€OðtRJSLzDj`"|DÊø@BòdÅé#tD¥ø€MJ¨tzDÄé&Bò4b tã`rD¤ø€Šøªø€Êé“Oð
DLt|DT`¢ø€BòˆtÂéÃBòHb?MtD?NrD}De`~D%ÂélBò\fÄéSBò„e tuD¤ø€vDÓ`Oð¢ø€t3J4LzDÆé+|Dl`ó`Bòpd¦ø€tD/J°t&zDÄé)" tª`Bò˜bã`rDðR¸v
ýÿÙüÿêØûÿæçûÿøçûÿÝçûÿ¾çûÿHüÿ‚çûÿ¶çûÿƒçûÿ™çûÿÁüÿçûÿdçûÿîÁþÿuçûÿ7çûÿr÷ûÿZçûÿ@çûÿåqúÿ1çûÿÇqúÿ«þÿÖæûÿÀæûÿfçûÿqçûÿKçûÿñûÿ/çûÿçûÿçûÿêæûÿÏæûÿºþÿ¸æûÿ“æûÿ¿þÿ}æûÿ¤ø€¨t¥ø€ë`BòèeüLuDÂécõV|D“t‚T`Bòtr÷LrD|DÂéIBò¬dt¢ø€tDÓ`Oð"	ñJã`zDÄé) ‚£tïJïLzDr`|Dl`BòÔdÆéÃtD¦ø€°t&Äé,Bòüb trDã`Oð ‚¨t¥ø€Åé³âL¢ø0|DT`Bò`ttÂécBòrÝMrDÝNtD}DÓ`~De`ÂékBòLu tBò$v¤ø€uDÄéÃvD¢ø€tÓJÓLzDÆé,Bò8r|Dl`rDó`¦ø€°t@òÍL¢ø`&|DÂéJÓ`)$t@ö=Åé#Œ"Íøø*T"Íøä*
"Íøl*."ÍøÔ+Íø)?"Íø|)L"Íø)"Íø€*Íøð(+"Íøl%*"Íøt'Íø%2"Íøô$"Íø (Íø((Íøè&ÍøH&"Íø@)Íø´(Íø<(Íøü&Íø\&Íø%Íø,$Íø$%"Íøœ'÷’"Íøä%Íø¼%í’"ϒ"Íø+Íø¨*Íøà)Íø)ʒ!"Íø˜+Íø(Íøì'Œ"Íøø%Íø¸$"Íø¬&Íø„&Íø0%ْ±’"Íø˜&ÍøÐ%Íø¨%è’ "ÍøÀ+Íø¤$Íø|$㒻’§’"Íø0*Íø$Íøh$ޒ¶’¢’"Íø'Íøp&Ԓ˜’"Íø\+Íød(Íø`'ÍøÔ&Íø4&ÍøX%ÍøT$“’"ÍøP(ÍøÀ&Íø &Íø@$ü’Ž’"ÍøÐ*Íø*Íø°'Íø8'‰’"Íø(ÍøØ'u’"Íø¤)Íø€%z’p’#"Íø¼*Íø”%a’	"ÍøH+\’"Íø +Íøô)ÍøÜ(ÍøŒ(Íø$'’’W’@öÄ"R’"Íøˆ'ò’C’&"ÍøX*ÍøÄ'ÍøL'Íøà$f’9’7"4’$"ÍøèK[$/’3"ÍøhI$Íø,i@ò*’"ÍøD5$­øñf­øÙe(&Íø4+ÍøÈ(Íøx(„’E"M”=$ ’"ÍøükÍøDe&¬–B&>”$Íøp+ÍøD*Íø¸)’
"H–&«t(‚Íøʭø ‹­øŒ‹­øx‹­ød‹­øP‹­ø<‹­ø‹­ø°Š­øœŠ­øˆŠ­ø8Š­øŠ­øü‰­ø艭øԉ­ø\‰­øH‰­ø4‰­ø ‰­ø‰­øøˆ­øЈ­ø¨ˆ­ø€ˆ­øXˆ­ø0ˆ­øˆ­øǭø¸‡­ø‡­øh‡­ø@‡­ø‡­øȆ­ø †­øx†­øP†­ø(†­ø†Íø¬›ð¸¬åûÿEïûÿšåûÿ®åûÿ¬åûÿxåûÿ¾îûÿråûÿPåûÿKåûÿƒýÿÍøT™Íø–Íø̔%”Íø„+k’’ýJÍøÌi–&ûLzDÍø”j–|D–&øM­ø­øð}D­øÜ­øÈ­ø´øŽøzøRø>­ø(ø­ø­øì
­øØ
­øÄ
ø²
øž
øŠ
­øt
­ø`
øN
ø:
­ø$
øê	øÖ	øÂ	­øÀ	­ø¬	­ø˜	­ø„	­øp	ø6	ø	øú­øäøÒ­ø¼øª­ø”ø‚­øløZ­øDø2­øø
­øôøâ­øÌøº­ø¤ø’­ø|øj­øTøB­ø,ø­ø­øÜøÊ­ø´ø¢­øŒøz­ødøR­ø<ø*­øø­øì­øÄø²ø±øœøŠø‰øtøbøaøLø:ø9ø$øøøüøêøéøÔøÂøÁø¬øšø™ø„ørøqø\øJøIø4ø"ø!øøúøùøäøÒøÑø¼øªø©ø”ø‚øøløZøYøDø2ø1øø
ø	øôøâøáøÌøºø¹ø¤ø’ø‘ø|øjøiøTøBøAø,øøøøøòøñøÞøÝøÊøÉø¶øµø øøzøyøeøPø=ø(øøøíøÙøÅø°øžøø‰øvøuøbø`øLø8ø$øEH–ENxDÍø,DJ~DÍøøKCLzDÍøä[BM|DÍøÐAH}DÍø¼k@NxDÍø¨+?J~DÍø”K>LzDÍø€[=M|DÍøl<H}DÍøXk;NxDÍøD+:J~DÍø0K9LzDÍø[8M|DÍø7H}DÍøôj6NxDÍøà*5J~DÍøÌJ4LzDÍø¸Z3M|DÍø¤
2H}DÍøj1NxDÍø|*0J~DÍøhJ/LzDÍøTZ.M|DÍø@
-H}DÍø,j,NxDÍø*+J~DÍøJ*LzDÍøðY)M|DÍøÜ	(H}DÍøÈi'NxDÍø´)&J~DÍø I%LðK¸¿цúÿ¡†úÿh†úÿnƒúÿFƒúÿƒúÿó‚úÿá‚úÿO·þÿ²‚úÿ¡‚úÿŠ‚úÿg‚úÿS‚úÿ¿úÿcúÿAúÿúÿúÿô€úÿހúÿɀúÿ›€úÿ‘€úÿu€úÿh€úÿF€úÿ#€úÿ€úÿÿúÿõúÿÖúÿ úÿYúÿö~úÿ2~úÿ~úÿzDÍøŒYýM|DÍøx	üH}DÍødiûNxDÍøP)úJ~DÍø<IùLzDÍø(YøM|DÍø	÷H}DÍøiöNxDÍøì(õJ~DÍøØHôLzDÍøÄXóM|DÍø°òH}DÍøœhñNxDÍøˆ(ðJ~DÍøtHïLzDÍø`XîM|DÍøLíH}DÍø8hìNxDÍø$(ëJ~DÍøHêLzDÍøüWéM|DÍøèèH}DÍøÔgçNxDÍøÀ'æJ~DÍø¬GåLzDÍø˜WäM|DÍø„ãH}DÍøpgâNxDÍø\'áJ~DÍøHGàLzDÍø4WßM|DÍø ÞH}DÍøgÝNxDÍøø&ÜJ~DÍøäFÛLzDÍøÐVÚM|DÍø¼ÙH}DÍø¨fØNxDÍø”&×J~DÍø€FÖLzDÍølVÕM|DÍøXÔH}DÍøDfÓNxDÍø0&ÒJ~DÍøFÑLzDÍøVÐM|DÍøôÏH}DÍøàeÎNxDÍøÌ%ÍJ~DÍø¸EÌLzDÍø¤UËM|DÍøÊH}DÍø|eÉNxDÍøh%ÈJ~DÍøTEÇLzDÍø@UÆM|DÍø,ÅH}DÍøeÄNxDÍø%ÃJ~DÍøðDÂLzDÍøÜTÁM|DÍøÈÀH}DÍø´d¿NxDÍø $¾J~DÍøŒD½LzDÍøxT¼M|DÍød»H}DÍøPdºNxDÍø<$¹J~DÍø(D¸LzDÍøT·M|DÍø¶H}Dû–µNxDö’µJ~Dñ”´LzD앴M|D琳H}D△NxDݒ²J~Dؔ²LzDӕ±M|Dΐ±H}Dɖ°NxDǰJ~D¿”¯LzDº•¯M|Dµ®H}D°–®NxD«’­J~D¦”­LzD¡•¬M|Dœ¬H}D—–«NxD’’«J~D”ªLzDˆ•ªM|Dƒ©H}D~–©NxDy’¨J~Dt”¨LzDo•§M|Dj§H}De–¦NxD`’¦J~D[”¥LzDV•¥M|DQ¤H}DL–¤NxDG’£J~DB”£LzD=•¢M|D8¢H}D3–¡NxD.’¡J~D)”zD”FŸJ$•ŸLzDõ;pžM|D–N}DÍøõ:p’õ9rÍøôõ8pÍøà+õ7rÍøÌõ6pÍø¸+õ5rÍø¤õ4pÍø+õ3rÍø|õ2pÍøh+õ1rÍøTõ0pÍø@+õ/rÍø,õ.pÍø+õ-rÍøõ,pÍøð*õ+rÍøÜ
õ*pÍøÈ*õ)rÍø´
õ(pÍø *ðí¸¿ù}úÿ¥}úÿ‘}úÿ{}úÿX}úÿA}úÿ}úÿ}úÿÞ|úÿÇ|úÿ |úÿ…|úÿ_|úÿE|úÿ|úÿÿ{úÿÖ{úÿ¹{úÿ‹{úÿi{úÿ<{úÿ{úÿézúÿÂzúÿ”zúÿrzúÿOzúÿ7zúÿzúÿ÷yúÿÐyúÿµyúÿ‘yúÿxyúÿTyúÿ<yúÿyúÿüxúÿÕxúÿºxúÿxúÿrxúÿMxúÿ4xúÿxúÿöwúÿËwúÿ¬wúÿywúÿRwúÿ"wúÿþvúÿÌvúÿ¦vúÿlvúÿ>vúÿvúÿöuúÿÎuúÿ²uúÿŠuúÿnuúÿGuúÿ,uúÿuúÿìtúÿÆtúÿ«túÿ~túÿ]túÿ8túÿ!túÿûsúÿásúÿ¿súÿ©súÿ‹súÿysúÿRsúÿ6súÿsúÿörúÿÔrúÿ½rúÿ—rúÿ}rúÿ\rúÿFrúÿ!rúÿrúÿèqúÿÓqúÿ²qúÿ•qúÿzqúÿ]qúÿMqúÿ!qúÿøpúÿépúÿÈpúÿþeúÿÃeúÿ{eúÿ\eúÿeúÿídúÿ°dúÿ†dúÿMdúÿ8dúÿícúÿácúÿÛcúÿÇcúÿµcúÿ©cúÿ\]úÿõ'rÍøŒ
õ&pÍøx*õ%rÍød
õ$pÍøP*õ#rÍø<
õ"pÍø(*õ!rÍø
õ pÍø*õrÍøì	õpÍøØ)õrÍøÄ	õpÍø°)õrÍøœ	õpÍøˆ)õrÍøt	õpÍø`)õrÍøL	õpÍø8)õrÍø$	õpÍø)õrÍøüõpÍøè(õrÍøÔõpÍøÀ(õrÍø¬õpÍø˜(õ
rÍø„õpÍøp(õrÍø\õ
pÍøH(õ	rÍø4õpÍø (õrÍøõpÍøø'õrÍøäõpÍøÐ'õrÍø¼õpÍø¨'õrÍø”õpÍø€'õþrÍølõüpÍøX'õúrÍøDõøpÍø0'õörÍøõôpÍø'õòrÍøôõðpÍøà&õîrÍøÌõìpÍø¸&õêrÍø¤õèpÍø&õærÍø|õäpÍøh&õârÍøTõàpÍø@&õÞrÍø,õÜpÍø&õÚrÍøõØpÍøð%õÖrÍøÜõÔpÍøÈ%õÒrÍø´õÐpÍø %õÎrÍøŒõÌpÍøx%õÊrÍødõÈpÍøP%õÆrÍø<õÄpÍø(%õÂrÍøõÀpÍø%õ¾rÍøìõ¼pÍøØ$õºrÍøÄõ¸pÍø°$õ¶rÍøœõ´pÍøˆ$õ²rÍøtõ°pÍø`$õ®rÍøLõ¬pÍø8$õªrÍø$õ¨pÍø$õ¦rÿõ¤pú’õ¢rõõ pð’õžrëõœpæ’õšráõ˜pܒõ–rאõ”pҒõ’r͐õpȒõŽrÐõŒp¾’õŠr¹õˆp´’õ†r¯õ„pª’õ‚r¥õ€p ’ñü›ñø–’ñô‘ñðŒ’ñ쇐ñ肒ñä}ñàx’ñÜsñØn’ñÔiñÐd’ñÌ_ñÈZ’ñÄUñÀP’ñ¼Kñ¸F’ñ´Añ°<’ñ¬7ñ¨2’ñ¤-ñ (’ñœ#ñ˜’ñ”ñ’ñŒñˆ„1‘•~DCòX@Nø0pDø<Íø<øò;Íøì;øÞ;ÍøØ;øÊ;ÍøÄ;ø¶;Íø°;ø¢;Íøœ;Íøˆ;Íøt;øf;Íø`;ÍøL;Íø8;ø*;Íø$;Íø;ø;Íøü:øî:Íøè:øÚ:ÍøÔ:øÆ:ÍøÀ:Íø¬:Íø˜:Íø„:øv:Íøp:øb:Íø\:­øL:ÍøH:Íø4:ø&:Íø :ø:Íø:øþ9Íøø9Íøä9ÍøÐ9Íø¼9ø®9Íø¨9øš9Íø”9ø†9Íø€9ør9Íøl9ø^9ÍøX9øJ9ÍøD9Íø09ø"9Íø9Íø9Íøô8øæ8Íøà8ÍøÌ8ø¾8Íø¸8Íø¤8ø–8Íø8Íø|8øn8Íøh8ÍøT8øF8Íø@8Íø,8ø8Íø8Íø8øö7Íøð7ÍøÜ7øÎ7ÍøÈ7Íø´7ø¦7Íø 7ÍøŒ7ø~7Íøx7Íød7øV7ÍøP7Íø<7ø.7Íø(7Íø7ø7Íø7øð6Íøì6øÞ6ÍøØ6ÍøÄ6ø¶6Íø°6Íøœ6øŽ6Íøˆ6Íøt6øf6Íø`6ÍøL6ø>6Íø86Íø$6ø6Íø6Íøü5øî5Íøè5øØ5ÍøÔ5øÆ5ÍøÀ5ø°5Íø¬5øž5ø5Íø˜5øˆ5Íø„5øv5øu5Íøp5ø`5Íø\5øN5øM5ÍøH5ø85Íø45ø&5ø%5Íø 5ø5Íø5øþ4øý4Íøø4øè4Íøä4øÖ4øÕ4ÍøÐ4øÀ4Íø¼4ø®4ø­4Íø¨4ø˜4Íø”4ø†4ø…4Íø€4øp4Íøl4ø^4ø]4ÍøX4øH4ÍøD4ø64ø54Íø04ø 4Íø4ø4ø
4Íø4øø3ý“øæ3øå3ø“øÐ3ó“ø¾3ø½3ø¨3铍ø–3ø•3䓍ø€3ߓøn3øm3ړøX3ՓøF3øE3Гø03˓ø3ø3Ɠø3Søö2øõ2¼“øà2·“øÎ2øÍ2²“ø¸2­“ø¦2ø¥2¨“ø2£“ø~2ø}2ž“øh2™“øV2øU2”“ø@2“ø.2ø-2Š“ø2…“ø2€“øð1{“øÜ1v“øÈ1q“ø´1l“ø¢1ø¡1g“øŽ1øŒ1b“øx1]“øf1ød1X“øR1øQ1S“ø>1ø<1N“ø*1ø)1I“ø1ø1D“ø1ø1?“øî0øì0:“øÚ0øØ05“øÆ0øÄ00“ø²0ø±0+“øœ0&“øŠ0øˆ0!“øt0“øa0“øN0øM0“ø:0ø90
“ø&0ø%0“ø0ø0“ÍøTÀ”–
’Àé3Àé3%³ñ
à9<ðˆé((`¿<ð¢ë¥h4µ±bhTéBê#íÐôÐ<ðŒëêç"h9±#<ð”ëãç<ðréàç
õQ]
°½èð½е¯FHxD@hIBhyD	h’lŠBÑ!F"#<ðê(¿н<ð¤é@¹
H"F
IxDyDhh<ðbé н!F*±G(ùÑð*øéç<ðÎé(òÑ÷ç8c̪úÿKBh{D’lhšB¿"#<𸀵oF:±G(¿€½ðø €½<ðªéõç¿hе¯<ð‚éÐø<<ñIÐ0IÜø0yD	h	h‹BÐJhRmTNÔ\hdm´ñÿ?ؿ²ñÿ? ÝFF<ðëF Fq³Ðø<À!¼ñÁcÑ&à!ÁcÜøoð@AˆB¿н8ÌøÑ`F½èÐ@;ð°¿Zmð€BÚБøW RÖÕÓø¬ r±“h+Û2hŒBÕÐ2;ùÑнÓø€0‹BÍÐ+ùÑJzDh‰±úñI	)ÀÑîçFFð)ø·ç¿ž
(¿ pG@hˆB¿ pGJhRmSH¿àCh[m³ñÿ?ؿ²ñÿ?
ÜBmð€B¿;ퟣ�øW RH¿fà;ð¿ðµ¯Mø½Œh,:Ûñ"F)FhƒB.Ð1:ùÑ,.Û)hB&ÐBhRm²ñÿ?ܐøW RÕJhRm²ñÿ?ܑøW0[
ÕFð:ø€¹5<Oð0FàÑ
àRÕFðYøñçF<ðrêíç!F]ø»ð½!F]ø»ð½ˆB¿ pGBhRm²ñÿ?ܐøW RX¿;ð+¿JhRm²ñÿ?ܑøW0[H¿àRH¿-à;ð¿ˆBÐÐø¬ бh(¼¿ pG2h‹BÐ8ñ¿ pGõç pGF 2±Òø€0‹BF¿pG÷çHxDh°ú€ð@	pG¿$‹h+¼¿ pGðµ¯Mø½ñ%Rø%`†B>Ð5«BøÑ+@Û$JOðzDÒøààñ"œE.ÐëŒÔhbhRm²ñÿ?òܔøW RîՄBÐÐø¬`F†±²h*åÛñ.h¦BÐ5:ùÑÜçÕø€P"¥BÐ-øÑtEÓÑ"]ø»½èð@FpG"]ø»½èð@FpG"]ø»½èð@FpG¿àˆBÐÐø¬ бh(¼¿ pG2h‹BÐ8ñ¿ pGõç pGF 2±Òø€0‹BF¿pG÷çHxDh°ú€ð@	pG¿°µ¯FÐø¨³ƒh+ÛÔøY±ñZhøU0›&Õ1:÷Ñàâhñ;høUP­ÕÐøP»1;ôÑ<ðpéF`m@ô@p`e F;ðHïam!ôqae±F<ðhé F°½IyDhIÂhhyD;ð<ïOðÿ0°½IyD
hIÃh(hyD;ð0ïOðÿ0°½¿T
nKúÿ<
}Fúÿðµ¯-éF ;ð,ï(@ЁF¨k±@HxDà?HxDhoð@A0hˆB¿00` ;ðàF(hoð@AˆB¿0(`5HÄéYxDfaÅohhl.³2HxD;ðÚ(F!F"°GF;ðÚï-³!hoð@B‘BÐ9!`¿ F;ðnî(F½èð½BòÉXOð	&àBòÍX$à(F!F"Oð	;ðÀïF(ÜÑBòØXà;ðøîбBòØXOð	&HFô÷Yø0Fô÷Vø Fô÷SøHAFKâ"xD{D÷÷‹ü%(F½èð½
HIxDyDhh;ðîÛ翸+úÿkRúÿü	ú	2^èKúÿ(	è*úÿ°µ¯FF!";ðRïFȱI"FÕø„yDÑøÔ;ðàî(Ô hoð@AˆBÐ8 `Ð °½ F;ðøí °½ Fô÷øOðÿ0°½4]ðµ¯-釰Pø€&„j!±Ñø€6)úÑ ë†<ðrè¢hOðÿ1*`Àò߀.@ó£€uHOðxDtHxDhsH”xDàœñ h€E€òǀëˆQø‘™Ðø„ÑøÔ;ðFîœ(éÐ!F;ðžïƒF¹;ðJî(RÐ(hoð@AˆBÐ8(`¿(F;ð–í»ñÑИOð
Tø*PÐøh%Ñ™Ùø„ÑøÔ;ð!F;ðvïF¹;ð"îð± hoð@AˆBÐ8 `¿ F;ðníà%œOðÿ1ëŠDø*PA`]E Ðí±
ñ
	ñ€VEÊјç>I˜yDh;ð<í hoð@AˆBÚÑá瘙h;ð0í(hoð@AˆB§Ѭç3H™xD
h™hh1IÓhòhyDh;ð¤í F;ðÒïOðÿ0°½èð½!I oð@IyDŠFIyDÑø€IyD‹Fà¡hªhŠB%ÚFTø ÚøÔÐø„;ð¨í(ïÐ!F;ðï¹;ð®íH±0hHEäÐ80`¿0F;ðüìÝçØøYF;ðÞì0hHEÕÐïç;ðí˜;ðŽï °½èð½j[ì9úÿ²\4e:úÿ9úÿ,•úÿðµ¯-郰ÐNF~DÖøˆ;ðrïÍM}Dp±FÖøˆ(h;ðjï BÐOð@F°½èð½,hÖø F;ðZï(𐀃FÙøÖø‚lHF*ퟄ�G(ð‚€XEÐ%ƒFOð
$OðœàÖø F;ð:ï(ðڀFÙøÖø‚lHF*ðʀGF(ðˀ¥BÐÖø(F/ð½ù(EÐ•Ùø£KÖø{D‚lHFhªB@ð·€"#;ð~íF(ð¸€Ùø„Öø’;ð4í(ñÙø„Öø;ðï(ñø€€FÙøÖø`•‚lHFªB@ð©€"#;ðXí‚F(ðª€ÖødPF/ð{ù$(ðǀ%£à.FOð$Oð
%0hoð@AˆB!Ñ&à;ð
í(ô~¯&Oð%Oð
$;ð¾ìH¹uHuIxDÙø yDhh;ð|ìOðÿ8V±0hoð@AˆBÐ80`¿0F;ðþë»ñÐÛøoð@AˆBÐ8Ëø¿XF;ðîë-¿(hoð@AˆBѺñ¿Úøoð@AˆBÑ,¿ hoð@AˆB?ô¯8 `¿ F;ðÐë@F°½èð½8(`¿(F;ðÄëÜç8Êø¿PF;ð¼ëÝç;ð¢ìF(ô5¯&–ç*kАGF(ôJ¯ÿ÷ìú˜ B[Ð;ðNì!(‘XОOð
$%‚ç*ZАG‚F(ôX¯ÿ÷Ôú;ð°ëOð
%ÙøÖød‚l˜‚B$ÑHF"#;ð˜ìF(³Ùø„"FÖø`;ðPì( ÔÙø„Öød;ð î€F(ÔHF;ðJìÝéV0hoð@AˆBô^¯bçHF2³GF(ÛÑÿ÷šú-±Oð
$ÝéV8ç;ðøë$(÷ÑÞç%&F,çOðöæ;ð,ìF(ôݮ‘ç;ð$ì‚F(ôü®¢ç;ðìF(³ÑÖ翺ZjšÊ£8úÿðµ¯-é…°ˆFèIƒFØøyDÛø `	h‘ˆB@ðʁØøoð@AOð	ˆB¿0Èø Oð
 Íø€™)KÑØé!›šBOщE€òՁØøQø)P	ñ	)hoð@B‘B¿1)`(¿hoð@B‘B)ÑËHihxD–hB8Ѩh(ò”€ðéhÀñûöpCÐÛø4(JÐÛéÛøDRø*@Pø*)¿Qø*Oðÿ1¶ñÿ?eÜ[à9`¿;ð´êÏç™F@FˆGF F-ÀÑtá‰E€ò…ë‰Íh¯ç(F•;ðX흈±F;ðZíF hoð@AˆBН8 `¾Ñ F;ðŽê¹ç;ð2ë(@ð«€Oðÿ6Ûø4(´ÑÛø,@,ð¥€`9ÐÛø(€!F@F:ðŒíûñû‚¸ëÝø€¿!b@OðH¿"@@Oðÿ1¶ñÿ?ÜÛø< Rø* D¶ñÿ?@󌀆B!Ú˜û)\¿0hF
ñ
.(FôC¯á(F;ðíFmçÛø(°ñOðW@BOðÿ4Oðÿ1¶ñÿ?ÜÜÒç ©F;ðtê(ð,ÉNFoð@B~DÖø”h‘B¿1`Öø”à`PF.ð³þ(ðhoð@C aÖøhšB¿2`Öøñ&`a F!#'ðSÿ(ðF hoð@F°BÐ8 `¿ F;ððé­H)F"xDnð×ø(h°BÐ8(`Ñ(F;ðàéDòoQ@ò•2fàOôÉrBöYalà£H©F£IxDyDhh;ð¶éDò¬A@ò‡2Sà ©F;ðê(ð܀“NFoð@B~DÖø”h‘B¿1`Öø”à`PF.ðKþ(ðրhoð@C aÖøhšB¿2`Öøñ&`a F!#'ðëþ(ð@F hoð@F°BÐ8 `¿ F;ðˆéwH)F"xDnðoø(h°BÐ8(`Ñ(F;ðxéDò3Q@ò’2jHkKxD{Dö÷ÀÿOôÉrBöZaMFØøoð@C˜B
Ð8ÈøÑ@FFF;ðZé1F"FbHcKxD{Dö÷¤ÿ&(F;à¿¢QIyD	hˆB?ô0®@F;ð
ì(~ЀF@ho‘)F}ÐOðÿ9-æ;ðÜéF Fj±EHxDhhFÿ÷Cù(wÐ;ðFéÝø€ FØøoð@B‘BÐ9ÈøÑF@F;ðé F(¿hoð@B‘BÑ0F°½èð½9`¿;ðé0F°½èð½DòXQ@ò•2ƒçDò`UàDòjU hoð@AˆBÐ8 `¿ F;ðèè@ò•2 àDòQkçH©FIxDyDhh;ðÂèDò°A
çDò$UàDò.U hoð@AˆBÐ8 `Ñ F;ðÆè@ò’2)FÝø€Kç@ò‘Böa%aç@ò‘Bö a%JçOôÉrBöZaEç@ò‘BöGa%FÝø€=ç¿vÿFÿªþÓ
úÿjúÿÕHúÿ–TbfUÒbk:úÿHúÿ–ñúÿðµ¯-鉰ŠFFÚø!Íé‘oð@AˆB¿0ÊøæLÚø|DàoBðހÑø¬ *ðр‘h)Û2hƒBðр29øÑ;ð$éFlÙHxDh
h-¿…BÑIh)÷Ñ %à*hoð@AŠB¿2*`jhhˆB¿0`(F’;ðŠéÙøL@ð˜ ð;ð°è(–𻀀FÙøP±ÒHxDàÒHxDÐøoð@AÙøˆB¿0Éø ;ð^è(𦀃FÚøoð@AˆB¿0ÊøËé¨Ëøäo`hl .𖀿HxD;ðPé(@𠀠FYF"°GF;ðNé,ðŸ€”Ûøoð@H@EÐ8Ëø¿XF:ðÞïÚø&–@EÐ8Êø¿PF:ðÐ(¿hoð@AŠBÑ-¿(hoð@AˆBј(¿hoð@AŠBÐQ`¿:ð´ï hoð@AˆB#Ñ F	°½èð½Q`¿:ð¤ïÛç8(`¿(F:ðžïÛçÑø€BÐ)ùшIyD	hˆBô2¯TF hoð@AˆBÛÐA!` F¢Foð@B‘BÐ9ÊøÐ	°½èð½FPF:ðvï F	°½èð½Cò`OðàCòtOðà FYF"Oð	;ðÈèF(ôq¯CòOðàCòOð	Oð$
à:ðòï(Oðð¸€CòOð	Oð@Fó÷MùHF”ó÷IùXF”ó÷EùZHžxD”Ákðkþ÷Ûþ(DÐYHOôÛrXK™xD{Dö÷rý©ª«0F÷÷øÝø€(;Ô™oð@BhB¿0`˜h“BÐZ`ÑF:ðï!F˜oð@IhJEÐ:`ÑF:ðøî!F˜FhIEÐ9`¿:ðìî0lAF›*F÷÷sø F3à0l*F™›÷÷køOôÛrà0lAF›*Fœ÷÷`ø,¿ hoð@AˆB7ÑOôÜrCò ˜(¿hoð@C™Bј(¿hoð@C™BÑ"H)F"KxD{Dö÷ý Úøoð@B‘Bô'¯)çRRý9`àÑF:ðžî"FÛç9`àÑF:ð–î"FÛç8 `¿ F:ðŽîÀç	H	IxDyDhh:ðnî>çüþüüüZ]Ö>úÿÚùšúÿæBúÿ9DúÿBúÿ[Cúÿðµ¯-é­õ}ƒFžHFFxD3Ðø ›HRExDF7ÐHFÙø|ð±jh‚B0ÐÒø¬0³™h)Û3h„B&Ð39ùѓK“I{DÒhyDhÃh0h:ð®îCòOôàvBàˆH‰IxDyDhh:ðîñçF!±Ñø€BúÑà‚IyD	hˆBÛÑh©(F/ðãùà³FN¨h":ð²êVEMÐHFÙø| ³rh‚BFÐÒø¬0»³™h)Û3h„B<Ð39ùÑvKvI{DÒhyDhÃh0h:ðjîCò!@òÁ%(Fó÷øoH!FoK2FxD{Dö÷;üOð
PF
õ}½èð½Cò¢ç`HaIxDyDhh:ð¾íÛçF!±Ñø€BúÑàZIyD	hˆBÅт©0F/ð‰ù(wÐ
ñÐFh"@F:ðTêhhIFÙøl‚l(F*kАGF(lÐ(F\FðúûƒF0Ñ:ðPî(qÑ(hoð@AˆBÐ8(`¿(F:ðšíphÙøl‚l0F*RАGF(SÐ(FðÚûF0Ñ:ð0î(TÑ(hoð@AˆBÐ8(`¿(F:ðzíN«%mlFËÍé0¶N®ñ2•X%\øk=DøkùÑ®h%XøK=FøKùÑ/ðõù0$ÐÚøoð@AˆB¿3™Ñø 0ÊøPF
õ}½èð½Cò"Pç:ð.îF(’ÑCò,	à:ð&îF(«ÑCò0àCò4@òÃ=çCò.àCò2@òÃ6ç¿hùØM0ù¢úÿ&ù6ùf=úÿ|øîúÿrø®øÞ<úÿÅ3úÿËAúÿðµ¯-é­õ#}ˆF	©F@F’F/ðÅø(ðԀFàj°õÙ:ð¸îƒF(ð΀ mH±Ëø à
ñŒ  m(õѠhYFRFƒi F˜G(ð¿€hoð@B‘BÐ9`¿:ðÔì`l(¿ak끁BÙh*JÕ0ˆBùÓ%mæjØø4€±Ùø@:ðŒï‚F 	ñ	ñ( FCF-ð™ýPF:ð†ïÙø	ñ(Íék	ñ"FCF1F0ðJø}±ÙøP:ðlï‚F (F1F"FCF-ð{ýPF:ðhï˜:ðæîIIoð@CyDhhšB¿hQ`
õ#}½èð½BHBJxDzDÐø`Pk"ðaû?HCöêa>K@ò¿"xD{Dö÷»úCò(@òß:ð,í$F ÍéDÍéDÍéDò÷jþ(l©ª«ðºÿ©ª«(Fö÷4ý(0ÔÝéKž˜:ðœî(lÝé2™ö÷Ëý(F1FZF#Fö÷ýý#HAF#KRFxD{Dö÷‚ú 
õ#}½èð½Cò|Oôæzìç:ð„îCò£@òÑåçCòúOôíz³çÕø<°ìc»ñÐÛø`oð@A0hˆB¿00`Ûø@L± hˆB¿0 `¹çOð&µç$³ç¿´õJìWù0úÿË>úÿ-)úÿY>úÿ°µ¯F€hFh(FGбF¨h"Fƒi(F˜G1hoð@D¡BÐ9`¿:ðÒëIyDhh¢B¿hQ`°½Cò„$OôóuàCòŽ$@òç ò÷ÎýH!FK*FxD{Dö÷ú °½¡úÿa=úÿBôðµ¯-鍰àL€F&
F|D–
–Ôø
ö÷®ýF(ðSØø,(F:ðâë(ðOƒF–:ðRìlÑIyD	hh.¿ŽBÑ@h(÷ÑOð
& à1hoð@@B¿11`Öø ÚøB¿HÊø0F:ð¶ìÙøÔø”‚lHF*ð"GF(Íé›ðØø8Íø :ð,î(
ð‚F²HahxDhB@ðø€Ôø¹ñðò€Ùøoð@@¥hB¿1Éø)hB¿H(` hoð@A•ˆBÐ8 `¿ F:ð ë ,F©‚è©1¡ë€ Fð†ú¹ñƒF¿Ùøoð@AˆB@ðš€Úøoð@AˆBÐ8Êø¿PF:ðúêÝø »ñ
ðĀ hoð@AÝø ˆBÐ8 `¿ F:ðäêØø8!‘‘:ðÆí°ñÿ?@óå€(
ÑXF!"#$ðÿ(ðvF”
àÛø]Foð@AˆB¿0Ëø]F˜lh`(¿hoð@B‘BUѺñœ¿Úøoð@AˆBQÑ,¿ hoð@AˆBRÑžÙøoð@AˆBÐ8Éø¿HF:ð”ê.¿0hoð@AˆB
ѻñ¿Ûøoð@AˆBÑ(F
°½èð½80`¿0F:ðzêêç8Ëø¿XF:ðrê(F
°½èð½8Éø¿HF:ðfêÚøoð@AˆBô^¯cç9`¿:ðXê£ç8Êø¿PF:ðPê¥ç8 `¿ F:ðJê¥ç Oð	&çOôöxCòÌ%à@òïCòØ%Oð
á:ðëÛæCòô œàCòö#àCò3˜Ýø (œ“¿hoð@B‘B@ð6˜OðÍø0€ÅkÀø<€Íé
…ݱÕø°oð@AÍø0°ÛøˆB¿0ËøÕø€Íø(€¸ñÐØøˆB¿0ÈøàOðà«H¬IxDyDhh:ðÔéCò#5@òõ”à¿bH®ó~óOðÙøÔø‚lHF*ðó€G(ðô€TFƒE@ð÷€Oð
hoð@B‘BÐ9`¿:ðÂé-¿hi@E@ð	™ÈkÍc(¿hoð@B‘B?ѻñ¿Ûøoð@AˆB;Ѹñ¿Øøoð@AˆB:ÑOðºñÍø0°Íé
»Ð~H)F~K@òñxD{Dõ÷Þÿ˜
©ª«ö÷nú(¢F'ÔwH"™xDÑøÔ@kðhøCòm5@òó"à@òñ¢Fà9`¿:ðlé¹ç8Ëø¿XF:ðdé»ç8Èø¿@F:ð\é¼çCò`5OôùxàCò/5Oôûx˜lh`(¿hoð@B‘BCѺñœ¿Úøoð@AˆB?Ñ,¿ hoð@AˆB@Ñ˜(¿hoð@B‘B?Ñž˜(¿hoð@B‘BÑ
˜(¿hoð@B‘BÑ>H)F>KBFxD{Dõ÷gÿ%¹ñôo®zæ9`¿:ð
éãç9`¿:ðéåç9`¿:ðþèµç8Êø¿PF:ðöè·ç8 `¿ F:ððè·ç9`¿:ðêè¹ç9`¿:ðäèÃæ:ðÈé(ô¯CòX5OôùxOðƒçFÛø@m°ñÿ?(ܛøW@$ÕÙø@m°ñÿ?ܙøWIÕXFIFþ÷õø‚FHFÝøhoð@B‘Bôí®ðæ(FAF:ðfêñæ@ÕXFIFþ÷ùèçXFIF:ð"ëãç¿Ñúÿ#8úÿÐðÞ$úÿ¿úÿ9úÿøQðµ¯-é…°ñLFFF|DÔø
ö÷–ú‚F(ðˆØøÚøøWŠlÔøX@ñ‰€PF*ퟀ�GƒF(ퟄ�k:ðHë(ퟬ�FÝHÛøxDhB@ðiÛøP-ðd)hoð@@Ûø@B¿1)`!hB¿H `Ûøoð@AˆBÐ8Ëø¿XF:ð<è £F©‚1Íø€¡ë€XFÍéYð¢ÿ-F¿(hoð@AˆB@ðÙøoð@AˆB@ð,ð Ûøoð@AˆBÐ8Ëø¿XF:ðè³I`hyD	hˆB𠀱IyD	hŒBð~Íø ®IyDh­I®JÃhyD0hzD:ðdèOðOôrCò AOð
’áPF*ðGF(ð¨kÍø :ð¾ê(ðF :ðè(ð‚FæHÊøPxDØøhB@ðþ€Øøoð@AˆB¿0ÈøPFAF:ð¬ê(ðú€ƒFÚøoð@D BÐ8Êø¿PF9ðªïØø BÐ8Èø¿@F9ð ïÙøÝø l,ð߀ÊHxD:ðìè(@ð!HFYF" GF:ðêè,ðÙøoð@E¨BÐ8Éø¿HF9ðzïÛø¨BÐ8Ëø¿XF9ðnï¸I`hyD	hˆB@ðˀºHxDh¬Bðހ!h€Foð@@ñB¿H `¡hSšBÒ "|2T0BùÑ hoð@F°BÐ8 `¿ F9ðBï(h°B¿ØøP0(`ºñ¿Úøoð@AˆBÑ,¿ hoð@AˆBÑ(F°½èð½8Êø¿PF9ðïëç8 `¿ F9ðï(F°½èð½8(`¿(F9ðïÙøoð@AˆB?ôç®8Éø¿HF9ðþî,ôà®CòAàCòÆ1OôþrÉà% µæ9ðÖïƒF(ô®CòAOôr»à9ðÌïF(ôý®CòÜ1@ò"°àCòAOôršàCòÞ1%Oð

àCòà1Oð
à@F:ðÀé(@ð½€Còå1%OðSàCòç1OðEFMàHFYF"%:ðèF(ô(¯Còë1>à¿.B¶íí¬ì¨ìRúÿ­©üÿPIyD	hŒBÐOIyDhNIOJÃhyD0hzD9ðüîCòï1@ò"Oð
Oð+àIHIIxDyDhh9ðdîGHCò0A@ò"xDhNà9ðï(^ÐCòë1%Oð
Ùøoð@BBÐ8ÉøÑHFF9ð\î!F@ò",Ft± hoð@C˜B	Ð8 `Ñ FFF9ðJî*F!Fºñ¿Úøoð@C˜B"ѻñÐÝø Ûøoð@C˜B
Ð8ËøÑXFFF9ð,î*F!F$à$Ýø HKxD{Dõ÷pü%áæ8ÊøØÑPFFF9ðî*F!FÐçHIxDyDhh9ððí—ç€FE濂ì.úÿàè 
úÿÐëÖéØé‚úÿݦüÿlë®éúÿŒéÍþùÿ52úÿFÀhoð@ChšB¿2`ÈhpG¿°µ¯ÐøÄ ±FG°±°½ÿ÷#ú(¿°½DòÒd@òÊ5 ñ÷×ÿH!FK*FxD{Dõ÷ü °½DòºdOôruíç±úÿs1úÿ°µ¯ÐøÈ0C±FF˜Gˆ¹Dòt@òÎ5àÿ÷ý¨±hoð@B‘BÐ9`¿9ð˜íIoð@CyDhhšB¿hQ`°½Dò$tOôtu ñ÷–ÿH!FK*FxD{Dõ÷Îû °½Žúÿñ0úÿÈçFÐøÀoð@ChšB¿2`ÑøÀpG¿е¯F@hÐøÄx± F:ð\èX¹`hI€iyDˆBÑ F:ðZè(¿н F9ð\ï hX±!oð@B¡`h‘BÐ9`¿9ð>íÔø¨`±!oð@BÄø¨h‘BÐ9`¿9ð.í`hÐø  F½èÐ@G¿áÿÿÿðµ¯-郰¾NF@h~D‚lHFÖøè*ðG€F(ð·HOð
ØøxDÐø°YE@ðØø@,ðû€!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@F9ðäì"¨F¨ÍéJñ
@Fªë‚ðLü,F¿ hoð@AˆB@ð•€-ð›€Øøoð@AˆBÐ8Èø¿@F9ðÀìÖø ÖøL•Bh’l*𽀐GF$(𾀊H"ÈòQFxDÍéI€kðü(𵀁FhhXE@ð·€ìh,ðµ€!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F9ð€ì 5Fªë€B(FÍéIðêû,€F¿ hoð@AˆB@ÑÙøoð@AˆBFѸñMÐ(hoð@AˆBÐ8(`¿(F9ðZìAF(F9ðFï(rÐ)hoð@D¡BÐ9)`8ÐØø¡B>Ð9Èø:ÑF@F9ð@ì F°½èð½8 `¿ F9ð4ì-ôe¯Fòç$_à8 `¿ F9ð(ìÙøoð@AˆB¸Ð8Éø¿HF9ðì¸ñ±ÑOðFò)à)FFF9ðì(FØø¡BÀѰ½èð½$"ç9ðèì€F(ôì®FòÓ@à9ðÞìF$(ôB¯FòëOðàOðFòí,Fà dç $açFò$(hoð@BBÐ8(`Ñ(F
F9ðÒë)F¸ñÐØøoð@BBÐ8ÈøÑ@F
F9ðÀë)F,¿ hoð@BBÑHÒ"KxD{Dõ÷ú °½èð½8 `ðÑ FF9ð¤ë!FêçT;ç¶þùÿ=-úÿLHðµ¯-é•LF@h|D‚l0FÔø0*𼀐GF(ð½€hhÔø`‚l(F*𻀐G‚F(ð¼€(hoð@AˆBÐ8(`¿(F9ðlëphÔøØ‚l0F*𱀐GF(ð²€phÔø0‚l0F*𰀐GF(ð±€0hoð@AˆBÐ80`¿0F9ðHëhhÔø`‚l(F*𡀐GF(ð¢€(hoð@AˆBÐ8(`¿(F9ð0ëÔø1F9ðî(ð’€F0hoð@AˆBÐ80`¿0F9ðëÔø(F9ðî(ð€F(hoð@AˆBÐ8(`¿(F9ðëPF1F9ðî(tÐ1hoð@D¡BÐ91`
ÐÚø¡BÐ9ÊøÑFPF9ðîê FàF0F9ðèê(FÚø¡BìÑhoð@B‘BÐ1`Foð@B‘BÐ9`¿9ðÒê F½èð½9ð´ëF(ôC¯FòNOðÕ	%	à9ð¨ë‚F(ôD¯FòPOðÕ	&Oð
+à9ðšëF(ôN¯Fò]OðÖ	%à9ðŽëF(ôO¯Fò_à9ð„ëF(ô^¯FòbàFòeàFòhOðÖ	&àFòkOðÖ	%(Fñ÷–ü0Fñ÷“ü
HAF
KJFxD{Dõ÷ËøºñÐÚø$PFoð@B‘B—ћç ½èð½¿>8ÙôùÿÏ*úÿðµ¯Mø½F€hFF(±)F G±]ø»ð½Öø¨8±)F G(¿ ]ø»ð½ ]ø»𽰵¯Ioð@CyDhh„`"hšB¿2"`)¿
hšBÑ"hÐø¨Àø¨@oð@@‚B¿P `)¿hoð@BB
Ñ °½:
`èÑFF9ðê(Fâç8`¿F9ðê °½áðµ¯-釰’N€Fh ~Dõvpb±±-@ðí€Ñø FÍø ’9ð8ìà-@ðá€Ñø Íø àFF9ð*ìÖøØF F³F”Êh9ðRë(ðȀ‚F©ñ^F(€ò €Úøoð@AˆB¿0ÊøØøhŠBÐQ`¿9ð¼éÈø ÚøÖø‚lPF*OАGF(PÐoIHFyD9ðÀì(QÐoIHFyD9ðšëF¹9ðFê({ѴF”ènñnÀÚøÜøŒ‚lPF*VАG(WÐØø¨oð@C
hšBÐ:
`ÑFF9ð|é FÈø¨ Ùøoð@B‘BÐ9ÉøÐ°½èð½FHF9ðfé F°½èð½9ðHêF(®ÑKHFòJKKÉ"xD{DbàCH"ÖødxD@kô÷`ÿ(cÐ!"Fð3ø hoð@AˆBÐ8 `Ñ F9ð:éFòmÌ"à9ðê(§ÑFò‰Ï"à'Hª«!xDÍéP˜ðlý(8ÔÝø PçFòÎ"(H)KxD{Dô÷hÿOðÿ0Ùøoð@B‘B›ўç9ð´é0»H&IxDJKyDhzD{DhL•|DÍéd9ðhéFòHÆ"KxD{Dô÷AÿOðÿ0°½èð½FòïçFòiªçEöþqéç5‹úÿºÞrõùÿ;úÿ2êùÿ¨'úÿ7&úÿ»'úÿÌúÿ˜A…&úÿ	(úÿ¾úÿÿ&úÿƒ(úÿ€µoFøVÉÔÐø˜ !G˜±Ioð@LyD	h`
hbE¿Àø¨€½SÀø¨`cE¿2
`€½IJyDzDhÑh"Óøœ0˜G(ÞÑñç¿ÞV2Þðµ¯Mø2ðHF"иñ:ÑrHchxDhƒBð¨€oJzD’i“Bð¢€Óø¬`.dгh+&Û65h•B𖀅Bð“€6;õÑà^HchxDhƒBaÐ\JzD’i“B\ÐÓø¬`.?гh+$Û65h•BQЅBOÐ6;÷Ñ FF9ðbë„F@± F1FBF#]ø‹½èð@`G¸ñÐ F1FBF#]ø‹½èð@8ð„¿ FF9ðFë„F(âÑGHahxDlÅh®³EHxD9ðré(bÑ F)F"°GRàF^±Öø€`–BúÑàFV³Öø€`–BúÑ1à1M}D.h²BÐ+¶ÐÓø€0ƒBùѠh‚hS®ՑT¿äh$Eh(HxD9ðD鰻 F!¨G'à F)F"]ø‹½èð@8ð¿"M}D.h²BÐ+?ô¯Óø€0ƒBøѠh‚h��T¿äh$Fh
hHxD9ðéh¹ F)F°GF9ðé F±]ø‹ð½9ð^è± ]ø‹ð½HIxDyDhh8ðï ]ø‹ð½ºÝÐ1ÞܾúÿúÝ2’Ülúÿ^1úÿ Üàýùÿÿ÷fºðµ¯Mø½„°*Ú3» Ioð@CyDhhšB¿hQ`°]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéE8ðÐï °]ø»ð½˜h(ÕÐ
IFyDðMû(ÎÑ °]ø»ð½ŒÛDòùÿÛaüÿçùÿisþÿ±aüÿžÛðµ¯-鉰oN%•~Dõuu•[±ë‚*CÐ*iÑ
h™h•)ۋà*aÑ
h•ih‘øW‰#ÕAhŠlÖøØ*ퟴ�GF(ðŽ€`h*FÖøØÃl F+ퟠ�G!h(ñ‰€oð@@BÐH `¿ F8ðøîWIoð@CyDhhšB¿hQ`	°½èð½œhÍé,ÛÖøÔS™F	ñOð
FXø*¨B2Ð
ñ
TE÷ÑOð
Xø*(F"ðVü(#Ñ
ñ
TEóÑ8ðlïš(_Ñ5H&5IxD5L5KyDh|D{Dh3M’"F}DÍée8ðïFò/!/HÝ"/KxD{D=àÞÔ[ø*P•-ÙÐÝéaKF)ÿöx¯FH­YFxDÍé ªF+FðÕú(,ԝ Ffç8ðnïF(ôr¯Fòe!à8ð.ï!h(õw¯oð@@BÐH `¿ F8ðpîFòg!Hâ"KxD{Dô÷¸ü 	°½èð½Fò!±çFò$!®ç¿ˆ/<`üÿ(Úàðùÿ„`üÿ åùÿ#úÿËôùÿ'#úÿŠÚMôùÿ©"úÿðµ¯-é„°*€򦀀F+@𺀠8ð4ï(ðŀN‚Foð@B~DÖø|h‘B¿1`Öø|Úø`Öø„X8ð$ï(ð³€1hF "F(FSF8ðèïF hoð@AˆBÐ8 `¿ F8ðî-ð›€Úøoð@AˆBÐ8Êø¿PF8ðôíÖø|(Fõ÷ù(ðŒ€Fhoð@F°B	ÐA!`±BÐ( `¿ F8ðÜí(h°BÐ8(`¿(F8ðÒí 8ðî(sÐFØøoð@Bh‘B¿1`Øøè` 8ðî(iÐ"hoð@AŠB¿2"`FJÀéEzDhh‹B¿Y`Ba!hoð@B‘BÐ9!`а½èð½F F8ðší(F°½èð½-H&-IxD-L.KyDh|D{Dh,M’"F}DÍée8ðòí °½èð½˜h(?ôB¯$IFyDðmù(ô:¯ °½èð½FòË(Oðå	$àFòÐ(Oðå	$àFòÓ(Oðå	$àFòâ(Oðç	Oð
%àFòç(Oðç	Oð
PFð÷Zÿ(Fð÷Wÿ
HAF
KJFxD{Dô÷û ,їç¿Î׆îùÿ!úÿFãùÿ«oþÿî úÿt-(îùÿW úÿØðµ¯-鍰 ßN~DòLpk±ë‚
*ð¢€*@ðɀh™h
)ÛBâ*@ðh
ðOûF0ð†€ 8ðúí(ðD‚Ýø ƒFÖø˜ÚøBh’l*ð;‚G€F(ð<‚ F8ðdí(ð=‚FÁHØøxDhB@ð ‚Øø`.ð‚1hoð@@Øø@B¿11`!hB¿H `Øøoð@AˆBÐ8Èø¿@F8ð¶ì  F©B1‘¡ë€@FÍéeÿ÷ü.F¿0hoð@AˆB@ðV(hoð@AˆB@ð\,ðbØøoð@A%FˆBÐ8Èø¿@F8ðŠì—IhhyD	h‘ˆB@ðã(hoð@AˆBYÑ Oð		fà8ðí(?ôu¯FòŒ1>àÓø°	’»ñ۰F™FØøLW	ñ0F&FTø&¨Bðˆ6³E÷Ñ&Tø&(F"ðÛù(@ðy6³EóÑ8ðòì	š(@ðvH&vIxDvLvKyDh|D{DhtM’"F}DÍée8ð¢ìFò1pHõ"pKxD{Dô÷{úOðXF
°½èð½!0(`Oð		‘¨Foð@AˆBÐ8(`¿(F8ðìEF!oð@H•	˜(rÑÕé ›šBvсE€ò“èhPø)`0h	ñ	@E¿00`)¿h@EIÑÚøP(h@E¿0(`ÚøPhh™ˆB^Ð $™BÍéF¡ë€(Fÿ÷Nû,¿!hAE3Ñ(ð¢€)hAEÐ9)`ÑF(F8ðÈë FÛøÛø ŠBQÝhBE¿2`Ûø Bø!1Ëøh1FBE£ÐQ`1FŸÑ8ðªë1F›ç8`¿F8ð¢ë®ç9!`ÈтF F8ðšëPFÝø ÀçF	™(FˆGF!F(–ÑáE€òë‰Æh‡çìh,Ð h©h@E¿0 `h@E¿0`(h@EÐ8(`Ð 
F‹çFXF!F8ðšîF Fɻ°ç(F
F8ðbë {ç¿R+¬ÖêÕ0Õèëùÿ™[üÿ¨àùÿúÿ¼úÿ/úÿ80`¿0F8ðDë(hoð@AˆB?ô¤®8(`¿(F8ð8ë,ôž®%FòÞ9$àFò,I àFò0I%1hoð@B‘BÐ91`DÐÝø€FÛøoð@AˆBÐ8Ëø¿XF8ðë,¿ hoð@AˆBѸñ¿Øøoð@AˆBÑ-¿(hoð@AˆBÑdHIFdK@ò-xD{DÆæ8 `¿ F8ðìêàç8Èø¿@F8ðäêáç8(`¿(F8ðÞêáçF0F8ðØêÝø€¶ç?õˆ®Zø&
(?ô‚®	š«ñKFFF)ÿö­GH
­QFxDÍé ªF+Fðÿ(7Ô
˜²å &þåFòÅ9µç8ð–ë€F(ôĭ%FòÇ9Oð$„ç%FòÉ9$ç4IyD	hˆB?ô®(F8ð^í(EЀF@ho	‘)FDÐ(hOðÿ9oð@AˆBôm®qæOôÇAOæFò…1Læ8ð$ë!FP±#IyD	h	hü÷úp³8ðê!F(hoð@BBÐ8(`Ñ(FF8ðbê!F)¿hoð@BB?ô2®8`ô.®F8ðRêXF
°½èð½%Fòç9Oð(ç%Fòé9$ç FòI&F,Oðô¯Ýø€$ç£XüÿÒØÑLúÿ¿úÿðµ¯-é“°™FÑKÒNF{D ~D
“h¹ñÖø<»ö8òÔ@
ö„“Íé;–1Ð*GØë‚•ßèð‚mwIF“Qø¯ºñÀòƒ€Öø„i	ñOð’‘Tø(°Bð}€ñÂEöÑOðTø(0F"ðjÿ(mÑñÂEóÑrà*Ø
˜•Ðø Íø$ ßèðé
Ñø ÍøH Ñø°ÍøD°h	Úà¡HOð M*xD K I}Dh{DyDhžNH¿OðL~D’|DÍéÆX¿+F"F8ðêFòÄA˜H@ò/—KxD{Dó÷íÿ °½èð½ÑéIFQø¯“	ÍéfàÑé;‰hÙø ‘F	“Íé;•àhIFQø¯“	ºñÚsà
˜Ðø Íø$ ‰àÔ˜Pø( ±ªñ
	à8ðê(@ð¶‚
˜h	š™ºñVÛÑø€’¸ñ‘%Û˜	ñ%ÐøÔdTø%°BÐ5¨EøÑ%Tø%0F"ðÈþ(Ñ5¨EôÑà
Ô˜Pø%0±ªñ
ƒFš™à8ðÒéš(™@ðw‚ºñÛÑø€’¸ñ'Û˜	ñ%Ðø8hTø%°BÐ5¨EøÑ%Tø%0F"ð’þ(Ñ5¨EôÑ
àžÝø àÔ˜Pø%!±ªñ
F‘à8ðšé(@ð>‚
˜hšžºñ‚F€ò‘!°j‘©
"ÈòÍø4°)Fÿ÷Mø(ðXÖø¼G€F0hâh!F8ðFê(ðVFhoð@AˆB¿00`ph•‚l˜*ÐøD0FðSGF(ðT0hoð@AˆBÐ80`¿0F8ðªè@FIF"8ðté(ðFFÙøoð@AˆBÐ8Éø¿HF8ð”èHLxD|DÐø°^E¿ h†BѦë°ú€ð@	!àæÐ^%$ÐÔæùÿ>
úÿÖæùÿýgþÿ™\üÿœúÿúÿÒÍÔÍ
˜h†BÝÐ0F8ðé(ñ1hoð@B‘BÐ91`"ÐP³›oð@AÓø¨@ hˆB¿0 `ßHñÞJ#FxDÍø zD†oh	š°G(@ð€Fò[Oô´zOð	&F\á¡FF0F8ð0è FLF(ÔÑžEFÐF¢FÖø¼G0hâh!F8ðšé(ðFhoð@AˆB¿0ÉøÙøTFÖø@ÂF‚lHF*ðހGF¨F(ð߀Ùøoð@AˆBÐ8Éø¿HF7ðøï@F1F"8ðÂè(ð̀F0hoð@AˆBÐ80`¿0F7ðäïÙE¿ hEѩëž°ú€ð@	
à
˜hEôÐHF8ðpèž(ñÙøoð@B‘BÐ9ÉøÑFHF7ð¾ï F(𝀛oð@AÓø¨@ hˆB¿0 `’Hñ’J#FxDÍø zDhh	š°G(ð߀!hoð@B‘BÐ9!`ÑF F7ð”ï(FØøoð@B‘B?ôò­9Èøôí­F@F7ð„ï F°½èð½uHFòòAuKOô³rxD{D×å8ðè(¹ Fû÷]þ(@ðӀFòþK@òg&‹à8ðLèF(ô¬®OôÊK@òg€àFò[@òg&|à`H«™xDÍé ªHFð“û(ñŽ€˜	Ýéº\æFò[@ògcà7ðäï(¹ Fû÷&þ(@ðž€Fò*[@òi&Oð	¨FSà8ðèF¨F(ô!¯Fò,[làFò/[@òiBà
™ÖøÜ	hˆBnÐØøGJzDh‘B¿Imð€QcÑAF8ðBê™"FÈò&(\Ð>HÍéexDÀkþ÷nþ(VÐF(hoð@IHEÐ8(`¿(F7ðìî F!"ðÕý hHEÐ8 `¿ F7ðÞîFò^[Oô¶zOð	0Fð÷çøHFð÷äø'HYF'KRFxD{Dó÷ý Øøoð@B‘B?ô(­4çFò?[Oôµz&¡FáçFò°AåFò1[@òi&ØçFò«A
åFò¤AåFòAåAF8ðæéšçFòW[ÄçFòY[Oô¶zOð	.FÀçFÓåFæ¿ãWüÿNúÿÅúÿˆ/ŠÍÊ.TÌ0Ëô,úúÿqúÿðµ¯-é›°ÛNFÛM"~D’}DÍé"ö„’õnr’2h›F»ñõHs“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$Ðø cUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðÃû(@ð‚€4¢EóÑ7ðÚîœH±Fò»Q½à,nÐ,ъh’jà½H&½I,xD¼KyDh{DŒF»IhyDºM¸¿&ºJ}D”zDÍée¨¿cF7ð|îFòãQ™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%Ðø„iTø%°Bð€5¨E÷Ñ%Tø%0F"ðhû(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%Ðø¸cTø%°B6Ð5©EøÑ%Tø%0F"ðû()Ñ5©EôÑ7ð.î(@ðº€gH&gI%xDfJgKyDhzD{DheL–|DÍéT7ðàíFòÅQgHOô·rgKxD{Dó÷¸û °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà7ðæí(uÑ­ž™1Í2h)TÚÐø¨@oð@C±F!h™B¿1!`7I7KyDÕø$³{DÕøcÑøàÙøOð	Óø€Õøü:
‘ñ˜Íéi&Íé¨Õø¼Àè@@FÍéc#F–ðG!hx±oð@B‘B™Ð9!`–ÑF F7ðøì(F°½èð½oð@@BÐH `¿ F7ðêìHFòaKOôÝrxD{DwçFHª«xDIFÍé@XFðù(Ô˜(FÝ额–çFòÑQZçFòÃQWçFòÌQT翊É©ZüÿÆ)XÇlõùÿ›úÿªÇbÞùÿå[üÿÂúÿ‰_þÿîÈ ßùÿ
úÿœßùÿÇ`þÿ]üÿzöùÿ©úÿðµ¯-é—°±M–F±L"}D’|Dö„’Õø›öH"h–”Íé’“±ë޾ñSоñFоñÑÑé’Óø€”Íé’Æà"h¾ñðŀ¾ñоñÑJh’ÑøÍøT·à›H"›M"êž|xDšK›I}Dh{DyD¾ñh˜N˜J~DÍøàzDÍéÆX¿+F7ð²ìFò”a“H@ò¿’KxD{Dó÷‰ú °½èð½šFÑøZø”•ÍøTCàšFZø¸ñ}Û)FñÑøHiOð‘Íé2ÍéNUø+±BÐñØE÷ÑFOðUø+0F"ðù(ÑñØEóÑàF˜Pø+P±F¨ñ FÝø<àÝé2
àðÕ7ð”ìÝø<à(Ýé2 F@𯀸ñ#ÛÚø ›FÍø<àºñ
%Û˜ñ&Ðø„IXFUø& BÐ6²EøÑ&Uø& F"ðMù(Ñ6²EôÑ
ààÔ˜Pø& ±¨ñ’à7ðXì(uјh
˜[FÝø<à¸ñTÚÐø¨@oð@COðOð
!h™B¿1!`5I5KyDÍé©{DÑøÀ)FÑøüjÓøàÑø3™ÕøLYÍé8	h
‘ñÍécpF#FÍéZÍé†àG!hˆ±oð@B‘B?ô9¯9!`ô5¯F F7ðhë(F°½èð½oð@@BÐH `¿ F7ðXëHFòËaK@ò	"xD{Dç.FFH¬™ªxDÍéàF#FðŠÿ(Ô(FÝé’5F–çFòƒaøæFò~aõæFòwaòæ>¾Å_büÿž&4ÄUåùÿyúÿZÅ
ÜùÿtÿùÿÜùÿ5]þÿ]düÿ'çùÿKúÿðµ¯-é•°‘FÇJÈM‚FzD }Dö8hÕø@»+òô`ÕøðjòÔ@
ö„
’ÍéK	–Íéd7йñNØë‰“ßè	𕀉sFQø¸ñÀò•€Õø„i(F”ñÍø Oð
•Tø*°Bð‰€
ñ
ÐEöÑ
FOð
Tø*0F"ðHø(@ðƒ€
ñ
ÐEòÑ~à¹ñØ
˜h”ßèðQ
Ìh”ˆh	Ñø°ÍøH°h>áH"L"êYvxDKI|Dh{DyD¹ñhMJ}DÍøzDÍéeX¿#F7ðòêFòaqˆH@ò"‡KxD{Dó÷Éø °½èð½ÑéÓø€Ñé+ÍéÍé Íé+áSøÑ镐ÍéoàˆhSøÑé+•Íé Íé+¡àSøh•¸ñڼà
˜h”äà
F˜Pø*(±¨ñàõÕ7ðÞê(@ðZƒ
˜hÝø +Fœ¸ñÀòž€Íø Óø ”ºñ“(Û˜$ÐøÔd˜ñUø$°BÐ4¢EøÑ$Uø$0F"ð“ÿ(Ñ4¢EôÑ
àÔ˜Pø$@±¨ñƒFÝø œ›à7ðœêÝø (œ›@ðƒ¸ñ_ÛÍø Óø ”ºñ“(Û˜$Ðøôf˜ñUø$°BÐ4¢EøÑ$Uø$0F"ðUÿ(Ñ4¢EôÑ
àÔ˜Pø$@±¨ñ	Ýø œ›à7ð^êÝø (œ›@ð΂¸ñ!ÛÍø Óø ºñ9Û˜$Ðø8h˜ñUø$°BÐ4¢EøÑ$Uø$0F"ðÿ(Ñ4¢EôÑà)àÔ˜Pø$@¼±¨ñ”à¶Â.ÚÁŠØùÿôûùÿŒØùÿµYþÿRlüÿåÜùÿË
úÿ7ðê(@ð{‚
˜hÝ饸ñ€ò½!¨j‘©"1ÈòÍø4°‘þ÷Äø(ð„Õø¼gF(h”òh1F7ð¼ê(ðFhoð@AˆB¿0 ``hÕøD‚l F*ퟀ�GƒF(ð hoð@AˆBÐ8 `¿ F7ð"éHFYF"7ðìé(ðsFÛøoð@AˆBÐ8Ëø¿XF7ðéÔHÔNxD~DÐø€DE¿0h„BѤë°ú€ð@		à
˜h„BõÐ F7ð”é(ñj!hoð@B‘BÐ9!`BÐ(KÐÕøð"	˜ðjþ(ñQÚø¨`oð@A0hЈB›š¿00`¹H
ñ¸LxD“|D3F…o h¨G(@ðπFòºx@ò9%±àˆB›š¿00`®H
ñ®LxD“|D3F…o h¨G(@ð¶€FòÕx@ò;%Áá³F.FF F7ð è(F5F^F(³ѳFÕø¼g(hòh1F7ð
ê(ðFhoð@AˆB¿0 ``h^FÕø@‚l F*ðGƒF(ð
 hoð@AˆBÐ8 `¿ F7ðnèHFYF"7ð:é(ðý€FÛøoð@AˆBÐ8Ëø¿XF7ðXèDE¿0h„BѤë°ú€ð@		à
˜h„BõÐ F7ðæè(ñ<!hoð@B‘B	Ð9!`Ñ.FF F7ð6è(F5F(ðۀÕøð"	˜ðµý(ñÚø¨`oð@A0hЈB›š¿00`²H
ñ²LxD“|D3Fh h¨GعFö@ò>%Oð4FáˆB›š¿00`§H
ñ§LxD“|D3Fh h¨G(ð
1hoð@B‘BÐ91`ÐÙøoð@B‘BÐ9ÉøÐ°½èð½FHF6ðÚï F°½èð½F0F6ðÒï FÙøoð@B‘BçÐâç‡HFòq†K@ò6"xD{DFå7ðfè(¹0Fú÷¨þ(@ð÷€Fò›x@ò7%$­à7ð˜èƒF(ô®Fòx@ò7%¢àFò x@ò7%$žàqHª«xDÍéÝéðÞû(ñ‰€˜Ýé°œ	.æFò­xOôu$‚àFò¢x@ò7%}à7ð(è(¹0Fú÷iþ(@ðº€FòíxOôu$nà7ðXèƒF(ôó®FòïxcàFòòxOôu$a࿾ľ’ ª¾` |¾
™Õøà	hˆB{ÐÙøOJzDh‘B¿Imð€QpÑIF7ðzê‚F$(pÐHH"™ÈòxDÍéJÀký÷§þ(hÐFÚøoð@E¨BÐ8Êø¿PF6ð$ï0F!"ðþ0h¨BÐ80`¿0F6ðïFöW@òB%àFòÿx@ò=%$àFòJq‡äFòôxOôuOð Fï÷ùXFï÷
ù(HAF(K*FxD{Dò÷Eý Ùøoð@B‘B?ô	¯çFòEqgäFö'Oôu$³FÞçFò>qÿ÷]¼Fò7qÿ÷Y¼Fò0qÿ÷U¼IF7ðê‚F$(ŽÑFöH@òC%ÄçFöR@òB%OðTF¾çF„åF4æ|füÿu×ùÿ[úÿ¤H½p½¢»jÝÕùÿÃúÿðµ¯-é™°˜FÕL ÕN‘FÕK|D~DÍé{D”õŸ`òÔ@%h4F6hö„ÓøD+¸ñõµ`ò¬`
“Íéf
’Íé%5йñPØë‰	”ßè	𤍗}Î@F•Pø¯–ºñÛ
˜ñ%Ðø¬fTø%°Bðʀ5ªE÷Ñ%Tø%0F"ð×û(@ð»€5ªEóÑ6ðîî³Fö½Aà©ñ(Øš#hh’Fßèð
	iÈh
‹h“Mh•Ñø°“ÍøP°ŒášH¹ñ™JOðxD˜MzD˜Lh}D˜K|D˜Ih¨¿F¹ñ¸¿&•JyD{DÍéezDÍø¨¿#F6ðrîFö÷H@òE"ŽKxD{Dò÷Iü$ F°½èð½CFÑé •ÑéµSø
F’’Íéµ
á•ÑéµAFQø–ÍéµràCF•Ñ鵉hSø/‘F‘Íéµ¢àÑø°AFQø–ÍøP°(•BÛ
hÍé-LÛ
˜ñ$Ðø¨¥Vø$PE8Ð4¥BøÑ$Vø$PF"ð0û(+Ñ4¥BôÑ2àÑé Ñéµ	iØø0‘
ÍéF’’Íéµõà?õF¯˜Pø%°ÍøP°»ñ?ô=¯ªñ	œ™(•¼Ú%h•(Fáà	Ô˜Pø$P-±˜•8	œ™à6ðî(Aðw	œÝé%h(ÀòˀÑø •ºñÍé&Û
˜ñ%Ðø„IVø% BÐ5ªEøÑ%Vø% F"ðÏú(Ñ5ªEôÑàÔ˜Pø%8±š:	œ›
à6ðØí(Að3	œÝé2 h*ÀòŽ€Óø •ºñÍé2?Û
˜ñ%ÐøÔDVø% BÐ5ªEøÑ%Vø% F"ð’ú(Ñ5ªEôÑ%à$Ô˜Pø%³™9
	œ›!à¿è¹ҹHæ¸ÕPþÿÞúÿŽÏùÿæòùÿ‚ÏùÿñhüÿÕÚùÿËúÿ6ð‚í(	œÝé1AðՀ):ÛÓø ‘ºñ•%Û
˜ñ%ÐøøDVø% BÐ5ªEøÑ%Vø% F"ð@ú(Ñ5ªEôÑà
Ô˜Pø%0±›;	œ
à6ðJí(Að€˜	œh›+€òȅÛøoð@@B¿1Ëø)h
žB¿H(` h
œ…B	ÐÙF*àÛøoð@B‘B¿1Ëø	˜h‘BÐ9`¿6ðnìÖø›oð@@ÙøB¿1ÉøÖø›ÛøBÐHËø¿XF6ðVì]F!°j‘©"1Èò”‘ý÷½ûÝø °(ð§„Öø¼G‚F0h•âh!F6ð´í(ð§„Fhoð@AˆB¿0(`hhÖøì‚l(F*𧄐GF(ð¨„(hoð@AˆBÐ8(`¿(F6ðìPF!F"6ðäì(ð›„F hoð@AˆBÐ8 `¿ F6ðìÓH	œxDÐø€EE¿˜h…Bѥë°ú€ð@	à¥B÷Ð(F6ðŽì(ñ…)hoð@B‘BÐ9)`JÐ(ÍéšPЙAE¿˜hB/ѡë°ú€ð@	›Óø¨Poð@B)h‘B¿1)`·IZFyDŽhñè#HF#™°G(ðτƒF(hÝø oð@AˆBÑ
žð½
ž8(`@ð|…ðw½¡BÍÐF6ðDì›AÍÑ6ðFì(@ð®‡Oðÿ0ÄçF(F6ð”ë F	œ(Íéš®ÑÖø¼G0hâh!F6ðí(ð̈́Fhoð@AˆB¿0(`hhÖøð‚l(F*ð΄GF(ðτ(hoð@AˆBÐ8(`¿(F6ðdëPF!F"6ð0ì(ðDF hoð@AˆBÐ8 `¿ F6ðPëEE	œ¿˜h…Bѥë°ú€ð@	à¥B÷Ð(F6ðÞë(ñ‡)hoð@B‘BÐ9)`>Ð(DЙAE¿˜hB%ѡë°ú€ð@	›Óø¨Poð@B)h‘B¿1)`aIZFyDÎhñè#HF#™°G(@ðτ@ò§"Fö©Oððؽ¡B×ÐF6ð ë›A×Ñ6ð¢ë(@ðG‡Oðÿ0ÎçF(F6ððê F	œ(ºÑÖø¼G0hâh!F6ð^ì(ðFhoð@AˆB¿0(`hhÖøè‚l(F*ðGF(ðF(hoð@AˆBÐ8(`¿(F6ðÂêPF!F"6ðŽë(ð³†F hoð@AˆBÐ8 `¿ F6ð®êEE	œ¿˜h…Bѥë°ú€ð@	à¥B÷Ð(F6ð<ë(ñ£†)hoð@B‘BÐ9)`ÑF(F6ðŽê F	œ¨³™AE¿˜hByѡë°ú€ð@	›Óø¨Poð@B)h‘B¿1)`IZFyDiñè#HF#™°G(@ð(„@ò©"FöÕOðð1½¿´´¦XÖø¼G0hâh!F6ðÆë(ðd†Fhoð@AˆB¿0(`hhÖøô‚l(F*ðu†GF(ðv†(hoð@AˆBÐ8(`¿(F6ð*êPF!F"6ðöê(ðh†F hoð@AˆBÐ8 `¿ F6ðêEE	œ¿˜h…Bѥë°ú€ð@	à¡B?ôƒ¯F6ð¤ê›Aô‚¯6ð¦ê(@ðm†Oðÿ0xç¥BåÐ(F6ð’ê(ñ:†)hoð@B‘BÐ9)`ÑF(F6ðäé F	œ`³™AE¿˜hBfѡë°ú€ð@	›Óø¨Poð@B)h‘B¿1)`éIZFyDNiñè#HF#™°G(@ð~ƒ@ò«"Fö!Oðð‡¼Öø¼ò÷£ÿ(ð†F@hÖøl‚l(F*ð†GF(ð†(hoð@AˆBÐ8(`¿(F6ð”éPF!F"6ð^ê(ðô…F hoð@AˆBÐ8 `¿ F6ð€éEE	œ¿˜h…Bѥë°ú€ð@	à¡B–ÐF6ðê›A–Ñ6ðê(@ðû…Oðÿ0ç¥BçÐ(F6ðþé(ñȅ)hoð@B‘BÐ9)`ÑF(F6ðNé F	œX³™AE¿˜hBeѡë°ú€ð@	›Óø¨Poð@B)h‘B¿1)` IZFyDŽiñè#HF#™°G(@ðé‚@ò­"Fö-!OðòãÖø¼ò÷ÿ(ð’…F@hÖøh‚l(F*𐅐GF(ð‘…(hoð@AˆBÐ8(`¿(F6ðéPF!F"6ðÊé(ðƒ…F hoð@AˆBÐ8 `¿ F6ðìèEE	œ¿˜h…Bѥë°ú€ð@	à¡B—ÐF6ðzé›A—Ñ6ð|é(@ðŠ…Oðÿ0Žç¥BçÐ(F6ðjé(ñW…)hoð@B‘BÐ9)`ÑF(F6ðºè F	œX³™AE¿˜hBeѡë°ú€ð@	›Óø¨Poð@B)h‘B¿1)`WIZFyDÎiñè#HF#™°G(@ðU‚@ò¯"FöY!Oð^ãÖø¼ò÷{þ(ð!…F@hÖød‚l(F*ð…GF(ð …(hoð@AˆBÐ8(`¿(F6ðlèPF!F"6ð6é(ð…F hoð@AˆBÐ8 `¿ F6ðXèEE	œ¿˜h…Bѥë°ú€ð@	à¡B—ÐF6ðæè›A—Ñ6ðèè(@ð…Oðÿ0Žç¥BçÐ(F6ðÖè(ñæ„)hoð@B‘BÐ9)`ÑF(F6ð&è F	œ ³™AE¿˜hBnѡë°ú€ð@	›Óø¨Poð@B)h‘B¿1)`IZFyDjñè#HF#™°G(@ðA@ò±"Fö…!OðÊâ¿Ú²ŠÖø¼ò÷Þý(ð§„F@hÖøp‚l(F*𥄐GF(ð¦„(hoð@AˆBÐ8(`¿(F5ðÎïPF!F"6ðšè(ð˜„F hoð@AˆBÐ8 `¿ F5ðºïEE	œ¿˜h…BCѥë°ú€ð@	Eà¡BŽÐF6ðHè›AŽÑ6ðLè(@ðà„Oðÿ0…ç–HFöS•K@ò"xD{Dñ÷åý$—â6ð8è(¹ Fù÷yþ(@ð…OðFöhOô)rØà6ðhèF(ôX«Oô)rFöjðœ¼Oô)rFömðh¼¥B¹Ð(F6ð
è(ñ>„)hoð@B‘BÐ9)`ÑF(F5ð\ï F	œX³™AE¿˜hBrѡë°ú€ð@	›Óø¨Poð@B)h‘B¿1)`jIZFyDNjñè#HF#™°G(@ðö€@ò³"Fö±!OðÿáÖø¼ò÷ý(ð„F@hÖøà‚l(F*ð„GF(ð„(hoð@AˆBÐ8(`¿(F5ðïPF!F"5ðØï(ðùƒF hoð@AˆBÐ8 `¿ F5ðøîEE	œ¿˜h…BZѥë°ú€ð@	\à@ò¥"Fö}Oð·áOô)rFöoð¼¡BŠÐF5ðzï›AŠÑ5ð|ï(@ðv„Oðÿ0ç1Hª™«xDÍé@Fðû(ñ›‚˜˜
˜Ý鵐ÿ÷!º5ð^ï(¹ Fù÷Ÿý(@ð¼„OðFö”@ò¦"Ñâ5ðŒïF(ô1«@ò¦"Fö–Áã@ò¦"Fö™Žã¥B¢Ð(F5ð2ï(ñ±ƒ)hoð@B‘BÐ9)`ÑF(F5ð‚î F	œ(ðƒ™AE¿˜hB
ѡë°ú€ð@	à
Îùÿõùÿô
uZüÿ¡BïÐF5ðïA
Ñ5ðï(@ð	„ÝøOðÿ0Ýé´›oð@BÓø¨P)h‘B¿1)`ìIZFyDŽjñè#HF#™°G(ðYƒƒF(hÝø oð@A
žˆBÐ8(`Ñ(F5ð.B@ðÜHÝIxD
šyDh	h°ú€ðQ±úñ@	I	Cðü€Öø¼G0hâh!F5ðŠï(ð[Fhoð@AˆB¿0(`hhÖø„Ýø‚l(F*ðZGF(ð[(hoð@AˆBÐ8(`¿(F5ðìí¿HahxDÐøIEðS& ™BÍék¡ë€ Fü÷Mý.F¿0hoð@AˆB@ð”€-𚀠hoð@AÝø ˆBÐ8 `¿ F5ðÀíhh
ž‚l(FÖøh*ðMGF(ðN(hoð@AˆBÐ8(`¿(F5ð¨íñh F"5ðrî(ð@F hoð@AˆBÐ8 `¿ F5ð”íEE¿˜h…Bѥë°ú€ð@	à	˜…BöÐ(F5ð"î(ñF)hoð@B‘BÐ9)`RÐ(WÐ
oð@A(hˆB¿0(`hhHEð& Ýø™BÍék¡ë€(Fü÷Ïü.F¿0hoð@AˆB@ð‹€,ð‘€(hoð@AˆBÐ8(`Ñ(F5ðDíÚøoð@AˆB3Ñ9à80`¿0F5ð6í-ôf¯FöZ1Oô0r%FÝøÝø (hoð@C˜B@ðR‚ZâF(F5ð í F(§ÑÛøoð@A\FˆB¿0ËøÝøÚøoð@AˆBÐ8Êø¿PF5ðí»ñ¿Ûøoð@AˆB)ѹñ¿Ùøoð@AˆB	Ñ(hoð@AˆBÑ F°½èð½8Éø¿HF5ðàì(hoð@AˆBîÐ8(`¿(F5ðÔì F°½èð½8Ëø¿XF5ðÈìÍç80`¿0F5ðÂì,ôo¯Fö‚1@òÁ"(hoð@C˜B@ðâêá5ðZí(¹ Fù÷›û(@ðµ‚FöC1Oô0rÝøÍà5ðˆíF(ô¥®Oô0rFöE1(hoð@C˜B@ðÈáæh.?ô©®1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ F5ðvì ,Fæt©,©Ȩ5ðPíF(ô²®Oô0rFö^1*àFöa1Oô0r%F$àîh.?ôí®1hoð@@­hB¿11`)hB¿H(`
šoð@AhˆBÐ8`¿
˜5ð<ìÝéš ÓæOô0rFöc1Ýø(hoð@C˜B@ðZbá@ò¦"Fö›LáFöÞþ÷#¾5ðÈì(¹ Fù÷
û(@ð/‚OðFöÀOô*r:à5ðøìF(ô?©Oô*rFöÂ-áOô*rFöÅúàFöÙþ÷ÿ½FöÒþ÷û½FöËþ÷÷½Oô*rFöÇáFöÄþ÷î½OðFöz@ò¥"=å5ðŒì(¹ Fù÷Îú(@ðûOðFöì@òª"ÝéšâHãKxD{Dñ÷ ú$Úøoð@AˆBô½®Âæ5ð¬ìF(ôŠ©@òª"Föîàà@òª"Föñ­à@òª"FöóÖàOðFö¦@ò§"åOðFö!Oô+rùä5ðˆìF(ôþ©Oô+rFö!½àOô+rFö!ŠàOô+rFö!³àOðFöÒ@ò©"ÝäOðFöD!@ò®"Öä5ðfìF(ôoª@ò®"FöF!šà@ò®"FöI!gà@ò®"FöK!àOðFöþ@ò«"ºäOðFöp!Oô,r³ä5ðBìF(ôàªOô,rFör!wàOô,rFöu!DàOô,rFöw!màOðFö*!@ò­"—äOðFöœ!@ò²"ä5ð ìF(ôZ«@ò²"Föž!Tà@ò²"Fö¡!!à@ò²"Fö£!JàOðFöV!@ò¯"täOðFöÈ!Oô-rmä5ðüëF(ôù«Oô-rFöÊ!1àOô-rFöÍ!Oð%F(hoð@C˜B6Ð+àÚøÖø$‚l*𷀘GF(ð¸€EE¿˜h…B1ѥë°ú€ðD	5à@òµ"FöÝ!Oð°åOô-rFöÏ!Oð(hoð@C˜B	Ð8(`Ñ(FF
F5ðÊê)F"FyHzKxD{Dñ÷ù${åOðFö‚!@ò±"ÿ÷¼	˜…BÊÐ(F5ðRëF(ñ¯€(hoð@AˆBÐ8(`¿(F5ð¤ê,oÐ
˜	™ÐøØˆBNЙIh`JzDh‘B¿Imð€QCÑ™5ðÆíFOð(CÐXH"™ÈòxDÍéµÀkü÷ñù(vÐF(hoð@F°BÐ8(`¿(F5ðpê F!"ðXù h°BÐ8Fö 5Oô/v `UÐFö 1Oô/rƒæOðFö®!@ò³"ÿ÷«»OðFöÚ!@òµ"tæ™5ðŠíFOð(»ÑFö1Oô/rgæ˜5ð$ëF(ôH¯OðFöô!@ò¶"Yæ+H"
™OðxDÑøh@kñ÷:ø¨³!"Fðù hoð@AˆBÐ8Fö5@ò·& `	ÐFö1@ò·"7濃Æùÿyíùÿ F5ðê)F2F,æOô/rFö1Ðä@ò¶"Föö!OðÉäFþ÷ŽFÿ÷ì»Fþ÷s¾Fö1@ò·"æ
ñ
žF›èþ÷¿
ñ
žF›èþ÷˜¿P8¢þkÄùÿaëùÿðµ¯-鉰ÜLƒF |DõÎ`k±ë‚
*ðµ*@ðځh™h)ÛÓâ*@ðсhðù€F0ðÛøÔøø‚lXF*ðςG‚F(ðЂ5ð¢êF(ðς¨ñÁë‘p!ë 5ðÜì(ðłÔø„FHF*F5ðZê(ñº(hoð@AˆBÐ8(`¿(F5ðtéÔø¼g h”òh1F5ðäê(ð®‚Fhoð@AˆB¿0(`žhhÖøh‚l(F*𫂐GƒF(ð¬‚(hoð@AˆBÐ8(`¿(F5ðHéÖøÔHFZF5ðê(ñ²Ûøoð@AˆBÐ8Ëø¿XF5ð2éÚøÖøl[l,ퟠ�HxD5ð~ê(@ð ‚PF)FJF GƒF5ð|ê»ñð’‚Úøoð@D BÐ8Êø¿PF5ð
éÙø BÐ8Éø¿HF5ðéÛøÖø”‚lXF*ð_‚GF(ð`‚Ûøoð@AˆBÐ8Ëø¿XF5ðäèjHÙøxDh¡B@ð‚ÙøP-ð‚)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HF5ð¼è±Fž Öø`B‘©ñ
•ªë€HFü÷ ø-ƒF¿(hoð@AˆB@ퟸ�ñð”Ùøoð@AˆBÐ8Éø¿HF5ð’èÛøÖøD‚lXF*ð
‚GFÛøoð@A¹ñð‚ˆBÐ8Ëø¿XF5ðvèÙø& B@ð³ÙøP-ð®)hoð@@Ùø@B¿1)`!hB¿H `Ùøoð@AˆBÐ8Éø¿HF5ðPè"¡Fªë‚HFÍéVû÷»ÿ-ƒF¿(hoð@AˆB@ð6»ñð<Ùøoð@AˆBÐ8Éø¿HF5ð.èÛø†k.¿qh)@ð¤€IyDhIÂhhyD5ðŒè×à5ðÀè(?ôl®FöAFà¬ô0áùÿ¶žòœ·ÛùÿhÍé$-Û˜™F	ñ$ÐøpfFXø$°Bð	4¥B÷Ñ$Xø$0F"ðvý(@ðú€4¥BóÑ5ðŒèš(@ðnÅH&ÅIxDÅLÆKyDh|D{DhÄM’"F}DÍée5ð>èFöAÀHOô1r¿KxD{D§àFöaHOô9tOðÚøoð@AˆBÐ8Êø¿PF4ð²ï¹ñÐÙøoð@AˆBÐ8Éø¿HF4ð¢ï-¿(hoð@AˆBbѻñtÐÛøoð@AˆBnÐ8ËøjÑfàFöpHOô9t%Úøoð@AˆBÈÑÎç@F5ðÎêȳFžH)FxDhF5ðœèF(hoð@AˆBÐ8(`¿(F4ðhï$³rhXF!FG!hoð@B‘BÐ9!`ÑF F4ðXï(F±Ûøoð@B‘B5Ð9Ëø1ÑFXF4ðHï F	°½èð½Ûøoð@AˆBÑFö¸H@òå$à8(`¿(F4ð2ï»ñ–Ñ
à8Fö¸HËø@òå$ÑXF4ð"ïmHAFmK"FxD{Dð÷lý 	°½èð½8(`¿(F4ðï»ñôl®Fö›Hà8(`¿(F4ðï»ñôĮFö´H@òå$%OðÙøoð@AˆBôH¯Mç?õ¯Zø$(?ô¯šiœKF)ÿö1­DH®QFxDÍé ªF3Fðû(cÔ˜!å4ð¸ï‚F(ô0­FöSHOô9t£çFö]HBàFö_H?à% æ"%kæ4ð`ï ¹0Fø÷¢ý(XÑFökH@òå$%ëæ4ð’ïƒF(ôT­FömH@òå$àæPF)FJF5ðèƒF(ô­à4ð~ïF(ô ­Fö†H@òå$Ûøoð@AˆBôõ®bç4ð,ïø±FözHOô9t%»æ4ðbïðåˆB
ÑFöŸH@òå$OçFöÿ1£æFöA æ8ËøFöŸH@òå$ôA¯<çHIxDyDhh4ðBîÖçFöä¿yWüÿfœ³ùÿoYüÿާùÿRåùÿgÖùÿcåùÿÕùÿäùÿ„™D»ùÿ’›ðµ¯-靰ÇNFÇKFÇJƒF ~DzD{D-ÍéÍéÍéõ`õkpöDÒøKÓø Öøõ`ö„õHpÍé©Íé¤>иñ_Øëˆ	’Íé
S–ßè𨖝ˆÓâ(F”Pø_Íø°-Û	˜OðÐø c
˜ñTø+°Bð؀ñ]EöÑOðTø+0F"ð`û(@ðǀñ]EòÑ4ðvî0³Fö0QGà¨ñ-ØÓø  “ÖøRFßèðHii”Ñø Íød ÑøÍø`Jh’h“(@ðëâH¸ñ€JOðxDMzDLh}DK|DIh¨¿F¸ñ¸¿&|JyD{DÍéezDÍø€¨¿#F4ðôíFöxQ@òç"uHuKxD{Dð÷Ëû °½èð½Ñé2ÑéšUø”Íø°ÍéšÍé2%áÑé2UøÍé2~àÑé2ÑøUøÍø`Íé2ÏàFhUø“(PÛÍéµ
©Õø°{ñXÛ	˜%Ðø„i
˜ñTø%°BAÐ5«EøÑ%Tø%0F"ð¹ú(4Ñ5«EôÑ=àÑé2ÑéšiUøÍø°”ÍéšÍé2áÑé2ÑéšÑé@©hÍé@ÍéšÍé2Má?õ;¯˜Pø+0“+?ô4¯hœšÝéµ(®Úh ’FpáÔ˜Pø% :±
˜’8Ýé4Ýéµ
à4ð’í(@ð˜
¬ÝéµhÌ(ÀòUÕø
©yñÍéRCÛ	˜&ÐøY
˜ñTø&¨BÐ6±EøÑ&Tø&(F"ðIú(Ñ6±EôÑ(à'Ô˜Pø&¹ñ!Ð
˜Íø`8Ýé4ÝéR$à¿™ü˜zíê—Ù/þÿâàùÿ’®ùÿêÑùÿ†®ùÿ@Wüÿî¨ùÿÏàùÿ4ð6í(@ð
¬žÝéRÌÖø(Àòù€Õø 
©zñÍéRÍø°)Û	˜%ÐøDh
˜ñTø%°BÐ5ªEøÑ%Tø%0F"ðëù(Ñ5ªEôÑà
Ô˜Pø% ºñÐ
˜Íød 8›ÝéRà4ðòì(@ðՀ˜ÝéRÐø Ýé
(#ÛÕø°Íé
»ñÍéR,Û	˜%Ðø¬c
˜ñTø%°BÐ5«EøÑ%Tø%0F"ðªù(Ñ5«EôÑà Ýø°œàÔ˜Pø%8±
™F9›ÝéRà4ð®ì
¬ÝéR(Ì@ðŠ€)"ÛÕø°
¨’»ñÀ,Û	˜$Ðøpi
˜ñUø$°BÐ4£EøÑ$Uø$0F"ðjù(Ñ4£EôÑà Ýø°NàÔ˜Pø$@±­
™8Í9Ýékš	à4ðnì(KÑ
­Ýékš :Í)ڐ³1hˆBÐ*M}D.h°B¿ž6h°B
ÐFF4ðLìAÑ4ðPìȻOðÿ0+F2Fà@°ú€ð@	àHª™«xDÍé€(FðÚÿ(ÔÝé2ÝéšÝé@(ÌÑ FXFKFÍé¤ðü°½èð½FöXQöåFöSQóåFöLQðåFöEQíåFö>QêåFöqQOô:rçåFö7Qâå\Süÿ"”ðµ¯-遰-틞°›FœKœMF{D }DÓø€ö„Õøüš»ñÕøkõµ`ò¬`“Íøt€Íé–•3Ð*HØë‚”ßèð€muYFQø¯ºñÀò+XFÍ醘ñOð’‘Ðø¬fUø(°BoÐñÂE÷ÑOðUø(0F"ð•ø(`ÑñÂEóÑià*ؘ”Ðø€ßèð
Ñø€Íøt€Nh–ÑøÍølðàiHOðhM*xDhKhI}Dh{DyDhfNH¿OðeL~D’|DÍéÆX¿+F"F4ðBëGö‘`H@òö2_KxD{Dð÷ùOððE¼XFÑé–Pø¯Íé–kàÑé–Ñø€Ûø Íøt€Íé–¯àXFÑøPø¯ÍølàÔ˜Pø(@±Fªñ
šÝ醘à4ð@ë(šÝ醘@ð‡ºñÀò‘€hÍé†-’Íé+Û˜ñ	OðÐø¨eYø(°BÐñEE÷ÑOðYø(0F"ðøÿ(ÑñEEóÑ
àÔ˜Pø(`F±–ªñ
šÝøH€Ýé	à4ðë(šÝé†Ýé@ðņºñOÛÐø€Íéb¸ñ:Û˜ñ%Ðø„iTø%°BÐ5¨EøÑ%Tø%0F"ð»ÿ(Ñ5¨EôÑ àÔ˜Pø%€¸ñЪñ
Íøt€à¿H“Àç|’,©ùÿ–Ìùÿ.©ùÿU*þÿðaüÿ£ÁùÿkÛùÿ4ð°ê(@ðw†˜Ðø€Ýébºñ€ò!„ÝM}DèjÐø´ÐøA ˆGF Oô€r#Íé HF" G(ðøƒ‚Fhoð@AËFˆBÍøH€ÐBÊø ŠBÐ(Êø¿PF4ðÒéèjÐø´ÐøA ˆGF"Oô€p#Íé0F±F G€F(ð؃Øøoð@AˆBÐBÈø ŠBÐ(Èø¿@F4ðªéØøÚøžC•Íø@ ÍøL€ðeÖø¼G0hâh!F4ðë(ð˃€Fhoð@AˆB¿0ÈøØøÖø‚l@F*ðɃGF(ðʃØøoð@AˆBÐ8Èø¿@F4ðpé˜HÙøxDhB𹃠%ÝøL€©‚è ©1
‘¡ë€HFû÷Êø-F¿(hoð@AˆB@ðî‚,ðô‚Ùøoð@E¨BÐ8Éø¿HF4ð>é h¨B¿0 `˜ÀjÐø FˆG(”𨃁Fhoð@AˆBÐBÉø ŠBÐ(Éø¿HF4ðéÖø¼W0hêh)F4ðŽê(ð“ƒFhoð@AˆB¿0 ``hÖøL‚l F*𐃐G€F hoð@A¸ñퟨ�BÐ8 `¿ F4ððèÖø¼G0hâh!F4ðbê(Íø8ퟬ�Fhoð@AˆB¿0ÊøœÚøÖø‚lPF*ퟰ�GF(ðƒÚøoð@AˆBÐ8ÊøÑPFF4ð¾è#FXh¨Bðƒ $Ýø@°
™BÍéIšF¡ë€Fû÷ø,F¿ hoð@AˆB@ðT‚.ðZ‚Úø oð@AŠBÐQÊø¿PF4ð’èØøÚFœ¨Bðuƒ %
™BÍéV¡ë€@Fú÷ôÿ-F¿(hoð@AˆB@ð<‚0hoð@AˆB@ðB‚¹ñðH‚Øøoð@AˆBÐ8Èø¿@F4ð`èHžxDhEðЀIyD	h‰E¿™	h‰EðƀHF4ðìè(ñWƒÙøoð@B‘B@ðĀÌàjó̏jbXF4ðŽë¿î«ƒF
FAì´îJ‹ñîúÑ4ðÐè(@ðm„HF4ðzëAì´îJ›ñîúÑ4ðÂè(@ðg„Öø¼G0hâh!F4ðˆé(ðFƒ€Fhoð@AˆB¿0ÈøØøœÖø‚l@F*ðPƒGF(ðQƒ9îH‹Øøoð@AÍé[ˆBÐ8Èø¿@F3ðäïXì»XFAF4ðVè(ðBƒFðHÙøxDhBðDƒ& ©B1Íée¡ë€HFú÷9ÿ.‚F¿0hoð@AˆB@ð (hoð@AˆB@𦁞ºñð¬Ùøoð@AˆBÐ8Éø¿HF3ð¤ïÖHxDh‚ErÐÔIyD	hŠE¿™	hŠEiÐPF4ð2è(ñ'ƒÚøoð@B‘BhÑsà©ë°ú€ð@	Ùøoð@B‘B	Ð9ÉøÑFHF3ðvï(FÝøL€(ð„‚Ôø¨oð@A&OðÙøˆB¿0Éø¶H™ÕøàxDÑøSÑøü:Ñø°%™ÍéVÍéV	hÍéRhš
‘ñ$ÍéÃKFÍéJðG(ðp‚ƒFÙøœoð@AˆBÐ8Éø¿HF3ð.ïÝø8†àªë°ú€ð@	Úøoð@B‘BÐ9ÊøÑ%FFPF3ðï F,F(ð®‚Ôø¨ oð@AÚøˆB¿0ÊøÝé3ðzï(ðFXFAF3ðrïOð(ð‚€FH™OðÖø°%xDÖøü:Õøà	hÍé‚hš
‘ñÖøS&ÍéÃSFÍé[ÍéiÍé[ðG(𳂃FÚøoð@E¨BÐ8Êø¿PF3ðÄîÙø¨BÐ8Éø¿HF3ð¸îØøoð@AÝø@ ˆBÐ8ÈøÑ@F3ðªîOð	$ÝøL€Úøoð@AˆBÐ8Êø¿PF3ð˜î¸ñ¿Øøoð@AˆBѹñ¿Ùøoð@AˆBÑ,¿ hoð@AˆBÑXF°½ì‹°½èð½8Èø¿@F3ðpîßç8Éø¿HF3ðhîàç8 `¿ F3ð`îàç8(`¿(F3ðZî,ô­ @òRKGö®&$…á8 `¿ F3ðHî.ô¦­RFÚFOð	œOô‹kGöð&6â8(`¿(F3ð6î0hoð@AˆB?ô¾­80`¿0F3ð*ñô¸­Gö6Oô‹kOð	"Ôà80`¿0F3ðî(hoð@AˆB?ôZ®8(`¿(F3ð
ñôT® @òIKGö9&$"Ýø@ ÝøL€⠌ô‹î‹à‹‹âHGöÖâK@òBBxD{Dÿ÷» Göå@òCBOð	'áÛH«™xDÍé ªXFðú(ñ‚Ýé–Ýøt€ÿ÷̻3ðnî(¹ F÷÷°ü(@ðX‚ Gö—!@òRBá3ðžîF(ô6¬Gö™&@òRK
áÙøPÝøL€-ð$‚)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HF3ðŒí ±Fžÿ÷$¼Oð	GöÅ!@òWBËà3ð&î(¹(F÷÷gü(@ð‚GöÔ!Oô‹b½à3ðXîmäˆBÐ8 `¿ F3ðfí¡HGöÖ!¡KOô‹bxD{Dï÷®ûÝøL€«à3ðî(¹ F÷÷Aü(@ðïGöÙ&Oô‹kOð	"Ýø@ œ@á3ð,îF(ôs¬Oð	Oô‹kGöÛ& áÜhÝø@°,ð³!hoð@@hB¿1!`)hB¿H(`hoð@AˆBÐ8`¿F3ðí +F`䨸P¡F-ð”)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@F3ðöì  FLFgäGö6Oô‹k"œôàËH"Öø¤xDlï÷öú(ðf!"FðÈû hoð@AÝø8ˆB@ðGö1@òYBà@òZKGö86œ"Õà3ðlí(¹ F÷÷®û(@ða Gö!@òIBOð	ÝøL€±H±KxD{Dï÷ÿúOðœæ3ðíF(ô¯¬Gö!&@òIK Oð	"$“à @òIKGö$&$"ÝøL€œàÙø`.?ô·¬1hoð@@Ùø B¿11`ÚøB¿HÊøÙøoð@AˆBÐ8Éø¿HF3ðlì ÑF˜ä@òIKGö=&'à…H"Öø xDlï÷oú(ðæ€F  F!"ð>û hoð@AÝø@ ÝøL€ˆB@ð €GöM!@òJBOð	‹ç@òMKGöj& $OðOð	à @òNKGöt&$Oðà¿ݷùÿ¥ÑùÿîWüÿͶùÿ•Ðùÿ @òLKGö~&$Úøoð@AˆBÐ8Êø¿PF3ð
ìÝø@ "¸ñÐØøoð@AˆBÐ8ÈøÑ@FF3ðöë*FÝøL€¹ñÐÙøoð@AˆBÐ8ÉøÑHFF3ðâë*F*¿hoð@AˆBÑAH1FAKZFxD{Dï÷$úOðÝø8(å8`¿F3ðÈëëç8Gö1@òYBMF `ô
¯$àGö}ÿ÷é¸ Gö!@òFBOð	ûæ Gö!@òGBOð	òæ8 `OðGöM!@òJBOðOð	ôä® FFF3ð’ë2F!F©FÚæGöxÿ÷»¸Göqÿ÷·¸Göjÿ÷³¸ %õå $cæ %…æGö1@òYBÝø8¾æ GöI!@òJBOð	Ýø@ ±æ€Fÿ÷ڹFÿ÷WºÝ锂Fÿ��Fÿ÷V»¿¶ç¹³ùÿÍùÿÄèoµùÿ7Ïùÿðµ¯-é“°™FÑKÒNF{D ~D
“h¹ñÖøH»ö8òÔ@
ö„“Íé;–1Ð*GØë‚•ßèð‚mwIF“Qø¯ºñÀòƒ€Öø„i	ñOð’‘Tø(°Bð}€ñÂEöÑOðTø(0F"ðŠø(mÑñÂEóÑrà*Ø
˜•Ðø Íø$ ßèðé
Ñø ÍøH Ñø°ÍøD°h	Úà¡HOð M*xD K I}Dh{DyDhžNH¿OðL~D’|DÍéÆX¿+F"F3ð6ëGöÇ1˜H@òaB—KxD{Dï÷
ù °½èð½ÑéIFQø¯“	ÍéfàÑé;‰hÙø ‘F	“Íé;•àhIFQø¯“	ºñÚsà
˜Ðø Íø$ ‰àÔ˜Pø( ±ªñ
	à3ð,ë(@ð¶‚
˜h	š™ºñVÛÑø€’¸ñ‘%Û˜	ñ%ÐøÔdTø%°BÐ5¨EøÑ%Tø%0F"ðèÿ(Ñ5¨EôÑà
Ô˜Pø%0±ªñ
ƒFš™à3ðòêš(™@ðw‚ºñÛÑø€’¸ñ'Û˜	ñ%Ðø8hTø%°BÐ5¨EøÑ%Tø%0F"ð²ÿ(Ñ5¨EôÑ
àžÝø àÔ˜Pø%!±ªñ
F‘à3ðºê(@ð>‚
˜hšžºñ‚F€ò‘!°j‘©
"ÈòÍø4°)Fú÷mù(ðXÖø¼G€F0hâh!F3ðfë(ðVFhoð@AˆB¿00`ph•‚l˜*ÐøD0FðSGF(ðT0hoð@AˆBÐ80`¿0F3ðÊé@FIF"3ð”ê(ðFFÙøoð@AˆBÐ8Éø¿HF3ð´éHLxD|DÐø°^E¿ h†BѦë°ú€ð@	!à&ƒž×d‚™ùÿ~¼ùÿ™ùÿ=þÿÂ[üÿ—ùÿSËùÿ€€
˜h†BÝÐ0F3ð$ê(ñ1hoð@B‘BÐ91`"ÐP³›oð@AÓø¨@ hˆB¿0 `ßHñÞJ#FxDÍø zD†oh	š°G(@ð€GöK@ò£JOð	&F\á¡FF0F3ðPé FLF(ÔÑžEFÐF¢FÖø¼G0hâh!F3ðºê(ðFhoð@AˆB¿0ÉøÙøTFÖø@ÂF‚lHF*ðހGF¨F(ð߀Ùøoð@AˆBÐ8Éø¿HF3ðé@F1F"3ðâé(ð̀F0hoð@AˆBÐ80`¿0F3ðéÙE¿ hEѩëž°ú€ð@	
à
˜hEôÐHF3ðéž(ñÙøoð@B‘BÐ9ÉøÑFHF3ðÞè F(𝀛oð@AÓø¨@ hˆB¿0 `’Hñ’J#FxDÍø zDhh	š°G(ð߀!hoð@B‘BÐ9!`ÑF F3ð´è(FØøoð@B‘B?ôò­9Èøôí­F@F3ð¤è F°½èð½uHGöõ1uK@ò¡BxD{D×å3ð<é(¹ Fö÷}ÿ(@ðӀGöK@ò¢J&‹à3ðléF(ô¬®GöK@ò¢J€àGöK@ò¢J&|à`H«™xDÍé ªHFð³ü(ñŽ€˜	Ýéº\æGöK@ò¢Jcà3ðé(¹ Fö÷Fÿ(@ðž€Gö-K@ò¤J&Oð	¨FSà3ð2éF¨F(ô!¯Gö/KlàGö2K@ò¤JBà
™Öøä	hˆBnÐØøGJzDh‘B¿Imð€QcÑAF3ðbë™"FÈò&(\Ð>HÍéexDÀkù÷Žÿ(VÐF(hoð@IHEÐ8(`¿(F3ðè F!"ðõþ hHEÐ8 `¿ F2ðþïGöaK@ò§JOð	0Fë÷úHFë÷ú'HYF'KRFxD{Dî÷<þ Øøoð@B‘B?ô(­4çGöBK@ò¥J&¡FáçGö³1åGö4K@ò¤J&ØçGö®1
åGö§1åGö 1åAF3ðëšçGöZKÄçGö\K@ò§JOð	.FÀçFÓåFæ¿Wüÿ¾’ùÿÇùÿÈáö
áÀ~p}4ßj‘ùÿ±Åùÿðµ¯-é›°ÛL–FÛN"|D’~D+ö„’öH’"hò„eÖøüªÖø»•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖø„fÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"ðÙü(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà°HOð°L¾ñxD¯K¯I|Dh{DyDh­NH¿Oð¬J~DÍøàzDÍéÆX¿#F2ð†ïGöæA§H@ò©B¦KxD{Dî÷]ý °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ2ð‚ïÝøDà(Ýé
+(F#F@ðó€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%ÐøHi˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð9ü(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à2ð@ï(˜ÝøDàÝé2@𫀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðø„i˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðúû(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à2ðï(rјh˜Ýéæ¹ñUÚÐø¨@oð@COðOð	!h™B¿1!`6I7KyDÖøLY{DÖøüêÑøÀ™Öøch	h
‘ñ ÍéhÍé
¨€è@	¨€è BF#FàG!h˜±oð@B‘BÐ9!`а½èð½F F2ðî(F°½èð½oð@@BÐH `¿ F2ðîHGöQK@òRxD{DïæFHª«xDÍéàÝéð:ú(ÔÝé« Fš—çGöÒAÔæGöÍAÑæGöÆAÎæÊ{BÐGö¿AÇæ¿>[üÿüÛ¶yu»ùÿÕÁùÿ{´‘ùÿµùÿ¶‘ùÿÝþÿ„]üÿ“½ùÿóÃùÿðµ¯-靰FÀJ ÀN+zD’~DÍéö8hÖøL»òÔ@ö„öh’Íé+9иñOØëˆÍé
6ßè𡌖zF’UøŸ¹ñÛ˜Oð
Ðøhi
˜ñTø*°Bð·€
ñ
ÑEöÑOð
Tø*0F"ðúú(@ð¦€
ñ
ÑEòÑ2ðîرGö‚Q<à¨ñ(Øšh“ßèð	ÈhÑø°Íøl°Kh“h“5áŠH¸ñŠJOðxD‰MzD‰Lh}DˆK|DˆIh¨¿F¸ñ¸¿&…JyD{DÍéezDÍø€¨¿#F2ð˜íGö²QH@òRKxD{Dî÷pû °½èð½5FFÖø Ñé;
hÈh1F.F“Íé;’’îàÑéSø¯’ÍéÍé_à’‘è©Sø¯Íé è‰àFhUø¯ºñ1ÛÕø’¹ñ•;Û˜$Ðø„i
˜ñUø$°B&Ð4¡EøÑ$Uø$0F"ðWú(Ñ4¡EôÑ à?õ\¯˜Pø*(?ôT¯©ñ
šºñÍÚ˜žhœà	Ô˜Pø$(±ªñ
›à2ðLí(@ð傘›hºñTÛÓø“¹ñ%Û˜$ÐøÔd
˜ñUø$°BÐ4¡EøÑ$Uø$0F"ð	ú(Ñ4¡EôÑ
à	Ô˜Pø$(±ªñ
ƒF›à2ðí›(@𩂺ñÛÓø¹ñ=Û˜$Ðø8h
˜ñUø$°BÐ4¡EøÑ$Uø$0F"ðÕù(Ñ4¡EôÑ"àž.àÔ˜Pø$رªñ
à¿
x‚Ì4w#þÿ,Àùÿ܍ùÿ4±ùÿЍùÿÁhüÿz±ùÿÀùÿ2ðÈì(@ð[‚˜hÝé
ºñ€ò©!°j‘©
"ÈòÍøT°)Fù÷{û(ðkÖø¼G€F0h²Fâh!F2ðtí(ðhFhoð@AˆB¿00`phÚøD•‚lPF0F*ðeGF(ðf0hoð@AˆBÐ80`¿0F2ðÖë@FIF"2ð¢ì(ðXFÙøoð@AˆBÐ8Éø¿HF2ðÀëÄHÅLxD|DÐø°^E¿ h†BѦë°ú€ð@		à˜h†BõÐ0F2ðHì(ñ51hoð@B‘BÐ91`8Ð(AОoð@AOðOð	Öø¨@ hˆB¿0 `­H­IxDÚøl)yDÚøü:ÐøÀh™
‘ñžÍébšÚøSÍéã“#FÍéYÍøàÍéYàG(@ð¦€Gö	k@òbZ&FzáEF FF0F2ð^ë FDF¨F(½ÑEF FÚø¼GVFÚøâh!F2ðÆì(ðõ€Fhoð@AˆB¿0ÉøÙøDFÖø@¨F‚lHF*ðó€GF(ðô€Ùøoð@AˆBÐ8Éø¿HF2ð&ë@F1F"2ððë(ð F0hoð@AˆBÐ80`¿0F2ðëÙE¿ hEѩëÝøD°°ú€ðVF@	à˜hEòÐHF2ðœëÝøD°(VFñ+Ùøoð@B‘BÐ9ÉøÑFHF2ðèê F(ð¶€Ûø¨@oð@A# hˆB¿0 `œHIÚøl)xDyDFkÍéRšhñ’š“#F°G(ðò€!hoð@B‘BÐ9!`ÐØøoð@B‘BÐ9ÈøÐ°½èð½F@F2ðªê F°½èð½F F2ð¢ê(FØøoð@B‘BçÐâçzHGöàQyKOô¬bxD{Doå2ð6ë(¹ Fö÷xù(@ð݀Göì[@òaZ&•à2ðhëF(ôš®Göî[@òaZŠàGöñ[@òaZ&†àGöó[@òaZàbHª«xDÍé€F™ð©þ(ñ™€˜˜Ý鰐Aæ2ðüê(¹ Fö÷>ù(@ð¥€Gö k@ògZ&Oð	¨FZà2ð*ëF(ô¯Gö"kqàGö%k@ògZJà,t.tŠÖHt™Öøè	hˆBnÐØøDJzDh‘B¿Imð€QcÑAF2ðRí™"FÈò&(\Ð;HÍéexDÀkù÷ù(VÐF(hoð@IHEÐ8(`¿(F2ðþé F!"ðæø hHEÐ8 `¿ F2ððéGö\k@òlZOð	0Fê÷øûHFê÷õû%HYF%KRFxD{Dî÷-ø Øøoð@B‘B?ô!¯çGö=kOô­j&¡FáçGö'k@ògZ&ÛçGöœQ›äGö—Q˜äGöQ•äGö‰Q’äAF2ðöìšçGöUkÄçGöWk@òlZOð	.FÀçF·åFcæ3cüÿ\¬ùÿûºùÿ ÕärRqÓôªùÿ“¹ùÿðµ¯-é›°ØNFØM"~DÍé"}D˜Fö„’öH’Õø›¸ñ2höh“Íé’4Ð,DØë„“•ßèðnvÍé`@FPø¿
’»ñ”Û˜ñ%ÐøhiTø%°BrÐ5«EøÑ%Tø%0F"ðÖþ(eÑ5«EôÑ2ðî霠±Göºa3à2h,	Ð,Ð,
ъh’ÑøÍødÑø Íø` Ùà®H,®JOðxD­M®IzDh}DyD¬KŒF¬Ih¨¿F,¸¿&ªJyD{DÍéezD”¨¿cF2ð~éGöàa¤H@ònR¤KxD{Dí÷Vÿ °½èð½CFÑé©SøÍé©càÑ驊hØø’Íé©—àCFÑø SøÍø` )Úuà›Ô˜Pø% Íø` ºñ“ЫñœÝé`Ýé2)cÛÓø°‘»ñ”Íé`Íé2(Û˜ñ%ÐøHiTø%°BÐ5«EøÑ%Tø%0F"ð=þ(Ñ5«EôÑà
Ô˜Pø%H±™F9œÝé`Ýé2
à2ðDé(œÝé`™Ýé2@ð²€)"ÛÓø°‘»ñ”Íé`(Û˜ñ%Ðø„iTø%°BÐ5«EøÑ%Tø%0F"ðþý(Ñ5«EôÑààÔ˜Pø% :±™’9Ýé`ÝéEà2ðé(vÑ­ž™1Í2h)YÚÐø¨@oð@C³F!h™B¿1!`8I9KyD{DÑøÀ)FÓø€ÑøüêÑøLiÛø0OðÑøÍéñ
“#ÕølY Íé
@FÍéSÍé>#FÍé–àG!h˜±oð@B‘BÐ9!`а½èð½F F2ðè(F°½èð½oð@@BÐH `¿ F2ðèHGöqKOô·bxD{DóæFH™ªxD«Íé@@Fð7ü(Ô(FÝ驚’çGöÍa׿GöÈaÔæGöÁaÑæ¶o,Ä1jüÿÐÎm”—ùÿϵùÿþnëþÿö·ùÿ¨…ùÿþ¨ùÿš…ùÿmlüÿª™ùÿå·ùÿðµ¯-é›°ÛNFÛM"~D’}DÍé"ö„’òœB’2h›F»ñò¤C“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$Ðø¤dUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðý(@ð‚€4¢EóÑ2ðèœH±Göwq½à,nÐ,ъh’jà½H&½I,xD¼KyDh{DŒF»IhyDºM¸¿&ºJ}D”zDÍée¨¿cF1ð¼ïGöŸq™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%Ðø„iTø%°Bð€5¨E÷Ñ%Tø%0F"ð¨ü(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%ÐøœdTø%°B6Ð5©EøÑ%Tø%0F"ðWü()Ñ5©EôÑ1ðnï(@ðº€gH&gI%xDfJgKyDhzD{DheL–|DÍéT1ð ïGöqgH@ò½RgKxD{Dí÷øü °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà1ð&ï(uÑ­ž™1Í2h)TÚÐø¨@oð@C±F!h™B¿1!`7I7KyDÕø¨´{DÕøcÑøàÙøOð	Óø€Õøü:
‘ñ˜Íéi&Íé¨Õø Āè@@FÍéc#F–ðG!hx±oð@B‘B™Ð9!`–ÑF F1ð8î(F°½èð½oð@@BÐH `¿ F1ð*îHGöÖqK@òbxD{DwçFHª«xDIFÍé@XFð]ú(Ô˜(FÝ额–çGöqZçGöqWçGöˆqTç¿
l‚ÀqüÿFÌjïžùÿ²ùÿ*jâ€ùÿÙrüÿB¤ùÿ	þÿnk ‚ùÿŠ¥ùÿ‚ùÿGþÿ	tüÿýŸùÿ)³ùÿðµ¯-靰ËNFËM"Íé"~D}DÍé"ö„’õób’òœB’2h›F»ñò¤C“’6Ð,;Øë„“•ßèð³j~^ÙFÍé&YøÍé¸ñÛ˜ñ$Ðø¤dUø$°Bð¯€4 E÷Ñ$Uø$0F"ðû(@ð €4 EóÑ1ð0îœH±Hò9á,!Ð,ÑÊh’àßH&ßI,xDèKyDh{DŒFçIhyDæM¸¿&æJ}D”zDÍée¨¿cF1ðÒíHòmïà2hÑø€Ñé:Íøh€“Íé:$áÑé:Ñé‚ÛøÍé‚“Íé:áÙFÍéYøÑé
Íé&Íé
@FÍø,€¸ñ€򑀨àÙFÑé:Ñø€YøÍøh€“Íé:)ÀòրÙøÍé¹ñÍéÀòà€˜ñ$Ðø„iUø$°BðĀ4¡E÷Ñ$Uø$0F"ðú(@ð¶€4¡EóÑÃàÙFÑø€Yø¯ÍéÍé&Íø`€PFÍø, ºñÚ+à?õa¯˜Pø$‘)?ôZ¯F¨ñÙø €F‘ºñÛ˜ñ%ÐøœdTø%°BÐ5ªEøÑ%Tø%0F"ðOú(Ñ5ªEôÑ1ðfí(@ðù€HòCOð4àôÔ˜Pø% Íød ºñìÐ˜ÍøH€8Ùø€¸ñÛ˜ñ$Ðø˜gUø$°B9Ð4 EøÑ$Uø$0F"ðú(,Ñ4 EôÑ1ð0í(@ðHòMOðiH&iIxDiJiKyDhzD{DhgMÍøÀ}DÍée1ðÞìhH!FhK@ò#bxD{Dí÷·ú °½èð½ÔÔ˜Pø$€Íøh€¸ñÌИÝé&AÝé)¿ö*¯àÔ˜Pø$ b±™’9œÝé
`à¿>h¸¼1ðàì(vÑ
žÝé2h™)PÚÐø¨@oð@COð	6h!h™B¿1!`5I6KyDÕø¨´{D
–ÑøÀ&ÕøœÍéñ h˜Íé¨Õø ä€è@DF#FÍéhàG!hx±oð@B‘B—Ð9!`”ÑF F1ðöë(F°½èð½oð@@BÐH `¿ F1ðæëHHò¤K@òibxD{DuçFH™ªxD«Íé@XFðø(Ô˜(FÝ騚™çHòYVçHòKSçHòAPçHòTMçšgL~ùÿR|üÿ´Ç‚ecqùÿ•­ùÿ¨e`|ùÿ’}üÿùÿ…ýýÿ¶¡ùÿH~ùÿsÿýÿpüÿurùÿ§®ùÿðµ¯-é—°°NF°M"~D’}DÍé"ö„’2h›F»ñò”C“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$Ðø„iUø$°Bð†€4 E÷Ñ$Uø$0F"ðÁø(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø”dTø%°BJÐ5ªEøÑ%Tø%0F"ð›ø(=Ñ5ªEôÑ1ð²ëœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF1ðVëHòfH@ònbfKxD{Dí÷.ù °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à1ðVë(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕøc{DÕø˜´ÑøÀÓøàÕøü:ØøOð
‘ñ Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF F1ðhê(F°½èð½oð@@BÐH `¿ F1ðXêHHòTK@òºbxD{Dpç¨FFHª«aFxDÍé@XFð‹þ(Ô(FÝé’EF™çHò
TçHòQçHòN翾c6¸…üÿœÄnb¦ùÿyªùÿ®b›úýÿ¦«ùÿXyùÿ®œùÿJyùÿa†üÿ,§ùÿ•«ùÿðµ¯-é›°ÜNFÜM"~D’}DÍé"ö„’õób’2h›F»ñò”C“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$Ðø”dUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðWÿ(@ð‚€4¢EóÑ1ðnêœH±Hò´½à,nÐ,ъh’jà¾H&¾I,xD½KyDh{DŒF¼IhyD»M¸¿&»J}D”zDÍée¨¿cF1ðêHòÜ™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%Ðø„iTø%°Bð€5¨E÷Ñ%Tø%0F"ðüþ(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%Ðø˜gTø%°B6Ð5©EøÑ%Tø%0F"ð«þ()Ñ5©EôÑ1ðÂé(@ð¼€hH&hI%xDgJhKyDhzD{DhfL–|DÍéT1ðtéHò¾hH@ò¿bhKxD{Dì÷Lÿ °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà1ðzé(wÑ­ž™1Í2h)VÚÐø¨@oð@C±F!h™B¿1!`8I8KyDÕø˜´{DÕøcÑøÀÙøOð	Óø€Õøü:
‘ñ˜ÍéiOð	&Íé¨Õøœç€è@D@FÍé“#F–àG!hx±oð@B‘B—Ð9!`”ÑF F1ðŠè(F°½èð½oð@@BÐH `¿ F1ð|èHHò!K@òrxD{DuçFHª«xDIFÍé@XFð¯ü(Ô˜(FÝ额”çHòÊXçHò¼UçHòÅR翲`*µK‹üÿîÀÄ^Gqùÿ¿¦ùÿÒ^Šuùÿ‹Œüÿê˜ùÿ±öýÿ`Èvùÿ2šùÿÄvùÿï÷ýÿ»üÿYrùÿѧùÿðµ¯-é‘°€L%€N|D•~DÔøàö„•Íø@àk±ë‚*BÐ*ÑÑøàhÍø@à-{ÛÈà*xÐ*ÑÑøàÍø@àqàtH²ñÿ?tLxDtN|DtMh~DsK}DsIhؿ&FÔCyDOêÔ|pL{D’|D²ñÿ?ÍéÆؿ+F"F1ðRèHò!jH@òriKxD{Dì÷)þ °½èð½h->Û1F&FÑø„Iñ
Oð	‘Íé#Zø)¡BÐ	ñ	ME÷уFOð	Zø) F"ð=ý(Ñ	ñ	MEóÑàƒFXø)à¾ñÐÍø@à=XFÝé#4F
àñÕ1ðDè(oÑÖøà4FÝé#XFž-MÚÐø¨Poð@B)h‘B¿1)`3I3JyDÖøü:zDÖøcÑøÀh!h$
‘ñFÍéCÍé6rFÍéC+FÍédÍédàG)hˆ±oð@B‘B?ôŒ¯9)`ôˆ¯F(F0ðZï F°½èð½oð@@BÐH(`¿(F0ðLïHHò¶!K@òKrxD{DhçFH±F&FxD¬AFÍé ªF#Fð|û(Ô4FÝø@à(FNF›çHòq!IçHòl!Fçè\`±P“üÿ~¾X\(žùÿ_¤ùÿ¨\—ôýÿ ¥ùÿ¾–ùÿ<sùÿLsùÿª”üÿTŸùÿ‹¥ùÿðµ¯-é—°°NF°M"~D’}DÍé"ö„’2h›F»ñò”C“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$Ðø„iUø$°Bð†€4 E÷Ñ$Uø$0F"ð/ü(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø”dTø%°BJÐ5ªEøÑ%Tø%0F"ð	ü(=Ñ5ªEôÑ0ð ïœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF0ðÄîHò/1fH@òNrfKxD{Dì÷œü °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à0ðÄî(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕøc{DÕø˜´ÑøÀÓøàÕø;ØøOð
‘ñ Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF F0ðÖí(F°½èð½oð@@BÐH `¿ F0ðÆíHHòf1K@ò³rxD{Dpç¨FFHª«aFxDÍé@XFðùù(Ô(FÝé’EF™çHò1TçHò1QçHò1N翚Z¯a™üÿx»VYìsùÿU¡ùÿŠYwñýÿ‚¢ùÿ4pùÿŠ“ùÿ&pùÿ§šüÿuùÿq¢ùÿðµ¯-é›°ÜNFÜM"~D’}DÍé"ö„’õÉb’2h›F»ñòs“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$ÐøgUø$°Bð‘€4¢E÷Ñ$Uø$0F"ðÅú(@ð‚€4¢EóÑ0ðÜíœH±HòÆ1½à,nÐ,ъh’jà¾H&¾I,xD½KyDh{DŒF¼IhyD»M¸¿&»J}D”zDÍée¨¿cF0ð~íHòî1™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%Ðø„iTø%°Bð€5¨E÷Ñ%Tø%0F"ðjú(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%ÐøHfTø%°B6Ð5©EøÑ%Tø%0F"ðú()Ñ5©EôÑ0ð0í(@ð½€hH&hI%xDgJhKyDhzD{DhfL–|DÍéT0ðâìHòÐ1hH@ò¹rhKxD{Dì÷ºú °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà0ðèì(xÑ­ž™1Í2h)WÚÐø¨@oð@C±F
ñ!h™B¿1!`7I7KyD{DÑøÀ)FÑøüêÑøLfÓø€Ùø0Oð	ÑøÍéñ 
“#˜Õø W‹è!@FÍéc#FÍøààG!hx±oð@B‘B–Ð9!`“ÑF F0ðøë(F°½èð½oð@@BÐH `¿ F0ðèëHHò%AK@öxD{DtçFHª«xDIFÍé@XFðø(Ô˜(FÝ额“çHòÜ1WçHòÎ1TçHò×1QçŽW¬¦üÿƷ¬U”—ùÿ™ùÿ®Uflùÿ[§üÿƏùÿíýÿòV¤mùÿ‘ùÿ mùÿËîýÿ‹¨üÿ¨˜ùÿ­žùÿðµ¯-é—°°NF°M"~D’}DÍé"ö„’2h›F»ñõHs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$Ðø„iUø$°Bð†€4 E÷Ñ$Uø$0F"ðÃø(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø cTø%°BJÐ5ªEøÑ%Tø%0F"ðø(=Ñ5ªEôÑ0ð´ëœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF0ðXëHòžAfH@ö
fKxD{Dì÷0ù °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à0ðXë(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕøc{DÕø$³ÑøÀÓøàÕøü:ØøOð
‘ñ Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF F0ðjê(F°½èð½oð@@BÐH `¿ F0ðZêHHòÕAK@öSxD{Dpç¨FFHª«aFxDÍé@XF
ðþ(Ô(FÝé’EF™çHòŽATçHò‚AQçHò‰ANç¿ÂS:¨¯üÿ ´†RÇnùÿ}šùÿ²RŸêýÿª›ùÿ\iùÿ²ŒùÿNiùÿa°üÿãoùÿ™›ùÿðµ¯-é—°°NF°M"~D’}DÍé"ö„’2h›F»ñõHs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$Ðø„iUø$°Bð†€4 E÷Ñ$Uø$0F"
ð=ÿ(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø cTø%°BJÐ5ªEøÑ%Tø%0F"
ðÿ(=Ñ5ªEôÑ0ð.êœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF0ðÒéHòNQfH@öXfKxD{Dë÷ªÿ °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à0ðÒé(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕø$³{DÕøcÑøÀÓøàØøOðÕøü:
‘ñ¨“€èHpF#FÍéhÍé©ÍéºàG!hx±oð@B‘B’Ð9!`ÑF F0ðäè(F°½èð½oð@@BÐH `¿ F0ðÔèHHò…QK@öµxD{Dpç¨FFHª«aFxDÍé@XF
ðý(Ô(FÝé’EF™çHò>QTçHò2QQçHò9QNç¿¶P.¥Sµüÿ”±~O‰ùÿq—ùÿ¦O“çýÿž˜ùÿPfùÿ¦‰ùÿBfùÿ™¶üÿŠùÿ˜ùÿðµ¯-é—°°NF°M"~D’}DÍé"ö„’2h›F»ñõHs“’Ðë„,HÐ,Ð,oÑÑé’Ûø Íé’ºñÀòʀá,ð‘€,_ÑJh’ŒàØFÑøXø¯Íø8À•ÍøPºñÀò—€Øø€”¸ñÍé`Àòœ€˜ñ$Ðø„iUø$°Bð†€4 E÷Ñ$Uø$0F"
ð·ý(xÑ4 EôрàØFÍé&Xø¯ÍéEºñÍé
Û˜ñ%Ðø cTø%°BJÐ5ªEøÑ%Tø%0F"
ð‘ý(=Ñ5ªEôÑ0ð¨èœ(@ð̀pH,pJOðxDoMpIzDh}DyDnKŒFnIh¨¿F,¸¿&lJyD{DÍéezD”¨¿cF0ðLèHòþQfH@öºfKxD{Dë÷$þ °½èð½2hÑøÍøP.àÃÔ˜Pø%ÍøP¹ñ»Ъñ

˜œÝé&ºñ¿öi¯à
Ô˜Pø$ 2±’ªñ
œÝé`à0ðLè(uÑž
˜œ2hÝø8:ñRÚÐø¨@oð@C°FOð
!h™B¿1!`4I5KyDÕøc{DÕø$³ÑøÀÓøàÕøü:ØøOð
‘ñ Í飍è
pF“#FÍéhÍéhàG!hx±oð@B‘B’Ð9!`ÑF F/ð^ï(F°½èð½oð@@BÐH `¿ F/ðNïHHò5aK@öxD{Dpç¨FFHª«aFxDÍé@XF
ðû(Ô(FÝé’EF™çHòîQTçHòâQQçHòéQN翪M"¢[¿üÿˆ®vL¦mùÿe”ùÿšL‡äýÿ’•ùÿDcùÿš†ùÿ6cùÿ¡ÀüÿÂnùÿ•ùÿðµ¯-é›°ÜL–FÜN"|D’~D+ö„’öH’"hò„eÖøüªÖø»•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖø„fÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"
ðCü(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#F/ððîHò½a©H@ö¨KxD{Dë÷Çü °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ/ðìîÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%ÐøHi˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ð£û(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à/ðªî(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðø„i˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ðdû(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à/ðpî(vјh˜Ýéæ¹ñYÚÐø¨@oð@COð	!h™B¿1!`9I:KyDÖøˆV{DÑøÀ1FÓø€›ÑøüêÑøhÍéñ 
“Íé
¨ÖøLi#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F F/ð|í(F°½èð½oð@@BÐH `¿ F/ðlíHHòôaKOôbxD{DëæFHª«xDÍéàÝé
ð ù(ÔÝé« Fš“çHò©aÐæHò¤aÍæ¿žJŸHòaÅæHò–aÂæcÈüÿԪÆHïfùÿ¡ùÿØIˆ`ùÿòƒùÿŠ`ùÿ±áýÿ±Êüÿiùÿǒùÿðµ¯-é›°ÜL–FÜN"|D’~D+ö„’öH’"hò„eÖøüªÖø»•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖø„fÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"
ðaú(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#F/ðíHò|q©H@öu¨KxD{Dë÷åú °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ/ð
íÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%ÐøHi˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ðÁù(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à/ðÈì(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðø„i˜ñTø%°BÐ5¨EøÑ%Tø%0F"
ð‚ù(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à/ðŽì(vјh˜Ýéæ¹ñYÚÐø¨@oð@COð	!h™B¿1!`9I:KyDÖøˆV{DÑøÀ1FÓø€›ÑøüêÑøhÍéñ 
“Íé
¨ÖøLi#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F F/ðšë(F°½èð½oð@@BÐH `¿ F/ðŠëHHò³qK@öçxD{DëæFHª«xDÍéàÝéð¾ÿ(ÔÝé« Fš“çHòhqÐæHòcqÍæ¿ÚFR›Hò\qÅæHòUqÂæ]Ñüÿ§EeUùÿ݌ùÿFÄ\ùÿ.€ùÿÆ\ùÿíÝýÿ«Óüÿ‹Wùÿùÿðµ¯-é›°ÜL–FÜN"|D’~D+ö„’öH’"hò„eÖøüªÖø»•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖø„fÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"
ðø(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#F/ð,ëHö;©H@öì¨KxD{Dë÷ù °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ/ð(ëÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%ÐøHi˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðßÿ(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à/ðæê(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðø„i˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð ÿ(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à/ð¬ê(vјh˜Ýéæ¹ñYÚÐø¨@oð@COð	!h™B¿1!`9I:KyDÖøˆV{DÑøÀ1FÓø€›ÑøüêÑøhÍéñ 
“Íé
¨ÖøLi#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F F/ð¸é(F°½èð½oð@@BÐH `¿ F/ð¨éHHörK@ö:"xD{DëæFHª«xDÍéàÝéðÜý(ÔÝé« Fš“çHö'ÐæHö"Íæ¿CŽ—HöÅæHöÂæ½ßüÿL£FAkùÿ‰ùÿPBYùÿj|ùÿYùÿ)Úýÿâüÿ,mùÿ?‹ùÿðµ¯-é›°ÜL–FÜN"|D’~D+ö„’ö|’"hõÛeÖøüªÖø»•’Íé«6оñIØëŽ•”“ßèð€owFTøŸ¹ñÀò–OðÖøØfÍø8°ñÍøDà
’[ø(±BnÐñÁE÷ÑFOð[ø(0F"ðþ(oÑñÁEóÑkà¾ñØ”ò"hßèðìŠh’Ñø°Íød°Ñø Íø` Þà²HOð²L¾ñxD±K±I|Dh{DyDh¯NH¿Oð®J~DÍøàzDÍéÆX¿#F/ðJéHöú©H@ö?"¨KxD{Dê÷!ÿ °½èð½Ñé«SøŸ–Íé«màÑ髊hÓø’Í髞àÑø SøŸ–Íø` àF˜Pø(X±‚F©ñ	(FÝøDà#FÝé
+àïÕ/ðFéÝøDà(Ýé
+(F#F@ðø€¹ñcÛÓø€ÍøDà¸ñÍé2)Û˜%Ðø|i˜ñTø%°BÐ5¨EøÑ%Tø%0F"ðýý(Ñ5¨EôÑà
Ô˜Pø%H±ƒF©ñ	˜ÝøDàÝé2	à/ðé(˜ÝøDàÝé2@𴀹ñ"ÛÓø€ÍøDà¸ñ%Û˜%Ðø„i˜ñTø%°BÐ5¨EøÑ%Tø%0F"ð¾ý(Ñ5¨EôÑ
àžàÔ˜Pø% ±©ñ	’à/ðÊè(vјh˜Ýéæ¹ñYÚÐø¨@oð@COð	!h™B¿1!`9I:KyDÖøÜV{DÑøÀ1FÓø€›ÑøüêÑøhÍéñ 
“Íé
¨Öø€i#€è 
@FÍéc#FÍøààG!h˜±oð@B‘BÐ9!`а½èð½F F.ðÖï(F°½èð½oð@@BÐH `¿ F.ðÆïHHö1K@öª"xD{DëæFHª«xDÍéàÝéðúû(ÔÝé« Fš“çHöæÐæHöáÍæ¿R?ʓHöÚÅæHöÓÂæ	èüÿˆŸ†=ùÿU…ùÿŒ><Uùÿ¦xùÿ>UùÿeÖýÿWêüÿ>ƒùÿ{‡ùÿðµ¯-é—°±M–F±L"}D’|Dö„’Õø›öH"h–”Íé’“±ë޾ñSоñFоñÑÑé’Óø€”Íé’Æà"h¾ñðŀ¾ñоñÑJh’ÑøÍøT·à›H"›M"êž|xDšK›I}Dh{DyD¾ñh˜N˜J~DÍøàzDÍéÆX¿+F.ð˜ïHö«“H@ö¯"’KxD{Dê÷oý °½èð½šFÑøZø”•ÍøTCàšFZø¸ñ}Û)FñÑøHiOð‘Íé2ÍéNUø+±BÐñØE÷ÑFOðUø+0F"ðuü(ÑñØEóÑàF˜Pø+P±F¨ñ FÝø<àÝé2
àðÕ.ðzïÝø<à(Ýé2 F@𯀸ñ#ÛÚø ›FÍø<àºñ
%Û˜ñ&Ðø„IXFUø& BÐ6²EøÑ&Uø& F"ð3ü(Ñ6²EôÑ
ààÔ˜Pø& ±¨ñ’à.ð>ï(uјh
˜[FÝø<à¸ñTÚÐø¨@oð@COðOð
!h™B¿1!`5I5KyDÍé©{DÑøÀ)FÑøüjÓøàÑø3™ÕøLYÍé8	h
‘ñÍécpF#FÍéZÍé†àG!hˆ±oð@B‘B?ô9¯9!`ô5¯F F.ðNî(F°½èð½oð@@BÐH `¿ F.ð>îHHöâK@öï"xD{Dç.FFH¬™ªxDÍéàF#Fðpú(Ô(FÝé’5F–çHöšøæHö•õæHöŽòæ
Š;Ùõüÿjœl:=oùÿE‚ùÿ&;ÖQùÿ@uùÿØQùÿÓýÿ×÷üÿqùÿ„ùÿðµ¯-é›°ÜNFÜM"~D’}DÍé"ö„’öH’2h›F»ñõÛc“’4Ð,9Øë„	•ßèðRƒØFÍé&Xø¯ÍéºñÛ˜ñ$ÐøØfUø$°Bð‘€4¢E÷Ñ$Uø$0F"ð?û(@ð‚€4¢EóÑ.ðVîœH±HöB!½à,nÐ,ъh’jà¾H&¾I,xD½KyDh{DŒF¼IhyD»M¸¿&»J}D”zDÍée¨¿cF.ðøíHöj!™àØFÑéXø?‘Íé+Àò¯€Øø€Íé6¸ñÍéÀò³€˜ñ%Ðø„iTø%°Bð€5¨E÷Ñ%Tø%0F"ðäú(@ð€5¨EóіàÑé:ŠhÛø’“Íé:•àØFÍé
’XøŸÍé`h”HFÍø0¹ñÚ2à2hÑé‘Íé~à?õ¯Yø$(?ôy¯ªñÍø4Øø¹ñÛ˜ñ%ÐøHiTø%°B6Ð5©EøÑ%Tø%0F"ð“ú()Ñ5©EôÑ.ðªí(@ð¼€hH&hI%xDgJhKyDhzD{DhfL–|DÍéT.ð\íHöL!hH@öô"hKxD{Dê÷4û °½èð½×Ô
˜Pø% Íød ºñÏÐ˜œCÝé`Ýé
’+¿öQ¯à
ÔYø% :±™’9Ýé`ÝéEà.ðbí(wÑ­ž™1Í2h)VÚÐø¨@oð@C±F!h™B¿1!`8I8KyD{DÑøÀ)FÓø€ÕøÜVÙø0Oð	ÑøüêÑøLiÑøÍéñ
“#˜Íé@F“Íé:Íéc#FÍøààG!hx±oð@B‘B—Ð9!`”ÑF F.ðrì(F°½èð½oð@@BÐH `¿ F.ðdìHHö¡!K@ö42xD{DuçFHª«xDIFÍé@XFð—ø(Ô˜(FÝ额”çHöX!XçHöJ!UçHöS!R翂8úŒ1ûüÿ¾˜È6§`ùÿ~ùÿ¢6ZMùÿqüüÿºpùÿÎýÿæ7˜Nùÿrùÿ”Nùÿ¿Ïýÿ¡ýüÿ¹aùÿ¡ùÿðµ¯-遰-í‹ °ÇL˜FÇKƒF|D {DÍéÍéö„%h¸ñö,õá`òd`“”•3Ð*:Øë‚ßèð·q„cÁF•Yø¯’ºñÛ˜ñ%ÐødFVø% Bð²€5ªE÷Ñ%Vø% F"ðQù(@ð£€5ªEóÑ.ðhìšX±Hö4á*%Ð*ÑÍhÍø4°•"àœHOð›M*xD›K›I}Dh{DyDh™N¸¿Oð˜L~D’|DÍéƨ¿+F"F.ðìHö84êà˜Íø4°hÑéÑø°Íøx°Íé3áÑéÍø4°Ñ鵨ø Í鵐Íé!áÁFÍø4°Yø¿Ñé•ÚF’‘Íé»ñ€򈀟àÁFÍø4°‘è	©Yø¯“è	ºñÀòʀÙø’¹ñÀòñ&Ðø„YTø&¨Bð¼€6±E÷Ñ&Tø&(F"ðÁø(@ð®€6±EóÑÑàÁFÍø4°Yø¿h•ÚF’»ñÚ+à?õ^¯˜Pø%(?ôV¯Íø4°ªñ
Ùø°»ñÛ˜ñ&ÐøGUø& BÐ6³EøÑ&Uø& F"ð„ø(Ñ6³EôÑ.ðœë(Að€Hö4Oð0àôÔ˜Pø&(íÐÙø°ªñ
»ñÛ˜ñ&Ðø,IUø& B8Ð6³EøÑ&Uø& F"ðRø(+Ñ6³EôÑ.ðjë(@ð·Hö4Oð&H&&IxD&J'KyDhzD{Dh%MÍøÀ}DÍée.ðë"H!F"K@ö92xD{Dê÷ðøOð
ð¸ÕÔ˜Pø&°Íøx°»ñÍЪñ
šºñ¿ö6¯Ýø85à&Ô˜Pø&P³ªñ
•%à¿°4(‰4´Jùÿnùÿ¶JùÿÝËýÿýÿ2ÒHùÿHýÿ2lùÿ÷Éýÿ<hùÿ{ùÿ.ðë(@ðᇘhšÝø8ºñ€ò‡«N~DðjÐø´ÐøA ˆGF Oô€r#Íé HF"Íø8 G(𩄁Fhoð@AˆBÐBÉø ŠBÐ(Éø¿HF.ð&êðj–Ðø´ÐøA ˆGFOðOô€p"Íé#˜ Gž(ퟤ�Fhoð@AˆBÐBÊø ŠBÐ(Êø¿PF.ðüé˜ÀjÐø´ÐøA ˆGF Oô€r#Íé XF" G(ðg„€Fhoð@AˆBÐBÈø ŠBÐ(Èø¿@F.ðÖéÚøÙøÍøDBÍøT€•¿ØøPêðdƒÖø¼G0hâh!F.ð6ë(ð?„Fhoð@AˆB¿0(`hhÖøx‚l(F*ð=„GƒF(ð>„(hoð@AˆBÐ8(`¿(F.ðšéÖø¼G0hâh!F.ðë(ð.„Fhoð@AˆB¿0ÉøÙøÖø”‚lHF*ð*„G€F(ð+„Ùøoð@AˆBÐ8Éø¿HF.ðlé:HØøxDhBð„ %ÝøD©‚è ©ñ
ªë€@Fõ÷Çø-F¿(hoð@AˆB@ðr‚.ðx‚Øøoð@AˆBÐ8Èø¿@F.ð:éÛø™ˆBð„ $ÝøT€ªë€BXFÍéFõ÷œø,F¿ hoð@AˆB@ð]‚0hoð@AˆB@ðc‚-ði‚Ûøoð@AˆBÐ8Ëø¿XF.ð
é
HxDh	Hž¥BxD¿h…BÑ(°ú€ð@	à”Æ/À.º.˜h…BîÐ(F.ðŠé(ñ¾…)hoð@B‘BÐ9)`уF(F.ðÚèXF(@ðâƒ”Öø¼G0hâh!F.ðFê(ðòƒƒFhoð@AˆB¿0ËøÛøÖøx‚lXF*ðGF(ðïƒÛøoð@AˆBÐ8Ëø¿XF.ð¨èÖø¼G0hâh!F.ðê(ð݃€Fhoð@AÝø8°ˆB¿0ÈøØøÖø”‚l@F*ðۃGF(ð܃Øøoð@AˆBÐ8Èø¿@F.ðxèÙø™ˆBðك &œ™‚”Íéaªë€HFô÷Øÿ.€F¿0hoð@AˆB@𳁸ñð¹Ùøoð@AˆBÐ8Éø¿HF.ðJèhh™ˆBðԃ $ÝøDªë€B(FÍéHô÷­ÿ,F¿ hoð@AˆB@ð™Øøoð@AˆB@ðŸ.ð¦(hoð@AÝøT€ˆBÐ8(`¿(F.ðè^E¿˜h†BѦë°ú€ð@		à˜h†BõÐ0F.ð¦è(ñé„1hoð@B‘BÐ91`ÑF0F-ðøï F(@ð¤ƒžÖø¼G0hâh!F.ðdé(ðµƒFhoð@AˆB¿0(`hhÖøx‚l(F*𳃐GƒF(ð´ƒ(hoð@AˆBÐ8(`¿(F-ðÈïÖø¼G0hâh!F.ð:é(𤃁Fhoð@AˆB¿0ÉøÙøÖø‚lHF*𩃐G€F(ðªƒÙøoð@AˆBÐ8Éø¿HF-ðšïØø™ˆBð⃠%ÝøD™‚‘ªë€@FÍéYô÷úþ-F¿(hoð@AˆB@ð.ðØøoð@AˆBÐ8Èø¿@F-ðnïÛø™ˆBðۃ $ÝøT€ªë€BXFÍéFô÷Ïþ,F¿ hoð@AˆB@ðë€0hoð@AÝøH ˆBÐ80`¿0F-ðFï-ð܃Ûøoð@AˆBÐ8Ëø¿XF-ð6B¿˜h…BÑh
œ°ú€ð@	
à˜h…BõÐ(F-ðÀï
œ(ñ„)hoð@B‘BÐ9)`ÑF(F-ðï0Fž(@ð±ƒÔø¨Poð@A"(hˆB¿0(`ïH™xD’Íé*Žk™hÑø3ñÍé2šÍé“Íéƒ+F°G(𨃂F(hoð@AˆBðª„8(`@ð¦„(F-ðÚîð¡¼8(`¿(F-ðÒî.ôˆ­%Hö˜D@ö‘6Øøoð@AˆB@ðå‚êâ8 `¿ F-ð¼î0hoð@AˆB?ô­80`¿0F-ð°î-ô—­@ö‘6Hö¯DEã80`¿0F-ð¢î¸ñôG®OðHöðD@ö“6žâ8 `¿ F-ð’îØøoð@AˆB?ôa®8Èø¿@F-ð„î.ôZ®HöTÉá8(`¿(F-ðxî.ôú®%HöHT@ö•6Øøoð@AˆB@ퟨ�â8 `¿ F-ðbî
ç˜.ð¶é¿î«F‰FAì´îJ‹ñîúÑ-ðøî(@ðكXF”.ð¢éAìƒF´îJ›FñîúÑ-ðæî(@ð΃˜.ðéAìÝø4 ´îJ»FFñîúÑ-ðÔî(@ðƒ´îK‹ñîúó:ƒ´îI»ñîúóOƒ´îI‹ñîúðdƒÚø¨€oð@AØøˆB¿0Èø˜IF–^F-ð~î(ðoƒF(F!F-ðvî(ðoƒ™ƒF0F-ðnî%(ðnƒFgH™#xDÍé9«Lh™hÑø#™ƒè$«	hdÃCFÍé%š
‘
ñ G(ðUƒ‚FØøoð@D BÑÙø BÑÛøÝøT€ BÑ0hÝøD B%фã8Èø¿@F-ð¶íÙø BèÐ8Éø¿HF-ðªíÛøÝøT€ BáÐ8Ëø¿XF-ðží0hÝøD Bð`ƒ80`@ð\ƒ0F-ðíWã8HHö|17K@ö}2xD{Dÿ÷åº@ö~2Hö‹1@ã@ö2Höš1;ã-ð"î(¹ Fñ÷cü(@ð¥ƒ@ö‘2Hö|A-ã-ðTîƒF(ô«Hö~D@ö‘6á-ðî(¹ Fñ÷Jü(@ð‘ƒ@ö‘6HöDFá-ð:î€F(ôի%HöƒD@ö‘6OáØøPÝøD-ð>ƒ)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@F-ð&í  Fÿ÷û‚+^)
^ùÿçpùÿÛø@ÝøT€,ðƒ!hoð@@ÛøPB¿1!`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF-ðøì «Fÿ÷ĻèH"Öø¨xD@ké÷û(ðî‚!"FðÒû hoð@AˆB@ðρ@ö’2HöÂA™â-ð€í(¹ Fñ÷Áû(@ðƒ@ö“2HöÔA‹â-ð²íF(ô¬@ö“6HöÖD]á-ðfíÝø8°(¹ Fñ÷¦û(@ðó‚HöÙD@ö“6ÝøT€éà-ð”íF(ô$¬OðHöÛD@ö“6ÝøDØøoð@AˆB@ð»€ÀàÙø`œ.ðœ‚1hoð@@Ùø€B¿11`ØøB¿HÈøÙøoð@AˆBÐ8Éø¿HF-ðvì ÁFÿ÷¼ìhÝøD,ðy‚!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F-ðTì 5Fÿ÷¼—H"™xDÑø¬@ké÷Zú(ðU‚!"Fð,û hoð@AˆB@ð2@ö”2HöQóá-ðÚì(¹ Fñ÷û(@ðk‚@ö•2Hö,Qåá-ðíƒF(ôL¬Hö.T@ö•6Uà-ðÀì(¹ Fñ÷û(@ðU‚@ö•6Hö1T%ÝøDÛøoð@AˆB7Ñ=à-ðêì€F(ôV¬%Hö3T@ö•6OðÙøoð@AˆBÐ8Éø¿HF-ðêëÝøD¸ñÐØøoð@AˆBÐ8Èø¿@F-ðØëÝøT€»ñÐÛøoð@AˆBÐ8Ëø¿XF-ðÆëU±(hoð@AˆBÐ8(`¿(F-ðºëMH!FMK2FxD{DváØøPÝøD-ð)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@F-ðë  Fÿ÷ü»Ûø@ÝøT€,ð !hoð@@ÛøPB¿1!`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF-ðjë «Fÿ÷¼@ö•6Hö_T%Ûøoð@AˆBŽєçÖH"Öø°xD@ké÷fù(ðn!"Fð8ú hoð@AˆBGÑ@ö–2HörQáHöT@ö˜6vçÁH«™xDÍé ª@F
ðyÿ(:ÔÝéÝ鵐ÿ÷ظHö³D@ö‘6^ç¿؈‡bZùÿ?mùÿ5FHöT@ö“6OçHöcT@ö•6Jç8@ö’2HöÂA `@ðȀ¿à8@ö”2HöQ `@𿀶à8@ö–2HörQ `@𶀭àHö$4ÿ÷I¸Hö4ÿ÷E¸Hö4ÿ÷A¸˜H"™xDÑø¨@ké÷óø(ð!"FðÅù hoð@AˆBrÑ@ö‡2Höç14àŒH"™xDÑø¬@ké÷Øø(ðê€!"Fðªù hoð@AˆB^Ñ@ö‰2HöAàH"™xDÑø°@ké÷½ø(ðԀ!"Fðù hoð@AˆBJÑ@ö‹2Hö'AÝøDÝøT€Sà%HöDD@ö6Oðèå%HöND@öŽ6OðŒæHöXD@ö6‡æ5FHöbD@öŒ6æHö4þ÷Ϳ@ö‚2Hö»1ÝøD-à@öƒ2HöÅ1ÝøD&à@ö„2HöÏ1ÝøDà8@ö‡2Höç1 `à8 `@ö‰2HöAà8 `@ö‹2Hö'AÝøDÝøT€Ñ FF
F-ðBê)F"FGHGKxD{Dé÷‹øOð
Ùøoð@AˆBÐ8Éø¿HF-ð*ê˜(¿hoð@AŠBѸñ¿Øøoð@AˆB
ÑPF °½ì‹°½èð½Q`¿-ðêèç8Èø¿@F-ðêéç %ÿ÷ ¸ $ÿ÷˸@ö’2Hö¾A¶ç &ÿ÷„¹ $ÿ÷­¹@ö”2HöQ©ç %ÿ÷Uº $ÿ÷~º@ö–2HönQœç@ö‡2Höã1>ç@ö‰2HöA9ç@ö‹2Hö#A4çÝøH Fÿ÷¸Fÿ÷>¸ƒFÿ÷¹€Fÿ÷-¹Fÿ÷ܹFÿ÷º¿Tóüÿ„Œ„V„rWùÿOjùÿ¤…ðµ¯-韰›F–L –K»ñ|D{DÍé&hö„öDõè`“–0Ð*6Øë‚	”ßèðlQ`ÚF–Zø’¸ñÛ˜ñ%Ðø@GVø% BoÐ5¨EøÑ%Vø% F"
ðñþ(bÑ5¨EôÑ-ðêšP±HöõQ›à*NÐ*юh”–JàpHOðoM*xDoKoI}Dh{DyDhmN¸¿OðlL~D’|DÍéƨ¿+F"F-ð¨éHöatàÚFÍø8ZøÑé	
Íé	¸ñ€ò†€ØàŽhÛø€Íø8Ñé	–
Íé	ÈàÚFÍø8ZøŸh–ÈF’
¹ñÚ0à”&hÑé	
Íé	µàžÔYø%(
˜ÐÍø8¨ñÚø¹ñÛ˜ñ%ÐøDhTø%°B8Ð5©EøÑ%Tø%0F"
ðhþ(+Ñ5©EôÑ-ð€é(@ð,†6H&6I%xD6J6KyDhzD{Dh4L–|DÍéT-ð2éHöÿQ1H@öž20KxD{Dè÷	ÿOðXF°½èð½ÕÔ˜Pø%Íød¹ñÍШñšž¸ñSÛÚø ’ºñAÛ˜ñ%Ðø„IVø% BÐ5ªEøÑ%Vø% F"
ðþ(Ñ5ªEôÑ'à&Ô˜Pø%`³–¨ñš%àÜTtHø5ùÿbYùÿú5ùÿ!·ýÿÜøüÿL5ùÿô÷üÿdXùÿ+¶ýÿÁQùÿKgùÿ-ðþè(@ð½…˜šh¸ñ€ò…–Oð±NÍøx€~DÍøt€Íøp€ðjÐø´ÐøA ˆGFOô€pÍéHF"# G‚F(ðĄÚøoð@AˆBÐBÊø ŠBÐ(Êø¿PF-ðèðjÚø@Ðø´ÐøQ	 ˆGF"Oô€p#Íé
˜¨GÝøL°(𢄀Fhoð@AˆBÐBÈø ŠBÐ(Èø¿@F,ðòï,–Íø8€¿Øø(ð	ÕøHPFók"˜Gœ0ðЄոD@Fók"˜G0ðˆ„˜ÐøvHLExDð¤€Õø¼G(hâh!F-ð<é(ð„Fhoð@AˆB¿00`phÕøè‚l0F*𐄐GF(ð‘„0hoð@AˆBÐ80`¿0F,ð ï(FÕø¼Whêh)F-ðé(ð€„Fhoð@AˆB¿00`™phÑøð‚l0F*ퟀ�GF(ð„0hoð@AˆBÐ80`¿0F,ðtï™`h	hˆBðw„ &™‚•Íéa©1¡ë€ Fó÷Óþ.F¿0hoð@AˆB@ðЁ(hoð@AˆBÐ8(`Ñ(FF,ðJï+Fž +ðv„ hoð@E¨BÐ8 `ðxh¨Bð}Aoð@B‘B`ðv!`
‘(@ðe†ð^¾ðjQFBFÐøŒ1 ˜G(ð^„HEð†…,k,ðq„Bh¢Bð~…Òø¬0+ퟨ�h)Û3h¦Bðq…39øÑKI{DÒhyDhãh0h,ðhïOðHö q@öB ˜Íø8€(@ðq†ðw¾¿€’ªÚ^ùÿHF-ð4ê¿îF‘Aì´î@ñîúÑ,ðvï(@ðU„
˜ð†ü@0
‘Ñ,ðjï(Að‚4FÕøH(vlHF™#°G0ð!„˜
™,ðëÕøD'#fl°G0ð„˜h˜ˆBðì€(FÕø¼Whêh)F-ðè(ð(„Fhoð@AˆB¿0 `”™`hÑøè‚l F*ð*„GF(ð+„ hoð@AˆBÐ8 `¿ F,ðtî˜Ðø¼ghòh1F,ðäï(ð„Fhoð@AˆB¿0 `”`h‚l˜*Ðøð F𠄐GF(ð!„ hoð@AˆBÐ8 `¿ F,ðFîáH$ihxD”h	Bð„ ™‚–ÍéA©1‘¡ë€(Fó÷¢ý,F¿ hoð@AˆB@ð’€0h!‘oð@AˆBÐ80`Ñ0F,ðî›+ð$„(hoð@Dž BÐ8(`Ñ(F,ðî›hÍø<  BÐAoð@B‘B`Ð`¹F,ðöí›òjFÓé#“Òøx"“GFÛø¨@˜Õø€ehÐøµ(FYF-ð†è(ðôƒAhÑøˆ0ӳ!F*FÊF˜G™(
@ðSìã80`ôr®0FF,ðÄí3Fkæ FF,ð¾í#Fh¨Bôƒ® 
ðñ¼Ûø¨@ÕøU	‘fh)F0F-ðTè(ðò€AhÍøÑøˆ0˱!F2F˜G
à¹ðì¸hoð@A
ŠB™@ðÊFá8 `ôj¯ F,ðŠí›dçhoð@A
ŠB¿Q`Ûø¨@˜ehÐøü”(FIF-ðè(ð̀F@hÐøˆ0S±0F!F*F˜G(ðȀF@hà1hoð@B‘B¿11`–mIOðÍøp€yD	hˆB@ð؂ôh”,ðӂ!hoð@@µhB¿1!`)hB¿H(`0hoð@A•ˆBÐ80`¿0F,ð4í".F¨ÍéH0 ë‚0Fó÷œü,ÝøD€¿!hoð@B‘B@ð”!(‘ð|€1hoð@D¡B	Ð91`рF0F,ðí@FÝøD€!‘h¡BÐ9`¿,ðþì,ðÄílœ
™	šh.¿–BÑ@h(÷Ñ &Oð	à1hoð@@B¿11`ÖøÙøB¿HÉø0F,ð(î
™ñ šñ+FÍéA-ðBè-ðHè!(‘ð@€ƒF˜lh`(¿hoð@B‘B@ð9¹ñ¿Ùøoð@AˆB@ð5˜(¿hoð@AŠB@ð4
œ"Øø˜ Fè÷°ú€F hoð@AˆBÐ8 `¿ F,ðì¸ñ@ð7‡ OðIòÖ@ö,Bð¼z FÊFP`Ñø¨P˜Õø°Ðøü”XFIF,ðï(ð’‚F@hÐøˆ0S± F)FZF˜G(ðŽ‚F@hà!hoð@B‘B¿1!`”	™Oð	ˆB@ð´Ôø°»ñð®Ûøoð@@¥hB¿1Ëø)hB¿H(` hoð@A•ˆBÐ8 `¿ F,ð.ì",F˜Íé¹ ë‚ Fó÷—û»ñ¿Ûøoð@B‘B@ð„€(ðG‚!hoð@E©BÐ9!`сF F,ð
ìHFh$”©BÐ9`¿,ðþë”,ð„ïÑFÝé«
œ.	Û˜ññ “˜JF(F[FÍé¤,ð^ïèè>òÑ	˜,ðnï
ž™phÑø˜Kl-ð‚íHxD,ð*í(@ð+‚0F!F"¨GF,ð(í,ð#‚0hoð@AšˆBÐ80`Ñ0F,ð¸ëš,ð‚ hoð@EÝø< ¨BÐ8 `Ñ F,ð¨ëšh¨BѓFðX¾0`Oð“Foð@AˆB@ð8†ð<¾9Ëøôw¯FXF,ðŒë(Fpç9!`ôh®F F,ð‚ëÝøD€(F_æ9`¿,ðxëÀæ8Éø¿HF,ðpëÂæQ`¿,ðjëÅæHöa@ö
BOðpä HöŸa@öBOð˜Íø8€(@ð܂ââOðHöÉaOôAbZäOðHöÒa@öBSä¦H«™xDÍé ªXF	ðƒÿ(ñŒ€˜
Ýé–ÿ÷æº,ðØë(¹ Fð÷ú(@ð‡‡OðHöåa@öBÿ÷0¼,ðìF(ôo«OðHöçaà,ð¼ë(¹(Fð÷ýù(@ðm‡OðHöêa@öBÿ÷¼,ðêëF(ô«OðHöìa@öBSãæhÃF.ð‡1hoð@@Ôø€B¿11`ØøB¿HÈø hoð@AÍøx€ˆBÐ8 `¿ F,ðÔê DFØFÝøL°ÿ÷b»OðHöq@öB˜Íø8€(@ðH‚NâdHEö	!cKOôOrxD{Dè÷ù! ‘@öBHöq^àHöaÿ÷é¹HöýQÿ÷å¹XHYIxDyDhh,ð„êÿ÷£»"OðjæHöaÿ÷ӹOðIò6@ö(Bÿ÷™»OðIò?@ö)Bÿ÷‘»F)ðå€Ñø€¡BøÑåà$"DåOðIò"@ö&Bÿ÷}»,ðë(@ðœ†(Fð÷Tù(@ð̆OðIò÷@ö/Bÿ÷i»,ð@ëF(ôի @ö/BIòùOðÚá,ððê(@ð~†0Fð÷0ù(@ð®†OðIòü@ö/Bÿ÷E»,ðëF(ô߫OðIòþ@ö/Bÿ÷7»ìhÍøÁF,”ð_†!hoð@@Õø€B¿1!`ØøB¿HÈø(hoð@AÍøx€ˆBÐ8(`¿(F,ðê EFÈFÝøL°Ýøÿ��VùÿâìüÿmUùÿëFùÿzùÿOðIò@ö/Bÿ÷õºéHYFxDhh,ðxíOðIò8+àäHIFxDhh,ðlí Iò:àIòN
˜oð@AhˆBÐ
™8`Ñ
˜,ðÀéOð@ö3B!Fà0F!F",ðëFíåOðIò‘@ö3BÝéŠ˜Íø8€(@ð,2á$Üå,ðHê(ð߅
ž$ÔåÅIyD	hŒBô’ª
(FÕø¼W!h‘êh)F,ðë(ð—Fhoð@AˆB¿0 ``hÕøè‚l F*𔁐GÝø4F(ð hoð@AˆBÐ8 `Ñ F,ðbéÝø4ÀÜøÕøh‚l`F*ð}GF(ð~(FÕø¼Whêh)F,ðÂê(ðxFhoð@AˆB¿00`™phÑøð‚l0F*ðtGF(ðu0hoð@AˆBÐ80`¿0F,ð$é™Ûø	hˆB𐁠&©‚1•¡ë€XFÍédó÷„ø.F¿0hoð@AˆB@ðπ hoð@F°BÐ8 `Ñ FF,ðúè#F(h°BÐ8(`Ñ(FF,ððè#Fž +ð†Ûøoð@D BÐ8ËøÑXFF,ðÚè+Fh BÑÝøL°àÝøL°Aoð@B‘B`Ð` ¹FF,ðÆè#Fòj%•FÓéÒøx"G!FðjRFCF”ÐøŒa °G(ퟤ�FHEœ
˜ðY%k-ð£€Øø ªBðPÒø¬0+𢀙h)Û3h®BðC39øÑ@KAI{DÒhyDhëh0h,ðôèÝø4ÀHöiq@öBÝø8€˜Íø8€8±hoð@F³BÐ;`BÐàF˜(¿hoð@F³Bј(¿hoð@F³BÑ+H+KxD{Dç÷«þšB±hOðoð@AˆB@ðñ‚õâOðòâ;`àÑFF,ðDè*F!FÙç;`ÞÑFF,ð:è*F!F×ç80`ô-¯0FF,ð0è3F&çFFàF,ð(è*F!FµçHEö;!K@ò?2xD{Dç÷mþÝø8€Högq@öB•µà¿dLÄ
ôQùÿAùÿVùÿ`-ùÿ·AùÿçHèIxDyDhh+ðàïrçF)ðŸ€Ñø€©Bøџà,ð”è(¹(Fï÷Öþ(@ðI„ Hö+q€à,ðÆèiæ&Hö-q"à,ðÀèF(ô‚® Hö0qnà,ðtè(¹(Fï÷¶þ(@ð,„&Hö2qà,ð¨èF(ô‹®Hö4qÝø4À hoð@BB	Ð8 `Ñ FF+ðªïÝø4À!F@öB.?ô±¨0hoð@C˜B?ô«¨80`ô§¨0FFFfF+ð’ï´F*F!Fÿ÷œ¸Ûø`ÐF.ð·ƒ1hoð@@Ûø B¿11`ÚøB¿HÊøÛøoð@AÍøt ˆBÐ8Ëø¿XF+ðhï ÓFÂFÝø8€FæHöKq@öBÝø4À˜Íø8€(ôݮãæ“IyD	hBô.(¿hoð@AŠB@ðɁØøÔøhœ‚l@F*𠂐G™F(ð‚"l(FG(ð‚)hoð@F±BÐ9)`ÑF(F+ð"ï FhOð	Íøt±BÐ9`¿+ðïÛø¨P˜ÍøxnhÐøE0F!F,ð²é(ð÷AhÑøˆ0K±)F2F˜G
(˜ÑHöƒq4âhoð@A
ŠB¿Q`˜Ûø¨`Ðøü”thIF F,ðŽé(ðށF@hÐøˆ0S±(F1F"F˜G(ðځF@hà)hoð@B‘B¿1)`•™$”	hˆB@ð¤ÕøÍøp¹ñðœÙøoð@@®hB¿1Éø1hB¿H0`(hoð@A–ˆBÐ8(`¿(F+ð¢î"5F¨Íé”0 ë‚(Fò÷
þ¹ñ¿Ùøoð@B‘B@ð!(‘ð)hoð@F±BÐ9)`ÑF(F+ðzî Fh%Íø< ±B•Ð9`¿+ðnî•,ðòé˜(Àò²€ñ 	ñ&Oð
à˜
ñ
‚Eð¤€Øé'Ðø˜íÑø˜Sì+ÐéèXF,ð¾éØø˜ Òø˜"ÂéØøØø(ñÈøØÛ˜!ÐøHÀà¿À2ùÿ~Õø1Õø˜B#DÅø˜2hSi3SaØø1B¼ÚëRø˜?Ýh5Ý`h«h+äЕøœBd±Õé¥#$¼ñÒiȿ $YDÅø˜"ßç+ѫiÕø˜@£B&Ú3«ahÒø1Òø˜R+DÂø˜2Íç+ËÔhëƒliÕø”„B"Ûna+hëƒÐø˜RÔø”A¥ëÀø˜R£ñFæܱç®ah]i5]ahÒø1Òø˜QÒø˜B[#DÂø˜2 ç`hahëƒÐø˜"Óø1DÀø˜"“ç˜,ð@é
œ™`hÑø˜[l.ð¾€èHxD+ðüîÝø< (@ðɀ F)F"°GF+ðøî-𺀠hoð@AˆB@ð-ðƀ(hoð@Fš°BÐ8(`Ðh°BѓF'àQ`¿+ðxí0æ9Éøôç®FHF+ðní Fàæ(F+ðjíšh°BåÐ0`“Foð@AˆBÐ8`¿F+ðXí¸ñÐØøoð@AˆBÐ8Èø¿@F+ðHíºñ¿Úøoð@AˆBј(¿hoð@AŠBÑXF°½èð½8Êø¿PF+ð,íêçQ`¿+ð&íXF°½èð½Oð	"|æ+ðîÝåHötq@öBRà@öBHövqŸäÂH!FxDhh,ð èHöƒqAàÀHIFxDhh,ð–è Hö…qàHö™q
˜oð@Bh“B-ÐZ`*ÑF+ðìì!F%à F)F"+ðLîFÝø<  hoð@AˆB?ôM¯à+ð€í(ðö€% hoð@AˆB?ô@¯8 `¿ F+ðÈì-ô:¯Hö÷q@öBÄFÿ÷@¼OðIò,@ö'Bþ÷Ž™H)FxDhh,ðHèOðIòS@ö,Bþ��HIFxDhh,ð8è IòUàIòi
˜oð@AhˆBÐ
™8`Ñ
˜+ðŒì Oð@ö,B!Fÿ÷¼Íø< @ö-BHKxDÍé{DIò€ç÷Çú˜©ª«ç÷Wý(1ÔÝøx  Ýé2QFÍé#+ð”í(ð­€
œF)F" Fç÷múƒF hoð@H@EÑ(h@E!ѻñ'ÐhHxDhƒE%ÐfIyD	h‹E¿	™‹EÐXF+ðÞìFàIò–Hà
™8`¿
˜+ð2ì(h@EÝÐ8(`¿(F+ð(ì»ñ×ÑIòŸ2à«ë°ú€ðE	Ûøoð@AˆBÐ8Ëø¿XF+ðì-Ô\ÐPFã÷þ˜$”ã÷þ˜ã÷þ˜IF›2F”lç÷‡ýÝéŠÝøL°Ýøþ÷P½Iò£˜IF›2Flç÷uý Oð@ö,B!Fÿ÷3º+H+IxDyDhh+ðÀëç,Jùÿ &ÿ÷þ¸ &fäOðÍøtÀÿ÷g¹OðÍøtÀÿ÷…¹$ ÿ÷¼¹#H#IxDyDhh+ðžëÿ÷ºIòšÀç+ð†ëÝé#QFç÷ný Iò«Íé²çFþ÷æ»Fþ÷¼Fÿ÷ºFÿ÷Xº™FÝøL°þ÷½ÝøL°Fþ÷,½¿¶~>&ùÿ¢E9ùÿËNùÿHBæ:ú%ùÿðµ¯-靰¡LšF¡KƒF|D {DÔøºñÍéö„öDõè`“Íøp3Ð*;Øë‚”ßèðUˆÍé²ÓF[ø¸ñÛ˜
ñ$Ðø@WVø$¨Bð–€4 E÷Ñ$Vø$(F"	ðµø(@ð‡€4 EóÑ+ðÌëš`±Iò!Ãà*rÐ*ÑÑø”ÍøpmàvHOðvM*xDuKvI}Dh{DyDhtN¸¿OðsL~D’|DÍéƨ¿+F"F+ðhëIò4!šàÍøH°ÓFÑéh[øÍéh(Àò®€ÛøÝøH°¹ñÍé’ÀòҀ˜
ñ$Ðø„YVø$¨Bðœ€4¡E÷Ñ$Vø$(F"	ðSø(@ðŽ€4¡Eóѵà‘è@©Úøè@¸àÍé²ÓFÍø<[øŸhHFÍø@¹ñÚ4à”ÔøÑéhÍéh¢à?õz¯˜Pø$(?ôs¯¨ñÍø<Ûø¹ñÛ˜
ñ$ÐøDhUø$°B6Ð4¡EøÑ$Uø$0F"	ðø()Ñ4¡EôÑ+ðë(@ð½…*H&*I%xD)J*KyDhzD{Dh(L–|DÍéT+ðÌêIò!$H@ö:B$KxD{Dç÷¤ø °½èð½×Ô˜Pø$€Íøl€¸ñÏИš8Ýø<ž(¿öR¯ÝøH°9à*Ô˜Pø$¹ñ$Ð˜Íøp8šž(àrêWÊzùÿä<ùÿ|ùÿ£šýÿ ìüÿ‚:ùÿìêüÿš;ùÿa™ýÿpFùÿJùÿ+ð²ê(@ðY…˜šÐøÝé(€ò…M}DèjÐø´ÐøA ˆGF Oô€r#Íé @F" G(ð<ƒà¿nc‚Fhoð@AˆBÐBÊø ŠBÐ(Êø¿PF+ðÒéèj•Úø@Ðø´ÐøQ ˆGF"Oô€p#Íé0F¨GF(ðƒ0hoð@AˆB	ÐB2`ŠBÐ(0`¿0F+ð¬é,–Íø<¿ðh(𳂜0Fëk"ÔøD˜G0ðƒÔøHPFëk"˜G0ðÿ‚ÔøQF+ð*í(ðþ‚QFFÍøH°+ð*í(ðü‚ƒF(hoð@AˆBÐ8(`¿(F+ðré FÔø¼Ghâh!F+ðâê(ðî‚Fhoð@AˆB¿0(`™hhÑø¤‚l(F*ð삐GF(ðí‚(hoð@AˆBÐ8(`¿(F+ðFéãHÙøxDhBðà‚$ ©B1‘¡ë€HFÍéFò÷¤ø,F¿ hoð@AˆB@ðú-ð‚Ùøoð@AˆBÐ8Éø¿HF+ðéÍI˜yDjh	hÐøŠB@ðӂªhÓ@ðê‚*òö‚ðèhÁñHC
!€û+ð|ìF(ðǂ(hoð@AˆBÐ8(`¿(F+ðìè0FIF+ðØë(ð¼‚FÙøoð@AˆBÐ8Éø¿HF+ðØèXF)F+ð„ì(𹂁FÛøoð@D BÐ8Ëø¿XF+ðÂè(h BÐ8(`¿(F+ðºè˜Ðø¼Ghâh!F+ð*ê(ð£‚Fhoð@AˆB¿0(`œhhÔøx‚l(F*𠂐GƒF(ð¡‚(hoð@AˆBÐ8(`¿(F+ðŽè FÔø¼Ghâh!F+ðþé(Íø4ð¦‚Fhoð@AˆB¿0(`™hhÑø”‚l(F*𨂐G€F(ð©‚(hoð@AˆBÐ8(`¿(F+ð`èrM}DhjíQì+ðÎè(ð—‚FØø™•ˆBðê‚ &™‚”¡ë€@FÍéiñ÷³ÿ.F¿0hoð@AˆB@ð hoð@AˆB@ð-ð!Øøoð@AˆBÐ8Èø¿@F+ð èÛø™ˆBð܂ $ž™BÍéE¡ë€XFñ÷‚ÿ,F¿ hoð@AˆB@ðü€(hoð@AˆB@ðœ¹ñðÛøoð@AˆBÐ8Ëø¿XF*ðîï:HxDhEÐ8IyD	h‰E¿™	h‰EÐHF+ð|èÝøH°(ñ¾‚Ùøoð@B‘B
Ñà©ëÝøH°°ú€ð@	Ùøoð@B‘B	Ð9ÉøÑFHF*ðºï Fœ(@ð­‚Ûø¨oð@A
ñ OðÙøˆB¿0ÉøHÔøüîlxDÔøSÔøD'Œè"%ñÍéXÍéRhšÔøH8Íé8KFÍéаG(ðê€Ùøoð@B‘B
Ñžàzÿ
ÿ´_†ü€üÌüž9ÉøÑFHF*ðjï FÝø4Úøoð@B‘BÐ9ÊøÑFPF*ðXï F.¿1hoð@B‘Bѹñ¿Ùøoð@B‘BѰ½èð½91`ïÑF0F*ð<ï Féç9ÉøîÑFHF*ð2ï F°½èð½8 `¿ F*ð(ï-ô®Iòð!ùà80`¿0F*ðï hoð@AˆB?ôå®8 `¿ F*ðï-ô߮Iò'1Ná8 `¿ F*ðï(hoð@AˆB?ôþ®8(`¿(F*ðøîœ¹ñôø®Iò>1áÖø€#ÍøH Úø˜íÝøT QìllÚøD' G0ð1‚™í#ÚøH(Qìll G0ð*‚˜í+·î±îÂ;™íÛHÝøH 0îAxDAj€î²îî+‘í î´îAñîúó‚œ 
öæÎHIòx!ÎK@ö˜BxD{DNä@öšBIò˜!Oð	âIòÈ1@ö²Büà@öžBIòÂ!Oð	
â@öŸBIòË!Oð	â@ö¢BIòÔ!Oð	üáIòÖ!@ö¢BOðOð	‡à*ð ï(¹ Fî÷aý(@ð‚IòÙ!@ö¢B%	à*ðPïF(ô­IòÛ!@ö¢BOð	8àÙø@,?ô­!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HF*ð>î ©Fþä—IyD	hŠBðr)F+ðâé4åOð	Iòô!@ö¢B7àIò÷!@ö¢B% Oð
ià(hoð@AˆB@ð>©F*åOð	Iòú!@ö¢Bà	kŠh)FGå*ð²î(¹ Fî÷óü(@ð­@ö£BIò1wá*ðäîƒF(ô_­Iò
1@ö£BOð(hoð@C˜B	Ð8(`Ñ(FF
F*ðäí)F"F»ñÐÍø4àžTá*ð€î(¹ Fî÷Âü(@ðIò
1@ö£B%Oð	Oðà*ð®î€F(ôW­Iò1@ö£BïçIò1@ö£B%Oð	Ûøoð@C˜B
Ð8ËøÑXFFF*ð¦í1F"F-¿(hoð@C˜B0ѹñÐÙøoð@C˜B
Ð8ÉøÑHFF
F*ðŒí)F"F¸ñ¿Øøoð@C˜BњH›KxD{Dæ÷Ìû ÷å8ÈøóÑ@FF
F*ðpí)F"Fëç8(`ËÑ(FF
F*ðdí)F"FÃçØø`.?ô­1hoð@@ØøPB¿11`)hB¿H(`Øøoð@AˆBÐ8Èø¿@F*ðBí ¨FôäÛø@ž,ðπ!hoð@@Ûø€B¿1!`ØøB¿HÈøÛøoð@AˆBÐ8Ëø¿XF*ðí ÃFåOð@ö£BIòB1sç¿|\?ùÿ!Cùÿþù˜"Ôø´@kæ÷û(ð™€!"Fðçû hoð@AÝø4ˆB Ñ@ö¤BIòQ1gàPH«™xDÍé ªPFð+ù(*Ô
ñh	™è@ÿ÷ݺ0(`©Foð@AˆBôá«ÿ÷å»8@ö¤BIòQ1 `DÑ FF
F*ðÆì)F"F<à²î•í!îQì*ð0íÿ÷»»Iò"!ÿ÷XºIò!ÿ÷TºIò!ÿ÷Pº@öªBIò€1à@ö«BIò‰1à™"@kÑø´æ÷­úȳ!"Fðû hoð@AˆBÑOôKbIò©1žOð	ÝøH HKxD{Dæ÷Ñú Úøoð@B‘Bô­åž8ÝøH OôKbIò©1Oð	 `äўç $ÿ÷N¼@ö¤BIòM1Ýø4ØçOôKbIò¥1ÎçžFÿ÷öºFÿ÷¬»™FÝø4ÿ÷ջôßüÿÀ<ùÿÑ@ùÿÊ:ùÿÛ>ùÿðµ¯-é—°°M–F°L"}D’|Dö„’Õø›òTf"h–Íé’“±ë޾ñ”RоñEоñÑÑé’Óø€Íé’Æà"h¾ñðŀ¾ñоñÑJh’ÑøÍøT·à›H"›M"êž|xDšKšI}Dh{DyD¾ñh—N˜J~DÍøàzDÍéÆX¿+F*ðZìIòIA’H@ö·B’KxD{Dæ÷2ú °½èð½šFÑøZøÍéeÍøTDàšFZø¸ñ}Û)F–ÑøTfñOð‘Íø8àÍé2Uø+±BÐñØE÷ÑFOðUø+0F"ð7ù(ÑñØEóÑàF˜Pø+P±F¨ñ FÝø8àÝé2
àðÕ*ð<ìÝø8à(Ýé2 F@𬀸ñ"ÛÚø ›FÍé
ºñ%Û˜ñ&Ðø„IXFUø& BÐ6²EøÑ&Uø& F"ðöø(Ñ6²EôÑ
ààÔ˜Pø& ±¨ñ’à*ðì(sјhÝé
[FÝée¸ñRÚÐø¨@oð@COðOð	
!h™B¿1!`4I5KyDÕøX†{DÕøüjÕøShÑøLÀñ ÍéeÍéF#FÍø(àÍé˜Íé¦Íé^àG!hˆ±oð@B‘B?ô;¯9!`ô7¯F F*ðë(F°½èð½oð@@BÐH `¿ F*ðëHIò€AK@öRxD{Dç¨FFH¬ª1FxDÍéàF#Fð5ÿ(Ô(FÝé’EF˜çIò8AúæIò3A÷æIò,Aô濎IõXìüÿðUôùÿÏ;ùÿ¬ô\ùÿÆ.ùÿ^ùÿ‡ŒýÿRîüÿÓùÿ=ùÿðµ¯-é—°«NF«M"~D’}DÍé"ö„’2h›F»ñõHs“’Жë„,FÐ,Ð,lÑÑé’Ûø Íé’ºñÀò€á,ðŽ€,\ÑJh’‰àØFÑøXø¯
–•ÍøPºñÀò”€Øø€”¸ñÀò—€˜ñ$Ðø„iUø$°Bð„€4 E÷Ñ$Uø$0F"ðèÿ(vÑ4 EôÑ{àØF•Xø¯Íé
dºñÍé Û˜ñ%Ðø cTø%°BJÐ5ªEøÑ%Tø%0F"ðÃÿ(=Ñ5ªEôÑ*ðÚêœ(@ðŀlH,lJOðxDkMlIzDh}DyDjKŒFjIh¨¿F,¸¿&hJyD{DÍéezD”¨¿cF*ð~êIòùAbH@ö	RbKxD{Dæ÷Vø °½èð½2hÑøÍøP)àÃÔ
˜Pø%ÍøP¹ñ»Ъñ
œÝé ºñ¿öl¯àÔ
˜Pø$ ±ªñ
’à*ð‚ê(qјhÝéEÝéºñOÚÐø¨@oð@COðOð
!h™B¿1!`2I3KyDÕøc{DÕø$ƒÕøüZhÑøLÀ©è`@ñ ÍéF#FÍé˜Íé¥ÍénàG!hx±oð@B‘BšÐ9!`—ÑF F*ð˜é(F°½èð½oð@@BÐH `¿ F*ðˆéHIò0QK@ö]RxD{Dxç¨FFHª«1FxDÍé@XFð»ý(Ô(FÝé’EFœçIòéA\çIòÝAYçIòäAVç¿
ò‚F¿óüÿôRñ¢.ùÿÙ8ùÿþðëˆýÿö9ùÿ¨ùÿþ*ùÿšùÿõôüÿ®/ùÿå9ùÿðµ¯-é—°«NF«M"~D’}DÍé"ö„’2h›F»ñöD“’Жë„,FÐ,Ð,lÑÑé’Ûø Íé’ºñÀò€á,ðŽ€,\ÑJh’‰àØFÑøXø¯
–•ÍøPºñÀò”€Øø€”¸ñÀò—€˜ñ$Ðø„iUø$°Bð„€4 E÷Ñ$Uø$0F"ðlþ(vÑ4 EôÑ{àØF•Xø¯Íé
dºñÍé Û˜ñ%ÐøDhTø%°BJÐ5ªEøÑ%Tø%0F"ðGþ(=Ñ5ªEôÑ*ð^éœ(@ðƀlH,lJOðxDkMlIzDh}DyDjKŒFjIh¨¿F,¸¿&hJyD{DÍéezD”¨¿cF*ðéIò©QbH@öbRbKxD{Då÷Úþ °½èð½2hÑøÍøP)àÃÔ
˜Pø%ÍøP¹ñ»Ъñ
œÝé ºñ¿öl¯àÔ
˜Pø$ ±ªñ
’à*ðé(rјhÝéEÝéºñPÚÐø¨@oð@COðOð
!h™B¿1!`2I3KyDÕøHˆ{DÕøüjÕøShÑøLÀñ ÍéeÍéF#FÍø(àÍé˜Íé¦Íé^àG!hx±oð@B‘B™Ð9!`–ÑF F*ðè(F°½èð½oð@@BÐH `¿ F*ðèHIòàQKOôZbxD{Dwç¨FFHª«1FxDÍé@XFð>ü(Ô(FÝé’EF›çIò™Q[çIòQXçIò”QUçïŠC¶ûüÿüOî½ùÿß5ùÿîó…ýÿþ6ùÿ°ùÿ(ùÿ¢ùÿîüüÿËùÿí6ùÿ¿¿ðµ¯-飰ÇL™FÇKƒF|D {DÍéÍéö„&h¹ñòÄpòdpò„p”“!–3Ð*:Øë‚ßèð¶qƒcÊF–Zø’¸ñÛ˜	ñ%Ðø„GVø% Bð°€5¨E÷Ñ%Vø% F"ðý(@ð¡€5¨EóÑ*ðèšX±IòCdá*%Ð*ÑÎhÍø@°!–"à›HOð›M*xDšK›I}Dh{DyDh™N¸¿Oð˜L~D’|DÍéƨ¿+F"F)ð¸ïIòwdèà˜Íø@°hÑé€Ñø°Íø€°Íé€2áÍø@°‘è	Îh©Ùø€!–“è	áÊFÍé¶Zø¿Ñé’ØF‘Íé»ñ€򇀞àÊFÍø@°‘è	©Zø“è	¸ñÀòʀÚø ’ºñÀò	ñ%Ðø„IVø% Bð¼€5ªE÷Ñ%Vø% F"ðuü(@ð®€5ªEóÑÑàÊFÍé¶Zø¿h’ØF»ñÚ+à?õ`¯˜Pø%(?ôX¯Íø@°¨ñÚø°»ñÛ˜	ñ&ÐødGUø& BÐ6³EøÑ&Uø& F"ð9ü(Ñ6³EôÑ)ðPï(Að€IòMdOð0àôÔ˜Pø&(íÐÚø°¨ñ»ñÛ˜	ñ&ÐøÄGUø& B9Ð6³EøÑ&Uø& F"ðü(,Ñ6³EôÑ)ðï(@ð¿‡IòWdOð'H&'IxD'J'KyDhzD{Dh%MÍøÀ}DÍée)ðÌî"H!F"K@ö¥RxD{Då÷¥ü #°½èð½ÔÔ˜Pø&°Íø€°»ñÌШñšž¸ñ¿ö6¯ÝøX€5à&Ô˜Pø%`³!–¨ñš%àìŽ@jëùÿ„%ùÿùÿCƒýÿÀýÿ„é<ùÿîýÿœ#ùÿaýÿ¦.ùÿƒ2ùÿ)ð¸î(AðŽ€˜šh¸ñÝøX€€òØM}DèjÐø´ÐøA	 ˆGF Oô€r#Íé @F" G(ð?…‚Fhoð@AˆBÐBÊø ŠBÐ(Êø¿PF)ðÜíèj•Ðø´ÐøA	 ˆGF%Oô€p"Íé#˜ GF(ð!…Ùøoð@AˆBÐBÉø ŠBÐ(Éø¿HF)ð´í˜ÀjÐø´ÐøA	 ˆGF Oô€r#Íé XF" G(ð…Fhoð@AˆB	ÐB"`ŠBÐ( `¿ F)ðíÙøÚøÍ锁BÍéj¿áhPêð@˜Ðø¼Whêh)F)ððî(ð܄Fhoð@AˆB¿0 ``h‚l˜*Ðøx FðۄG€F(ð܄ hoð@AˆBÐ8 `¿ F)ðTíŸíYì»XFIF)ðÄí(ðτFPF!F")ðî(ð̈́F hoð@AˆBÐ8 `¿ F)ð4ísHØøxDhBðÄ$ ©B1‘¡ë€@FÍéFð÷’ü,F¿ hoð@AˆB@ð¥€0hoð@AˆB@ð«€-ð±€Øøoð@AˆBÐ8Èø¿@F)ðíZHZIxDyD‘hµB¿h…BѨ°ú€ð@		à˜h…BöÐ(F)ðˆí(ñDŽ)hoð@B‘BÐ9)`ðh(ðmXFIF)ðNí(ð¢„F˜)FÐøä*ðèÝøT(𛄂F(hoð@AˆBÐ8(`¿(F)ðºì9H"™OðxDÈòÍøh @kÍød€ð÷ü(ð„„FÚøoð@E¨BÐ8Êø¿PF)ðšì F!"ðƒû h¨BÑ@ö)bIö$ÝøH àÝøH 8@ö)bIö$ `Ñ FF
F)ð|ì)F"FHKxD{Då÷Äú 8ã8 `¿ F)ðjì0hoð@AˆB?ôU¯80`¿0F)ð^ì-ôO¯Oð
@ö(fIòÚpðR¼¿zKeÍÍAVçªæ¬æbHä*ùÿÁ.ùÿ@Fðûù‚F@ˆF0Ñ)ðÞì(@ðΆ˜Oðÿ6ðìùF
Fê„êCÑ)ðÌì(@ð†XFðÜùƒF‰Fê‹êCÑ)ð¼ì(@ð·†Löÿ Ãöš1±ë
pëÀò|…	¨AÀòx…ë
Eë°ëqë	Àò¾…˜oð@AÐø¨ hˆB¿0`PFAF
’)ðjï(ðȅ‚F F)F)ðbï(ðԅ€FXFIF)ðZï$(ðӅFzH™&xD
–ÍéhOðÑøh'Ñøˆ7ÑøÈÍé&
žÍé‘™ílh1šÍé£3FÍéL¨G(ð¹…1hoð@D¡BÐ92F1`ÑFF)ð¤ë0FÚø¡BÐ9ÊøÑFPF)ð–ë FØøoð@D¡BÐ9ÈøÑF@F)ðˆë0FÙøÝøH ¡BÐ9ÉøÑFHF)ðxë FÝøT<âF(F)ðpë F(ô“®˜Ðø¼Ghâh!F)ðÜì(–ðEƒ€Fhoð@AˆB¿0ÈøØø‚l˜*Ðøx@Fð@ƒG‚F(ðAƒØøoð@AˆBÐ8Èø¿@F)ð<ëXFIF)ð°ë(ð9ƒ€F˜AF")ðþë(ð8ƒFØøoð@AˆBÐ8Èø¿@F)ðëÚø™ˆBð.ƒ& ™BÍéd¡ë€PFð÷€ú.F¿0hoð@AˆB@ð‚ hoð@AˆB@ð‚œ-ð‚Úøoð@AˆBÐ8Êø¿PF)ðìê¥B¿˜h…B	Ñ(ÝøH °ú€ð@	à¿<å˜h…BñÐ(F)ðvëÝøH (ñ „)hoð@B‘BÐ9)`ÑF(F)ðÄê F(ôç­˜Ðø¼Ghâh!F)ð0ì(ðFhoð@AÝøTˆB¿0ÊøÚø‚l˜*ÐøxPFð肐GF(ðé‚Úøoð@AˆBÐ8Êø¿PF)ðŽê˜Ðø¼Whêh)F)ðþë(ðۂ€Fhoð@AÝøH ˆB¿0ÈøØø‚l˜*Ðøt@FðₐG(
ðã‚Øøoð@AˆBÐ8Èø¿@F)ð\ê˜Ðø¼ghòh1F)ðÌë(ðԂFhoð@AˆB¿0(`hh‚l˜*ÐøD(FðԂGƒF(ðՂ(hoð@AˆBÐ8(`¿(F)ð0êÛø™ˆBð΂ &™‚Íøl¡ë€XFÍéjð÷‘ù.F¿0hoð@AˆB@ð/-ð5Ûøoð@AÝø4€ˆBÐ8ËøÑXF)ðêÝø4€Øø™ˆBðł &™‚‘ÃF™Ýø@¡ë€@FÍéeð÷^ù.€F¿0hoð@AˆB@ð(hoð@AZFˆBÐ8(`Ñ(F)ðÖéZF¸ñðBhoð@AËFˆBÐ8`¿F)ðÄé`h™ÝøTˆBðB &™BÍéh¡ë€ Fð÷&ù.F¿0hoð@AˆB@ð݀Øøoð@AˆB@ðã€ž-ðê€ hoð@AˆBÐ8 `¿ F)ð”éµB¿˜h…BѨ°ú€ð@		à˜h…BöÐ(F)ð"ê(ñՂ)hoð@B‘BÐ9)`ÑF(F)ðré F(@ð•‚Ûø¨Poð@A$(hˆB¿0(`çH™xD”ÍéIÑøh'Ñøˆ7ÑøÈg™Íé$šÑøPÀñÍé&hšÍé£+FàG(ðˆ‚)hoð@B‘BÐ9)`ÑF(F)ð:é FÚøoð@B‘BÐ9ÊøÑFPF)ð*é F¹ñ¿Ùøoð@B‘B
Ñ-¿)hoð@B‘B
Ñ#°½èð½9ÉøðÑFHF)ðé Fêç9)`îÑF(F)ðé F#°½èð½80`¿0F)ðøè hoð@AˆB?ôõ­8 `¿ F)ðìèœ-ôï­Iöëà80`¿0F)ðàè-ôˮIöW@ö,fOð%Áâ80`¿0F)ðÎèêæ80`¿0F)ðÆèØøoð@AˆB?ô¯8Èø¿@F)ð¸èž-ô¯Iö…@ö,f/àŽHIòÈaK@öbxD{Dÿ÷Pº@öbIò×aÿ÷'¼@öbIòæaÿ÷!¼)ð@é(¹(Fì÷ÿ(@ðlƒ@ö(bIò¾qÿ÷¼)ðpé€F(ô$«IòÀp@ö(f%Oð
½âOð
@ö(fIòÃpqàIòÅpOð
@ö(f%ÝøTâØø@,?ô8«!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@F)ðHè ¨Fÿ÷»ZH«™xDÍé ªHFð‚ü(ñÝé€Ýé ¶ÿ÷,º@ö*bIöÖâÝøH Iö@ö)b~áIö@ö)`ràIòÞqlá)ðÂè(¹ Fì÷ÿ(@ðñ‚@ö(bIòåq¶â)ðôè‚F(ô¿¬Oð
@ö(fIòçp%$ÝøT0âIòêp@ö(`OðàIòìp@ö(`$"ÝøTùáÚø`.?ôͬ1hoð@@ÚøPB¿11`)hB¿H(`Úøoð@AˆBÐ8Êø¿PF(ðÊï ªF°ä)ðlè(¹ Fì÷®þ(@ðŸ‚@ö,bIö6aâ)ðžèF(ô­Iö8Oð@ö,`$"¸á)ðNè(¹(Fì÷þ(@ð†‚Iö;@ö,f%Oð
ÝøT×á`àJ#ùÿ''ùÿ¢ôüÿ)ðrè(
ô­Iö=Oð
@ö,f%²á)ð$è(¹0Fì÷eþ(@ðb‚Iö@@ö,fOðUá)ðRèƒF(ô+­IöB@ö,fOðOðJáÛø`.ð‚1hoð@@ÛøPB¿11`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF(ð<ï «FÝøH ÝøT娸`.ðã1hoð@@Øø€B¿11`ØøB¿HÈø
˜oð@AhˆBÐ
™8`¿
˜(ðï ÝøH åÝøTIön@ö,fOð%Oðhoð@AˆB@ð)-áæh.ð®1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ F(ðàî ,FÝøH ÝøTåçH"™xDÑø¸@kä÷äü(ð†!"Fð¶ý hoð@AˆB@ð<@ö-bIö˜fáIöµ@ö/bàIòcdÿ÷X¸IòUdÿ÷T¸Iö@ö(bÝøTàIö‰@ö,b(hoð@C˜B	Ð8(`Ñ(FFF(ð˜î*F!FÌHÍKxD{Dä÷âü UåIòKdÿ÷.¸ŸíÀQì(ðüî(
ð>˜
™Ðøä)ð²é(ð?‚F
˜oð@AhˆBÐ
™8`¿
˜(ðjî²H©"1xDOðÈòÍøh @kÍød€ï÷Íý(ð,FÚøoð@E¨BÐ8Êø¿PF(ðHî F!"ð1ý h¨B@ðˀ@öbIòIqãà›H"™xDÑø¸@kä÷Eü(ðñ€!"Fðý hoð@AˆB@ð¨€@ö"bIòiqÇàIò†p@ö$fOð$%OðÝøT
šhoð@AˆB6Ñ;àIòpOð@ö%`$àIòšp@ö&`ÝøT
šàLFÝøTIò¤q@ö#`2F‘FÚøoð@AˆBÐ8ÊøÑPFF(ðàí*F%OðOð
Z±hoð@AˆBÐ8`¿F(ðÎíÚF¸ñÐØøoð@AˆBÐ8Èø¿@F(ð¾íT± hoð@AˆBÐ8 `¿ F(ð²í-¿(hoð@AˆBѺñ¿Úøoð@AˆBÑPH2FPK™xD{Dä÷ëû ÝøH \ä8(`¿(F(ðíãç8Êø¿PF(ðˆíäç8 `@ö-bIö˜àIò^dþ÷¿8 `@ö"bIòiqà8@öbIòIq `ÝøH ÝøTôï¨ÿ÷å¸@öbIòqÿ÷Ѹ@öbIòqà@öbIòqÝøH Ýé•ÿ÷ظ &æ &7æ &hæ@ö-bIö”ëçOôbbIò7qæç@ö"bIòeqáçIòAp@öfOð$%OðÝøT
š%æIòDp@ö`5åFþ��Fÿ÷ǹÝøT‚Fÿ÷oºÝøH €FÝøTÿ÷šºÝøH FÝøTÿ÷º¿¤<eÍÍAÂ;f;2ùÿ!ùÿ ùÿý"ùÿðµ¯-é—°«NF«M"~D’}DÍé"ö„’2h›F»ñöD“’Жë„,FÐ,Ð,lÑÑé’Ûø Íé’ºñÀò€á,ðŽ€,\ÑJh’‰àØFÑøXø¯
–•ÍøPºñÀò”€Øø€”¸ñÀò—€˜ñ$Ðø„iUø$°Bð„€4 E÷Ñ$Uø$0F"ð"ú(vÑ4 EôÑ{àØF•Xø¯Íé
dºñÍé Û˜ñ%ÐøDhTø%°BJÐ5ªEøÑ%Tø%0F"ðýù(=Ñ5ªEôÑ(ðíœ(@ðƀlH,lJOðxDkMlIzDh}DyDjKŒFjIh¨¿F,¸¿&hJyD{DÍéezD”¨¿cF(ð¸ìIö6bH@ö4bbKxD{Dä÷ú °½èð½2hÑøÍøP)àÃÔ
˜Pø%ÍøP¹ñ»Ъñ
œÝé ºñ¿öl¯àÔ
˜Pø$ ±ªñ
’à(ð¼ì(rјhÝéEÝéºñPÚÐø¨@oð@COðOð
!h™B¿1!`2I3KyDÕøHˆ{DÕøüjÕøShÑøLÀñ ÍéeÍéF#FÍø(àÍé˜Íé¦Íé^àG!hx±oð@B‘B™Ð9!`–ÑF F(ðÐë(F°½èð½oð@@BÐH `¿ F(ðÂëHIömK@ö‚bxD{Dwç¨FFHª«1FxDÍé@XFðôÿ(Ô(FÝé’EF›çIö&[çIöXçIö!Uç~Öö*?þüÿh7ŽÕ«ãøÿKùÿrÕ_mýÿjùÿìøÿrùÿìøÿwÿüÿ¹äøÿYùÿðµ¯-靰ÜL“FÜJF |DzDÍéòô`öH Fõ‚`ÒøjÒø;-Òø̊Ôø ö„õŽ`õÛ`Íé¨Íé68лñNØë‹
’	•–ßèð‰tešÍéIUøŸ“¹ñ•Û
˜$ÐøØf˜ñUø$°Bð“€4¡E÷Ñ$Uø$0F"ð©ø(@ð„€4¡EóÑ(ðÀëرIö×â«ñ(ØÔø ßèði“Ñø€Íød€Ñø Íø` ÑéÍéèáŸH&ŸL»ñxDžKŸI|Dh{DyDhM¸¿&œJ}DÍø°zDÍée¨¿#F(ðPëIö!×á‘è
ñXÑø€“FUø?Íød€Œè)áÑéUø”Íé(€򈀰á‘è
ñXFUøŒèÂàÍø(€Uøh”“•@FÍø€¸ñ&Ú?à‘è
ñXÑéƒF(FPøOÍ郌è:á?õ}¯	˜Pø$(?ôv¯˜Íø(€Ðø€©ñÝø¸ñÛ
˜$Ðøpd˜ñUø$°B*Ð4 EøÑ$Uø$0F"ðöÿ(Ñ4 EôÑ(ðë(@ðt½H&½I%xD½J½KyDhzD{Dh»L–|DÍéT(ðÀêIöáGáãÔ	˜Pø$ ’*ÝИÝé
†8™ÝéS(Àò*Íø(€Õø€‘©¸ñ“%Á,Û
˜&Ðø„I˜ñUø& BÐ6°EøÑ&Uø& F"ð¥ÿ(Ñ6°EôÑàÔ	˜Pø& ºñ
Ð˜Íø` 8›Ýé
†™Ýé%
à(ðªê(@ð˜­›Ýé
†Ðø %Í™(Àòá€Íø(€Õø€‘©¸ñ“%Á8Û
˜$Ðød˜ñUø$°BÐ4 EøÑ$Uø$0F"ð\ÿ(Ñ4 EôÑàÔ	˜Pø$1›€F;ÝéaÝé%à„Óþ'–ÒFéøÿ°ùÿHéøÿqjýÿ3ýÿ(ðTêÝé
†(™Ýé2@ð¯€+%ÛÍø(€Õø€Íé2¸ñ‘•,Û
˜$ÐøHj˜ñUø$°BÐ4 EøÑ$Uø$0F"ðÿ(Ñ4 EôÑà›gàÔ	˜Pø$P±œF<Ýé
†™Ýé à(ðê(Ýé
†™ÝéÝéBeÑ,$ÑÍø(€Ðø€’¸ñ‘“(Û
˜$Ðøôf˜ñUø$°BÐ4 EøÑ$Uø$0F"ðÆþ(Ñ4 EôÑ
àÚ"à
Ô	˜Pø$`6±–›Ýø(€™šà(ðÎ靐»Hª	™«xDÍé°(Fðbý(Ô
ñX
žÝ郚èÍéƒHFSF–ðÞù°½èð½Iö!H@öˆbKxD{Dã÷Nÿ °½èð½IööïçIöïìçIöýéçIößæçIöèãç§ýÿhÑ èøÿýÿ€ùÿGiýÿ>ïøÿÕùÿðµ¯-é‘°®LšF®M#|D“}DÍé
3ö„“õc“#hºñõèf
–“2Ð*7Øë‚ßèðmSb©”%ÁPFPø¿“»ñÛ	˜
ñ&Ðø@WTø&¨BnÐ6³EøÑ&Tø&(F"ðþ(aÑ6³EôÑ(ð6éšH±Jò+œà*OÐ*ыh“KàHOðM*xDŒKI}Dh{DyDh‹N¸¿OðŠL~D’|DÍéƨ¿+F"F(ðÖèJòSvà	•Ñé•QFÍéHQøÍ镸ñ€򆀺àÑé•Íø€‹hÚø€“Íé•¬à“«%ÃPFÍéHPøÑøÃFÍø8¸ñÚ0à#hÑé•Íé•—àŸÔXø&Íø8¹ñ˜Ð˜«ñÍø€Ðø€¸ñÛ	˜
ñ&Ðø°XTø&¨B6Ð6°EøÑ&Tø&(F"ð•ý()Ñ6°EôÑ(ð¬è(@ð…€HH&HI%xDGJHKyDhzD{DhFL–|DÍéT(ð^èJò5HH@öxrHKxD{Dã÷6þ °½èð½×Ô˜Pø&P•-ÑЫñÝéÝé1¸ñ5ÛÑø°•»ñÍé"Û	˜
ñ&Ðø„YTø&¨BÐ6³EøÑ&Tø&(F"ð=ý(Ñ6³EôÑàÔ˜Pø&0±¨ñ“à(ðJè8»˜hÝ靸ñÚIF*Fð½ü°½èð½FH™«xDÍé 
ªPFðÎû(ÔÝé• F›åçJòAçJò3ŒçJò<‰ç>ζ"Éýÿ¦Ì^ãøÿŸýÿ¾ùÿ…dýÿ¦ÍVäøÿÀùÿXäøÿeýÿ‹ýÿaùÿ¥ùÿðµ¯-é—°ÙM“FÙL"}D’|DÍé"òôbÕø€Ôø¸¦+’ö„’òÄr’õ‰b
’ÍéŠ6лñEØë‹
’”ßèð‚iu^ÍéZ™FSø¯ºñ“Û˜	ñ$ÐøHTHFVø$¨Bð‚€4¢E÷Ñ$Vø$(F"ð’ü(sÑ4¢EôÑ'ðªJòq´à»ñ`лñлñÑÑø ÍøT Ñø€ÍøP€Sà¾H&¾L»ñxD½K½I|Dh{DyDh»M¸¿&»J}DÍø°zDÍée¨¿#F'ð@ïJòQq„àÑéb
ñHÑéŠ1FžhŒèáFÑé•Vø_Íé-€òŒ€áÑéb
ñHÑø€1FFVø_ŒèÁà“SøŸh•“	HFÍø¹ñÚ6àÕø€ÑéÍéêà?õ¯
˜Pø$(?ô†¯Íé˜ÐøªñÝø ¹ñÛ˜$ÐøÄW˜ñVø$¨B6Ð4¡EøÑ$Vø$(F"ðñû()Ñ4¡EôÑ'ðï(@ð܀rH&rI%xDqJrKyDhzD{DhpL–|DÍéT'ðºîJò)qrHAòlrKxD{Dã÷’ü °½èð½×Ô
˜Pø$ ’*ÑИ	™E˜Ýéc-Àò„€Öø€™F•¸ñ	‘Íé&+Û˜	ñ$Ðø„YHFVø$¨BÐ4 EøÑ$Vø$(F"ð•û(Ñ4 EôÑàÔ
˜Pø$€¸ñ	НKFÍøP€=˜š	™žà'ðšî(qјKFš	™Ðø€˜ž-=ÛÖøÍé1¹ñÍéR(Û˜$ÐøôV˜ñVø$¨BÐ4¡EøÑ$Vø$(F"ðPû(Ñ4¡EôÑ
àÔ
˜Pø$@±ž‚F>˜šÝé1à'ðXî(˜Ýé1Ýéb$Ñ.ÚCFÍø ð‚û°½èð½:˲FH
™
ªxDÍé°F«ð×ù(Ô
ñH
 FšèßçJò<q;çJò7q8çJò'q5çJò0q2翂+ýÿ^Éàøÿþ,ýÿvùÿ=aýÿxÊ(áøÿ’ùÿ*áøÿSbýÿ.ýÿHÞøÿ]ùÿ¿¿ðµ¯-遰-틜°›FiL iK»ñ|DÍé{Dö„&hõWp“Íé`Ð낳*Ð*FÑÑé¦ÛøÍ馹ñÀòҀð¸*fÐ*6ÑNh–bàØFÑø XøŸ•ÍøP ¹ñmڼàØF¨XøŸp9ñ’Û˜ñ%Ðø\CVø% BIÐ5©EøÑ%Vø% F"ð…ú(<Ñ5©EôÑ'ðœíš(Að"‚:H*:LOðxD9N|D9Mh~D9K}D9Ih¨¿&F*¸¿Oð6LyD{D’|DÍéƨ¿+F"F'ð@íJöŒQ0HAòC/KxD{Dã÷û ð£»&hÑø ÍøP `àÄÔ˜Pø% ÍøP ºñ¼Щñ	Ýébœ¹ñOÛØø€”¸ñ’;Û˜ñ%Ðø„iTø%°BÐ5¨EøÑ%Tø%0F"ðú(Ñ5¨EôÑ!à Ô˜Pø%`æ±–©ñ	šœà¿:ǰ‚Æq^ýÿzùÿ*Ýøÿ‚ùÿÝøÿ=ýÿ»ùÿgùÿ'ðí(A𙁜š&h¹ñ€ò7‡–&PF–Íéf(ðèF0ð†«H£FxD€FÀjÐø´ÐøA ˆGF@òÍéPF"# G(ðò…‚Fhoð@A•ˆBÐBÊø ŠBÐ(Êø¿PF'ð$ì˜!‘Ðø¼Whêh)F'ð’í(ðá…Fhoð@AˆB¿0 `”`h‚l˜*Ðøx Fð߅G(ðà… hoð@AˆBÐ8 `¿ F'ðöë˜!‘Ðø¼Ghâh!F'ðdí(ð̅Fhoð@AˆB¿0ÉøÙøÍø8€‚l˜*ÐøtHFðąGF(ðŅÙøoð@AˆBÐ8Éø¿HF'ðÂëeHqhxDhB𷅠$™‚ÍéJÑø‘©1
‘¡ë€0Fî÷û,¿!hoð@B‘B@ðjƒ(ðº…0hoð@AˆBÐ80`¿0F'ð’ëÝød€™ØøˆB𳅠&
™Bœ¡ë€@FÍédî÷ñú.F¿0hoð@AˆB@ðHƒ hoð@AˆB@ðNƒ -ðTƒØøoð@AˆBÐ8Èø¿@F'ð\ë3H\FxDh 1IµByD‘¿h…BѨ°ú€ð@	à h…B÷Ð(F'ðâë(ñu‡)hoð@B‘BÐ9)`ÑF(F'ð4ë F\F(@ð}…™$hÚø¥B‘	”–Ð'ðêë
lÐø€¸ñ¿ E'Ñ@h(õÑOð	OðOð3àF'ðŒë(ð
€F 'ðLëF .ð
€ô`Íéªà¿(rÄbÃZÃØøoð@@B¿1ÈøØøÙøB¿HÉø@F'ð,ìƒF˜Ðø,Hhâh!F'ðJì(ð¼…Fhoð@AˆB¿00`–ph‚l˜*Ðøà0F𷅐GF(ð¸…0hoð@AˆBÐ80`¿0F'ð¬ê`h&™–ˆB𱅠
™BÍée¡ë€ Fî÷ú.F¿0hoð@AˆB@𔂠-ðš‚"hoð@A˜ŠBÐQ!`Ñ F'ð€ê˜'ðþê(ð©…F 'ð¾ê(ð·…F ÆéT¹ñÍé¿Ùøoð@AˆB@ðx‚¸ñ¿Øøoð@AˆB@ðv‚»ñ¿Ûøoð@AˆB@ðH‚˜Ðø¼Whêh)F'ð¾ë(
–ð·„Fhoð@AˆB¿0 `”`h‚l˜*Ðøì F𵄐GF(ð¶„ hoð@AˆBÐ8 `¿ F'ð ê˜Ðø¼Whêh)F'ðë(ð¤„Fhoð@AˆB¿0 `”`h‚l˜*ÐøD F𡄐GF(𢄠hoð@AˆBÐ8 `¿ F'ðòéÙø$™”ˆB𓄠
™‚–ÍéA
™¡ë€HFî÷Qù,€F¿ hoð@AˆB@ðƁ0h!‘oð@AˆBÐ80`¿0F'ðÆé¸ñð“„Ùøoð@D BÐ8Éø¿HF'ð¶éØø"™’ B¿0Èø’ËjØøØéÓøx2˜G-Íø €Àò܁Úø‚l˜*ÐøÈPF𶅐GF(ð·…`hOð™ˆB@ð3ƒæh.ð/ƒ1hoð@@¥hB¿11`)hB¿H(` hoð@A•ˆBÐ8 `¿ F'ðhé",F
˜Íéh ë‚ Fî÷Ñø.F¿0hoð@AˆB@ðzÝø €-ð€ hoð@AˆBÐ8 `¿ F'ðDé˜"Ðø(F'ðêž(ði…F(hoð@AˆBÐ8(`¿(F'ð,é ´B¿˜h„BѠ°ú€ð@	à	˜„B÷Ð F'ð¸é(ñ†!hoð@B‘BÐ9!`ðC!(‘ðH˜Ðø¼Whêh)F'ðxê(ð©…Fhoð@AˆB¿0 `”`h‚l˜*Ðøì F𭅐GF(𮅠hoð@AˆBÐ8 `¿ F'ðÚèÙø$™”ˆB𠅠
™BÍéJ¡ë€HFî÷;ø™)¿
hoð@CšB@ð:‚!(‘ð¯…Ùøoð@A	œˆBÐ8Éø¿HF'ðªèÝøh¡Eðû…˜@k(ðȅÙø ‚Bðñ…Òø¬0+ðЅ™h)Û3h†Bðä…39øÑÝKÝI{DÒhyDhÃh0h'ðòè$Jö¤{Aòè&Oð	 ˜(¿hoð@B‘B@ðõ˜(¿hoð@B‘B@ðò˜(¿hoð@B‘B@ðñ¿Ùøoð@AˆB@ðë.¿0hoð@AˆB@ðë,Ýø¿"hoð@AŠB@ð聹HYF¹K*FxD{Dâ÷Šþ ðê¾9!`ô’¬F F'ð.è(F‹ä80`¿0F'ð&è hoð@AˆB?ô²¬8 `¿ F'ðè -ô¬¬$Jö#kAò±ð½8 `¿ F'ðè2æ8Ëøô³­XF&ðþï®å80`¿0F&ðøï -ôf­œJöža,@ð2ƒ=ã8Éø¿HF&ðäïå8Èøô…­@F&ðÚï€å80`¿0F&ðÔïÝø €-ô€®$Jöv{ð˼F F&ðÆï(F!(‘ô¸®˜Ðø¨P˜nhÐøE0F!F'ð\ê(ðF@hÐøˆ03±XF)F2F˜GƒFH¹èãÛøoð@AˆB¿0Ëø˜Ðø¨P˜nhÐøüD0F!F'ð:ê(ðكF@hÐøˆ0K±HF)F2F˜G(ퟄ�F@hàÙøoð@B‘B¿1Éø™$”ˆB@ð"ÙøP•-ð)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HF&ðPï"±F
˜ÍéT ë‚HFí÷¹þ™)¿
hoð@CšBaѝ!(‘ðŽƒÙøoð@D BÐ8Éø¿HF&ð*ï˜Íø4°Íø h¡BÐ9`¿&ðï 'ð ê˜Ýø<°(RÛ-Kݘ·î›Ýø8 OêÅ	ñ$Ÿí‹°îH«ÐFµì0FSì+'ðZêAì»ñ:ìïщî
Ýø<°@FYFí9 î ì÷јë	
D˜„BÖÛà:
`šÑFF&ðÔî F”翾½îùÿ¡ùÿMùÿ™ (DˆBüÛ˜'ðLê
ž™phÑø˜[l,ðƒÜHxD'ðèÝé¨(@ð(ƒ0F)F" GF'ðè,ðƒ0hoð@AˆB@ðƒ,ð%ƒ hoð@AˆBÑOð	ð9½8Oð	 `@ð3… F&ð†îð.½:
`ô­FF&ð|î F»å9`¿&ðtîæ9`¿&ðnîæ9`¿&ðhî
æ8Éø¿HF&ð`îæ80`¿0F&ðZî
æQ!`¿ F&ðRîæ"&èä%"ýæ$Jö×[Aò­à$Jöá[Aò® Oð	Oð
Oð
¾å&ðÜî(@ðæ…(Fê÷ý(@ð+†$Jöð[Fà&ðï(ô ª$Jöò[<à&ðÂî(¹ Fê÷ý(@ð†$Jöõ[/à&ðöîF(ô;ª$Jö÷[Aò±&&àôh,?ôEª!hoð@@µhB¿1!`)hB¿H(`0hoð@AˆBÐ80`¿0F&ðæí .Fÿ÷+º$JökAò±Oð	Oð 
]娸`.?ôHª1hoð@@Øø@B¿11`!hB¿H `Øøoð@A”ˆBÐ8Èø¿@F&ð¶í  Fÿ÷*º\H"™xDÑøô@kâ÷¼û(ða…!"F%ðŒü hoð@AˆBÐ8 `¿ F&ð”í$•Jö6kAò²&­ç&ð2î(@ðH…(Fê÷qü(@ð†…$Jö
{Nà&ðbîF(ôJ«$Jö{Cà&ðî(@ð3…(Fê÷Vü(@ðn…$Jö{3à&ðFîF(ô^«$Jö{)àÙø@”,ð&…!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@A•ˆBÐ8Éø¿HF&ð4í ©Fÿ÷G»$Jö'{Aò¾&Oð	OðªäH«)FxDÍé ªXFðbù(ñ;‚Ýé¦ÿ÷¸¸&ðºí0¹ Fê÷ûû(@ð…Jö‡aYà&ðìíF(ôHª Jö‰a/àDüøÿT#.ýÿæh–.ðɄ1hoð@@¥hB¿11`)hB¿H(` hoð@A•ˆBÐ8 `¿ F&ðÖì ,Fÿ÷-ºž Jö¢aþ±0hoð@BBÐ80`Ñ0FF&ð¾ì!FàJö¤a hoð@BBÐ8 `Ñ FF&ð®ì!F ˜&–(¿hoð@CšB@ð»€ðHAòºïKxD–{Dâ÷èú
˜©ª«â÷xý(Íø vÔèHihxDhB@ð„*hoð@A˜ŠB¿Q)`&ðüì(𖄁F &ð¼ì(ð„FÀø(F!F&ðZï(ð„F(hoð@IHEÐ8(`¿(F&ð\ì hHEÐ8 `¿ F&ðR옝(¿hoð@B‘B@ð݀˜$”(¿hoð@B‘B@ð؀˜”(¿hoð@B‘B@ðԀ
˜lhÁø€!‘(¿hoð@B‘B@ðˀ-¿(hoð@AˆB?ôĩ8(`ô)(Fÿ÷9¼^F$JöËkAò» Oð	
˜lhÁø€(¿hoð@B‘B@ð˜(¿hoð@AŠB@ð.¿2hoð@AŠBÐQ1`Ñ0F&ðèëOðž
æ:`ôA¯F&ðÞë!F;ç&ðÂìF(ôIª$Jöb{OôU‹à$Jöz{Ëà$Jö'kAò±&åå…H!FxDhh&ðTï$KòÃAò%ÿ÷9»H!F]FxDhh&ðFïOð	KòÅà]FKòÙ*hoð@AŠBÐQ(F)`Ñ&ðšë$Aò%‘à0F)F"&ðúìFÝé¨0hoð@AˆB?ôî¬à&ð.ì(ð`ƒ$0hoð@AˆB?ôá¬80`¿0F&ðvë,ô۬$KòbAò%ÿ÷ïº9`¿&ðfëç9`¿&ð`ë!ç9`¿&ðZë%ç9`¿&ðTë.ç&ðúë(@ð5ƒ(Fê÷9ú(@ðWƒ$Jö‰{Aòè &Oð	â&ð"ìF(ôRª$Jö‹{ÿ÷³ºÙø@”,ðƒ!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HF&ðë ©FÝø €ÿ÷9º$Jö {Aòè&ÿ÷ˆº$Jö|{OôUÿ÷~º$Jö[kAò·&å$Jö]kAò·&Oð	Oðå9`¿&ðäêãæQ`¿&ðÞêææJö|Qþ÷¾HIxDyDhh&ð¸êÿ÷MºJöpQþ÷ý½JöwQþ÷ù½F™±Ñø€BúÑà¿_ûøÿ	ÿøÿøµ´´p²â½øÿêIyD	hˆBôª Ùø°oðëŘškDŸíâYDí8:0îí¡ñôѵî@ñîú@ó5˜“Ðø¨P˜nhÐøE0F!F&ð&í(Íøð¥AhÑøˆ0#±)F2F˜G8¹¢áhoð@AŠB¿Q`˜Ðø¨P˜nhÐøüD0F!F&ðí(𑁁F@hÐøˆ0k±HF)F2F˜G(ퟰ�F@h™$ˆBÐiáÙøoð@B‘B¿1Éø™$ˆB@ð\ÙøP-ðW)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HF&ðê"±F
˜ÍéT ë‚HFí÷ƒù-¿)hoð@B‘B@ð!(‘ðDÙøoð@D¡B	Ð9ÉøÑFHF&ðòé(FhÍø ¡BÐ9`¿&ðæé &ðjí˜Ýø8(S۩ñ
ñè·î‹	!˜ñ˜ êàp0à˜™Ýø8D
˜ëÁ€í›	˜D˜B0ڰîH›˜Ýéµ‘Íø8»ñåАíñ0Fñ
Sì+•í	ñí&ðæìAì@F8î@)î)í¡F•íUFµî@ñîú×ѿç˜&ðíž™phÑø˜[l,ðՀÓHxD&ðÐêÝø €(Ýéš@ðí€0F)F" GF&ðÊê,ðë€0hoð@AˆB@ðʀ,ðЀ hoð@AˆBÐ8 `?ôͪØøoð@AˆB¿0Èø@F
ºñ¿Úøoð@B‘B(Ѹñ¿Øøoð@B‘B)ѹñ¿Ùøoð@B‘B*Ñ-¿)hoð@B‘B-Ѹñ¿Øøoð@B‘B-Ѱ½ì‹°½èð½9ÊøÒÑFPF&ðé FÌç9ÈøÑÑF@F&ðé FËç9ÉøÐÑFHF&ðüè FÊç9)`ÎÑF(F&ðôè FÈç9ÈøÍÑF@F&ðêè FÇç9)`ôݮF(F&ðàè FÖæ%"Âæ6²}H!FxDhh&ðfì$Jöé{=àyH!FxDhh&ðZìOð	Jöë{àJöÿ{šoð@AhˆBÐ8`ј&ð°è$Aòò&Ýø €ÿ÷0¸0F)F"&ð
êFÝø €Ýéš0hoð@AˆB?ô6¯80`¿0F&ð’è,ô0¯$Kò˜Aòò&Oð	ÿ÷
¸$0hoð@AˆB?ô¯äç&ð"é(mÐ
ñ
Ýø €$šè@0hoð@AˆB?ô
¯Òç(F^F&ð^ë(yÑ$Jö×kAò¼Nä^F•$JöÛkAò¼ÿ÷J¼^F•Oð	JöàkAò¼ÿ÷@¼ $Jöð[Aò±Uå$Jö2kÿ÷¯º $Jö
{à $Jö{Aò¾&Oð	Oðþ÷²¿$ ÿ÷ôº& ÿ÷N»)H*IxDyDhh&ðè–ä $Jö‰{Aòè&Oð	aç$ ûäHIxDyDhh%ðêïˆç]FQäFþ÷Fþ÷¼Fþ÷½½Fþ÷è½Fþ÷*½FÝø €þ÷ø¾F˜³F&ðfè(ôj«^F•$JöÙkAò¼ÿ÷̻¿@®*®ÖñøÿԬ”Îøÿ­ÄÎøÿðµ¯-é™°rLƒFrM |DÍé}D&hö8õkpõ.`0F”–––•Íø°ƒ±ë‚’±*9јFhXø¯ªñ»ñòԀ`à*+ÑhÒà˜F‘FXø¯”ºñÛ˜›Fñ$ÐøàZFVø$¨B7Ð4¢EøÑ$Vø$(F"ðý(*Ñ4¢EôÑ&ðè(JFAðk€GH&GIxDGLGKyDh|D{DhEM’"F}DÍée%ðÈïKòøAHAò"AKxD{Dá÷ ý °½èð½ÖÔ˜Pø$(ÐМªñ
JF[Fªñ»ñqØØø`ñ	Íé
$.“Û˜$hYø$¨BÐ4¦BøÑ$Yø$(F"ð¨ü(Ñ4¦BôÑàÔ˜Pø$±ÚFà%ð¶ï(Að>€ºñ"ÛØø`.5Û˜$hYø$¨BÐ4¦BøÑ$Yø$(F"ð}ü(Ñ4¦BôÑàÔ˜Pø$ȱªñ
›Ýé
$à¿"¬˜|«4Âøÿì-ýÿô¶øÿhôøÿ¦Øøÿyôøÿ%ðtï›(Ýé
$@ðù‡ºñ€òl†œoð@@Ýø\!hB¿1!`ÙøB¿HÉøÕø¼g˜
(h1Fòh&ð è(ð?…Fhoð@AˆB¿0(`hh‚l˜*ÐøŒ(Fð@…G€F(ðA…(hoð@AˆBÐ8(`¿(F%ð„îäHØøxDhBð@… %©Bñ
ÍéTªë€@Fì÷áý-F¿(hoð@AˆB@ðŒ.ð’Øøoð@E¨BÐ8Èø¿@F%ðTî h¨BÐ8 `¿ F%ðLEÈHxDÍé	`fÐÙøikˆB@ð7…
˜ÀjÂIÐøx$yDHFG0ðO…ÙøÕøh‚lHF*ðK…GF(ðL…ph‚l˜*Ðøh0FðH…G€F(ðI…(FAF"%ðâî(ðJ…F(hoð@F°BÐ8(`¿(F%ðîØø°BÐ8Èø¿@F%ðøí¡H	žxDh„BnОIyD	hŒB¿™ŒBfÐ F%ð†î(ñ*…!hoð@B‘BdÑlàphÕø\‚l0F*ðW†GF(ðX†˜h%ðÔî(ðZ†Õøt"€FÕø0%ðšî(ñ`h)FÓFÑø l-ð[†‚HxD%ð
ï(@ð]† FQFBF¨GF%ðïªF-ðX† hoð@E¨BÐ8 `¿ F%ð˜íØø	ž¨BÐ8Èø¿@F%ðŒí˜oð@Ah(hˆB@ðû€ÐFÚFÿà °ú€ð@	!hoð@B‘BÐ9!`ÑF F%ðrí(F(@ð¹„(FÕø¼Whêh)F%ðÜî(ðфFhoð@AˆB¿0 ``hÕø`‚l F*ðфG€F(ð҄ hoð@AˆBÐ8 `¿ F%ð@í %ð†í(ð̈́ÙøFoð@@ÓFB¿1ÉøÄø1hB¿H0`&a%ð.î(ðÄÕøD)‚FÕø%ðôí(QÔØøl-ðô„2HxD%ðhî(@ðö„@F!FRF¨GF%ðfî-ð(…Øøoð@F°BÐ8Èø¿@F%ðöì h°BÐ8 `¿ F%ðììÚøoð@D	ž BÐ8Êø¿PF%ðÞì(h BÑÈFÚFVà8(`¿(F%ðÒì.ôn®Aòn"KòQ,&	”ð_¼Aòx"Kòç,%ËF à8ÈF(`4à¿ô©Aýÿš¨’¨HêøÿéøÿAòq"Kòm,%Oð
 ³F hoð@AˆB	Ð8 `Ñ FdFF%ð–ì2F¤F(FUF&Íø°‚F-@𪁷á8(`ÐFÚF¿(F%ð‚ì˜
™ÝøBÍø€ðñÕø¸G(hâh!F%ðèí(ð+„ƒFhoð@AˆB¿0ËøÕø¼G(hâh!F%ðÖí(ð&„€Fhoð@AˆB¿0ÈøØøÕølÍø<°‚l@F*ð6„GF(ð7„Øøoð@AˆBÐ8Èø¿@F%ð4ìÙø™ˆBð.„ %Ýø€ªë€BHFÍéXÓFì÷•û-‚F¿(hoð@AˆB@ð'‚ºñð-‚Ùøoð@AˆBÐ8Éø¿HF%ðìž™phˆBð2„$ 
™‚ÍøL ÍéA«ë€0Fì÷hû,F¿ hoð@AˆB@ð
‚Úøoð@AˆB@ð‚-ð‚0hoð@AˆBÐ80`¿0F%ðÖë(Fð!úF0ÚFÑ%ðvì(@ðل(hoð@AˆBÐ8(`¿(F%ðÀë”™ØøÑø8‚l@F*ð„GF(ð„(Fð~û0Ñ%ðPì(@ðº„(hoð@AˆBÐ8(`¿(F%ðšëØø‚l˜*Ðøh@Fð냐GF(ð샙(F"#	ðÈÿ(ðèƒF(hoð@AˆBÐ8(`¿(F%ðvë FðDûF0Ñ%ðì(@ð‡„ hoð@AˆBÐ8 `¿ F%ð^ëØøÕøü‚l@F*ðÐG(ðă™"#ƒFOð		ðÿ(ð¾ƒFÛøoð@AˆBÐ8Ëø¿XF%ð8ë(FðûF0Ñ%ðØë(@ðS„(hoð@AˆBÐ8(`¿(F%ð"ë
˜©ÀjÐø¬!@FG(ð–ƒF˜œB–‘ða„àj(𩃙Jh‚BðX„Òø¬0+ð	„™h)Û3h†BðK„39øÑÝKÛI{DÒhyDhÃh0h%ð^ëAò–"KòrL&Oð
Oð u±(hoð@AˆB	Ð8(`Ñ(FdFF%ðÔê*F¤FOð	¸ñÐØøoð@AˆB
Ð8ÈøÑ@FdFF%ð¾ê*F¤FÝø<°Ýø€»ñÐÛøoð@AˆB
Ð8ËøÑXFdFF%ð¦ê*F¤F¹ñ¿Ùøoð@AˆBQÑÁHaFÁKxD{Dá÷åø .ðº1hoð@B‘Bð´ð¸phœ‚l0FÔøl*ðbƒGƒF(ðcƒÔøXF"%ðDë(ð_ƒFÛøoð@AˆBÐ8Ëø¿XF%ðbê§HxDh…B ЦIyD	hB¿™BÐ(F%ðòê(LFñEƒ)hoð@B‘BÑà8Éø©ÑHFdFF%ð@ê*F¤F¡ç(LF°ú€ð@	)hoð@B‘BÐ9)`ÑF(F%ð,ê0F(iИ€Eð€hk(ðVƒØø ‚Bðv€Òø¬0+ðW€™h)Û3h†Bði€39øÑ}K~I{DÒhyDhÃh0h%ðpêAò|"Kò1Oð
wHxKxD{Dá÷Fø ð¹8(`¿(F%ðìéºñôӭOð
KòLAò‘"&ðVº8 `¿ F%ðØéÚøoð@AˆB?ôí­8Êø¿PF%ðÊé-ô歳FOð	Kò4LAò‘"ðOº`h‚l˜*Ðøp Fðõ‚GƒF(ðö‚Ûø™ˆB@ð®‚Ûø@,ð©‚!hoð@@ÛøPB¿1!`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF%ðŠé «Fªë€BXFÍéHì÷ôø,¿!hoð@B‘B
Ñ(Að~€Oð	Kòà<AòŽ"ðÿ¹9!`ñÑF F%ðhé(Fëç%ðê(¹0Fé÷Mø(Að–‚Aòn"Kò:!Oð
	”ÈFXç%ð:ê€F(ô¿ª Kò<,Aòn"OðOð
&Íø	”]æÆæøÿ–¢ØøP-?ô»ª)hoð@@Øø`B¿1)`1hB¿H0`Øøoð@AˆBÐ8Èø¿@F%ðé °Fÿ÷žº0Ïøÿëøÿr¡l¡¼ ìäøÿòÍøÿÅéøÿíH"ÕøøOð
xDÀkà÷ÿ(ðí!"Fðâÿ hoð@AˆBÐ8 `Ñ F%ðêèAòt"Kò•!ÈFèæAòu"Kò§!Zà%ðÄéF(ô´ªAòv"Kò°!Oà%ðºé€F(ô·ª Kò²,Aòv"Oðà Kò´,Aòv"Oð
&Íø×åAòv"Kò·,=àÅH"ÕøüOð
xD@kà÷½þ(ð¡!"Fðÿ hoð@AˆBÐ8 `Ñ F%ð–èAòw"KòÆ!ÈF•æ%ð6é(¹(Fè÷xÿ(AðāAòx"KòØ!Oð
ÈF„æ%ðfé€F(ô.«Aòx"KòÚ,%ËFOð
Oðÿ÷¬»Aòx"KòÝ,& ÍøOð
Oð	’åAòx"Kòå,%ËFOð
ÿ��H®!FxDÍé ªF3Fð’ü°ñÿ??÷…©Kòëÿ÷ì¸%ðèè(¹ Fè÷*ÿ(AðzAò‘"KòA7æ%ðÚè(¹ Fè÷ÿ(AðoOð	KòLAò‘"Oð
&Ýø€jå@F!FRF%ð‚éF(ô«Aòx"Kòè,ÿ÷M»%ðöèF(ôɫAò‘"KòL&Oð
Oð	3åÙøPÝø€-ðû€)hoð@@Ùø@B¿1)`!hB¿H `Ùøoð@AˆBÐ8Éø¿HF$ðÞï ¡Fÿ÷°»%ð€èAòx"Kòè,(ô«UF”àôh,?ôʫ!hoð@@µhB¿1!`)hB¿H(`0hoð@AˆBÐ80`¿˜$ð´ï .Fÿ÷°»%ð–èF(ôú«Aò’"KòCA§å%ðŠèF(ô¬Aò“"KòPAœå KòRLAò“"½à%ðxè(ô<¬Aò”"Kò`A‹åKòbLAò”"ð¸Aò–"KòpA€å%ðdèF(ô¨©Aòq"Kòi!Oð
Ýø@€såAòq"Kòk,%Oð
Oðÿ÷¾ºHIxDyDhh$ðDïlä FQFBF%ð¾è‚F(ô®©Aòq"Kòn,ÿ÷£º$ðòï(OðAòq"Kòn,OðOð
³Fô˜ªHªFIeFxDFyDhh$ðï2F¬Fÿ÷hº¿øRÊýÿ†›ø¦øÿ0›î¼øÿ%ðèƒF(ô¬Aò{"Kò1åOð	Kò<Aò{"ðš¿Aò{"Kò<&Oð
ÿ÷¼KòÞþ÷¦¿ $påF)@ÐÑø€BùÑAà Kò8LAò‘"à KòELAò’"àOð	KòULAò“"£Fðk¿ KòeLAò”"OðOð
&ÿ÷í»Kòæþ÷s¿ßHßIxDyDhh$ðªî¿ä$ð¦ïƒF(ô
­AòŽ"KòÌ1¸ä×IyD	hˆBô¸«˜%ðlè(ퟘ�F˜AhŠlÔøÔ*🃐GF(ð ƒhhÍø4‚l˜*Ðø¤(F𠃐GƒF(ð¡ƒ(hoð@AˆBÐ8(`¿(F$ð€î½HxDhƒE=мIyD	h‹E¿™‹E5ÐXF$ðïF(ñƒÛøoð@AˆBÐ8Ëø¿XF$ð`î˜Ðø¨PƒF˜lhÐø‘ F%ðüèFÍø@€ñð†ƒÙøÐøˆ0K³HF)F"F˜GF(˜+Ñ~ã«ë°ú€ðF	Ûøoð@AˆBËÑÑç¹ñðăÙøÐøˆ0+ð…HF)F"F˜GF(˜@ퟘ�ãÙøoð@AˆB¿0Éø˜Ûø¨@Ðøüfh‹F0F%ð²è(ðMƒF@hÍøÐøˆ0s±(F!F2F˜G(ðFƒF@h™Oð	ˆB
ÐÉâ)hoð@B‘B¿1)`™Oð	ˆB@ð½‚ìh,ð¹‚!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F$ðÈí"5Fªë‚(FÍéIë÷2ý,¿!hoð@B‘B@ðž(ðƒ)hoð@D¡BÐ9)`сF(F$ð¦íHFh¡BÐ9`¿$ðžíÖéˆB€òɀ˜A
˜‘EBAC˜ñ	‘àpiÖøÖø˜"0paDÆø˜ÖéˆB€ò¯€˜Öø˜¢(Ñ˜Ýø4°(?Ô˜œ
ëHF"F#%ð<éûð<ZøÈø1hJøØø0`.D`êÑ%à˜("Ô˜ž
ëHF2F#%ðé
™û«@FÝø<€BFYF$ðÜéXF!FBF$ðØé™BF FÝø@€$ðÐé>,DpàÑžÖé1ñ`(ŸЖøœq±Öé¥
šÀi’l*Oðȿ "€XDÆø˜—ç(ѰiÖø˜ˆB-ÚÖø0Öø˜"°aPÆø˜†çRšĥøÿ@𮙍™(?õz¯ë€JiÑø”0šBÛ"(JaÖø˜"Ñø”¢ëÆø˜ ñFéÜbçpi$ÖøÖø˜!0Öø˜2ÆéˆDÆø˜Rç2JaÑøÖø˜¯çœ`hl˜-Ðø˜›ð,‚çHxD$ðî(@ð>‚ FIF"¨GF$ðî-ð<‚ hoð@AˆB@ð!‚-@ð“‚$â9!`ôñ®F F$ð¤ì0FêæÙøoð@AˆB¿0Éø˜Ûø¨@Ðøüfh‹F0F$ð6ï(Íøð2‚F@hÐøˆ0K±(F!F2F˜G(ð-‚F@hà)hoð@B‘B¿1)`™Oð	ˆB@ð¥ìh,ð¡!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F$ðRì"5Fªë‚(FÍéIë÷¼û,¿!hoð@B‘B@ðž(ðð)hoð@D¡BÐ9)`сF(F$ð0ìHFh¡BÐ9`¿$ð(ì$ð®ïÖéœˆB€òŀ˜Ýø4A
˜‘AC@B˜ñ‘ãFàpiÖøÖø˜"0paDÆø˜œÖéˆB€ò¦€˜Öø˜¢(ј
ž(@Ô˜œ
ë`F"F#$ð¾ïpC<ÜFZøÈø)hJøØø(`˜D`éÑ%à˜("Ô˜ž
ë`F2F#$ð ï	û¨˜*FAF$ð`è@F!F*FÝø@€$ðXè FAF*F$ðTè˜>ÜFDpàÑžÖé1ñ`(žЖøœœq±Öé¥
šÀi’l*Oðȿ "€XDÆø˜–ç(ѰiÖø˜ˆB#ÚÖø0Öø˜"°aPÆø˜…ç(?õƒ¯ë€JiÑø”0šBÛ"(JaÖø˜"Ñø”¢ëÆø˜ ñFéÜkçpi%ÖøÖø˜!0Öø˜2ÆéˆDÆø˜[ç2JaÑøÖø˜¹ç˜$ðæîÝøÔø˜KÙøl-ð+HxD$ð ì(@ðmHF!F"¨GF$ðžì-ðlÙøoð@AˆB@ð-@ðBá9!`ôì®F F$ð(ë0Fåæ"$]åH"ÔøxD€là÷/ù(ð„!"FOð
ðÿù hoð@AˆBÐ8 `Ñ F$ðëAòš"Kò”L¤à$ðèëF(ô`¬Aòœ"Kò¦L—àjØøÿvÕøÿ6õ$ðÖëƒF(ô_¬ Kò¨LAòœ"OðOð
žþ÷ý¿Íø<°Aòœ"Kò«LOð
žOð	Ýø<°Ýø€»ñô¨ÿ÷%¸"$uæ‡H™xDhh$ðVîAòž"Kò·LZà‚HYFxDhh$ðJî%Kò¹DàÝøKòÍDÙøoð@AˆBÐAÉøÑHF$ðžêAòž"^à FIF"$ðþëF hoð@AˆB?ô߭8 `¿ F$ðˆê-lÑAòž"KòQ—à% hoð@AˆB?ô˭êç$ð ë(ð…ƒž%Ýø@€ hoð@AˆB?ô»­Úç[H™xDhh$ðúíAò§"Kò&\Oð
Ýø€žþ÷½¿SHYFxDhh$ðèí%Kò(TàKò<T˜oð@AhˆBЙ8`ј$ð>êAò§" Oð
žOð¤F-~ôP¯þ÷]¿HF!F"$ð’ëFÙøoð@AˆB?ôí®8Éø¿HF$ðê]³(hoð@AˆBÐ8(`¿(F$ðê@F$ðdìÝø€oð@AOð
ØøˆB¿0Èø@F1hoð@B‘Bð"91`@ðF0F$ððé FáAò§"Kò‡QHKxD{Dà÷5øÝø€Oð
 1hoð@B‘BáÑá%Ùøoð@AˆB?��ç$ðvê(ð䂞%Ýø@€Ùøoð@AˆB?􋮜çF‰±Ñø€BúÑà¿"’
’j‘F‘нøÿ£ÙøÿîIyD	hˆB~��ø €ð`hÕøp‚l F*ð쁐G(ðíØøÕøð‚l@F*ð遐GF(ðê$ðŠê(ðîÕø” €FÕø0$ðPê(ñ­Ùø,Fähl-ðéÑHxD$ðÂê(@ð‚HF!FBF¨GF$ðÀê-ðòÙøoð@D BÐ8Éø¿HF$ðP騸 BÐ8Èø¿@F$ðDéÝø<°™ÛøˆB@ðÛø@Ýø€,ðՁ!hoð@@Ûø`B¿1!`1hB¿H0`Ûøoð@AˆBÐ8Ëø¿XF$ðé ³Fªë€BXFÍéEë÷„ø,¿!hoð@B‘B@ðS)hoð@B‘BÐ9)`ÑF(F$ðüè F(ðƒÛøoð@D¡BÐ9ËøÑFXF$ðêè(Fh¡BÐ9`¿$ðâèOð
Øøoð@AˆB¿0Èø@Fºñ¿Úøoð@B‘BÑ	›+¿hoð@B‘BÑØøoð@B‘BÐ9ÈøÐ°½èð½9ÊøåÑFPF$ð®è Fßç9`äÑFF$ð¦è FÞçF@F$ð è F°½èð½
˜!BòÀjÐø´1@F˜G(ð1F˜ž…BÐqk(Fð‡ü(ðS`hÖøp‚l F*ð#GƒF(ð$hh‚l˜*Ðøð(Fð"GF(ð#$ðné(Íø<°ð%ž€FÖøt"Öø0$ð0é(ñ–€ñh FBFß÷dþ(ð$F hoð@F°BÐ8 `¿ F$ðBèØø°BÐ8Èø¿@F$ð6èž™phˆB@ðôhÝø€,ð!hoð@@¶hB¿1!`1hB¿H0`Ýø<°oð@AÛøˆBÐ8Ëø¿XF$ðè ªë€B0FÍéI³Fê÷xÿF FÜ÷úÙøoð@AˆBÐ8Éø¿HF#ðôï.ðрÛøoð@D¡BÐ9XFËø¿#ðäï0h BÐ80`¿0F#ðÚï
˜ÀjÐø¸(FˆGIyDŠj*@𼀪Fìæ*¸ÑøÿAò‹"Kòš<&Oð
þ÷ó¼Aò‚"KòH<Oð
Ýø°þ÷»9!`ô©®F F#ð®ï0F¢æ$ð’è(ô®Aò‹"Kò”1þ÷¤½$ð†èF(ô®Oð	Kò–<Aò‹"Oð
àOð
Kò˜<Aò‹"&Ýø€Ýø<°þ÷мHF!FBF$ðèèF(ô®à $Ýø€\æOð	Kò²<Aò‹"Oð
&þ÷¶¼$ðè(ðˆ€Aò‹"Kò›<›ç $DæOô”RKò51þ÷[½$ð>èƒF(ôܮAò‚"KòB1ªFþ÷P½$ð0èF(ôݮOð	KòD<Aò‚"ªFþ÷¿Ýø°Aò‚"KòF<Oð
Oðþ÷ºOô”RKò7<ÿ÷$¸Aò‚"KòI<hç $Ýø€çOð	Kò`<Aò‚"ªF&þ÷a¼ $ç(;ѪFÝø€,æAòt"Kò‘!ÈFþ÷½Aòw"KòÂ!ÈFþ÷½ %þ÷кAòš"KòLÝø€Oð
žþ÷U¼HIxDyDhh#ðÐîqäHIxDyDhh#ðÆîåHIxDyDhh#ð¾înçÈl!"ð½ýÝø€Aò‡"Kò{1ªFþ÷̼Fþ÷'¸	žFþ÷f¹ƒFþ÷Xº€Fþ÷hº¿žîzŠ:¬øÿžŠ^¬øÿŒŠL¬øÿðµ¯-鏰}LšF#ºñ|D
“Íé3õks
“õ.fÔø;	–
“
Ðë‚ò±*Ð*DÑÑéÚøÍé´à*Ð*9ÑKh
“	h‘®àÓF	h[øŸ F–‘¹ñiڣàÓFÍéb[øŸÍé0¹ñ۠F FØøàj
ñ%Tø%°BEÐ5©EøÑ%Tø%0F"ðÛû(8Ñ5©EôÑ#ðòîš(@ð•€OH*OLOðxDNN|DNMh~DNK}DNIh¨¿&F*¸¿OðKLyD{D’|DÍéƨ¿+F"F#ð–îKò&aEHAò²"DKxD{Dß÷mü °½èð½ÈÔ˜Pø%‘)ÂЩñ	šÝé0¹ñ:ÛÛø°Íé»ñ’%ÛØø¬c
ñ%Tø%°BÐ5«EøÑ%Tø%0F"ðuû(Ñ5«EôÑàÔ˜Pø%0;±š©ñ	™Ýé
“à#ð~î(šÝéÝé ѹñÚFðø°½èð½F
H«1FxDÍé 	ªPFðú(ÔÝé FççKòaçKò
aŠçKòa‡ç¿\Þhýÿ.‰!ýÿ&Òøÿ֟øÿ.Ãøÿʟøÿ@ýÿ†¦øÿÒøÿðµ¯-鍰lMF }DÍéõkpÕø›õ.`•Íé	{±ë‚˜F*DÐ*Ð*hÑÑ鹨ø Íé¹Ôà*Ð*]ÑÑøÍø$Ñø°Íø °ËàÃFh[ø¯–ºñÀòŒ€Ûø°”»ñ’Àò«€˜ñ%Ðø¬cTø%°B~Ð5«EøÑ%Tø%0F"ðÃú(qÑ5«EôѐàÃF”[ø¯ÍébºñÛ˜ñ$ÐøàjUø$°BGÐ4¢EøÑ$Uø$0F"ð ú(:Ñ4¢EôÑ#ð¸íš(@ð‡+H*+LOðxD*N|D*Mh~D)K}D)Ih¨¿&F*¸¿Oð&LyD{D’|DÍéƨ¿+F"F#ðZíKöb1 HAò72 KxD{Dß÷2ûOð
PF
°½èð½ÆÔ˜Pø$(¿Ъñ
šœºñ¿öt¯Ýø°0à!Ô˜Pø%豝ªñ
Ý鴁FÝéb	à4ܸ†§ýÿ°Ïøÿ`øÿ¸ÀøÿTøÿUýÿ¦¿øÿÏøÿ#ðHí(Ýé´Ýéb@ð‡ºñ€òK†Ùøoð@AˆB¿0ÉøÛø‘øWÀ@ð̄(lBðȄÑø¬ *𻄑h)Û2hƒBð»„29øÑ”Õø¼G(hâh!F#ðàí(ð3†Fhoð@AˆB¿0(`hh‚l˜*ÐøŒ(FðF†GF(ðG†(hoð@AˆBÐ8(`¿(F#ðDìŸHahxDhBðD† &
©Íø°Íé
kñ«ë€B Fê÷ û.€F¿0hoð@AˆB@ðƒ¸ñðƒ hoð@AˆBÐ8 `¿ F#ðìÕø¸g(hòh1F#ð†í(ð2†Fhoð@AˆB¿0 `ØøÕøl‚l@F*ð2†G‚F(ð3†`h™ˆBð:†& 
©‚è@«ë€ Fê÷Xû.F¿0hoð@AˆB@ð߂Úøoð@AˆB@ðå‚-•ðì‚ hoð@E¨BÐ8 `¿ F#ðÆëÙø¨BÐ8Éø¿HF#ðºëØø‚l@FÕøl*ð†G‚F(ð†ÕøŠEÐRJÚøzDhB@ð†Úø ð(@ð‚Úø8°ú€ðD	Úøoð@AˆBÑ
à$Úøoð@AˆBÐ8Êø¿PF#ð~ë(FÕø¼W,}Ðêh)Fh#ðìì(ð†Fhoð@AˆB¿0 `™`hÑøÔ‚l F*ðÿ…GF(ð† hoð@AˆBÐ8 `¿ F#ðPëhh™ˆBð÷… $™‚‘«ë€(FÍé
Hê÷²ú,‚F¿ hoð@AˆB@ðʂºñðЂ(hoð@AˆBÐ8(`¿(F#ð&ëHxDh‚Eð¤IyD	hŠEðžIyD	hŠEð˜PF#ð²ë(ñڅÚøoð@B‘B@𖁝á¿x…(„ú‚ò‚҂(Fà÷ëø(ð†‚F@h‚l˜*Ðø|PFð#†GF(ð$†Úøoð@AˆBÐ8Êø¿PF#ðØêØø‚l˜*Ðøh@Fð†G‚F(ð†PF)Fð¶þ(ð†FÚøoð@AˆBÐ8Êø¿PF#ð´ê #ðøê(ð†‚FÅ`#ð²ë(ð†žFÖø¼à÷”ø(ð
†AhŠlÖøF*ð†GF(ð†2hoð@AŠBÐQ0F1`¿#ð†ê˜JFÐøÔ(F#ðVë(ñ(‚Ùøoð@AÍø°ˆBÐ8Éø¿HF#ðlê FQF*Fß÷{ø(ðú…ƒF hoð@IHEÐ8 `¿ F#ðXêÚøHEÐ8Êø¿PF#ðNê(hoð@AœˆBÐ8(`¿(F#ðBê`h‚l˜*Ðøp FðӅGF(ðԅhh™ˆB@ð…ìh,ð…!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F#ðê 5F™BÍé
K¡ë€(Fê÷{ùF FÛ÷ü.ð¦…(hoð@D BÐ8(`¿(F#ðöé0h BÐ80`¿0F#ðì騸‚l˜*Ðøl@Fퟴ�GF(ðŽ… #ðÚê(ð…›Foð@BÓøPh‘B¿1`ÓøPéh`(FIF#ðœí(ð†…F(hoð@F°BÐ8(`¿(F#ð¶éÙø°BÐ8Éø¿HF#ðªé™ FZF#ð†í(ñp… F#ðˆí(ðo…F@F)Fð‰ý(ðl…‚F(hoð@AˆBÐ8(`¿(F#ðˆéÝø á$Úøoð@AˆB?ô®÷åªë°ú€ð@	Úøoð@B‘BÐ9ÊøÑFPF#ðhé F(ð…€Õø¼G(hâh!F#ðÖê(ðI„Fhoð@AˆB¿0(`hh‚l˜*Ðø„(FðF„GF(ðG„(hoð@AˆBÐ8(`¿(F#ð:é`h™ˆBð<„ %«ë€B FÍé
Xê÷žø-‚F¿(hoð@AˆB@ð@ºñðF hoð@E¨BÐ8 `¿ F#ð騸¨B1ÑÝéE7à80`¿0F#ðé¸ñôâ¬Aòk2KöAxâ80`¿0F#ðöèÚøoð@AˆB?ô­8Êø¿PF#ðèè-•ô­Aòm2KöAA!ãÂFœà8ÈøÝéE¿@F#ðÔè`hÕøp‚l F*𝃐GF(ðžƒ`h™ˆB@ðˆ‚åh-ð„‚)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ F#ð¦è 4F«ë€B FÍé
Zê÷ø-¿)hoð@B‘B7Ñ(ðqƒ!hoð@E©BÐ9!`ÑF F#ð†è0Fh©BÐ9`¿#ð|èÚøoð@AÝøˆBð˜0ÊøOðÐF$qá8 `¿ F#ðfèºñô0­KösAAòr2[â9)`ÄÑF(F#ðVè0F¾çKöüAAòx2OðÚøoð@C˜BÐ8Êø
ÑPFÊF‰FFãF#ð<èIFÜF2FÑF„± hoð@C˜BÐ8 `Ñ FFFâF#ð*èÔF2F!FOðOðOð±(hoð@C˜BÐ8(`Ñ(FFFâF#ðèÔF*F!F4F¼ñ¿Üøoð@C˜B3ѹñHFÝø
Ðhoð@CžBÐs`Ñ
FF"ðòï2F)FéHêKxD{DÞ÷<þOð
¸ñðö€Øøçà8(`¿(F"ðÜïºñôº®Oð	Aòs2Kö™A!ã8ÌøÇÑ`F
FF"ðÈï2F)F¿çÑø€BÐ)ùÑÒIyD	hˆBôH«Õø¼g F(hòh1F#ð(é(ðFhoð@AˆB¿0 ``hÕø|‚l F*ðGF(ð hoð@AˆBÐ8 `¿ F"ðŽï»HihxDÐø QEð $
©Íé
KñB«ë€(Fé÷ìþ,F¿ hoð@AˆB@ð«€.ð±€(hoð@AˆBÐ8(`¿(F"ðbïØø‚l˜*Ðøp@Fðù€GF°F(ðú€hhPE@ð¯€ìh,ð«€!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F"ð2ï 5F«ë€B(FÍé
Hé÷›þ,¿!hoð@B‘BiÑ(ðˀ)hoð@D¡BÐ9)`ÑF(F"ðï0Fh¡BÐ9`¿"ðïØøoð@AˆBÑÂF!à0ÈøOð$ÂFoð@AˆBÐ8Èø¿@F"ðîî»ñ¿Ûøoð@AˆB7Ñ,¿ hoð@AˆB8ѹñÐÙøoð@AˆBÑPF
°½èð½8Éø¿HF"ðÊîPF
°½èð½8 `¿ F"ð¾î.ôO¯KöÁ1Aòg2±à9!`’ÑF F"ð°î0FŒç8Ëø¿XF"ð¦î¿ç8 `¿ F"ð î¿ç $kç"ðBï(¹0Fæ÷ƒý(@ðu‚Köª1Aòg2gà"ðtïF(ôï®Aòg2Kö¬1Oð%OðÂàìh,?ôô®!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F"ðbî 5FÚæ"ðDïF°F(ô¯KöÏ1Aòh2†àKöã1Aòh2OðÍøJàH«1FxDÍé 
ª@Fð‡ú(ÔÝé¹ÿ÷¥¹ %’åKöR1ÿ÷J¹"ðØî(¹ Fæ÷ý(@ð‚KöAAòk2	H	KxD{DÞ÷qüOð
=纵øÿ±ÅøÿR|
|ýýÿ$²øÿÂøÿ"ðôîF(ô¹©KöAAòk2OðÍøOð&OðOð	Øåæh.?ô¸©1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ F"ðÜí ,Fÿ÷ž¹"ð~î(¹0Fæ÷Àü(@ð·Kö*AAòm2Oð$÷à"ð®î‚F(ôͩAòm2Kö,AOð%ÍøOð	}åæh.?ô©1hoð@@¥hB¿11`)hB¿H(` hoð@AˆBÐ8 `¿ F"ðší ,Fÿ÷¨¹"ð|î‚F(ôä©KöOAAòp2µàKöF1ÿ÷ž¸KöM1ÿ��JzDhBðý€PF""ðHîð
ý(@ñbKöQAAòp2±à"ðî(¹(Fæ÷Vü(@ðQKö\AAòr2‹à"ðFîF(ôªOð	Aòr2Kö^A¤àìh,?ôª!hoð@@®hB¿1!`1hB¿H0`(hoð@AˆBÐ8(`¿(F"ð8í 5Fÿ÷ë¹KöwAAòr2qà"ðîF(ôb¬Kö°AAòt2OðÐFMàOð	Aòt2KöÄAOð%ÐFÝä $ÿ÷»"ð¸í(¹ Fæ÷ùû(@ðù€Kö‚AAòs2.à"ðêíF(ô¹«Kö„AAòs2÷æåh-?ô+)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ F"ðÜì 4Fÿ÷¦»KöæAAòx2Oð$ÝøbHbKxD{DÞ÷ûOð
áä"ð¬íF(ôܩKöèAAòx2$à"ð í‚F(ôì©Oð	Aòx2KöëAOð%räKöíA
àOð	Aòx2KöðAOðfäKöõAAòx2%OðOð	ÿ÷F¼Kö÷AAòx2ôç"ðtíF(ôø©KöùAAòx2Oð	´Fÿ÷2¼·î$ší´î@ñîú¿$Úøoð@AˆBôè¨ÿ÷í¸KöþAAòx2Ëç"ðLíF(ô,ªKö
QAòy2‡çKö!QAòy2Væ"ð<íF(ôrªKö.QAòz2wçHFKö0QAòz2$Ýøhoð@CžBôC¬JäKö5QAòz2&Oðÿ÷¼KöEQAò{2[çKöOQAò|2VçKöQQAò|2Oð&FOð	ÿ÷þ»FuäFþ÷»¿Fÿ÷¸Fÿ÷©¸FšçFÿ��xx¯øÿo¿øÿðµ¯Mø‚°BhF!‘‘’øWIՁhy³Ãh“H"FIxDyDhh"ð\ì °]ø‹ð½®èFAF2F#F"ð.±XhøWÀ(FñÔ
H"F
IxDyDhh"ð>ì °]ø‹ð½+ÑÑ °]ø‹ð½¿Rt­‡øÿŽt߶øÿðµ¯-é…°F FÍéoð@F`h‘¹h@më	ëñ@˜Oð
(¿h±BÑ˜Íø (¿h±BÑ˜Íø (Ô©ª« F"ðÔíð¹Ëà9`¿"ð~ëäç9`¿"ðxë˜Íø (çÕ˜¡hˆB€ò·€™ë€«ÒhQø 0øhUø 0˜ƒ±BFIFhƒBÐRø;1+÷Ñà˜` Íé±çh±B¿1`˜h±B¿1`˜@høWÀ@񯀸hUø ³ÊFÃFà"ðÜë(DÑ[ø
ñ
 ±™hŠhƒh“BôÑ"ðï°ñÿ?ëÝ(íÑ˜Êø[ø(ôx¯¸h„ÑHHIIxD›yDà"ð´ëð¹<ñòÐ(h™h‹BЈhšh‚BòÑF"ðìî°ñÿ?éÝ(êÑ›;H;IxDyDhhúh"ð\ë˜(¿hoð@B‘Bјè±hoð@B‘BÑOðÿ4 F°½èð½9Oðÿ4`Ð F°½èð½9`¿"ðÈê˜(áÑOðÿ4 F°½èð½"ð¼ê F°½èð½˜(¿hoð@B‘Bј1hoð@B‘BÐ9`Oð¿"ð ê F°½èð½9`¿"ð–ê˜(æÑ$ F°½èð½	H	IxDúhyDhh"ðôê–ç¿Ðrµøÿ’rԀøÿÂq…øÿðµ¯MøˆBð“€ZLKh|DFh$h¦B¿£B,ÐVMf@}DÕø€ê.Cð‡€c@€ê3C³úƒó[	~Ñ"ð"ëx³FLHxDh„B.ÐKIyD	hŒB¿DE'Ð F"ðâê!hoð@B‘B(Ñ]ø‹ð½„h‹hœB_ÑËh^¿Æhñ%Ñi
iÃó‚Åó‚°EPўÔÐøÀ!àOðÿ0]ø‹ð½ °ú€ð@	!hoð@B‘BÖÐ9!`ÓÑF F"ðê(F]ø‹ð½žB0ÑÖçñ[X¿ñ¨ÔÑøààñhX¿ñ¸ñиñ	ўøœøà¾ø¼øàÞøÜøBÑ,
ѐ°ú€ð@	]ø‹ð½Ð°ú€ð@	]ø‹ð½ûôF`FqF"F"ð¾í(°ú€ñ¿ -¿H	]ø‹ð½¿âqhqNqHq°µ¯Ah‘øWÉ
Ёh)ٽè°@"ð¹ðÀhÁñHC°½ðøˆ±Fÿ÷åÿ!hoð@B‘BóÐ9!`¿°½F F"ðŠé(F°½Oðÿ0°½¿€µoFAh‘øW ÒÐhoð@B‘Bр½1`€½	k)¿	l)Ñ"ðê8¹HIxDyDhh"ðLé €½ˆG(ïÐIBhyD	hŠB¿€½IyD½è€@à˜o|œøÿ~oxŠøÿе¯‚°F@h
FøWÃhÈ
ÑHxDhhI“FyD"ð¦é	àH!JxDzDhh"ð4íX± hoð@AˆBÐ8 `¿ F"ð é$ F°н¿pƒ}øÿ(o;~øÿðµ¯-遰fKEh{DÓø°km±ë¿F^Գñÿ?ܐøW0[-ÔaHbIxDyDàd±ZH[IxDyDhh°½è½èð@"ðM¸$F*ð€€ZE0ÐPh@m°ñÿ?ܒøW0[fÔ@'ÔQHQIxDyDhh"ð¶èlà€F$³ehkm^ՅByЊFF(F‘F"ðÎì(tÑ`hJFQFCm@F‘FZÔ !F"ðàé
à"Dàhoð@C˜B¿0`<à ‘F"ðêèF(@FÑEà"hoð@CšB¿2"`"F"ðúé!FFhoð@BBÐ8`¿F"ð„èd³ch“øW@	Ô!HBF!IxDyDhh"ðæèà!FEFJFŠçFF!"ð„ì1FF@±FFF"ð„ì1F(F"ðøë<± hoð@AˆBÐ8 `а½èð½ F°½è½èð@!ðz¿$Faç0îÐQF$JF[ç¿¶nn¥øÿ¢m1¦øÿœn±øÿRnc‰øÿ°µ¯Ah‘øWÉ
Ёh)ٽè°@!ð€¿ðÀhÁñHC°½ÿ÷“þˆ±Fÿ÷åÿ!hoð@B‘BóÐ9!`¿°½F F"ðè(F°½Oðÿ0°½¿ðµ¯-éFh´k,¿Ôø<ñÑFHFIxDòhyDhh"ðZè ½èð½¾h.±1h½è½èð@`G×ø 9N~D*±hOð	€F‹¹àúh’±€F ‰FF"ðë+FFIF@F-©FÙЀFK±hOð
à5hOð	€F+õѺñEÐF"ðëF(‚F@Ð2h(F"ðÒè¹ñF¿Ùøoð@AˆBѺñ¿Úøoð@AˆBÑ.ªÐbh@F1FG1hoð@B‘B¢Ð91`ŸÑF0F!ð†ï F½èð½8Éø¿HF!ðzïØç8Êø¿PF!ðrï.Úфç1h«çHFÚ÷|ù~ç¿VlŽlY«øÿ¿¿ðµ¯-遰-í‹°‹F	hF"“Íé@"Íé>"Íé<";’oð@B‘B¿1Ëø1h×ø€‘B¿11`Øø‘B¿1ÈøÛø‘B¿HËøvHxD Ðø¼Whêh)F"ðžèF(qHÍø4°xDÍé†𤆠hoð@AˆB¿0 `?”Ýø€`hÙøŒ‚l F*𻆐G(>𼆠hoð@AˆBÐ8 `¿ F!ðøî\I">˜yD?’	hCh‘‹Bð«†Ýé>Íé!!©1‘¡ë‚2è÷UþF?˜@‘P±hoð@B‘BÐ9`¿!ðÔî@™ )?ð¬†>˜oð@Dh¡BÐ9`¿!ðÂîÛø%@ž B>•Ð8Ëø¿XF!ð´î@•phÙøl‚l0F*𨆐G(@ð©†ÙøˆB
Ð2KBh{DhšBCðð‡hðà$hoð@B‘BÐ9`¿!ðŒî ýh@'HxD&H–xD”±!ðHFlÑø€h,¿DE>Ñ@h(÷Ñ $HàphÙøh‚l0F*𧅐GÝø\€(>ð¨…AhÑé
*¿Rh*@ðè)¿Éh)@ðh„)Fð‡þ(@@ðá@òe0FöL|ðM¹x¿àjÞj jÀi¼i!hoð@@B¿1!`bhhB¿H` F’!ðvïÙø,XÙøêh)F!ð”ï(ðƒ‡hoð@B‘B¿1`>AhŠlÙøà*ퟔ�G(?ð†‡>˜oð@Bh‘BÐ9`¿!ðúí Ùø4>ph‚l0F*ðv‡GƒF(ðw‡ÛøOð	™ˆBCð`…Ûø`.ð[…1hoð@@ÛøPB¿11`)hB¿H(`Ûøoð@AˆBÐ8Ëø¿XF!ðÄí"«F˜Íé!i ë‚XFè÷-ý>.¿1hoð@B‘B@ðgƒ(ðnƒÛøoð@AÝø€žˆBÐ8Ëø¿XF!ðží?˜šAh‘Bð‰€%"Ýé>Íé!Q™¡ë‚2è÷ÿü@-¿(hoð@AˆB@ðGƒ>˜oð@Bh‘BÐ9`¿!ðxí@˜!>‘(ðƒ€?˜oð@Bh‘BÐ9`¿!ðfí @Íé?˜(¿hoð@AŠB@ð%ƒ,¿ hoð@AˆB@ð#ƒ˜•(¿hoð@AŠB@ð ƒÙø"˜!ðî(>ðT€™	hˆB¿šhBÑA±úñL	à@EøÐ!ðÌí(ñ„F>˜hoð@BÝø\€‘BÐ9`¿!ðí ,>ðNÙø¼GÙøâh!F!ð†î(ð’ƒhoð@B‘B¿1`?AhŠlÙø¨*𔃐G(@ð•ƒ?˜oð@Bh‘BÐ9`¿!ðìì@˜"?’›Ah™Bð‡ƒÝé?Íé!™¡ë‚2è÷NüF?˜>‘P±hoð@B‘BÐ9`¿!ðÌì>™ )?ðŠƒ@˜oð@Bh‘BÐ9`¿!ð¼ì>˜$Ùø@”ˆB
Ð KBh{DhšBDð†h""êhoð@B‘BÐ9`¿!ð ì ,>ðҀH"ÙøpxD ’@kÝ÷¥ú(>ð†!"$ÿ÷vû>˜oð@Bžh‘BÐ9`¿!ð|ì Fö-|@òb0>”ðýDf$È)FG(@?ô®>˜oð@Bh‘BÐ9`¿!ð^ìÝø¡ Ùø>ŠE@Íøp 
ÐñJÚøzDhBDðì…Úøð({ÐÙø¼GÙøâh!F!ð´í(ðՄhoð@B‘B¿1`>AhŠlÙø¨*ðׄG(?ð؄>˜oð@Bh‘BÐ9`¿!ðì?˜">’›Ah™BðʄÝé>Íé!™¡ë‚2è÷|ûF>˜@‘P±hoð@B‘BÐ9`¿!ðúë@™ )>ð̈́?˜oð@Bh‘BÐ9`¿!ðêë@˜$Ùø?”ˆB
кKBh{DhšBDퟔ�h""êhoð@B‘BÐ9`¿!ðÎë ,@Cðô„˜¼hhŒBð6 F‘!ð†ïF0ð׆ FÙø¼GÙøâh!F!ð*í(ðІhoð@B‘B¿1`?AhŠlÙø¤*ð҆G(>ðӆ?˜oð@Bh‘BÐ9`¿!ðëÙø¼G!Ùø?‘âh!F!ðþì(ðFhoð@AˆB¿0(`hhÙø0‚l(F*ðԆG(ðՆƒF(hoð@A–ˆBÐ8(`¿(F!ðbëÙø¼GÙøâh!F!ðÒì(ðȆFhoð@AžˆB¿0(`Ýøp hhÙøD‚l(F*ðކGF([Fð߆(hoð@AˆBÐ8(`Ñ(F!ð2ë[FXh™ˆBðچ³FVF% ™BÍé!TšF¡ë€Fè÷’ú?-¿(hoð@AˆB@ðô€ hoð@AˆB@ðú€?˜(ðÚø oð@AŠBÐQÊø¿PF!ðþê?˜²FÙøBh’l*ðȆGF^F(ðɆ?˜oð@Bh‘BÐ9`¿!ðäê>˜"?’›Ah™Bð¼†Ýé>Íé!™¡ë‚2è÷FúF?˜@‘(¿hoð@B‘B@ðـ oð@A? hˆBÐ8 `¿ F!ðºê@˜(ð·†>˜oð@Bh‘BÐ9`¿!ð¬êÝø±"ØøÙø4>’B@’ð̀Ñø¬ *𿀑h)Û2hƒBð¿€29øÑÍøD°šâž Ýøp ‘ˆEÍøp @ðô„˜hoð@@hB¿1`Ùø0!>‘hBÑ“à~e dH`ÙøÙø«oð@AFÚøˆB¿0ÊøÙø«˜žhhŠBð’…Q`¿!ðLêð‹½H0`¿0F!ðDê>˜(ô’¬FöNlð˻8(`¿(F!ð6ê±äQ`¿!ð0êÔä8 `¿ F!ð(êÕäQ`¿!ð"êÙä8(`¿(F!ðê hoð@AˆB?ô¯8 `¿ F!ðê?˜(ô¯@òm0SF ²FFöÕ|Oð^F Íé
ðd¿9`¿!ðêé ç)Fð³ù(@ôy­ÿ÷–»Ñø€BÐ)ùÑÔIyD	hˆBôD¯Ùø¼Ý÷Ãÿ(>ð9AhŠlÙø,*ð7GF(ð8>˜oð@Bh‘BÐ9`¿!ð´éØøÙøÔ‚l >@F*ð'G!(>ð(?‘hh™ˆBð+ Ýé>Íé!!‚ÙøP#‘™¡ë€(Fè÷ù?™@FÙ÷›û>˜$?”oð@Bh‘BÐ9`¿!ð|é@˜>”(ð$(hoð@AˆBÐ8(`¿(F!ðlé™@˜Ñø€@E¿™	hˆB@ðü€ ë±úñL	hoð@B‘BÐ9`¿!ðRé ,@ðû€Ùø¼Ý÷=ÿ(ðƒF@hÙø¤‚l F*ðý‚G(>ðþ‚ hoð@AˆBÐ8 `¿ F!ð.éÙø¼Ý÷ÿ(?ðð‚AhŠlÙø0*ðGF(ðï‚?˜oð@Bh‘BÐ9`¿!ðé¸h#?“AhŠlÙøÔ*ð߂G(?ðà‚hh™ˆBðà‚& ?™BÍé!a™¡ë€(Fè÷bøF0FÙ÷üú?˜oð@Bh‘BÐ9`¿!ðàè ž ,?ð߂(hoð@AˆBÐ8(`¿(F!ðÎè`hÖø‚l F*ðւGF(ðׂ hoð@AˆBÐ8 `¿ F!ð¶è>˜šAh‘Bðт$"™>˜¡ë‚2Íé!Eè÷ø@ FÙ÷³ú(hoð@AˆBÐ8(`¿(F!ð–è@˜(ðӂ>˜oð@Dh¡BÐ9`¿!ðˆè YF>"Ûø B¿0Ëø@˜Íøø°!ðHé(ðº‚@EF¿˜h„BѤë×ø€°ú€ð@	#à™	hˆB?ôÿ®!ðþè(ñ­‚F@˜hoð@B‘Bôü®ÿæÍøD°×ø€[à˜h„BÛÐ F!ðæè×ø€(ñY…!hoð@B‘BÐ9!`ÑF F!ð6è(F ±@˜@©àˆ`>˜>©hoð@CšB¿2`oð@E>˜hh©BÐ9`¿!ðè@˜!>‘h©BÐ9`¿!ðè@” h¨B	ÐA!`©BÐ( `¿ F!ðè@˜Ûø¨BÐ8Ëø¿XF ðôï @M}DèjÐø´ÐøA ˆGF#@ò"Íé@F’ G(@ðáƒà¿T¿Fhoð@D B
Ð00`@˜h¡BÐ9`¿ ðÆïØø!ÑF@‘ BÐ8Èø¿@F ð¸ï˜ œÐø€FEÐak0Fð¯û(ðs†ÖéªFÔøl‚l0F*𷃐GF(𸃠˜"Ðø(FðLû(ñ³ƒ)hoð@B‘BÐ9)`ÑF(F ð†ï F(Cð­ƒph‚l ˜*Ðø„0FðǃGF(ðȃ(FIF"LF!ð>è(@ðÃ(hoð@A–ˆB”Ð8(`¿(F ð\ï™@˜ÑøHE¿™	hˆB@ðp ë	±úñM	hoð@B‘BÐ9`¿ ðBï -@Cð§ƒÚø0 XF™G œƒF
FÔø¼Ý÷%ý(ðՃF@hÔø ÂF‚l0F*ðöƒG(>ð÷ƒ0hEì»oð@AˆBÐ80`¿0F ðïXF)F ð†ï(ðýƒF>˜šAh‘Bð„%"Ýø€°NF™>˜¡ë‚2Íé!Tç÷jþ@(FÙ÷ù hoð@AˆBÐ8 `¿ F ðèî@˜(ð„>˜ÙFoð@Bh‘BÐ9`¿ ðØî@˜!>‘°B¿™	hˆB@ðý€±úñL	hoð@B‘BÐ9`¿ ðÀî ,@CðïƒÙø¼Ý÷ªü(>ð3„AhŠlÙø*ðC„GF(ðD„>˜oð@Bh‘BÐ9`¿ ðœî Ùøü>`h‚l F*ð4„G(>ð5„ hoð@AˆBÐ8 `¿ F ð‚îÙø"˜ ðLï(ð+„F>˜šAh‘BBð÷…Åh-ðó…hoð@@*h‚B¿2*`
h‚B¿P`>˜oð@B>‘h‘BÐ9`¿ ðTî"™>˜¡ë‚2Íé!Tç÷¾ý@(FÙ÷Xø hoð@AˆBÐ8 `¿ F ð<î@˜(ðóƒ>˜oð@Bh‘BÐ9`¿ ð,î@˜!>‘°B¿™	hˆBcс±úñL	hoð@B‘BÐ9`¿ ðî ,@Cðу¿î8î°îÀQì ð~î(@ð냙" ðÎî(>ðèƒ@˜oð@Bh‘BÐ9`¿ ððí>˜!@‘°B¿™	hˆB5с±úñL	9à@E?ô® ð|î(ñà„F@˜hoð@B‘B􊮍æPE?ô¯ ðlî(ñ܄F@˜hoð@B‘Bôü®ÿæPE™Ð ð\î(ñфF@˜hoð@B‘B–њçPEÇÐ ðLî(ñ܄F>˜hoð@BÝø\€‘BÐ9`¿ ðœíÝøp  ,>C𐃞™ˆEÍøp ?ô«˜hoð@@hB¿1`Øø’">’B¿HÈøÙø¼GÙøâh!F ðêî(ð‚hoð@B‘B¿1`>AhŠlÙø¨*ðD‚G(@ðE‚>˜oð@Bh‘BÐ9`¿ ðPí >  ð”í(>ð>‚Øøoð@B‘B¿1ÈøÀø€ ðBî(ða‚Ùø¼gFÙøòh1F ð¦î(ðˆ‚Fhoð@AˆB¿0(` žhhÖø‚l(F*𠂐G(?ð¡‚(hoð@AˆBÐ8(`¿(F ð
í?š FÖøÔ ðÜí(ñm‚?˜oð@Bh‘BÐ9`¿ ðöì@˜">™?’"FÜ÷ûž(?ðՃ@˜oð@Eh©BÐ9`¿ ðàì>˜&@–h©B@ð_‚>– h¨B@ðd‚ØøÝøü ¨BÐ8Èø¿@F ðÆì˜ÍøL€h ?ž˜”h†B¿˜h†Bј0°ú€ð@		à˜h†BõÐ0F ðHí(ñ#ƒ(ðhµBð;‚hh ž‚l(FÖø€*𐄐GF"(ð‘„>’`h™ˆBÑàh>¸±hoð@A¥hŠB¿2`(hˆB¿0(` hˆBÐ8 `¿ F ðpì",F>˜%Íé!˜ ë‚ Fç÷×ûF>˜?‘P±hoð@B‘BÐ9`¿ ðVì?™)>•ð_„ hoð@AˆBÐ8 `¿ F ðFì?œ ?Oðÿ1"# Fðø(?”ð\„F F!ðZè(ðm„F?˜oð@Dh¡BÐ9`¿ ð"ì ?˜h¡BÐ9`¿ ðìhhÖøÜ‚l(F*ðf„G#(?ðg„>“Ahš‘BÑÂh>’ʱhoð@@hƒB¿3`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ ðèë#šÝé>Íé!Z™¡ëƒç÷PûF>˜Ø÷êý ,> F”ð8„?˜oð@Bh‘BÐ9`¿ ðÆë ÖøP?Ùø‚lHF*ð:„GF(ð;„  ðüë(?ð?„›oð@Bh‘B¿H`?˜Ã` ð¬ì(>ð5„Öø0)Öøx ðrì(ñîÝé>!(FÜ÷¥ù(@ðÿ†(hoð@D BÐ8(`¿(F ð‚ë?˜h¡BÐ9`¿ ðzë>˜$?”oð@Bh‘BÐ9`¿ ðlëÖø¼Ýø>”@”Ý÷Xù(@ð؆AhŠlÖøŒ*ðՆG(>ðֆ@˜oð@Bh‘BÐ9`¿ ðJë @  ðŒë(@ðdžØøoð@B‘B¿HÈø@˜Àø€ ð:ì(?ð¾†Öø¼Ý÷ù(ð¼†F@hÖøð‚l F*𸆐GF(𹆠hoð@AˆBÐ8 `¿ F ðë ™2F?˜ÑøÔ ðàë(ñ€0hoð@AˆBÐ80`¿0F ðúê@™Ýé>Ü÷ù(ð€F>˜oð@Dh¡BÐ9`ÑF ðäê+F@˜&>–h¡BÐ9`ÑF ðØê#F?˜oð@D@–h¡BÐ9`ÑF ðÊê+F  ž?ØøÍøP  BAð*€ Oð!%Íéð1¸™PF" ð~ëž(ð‘ƒF˜ÍøP „B¿˜h„B@ð˜ÝøL° Ýøp °ú€ð@	
áOôbpGòå  ”#!@FOð
‘‘‘‘‘ðî¿9`¿ ðtê>– h¨B?ôœ­8 `¿ F ðjêØøÝøü ¨B��å›Xh‚l ˜*ÐøøFð*†GF(ð+†  ð˜ê(?ð*† oð@AÕø+h‹B¿X`?˜Õø+Â`šh‘FˆB¿0`?˜a ð:ë(@ð)† šÕø„ ðë(ñl‡Õø¼Ý÷ø(>ðW‡AhŠlÕøð*ðT‡GF(ðU‡>˜oð@Bh‘BÐ9`¿ ðê ™"@˜>’*FÑøÔ ðÖê(ñ‡(hoð@AˆBÐ8(`¿(F ððéÝé? FÛ÷þÿ(ð?€F hoð@E¨BÐ8 `Ñ FF ðÚé#F?˜ žh©BÐ9`ÑF ðÎé#F@˜OðÍøü°oð@BÍøP h‘BÐ9`ÑF ð¼é#F˜!Íø±%ÊFh Í鐐ð¼@ò“0Gò‡,  •!#Oð𼾘h„B?ôõ® F ð0êÝøL°(Ýøp ñk†!hoð@B‘BÐ9!`ÑF F ð~é0FÝøP(Cð{‚ žHF"Öø ð@ê(ð’‚F˜„B¿˜h„Bј °ú€ð@		à˜h„BõÐ F ðøé(ñA†!hoð@B‘BÐ9!`ÑF F ðJé0F ž(Cðr‚˜h…Bð,†Öø¼Ü÷.ÿ(@ð5…AhŠlÖøl*ð3…G(?ð4…@˜oð@Bh‘BÐ9`¿ ð éÖø @(F" ðèé(@ð"…?˜šAh‘Bð%…%"Ýé?Íé!Q™¡ë‚2ç÷uøF(FØ÷û@˜oð@Bh‘BÐ9`¿ ðòè ,@ð(…?˜oð@Bh‘BÐ9`¿ ðâè™ ? F" ð¬é(?ð-… hoð@AˆBÐ8 `¿ F ðÌè?˜™ˆB¿™	hˆB@ðö…™A±úñL	hoð@B‘BÐ9`¿ ð´è ,?Cð
…Öøoð@Bh‘B¿1`ÖøAhhÖø\‚l(F*ð'…GF ,ð(…@`h™ˆBCðF€àh@(ðA€hoð@A¥hŠB¿2`(hˆB¿0(` hˆBÐ8 `¿ F ðtè",F@˜%Íé!˜ ë‚ Fæ÷Ûÿ@™?FØ÷tú?˜@•(ðù„ hoð@E¨BÐ8 `¿ F ðRè?˜˜h©BÐ9`¿ ðHèÖø¼!?‘Ü÷5þ(?ðã„AhŠlÖøì*ð儐GF(ðæ„?˜oð@Bh‘BÐ9`¿ ð&è ?  ðjè(?ð݄Ûøoð@B‘B¿HËø?˜Àø° ðé(@ðτÖø¼Ü÷ûý(ð΄F@hÖøð‚l(F*ð˄G(>ð̄(hoð@AˆBÐ8(`¿(Fðìï>š@˜ÖøÔ ð¾è(ñ6…>˜oð@Bh‘BÐ9`¿ðØïÝé? > FÛ÷äý(>ð… hoð@E¨BÐ8 `¿ FðÂï?˜h©BÐ9`¿ð¸ï@˜$?”oð@Bh‘BÐ9`¿ð¬ï>@”>”hhÖøð‚l(F*ðò„G!(@•ðï„?‘Ahš‘BOðÑÂh?’*ð…hoð@@hƒB¿3`
h‚B¿P`@˜oð@B@‘h‘BÐ9`¿ðtï"Ýé?Íé!™¡ë‚æ÷Þþ?™>FØ÷wù>˜?”(ð҄@˜oð@Bh‘BÐ9`¿ðVï>˜!"A˜@‘>‘™ ðè(>ð®†!oð@KOð	&Oð
‘àA˜"™Oð ðè
™(>ðN€TFŠF™Oð
–Íø$ˆB¿™	hˆB@ðGƒ™ÝøpA ž±úñM	hYEÐ9`¿ðï-Íøø€ðj˜AhŠlÖøÜ*ðPƒG%(@ð	‡A™˜Íé¤ ðšê(?ð‡ ð:ï(ð‡F?˜ð`@˜Íøü€šAh‘BÑÂh?’²±hh[E¿X`hXE¿0`@˜@‘hYEÐ9`¿ðÎîOðÝé?ñÍé!™¡ëˆæ÷4þ?™>FØ÷Íø?•0hXEÐ80`¿0Fð²î>˜(ðɆ@˜hYEÐ9`¿ð¤î>˜Oð	˜ÍøØ÷­ø ž"A˜Íøø€Öøðbï(>ðº†™ˆB¿™	hˆB@𾂙ÊFA±úñL	hÝøXYEÐ9`¿ðvî>•³ A«Íé!˜"Íø€ý÷iþ(>ðńFÖø+˜ ð@ê(ñD>˜hYEÐ9`¿ðTî>•Öø¼Ü÷Bü(@ðˆ†AhŠlÖø€*𗂐GF(ð‚†@˜hYEÐ9`¿ð6î š@ah‘BðŠ‚š@™Íé!B™¡ë€ Fæ÷—ý@™>FØ÷0ø>˜@•(ðc† hXEÐ8 `¿ Fðî˜>œØ÷ø FOðÿ1"#Íøø€ðGú(>ðN†F F ð$ê(FðJ†>˜hYEÐ9`¿ðîí>• hXEÐ8 `¿ Fðäí˜AhŠlÖøP*ðT‚GF(ð>† ðî(>ð=†ÙøYE¿HÉø>˜ÀøðÌî(@ð2†Öø0)Öøxð’î(ñĂ@š F>™Û÷Åû(?ð%† hXEÐ8 `¿ Fð¤í>˜hYEÐ9`¿ðœí@˜>•hYEÐ9`¿ð’í
˜ÝøüÍø×÷œÿÖø¼Íøü€Ü÷xû(?ðý…AhŠlÖøˆ*ðúG(@ðö…?˜hYEÐ9`¿ðlí Íøü€ð®í(?ðé…ÙøYE¿HÉø?˜Àøð^î(>ðޅÖø$šð&î(ñi‚Ýé>!@˜Û÷Yû(ðӅF@˜hYEÐ9`¿ð8í?˜@•ÝéHhYEÐ9`¿ð,í>˜?•hYEÐ9`¿ð"íÕI>•yDph	hˆB@𦁲h*Að¬…ðhñ>	h?‘hZE¿Q`?™hXE¿0`0hXEÐ80`Ñ0Fðüì>˜
 F×÷	ÿ@FÝøü >•×÷ÿ?• ™ÚøÑø”‚lPF*𪁐GOð(?ð•…Íøø€Ahš‘BÑÂh>’²±hh[E¿X`hXE¿0`?˜?‘hYEÐ9`¿ðÂìOðÝé>BFÍé!™¡ëˆæ÷)üF>˜$×÷Âþ&->”ðd…?˜hYEÐ9`¿ð¢ì?–(hXEÐ8(`¿(Fð˜ìÙø‚l ˜*Ðø0HFð\G%Oð(?ðO…Íøø€Ahš‘BÑÂh>’²±hh[E¿X`hXE¿0`?˜?‘hYEÐ9`¿ðhìOðÝé>ñÍé!™¡ëˆæ÷ÏûF>˜×÷iþ.>•ð8…?˜hYEÐ9`¿ðJì?•ÙøXEÐ8Éø¿HFð>ìph‚l ˜*Ðø„0FðGÝøXF(ð*…A˜!Fðï(?ð&… hXEÐ8 `¿ Fðì˜Aª?«1Fðù(ñH?˜hYEÐ9`¿ðì?• ™phÑø„‚l0F*ð܀GF(?ð…A˜ðï(ð…?™
hZEÐ:
`ÑFFðêë FA™?•AhXE?ô¥¬8`¿FðÜëä™ˆB?ôµ¬ðvìÝøp( žñ‚F>˜hYE��䙈B?ô>­ðbì(ÊFñ-‚F>˜hÝøXYEô;­>åðœì%(@ô¯¬ð¶»ð’ìF(ôh­ðè»àh@(ð‹€h¥hYE¿1`(hXE¿0(` hXEÐ8 `¿ FðŒë,F %XåðnìF(ô«­ðç»ðfì(@ô®ðù»¿$GŠIyD	hˆBRÐ0Fð4î(@ðª…0hXEÐ80`¿0Fð`ë@˜Ah
o¨GF(>ðž…@˜¨G(?ð–…@˜¨G!ð?ø(ñ`„@˜%hYEÐ9`¿ð>ë@•?æð"ìOð(?ôU®ðè»ðì¡æðìÝøXF(ôù®ð!¼ðìF(?ô#¯ð%¼²h*Að®ƒñhQøæ ãäHFðÍøƒF@ŠF0Ñð°ë(Cðς˜Oðÿ4ð¾ø‘ê€êQêÑðžë(CðB8i(ð–€Öø$ö$0”à Gò¨,3F @ò•0 !
‘‘‘Íø`Íø\ žÝøp ðB¸™ˆB?ôªðfë(ñO€F?˜hoð@B‘Bôªÿ÷ºGòÐ, #F <àOôipGò¿< 
 ”#Í鐐Oððſ8ÈøÑ@FFðŒê#F Oð!%Íø`Ýøp ðî¼ GòÖ, •#FÍé!–
‘Oð‘‘‘‘@ò—1Íø\ ÊF‘ðӿÂCÖø õ2`
hoð@CšB¿2
`™Ðø€Bòp˜pñÀòºXFQFð¾í(ðë€F˜™ð¶í(?ðì€AFð`î(>ðê€?˜oð@Bh‘BÐ9`¿ð ê>™ ? F"ðêê(?ð܀ hoð@E¨BÐ8 `¿ Fð
ê>˜h©BÐ9`¿ðê!?˜>‘™ˆB¿™	hˆB@ðG‡™A±úñL	hoð@B‘BÐ9`¿ðèé ,?ðZ˜™Íøt Íø8°Íø0€ð0îíCFF¢LQì	%|D·îæjÖøèb•í°G€F? ¸ñ𲁠œž?ÔøÖø¨Øø ð¾ÿ(𴁃FÖø¨Ôøüð´ÿ(>ðAAh&š‘BCð
€Äh,ð€hoð@@"h‚B¿2"`
h‚B¿P`>˜oð@B>‘h‘BÐ9`¿ð„é"™>˜¡ë‚Íé!Fæ÷îø? F×÷ˆû?˜(ð>˜oð@Dh¡BÐ9`¿ðhé?˜>–h¡BÐ9`¿ð^阝™,˜?–ˆAÔñv먿$ðÖìF˜)F"F0SFð€ÿ0FðÔì žXF"Öø˜Ú÷PÿÛøoð@B‘BÐ9ËøÑFXFð.é FÝøp (ðshoð@B‘BÐ9`¿ðéPFIFðºì!(>ðe>ª@F#Íé‘ý÷
ù(ðhF>˜oð@Bh‘BÐ9`¿ðþè Öø\>`h‚l F*ð[G(>ð\ hoð@AˆBÐ8 `¿ Fðäè>˜&šAh‘BBðK‡Äh,ðG‡hoð@@"h‚B¿2"`
h‚B¿P`>˜oð@B>‘h‘BÐ9`¿ðÀè"™>˜¡ë‚Íé!Fæ÷+ø? F×÷Åú?˜(ð&>˜oð@D žh¡BÐ9`¿ð¤è%?š>•Øø BÐ8ÈøÑ@FFð”è"FÝø0?•¬â¿£333333ó?Öø¼Û÷xþ(?ðx†AhŠlÖøè*ퟄ�G(>ð‚†?˜oð@Bh‘BÐ9`¿ðjè ? ð¬è(?ðx†Ùøoð@B‘B¿HÉø?˜ÀøðZé(ðu†FÖø¼Û÷>þ(@ð{†AhŠlÖøð*ퟰ�GF(ð†@˜oð@Bh‘BÐ9`¿ð0èÖøÔ @(F"Fðé(ñb‚ hoð@AˆBÐ8 `¿ FðèÝé>*FÚ÷(þ(ðô†F>˜oð@D	’h¡BÐ9`¿ðè?˜&>–h¡BÐ9`¿ðúï?–oð@A(hÍø0€ˆBÐ8(`¿(FðìïXFQFð@ìíSAì!îQìðì_êQAêOê00C	šƒ CêsAê‘C’h’	Õø¼'CêsAêC
CêcAê!CAêHCêCCHê	Fñ
HñÛ÷£ý(ð †F@hÕø`‚l F*𡆐G(?𢆠hoð@AˆBÐ8 `¿ Fð”ïPF1FðÈë(𚆂FOðÿ0Oðÿ1ð¾ë œ(>ð“†Ôø¼Û÷pý(@ð†AhŠlÔøl*ퟸ�GF(ð†@˜oð@Bh‘BÐ9`¿ðbï?˜%@•šAh‘BOðð…†Ýé>Íé#™@›¡ë‚2Íé!:å÷¾þF@˜×÷Xù@•oð@EÚø¨BÐ8Êø¿PFð8ï>˜h©BÐ9`¿ð0ï oð@A>0hˆBÐ80`¿0Fð"ï,ðn†?˜oð@B h‘BÐ9`¿ðï!® ?!F0Fðvý!˜(ð_†Ýøˆ oð@A hˆBÐ8 `¿ FðúîœÕøÔø¨ðýü(
ðS†Ôø¨Õøüðóü(?ðf†Ah5Fš$‘BBðŒ„Æh.ퟠ�hoð@@2h‚B¿22`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ðÂî")?˜¡ë‚Íé!då÷,þF0F×÷Æø,ð5†?˜oð@E žh©BÐ9`¿ð¦î ? h¨BÐ8 `¿ FðšîœÍø8°¤ëOêëuðꐻë˜uë˜ñoÚ˜*F™@àÆéF™šYDñ žBø1ëÁOêërD`˜»ë˜rëRÚ ’Íé#˜Íé²"ðžê†FFê	Oðÿ2ñêZø6P
ëÆCñth…êb@\ê¿…êL@RêäѼñ¼Ðê	Oðÿ5
ëÀZø0 Khj@k@CМê0ê	Bñê
ëÀZø00Nhk@n@3C+îÑàœXFÁ鴘ç8i(±˜"™›ðHü˜ðœé
œ"Öø˜ FÚ÷ü!hoð@BÝøp ÝøP°‘BÝéYÐ9!`рF Fðòí@F(ð˜…hoð@B‘B	šÐ9`Ñðäí	šPh4FÖøhFÃlF+𕃚˜G!(‘ñ–ƒHF«F 3FÍé%&F˜Íø@3à Gò‰l@òÆ0 #F •!Íø@€Íé
‘‘Oð‘‘™ÍéÝøp ãšoð@AOðhFˆB¿0` Í餐ÊF FÝé
™˜‘Ðø˜HE8ИF˜AhŠlÖøl*ðˆGF(ð̆Öø F"ðžø(ñ̆!hoð@B‘BÐ9!`ÑF Fðdí0F ž(wÐØøoð@AˆB¿0Èø Íø|€˜Ýød
ã\h˜Fqk Fâ÷þ(¿ТlÖø4*Íø$€ð¯ƒ	˜G(?
•ð°ƒAhš‘BBðU‚Äh,ðQ‚hoð@@"h‚B¿2"`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ðí" ™?˜!”Ñø"‘™¡ë‚2å÷{ü€F FÖ÷ÿ¸ñð‰ƒ?˜oð@D	šh¡BÐ9`Ñðôì	š ?h B@ðæ
Ýøp  žaç˜HEÝødðâ€ØøÖøl‚l@F*ðrƒGF(ðsƒÖø F"ðùÿ(ñrƒ!hoð@B‘BÐ9!`ÑF Fð¾ì0F ž(ðº€ÙøHFŠlÖøl*ퟴ�GF(ðބָ F"ðÑÿ(ñ„!hoð@B‘BÐ9!`ÑF Fð–ì0F ž(ð’€Öø¼Û÷ú(ð=…F@hÖøè‚l F*ð<…G(?ð=… hoð@AˆBÐ8 `¿ Fðrìðxí(ð8…FÙøKF‚l ˜*ÐøÔHFð:…GF(ð;… ˜"FÐøÔ0Fð,í(ñ¦ƒ hoð@AˆBÐ8 `¿ FðFì ™2F?˜ÑøœÚ÷Sú(ð)…F?˜oð@IhIEÐ9`¿ð0ì ?0hHEÐ80`¿0Fð&ìÝødAFHFðø(ð…F ˜2FÁh Fðöï(ñ…0hoð@IHEÐ80`¿0Fðì h”HE¿0 `”¬æÙøHFŠlÖø0*ðՁGF(ðցÖø¼Û÷áù(ð݁F@hÖøŒ‚l F*ðށG(?ð߁ hoð@AˆBÐ8 `¿ FðÒë ðì(ðށFØøoð@AˆB¿0ÈøÄø€ðÆì(>ðځÖø¼Û÷©ù(ðâ1FF@hÑø‚l0F*ð⁐G(@ðã0hoð@AˆBÐ80`¿0Fð˜ë ™@š>˜ÑøÔðjì(ñ“€@˜oð@Bh‘BÐ9`¿ð„ëÝé> !@‘!FÚ÷ù(@ðV‚?˜oð@Fh±BÐ9`¿ðnë ? h°BÐ8 `¿ Fðbë>˜oð@B žh‘BÐ9`¿ðVë$ >”ðšë(>ð<‚@™Á`@”ðPì(@ð=‚Öø¬úhðì(ñ¡€@šHF>™Ú÷Kù(ðâƒFÙøoð@F°BÐ8Éø¿HFð&ë>˜”h±BÐ9`¿ðë@˜"!>’‘oð@BhÝød‘BÐ9`¿ðë @˜Æà8` ž¿Fðë
Ýøp uå
•GöÝÍøx°Oô}p#F^àOôkpGò‡L  ”#
˜Íø(à@ò­0Gò£L # Íøh˜
 ˜>àGò+\ O𐠐#
˜OôlpÍø0 –Íø( ˜˜þ÷޿™
h¨B?ô´¨ðHë(ñ7ƒF?˜hoð@B‘Bô±¨ÿ÷´¸
•GöëÍøx°Oô}p#  Íø˜ž@˜(¿hoð@B‘B@ð ?˜(¿hoð@B‘B@ð¢>˜(¿hoð@B‘B@𤁘(¿hoð@AŠB@ð¦+¿hoð@AˆB@𩁠˜±FÝøx°p± ˜oð@AhˆBÐ ™8`Ñ ˜dFðLê¤FåHaFåKšxD{DÚ÷”ø
 »ñ¿˜hƒEÐñ¿ó[Pè/Q@è+øÑ*¿ó[AóY€
˜«Foð@AhŠBÐQ`¿ðêPFºñÝøT ¿hoð@AŠBZјž(œ¿hoð@AŠBVј(¿hoð@AŠBTÑ.¿0hoð@AˆBSÑ,¿ hoð@AˆBSј(¿hoð@AŠBRѸñ¿Øøoð@AˆBOÑA˜(¿hoð@B‘BOÑ-Ýøh€¿(hoð@AˆBLѺñ¿Úøoð@AˆBJѻñQÐÛø oð@AXFŠBJÐQ`¿ð¶éDàQ`¿ð°éžçQ`¿ðªé¢çQ`¿ð¤é¤ç80`¿0Fðžé¤ç8 `¿ Fð–é¤çQ`¿ðé¦ç8Èø¿@Fðˆé§ç9`¿ð‚é©ç8(`¿(Fð|é«ç8Êø¿PFðté»ñ­ѸñœÝéVÝøH°¿Øøoð@AˆBCÑ-Ý銿(hoð@AˆBBÑ.¿0hoð@AˆBBÑ,¿ hoð@AˆBBѻñ¿Ûøoð@AˆB@ѹñ¿Ùø oð@AŠB?Ѻñœ¿Úøoð@AˆB=Ѹñ¿Øøoð@AˆB<Ñ FB°½ì‹°½èð½8Èø¿@Fðé³ç8(`¿(Fðéµç80`¿0Fð
éµç8 `¿ Fðéµç8Ëø¿XFðúè¶çQÉø¿HFðòè·ç8Êø¿PFðêè¹ç8Èø¿@Fðâèºç9`ô\®dFFðÚè+F¤FTæ9`ôZ®dFFðÎè+F¤FRæ9`ôX®dFFðÄè+F¤FPæQ`ôV®dFFð¸è+F¤FNæ8`ôS®FdFð®è¤FLæ 
• @òî0ÍéGö˜Íøx°3F ˜NFæ Gòó<
@ò¦0 # O𐐐Í鐐Íå&"ü÷¾º¿€Bøÿazøÿ%"ý÷#ºðé(Bðã(Fá÷\ÿ(?BðIƒ@òY0Föó\ # OðOð
Íé

žÂåð4é(>|ôD©@òY0Föõ\$àÂh?’*𽁁hoð@@hƒB¿3`
h‚B¿P`>˜oð@B>‘h‘BÐ9`¿ð$è"ü÷4¹@òY0Fö
l #! ‘Oð‘Oð
‘^F‘‘Íé
‘‘‘‘‘‘‘xåðêè(@|ôW©@òZ0Fölðöº@ò§0Gòÿ<ð8¾@ò§0GòLà@ò§0GòLà@ò§0GòLOð # ð'¾OôjpGò)L # 
˜˜
ð¾@òª0GòJLð%¾@òª0GòLLð¾@òª0GòaLÂä@ò«0GòoLà@ò«0GòqL # 
˜ Íø(”ÈäOôkpGò~Lðû½OôkpOôéLžäOôkpGò…L™äOôkpGòˆL”ä@ò­0Gò—L ä@ò­0Gò™L›ä@ò­0GòœL–ä@ò­0Gò¡L‘ä@ò­0Gò¤LŒä*Àò¶†ÙH"ÙIxDyDhhðÎïGò¯L AF@ò­0Oð –# FÍéAtäGòãLàGò÷LOð # 
˜@ò®0à Gò\# 
˜@ò¯0Íø0 ˜
 ˜˜Íøhÿ÷u¹ Gò\Oð #
˜@ò¯0Íø0 ˜Íøh
LäGò&\ÿ÷6¼ Gò(\O𐠔ÿ÷2¼Gò5\àGò7\ Oð# 
˜@ò±0ÿ÷&¼ Gòó<# @ò¦0Íéÿ÷¼‘H"ÙøtxD@kÙ÷àü(@ðl€!"$û÷±ý@˜oð@Bžh‘BÐ9`¿ð¸î @”@òg0Fö‹|  ð-¸~K{DhšBð<€"ðrïð4þ(Bñ˜@òZ0Fölð–¹ð<ï(BðD€(Fá÷|ý(>|ôy¨OðFö5làðlï(?|ôz¨OðFö7l	àð`ïƒF(|ô‰¨OðFö:l@˜(¿hoð@B‘B@ðŽ„?˜%@•(¿hoð@B‘B@ðŠ€>˜?•(¿hoð@B‘B@ð‰€ »ñ>¿Ûøoð@AˆB@ð†€Úø<(cÐJM@h}D
žékˆBÐJhRmSñ\‡Ch[m³ñÿ?ؿ²ñÿ?8ݩFeFðªè
ž¬F(MFFÐ=HaF=K@ò]2xD{DÙ÷nü@©?ª>«PFÙ÷þþ(:ÔÝøü°oð@A©FÛøˆB¿0ËøÝøü°/IuhyDÍø|°hh	hˆBAð(‡(hoð@AˆBRÑ ˜WàBmð€BÂБøW R¾ÕÐø¬ *ðk‡h(Û2h‹B»Ð28ùÑ@ò]0ð½¸@ò^0Fö‰lð¶¸9`ôr¯fFðÌí´Flç9`ôs¯eFðÂí¬Fmç8Ëøôu¯XFeFð¸í¬Fnç¿p,ã<øÿ˜Œà*x‹4:øÿrøÿ)0(`uh ˜-ð׆Ðø4)Fðˆï(ðù†F(hoð@AˆBÐ8(`¿(FðŠíÙø4"™%Èò±F"–!•ä÷ñü(ðæ†FÙøoð@E¨BÐ8Éø¿HFðlí0F!ZFOð	û÷Sü0h¨BÐ80`¿0Fð\í@ò_;Fö²`% ðî„F =¹ñÍé;¿Ùøoð@AˆB@ð…Íø°-¿(hoð@AˆB@ð…Üø@!h`.¿FE
Ñ.¿0hoð@AˆB@ð ‡&%Oðð¦¿Öø€oð@AØøˆB¿0Èøui-ð†(hˆB¿0(`ð¿Åh-;ôs¯hoð@@*h‚B¿2*`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ðòì"û÷Y¿FöelOðæ@òa0Föùlða¾@òk0Fö©|(àð„í(A𔆠Fá÷Äû(?Að¶‡@òm0Fö³|àð´í(>|ô-©@òm0Föµ|àðhí(¹ Fá÷ªû(Að¡‡@òm0Fö¸|#  OðÍé
þ÷͹ð„í(|ô+©@òm0• Föº|# Þçð4íž(AðL† Fá÷sûÝøp (Aðm‡@òm0Fö½| Oð[FÍé
 ÿ÷۹ðLíF([F|ô!©@òm0• Fö¿| ð6½Ýh-ð/†)hoð@@Óø³FB¿1)`ÙøB¿HÉøhoð@AˆBÐ8`ð\VF KFÝø€ü÷¹ðíF^F(|ô7©@òm0FöÙ|ðý¼Âh?’*ð†hoð@@hƒB¿3`
h‚B¿P`>˜oð@B>‘h‘BÐ9`¿ðì"ü÷#¹@òm0Föï|ðּ@òr0Gòš # OðÛãðÐìF(|ôH¬@òv0Gò³ªâ@òv0Gòµ  •¥âãH" ™xD’Ñøx@kÙ÷Þù(ð±…F  F!"û÷­ú hoð@AÊFˆB@ð”ƒ@òw0GòÄ ™ãð˜ìF(|ô8¬Oô^pGòÖrâOô^p– GòØ# •Oð¢F…ãÅH" ™xDÑø|@kÙ÷¡ù(@ð{…!"$û÷rú@˜oð@BÝøp h‘BÐ9`¿ðvë @”@òy0 Gòé #OðÍé
•ÿ÷θ@ò{0Gòpâðúë(AðI… Fá÷:ú(>Að:†OôbpGòԐ #O𠐐Íé
˜ÿ÷¤¸ðì(>|ô	¬ Gò#@ò{0  –>âðì(@|ô»­OôbpGò֐ à@ò{0Gò	%â GòÙOôbp  òáÅhÝø€°-ð…hoð@@*hNF‚B¿2*`
h‚B¿P`>˜oð@B>‘h‘BÐ9`¿ðÞê"ü÷ܻ@ò{0GòòáOôbpGòސ  ý÷@¸aH"Ùø€xD@kÙ÷×ø(@ð΄!"$û÷¨ù@˜oð@BÝøp žh‘BÐ9`¿ð¬ê Gò1Oô_p@”ÃàðJë(Aðµ„0Fá÷‰ù(AðŽ…OôbpGòà #O𠔐Íé
˜ý÷¸@ò}0GòC–áð`ë(?|ô_­OôbpGò␠+F ”ü÷޿ðNëF(|ô¼«@ò}0GòEyáðDë(>|ô˫@ò}0GòH  ”ná GòK@ò}0 cá@ò}0Gò_[áH"Ùø„xD@kÙ÷Kø(@ðP„!"$û÷ù@˜oð@BÝøp žh‘BÐ9`¿ð ê @”@ò~0Gòr7à@ò0Gò„.á@ò0Gò†CῚ†††„nƒêH"ÙøˆxD@kÙ÷ø(>ð„!"$û÷áø>˜oð@Bžh‘BÐ9`¿ðèé >”Oô`pGò— # Åá9`ôn«eFðÒé¬Fÿ÷h»)Að„Ûøoð@AˆB>ô¯8Ëø¿XFð¾éþ÷”¿@ò¦0Gòô< #  FÍé¤
˜Ýø$ Íø(  ˜˜à@ò©0Gò5Là@ò©0Gò7L  þ÷§¾OôjpGò*L # 
˜þ÷®¾@òŽ0Gò, „áð ê(Aðíƒ Fá÷_ø(?Aðl„@òa0Fö|åâðNê(@{ôk¬@òa0Fö|ÚâÂh?’*ð݃hoð@@hƒB¿3`
h‚B¿P`@˜oð@B@‘h‘BÐ9`¿ð@é"û÷X¼@òa0Fö|´âOô]pGò©  #OðÍé
–žÊFþ÷¾@òa0Föúl’â GòçOôbp  ”#!@F
‘Oð‘‘‘‘þ÷o¾Oô^pGòÚ # à@ò{0Gò"à@ò}0Gòc  #OðÍé
ý÷ü½@ò0Gòˆ # äçð¦éÝø\€(>{ôXª@òe0FöJ|»ã*ÔAH*AMxDAKAI}Dh{DyDh¿+Fðé Gò¯L@ò­0Oð#  –þ÷º½@òo0GòââðtéF({ôȮ@òo0Gò	×âðhé!(>{ôخ Gò@òo0 %àèh?(;ôЮhoð@A¬hŠB¿2` hˆB¿0 `(hˆBÐ8(`¿(FðXè %Fû÷·¾@òo0Gò! +F £â"ü÷Կ8ÉøôûªHFfFð<è´Fÿ÷ôº8(`ôúª(FeFð2è¬Fÿ÷óºø‚ñµüÿüføÿ³2øÿ8 `Ñ Fðè@òw0GòÄ # –OðÍé
þ÷x½ðêèF"(|ôo« Gò+,Oôdp  àOôdpGò?,  ”!#O𐐐
‘‘‘‘‘Ïã !@ò‘0 GòM, #O𐐐
‘‘‘‘·ã@ò‘0! GòO,# O𐐐
‘‘‘‘ý÷ּðè#(?|ô™« Gò\,@ò’0 à@ò’0Gòp, # !Oð
‘‘‘‘ý÷¬¼ðhèF(|ôū@ò“0Gò~,  ü÷ѽ@ò“0OôåLü÷ƽ@ò“0Gò…,ü÷=ð
è(Aðç Fà÷Jþ(>Að[‚@òf0Fö_|/àð:è(?{ô(«@òf0Föa|$àÂh>’*ðׁhoð@@hƒB¿3`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ð*ï"û÷»@òf0Föv| # Oð-â@ò™0! Íé¡Gòô,#O𠐐Íé
‘‘‘‘Ýøp þ÷r¼´H" ™xDÑøŒ@kØ÷ý(ð‡F  F!"ú÷Öý hoð@AˆB@ð؃@òš0Gò< èã Gò<Oôgp ã H"ÖøxD@kØ÷Þü(ðhF  F!"ú÷­ý hoð@AˆB@ðºƒ@ò0Gò&< ¿ãð˜ïF(~ô4©@òå0GöN
•Íøx°ð¼@òå0
• Íøx°GöP #Fð†¼%á‚K{DhšBð2„"ð\ïðþ(Añ@òa0Fö|  #OðÍé
Ýøp þ÷߻í$µî@ñîú¿$ú÷ȿhJzDhBð
„PF"ð$ïðæý(Añ^@òf0FöY|  #&çOô\pGò0•àð&ï(>{ô­Oô\pGò2NàOô\pGò5…àðïF({ô­Oô\pGò7zàðï(?{ô ­Oô\pGò:#àîh.;ô­1hoð@@¬hB¿11`!hB¿H `(hoð@AˆBÐ8(`¿(Fðþí %Fû÷½Oô\pGòO  •JàðÖîF({ô)­Oô\pGòS #F :àÄh,;ô+­hoð@@"h‚B¿2"`
h‚B¿P`>˜oð@B>‘h‘BÐ9`¿ðÂí"û÷½Oô\pGòiàOô\pGòo # 
à@òo0Gò%  #OðÍé
ÍøD°þ÷»ê|”|²F8ãF0`Ñ0Fð„í&%OðÜF=©<ª;«`FãFØ÷_þ°ñÿ?@󵆘oð@AÝø€ÀhŠBÐQ`ÑðfíÝø€ÀÛø@[Fh`(¿hoð@B‘B@ퟨ�ñ¿Øøoð@AˆB@ðŠ€-¿(hoð@AˆB@ðŽ€Ýé;…-=ž¿hi@E@ð׆ØkÝc(¿hoð@B‘B@ð†€.¿0hoð@AˆB@ퟜ�ñ¿Øøoð@AˆB@ð‡€ =Íé;Úø@žh`(¿hoð@B‘B2ј(¿hoð@AŠB2ј(¿hoð@AŠBÑ  	àQ`ÑdFðöì¤F  #OðOð
Íé
þ÷Sº9`ÉÑdFðØì¤FÄçQ`ÉÑdFðÐì¤FÄç9`ôr¯ðÈìÝø€À[Fkç8Èøôq¯@Fð¼ìÝø€À[Fiç8(`ôn¯(Fð°ìÝø€À[Ffç9`ôv¯ð¦ìÝø€Àpç80`ôu¯0FðœìÝø€Ànç8Èøôt¯@Fð’ìÝø€Àmç@ò“0Gòˆ,ü÷äº Gò—,
àðjí(>|ô*©@ò•0Gò™,ªá Gòœ,@ò•0 ¤á@ò•0Gò¡,œá@ò•0Gò£,—áðLíF(|ôG©@ò•0Gò¥,  ”ŒáîK{DhšBð°‚"ðíðßû(@ñ]‡@òf0Föz| # O𐐐Íé
þ÷¢¹ðíF(|ôթ GòÄ,#à GòÆ,#F !
‘Oð‘‘‘‘@ò—1–‘Íø\ ý÷_¾GòÎ,ý÷J¹OôhpGòB<:àðâì(?|ô̪OôhpGòD</à GòG<Oôhp )àÅh-퟼�hoð@@*h‚B¿2*`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ðÌë"Ýé¹ žü÷ººOôhpGò[<  !#O𐐐Íé
‘‘‘‘‘Íø\þ÷¹ Gò_<
Oôhp Cà•H"Öø”xD@kØ÷­ù(?ðD†!"$ú÷~ú?˜oð@Bh‘BÐ9`¿ð†ë ?”@ò¡0 Gòp< #Í鐈àðZìF ,|ôت
@ò£0GòŒ< öà@ò£0Gò < 
 ”îà Gò®<
Oôip àð8ìF(|ô«OôipGò°< 
 ý÷¸ Gò³<†àOôipGò¸<ý÷ޏOôipGòº<ý÷ˆ¸ðì(>|ô4«OôipGò¼< +F ”
ý÷|¸@ò™0Gòõ,  ”#àOôgpGò<  ”Mç8 `¿ Fðë@òš0Gò<	à8 `Ñ Fðúê@ò0Gò&<  #Íé
ƒàOô\pGòp #F 8å$"ý÷ŽFVFðÔêþ÷Ÿ¾@ò•0Gòª,  #ü÷è¿GòÑ,ý÷¸ð¨ëF(|ô«¨GòÓ,ý÷¸ GòÁ<
Oôip ý÷	¸ð”ëü÷»@ò¥0GòÐ< # O𐐐Í鐐˜˜ 
þ÷¸@ò¥0Gòä< 
# Í鐐ü÷á¿"ü÷»62vOôhpGòa< 
 #Í鐐O𐐐ý÷Ͽíµî@ñîú¿$ú÷©½&"ý��í µî@ñîú¿ ú÷ý½šððê!(‘}õj¬@òÞ0Gö  #°FHF •Íø@Íé
˜ý÷S¿ðëF(}ô*®Oô}p
•Íøx°GöÊ # ý÷¿GöÌ
•ý÷p¿@òÆ0Gòxl¶àðêê(?}ô!®GöÎ
•ý÷¿ðÞê(>}ô~©@òÆ0Gòzl à
•GöÑý÷P¿ Gò}l@òÆ0 •à
•GöÖý÷â¾@òÆ0Gò‚l  »à
•GöØý÷Ӿ@òÆ0Gò„l¬àð¬ê(@}ô®Oô}p
• Íøx°GöÚ –#Fý÷#¿ðšêF(}ôs©@òÆ0Gò†lŽà GòØ, ü÷+¿íµî@ñîú¿$ú÷¿½$"ý÷¸$"ý÷ϸ	˜ðtê(?
•}ôP¬@òâ0Íøx° Gö# #Ýø$€ý÷é¾@òâ0Íøx° Gö7 #Ýø$€ý÷³¾ðLêF(}ô¬OôzpGöw
•Íøx°*âOôzpGöy
•Íøx°â@ò»0Gòž\  à@ò»0Gò \à@ò»0Gò¢\ à Gò¥\@ò»0  ”#Íø@€!Íé
‘‘ý÷u»
•Gößý÷%¾@òÆ0Gò‹l  •#ý÷Z»
•Göäý÷t¾OôspGò¾lYà
•Göéý÷j¾ðèé(?}ô^©OôspGòÀl  ”`àOôspGòÃl?àOôspGòÅlàOôspGòÇl	àðÊéF(}ôq©OôspGòÉl Íø€ @àÂh@’*𘃁hoð@@hƒB¿3`
h‚B¿P`?˜oð@B?‘h‘BÐ9`¿ð´è"ý÷Z¹OôspGòál à GòålOôsp #F à Gòól@òÍ0˜  #˜ Íé
Ýø$€˜ý÷˽GòõdàGò	t
˜oð@AhˆBÐ
™8`Ñ
˜ðnè #@òÍ0˜  ˜ Íé
Ýø$€”à !@òÍ0 Gòì|HF  ‘
‘#‘‘‘™•Íø@ÍéÝø$€Íéý÷«½OômpGòZ\à@òµ0Gòd\ # øæð
éF(}ôr«Oôzp
•Íøx°OôñLçàOôzp
•Íøx°Gö‚Ôà@ò½0 Gòµ\ #˜ Òæ !@ò¿0 GòË\ #˜ Íé
‘‘ý÷:ºGòÍTàGòáTÛøoð@AˆBÐ8Ëø¿XFðÔï@ò¿0#  ˜ Íé
¤F˜˜žÝøp ý÷+½@ò¿0Gò/l*à GòEl@òÃ0 # %à GòGl@òÃ0 àð€è(>|ô¤®@òÃ0GòJl  ”à@òÃ0Gò_l  #!˜ Íé
‘‘‘‘™‘ÿ÷;@ò»0! Íø@€Gò¨\•#O𐠐Íé
‘‘‘Íé‘ý÷¬¹
•Göìý÷µ¼@òî0
•Íøx°Göàð,è(?}ôê@òî0
•Íøx°Gö‘ #F	à@òî0
•Íøx°Gö” # ý÷ˆ¾ðèF(}ôŪ 
• @òî0Gö–Íøx°3F éç 
• @òî0GöšÍøx°3F õä@òï0
• Íøx°Gö¨ #”ý÷Z¾ 
• @òï0Íøx°Göª#–”ý÷[¼@ò­0AF GòÌLOð# ý��FeFß÷©þþ÷ª¸ùIyD	hˆB@ðœÉj(FˆGF ˜-~ô)©Oð	OôX{Fö˜`þ÷f¹Ûø<!ZFËø<(=‘Íé;?ô?©Ahoð@C=‘
hšB¿2
`@i;(¿hoð@B‘B1¿`ÿ÷)¹Fö¢`Oð	@ò_;þ÷=¹Fö¥`@ò_;þ÷7¹ !@òY0 ?‘Föó\ #ý÷i¾"ù÷¿
ž©FeF(ð°€Ðø€¬FMFˆBôÑþ÷J¸@òb0Fö)| #þ÷µ¹(FAFðèÝø€À[Fÿ÷ ¹@òg0Fö‡| Oð #þ÷¡¹OðFö5lÍøø°ý÷տ#@òm0?“Fö³|þ÷‰¹@òm0Fö½| Oð[FÍé
 Ýøp ý��FVF% þ÷è¹"ú÷:»@òw0GòÀ þ÷޼ Gòå@òy0þ÷¿» !Oôbp >‘GòԐ# þ÷î¼%"ú÷ñ¾ Gò-Oô_pþ÷¢»OôbpGòàû÷S» Gòn@ò~0þ÷”» Gò“Oô`p # þ÷޹Gö	ðþrHxDh°ú€ð@	ý÷”¿GòÄLý÷^¾%à%@˜oð@Bh‘BÐ9`¿ð¬íOðÍøðâúx¹dH.dJxDdKdIzDh{DyDh¿F*Fðî@ò­0GòÔL # ý÷~¾ ! @òa0Fö|?‘ þ÷ü¾"ú÷”¸ ! @òf0Fö_|>‘ þ÷$¿"ú÷W¹ OôæL@òš0 ÿ÷¡¹ Gò"<@ò0 ÿ÷—¹%"ÿ÷‡¹@ò¡0Gòl< # O𐐐Í鐐˜ ž
ý÷«º"ü÷۽)IyD	hˆB?ô^® ˜Ai(FðpéF ˜-}ô…¯ZæÝø4°Fù÷
¾×ø€ú÷r¹×ø€Fú÷™¹×ø€Fú÷ùÝø\€ú÷£¿Ýø\€Fú÷â¿F@˜ù÷k¾Ýø\€ù÷ú¿Ýø\€ú÷ȸF>˜Ýø\€Ýø€ú÷H¸Ýø\€Ýø€ú÷¥¸F@˜Ýø\€Ýø€ú÷¹¿d†
îììPøÿٟüÿŸøÿе¯ˆBÐLCh|D$h£BсhZ±!ð)
ÑÀh8°ú€ð@	н нðн нL|D$h£BÐ"ð€í½èÐ@ð?¼î*í ¸îÀ´î@ñîú¿ н¿|øðµ¯Mø½„FhhÌø`ø±!L|D&h°BÐÐøÀoð@DÜøà¦E¿ñÌø`Ðøà¾ñ#ÐÞø@oð@E¬B¿4Îø@à(¿ÐøÀoð@F´Eмñ`ÑFF
Fð^ì)F2F#F OðOðàOðÁøÀ`Ãøà]ø»ð½ºе¯ˆBÐLCh|D$h£BсhR±!ð)	ÑÀh8¿ н н ˆCн н
L|D$h£BÐ"ðôì½èÐ@´ãî*í ¸îÀ´î@ñîú¿ н¿dâBhÒé
#+¿[h+ÐG*¿Òh*Íãð8¼е¯á±BhŠB/ÐÒø¬0û±˜h(Û3hŒB%Ð38ùÑHLxDËh|DÒhh!FhðPì нHIxDyDhhð¾ëôçF #±Óø€0‹BúÑíçHxDhBÜÑ н|îøÿp~®Høÿðµ¯Mø½RLFh|D%h®B$ÐPL|D%h®B5ÐÖé
V.¿sh+RÑ-¿ëh+CÑFFðîî(ðƒ€F(F!Fð.ì!hoð@B‘BKÑ]ø»ð½±ñÿ?FÜF*¿‚hV±‚h–BÞÒÀhPø&hoð@B‘BçÐà±ñÿ?FÜF*¿‚hV±‚h–BÈÒë†Àhhoð@B‘BÑÐ1`]ø»ð½±ñÿ?Üú¹êh]ø»½èð@GFFð rhF(F!FG!hoð@B‘B³Ð9!`°ÑF Fð>ë(F]ø»ð½F)hF©± FˆG(Ô1F Fêh]ø»½èð@GHxDhhð:ëH±ð@ë F1Fêh]ø»½èð@G ]ø»ð½¿HF:е¯H¹ðÐëÁk)¿Jh*Ñ нFhoð@B‘BÐ9`¿ðôêH"FIxDyDhhð\ëOðÿ0нFHxDhhFß÷úú€±ák àc)ÙÐhoð@BBÓÐ8`¿FðÐêÌçOðÿ0н¿Šýøÿ´е¯ðˆëÁk)¿Jh*Ñ нFHxDhhFß÷Êú€±ák àc)ðÐhoð@BBêÐ8`¿Fð êãçOðÿ0н¿Tðµ¯MøF@hˆF„k,¿¡h)Ñ I¸ñLyD|DhIKÂhyD0h{D¿#FðêêàHF.xDhFF¿0h+¿hð”뀱£hF(F1FBF˜G1hoð@B‘BÐ91`Ð]ø‹ð½Oðÿ0]ø‹ð½F0FðPê F]ø‹ð½Œº2øÿ„:øÿä6øÿ°µ¯Ah‘øWÉ'Ёh)ÙðÉÂñQC)Ð1ÑÐé"@êp@Bbë‘°½ðÀhÁñHCÁ°½Ðé‘@ê‚p°½½è°@ð¹ù÷ø˜±Fÿ÷Ëÿ"hoð@CšBïÐ:"`¿°½F FFðê!F(F°½Oðÿ0Oðÿ1°½¿ðµ¯Mø½DhFF Fð”츱AhÑøˆ03±)F"F]ø»½èð@Ghoð@B‘BÑ]ø»ð½1`]ø»ð½H1FxDhhðdí ]ø»ð½>ðµ¯-é…°N–B#ۀFëÁ ñ›F‘FOð
ð"Íé`@F#ÍéªÍø ðêíëÀ[ø0ÀÕé#ah>Kø0 NEc`eèÁäÚ°½èð½ðµ¯-鐰
Fh!Fð0îyHxDh…BÐxHihxDÀoˆBÐÑø¬ ¢±‘h)%Û2hƒBÐ29ùÑàÉø°½èð½Ñø€BÐ)ùÑiIyD	hˆBÑgHimxDðú0±lk#Oð,CЍàbN(F=!"~DOð3Fð‘ú(ð¦€DkF,{Ѩ\I	¨Dò–ø0 yDÀò@# S*
Íé0Íé
ÍéaÑPIyD	šñ	“Kh“`	šP`Ih	h‘ø0 S*ñЩk¨ð
û(XÐ#¨FEHêjxD†h²B*Ѩj(Ûèkh(Û)l9±	h‘BÐAHBIxDyDTàil)MÑil±	h)9Õ)l!±(Ûh‚B<Ñ(F!JFð+ý0Bа½èð½.I..KyD.LÐøÀ{D
h|D,I(hyDFˆ¿%FÍ鯕*ȿ#Fð:é%à+FH˜FI"xD#FyDhhð,éà¨Fà"H""IxDyDhhð éàHIxDyDàHIxDyDhhðŠè@FÓ÷±ú Éé°½èð½¶ÿ&T¤ÿìMÎM.ÿ	Eøÿ)Eøÿ~MLMdÿbGøÿO–üÿ}øÿ¤ÿÙøÿøþØ/øÿÿ=-øÿÿ6:øÿ(¿Oðÿ0pG°µ¯FHxDh„BÐIyD	hŒB
ÐIyD	hŒBÐ Fðòè!hoð@B‘B	Ѱ½ °ú€ð@	!hoð@B‘BõÐ9!`¿°½F Fð<è(F°½¿výpýRýðµ¯Mø/JKhzDh“Bъh*LØðËhÂñûôbÑFFðÀè0»Oðÿ4(F!F"#]ø‹½èð@Oä€FFFðÀêF1F@F-åÐ(FðÀêF(hoð@AˆBÐ8(`¿(Fðôï1F@FÑçIyD	h	hðjê`±`hÄhðè
H"F
IxDyDhhðLè ]ø‹ð½FFFð”ê!FF(F°ç¿8ýÊüpýHøÿðµ¯Mø½‚°F@h
FAm±ñÿ?;Ü'I(KyD‚l{DÑø4h‚B&Ñ F"#ðÄèF8³ "hFÈò0F•á÷ÿ1hoð@B‘BÐ91`а]ø»ð½F0FðŽï F°]ø»ð½ F²±GF(ÙÑÞ÷Ãþð ï`hIyDhIÂhhyDðæï °]ø»ð½ðVèF(ÁÑæçŒP$ü¦û«?øÿ)¿ pG°µ¯Fðòï!hoð@B‘BÐ9!`¿°½F FðLï(F°½(Oð¿)ÑFpGˆBÐðµ¯MøŠh†hø06¿‘ø0 ”Eжú†ð¼ñHOêPБø0H(¿"]ø‹½èð@FpG"FpG‘ø1 ø1P•BäÑÂjÍjªBàÑ*ÛññVøKUø;£B0Ñ:÷ѼñS2ÑJkCk“B'ÑÑø€AhAê)°ú€ð¿¸ñOêPÉÐh(³ññ%Vøy±2h#h“BÑÿ÷–ÿ@±`hñ65(FíÑà"]ø‹½èð@FpG"]ø‹½èð@FpG%ëEXø °ú€ðB	]ø‹½èð@FpGðµ¯-éFF˜FFð0ï(RЁF±IHxDàIHxDhoð@A(hˆB¿0(` ðäî(DÐF0hoð@AˆB¿00`>HÄéixDeaÅohhl¾³;HxDðÞï(AÑ(F!F"°GFðÜﵳ hoð@F°BÐ8 `¿ Fðpî(hÅøT€°BÐAoð@B‘B)`Ð((`¿(Fð`î(F½èð½CöØHOð	%àCöÜH$à(F!F"Oð	ð²ïF(ËÑCöçHàðêîرCöçHOð	%HFÓ÷Kø(FÓ÷Hø FÓ÷EøHAFK@ò—"xD{DÖ÷|ü%(F½èð½
H
IxDyDhhðîÚçs,øÿMBøÿúú:Nð;øÿ
ùÊøÿðµ¯-遰
F‚FOð=&Oð	*x}*ò̀$ßèðÇÉÉÉÉÉÉÉÉÉ~ÉÉ~ÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉ~–ÉÉÉÉÉÉíÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉÉɰ–€°É€ÉÉÉÉɀ€ÉɀÉɀɀÉÉÉÉÉÉÉÉÉɰÉÉɀ€€É€€€€ÉɀÉÉɀ€ÉˆÉÉÉÉ´ÉÉÉɧ5xçšø$B¿Úø „BÐPFðxú0ðÚøšø%ÊøŠø&øŠø$Êø @Êø€Yçšø%šø&B¿šø'(ÞÑÚé5DÊé€HçŠø% 5DçPFðLú0ðLÚé5šø% D
ñŠø$Šø& è/ç¢ñ:ñ
Àð̀)F¢ñ0ø?£ñ0	*򪀩ë€ø+ë@¢ñ008
+FóÓCð²€MÊøçÚø(@ðí€PFðú0ðÚøh#	hÑøàÞø, pà5ø:(ûÑðæø/¢ñd(òý€(ðú€$kçŠø%`5àæÚøÊø€hxÚø°{(@ð¸€PFðÞù0ðހ¬ ¹ñÊéŠø$UÐPF!Fÿ÷¸þ(ð΀¹ñ	FôÑJà¦ñ:ñ
_ÓF¦ñ0ø_¥ñ0	.Ø0ë„økëA¡ñ0¦ñ0
)5FòÓaFÐA“BÛ	à.F“BÚëƒÐøÀdE@ð‰€).Ð,.@ð€H3àF3x.¿).ÄѓBiÑ.lÐÊø€EŠø'€=&uæ
FÊøqæ%F»ñOð	¿Êø°hæ%(F°½èð½?H?IxDyDQàNHOIxDyDhhaàAHAIxDyDYàPFÚø@ðWù0OðUÐ5,Šø$ÛÐÚø€!F@Fðèè)¿ë@Êø(F°½èð½šø$±Úø@±PFð3ù03ÐÚø(ºÐPFðÔø+àHIxDyD
àHIxDyDà$H$IxDyDà#H$IxDyDhhððëàHbFI#FxDyDhhðnìàHIxDyDhh2Fðdì%(F°½èð½HZ"IxDyDhhïç¿jöà5øÿâõ,øÿØõñ;øÿ®õºøÿRö¡,øÿœõü.øÿÎõ¬*øÿÄõî!øÿ|õCøÿ`ö¯,øÿ°µ¯h-¿Uh-Ð1HF1IxDyDhhð”ë ÄéOðÿ0°½lm±)6Ûñ($lUø$PLø$P4¡B÷Ñà±ñ'ÔëÐø,à$4DøéÅkUø,P¬ñûþñóÑ)ÛOðÅkUø,@댬`Dl,¿Tø,àOðÿ>ñÅøHàaEìÑ`jQ`ñQè/UAèT,øÑRêÐ °½hoð@B‘B¿1` °½
õÞøÿðµ¯Mø‚°Áh³h†B"Ð#J3hzDQøLjhø$Óø€hðôúF hrhhIÍé(FyDBFð˜ë°]ø‹ð½LM|D}DàhMh}DIyD
hjø$hðÒú
I*FÍéP0FyD#Fðzë°]ø‹ð½¿Þ1øÿð;øÿيüÿÜóEøÿ(ô‰øÿø$ *¿ pGðµ¯-郰Ãhhhñh³p*¿s*)Ññj9±úñI	€ø'hhƒiôh£BÑ#ù±ój!+#Û6Oð	Vø[;û	ùùÑàOð	¢ñ?4)ÙLàH"FIxDyD	àø'#)ßэHIxDòjyDhhKâOð	a!€ø'¢ñ?4)ò/€OðHßèð+++++++++++))++++++++++++++++8!+!!++++++OðIàOðUàjOðC)¿OðRà“FànIFyDhmIhyDFðØê FOð©ñ‘hIyDÑøàgIyD‘	ài")Â`@ð聁i)ðہÁhø&0h^+Ôø ¿@+@ðH€ø$ ¢ñ?4-ò›€j!ßèðÀ——À—————5€——€——€€‹————————————————ÀÀ“—•“5€——€———À‹—À!ø&0ˆF@+@ð)ˆàø$ ¢ñ?4-òø€Ðø À!Oðßèð=ññ=ñññññu5ññ5ññ55@ññññññññññññññññ==oñbûu5ññ5ñññ=@ñ=!ø&0ˆF@+@ðހ=à@+;ÐÙà!ø&0ˆF@+@ðӀ2à+&à+àÞøFF™¤àóÈþ÷ÿ
ó^6øÿ†òGøÿhò)øÿ¼ñOð¿!ø&0ˆF@+@ð¬€à¼ñOð¿!ø&0ˆF@+@🀐ø$ ¢ñ?4)ò#ßèð::955557::757955:7:#à#à#i^.@¿+D›aÃi+@ðP€4)ò@€#ßèðI==I=========================II======I=I#+à#)à#'àZIFÞø0yDFvFðdéàTIFÞø vFyDFðÒè¶F(F!ø&0ˆF@+
ÑmçMIFÞø0vFyDFðHé¶F(F#ÃaÚøšø0 AE¿ZEÐC*
ÑÚø0S±Áh¢hñKhÆ`Úø`Ž`ÑDà»ñH¿#H:¿"AE¿êDÑÐé£hIhDšBEсi¹ñš¡ña¿ûˆ„Bëa
Ñ@æÁh¡ñÂ`QøBF?ô6®Âhñ`âh*îВø00S+ô0®Rhh+ëÐÁhciñNhÅ`Š`™ÂhQ` æ!b€ø$ °½èð½ÿ÷ýOðÿ0°½èð½IÞøyDðÎèOðÿ0°½èð½
IÞøyDðÂèOðÿ0°½èð½¿û2øÿcøÿ)øÿ*.øÿøÿs(ò|€FaHxDßèð–wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwywwwwwwwª­wwww™œ³ww°wwwwwwwwwwwww‚“…wzŸ§¹ww¶wwwt¼wt:HxDpG;HxDpG.J/HzDxD)¿FpG HxDpG+J+HzDxD)¿FpGHxDpG HxDpGHxDpG*HxDpG&HxDpG%HxDpG J HzDxD)¿FpGHxDpGHxDpGHxDpGHxDpGHxDpGHxDpG	HxDpGHxDpG¿¹øÿ2øÿÑ.øÿ®,øÿjøÿVøÿÉøÿaøÿöú÷ÿIû÷ÿøÿdøÿ³øÿßøÿkøÿ¦ý÷ÿÝ$øÿ{ý÷ÿ(øÿ”
øÿ§øÿ‡&øÿÜ*øÿE%øÿƒ°€µoF³°	LñÀñ|DmFÈ!(F"F2“ðŽëH)FxDð’ë¿*,øÿyøÿðµ¯-é›°ŠF	hFFoð@@B¿1Êø>iØø"FB¿HÈø0hoð@AˆB¿00`õHxDÐøä0F÷÷ü(–ñ2‡•ð}˜"Ðø0F÷÷ü(ñE€ðq˜"Ðø,0F÷÷süF(ñ[€0hoð@AˆBÐ80`¿0FðÚî-Að
‡Ýø\°”Ûø¼WÛøêh)FðDè(ð"‡Fhoð@AˆB¿0ÉøÙøFFÛø„‚lHF*ð‡G€F(ð‡Ùøoð@AˆBÐ8Éø¿HFð¤îÂHØøxDhBð"‡ %©B1‘¡ë€@FÍéZà÷þ-F¿(hoð@AˆB@ðP¹ñðVØøoð@E¨BÐ8Èø¿@FðtîÚø¨BÐ8Êø¿PFðjîÛø¼GÛøâh!FðÚï(ð‡€Fhoð@AˆB¿0ÈøØøÛø„ÍøL‚l@F*ð	‡GF(ð
‡Øøoð@AˆBÐ8Èø¿@Fð8îÙø™ˆBðÿ† $™BÍéF¡ë€HFà÷›ý,F¿ hoð@AˆB@ð
-ðÙøoð@D BÐ8Éø¿HFðî0h BÐ80`¿0FðîÛø¼GÛøâh!Fðvï(•ðꆁFhoð@AˆB¿0ÉøÙøÛø,‚lHF*ð놐G€F(ðì†Ùøoð@AˆBÐ8Éø¿HFðÖíÝøLÛøÔÙø‚lHF*ðۆGF(ð܆Øø™ˆBðì†% ÛøT‚‘™ÍéT¡ë€@Fà÷%ý-F¿(hoð@AˆB@𷀠hoð@AˆB@ð½€.ðÀØøoð@AˆBÐ8Èø¿@Fð’í:HxD
:MÐø }DVE¿(h†BÑ
˜h0°ú€ð@	à%0hoð@AˆB��æ/HxDh†BëÐ0Fðî(ñʆ1hoð@B‘BÐ91`ð‹€(ð€$H"™xDÑøÀÀkÕ÷kû(ðª†F  F!"÷÷:ü hoð@AˆBÑIö=1@ö&r^ã8 `Ñ Fð<íIö=1@ö&r Rã8(`¿(Fð0í¹ñôª®Iö¦!@ö!rOðÑF–ð>¾¿0?6êÒçÌçŒç²I8 `¿ Fðí-ôð® –@ö"rIöË!OðOð%ÍéOð&Íé

Íéð²¼8(`¿(Fðìì hoð@AˆB?ôC¯8 `¿ Fðàì.ô=¯Iöó!ðñ½F0FðÔì F(ôp¯ž•Öø¼G0hâh!Fð@î(ðN†€Fhoð@AˆB¿0ÈøØøÖø,‚l@F*ðK†GF(ðL†Øøoð@AˆBÐ8Èø¿@Fð ìhhÖøÔ‚l(F*ðO†GF(ðP†Ùø™ˆBðb†% qm‚‘™ÍéT¡ë€HFà÷óû-F¿(hoð@AˆBvÑ hoð@AˆB}Ñœ.ð„€Ùøoð@AˆBÐ8Éø¿HFðbìVE¿ h†BÑ
˜ÝøLh0°ú€ð@	à¦HxDh†BñÐ0FðììÝøL(ñ¦†1hoð@B‘BÐ91`ÑF0Fð:ì F(ô֮˜HœxDÝøP°h„BÐah‘øWÀPјlBLÐÑø¬ *AБh)Û2hƒBAÐ29ùÑ hoð@AˆB¿0 ` FFà ð
í(AÑ IöY1@ö)râ8(`¿(Fðúë hoð@AˆB?ô‚¯8 `¿ Fðîëœ.ô|¯ @ö%rIö 1ð¦½Ñø€BÐ)ùÑlIyD	hˆBÀÑ ðÔì(ð‡F hoð@AˆB¿0 `Ðh`FÙø‚l˜*ÐøhHF𶅐GF(𷅠Fð|ïAð·…!hoð@B‘BÐ9!`ÑF Fð¤ë(F(Að®…Ûø‚l˜*ÐøhXFðŐGF(ðą FðVïAðE!hoð@B‘BÐ9!`ðl(@ðqÛø‚l˜*ÐøhXFðõ…GF(ðö… F!"#ý÷®ÿ(ðó…F hoð@AˆBÐ8 `¿ Fð\ëÛø‚l˜*ÐøhXFð䅐GF(ðå… F!"#ý÷Šÿ(ð煀F hoð@AˆBÐ8 `¿ Fð8ëHFAF"ðì(ðå…FÙøoð@E¨BÐ8Éø¿HFð"ëØø¨BÐ8Èø¿@FðëÝøLVE˜¿h†B
Ñ
˜h0°ú€ð@	à¿DååŽä˜†BîÐ0Fðšë(ñ]‡1hoð@B‘BÐ91`ÑF0Fðìê(F(@ðـÙø‚l˜*ÐøhHF𚅐GF(𛅠F!"#ý÷ÿ(𘅀F hoð@AˆBÐ8 `¿ FðÄêÛø‚l˜*ÐøhXFퟤ�GF(ðŠ… F!"#ý÷òþ(ퟨ�F hoð@AˆBÐ8 `¿ Fð ê@FIF"ðjë(ð‹…FØøoð@E¨BÐ8Èø¿@FðŠêÙø¨BÐ8Éø¿HFð~êVE˜¿h†B	Ñ
˜ÝøL›h0°ú€ð@	à˜†BòÐ0FðëÝøL(›ñφ1hoð@B‘BÐ91`ÑF0FðVê›(F(Að[…Xhk)¿Jh*ð’„˜ÐøPFG(ð‡F­HihxDÍø Ðø€AE¿(h(Ð(Fðšî(@ðB #Iö5A@ö:r
$Oð

	“Íé5Oð	ðµ¹ (`CáF Fðê(F(?􏮕H"™xDÑøÈ@kÕ÷ø(ðz„F  F!"÷÷èø hoð@AˆBÑIöó1@ö2rOð 
à8 `Ñ FðèéIöó1@ö2r OðOð
&Íé
ÍézHzKxD{DÕ÷!øšOð4F*¿hoð@AˆB ј(¿hoð@AŠBѸñ¿Øøoð@AˆBј ³˜oð@AhˆBЙ8`¿˜ð¤éà8`¿Fðžé×çQ`¿ð˜éÙç8Èø¿@Fðé˜(ÚÑ
˜ž(¿hoð@AŠBј(¿hoð@AŠBјر˜oð@AhˆBЙ8`¿˜ðlé
àQ`¿ðféáçQ`¿ð`é˜(ãј(¿hoð@AŠB4Ñ.¿0hoð@AˆB3ј(¿hoð@AŠB2Ѻñ¿Úøoð@AˆB/Ñ,¿ hoð@AˆB0ѹñ¿Ùøoð@AˆB.ј(¿hoð@AŠB.ÑXF°½èð½Q`¿ðéÄç80`¿0FðéÄçQ`¿ðéÆç8Êø¿PFðéÇç8 `¿ FðéÇç8Éø¿HFðøèÈçQ`¿ðòèXF°½èð½)hoð@B‘B
ÑFà¿XáCäøÿ{)øÿ9F)`¿(FðÖèÝé›%FÙø‚l˜*ÐøhHFð„GF(ð„HF!"#ý÷ý(ð„FÙøoð@AˆBÐ8Éø¿HFð¬è¨h)iBĿIˆBó;ƒ(F!FðÐëž0ð˃ hoð@AˆBÐ8 `¿ Fð’èphÍø@€‚l˜*ÐøÄ0FðՃG€F(ðփØø™•ˆBAð҂Øø@,ð͂!hoð@@ØøPB¿1!`)hB¿H(`Øøoð@AˆBÐ8Èø¿@FðZè¨F ™BÍéE¡ë€@Fß÷Âÿ,F¿ hoð@AˆB@ðð‚¹ñðö‚Øøoð@AˆBÐ8Èø¿@Fð4èÙø‚l˜*ÐøHF𕃐G€F(ð–ƒÙøoð@AˆBÐ8Éø¿HFðè˜AhŠl™*Ñøhퟬ�GF(ðŒƒHF!"#ý÷Hü(ðŒƒFÙøoð@AˆBÐ8Éø¿HFðôïØø™ˆBAðƒØøPÝøL-ðƒ)hoð@@Øø`B¿1)`1hB¿H0`Øøoð@AˆBÐ8Èø¿@FðÌïÝøP° °F™‚•”Ñø8‘™¡ë€@Fß÷.ÿ
-¿(hoð@AˆB@ðj‚ hoð@AˆB@ðp‚
˜(ðv‚Øøoð@AˆBÐ8Èø¿@FðšïÛø‚l˜*Ðø”XFð=ƒG€F(ð>ƒ˜Ðø¼Ghâh!Fðüè(ð;ƒhoð@AŠB¿Q`Ah‚FŠl™*ÑøÌðVƒGF(ðWƒÚø oð@AŠBÐQÊø¿PFð^ïØø™Ýø ˆBAð²ØøP-ð­)hoð@@Øø`B¿1)`1hB¿H0`Øøoð@AˆBÐ8Èø¿@Fð6ïÝøP° °F™BÍéT¡ë€@Fß÷þ-	¿*hoð@AŠB@ðú"hoð@AŠBÐQ!`Ñ Fðï	˜(ðƒØøoð@D BÐ8Èø¿@FðïÛø BÐ8Ëø¿XFðúî˜">iÐø0Fö÷{ü(ñ÷‚ð¼€ ðêï(ðƒ›Foð@BÓø
h‘B¿1`Óø
áh"`!FÓøôÕ÷Ãù(ðoƒ€F hoð@AˆBÐ8 `¿ FðÂî˜Ðø@FÕ÷àù(ðvƒFh	šoð@D B	ÐA)`¡BÐ(`¹(Fðªî	𨸕 BÐ8ÈøÑ@Fðœî	šœoð@A hˆB¿0 ``h™ˆBðeƒ %™ÍéRB¡ë€ Fß÷÷ý€F(FÑ÷‘ø¸ñðyƒ hoð@AˆBÐ8 `¿ Fðpî©IØøyD	hˆBAðrƒØø *Aðï…ñññh
hh!h F”oð@@B¿1œ!`hB¿H`)hoð@@’B¿1)`Øø•BÐHÈøÑ@Fð8î Ýø(€Íé£á˜"Ðøä0Fö÷³û(ñãƒF ð"ï€F,ð¸ñð…›oð@BÓøàh‘B¿1`ÓøàØø"`AFÓøôÕ÷÷ø(ð…FØøoð@AˆBÐ8ÈøÑ@FFðôí"F˜’ÐøàFÕ÷ù(ð…Fh	šoð@D B	ÐA)`¡BÐ(`¹(FðØí	š˜•h¡BÐ9`ÑðÎí	šÝø8€oð@AØøˆB¿0ÈøØø™ˆBðé„ $™ÍéBB¡ë€@Fß÷$ýF FÐ÷¾ÿ-ð…Øøoð@AˆBÐ8Èø¿@Fðœí@IhhyD	hˆBAðK…ªhÝø(€*Bðññhhoð@@hB¿1`™	hB¿H™`(hoð@A“ˆBÐ8(`Ñ(Fðní ÍéÛà!hoð@Bž‘B¿1!`éhAø @0¨` hoð@AˆBô¿¬Ãä8 `¿ FðPí¹ñô
­IöeAð˸8(`¿(FðBí hoð@AˆB?ô­8 `¿ Fð6í
˜(ôŠ­ Iö„A
@ö<r˜ ð¸Q)`ô®(Fð í	˜ü忾ÙØ¸ñ𬆛oð@BÓø(h‘B¿1`Óø(Øø"`AFÓøôÔ÷ñÿ(𬆁FØøoð@AˆBÐ8Èø¿@Fðîì˜Ðø(HFÕ÷ø(ð¯†FhÝø(€oð@D B	ÐA)`¡BÐ((`¿(FðÔìÙø• BÐ8Éø¿HFðÈìšoð@AhˆB¿0`Ph™ÝøLˆBð†#“FOð
	™ZXFÍé¡™¡ëƒß÷üFPFÐ÷¸þ-(F•ð³†Ûø oð@AÝø ŠBÐQËø¿XFð’ì Í鐐˜"×ø°ÐøÐXFö÷
ú(ñ€ð/˜"Ðø,0Fö÷ú(ñЁð#˜"ÐøÌXFö÷õù(ñèÐ˜"ÐøØXFö÷êù(ñ$‚Aðà0F"Õøö÷Þù(ñ	‚FÕø¼Õ÷@ú,F,F𢁹ñð‚ÙøÔøP‚lHF*ð‚G(ð‚Ùøoð@AˆBÐ8Éø¿HFð(ìÔø¼Õ÷ú(ð	‚€F@hÔøÈ‚l@F*ð‚G›F(ð‚Øøoð@AˆBÐ8ÈøÑ@Fðì›+ð‚XhÔøÌ×ø€‚lF*ð+‚G™F(ð,‚)ð@‚0Fðœï(ðU‚F0hšoð@AˆBÐ80`Ñ0FðÜëšhh™ˆBð`‚ &™’‚¡ë€(FÍédß÷=ûF0FÐ÷×ý hoð@AˆBÐ8 `¿ Fðºëž¹ñðg‚(hoð@AˆBÐ8(`¿(Fðªë ððë(ðn‚	šFÀøoð@AhˆB¿0`"aðžì(ðv‚Öø<BFFðdì(ñсÖø¤HFBFð\ì(ñˁž!FJF0FÔ÷Žù(ðH†F0hoð@H@EÐ80`¿0Fðlë h@EÝø(€Ð8 `¿ Fð`ëÙøoð@A>iˆBÐ8ÉøÑHFðRëÝøLæáOð
˜"Ðø,0Fö÷Ðø(ñU‡
О.ð­€2h0Foð@AŠB¿P0`0F;â˜"Ðøä0Fö÷·ø(ñì€ð˜ž(ð#ƒÕø¼Õ÷ù(ð+ƒF@hÕø¤‚l F*ð'ƒG›F(ð(ƒ hoð@AˆBÐ8 `Ñ F,Fðë›+ð,ƒÐHYhxDhBAð<ƒz€ñ<ƒh›Foð@AˆB¿0`›Fhh™ˆBðOƒ"$™(FÍéK¡ë‚2•ß÷KúF FÐ÷åüÛøoð@AˆBÐ8Ëø¿XFðÆê-ðUƒ˜oð@AhŠBÐQ`¿ð¸ê˜)Fðdî(ðYƒF(hoð@AˆBÐ8(`𫁠F¬á¹ñðiƒÙøÔøx‚lHF*ðrƒG›ƒF(ðsƒÙøoð@AˆBÐ8ÉøÑHFð†ê›+ðtƒøhðîî(𐃁F˜IF"ðFë(ðŠƒFÙøoð@AˆBÐ8Éø¿HFðdêÛø™ˆB𓃠&ÝøL™BÍéd¡ë€XFß÷ÅùF0FÐ÷_ü hoð@AˆBÐ8 `¿ FðBê>i-ðŸƒÛøoð@AˆBÐ8Ëø¿XFð2êœUE¿ h…B@ð‘€
˜×ø°h(°ú€ð@	“à˜œž(ð<„Ôø¼Õ÷ø(ðK„F@hÔø¤‚l(F*ðH„G›F(ðI„(hoð@AˆBÐ8(`Ñ(Fðúé›+ðF„`h™Íø ˆBð_„%"˜ÍéS ë‚2 Fß÷XùƒF(FÐ÷òû»ñðq„ hoð@BÝø BÐ8 `¿ FðÐé˜YFð|í(ðt„Ûø oð@AFŠBÐQËø¿XFðºé(F¿àIöjaàIöka	˜Oôvb•Oð
ÝéSž˜
˜	“#“+F”4F˜OðÝøà8ᘅB?ôk¯(Fð2ê×ø°(ñۄ)hoð@B‘B	Ð9)`уF(Fð‚éXF×ø°H±%Foð@A%h(hˆBÑ ªF$àÚøoð@AUFˆBÑ à0(`µë
°ú€ð¿™	hBOêPѪFà¿ÔÒ™B÷Ð(FðòéªF(ñ„(ôþ­˜"ÐøÌXFõ÷Îþ(ñ0„ð4„œÔøÐ
Ô÷.ÿ(ðJ„F@hÔøÈ‚l(F*ðG„GF(ðH„(hoð@AˆBÐ8(`¿(Fðé˜"ÐøÔ FÓ÷+ÿ(ðJ„!hoð@E©BÐ9!`ÑF Fðé0F>ih©B?ôµ­9`¿ðþè®å(Fðúè FAhŠl™*ÑøÌð…GF(ð…@F!Fð^í(ð	…F hoð@AˆBÐ8 `Ñ FFðÖè"FHFFFðÀë(ð…1hoð@EƒF©BÐ90F1`¿ðÂèØø¨BÐ8Èø¿@Fð¶è(Fðšì(ðþ„ÛøÃl˜+ÐøhXFð…š˜GÝø@€(šÝéc"Ô˜oð@Eh©BÐ9`ÑðèÝécšÛøÍø@€ØF¨B¿0Ëø˜
˜	˜–“œþ÷­¾	˜Iö²q@öur˜Oð	
0FžDF“›	“3F•Íø(°OðOð%•ƒF˜UFšFoð@ChžBÐs`mИàF	˜Íø\°óFÍø8 ”ž˜ÝøD9ñÐÙøoð@C˜BÐ8ÉøÑHFáFF’ð0èš!FÌFÝøL¸ñÐØøoð@C˜BÐ8ÈøÑ@FàFF’ðèš!FÄFÝø(€»ñÍøDÀÐÛøoð@C˜B
Ð8ËøÑXF‘Fðþï™"FªF->ô"®(hoð@C˜B>ô®8(`~ô®(F‘Fðèï™"Fþ÷¾ FFFÍéìðÞï2FÍø\°Íø@€!FžÝ鸘	˜Íø8 †çIö_!AáêH"™xDÑø¼@kÓ÷Õý(ð™ƒF (F!"õ÷¤þ(hoð@AˆB@ðIö}!@örÑFÍøP€þ÷ĽðNè(¹(FÛ÷þ(Að„„Iö!@ö!ráð€è€F(~ô⨠–@ö!rIö‘!OðOð%ÍéOðÍé
&
ÍéÍé
9çØøP-ðWƒ)hoð@@Øø@B¿1)`!hB¿H `Øøoð@AˆBÐ8Èø¿@FðZï  FÝø\°þ÷º¸ðúï(¹ FÛ÷;þ(Að3„ Iö´!@ö"r–þ÷_½ð(èF(~ôö¨Iö¶!@ö"rOð–ØàÙø@,>ôü¨!hoð@@ÙøPB¿1!`)hB¿H(`Ùøoð@AˆBÐ8Éø¿HFðï ©Fþ÷߸ð¶ï(¹ FÛ÷÷ý(Aðòƒ IöÙ!@ö$rOðXâðâï€F(~ô© @ö$rIöÛ!²àðÖïF(~ô$©IöÞ!@ö$rOð %
&OðÍéÍé
Íé«æØøP-ðµ‚)hoð@@Øø`B¿1)`1hB¿H0`Øøoð@AˆBÐ8Èø¿@Fð´î °FÝø\°þ÷ð¸Iöe!!à Iö91@ö&rþ÷<Oð	@ö$rIö÷!á8(`Ñ(Fð–îIö}!@ör ÑFÍøP€þ÷¨¼Iök! #Íé¨@ör$
Oð
Íé
	““þ÷X¼ðï(¹ FÛ÷]ý(Að[ƒIö1@ö%rþ÷.¹ðLïF(~ô´©Iö1@ö%rOð %
&OðÍéÍé
ÍéÝøL æð.ïF(~ô°© @ö%rIö1OðOð&%ÍéOðÍé

ÍéêåÙøP-ð‚)hoð@@Ùø`B¿1)`1hB¿H0`Ùøoð@AˆBÐ8Éø¿HFð
î ±Fžþ÷{¹ðìîF(~ôIªIö§1@ö/rþ÷¼Iö©1@ö/r-à†.çH"™xDÑøÄ@kÓ÷ýû(ðՁF  F!"õ÷Ìü hoð@AˆBDÑIö¹1Oôsbþ÷â»ðºîF(~ô<ªIöË1QàIöÍ1@ö1r 

#Oð
Íé4$	“þ÷š»ËIyDhÊIÂhhyDðîIö3A@ö:rþ÷Ż$ þ÷M½% þ÷n¾Oð	@ö%rIö$1 
Íé
â8 `Ñ FðŽíIö¹1Oôsbþ÷¥» Iöï1@ö2rþ÷Ÿ»ðfîF(~ô
ªIöÕ1@ö1rþ÷‘» Iö×1@ö1r¨çðTîF(~ôª @ö1rIöÚ1OðOðWà #Íé4IöÜ1@ö1r
Oð
$
	“åä @ö1rIöß1<àð*îF(~ôeªIöA@ö3rþ÷T» IöA@ö3rkçðîF(~ôvª Iö
A@ö3r
èá #Íé4IöA
@ö3rOð
$
Oð	ÄF	“©ä @ö3rIöAOð&%ÍéÍé

ÍéÝøD6älH"™xDÑøÌ@kÓ÷û(ðá€!"FOðõ÷Ñû hoð@AˆBÐ8 `Ñ FðØì Iö!A@ö4r-à IöGA@ö;r
•çIö1@ö+rý÷‹¿ðªíF(~ôú«IöBA@ö;rà @ö;rIöDA'àð˜í€F(~ô*¬IöQA@ö<rOð •Oð
Íé
Íé&ÝøLþ÷:ð|í€F(~ôj¬ @ö<rIöiAOðOðàðjíF(~ôt¬IölA @ö<r
•Aà @ö<rIönAOð+F&%ÍéÍé

ÍéÝøDÀÿ÷¼ %ÝøLþ÷¼ %þ÷Œ¼ð:í€F(~ô¬ Iö’A@öMrðå½ðìì(¹ FÛ÷-û(Að/ Iö”A@öMr˜ 
%&OðÍéÝøLÝøDÀÿ÷û»Ö*ÈÝøÿÞ(ðíF(~ô©¬˜Iö–A @öMrÍé
%ÍéÓF&ÝøDÀÿ÷׻ Iö¬A@öMr»àIöºA@öNrð½IöóQKáIöq@öjrJáðÐìF(ôùª	˜Iöžq@ötr˜1à	˜Iö q@ötr˜Oð	˜
˜”˜›œ	–ÿ÷a» ³F@ötr˜Iö£qUF˜˜
˜	˜žÿ÷£»	˜Iö°q@öurØF•˜
˜˜žþ÷ʹšðLìÿ÷øºOð	@ö1rIöâ1àOð	@ö3rIöA 
 .Íé`OðOðOð
OðOðOðOðOðOð	Íéô	«ÿ÷!»IöÄA@öOrðû¼	˜IöÉA@öOr˜# ÍéOð

$Oð		OðOðÿ÷åº IöÌA@öOr	˜˜ Íé
Íé%&OðÝøDÀÿ÷»åh-ð2‡˜)h„hoð@@B¿1)`!hB¿H `˜oð@AhˆBЙ8`¿˜ð
ë ÝøL	šÝø þ÷v¼ IöíA
Oôub	˜˜ 4噈Bðo‚@Fð¸í(Fðü†Øøoð@AˆBÐ8Èø¿@FðÞê˜Ah
o¨G(Fðø†˜¨G(ðù†F˜¨G(Fð÷†˜¨G!û÷¶ÿ(ñlƒ˜oð@AhˆBЙ8`јð²ê ÍøÍéÝøLÝø(€Ýø þ÷¾IöùQ@ö[rOð
	˜˜˜
˜&˜þ÷¼¸õHõIxDõJyDhzDhðøê Iöq@ökráçIöa@ö\rÚçíH"™Oð
xDÑøÐ@kÓ÷„ø(ðņ!"Fõ÷Vù hoð@AˆBÐ8 `Ñ Fð^êIöa	˜@ö]r&˜˜
˜˜ÝøLÝø(€þ÷s¸Iö-a@ö_rãIö>Q@öQrÙãIö0q@ölršçIöa@ö\r“çIö7aOôvbúâðë(~ôô­ OôvbIö9a˜OðOð˜&%ã OôvbIö<a˜&%˜˜
ð©½ðîê›F(~ôï­	˜Iö>aOôvb˜%&˜
˜ “ÝøLÝøDÀÝø°ÿ÷y¤H¥IxD¥JyDhzDhðNê	˜IöAaOôvb˜Oð
˜Ýéc
˜ Žàð²ê™F(~ôԭ	˜FÝéÆIöBaOôvb˜Oð
˜“#
“cF˜œ	–uàŠH‹IxD‹JyDhzDhðê ÝéÐIöDa	˜OôvbOð
˜˜
à	˜IöEaOôvb˜Oð
˜
˜ÝéØœ	“#•“cFOð	´FÝøàÿ÷¹îh.ðͅ1hoð@@Õø€B¿11`ØøB¿HÈø(hoð@AˆBÐ8(`¿(FðVéEFÝé¢×ø€ þ÷{½	˜Iö\aOôvb˜Oð
˜
˜Ýéc˜œ	“#“3F•0à OôvbIö`a˜Oð&˜%˜
˜	˜ÝøDÀÝø°ÿ÷ݸ	˜Iöha•OôvbÝéSOð
ž˜
˜	“#“+F”4F˜Oð	þ÷c¿IöHQ@öRr—â	˜IöMQ@öRr˜% &OðÍé
ÍéÝøDÀÿ÷¼¸ @öRrIöPQÍé&%Íé
ðu¼Øø@,ð/…˜!hÐø€oð@@B¿1!`ØøB¿HÈø˜oð@AhˆBЙ8`¿˜ð°è ÝøL	šÝø þ÷ÎÂ	øÿ¼Yüÿä#|ÁºøÿgXüÿÁFøÿïWüÿ IöqQ@öTr	˜˜ 
N娸 ÝøLÝø *ÑØø ñþ÷º*	ÛõH"õIxDyDhhðÚèà*ÔñH*ñLxDñKòI|Dh{DyDh¿#FðÈèIö÷A Oôub
	˜˜ ÿ÷¼™«FˆBð«ƒXFð
ë(ð±„FÛøoð@AˆBÐ8Ëø¿XFð2èpho0F¨G(Fð¥„0F¨G(𢄁F0F¨G!û÷ý(ñǃ0hoð@AˆBÐ80`Ñ0Fðè ÍøÍéÝøLÝø(€>iÝø þ÷s»ÂHÂIxDÂJyDhzDhðfèIö:qOôwbâIö;qOôwbLåðÒè›F(~ôج ”Iö=q	˜Oôwb˜˜
“˜›œ	–ý��H«F­IxD­JyDhzDhð6è OôwbIö@q˜UF& oâFð6ìàFðÈüƒF(ÝøLÝø(€ž˜~ô,!˜«F
Oôwb˜&›UF	˜‘IöAq“þ÷‡¿ìh(F)F,ðöƒ!hoð@B†h‘B¿1!`1h‘B¿11`hoð@AŠBÐQ`¿ðxï5FÝøLÝø(€"žþ÷¼ OôwbIöVq˜UF&˜˜
˜	˜Ýø°þ÷K¿IöZqOôwbuâ IöQ
Oôub	˜#$˜Oð
 Oð	˜ Ýøàþ÷ھIö†a@öbr	˜Oð
˜˜
˜˜ÿ÷Œºð蛃F(~ô¬ @öbrIöˆa˜OðOð&%“˜
éàOHOIxDOJyDhzDhðtï	˜Iö‹a@öbr˜Oð
˜
Ýé0ž	 œÍé0Fý÷μIöŒaJà	˜%IöŽa˜@öbrÝé6OðOð˜Oð

˜	–&˜œÍékþ÷l¾Ûø`.ð_ƒ1hoð@@Ûø€B¿11`ØøB¿HÈøÛøoð@AˆBÐ8Ëø¿XFðªî ÃFÝøLÝø(€Ýø þ÷E¼Iö£a	˜@öbrOð
˜Ýé6˜
˜	–&˜œÍéký÷j¼¿†¾ùÎ÷ÿn¾_Uüÿjøÿ!Ò÷ÿª½èøÿšTüÿJ½ˆøÿ1Tüÿƻøÿ­RüÿIöºQ@öVr 	˜˜Oð
 &Íé
ÍéÝø(€ý÷{¼ @öVrIö¿QÃF&%Í鐐
˜	˜ÝøLÝø(€þ÷)¾ @öVrIöÂQOðOð&%Í鐐Íé
˜	˜ÝøDÀþ÷ܽÒø ºñð±‚˜ÚøÐø°oð@@B¿1ÊøÛøB¿HËø˜oð@AhˆBЙ8`¿˜ðöí#ÝøLÝø(€þ÷:¹ @öWrIöãQ&%Íé
˜àúHúIxDúJyDhzDhðFîIörq@örr 
	˜˜ÿ÷1»Iösq@örrÿ÷%»ðªî›F(~ô·«	˜Iöuq@örr˜˜
“Úà”åHåIxDåJyDhzDhðî #	˜Iöxq@örr˜˜
“+F˜œ	–ý÷s»åh F-ð-‚)hoð@B„h‘B¿1)`!h‘B¿1!`hoð@AŠBÐQ`¿ðtíÝøL"Ýø(€ž›þ÷~» ”Iö‹q	˜@örr˜˜
˜˜›œ	–Ýø ý÷7» @örrIöq˜UF&˜˜
˜	˜þ÷3½	˜Iö·a@öcr˜&˜
˜˜ý÷Z»	˜IölaOôvb˜Oð
ÝéS¶FÝø@À˜
˜	“#“+F”dF˜Oðþ÷±¼IöÂa@ödrÿ÷mº–H"™xDÑøØ@kÒ÷û(ð؁!"Fô÷èû hoð@AˆB@ð¿€Iöôa	˜@öhrÿ÷•ºIöÌa@öerÿ÷IºðÎíF(~ô¸«IöÎa@öer	˜˜˜
˜˜&(hoð@C˜B=ô÷ªþ÷ټ žIöÙa	˜@öer˜ÝéS˜
˜	“+F”4F˜ý÷•º˜&@öbr˜Iö§a˜
˜	˜•%ªF-~ô¥¬ý÷źÛø ]FÝøLÝø(€*Ýø Ñéhý÷¿*•	ÛÄH"ÄIxDyDhhððìà*ÔÀH*ÀLxDÀKÁI|Dh{DyDh¿#FðÞì @öTrIö{Q&%Í鐐
ÝøL˜	˜Ýø(€Ýø°þ÷F¼ #	˜Iö˜Q@öTr˜$ –&
Oð
Oð	““+F–ÝøÀþ÷׻8 `Ñ Fð0ì	˜Iöôa@öhr˜&ÿ÷й Iöy!@örþ÷޽ %þ÷¼% þ÷d½% þ÷	¾ Iöµ1Oôsbý÷(º IöA@ö4rÍéOð
&Íé
OðÍéÝøLý÷º %œÿ÷å¸IöQÿ÷•»j¹¨ÿ÷ÿZPüÿ
¹Hÿ÷ÿñOüÿiMOð	&}DàgM&Oð	}DàeM&}D˜oð@AhˆBЙ8`¿˜ðÀëû÷úøH¹]H2F]I+FxDyDhhð$ìžOôub˜Iö#Q	˜ÿ÷¸Iöaÿ÷I¹ &Ýé¢ý÷˿ Ýø8€$ÿ÷êº"$ÝøLFÝø(€žþ÷­¸ @öTrIöQ&%Íé>å%à%0hoð@AˆBÐ80`¿0Fðvëû÷¯øȱÝø€ @öTrIö QOð)à &¼ä#Ýø@°Oð
iå%"ÝøLFæå2H3JxD3K3IzDh{DÝø€yDh¸ñ¿F*Fð¶ë @öTrIö QOðÍé&%
˜	˜ÝøDÀÝøL¸ñ~ô«þ÷»Iöða1æ Iö3A@ö:rOðý÷;¹Fü÷W¼€Fü��Fü÷!½€Fü÷S¾Ýé›Fý÷»OLüÿRý÷ÿ;Lüÿµ×È÷ÿ²¶%Ç÷ÿš¶‹Müÿ–þ÷ÿMÊ÷ÿT´Tü÷ÿAKüÿÈ÷ÿh)œ¿ÀhðVº€µoFðpï(¿ h!ð`€½ðµ¯-遰-틞°€Fh&ŠFoð@AF–ˆBÍéf“F–¿0(`êHxDÀjÐø´ÐøA	 ˆGF@òÍéPF"# G(•ðG‡oð@Bh‘BÐK`“BÐ)`¿ðšêÝøt–èjÐø´ÐøA ˆGF@òÍéXF"# G(ð*‡Fhoð@AÍøH ˆB
Ð00`˜hŠBÐQ`¿ðpê Öø ºñÀò0iëŠPø‘)Fퟌ�L0Fëk"|DÔø´˜G0ð‡êj°hñh0iÒøx"Íø,€”Íø<–G(ہF˜%Ÿ�FœOêÀ˜1Fk FGAì´îHñîú󍁘DDDMEíÛÝø<ºñ¿Ùø(ða"˜ÕøDÃkHF˜G0ðӆÕø¼G(hâh!Fð„ë(ðՆ€Fhoð@AžˆB¿0ÈøØøœÕø|‚l@F*ð←G(ðã†Øøoð@AˆBÐ8Èø¿@FðâéêjÖéÒøx"GðZê(ð䆀F FðRê(ðé†F ðê(ð놛Foð@BÓøh‘B¿1`ÓøÉéÉøPð¼ê(ðø†ƒF˜Ðø¼Whêh)Fðë(ð‡€Fhoð@AˆB¿0Èø™ØøÑø‚l@F*ð‡GF(ð‡Øøoð@AˆBÐ8Èø¿@Fð~é˜*FÐøÔXFðNê(ñ-(hoð@AˆBÐ8(`¿(Fðhéhhl.ðH€@HxDð¶ê(Bð€(FIFZF°GFð´ê,ðp€”(hoð@F°BÐ8(`¿(FðFé%•Ùø°BÐ8Éø¿HFð8éÛøoð@A•ˆBÐ8Ëø¿XFð*é`h‚l FÕø*ð7€GžƒF(ð4€ hoð@AˆBÐ8 `¿ FðéphÕøh‚l0F*ðB€GF(ðC€ÙøÐø8€¸ñ¿Øø)@ð—‚IyDh
IÂhhyDð\éðR¼òο¿˜ð?¢ñ÷ÿ”®Yí÷ÿRHSJxDzDÐøÜPk"Ñ÷äþ(ðƒ…!"Fó÷¶ÿ hoð@AˆBSÑ AòJòê
XàEHÝøL€xDhDH¨ExDUÐðxélh,¿¬B|Ñ@h(÷ÑOð
$Oð	‡àºñ(F¿Pø/Pøˆ/FhÝø<’oð@B‘BК1`hÛøhkBð-Ñø¬ *𠁑h)Áòƒ2hƒBð29øÑð»8 `Ñ FðjèAòJòê
 
OðÍéð‚»˜ðÚè(ðy€F ðšè!(ðw€Ä`ž‘‘»àAò3Jò* 
O𐐐OðÏá¿Ì¦®^®!hoð@@B¿1!`Ôø ÚøB¿HÊø FðhéFÕø,h(hòh1Fðˆé(ð¯…Fhoð@AˆB¿0(`•hh‚l˜*Ðøà(F𬅐GF(ð­…(hoð@AˆBÐ8(`¿(Fðêï™%ph•	hˆB𝅘𝅥𝅮©B1ÍéX¡ë€0FÜ÷Kÿ-¿)hoð@B‘B@ð9„!(‘ð@„0hoð@AˆBÐ80`¿0Fð¾ï˜ð<è(ðš…F ðüï(ð•…F˜Æé ºñÍé¿Úøoð@AˆB@ð„,¿ hoð@AˆB@ð„¹ñ¿Ùøoð@AˆB@ð„Õø¼G(hâh!Fðüè(–ð\„hoð@B‘B¿1`AhŠlÕøì*ðr„GF(ðs„˜oð@Bh‘BÐ9`¿ð`ï  ð¢ï(ðj„1hoð@B‘B¿H0`˜Æ`ðTè(ðg„Õø¼g‚F(hòh1Fð¸è(ðr„hoð@AŠB¿Q`AhFŠlÕøð*ð|„G€F(ð}„"hoð@AŠBÐQ F!`¿ðïÕøÔPFBFððï(ñ¢€Øøoð@AžˆBÐ8Èø¿@FðïÙøl,ðۅOHxDðTè(Aðó…HF)FRF GFðRè,”ðã…Ùøoð@E¨BÐ8Éø¿HFðàî˜$”h©BÐ9`¿ðÖî”oð@DÚøÝøP€ BÐ8Êø¿PFðÆî!‘(h B¿0(`ÝøX (iÕé‘Úø, Òøx"GƒF˜ú÷müF@0
ÑÍøH°‹FðNïYFÝøH°(Aðï† F”
‘ðôêØøD'#ÚøD@EF G0ð–…˜Õø¥Ðø¨@QFÔø€@Fð.é(ð²…F@hÐøˆ0+ð‚0F!FBF˜GF(@ðÿ𨽠Aò^JòáZ
OðÍéÝø<žð‹¹Üì÷ÿªñðªé(ð¿FéH)FxDÐø PFRFðtïF(hoð@AˆBÐ8(`¿(Fð@î,ð¥Øø HF!FG€F hoð@AˆBÐ8 `¿ Fð,ñÍøl€ðî‚Ùøoð@AˆBÐ8Éø¿HFðîËH&ÛøxDÝø<–hBAðz†Ûø`–.ð†1hoð@@Ûø@B¿11`!hB¿H `Ûøoð@A”ˆBÐ8Ëø¿XFðêí £F©B1‘¡ë€XFÍéhÜ÷Pý.¿0hoð@AˆB@ð˜‚Øø$oð@A”ˆBÐ8Èø¿@FðÄ혔(ð1†˜oð@Džh¡BÐ9`¿ð´í™h BFÐAoð@B‘B!`Ð( `¿ Fð¢íVEðD‚(FÕø¼Whêh)Fðï(ð§†Fhoð@AˆB¿0 `”`hÕøè‚l F*𦆐G(
𧆠hoð@AˆBÐ8 `¿ Fðrí ð¸í(𢆃F0hoð@AˆB¿00`Ëø`ðhî(ð—†Õø¼gF(hòh1FðÌî(ð‘†Fhoð@AˆB¿0(`•hh‚l˜*Ðøô(F𐆐G(ð‘†(hoð@AˆBÐ8(`¿(Fð.í˜šÐøÔ  Fðþí(ñoð@Bh‘B
šÐ9`Ñðí
š Phl-ðӆGHxDðbî(Aðð†
˜YF"F¨GFð`î-ðᆕ
˜oð@Eh©BÐ9`¿ðòìÛø¨BÐ8Ëø¿XFðæì h%oð@F•°BÐ8 `¿ FðÚìÝøt€Oð•ØøDF°B¿0Èøœ˜#FÝø<Íøt°ÀjšIFÐøŒa °G™(Íé
Hð‹†PEÓFÐ	kú÷³ø(ðLJÝøt° ðpíFlh-¿UE@ðށ@h(öÑOð	% ˜á !Aò4‘Jò›*
OðÍéÍéOðÝø<ð­¿H©©úè÷ÿ0hoð@AˆB¿00`˜ÕøüTÐø¨€)FØø PFðï(ð²ƒF@hÐøˆ0C± FAFRF˜GFH¹ð­» hoð@AˆB¿0 `”™OðÍøt€`h	hˆBAðàh(ðhoð@A¥hŠB¿2`(hˆB¿0(` h•ˆBÐ8 `¿ Fð,ì",F˜Íé¨0 ë‚ FÜ÷“û‚F˜(¿hoð@B‘B@𫀠ºñð°€ hoð@E¨BÐ8 `¿ Fðì –Úø¨BÐ8Êø¿PFðöë™XFð
ïFðxïž,ÝøH°

Û˜À˜ñ 
ñ˜ZFÍé
@F+FÍé–ðnè˜<DñÑ
˜ð`ï˜"Ðø˜(FÑ÷Ûù)hoð@B‘BÐ9)`ÑF(Fð¼ë FÝø<(žÝø ð"ƒhoð@D¡BÐ9`¿ð¨ëÚøOðUFOð B¿0Êø $Íéðú¾H(`¿(Fðë˜!(‘ô+JòcVðm¹8Êø¿PFð~ëÿ÷߻8 `¿ Fðvëÿ÷à»8Éøôå«HFðlëÿ÷à»9`¿ðfë ºñôP¯JòCj𱺘IF"FÀjÐøŒ1 ˜G(ðR†žƒF4h BÐ)kXFù÷Hÿ(ðg†Öø€! ‘Íé
á80`¿0Fð6ë`å Aò8
Jòý*Oð%OðÝø<
›hoð@A•ˆBÐ8`ÑFFðë"F Íé®ä)hoð@@B¿1)`ÕøÙøB¿HÉø(FðPì
˜Ðø,Hhâh!Fðnì(ð愀Fhoð@AˆB¿0ÈøÍøl€Øø‚l˜*Ðøà@FðㄐG‚F(ð䄨øoð@AˆBÐ8Èø¿@FðÌêÚø$™”ˆBðބ ™BÍéA™¡ë€PFÜ÷,ú,¿!hoð@B‘B@ð=ƒ!(‘ðDƒ˜oð@Bh‘BÐ9`¿ð ê ðäêOð(ð߄F˜à`oð@A˜Íøt€hŠBÐQ`¿ð†ê HFÍ÷“ü(FÍ÷ü
˜Í÷üÛø‚l˜*ÐøhXFퟀ�G(ð„!F"ð8ë(ð§„˜oð@Bh‘BÐ9`¿ðXêÅI"˜yD’	hˆBÐÂJzDhB¿*hBÐðæê(ñ…F˜àA±úñM	hoð@B‘BÐ9`¿ð2ê -Að÷„ FÛøÕøhœ‚lXF*𣂐G(ÍøL€𤂠Fð˜ê(ð¢‚F ðXê(ðŸ‚Å`F˜!Fðöì(Fð˜‚˜oð@Fh±BÐ9`¿ðôé%• h°BÐ8 `¿ Fðêé˜•Ðø¼Ghâh!FðXëž(ð‚Fhoð@AˆB¿0(`•hh‚l˜*Ðøì(Fð‚G‚F(ð€‚(hoð@AˆBÐ8(`¿(Fðºé ðþé(ðt‚€F0hoð@AœˆB¿00`Èø`ð®ê(ði‚Ôø¼W hêh)Fðë(ðe‚hoð@AŠB¿Q`™BhFÑøð’l*ðd‚GF(ðe‚"hoð@AŠBÐQ F!`¿ðvé™*F˜ÑøÔðHê(uÔ(hoð@AžˆBÐ8(`¿(FðbéÚøÝø,l,ð¸‚GHxDð¬ê(Að؂PFAF*F GFðªê,ðɂ””Úøoð@D BÐ8Êø¿PFð8騸%• BÐ8Èø¿@Fð,é˜Ýø •h¡BÐ9`¿ð é Úø¡B¿1ÊøÚø	ÛøÙø¨P
˜lhÐø… FAFð®ë(ðt‚AhÑøˆ0ƒ±)F"F˜G˜¹ðpºAòHJò5J Íéÿ÷µ¸hoð@AŠB¿Q`Ùø¨P˜nhÐøüD0F!Fð„ë(ðk‚AhÑøˆ0k±)F2F˜G€¹ðiº¿Z¡R¡Žá÷ÿhoð@B‘B¿1`Ah$š‘BAð6Åh•-ð1hoð@@*h‚B¿2*`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðšè"™˜¡ë‚ÍéTÜ÷ø-¿)hoð@B‘B@ð!(‘ð"‚™oð@D
h¢BÐ:
`ÑFFðvè(F%•h¡BÐ9`¿ðlè•ððë
˜žœ(Àò«€	ñ	ñ Oð	Oð
àž
ñ

˜œ±D‚Eð˜€Ûé&Ñø˜Ðø˜Ðé#h	™–ëÀëÉÍ阐@FðÐìÛøÛø(ñËøÖÛ àÓø!Óø˜B"DÃø˜"	hJi2JaÛø0ˆBÄÚë€Qø˜/Óh3Ó`hšh*äГøœBt±Ó饞Éi´l,Oðȿ $	YDÃø˜Ýç*њiÓø˜@¢B#Ú2ša	hÑø!Ñø˜25à*ÌÔhë‚\iÓø”`´B"Û]a*hë‚Óø˜bÔø”A¦ëÃø˜b¢ñFæܲça
hSi3Sa	hÑø!Ñø˜1Ñø˜BÒ"DÁø˜"¡çf^a	hë‚Ñø˜2Òø!DÁø˜"”ç˜ðDë˜"œÐø˜ FÐ÷¿ý!hoð@B‘BÐ9#F!`ÑFFðžï FÝø<(ÝédÝø ðLhoð@HAEÐ9`¿ðŠïÚøUF@E¿0Êø Ýø8€àâ9)`ôð®F(Fðtï FéæH `¿ Fðlï˜!(‘��FJòN6ðc¹Ñø€BÐ)ùÑÑIyD	hˆB@ð÷Õø¼G(hâh!FðÆè(ð͆Fhoð@AˆB¿0(`•hh‚l˜*Ðø,(Fð̆G€F(ð͆(hoð@AˆBÐ8(`¿(Fð*ïÛø‚lXFÕøÔ*ðƐGÝø<&(𿆰HØøxD–Ðø QE𼆠™‚Íéa)m‘©1‘¡ë€@FÛ÷rþF˜(¿hoð@B‘B@ð2˜$oð@B”h‘BÐ9`ÑFðæî3F+”ð¹†Øøoð@AˆBÐ8ÈøÑ@FFðÔî#FŽHxDh£BЍHxDhƒBЋHxDhƒB
ÐFFð`ï3F(ñ†hoð@B‘B	Ñà°ú€ð@	hoð@B‘BÐ9`ÑFFð¦î0F(ðCÛøÕøÔ‚lXF*ð͆G(ðΆrI"FyD	hð^ï(ðɆ2hoð@A€FŠBÐQ0F1`¿ð~î EÐgHxDh€EÐfHxDh€E
Ð@Fðï(
ÕAò"Jò†ðC¾¨ë°ú€ð@	Øøoð@B‘BÐ9ÈøÑF@FðTî(FÝø<(ðï€ÛøÕø‚lXF*𛆐G"(𜆒AhQE@ðž†ÃhÝøT€“ñhoð@A†hŠB¿2`2hŠB¿Q1`hoð@AŠBÐQ`¿ðî"0F™%Íé¨ë‚‚FÛ÷‡ý€F˜(¿hoð@B‘B@ퟰ�ñ•ð‘‚Úø oð@AÝø<ŠBÐQÊø¿PFðôíÕø@F"ð¾î(ðS†FØøoð@AˆBÐ8ÈøÑ@FFðÜí3F£B4ÐHxDhƒB/ÐHxDhƒB*ÐFFðlî#F('ÕJò¯Aò#ð¨½9`ôʮFð¼í#FÄæ¿Œ››RšLš.š®šª™Œ™d˜F˜°ú€ð@	hoð@B‘BÐ9`ÑFFð”í F˜³ ðØí(ð~†Õø:oð@Bh‘Bš¿1`Õø:ëIÃ`FyD	hŠB¿Õøˆb1hoð@B‘B¿11`1iJñ΁OöÿsÁó‚Àò)¿Oöÿs)¿ÿ#Àá ð¤í(ðð‚Õø:oð@Bh‘B¿1`Õø:šÒIÃ`yDF	hŠB¿Õøˆb1hoð@B‘B¿11`1iJ
ÔOöÿsÁó‚Àò)¿Oöÿs)¿ÿ#à#±h€Faoð@FÕøŒ@"h²B¿2"`ÕøŒ@ñ!Daðjú(ð°‚Øø oð@AFŠBÐQÈø¿@Fðí°H!‘©xD"1Èò@k•Û÷lü(•ð‚‚!"Fò÷Ýû hoð@AžˆBÐ8 `Ñ Fðäì Aò+Jò*Oð
OðÍé˜(¿hoð@C™B@ð퀸ñ¿Øøoð@AˆB@ð쀘(¿hoð@C™B@ðÝé
H(¿hoð@C™B@ð쀘(¿hoð@C™B@ðð€HQFKxD{DÐ÷ðúOð
.¿0hoð@AˆB_Ñ-¿(hoð@AˆB_ѹñž¿Ùøoð@AˆB\Ñ,¿ hoð@AˆB]ѻñœ¿Ûøoð@AˆBZј(¿hoð@AŠBZј(¿hoð@AŠBXÑ,¿ hoð@AˆBWѸñ¿Øøoð@AˆBUÑ.¿0hoð@AˆBVÑ-œ¿(hoð@AˆBUÑ,¿ hoð@AˆBUÑPF°½ì‹°½èð½80`¿0Fð.ì˜ç8(`¿(Fð(ì˜ç8Éø¿HFð ìšç8 `¿ Fðìšç8Ëø¿XFðìœçQ`¿ð
ìžçQ`¿ðì ç8 `¿ Fðþë ç8Èø¿@Fðöë¡ç80`¿0Fðîë¡ç8(`¿(Fðèë¢ç8 `¿ Fðàë¢ç9`ô¯FðØë"F	ç8Èøô¯@FFðÎë"Fç9`ô¯FðÄë"Fç9`ô¯UFÊF‘FðºëJFÑFªFç9`ô¯UFÊF‘Fð¬ëJFÑFªF皗4—úøÕÐ÷ÿß÷ÿ#±haoð@FÕø˜C"h²B¿2"`Õø˜CñÒ!DaFðÝø(ð‰„"hoð@AFŠB?ôz® Fpæ9`¿ðxë¸ñ•ôo­Ýø< SFAò#OðOðJò©
ÿ÷>¸ AòJò¦
Oð	þ÷õº AòJòµ
þ÷íºAòJòü
þ÷åº AòJòæ
þ÷ߺ"þ÷¿ Aò/JòC*
Oðð.¼ðÚë(¹ FØ÷ú(Að€ Aò2JòL*NâðÊë(@ð,‡ FØ÷	ú(Að€Aò^JòÐZTàðøë(~ô© Aò2JòN*
OðÍé&æðäëF(~ô«Aò^JòÒZ4àAò3JòY*þ÷‡º Aò^
JòÕZ)àAò3Jò[*àAò^JòÚZàAò2Jòe* Oð
ÍéÍéÝø<ôåðpë(¹0FØ÷²ù(@ð¾‡Aò^JòÜZ 
Oð âAò3Jòx*þ÷oºð˜ë€F(~ôƒ« Aò^JòÞZ
OðOð#FÝø<þ÷t¿ð>ë(¹(FØ÷€ù(@ð‡Aò3Jòz*þ÷GºðpëF(~ôø¨ Aò3Jò|*
OðÍ鐐þ÷
¼ Aò+Jò*
OðcãAò*JòïXãAò*Jò*9âðë(@ðq†0FØ÷Dù(@ðV‡JòLV6àð6ëF(~ôSªJòNV,àõh•-ð^†)hoð@@Öø€B¿1)`ØøB¿HÈø0hoð@AÍøp€ˆBÐ80`¿0Fð$ê FFÝøL€þ÷<ºJògVàJòiV˜(¿hoð@B‘B@ðӀ˜%•(¿hoð@B‘B@ð΀˜Íø4•(¿hoð@B‘B@ðȀ˜OðÍøt€(Ýø<¿hoð@B‘B@ð¿€ôH1FôKAòZxDÍøp€{DÐ÷0ø˜©ª«Ð÷Àú(ñ‡€ìHxDihhB@ðƅ(hoð@AˆB¿0(`•˜ðBê(ðæ†F ðê(𻅀FÆ`(FAFð¢ì(𺅁F(hoð@F°BÐ8(`¿(Fð¤éØø!‘°BÐ8Èø¿@Fð–é˜(¿hoð@B‘B@ð‡˜%•(¿hoð@B‘B@ðŒ˜•(¿hoð@B‘B@ðˆ ˜lh`(¿hoð@B‘B@ퟀ�ñ¿Úøoð@AˆB@ð|
š*¿hoð@AˆBÐ8`Ñ
˜ðRéNFþ÷ĹJò‘[Aò[&˜QF
›"FlÐ÷Ïú *FÚF3F#á9`¿ð8é&ç9`¿ð2é+ç9`¿ð,é1ç9`¿ð&é:çHF)FRFðˆê(~ô.ªà(FIFZFð~êF(}ô/Aò2Jò‰*þ÷ȸð°é(ð'… Aò^JòãZ
Oð
à Aòc
Jòj˜Oð Í鐐þ÷b¼ðÐéý÷ƿAò4Jò–*&àðˆé(ð…! Aò2‘Jò‰*
þ÷’¸kHQFxDhhðbìAòeJò-j'àð¬éF(}ô½¯Aò4Jò™* 
þ÷&¼^H)FxDhhðFì Jò/j0hoð@AˆBÐA1`Ñ0Fð èAòe Oð
˜ Í鐐þ÷X¸ QFAòeJòj
Oð‘OðÍ鐐ÿ÷©»ð$é(@𯄠F×÷dÿ(@ð{…Aò!JòU	àðTé€F(ô3©Aò!JòW Oð
þ÷ ¸ðBéÿ÷:¹ Aò!JòZ.àØø(ð‹„hFØø@oð@@B¿11`!hB¿H `Øøoð@AˆBÐ8Èø¿@Fð0è  FÝø<ÿ÷¹Aò!Jòo 
OðàJòsAò!Oð +OðOð
~ô鬐Íéþ÷£¹9`¿ðèræYË÷ÿ™Ù÷ÿА:ŽŽ9`¿ðòïmæ9`¿ðìïqæ9`¿ðæïyæ8Êø¿PFðÞï{æ AòWJò Z
à AòW
Jò"ZÍéPý÷Œ¿ð²è(ô2©Aò"Jò‚¶à Aò"Jò„
Oð%Oð3Fþ÷¼ AòbJòj
•ªæðè"(ôd© Aò#Jò•“àÝøT€ÿ÷|¹ Aò#Jò­nç þ÷§¹ Aò4Jò±*
Mä& þ÷›¹%"þ÷å¾ðdè(ÍøL€~ô\­AòGJò
J
àAòGJòJàAòGJòJàAòGJòJ Íéý÷$¿ðè(@𦃠F×÷Cþ(@ð]„AòHJò$Jþ÷X¾ð2è‚F(~ô€­AòHJò&Jþ÷K¾AòHJò)Jþ÷E¾AòHJò.Jþ÷?¾ðØï(¹(F×÷þ(@ð9„AòHJò0Jþ÷0¾ð
èF(~ô›­ 5FAòHJò2JOðÝø<#Fþ÷ê»Aò$JòÄ Oð
Oðþ÷š¸ Aò$Jò×
Oð%Oð#Fþ÷ɻð”ï(@ð@ƒ(F×÷Óý(@ðöƒAò8Jòì*	àðÂï(
~ôY©Aò8Jòî* 
OðÍéý÷¾Aò8Jòñ*àAò8Jòö*àðfï(@ðƒ0F×÷¥ý(@ð̃Aò8Jòø*	àð”ï(~ôo©Aò8Jòú* 
þ÷r»PFAF*Fðè(~ôQ­ AòHJò7JàßHAFxDhhð êQF AòMJònJ‘
àð$ï(ðä‚ !AòH‘Jò7Jþ÷å¹ÐH!FxDhhðþé JòpJàJò„J˜oð@AhˆBЙ8`јðRî AòM˜ ý÷¾QF AòMJòëJOðÍéÿ÷f¹
˜YF"Fðžï(~ô6©Aò8Jòÿ*ˆç±HEö;!°K@ò?2xD{DÏ÷uüÍøt°Aò:Jò::áðÂî(ð‹‚! 
Aò8‘Jòÿ*þ÷ߺ²Fð²î(@ð„‚ F×÷òü(@ðƒJò76OðFàðâî‚F(~ô«²FJò96;àðÖî(~ô«AòBJò©:§àÚø@”,ðc‚!hoð@@Úø€B¿1!`ØøB¿HÈøÚøoð@AÍøp€ˆBÐ8Êø¿PFðÀí ÂFþ÷úºAòBJò«:yà²FJòR6@FË÷Ãÿ˜$”Ë÷¾ÿ˜”Ë÷ºÿ˜”Ë÷¶ÿnH1FnKAò=xD”{DÏ÷ìû©ª«PFÏ÷|þ(ÔgH™xDIhhB@ð́˜oð@AhˆBÑœ(àJòw0Aò>Úø@IF
›*FÏ÷ÿ Oð"FÍéÝø<žÝø@ ÿ÷’¸œ0 `oð@AˆBЙ8`¿˜ðZí˜Ë÷hÿ˜OðÍøp€Ë÷aÿ˜Íøt€Ë÷\ÿÚø@IF
›*FÏ÷Ðþþ÷ƺAòBJò­: Íé@Íéÿ÷z ð|í(ð¶™oð@CÑø˜
hšBÐP`™˜Ñø˜0JÁ`zD`hh°B@𥁠hoð@AˆB¿0 ` F”iJRÔOöÿyÁó‚Àò	)¿Oöÿy)¿Oðÿ	EàHEö	!KOôOrxD{DÏ÷Fû !
Aò6˜JòÔ*‘h àAò:Jò:Oð ÍéÙå Aò6JòÖ*”
OðÍéËå¿´‰r‰p©÷ÿǽ÷ÿÏÂ÷ÿÑ÷ÿˆF‡ëÉ÷ÿi»÷ÿOð	™oð@BÐø€a˜Ðøh‘B¿1`˜Ðø™Ha™ÛøÑøh‚lXF*ð8GF(ð9hh°B@ð:)hoð@@.FB¿H(`•oð@AˆBÐ8(`¿(Fð~ì 0iAÔOöÿsÀó‚Àò(¿Oöÿs(¿ÿ#KE˜¿KFàKF™°hŽaoð@F™@DÑø
h²B¿2
`™ÑøšÑañD˜!ð¢ù(ðF˜oð@Bh‘BÐ9`¿ð>ìÃH"!’xDÍé™"@kÈò•Ú÷£û(ðì€(h°BÐ8(`¿(Fð"ì˜"!’‘ñ÷	û˜h±BÐ9`¿ðì AòCJòù:”Íéý÷λ(Fðüî(@ð Jò[%áJò¡[Aò\Ýø<ÿ÷¬ºJò¦[á! 
Aò^‘JòÐZÿ÷-¹ JòLVÿ÷ʹ% ÿ��H—IxDyDhhð¾ëÿ÷Ϻ†H‡IxDyDhhð´ëÿ÷îº! Aò!‘JòUÿ÷_» ÿ÷»˜ð²î(@ðç€Jòƒ0Aò?3æ! AòH‘Jò$Jþ÷·º! 
Aò8‘Jòì*Îä! 
Aò8‘Jòø*þ÷g¸pHpIxDyDhhðvëådHeIxDyDhhðlëkåOðJò76Íøl€Çå$þ÷¶¸AòDJò¸:6æZIyD	hˆB=ÑÉj FˆG(ôX®AòDJòÀ:%æðJìF(ôǮAòEJòÓ:àNIyD	hˆB.ÑÉj(FˆGF°»AòEJòÕ:àAòDJòé: ”ÿ÷ݻAòCJòô:” ÿ÷ֻAò4Jò›*ý÷ïº:IyD	hˆB¼Ð˜Ai Fðpï(»Ðæ5IyD	hˆBËИAi(FðbïF(ÈÐ(hoð@AˆB􋮏æÝø<€Fžý÷	¹žý÷Œ»Fý÷ʻ€Fý÷b¹ÝøL€Fý÷óºFþ÷²»žFþ÷¹™Fžþ÷\¹žFý÷\½Fý��FVFý÷ø¿F˜ð\ë(ô©JòŸ[Aò\&Ýø<ÿ÷‡¹F˜hoð@AˆBôh­må¿h„(¦÷ÿ؃˜¥÷ÿƃ샌ƒЃlçꃪ¥÷ÿ|„<¦÷ÿðµ¯-郰
FFFFFð@ï(tÐ$¶õ€?8¿$i¶õ€8¿$¤ñ
,¿Oð
‘ÔÁi‘-Ú°½èð½ñQX¿ñ“-òېoð@	ñ	 ú
ø&Ùø Òø°»ñ&Шë°B+ÛiÔÑiÀó‚ BИ1F#Íø°ðïàñCX¿ñÀó‚ BíÑšú
ðDú
òðÞî^D	ñ	=Íј°½èð½HIxDyDhhðê˜oð@AhŠBÐQ`¿ð*ê °½èð½`•È÷ÿðµ¯-é›°‹F¾h	hF “Íé’Foð@@B¿1Ëø1h"B¿H0`ÃM0F–}DÕøhð÷†ÿ(ñ…ÐÕø¸0F"ð÷|ÿ(ñ<€1hoð@B‘BÑ
à 1hoð@B‘BÐ91`ÑF0FðÜé F!(‘@𪅕ðœêl«IyD	h‘h.¿ŽBÑ@h(÷Ñ &Oðà1hoð@@B¿11`rhhB¿H`0F’ðþê€F˜Ðø,Xhêh)Fðë(ð›…Fhoð@AˆB¿0 `”`h‚l˜*Ðøà Fð†GF(ð† hoð@AÍø ÙFˆBÐ8 `¿ Fð|éHOðihxDÍød°hBðÿ… ©B1‘¡ë€(FÍéºÚ÷Øø»ñ¿Ûøoð@B‘B@ð́!(‘ðՁ(hoð@DËF BÐ8(`¿(FðHé˜%•h¡BÐ9`¿ð>阕(¿hoð@AŠB@ð¸.¿0hoð@AˆB@𶁸ñ¿Øøoð@AˆB@ð³ÝøL€PF"Oð	Øøðèé(ðɅFMHxDhMH´BxD¿˜h„BѠ°ú€ð@	à˜„B÷Ð Fðœé(ñ‹‡!hoð@B‘BÐ9!`ÑF Fðìè(F(@ð´…Oðÿ0oðAðbì(ð΅FPF)F"ð¨é(ðʅF(hoð@AˆBÐ8(`¿(FðÈè ´B¿˜h„BѠ°ú€ð@	à˜„B÷Ð FðVé(ñJ‡!hoð@B‘BÐ9!`ÑF Fð¦è(F!(‘@ðœ…PF÷÷[þÍé	@0Ñð>é(@ðJ‡
–ðXél™Ðø¹ñ¿‰EÑ@h(õÑ Oð	Oð
 àÕ@€äÒ~Î~Ùøoð@@B¿1ÉøÙø ’FhB¿H™`HFð¬é‚FØø¼WØøêh)FðÌé(ðŸ…Fhoð@AˆB¿0 `”`hØøŒ‚l F*𝅐G(ðž…!hoð@B‘BÐ9!`ÑF Fð.è(FAh$š”‘Bð‘…"™ÍéK¡ë‚2Ù÷‘ÿF˜–(¿hoð@B‘B@𬀠.ð±€˜oð@Dh¡BÐ9`¿ðè Ûø BÐ8Ëø¿XFðöïphØøl‚l0F*ðy…GÝø0°(ðz…ØøˆBЕKBh{DhšB@ð/†h!ð)ÑÁhL¿$à$à$hoð@B‘BÐ9`¿ðÄï –±$ýáphØø„‚l0F*ðr†GF(ðs†Øø F"ðzè(ðq†F hoð@AˆBÐ8 `¿ Fðœï 
˜†B¿˜h†B=Ñ
˜0°ú€ð@	@àHËø¿XFð†ï˜!(‘ô+®JòòtËF~ãQ`¿ðvïAæ80`¿0FðpïBæ8Èø¿@FðhïDæ9`¿ðbï .ôO¯žAòùJöŐð+¿˜†B¾Ð0Fðîï(ñ‡1hoð@B‘BÐ91`ðù‚!(‘ð¤€žÖø¼W0hêh)Fð®è(ðކFhoð@AˆB¿0 `”`hÖø,‚l F*𓆐GF(ð”† hoð@AˆBÐ8 `¿ Fðï›Xh‚l˜*ÐøÔF퟈�GF(ðƒ†ph%™•ˆBð† ™‚ÍéT	l‘™¡ë€0FÙ÷`þ-¿(hoð@AˆB@𥂠h%oð@A•ˆBÐ8 `¿ FðÖîž•.ð†˜oð@Bh‘BÐ9`¿ðÆî 
˜†B¿˜h†BÑ
˜0°ú€ð@	à¿ |˜†BóÐ0FðNï(ñ{†1hoð@B‘BÐ91`ÑF0Fð î F!(‘ðՀÝøL€Øø¼Ï÷‡ü(ð\…F@hØøxž‚l F*ðZ…GƒF(ð[… hoð@AÍø ˆBÐ8 `¿ FðrîØø0F"ð<ï(ðK…‚FOðÿ0oðAðâé(ðJ…F0F!F"ð(ï(ðF…F hoð@AˆBÐ8 `¿ FðJîPF)Fðöê(ð?…FÚøoð@F°BÐ8Êø¿PFð4î(h!‘°BÐ8(`¿(Fð(îÛø™Ýø ˆBð2…% ™BÍéT¡ë€XFÙ÷‰ýF(FË÷"ø hoð@AˆBÐ8 `¿ Fðî .ð7…Ûøoð@AˆBÐ8Ëø¿XFðôí ž
˜†B¿˜h†BÑ
˜Ýø0°0°ú€ðD	à˜†BôÐ0Fð|îÝø0°F(ñ›…0hoð@AˆBÐ80`¿0FðÊí ,¿$à$ÝøL€ž»ñ¿Ûøoð@AˆB@ðQ¹ñ¿Ùøoð@AˆB@ðOºñ¿Úøoð@AˆB@ðM,@ð†Øø¼WØøêh)Fðï(ð+ƒFhoð@AˆB¿0 `”`hØø‚l F*ð-ƒG‚F(ð.ƒ hoð@AˆBÐ8 `¿ Fðrí ð¸í(ð#ƒF0hoð@AˆB¿00`æ`ðhî(ð ƒØø¼gFØøòh1FðÌî(𠃁Fhoð@AˆB¿0Éø™ÙøÑøð‚lHF*ðƒGF(ðƒÙøoð@AˆBÐ8Éø¿HFð*í˜2FÐøÔ(Fðüí(ñ®€0hoð@AˆBÐ80`¿0FðíÚøl.ðyƒåHxDðdî(@ð’ƒPF!F*F°GƒFðbî»ñð‚ƒÍød°Úøoð@IHEÐ8Êø¿PFðîì h&–HEÐ8 `¿ Fðäì(hoð@DÝø, B–Ð8(`¿(FðÖì˜!‘h¢BœÐQ`¿ðÊìÛøÔø„‚lXF*ð7ƒGF(ð8ƒ Fð;ÿ€F0ÑðZí(@ði„ hoð@AˆBÐ8 `¿ Fð¤ì ˜ƒEð†˜@k(ðGƒÛø ‚Bð†Òø¬0+ðՃ™h)Û3h†Bð†39øѠK¡I{DÒhyDhÃh0hðêìOð	AòJö:$ðt¾Oð	AòJö$%OðÝø<°ðü¹8Ëø¿XFð^ì¦æ8Éø¿HFðVì¨æ8Êø¿PFðNì,?ô¬®ðȼF0FðFì F!(‘ô­¤å8(`¿(Fð8ìSåJò¡tAòè
Oð%Oð	ðŹvH"ÕøàOðxD@kÎ÷6ú(ðŅ!"Fð÷û hoð@AˆBÐ8 `¿ FðìÍøh€Jò¹tAòé
Ñáð®ì(¹(FÖ÷ïú(AðP†JòÛt Ýø<˜%•(¿hoð@B‘B@ð!‚Ùø<•(ðîUM@h}DékˆBÐJhRmSñ]…Ch[m³ñÿ?ؿ²ñÿ?@óðRîÝø<(ðӁHH!FHKAòìxD{DÎ÷ú©ª«HFÎ÷¥ü(ñālkÁF™`hÑøä‹l-ð>…<HxDðí(AðG… FAF"¨GFðí,ð8… F!"%ð÷‡ú hoð@AÈFˆBÐ8 `¿ FðŽëAòî
Jö#•Ýø<’áðlìF(ôô© oð@A hˆB@ð‚JòÝtÝø<xçÕø°Íød°»ñð…Ûøoð@@¬hB¿1Ëø!hB¿H `(hoð@A”ˆBÐ8(`¿(FðNë %Fÿ÷۹Aòð
Jö>ðG½ü¸÷ÿ°uà¹÷ÿD×ÂÖN‰÷ÿc½÷ÿ>¶÷ÿíH"ØøèxD@kÎ÷@ù(ðׄ!"Fð÷ú hoð@AˆBÐ8 `¿ FðëÍødAòñ
JöNð½Aòò
Jö`ð½Aòò
Jöbð½Oðÿ0oðAð~î(ð¯„FØøÔ)Fð,î(ð«„F(hoð@AˆBÐ8(`¿(FðäêÆH"™ÈòxDÍé”@kÙ÷Mú(ðš„F hoð@F°BÐ8 `¿ FðÊê(F!"Íødð÷°ù(h°BÐ8(`¿(FðºêÍø`Aòó
Jöyð³¼ðXë(Aðm„(FÖ÷—ù(Aðú„Jö®àðˆë(ôbªJö°AòùvâÄh”,ð[„"hoð@A…hŠB¿2"`*hŠB¿Q)`hoð@B•‘BÐ9`¿ðxê"(Fÿ÷OºðZëÝø0°(ô†ªJöÓÍàðë(Að2„(FÖ÷Où(Aðµ„Oð	AòJö$àð<ë‚F(ôҬOð	AòJö
$àOð	AòJö$%Oð³FðӿJö$AòOð³F%Oð	ðԿðÖê(¹0FÖ÷ù(Að‚„Oð	AòJö$³åðëF(ôâ¬%AòJö$§åBmð€B?ô;®‘øW Rõ6®Ðø¬ *ð؃h(Û2h‹B?ô0®28øÑAòì
àAòí
JöÙø@h`(¿hoð@B‘B%Ñ-¿(hoð@AˆB$Ѹñ¿Øøoð@AˆBÐ8ÈøÑ@FðÐéOð	Íã9`¿ðÈéÙø<•(ôڭÆç9`¿ð¼éÓç8(`¿(Fð´éÓçOð	Aòè
Jò§t­ã+K{DhšBðõ€"Fðrê÷÷4ù(AñûƒJöՐAòúzáPF!F*FðúêƒF(ô‘¬Oð	àðpêF(ôȬOð	Aò	Jö-$|ãð"ê(ðSƒOð	ÍødAòJö$åAòð
Jö?jãAòò
Jöddã8 `Ýø<¿ Fð\éJòÝt_åXÕ¶ÔâpŽHIxDyDhhð2éÎäAòô
Jö‹Eãð*êF(ô©JöóAòüáJöõäàJöMžAòÿáðêƒF(ô¥ªJöOAòÿÿàJöRÝø AòÿöàJöSÝø Jà Ýø AòÿJöUÝø0°êà oð@A(hˆBÐ8(`¿(FðôèÝø JöW-àÛøP-?ôɪ)hoð@@Ûø`B¿1)`1hB¿H0`Ûøoð@A–ˆBÐ8Ëø¿XFðÎè ³Fÿ÷«ºÝøL€Jönž AòÿÝø0°¯àF)ð.‚Ñø€BøÑ.â·î$í´î@ñîú¿$ÿ÷ָðJé(Að¼‚(FÕ÷Šÿ(AðƒJöþÝøL€AòüžpàðtéF(ôl©Oô)@5àðjéF(ô}©Jö+àõhÐF•-ð•‚)hoð@@Öø B¿1)`ÚøB¿HÊø0hoð@AÍød ˆBÐ80`¿0FðXè VFÝø0°ÂFÿ÷X¹Jö AòüÝøL€ž*àOð	Aò	Jö/$@âAòüJö÷
àAòÿJörà¿doÖz÷ÿAòüJö,Ýø<°.’¿0hoð@AˆB@ðˆÝøL€^FÝø0°œ T± hoð@AˆBÐ8 `¿ Fðè ˜(¿hoð@B‘B@ð&˜$”(¿hoð@B‘B@ð!²I˜yD”ÀkIk(ðã€@hˆBÐJhRmSñACh[m³ñÿ?ؿ²ñÿ?@ó±€ðZêÝøL€(Ýø0°ðɀ¢H¢KÝé!xD{DÍ÷þ˜©ª«Î÷­ø(ñ²€˜(¿hoð@B‘B@ðø€˜$”(¿hoð@B‘B@ð󀘔(¿hoð@B‘B@ðlhÁø!‘(¿hoð@B‘B@ð总ñ¿Ûøoð@AˆB@ð›ñ¿Úøoð@AˆB@ðà€Oðÿ0oðA³Fðúê(ðրFØøL)Fð¨ê(ðԀF(hoð@AˆBÐ8(`¿(Fð`ïjH"™Oð	xDÈò”@kÍøPØ÷Æþ(ð¾€F hoð@F°BÐ8 `¿ FðBï(F!"Íø`ï÷)þ(h°BÐ8(`¿(Fð2ïÍø\AòJöù,áBmð€B?ôJ¯‘øW RõE¯Ðø¬ *𒀐h(Û2h‹B?ôA¯28øÑàAòJö¦˜lhÁø(¿hoð@B‘B.ѻñ¿Ûøoð@AˆB+Ѻñ¿Úøoð@AˆBÐ8ÊøÑPFðæîOð	%Oð³FÝé¤ðr¼9`¿ðÖîÓæ9`¿ðÐîØæ9`¿ðÊîÊç8Ëø¿XFðÂîËç9`¿ð¼îç9`¿ð¶îç9`¿ð°î
ç9`¿ðªîç8Ëø¿XFð¢îç8Êøô¯PFðšîç80`¿0Fð’îpæ¿àÎ^÷ÿsµ÷ÿ®Í¾IyD	hˆBôþ©Ûø8ñÍø<°Oð~Ðoð@aFBFOð
ÑécoêŠê¤AÛëñJë
:îÑOðÿ1‹êê
CaÑðï(@ðO†Oðÿ0oðAðÐéF(Ýø<°˜ðI†Ðø
)Fðzé(ðH†F(hoð@AˆBÐ8(`¿(Fð2î”H"™Oð	xDÈò”@kÍøPØ÷˜ý(ð2†F hoð@F°BÐ8 `¿ Fðî(F!"Íøhï÷ûü(h°BÐ8(`¿(FðîÍødAòJöj$%OðãOð
œ"½hÍøÀÔø¸(Fï÷xû(ñքLö!Ãöš1»ëzñÛ(@ð҄Ôøh(F"ï÷cû(ññ„»ñ€AzñÛ(@ðñ„	˜»ë
˜zëÀò?…˜Íø0€EhÐÔø¼W hêh)Fð2ï(ðυFhoð@AˆB¿00`–ph‚l˜*Ðø(0FðхGF(ð҅0hoð@AˆBÐ80`¿0Fð”íhh&™–ˆBðȅ ™BÍéi¡ë€(FØ÷÷ü™)¿
hoð@CšB@ðƒ!(‘ðׅ(hoð@AœˆBÐ8(`¿(Fðhí 
˜…B¿˜h…BÑ
˜(°ú€ð@	à@FðÞé(ð†F ð–íOð(ð†Íød€€FÅ`‰à˜…BàÐ(FðÜí(ñð…)hoð@B‘BÐ9)`ÑF(Fð.íœ0F!‘³@Fð®é(ðª…F ðfí(𧅀FÙøoð@AˆB¿0Éø È镐QàæiRËHÙøxDhB@ðü…à¿êfÙøoð@AˆB¿0Éø¹ñÍø\ðó…@Fðpé(ðô…F ð(í(ðï…FÆ`HF)FðÆï(ðí…Ùø€FHFoð@IIEÐ9`¿ðÆì(h&–HEÐ8(`¿(Fðºìœ–Ôø¼g hòh1Fð*î(ðZ„Fhoð@AˆB¿0(`•žhhÖøì‚l(F*ðY„GF(ðZ„(hoð@AˆBÐ8(`¿(FðŒì ðÐì(ðR„FØøoð@AˆB¿0ÈøÍøD€Äø€ð|í(ðC„Öø¼W€F0hêh)Fðàí(ð?„Fhoð@AˆB¿00`–ph”LF‚l˜*Ðøð0Fð>„GF(ð?„0hoð@AˆBÐ80`¿0FðBì˜JFÐøÔ @Fðí(ñÁÙøoð@AˆBÐ8Éø¿HFð(ì`hl-ðŽ„ÖHxDðxíž(@𖄠F1FBF¨GFðtí-
•ð†„ hoð@E¨BÐ8 `¿ Fðì0h$”¨BÐ80`¿0FðúëØøoð@A”ˆBÐ8Èø¿@Fðìë ™˜(ðã
˜Ñø„ÝøD€Bh’l*ðq„GF(ðr„˜ð\è(ðr„FHF1Fðúï(ðn„FÙøoð@D BÐ8Éø¿HFð¸ë0h BÐ80`¿0Fð°ë (Fð.þžF0ÑðLì(@ðȄ(hoð@AœˆBÐ8(`¿(Fð–ë 
˜…BÐak(Fõ÷ÿ(ðX„¨h"Ôøh¸hï÷
ù(ñ-„FÖø¨Ôøö÷€ù€F-ퟐ�ñðG„Öø¨Ôøüö÷rù(ðD„F@h™&Íø,ˆB@ðàƒÕø¹ñðڃÙøoð@@¬hB¿1Éø!hB¿H `(hoð@A”ˆBÐ8(`¿(Fð:ë"%F˜Íé– ë‚(FØ÷¤úFHFÉ÷=ý.ð„(hoð@IHEÐ8(`¿(Fðë0h%•HEÐ80`¿0Fðë•ð˜îF˜ZF˜SF	˜
˜˜˜˜0ð´ïF0Fðˆî˜"Ðø˜@FÍ÷ùØøoð@B‘BÐ9ÈøÑF@Fðäê0F(ðփhoð@BÝøD€‘BÐ9`¿ðÔêh@ðXFQFðLî(ðþ„F˜)FÐødðúí(ðû„F(hoð@AˆBÐ8(`¿(Fð²êH"™Oð	xDÈò”€lÍøPØ÷ú(ðä„F hoð@F°BÐ8 `¿ Fð”ê(F!"Íø\ï÷zù(h°BÐ8(`¿(Fð„êÍøhJöDAò9Ýø<°ÝøD€
à¿$§÷ÿPÄAò*Jö·4Ýø<°%ÝøD€žV±0hoð@AˆBÐ80`¿0Fð\ê˜(¿hoð@B‘B7ј(¿hoð@B‘B5ј(¿hoð@B‘B3ѹñ¿Ùøoð@AˆB0ÑîH!FîKRFxD{DÍ÷…ø ¸ñðï€Øøoð@B‘Bðè€9Èø@ðã€F@Fðê FÜà9`¿ðêÁç9`¿ðêÃç9`¿ðêÅç8Éø¿HFðêÆç
oð@AÝøD€(hˆB@𮀮à:
`ô{¬FFððé0Ftä¸ñðƒÖø¨Ôøüõ÷îÿ(ðƒF@h™LF#ˆB@ð¤‚Õø¹ñðž‚Ùøoð@@®hB¿1Éø1hB¿H0`(hoð@A–ˆBÐ8(`Ñ(Fð¸é#"5F˜Íé“ ë‚(FØ÷ ùFHFÉ÷¹û.ð߂(hoð@IHEÐ8(`¿(Fðšé0h%•HEÐ80`¿0FðŽé•ðíF˜ZF˜SF	˜
˜Í阐˜0ð:î(Fðí˜"Ðø˜@FÌ÷ƒÿØøoð@B‘BÐ9ÈøÑF@Fðbé F(ð¬‚hoð@BÝøD€‘BÐ9`¿ðRé
oð@A(hˆBÐ0(`(FÝø<°Øøoð@B‘Bô¯-¿)hoð@B‘Bѻñ¿Ûøoð@B‘BѰ½èð½9)`ïÑF(Fð$é Féç9ËøîÑFXFðé F°½èð½Oð	AòJö|$þ÷¡¼YH"ÔøìOð	xD@kÌ÷ÿ(ðï‚!"Fî÷èÿ hoð@AÝø<°ˆBÐ8 `¿ FðîèÍødAòJö’$ÿ÷çºOð	AòJöÍ$þ÷q¼oð@@!Oð	ðVì(ðȂFÔøø)FðìÝø<°(ð‚F(hoð@AˆBÐ8(`¿(Fðºè0H"™ÈòxDÍé”@kØ÷#ø(ð¶‚F hoð@F°BÐ8 `¿ Fð è(F!"Íøhî÷†ÿ(h°BÐ8(`¿(FðèÍødAòJöñ$ÿ÷‰ºH"ÔøðOð	xD@kÌ÷‘þ(ð~‚!"Fî÷bÿ hoð@AÝø<°ˆBÐ8 `¿ FðhèÍødAò!Jö4ÿ÷aº¿.v÷ÿCª÷ÿÁbÀú¿ðúè(@ð`‚0FÔ÷:ÿ(@ðª‚Jö¦4Aò*cáð*éF(ô¦«Oð	Aò*Jö¨4%Ýø<°ÈåJö«4Aò*MáOð	Aò*Jö°4¦àðÌè(@ð9‚(FÔ÷ÿ(@ð‚Oð	Aò*Jö²4“àðúèF(ôkOð	Aò*Jö´4†àOð	Aò
JöD$þ÷’»Oð	AòJöX$ÿ÷ø¹JöZ$AòOðþ÷¹½AòJöe$ÿ÷ê¹ðŽè(@ð‚(FÔ÷Îþ(@ðJ‚Oð	Aò&JöH4þ÷h»ðºèF(ô.ªOð	Aò&JöJ4þ÷Y»îh–.ðê1hoð@@ÕøB¿11`ÙøB¿HÉø(hoð@AÍø\ˆBÐ8(`¿(Fð¤ï MFÝø,ÿ÷ºOð	Aò&Jö_4þ÷)»ž FBF1Fðøè(
ô{«àð0è(ð²Oð	Aò*Jö¹4%Ýø<°åOð	">äJön4Aò'àOð	Aò'Jöp4þ÷þºðPèF(ôŽ«Oð	Aò0Jöç4‰àAò0Jöé4„àJöë4Aò0Ýø<°
óäOð	Aò3JöDàOð	Aò&Jöc4þ÷պOð	Aò%Jö-4þ÷ͺJö/4Aò%TàOð	"{åOð	Aò1Jöú4Ýø<°½äOð	Aò4JöDtàJöDàJö%DØøoð@AˆBÐ8ÈøÑ@FðïOð	Aò4]àOð	Aò4Jö[DVàHFðøéF¹ñÍø\ô
ªOð	Aò)Jö4þ÷„ºJö4	àOð	Aò)Jö‘4þ÷yºJö–4Aò)Oð%Oð	Ýø<°|äOð	Aò0Jöï4Ýø<°
eäOð	Aò=Jö«DàJö­DàJöÁDØøoð@AˆBÐ8ÈøÑ@Fð¶îOð	Aò=àOð	Aò=Jö÷DÝø<°ÝøD€
ÿ÷;¼Ô÷uþþ÷ƾOð	AòJößÿ÷š¸Oð	AòJöéÿ÷’¸AòJöôÿ÷Œ¸ÝøL€Ýø0°H±Ðø€ˆBúÑþ÷¬¾Ô÷Pþþ÷ªºzHxDh°ú€ð@	þ÷˜¾ FAF"ðÖïF(~ôɪàðï(𫀠Aòî
JöÈFþ÷ѺJòµtþ÷KºOðý÷á¼Aòñ
JöJÿ÷M¸Aòó
Jöoÿ÷G¸Aòó
Jöqÿ÷A¸ þ÷–»Aòó
Jötÿ÷7¸$ý÷¾Oð	Íø\þ÷ѻÝø<x±Ðø€ˆBúÑþ÷WºOHOIxDyDhhðîþ÷£¼FHxDh°ú€ð@	þ÷?ºAòJöŽ$þ÷ž¹AòJöß$þ÷˜¹Jöá$AòOð%ÿ÷Ÿ»Aò!Jö
4þ÷‰¹AòJöì$þ÷ñ¿%Jö¦4•Aò*	çOð	Íø`Êå þ÷G½% þ÷†½Oð	Íødûå& 1æ)H)IxDyDhhð´íDæJö{DAò;Oð	ÿ÷E»Oð	Aò;Jö}DçJöˆDÿ÷8»HIxDyDhhð˜íKçFý÷¼Fý÷a½Fþ÷¸Fþ÷[¸F(Fý÷нFÿ÷ö¸Fÿ÷<¹žFÝø0°ý÷i¾Ýø,Fþ÷߿¿Y.Xîy÷ÿÌYYÆz÷ÿfX&z÷ÿ°µ¯F@høWÀ*РhÔ(ÙH"xDh Fð0êA(±úñOêQOêAH¿!)Ðq¹ F½è°@ðμàh°½HIxDyDhhð4íOðÿ0°½ Fî÷Âû(÷ÐFÿ÷Åÿ!hoð@B‘BñÐ9!`¿°½F Fð4í(F°½ŽWW¿n÷ÿðµ¯-é™°ŠF	hƒF ‘FÍéÍéÍéoð@@B¿1ÊøÙøB¿HÉøPFðÒè
0ÐãIÚøyD‘IkˆB'ÐÐø¬0ñšh*Û3hŽBÐ3:ùÑžˆB@ð‚%áOðAòó%KòjfOððŸ¿F"±Òø€ ŠBúÑàÎJzDh‘BäÑž‚lPFÖø4*ð†GF(ð†hhÖøÜ‚l(F*ð†GF(ð†(hoð@AˆBÐ8(`¿(Fð°ì¹H!‘xDh„BзIyD	hŒBеIyD	hŒBÐ Fð<í(ñÿ…!hoð@B‘B	Ñà °ú€ð@	!hoð@B‘BÐ9!`ÑF Fð„ì(F!(‘ðí…Öø¸G0hâh!Fðîí(ð†hoð@B‘B¿1`Öø¼G0hâh!FðÜí(ð†Fhoð@AˆB¿0(`•hhÖøl‚l(F*ð†G€F(ð†(hoð@AˆBÐ8(`¿(Fð@ì„I yDØø 
hªBð
†™BÍ驦ë€@F×÷Ÿû™)¿
hoð@CšB~Ñ!(‘ð†Øøoð@AˆBÐ8Èø¿@FðìÝø`€Øø¨Bð† %¦ë€‚œ@FÍéY”×÷qû-F¿(hoð@AˆBZÑ hoð@AˆB`Ñ .fÐØøoð@E¨BÐ8Èø¿@FðÞëÙø$”¨BÐ8Éø¿HFðÒëš±FÚø”QkFˆB@ð倊lPFÖøl*ð텐G(ðî…ÖøˆBÐAKBh{DhšBAð傁h!ð)0ÑÁh9±úñL	+à$)à:
`ô}¯FFðœë Fvç8(`¿(Fð”ë hoð@AˆBžÐ8 `¿ Fðˆë .˜ÑOðAòû%KòÕfOðð6¾$hoð@B‘BÐ9`¿ðpëÚø!,‘ퟘ�lPFÖø„*𮂐GF(ð¯‚HxDh¬B)ÐHxDh„B$ÐHxDh„BÐ Fðêë(ñ£‚!hoð@B‘BÑ$à$«ŽV
VVæUnUJTdS^S@S`°ú€ð@	!hoð@B‘BÐ9!`рF Fðë@F!‘˜³ÜHxDh‚Eð…ƒpk(ðèƒÚø ‚Bð$„Òø¬0+ð
„™h)Û3h†Bð„39øÑÍKÎI{DÒhyDhÃh0hð^ëOðAò5Kò
vOðð ½ÚøqkˆBð­…Ðø¬0+ðý„šh*Û3hŽBð …3:øÑžÖøÄB0hâh!Fð>ì(ð…Fhoð@BB¿0`‘PFðïAð3ƒ™oð@C
hšBÐ:
`Ð!‘p±Öø‰E@ð-áFFðžê F!(‘ðÑÖøÐJ0hâh!Fð
ì(ðƒhoð@B‘B¿1`Ah\FŠlÖøÈ*ðƒGƒF(ðƒ˜oð@B”h‘BÐ9`¿ðnêOð ÍøT€ð®ê(ðù‚Öøèoð@C
hšB¿P`˜ÖøèÁ`ÚøÖø`Bh’l*ðꂐG(ðë‚wJAhzDh‘BAðë‚hoð@AFŠB¿Q`oð@B‘BÐ9`¿ð.ê  iA
ÔOöÿsÀó‚Àò(¿Oöÿs(¿ÿ#à#˜5F¡haÖøoð@Fh²B¿2`Õøš.FPañÖ˜!ü÷Vÿ(ðº‚F˜oð@Bh‘BÐ9`¿ðòé ÍøT€ð6ê(ð¬‚IIoð@BÅ`yDmh‘B¿1`™aðâêÝø€(ðž‚Öø¨FÖø+ð¦ê(ñB‚™XF"FÍø4 ÊFË÷Öÿ(ð°‚FÛøoð@IHEÐ8Ëø¿XFð°é˜&–hIEÐ9`¿ð¦é–oð@F hÑFÃF°BÐ8 `¿ Fð˜é(h$Ýø4 °B”Ð8(`¿(FðŠéž”Öø‰EÐJÙøzDhBAðâ€Ùø!!ê(@ðǃÛø¨@Öøeeh1F(Fðì(ðãƒAhÑøˆ0‹±!F*F˜G ¹ßãÎR˜RȖ÷ÿ’Q²âOhoð@AŠB¿Q`Ûø¨P˜nhÐøü„0FAFðèë(ð׃F@hÐøˆ0[± F)F2F˜GÝø €F`¹KöM&ÕãÝø €oð@A hˆB¿0 `”×H%•xDahhB@ð`‚àh(ð[‚hoð@A¦hŠB¿2`0hˆB¿00` h–ˆBÐ8 `¿ Fðþè"4F˜Íé¨0 ë‚ F×÷eø™)¿
hoð@CšB@ð=!(‘ðŠƒ!hoð@E©BÐ9!`ÑF FðÖè0F!‘h©BÐ9`¿ðÌèð’él«IÍø$yD	h‘h-¿BÑ@h(÷Ñ% ÍéUà)hoð@@•B¿1)`jh’hB¿H`(F’ðð鐐
˜F.YÛñ2F#Oð	ðbì€FPFAF"#ô÷Îü(ð€ƒFPF1F"#$ô÷Ãü(ð€FPF1FZF#ÍéDð5ù(ñû‡Ûøoð@AˆBÐ8Ëø¿XFðdèOðPFAFJF#Íé»ðù(ñä‡Ùøoð@AˆBÑ
˜°ñZÑ
à8Éø¿HFðDè
˜°ñNј$””(¿hoð@AŠB@ð”€
ñ	”-Ýø0€™èP¿(hoð@AˆB@ð‹€ ,¿ hoð@AˆB@ðˆ€Øø˜0F"Ë÷)þ1hoð@B‘BÐ91`ÑF0Fðè F(ðÂhoð@B‘BÐ9`¿ðúïOðÍøP°ðн¸ñ°Ý˜BF#$ð¼ëFPFIF"#ô÷(ü(cЃFPFAF"#ô÷ü(_ÐF ÍéPFAFZF#ð‘ø(VÔÛøoð@D BÐ8Ëø¿XFðÀïOðPFIF2F#Íé»ðxø(EÔ0h B¼Ð80`¿0Fð¬ïµç:
`ô¿®FFð¢ï(F¸æQ`¿ðœïeç8(`¿(Fð”ïmç8 `¿ FðŽïpçÚøð¤¸OðAò-5Kö
&Oðð:ºKöŠ%Oð
àKöŒ%
àKöŽ%à¿2O(NKö%4FOð	 FÍøX°È÷vù˜Íø`È÷qùXFÍø\È÷lù˜ÍøXÈ÷gùðH)FðKAò52xDÍøT{DË÷œý˜©ª«Ì÷,ø(0ÔÝø` Ýé8BFIFðjè(ð‡F!F"(FË÷BýF(hoð@KXEÑ hXEÑ 6³ØHxDh†B$Ð×IyD	hŽB¿™ŽBÐ0Fð²ïàKö¨&Dà8(`¿(Fðï hXEßÐ8 `¿ Fðï .ØÑKö±&.à0°ú€ð@	1hoð@B‘BÐ91`ÑF0Fðèî F(Ôð†HFÈ÷òøOð@FÍø`°È÷ëø˜ÍøX°È÷æø˜ÍøT°™šl›ðĽKöµ&˜«ËlÌ÷PøOðAò25OðÝø$ðu¹"»åðžïF(ôç©Kò~fAòø%Ràð’ïF(ôé©OðAòø%Kò€fOððV¹OðAòø%KòƒfOððL¹‘H"ÖøOðxD@kË÷šü(ðp†!"Fí÷ký(hoð@AˆBÐ8(`¿(FðrîÍø\€Aòù%Kò“fOðð$¹ðï(AðY† FÓ÷Ný(ôñ©Kò¥fAòû%OðOðð¹ðøî(AðO† FÓ÷8ý(Að»†OðAòû%Kò§fOððø¸ð"ï€F(ôë©OðAòû%Kò©fOððè¸Øø(ð.†hoð@AØø`ŠB¿2`0hˆB¿00`ØøˆBÐ8Èø¿@Fðî °Fÿ÷ӹOðAòû%Kò¾fð½¸ØøP-?ôó©)hoð@@Øø@B¿1)`!hB¿H `Øøoð@A”ˆBÐ8Èø¿@Fðàí  Fÿ÷չF*ð¡€Òø€ ŠBøѡàðºî(ôªOðAòý%KòòfOðð¸ðjî(AðɅ FÓ÷©ü(Að/†OðAò%5Kö¼Oðði¸!H"ÖøOðxD@mË÷·û(ð°…!"Fí÷ˆü(hoð@AˆBÐ8(`¿(FðíÍøX€Aò05Kö8&OððA¸H1FxDhhðéOðAò25KöK&Oðð0¸èh÷ÿq”÷ÿòJìJ¬Fª¢GóHAFxDhhðøèÝø € KöM&àKöa&Øøoð@AˆBÐ8ÈøÑ@FðJíOðAò25Oððý¿OðAò25Kö×&Oððó¿ÝJzDh‘Bôcª‚lPFÕø„*ð7„G(ð8„ÕøˆB
ÐÒKBh{DhšB@ð6„hðà$hoð@B‘BÐ9`¿ð
í d±ÇHoð@BxDh!h‘B¿hH `ðò¿Õø¼G(hâh!Fðlî(ðƒ„hoð@B‘B¿1`AhŠlÕø *ퟤ�GF(ðŠ„˜oð@Bh‘BÐ9`¿ðÐì¬I yDbh	h
‘ŠBð~„™ÂÍéÕø‘©Íø$ÍøDñ	©ë€ FÖ÷'üF˜•(¿hoð@B‘B@𑂠-ð–‚ hoð@F°BÐ8 `¿ Fð˜ìÚø°BÐ8Êø¿PFðŽìžªF!‘Öø¼W0hêh)Fðúí(Íø4 ðV„Fhoð@AˆB¿0 `”`hÖøì‚l F*ðX„G(ðY„ hoð@AˆBÐ8 `¿ Fð\ìÚøÖøÐé
*¿Rh*Ñ(¿Àh(ÑPFô÷ƒüàPFGàPFô÷üFOð(ð5„˜
šÍø`€Ah‘Bð3„"˜©ë‚2Íé…Ö÷žû¸ñF¿Øøoð@AˆB@ð‚(h$oð@A”ˆBÐ8(`¿(Fð옔(ð3„˜oð@Bh‘BÐ9`¿ðìÛø¨OðÖøÍøT€Íø\€ô÷þù(ð „Ûø¨Öøüô÷ôù(ð„ØFAh
š%Ýø,°‘B@ð„Äh,ð;„hoð@@"h‚B¿2"`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðÀë"˜©ë‚ÍéEÖ÷,ûF FÇ÷Åý.•ðûƒ˜oð@Dh¡BÐ9`¿ð¤ë•0h BÐ80`¿0Fðšë•ð`쐩lª«Ë÷zùPFðVïF0ðïƒp(Àò*ñoð@I
”
à¿dGDGG¨FŽF.@ó> F#2Fð<ï†BôЀFðæë(ðfF ð¨ë(ðeØIÅ`yDÑø°ÛøHE¿0Ëø˜Àø°
˜™BhÒé
2*¿Rh*	Ñ+¿Úh*Ñô÷uûFP¹HáGF0¹Dáô÷ûF(ð?˜hIEÐ9`¿ð&ë˜Oð
YF*FÍøT ðüî(ñ/(hHEÐ8(`¿(Fðë0FðŽë
œ(ð&F ðNë(ð#Å`ÛøHE¿0Ëø˜Àø°`h™Ðé
*¿Rh*
Ñ(¿Àh(
Ñ Fô÷ûF`¹
á FGF8¹á Fô÷¨úF(ðÿ€˜hIEÐ9`¿ðÎê@FÍøT ðHë(ðò€ ð
ë(ðó€‚F˜ÊøQFÛø*FHE¿0Ëø Êø°
˜ðŠî(ñã€ÚøHEÑ(hHEÑ0Fð밹Ýà8Êø¿PFð”ê(hHEðÐ8(`¿(FðŒê0Fðë(ðȀF ðÊê(ðˀÅ`‚FÛøQFHE¿0ËøÊø°Ýø,°
˜ZFðLî
œ(ñ€ÚøHE?ôï®8Êø¿PFð\êææ˜$ÍéDÇ÷gü˜”Ç÷cü˜”Ç÷_ü˜"Ðø˜(FË÷Yø)hoð@B‘BÐ9)`ÑF(Fð8ê FÝø$(Ýø4 ð›‚hoð@B‘BÐ9`¿ð&ê =Hoð@BxDh!h‘B¿hH `ð½9`¿ðê -ôj­OðAò5Kö}ÿ÷F»8Èø¿@FðþéßåOô™XKöOð
SàOô™XKöOð
MàOô™XKö0àOô™XKöÝø,°AàAò!8Kö'&àAò!8Kö)Ýø,°5àAò!8Kö1àAò!8Kö4Ýø,°)àAò!8Kö6Ýø,°"àAò!8Kö>Ýø,°àAò"8KöIOð
%Ýø,°àAò"8KöKOð
Ýø,°àrCâ@Aò"8KöS%Íé¥Ýø4  $Ç÷«û(F”Ç÷§û˜”Ç÷£û˜”Ç÷ŸûäH1FäKBFxD”{DÊ÷Öÿ˜©ª«Ë÷fú(3Ôš Ýé9IF
’ð¤ê(ð8Ýø €F!F"@FÊ÷|ÿFØøoð@E¨BÑ h¨B"Ñ N³ÍHxDh†B'ÐËIyD	hŽB"ÐÊIyD	hŽBÐ0FðêéàKölDà8Èø¿@Fð>é h¨BÜÐ8 `¿ Fð6é .ÕÑKöu-à0°ú€ð@	1hoð@B‘BÐ91`ÑF0Fðé F(Ôðé€HFÇ÷(û
˜$”Ç÷#û˜”Ç÷û˜”Ýé!›lË÷’úÝø$ÝæKöy˜Ýé2™lË÷†úOðAò5Ýø$­ãðØé(ôȫOðAò5KöEOðžã”K{DhšBð­"Fðªéô÷kø(Añ]OðAò5KöGOð†ã‰K{DhšBðª"Fð’éô÷Sø(AñTOðAòý%KòôfOðnãðšéF(~ôQ­OðAòý%KòûfOð^ãOðAòý%KòýfOðUãqJzDhBðHF"LFð`éô÷!ø(Añ*OðAò/5Kö*&Oð¡F;ãKöŠ%$Oðÿ÷¹KöŒ%ÿ÷¹KöŽ%àKö%LFÿ÷¹ðé(Að€ FÒ÷Sÿ(Aðï€OðAò5KöfOðãð>éF(ôv«OðAò5KöhOðãàh(ðb€hoð@A¥hŠB¿2`(hˆB¿0(` h•ˆBÐ8 `¿ Fð,è ,Fÿ÷a»ðÎè(AðD€(FÒ÷
ÿ(Að¬€OðAò5Kö‹Éâðúè(ô§«OðAò5Köÿ÷G¹Aò5Köÿ÷A¹Ðø€Íø`€¸ñ𠀁hoð@@Øø ‚B¿2Èø 
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðÞïÝéj"ÿ÷¦»OðAò5Kö¥ÿ÷¹Aò5Kö´'àKö¶à"ÿ÷¼¿Z]÷ÿåˆ÷ÿd?^?@?P? ?¾>Köʘoð@AhŠBÐQ`Ñð¨ïOðAò5Ýø$Ýø,°Yâ$"ÿ÷ۻAò8Köà÷åOðAò5Kö›Iâð4è(@𸇠FÒ÷tþ(Að€OðAò'5KöÊOð4âð`èƒF(~ôù¬OðAò'5KöÌOð$âAò(5Kö×OðâðHè(~ô­Aò(5KößOðâ1JzDh‘B@ð„‡ÑjFˆGF(@ð²‡KöáàKöíAò(5OðâAò'5KöøOðñáKö&Aò-5ÿ÷ظí$µî@ñîú¿$ÿ÷ºHIxDyDhhðïþ÷-¼·î$í´î@ñîú¿$þ÷•»ÑFOðAò'5Kö&Oð½á™í µî@ñîú¿ þ÷‚½FQ±Ñø€BúÑàˆ;
;|F÷ÿÉIyD	hˆB~ôî«Fž‚lÖøüÚø*PF•ð&‚GF(ð'‚(F!"#ØFOðó÷û(ð#‚F(hoð@AˆBÐ8(`¿(Fðºî  Fì÷‡þF0ÃFÑðXï(@𬂠hoð@AˆBÐ8 `¿ Fð¢îÚøÖøÔ•‚lPF*ðûGF(ðühhÖø8‚l(F*ðúGF(ðû(hoð@AˆBÐ8(`¿(Fðxî  Fì÷Eþ0Ñðï(@ðt‚ hoð@AˆBÐ8 `¿ Fð`îÖø¼W0hêh)FðÒï(ðׁFhoð@AˆB¿0 `”`hÖøèÍø4 ‚l F*ðځG‚F(ðہ hoð@AˆBÐ8 `¿ Fð2î˜ð°î(ðԁF Íø$ðnî(ðӁFÄ`ð&ï(ðҁF0FÖø¼ghòh1Fðˆï(ð́€Fhoð@AˆB¿0ÈøœØøÔøô‚l@F*ðʁG(ðˁØøoð@AˆBÐ8Èø¿@FðèíšHFÔøÔðºî(ñ€˜oð@Bh‘BÐ9`¿ðÔí Ýø€ÚøÍø°l,ð¥8HxDðï(@ð¯PF)FJF GFðï,ð ”Úøoð@D BÐ8Êø¿PFðªí(h&– BÐ8(`¿(FðžíÙøoð@AÝø4 ˆB–Ð8Éø¿HFðŽí ÝøT°˜Ýø$ƒEð¢˜@k(ðuÛø ‚Bð˜Òø¬0+ퟘ�h)Û3h†Bð‹39øÑ
K
I{DÒhyDhÃh0hðÐíOðAò	5KòXvà®:nz÷ÿz7ª{÷ÿOðAò5KòGvOðÝø$Ýø4 ˜(¿hoð@B‘B@ð‚€˜(¿hoð@B‘B_ј(¿hoð@B‘B]ј(¿hoð@B‘B[Ѹñ¿Øøoð@AˆBXÑãH1FãK*FxD{DÊ÷dû$»ñ¿Ûøoð@AˆB,Ѻñ¿Úøoð@AˆB
ÑÙøoð@AˆBÑ F°½èð½8Êø¿PFðîìÙøoð@AˆBíÐ8Éø¿HFðàì F°½èð½8Ëø¿XFðÔìÊç9`¿ðÎì™ç9`¿ðÈì›ç9`¿ðÂìç8Èø¿@Fðºìžç9`¿ð´ìwçðšíF(ô٭OðAò5KòvOð^çKòvAò5Oð`çð‚íF(ô®Kò$vAò5þ÷7¾ðvíF(ô®OðAò5Kò&vOð:çØFð$í(@ð¸„(FÒ÷dû(@ð…OðAò5Kò4vOð$çðPí‚F(ô%®Kò6vAò5OðOðÝø4 çOðAò5Kò9vOðçOðAò5Kò;vüæOðAò5Kò@võæðæì(¹0FÒ÷(û(@ðà„OðAò5KòBvåæðí(ô5®OðAò5KòDvÚæPF)FJFð†í(ôd®Oðàð¾ì(ðW„OðÍøT€Aò5KòIv¾æ]H]IxDyDhhðêë æOðAò5KòvOð²æOðAò5Kò)vOð©æF!±Ñø€BúÑàNIyD	hˆBôx®ÚøœÛøP‚lPFÔøÔ*ðƂGÝø(ðǂAh•ŠlÔø¤*ðɂGF(ðʂ˜oð@Bh‘BÐ9`¿ð¶ë EEÐ4HxDh…B¿˜…BÐ(FðFìF(
ÕOðAò
5KògvÝø$Uæ¥ë°ú€ðF	(hoð@AˆBÐ8(`¿(FðŠëÙø¨@˜ehÐø¥ (FQFð&î€FÍø,°†±¸ñðŠ‚ØøžÐøˆ0K³@F!F*F˜G€F`»ƒâ¸ñðӂØøžÐøˆ0+ð-@F!F*F˜GÝø  €F(@ð.ÆâtT÷ÿ€÷ÿÒ4D@÷ÿ¤44Øøoð@AˆB¿0ÈøÙø¨@Öøüdeh1F(FðÜí(ðT‚AhÑøˆ0+±!F*F˜G@¹Râhoð@B‘B¿1`ÍI%BhyD•	hŠB@ðE‚Åh•-ðW‚hoð@@*h‚B¿2*`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðøê"˜©$1ÍéT¡ë‚Õ÷aú-¿)hoð@B‘B@ðª€(”ð‚™oð@D
h¢BÐ:
`ÑFFðÔê(F%•h¡BÐ9`¿ðÈê
˜	ñ
Ýø•E¹ñÍø€ÑÝø-Ýé¶=Û	ûdÉñPF*F#ð~î	ûð=1XËø!h1PÛø `DDíÑ&àÝø€-Ýø° Û˜ûÈñ
PF*F#ð^î™ûXFJF1F
ðï0F!FJF
ðï FYFJF
ðï
˜=DäÑžphl˜-Ðø˜Kð¸vHxDðÄëÝø$(Ýø4 Ýø,°@ð0F!F"¨GFð¼ë,ð¸0hoð@A”ˆBÐ80`¿0FðLê,🁠hoð@AˆB?ô¨8 `ô¨ Fð<êÿ÷¸9)`ôR¯F(Fð2ê0FKçÝø  oð@AØøˆB¿0ÈøÙø¨@Öøüdeh1F(FðÄì(ð–AhÑøˆ0+±!F*F˜G@¹”áhoð@B‘B¿1`CI%BhyD•	hŠB@ð‡Åh•-𙁁hoð@@*h‚B¿2*`
h‚B¿P`˜oð@B‘h‘BÐ9`¿ðàé"˜©$1ÍéT¡ë‚Õ÷Iù-¿)hoð@B‘B@ð³€(”ðS™oð@D
h¢BÐ:
`ÑFFð¼é(F%Íø€•h¡BÐ9`¿ð®é
˜	ñ•Eð0íÝø°»ñ"ÑÝø°-žAÛû¤Ëñ	@F*F#ðdíûð=Zø1`!hJø0h `LDíÑ*à¿,3¼s÷ÿü0ž-ÝøÛû¤pB
@F*F#ð@í™ûHFZFQF
ðîPF!FZF
ðüí FIFZF
ðöí
˜=Däјðèìž™phÑø˜Kl-ðñ€ñHxDð¢êÝø$(Ýø4 Ýø,°@ðù€0F!F"¨GFðšê,ðñ€0hoð@A”ˆBÐ80`¿0Fð,é,ð؀ hoð@AˆBÐ8 `¿ Fðé þ÷õ¾9)`ôI¯F(Fðé0FBçðöéÝø(ô9­OðAò
5KòbvÝø$ÿ÷¹»ðäéF(ô6­OðAò
5KòdvÝø$ÿ÷¨»ÍHQFxDhhð~ìOðAò5Kòsvÿ÷•»ÉH1FxDhhðnì Kòuvà"×åKò‰vØøoð@AˆBÐ8ÈøÑ@FðÀèOðAò5ÿ÷r»%"Àå0F!F"ðêFÝø$Ýø4 Ýø,°QæOðAò5Kò«vÿ÷^»$GæðFé(ðê€Ýø$$Ýø4 Ýø,°ž9æ¤HQFxDhhð$ìOðAò5KòÍvÿ÷;» H1FxDhhðì KòÏvà"•æKòãvØøoð@AˆBÐ8ÈøÑ@FðfèOðAò5ÿ÷»%"~æ0F!F"ðÀéFÝø$Ýø4 Ýø,°çOðAò5Köÿ÷»$çðìè(ð™€Ýø$$Ýø4 Ýø,°žçKöpþ÷4¿Kö¬&þ÷g¹ðè›IF
šÊ÷îù KöÍéþ÷!¿
ðøï›IFBFÊ÷ßù Kö½&Íéþ÷I¹Aòù%KòfOðÿ÷ƺOðKò¥fÍø`°Aòû%Oðÿ÷úOðÍøT€þ÷´¹ ý÷¿»OðÍøT€þ÷:ºAò05Kö4&Oðÿ÷£ºOðÍøT€þ÷‚¿ þ÷´¿OðÍøX€þ÷¿¿Oð"Ýéjþ÷ »OðÍøT€ÿ÷K¸FDHxDhB%ÑÁj(Fÿ÷t¸OðÍø\€ÿ÷K»3H3IxDyDhh
ðœïÿ÷Ÿ»1H1IxDyDhh
ð’ïç0H1IxDyDhh
ðˆï]ç˜Ai(FðâëF(?ôN¨)h(Fžoð@B‘B}ôZ­ý÷]½Fý÷0»FPFð\ìA}ôͬOðAò%5Kö¾Oðÿ÷3ºF(Fþ÷^ºþ÷‡ºÝéjFþ÷öºzq÷ÿžF(Fý÷ê»žý÷ټž¡Fý÷å½žFÃFÿ÷
¹€Fÿ÷P¹6,öM÷ÿp.",âM÷ÿR.¼-,ÐM÷ÿž--ðµ¯Mø×ée3³±ñÿ?FÜF.¿ƒhD±†h³B+ÒÅhoð@FhUø#´B¿e`ÅhEø# h°BÐ8`¿F
ðï ]ø‹ð½;LCh|D$h£BÒÐÓé
E-¿«h+#Ñ,¿ci+ÑFFFðJê(XÐF0F!F*FðÒê!hoð@B‘BÑ]ø‹ð½±ñÿ?Ü»ci]ø‹½èð@GFFFð*êг«hF0F!FBF˜G!hoð@B‘BáÐ9!`ÞÑF F
ðÈî(F]ø‹ð½F!hFF±±(FˆG(	Ô1FBF(Fci]ø‹½èð@GHxDhh
ðÂîP±
ðÈîBF(F1Fci]ø‹½èð@GOðÿ0]ø‹ð½¿ø*J*F€hoð@ChšB¿2`ˆhpGF€hoð@ChšB¿2`ˆhpG°µ¯±
hoð@CšB¿2
`‚hhœBÐc`Ё` °½Ioð@ByDh!h‘B¿1!`hh“BÐZ
`Є` °½FF
F
ðRî)F F` °½FF
ðHî(F„` °½n)°µ¯„°F@hÐøÄ)TѨ©ªðë(hoð@AˆB¿0(`)k±èhˆGàhk(¿èh(Щk9±Õé1$*j”ðÿèhð¶èèiðLè(hoð@AˆB¿8(`Ýé!˜ððê¨jX±!oð@B©bh‘BÐ9`¿
ðúíèjX±!oð@Bébh‘BÐ9`¿
ðìíhhÐø (FˆG°°½øUIÕ(FðÞè(¡ÑhhI€iyDˆB›Ñ(FðÚè(éѕç¿)ÿÿÿ°µ¯FF
ðæî(¿°½HxDhh
ðÖí8±
ðÚí(F!F½è°@ð°¿ °½ (ðµ¯-é—°
FøV‘FɝIyD
‘ñ]„Ðø˜ !GF(𹅘I˜NyD~DÑø òn¢`oð@BÚøÄø( BÑh!FAø,	‘àA#FCø,¯‘BÊø	“¿0Êø
™ Íé¹ñÍéÍéõUpõá`Õø€òLPõÇ`
Ñøøöh‘”иñòC…–ßèðR;D+HF
ð’ïF
˜ÐøhHFÊh
ðºî(ð)…F<Bà¸ñ
иñиñ@ð!…èi¨i–ÕékhiÍékwàÕéÕékÍéHFÍék
ðbïFœ-XÚgàÕékHFÍék
ðVïF àhiÕékHFÍék
ðLïF-"ÚœPàîhHF–
ðBïF
˜Ðø8HFÊh
ðjî(𽄃F<
˜ÐøLHFÊh
ð\î(ð£„e-ÜÛ
˜ÐøHFÊh
ðN=œ-Ú!àñ«ÕékÊÍékÃHF
ðïà
ðhí(@ð
…
˜ÐøTHFÊh
ð.î(𴂐hœ(€ò³‚$HÛøxDÐø€AE@ðnƒÛø(òŽƒðÛøÀñûõhÑ
ð<í(@ð„œOðÿ5Ý鰐˜JIzD’yD‘€±hÝø(ˆB¿šhBÑ@°ú€ð@	VEÑ%à Ýø(VEÑàf|Î'$Š4&¾%¾%PEâÐ
ðúìœF0ðj‚VEÐph½IyD
hB@ð,ƒÓEð=ƒÛøoð@AˆB¿0ËøVEð<ƒ°hAðDƒ(eb aðCƒ-@óKƒÛøÍø øW	tԂlXFÙøô*ퟜ�GF(ퟠ�HahxDhB@ð;ƒÔø¹ñð5ƒÙøoð@@Ôø B¿1ÉøÚøB¿HÊø hoð@AˆBÐ8 `¿ F
ðòë TF
™BÍø0Ñø˜
‘©1¡ë€ FÔ÷Vû¹ñ‚F¿Ùøoð@AˆB@ðɁºñðЁ hoð@IHEÐ8 `¿ F
ðÈëÛøHEÑÓFÝé
”
àÝé
”8ËøÑXF
ð¸ëœÓFÝø pIÛøyD	hˆB¿ÓE@ðó‚Ûøoð@AˆB¿0Ëø	˜hhŠBÐQ`Ñ
ð–ëœ	˜ÓEÀø°𹂠iñaaÀðxèš(‘iëÂéð¶‚1hoð@@B¿H0`±h)`ÛÍø$°Oð
oð@KëŠÄh hXE¿0 ``h@EѠh(AØðáhÀñûùñÐ hXEÑ%à F
ðîx±F
ðîIFFhXEÐ8`¿F
ðBëšäç
ðæë(@ð́šOðÿ9 hXEÐ8 `Ñ F
ð.ëš¹ñ@óOÑi
ñAø*‚F±hˆB°Ûà F
ðÜ횁F¾ç0hÝé	¹Ýø oð@AˆBÐ80`¿0F
ð
ëœ"Ùøø Fë÷ø(ñB‚.ÐÙøüoð@AhŠB¿2`žÝø€°jhŠBÐQ`Ñ
ðêêžÖé1jÙøü3³bCAÔ9:Aø PRø 08ûõ÷Ñ6à„%(%X$ÙøP F"ë÷Tø(ñP‚žðQ‚ÙøToð@AhŠB¿2`°jÝø€hŠBÐQ`Ñ
ð°êžñÙøT5³bÊ(ÛBø[8Qø;ûõ÷ÑÆø4€XF5a"Ùø
ðfë(ðفF˜h„B¿™	hŒBPÑ °ú€ðE	› hoð@AˆBÐ8 `TиñcXÐi Xc0F
ðí›(Ø`ðǁ-KÐ]j-ð؁Fh¿¶ñOðƂ0F)Fðvíûñûbq¿!j@OðOðH¿"@@(Àò…‚Úø›oð@B‘BÄø ¿JÊø 48FòÑàTE¬Ð F
ðÔê›F0ªÑ
ðÖê(@ðQ‚Oðÿ5¡ç F
ð&꛸ñc¦Ñ%Ûøoð@AˆBð[‚8Ëø@ðV‚XF
ðê›Pâ8Éø¿HF
ðêºñô0®Bòû“"¨à
ð¦ê(@ðD‚âHª«!xDÍé€HFê÷8þ(ÔÝékœ<å
ðê(@ð5‚œOðÿ0VE􌭑åBòæá 
ð ê(ð(‚
›Foð@BÝø$°Óøph‘B¿1`Óøpà`PFðéý(ð‚
›oð@BÐø€ aÓø„h‘B¿1`Óø„`aHFðGþ(ð‚
oð@Ch aÕøhšB¿2`Õøàaëñ F!#ù÷äþ(ðîF hoð@H@EÐ8 `¿ F
ð‚é˜)F"$@kë÷hø(h@EÐ8(`Ñ(F
ðré¡"Bò¨!àŸ"Bòp!Ýø$°0hoð@C˜B	Ð80`Ñ0FFF
ð\é1F*F,ðŠ hoð@C˜Bð„8 `@ð€ FF
F
ðHé)F"FwáˆIyD
h
™Òøœ0"Éh˜GF(ôž«UáXF
ðìë(?ô›¬F
ðîëF hoð@AˆBÐ8 `¿ F
ð"震äßIÆhyD	hhÝIÓhÝJyD–zD
ð‚é$áXF
ðÎëœFsäåHåIxDåJyDhzDh
ðréáâHãIxDyDhh
ðàè‰"Bò'á‰"Bò#á˜"ÙøÐ@kê÷×ÿ"Bò­á˜"Ùø<@kê÷Ìÿ"BòÊ
áOð	 åäÒHÓIxDyDhh
ð¶è•"Bò$!ÓFüà˜"Ùøx€lê÷°ÿœ"BòM!ñà¥"BòÍ!íà±"BòF1éà¿IyDh¿I¿JÃhyD0hzD
ðé”"Bò!Úà
˜"Ðøt˜€lê÷ÿBòýq@òà
ð€éF(ôx¬“"BòçÃàµH¶IxDyDhh
ðpèBö#@ò±H²KxD{DÈ÷Ðþ´"Bò[1­àBò/ƒà¨"Bò÷!¦à£I`hyD	hˆB@ð܀ hoð@AˆB¿0 `Ùøl!F
ðPê&F(ð܀F0hoð@E¨BÐ80`¿0F
ðPè˜!F"@kê÷8ÿ h¨BÐ8 `Ñ F
ðBè¬"Bò)1pà
ðäè(@ð½€Bò&àÕf÷ÿ^
ðÖè(@ð³€Bò&fH$fIxDfJgKyDhzD{DheM}Dèp
ðˆèAF!à
ð¼è(@ð›€_H&_L¸ñxD^K_I|Dh{DyDh]M¸¿&\J}DÍø€zDÍée¨¿#F
ðfèBòBƒ"VHWKxD{DÈ÷>þ›hoð@AˆBÐ8`¿Fðàï#F°½èð½ hoð@AˆBÐ8 `¿ FðÐï±"BòG1WHXKxD{DÈ÷þ%›Ûøoð@AˆBô¥­-ÏÑF°½èð½Bò¿çBò¼çBò3„"¹ç$¡"Bò‡!<æ¡"Bò!:æ¡"Bò™!6æ¡"Bò£!2æ9H9IxDyDhhð|ïBö'	ç@EÑØø,˜ˆGÝø(F(ô¯¬"Bò"1³ç$¬"Bò$1æBò
„çOôQçBòø~ç#IyD	hˆBÑÉjÞç
˜Ai˜
ð®ëÝø(F(ÜÐúææ¢?÷ÿ#·ûÿö®3÷ÿ)c÷ÿW÷ÿ״ûÿÂr3÷ÿÜV÷ÿt3÷ÿ´ûÿáb÷ÿ5b÷ÿÑe÷ÿ¾{.÷ÿ	·ûÿ¨ø3÷ÿÀ@÷ÿÛùÿTùK÷ÿênG(÷ÿg=÷ÿ»>÷ÿõf÷ÿéa÷ÿ…e÷ÿðµ¯-遰h.$Û×ø°³ñÒø FÐñ	
 F)FJFCFÍø°ÿ÷åÿTD>ôÑ
à»ñÐoð@@!hTD
h‚B¿2
`>öѰ½èð½oð@EàTD>õÐ hh©BøÐ9`¿ðØîòçÀihpG°µ¯FF
ðꨱFhh!F€kBh(FG!hoð@B‘BÐ9!`¿°½F Fðºî(F°½ °½¿°µ¯
F&IBhyD’lÑøðгGF˜³`hÐé
)¿Jh*
Ñ(¿Àh(Ñ F)Fñ÷Ðþ ¹à F)FG ±!hoð@B‘BÐ9!`¿°½F Fð„î(F°½ F)Fñ÷Kþ(êÑBò–eàð^ïF(ËÑBò”e FÅ÷€øH)FKë"xD{DÈ÷¸ü °½zn›_÷ÿÅb÷ÿðµ¯Mø½
³F$IFBhyD’lÑøð:³GFH³ F1F*F
ð(ê(%Ô hoð@AˆBÐ8 `¿ Fð<î ]ø»ð½I@hyDhIÂhhyDðžîOðÿ0]ø»ð½ðïF(ÕÑBòØeàBòÚe FÅ÷-øH)FKî"xD{DÈ÷eüOðÿ0]ø»ð½Æmª`÷ÿb÷ÿV÷ÿ°µ¯
F!IBhyD’lÑøð2³GF@³hhøWÀÕ`h‚l’± F)FG ±!hoð@B‘BÐ9!`¿°½F FðÞí(F°½ F)FðÀî(êÑBòPeàðºîF(ÖÑBòNe FÄ÷ÛÿH)FKè"xD{DÈ÷ü °½¿mÎ/÷ÿ{a÷ÿðµ¯-é)ðƒ€FYHFFxDÐø€Áø€oð@AØøˆB¿0ÈøðøÐPI"°jyD‰FÑøüê÷û(oÔFи (BRÐðhð `0i `аi`aðiàa1jà! áa`a ÄéqjÄéiH¿pi a0hoð@AˆB¿00``hhŠBÐQ`¿ðbíFEf`Ð ½èð½Øøoð@AˆBÐ8Èø¿@FðNí ``½èð½°j"ÙøTê÷Íú(#ÔOðØ¿Oðÿ0(B¬Ñ H"Ùø¬xD@kê÷ üBòA¿"àHIxDyDhhðíOðÿ0½èð½BòÂ1º"àBòß1¼"HKxD{DÈ÷fû`hX±hoð@B‘BÐ9`¿ðí ``Oðÿ0½è𽿼.÷ÿúNldyGZ÷ÿ!`÷ÿðµ¯Mø½„°*Ú{»#H$JxDzDÐø”Ðk"ê÷Îû HBò.q K"xD{DÈ÷)û °]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEð0í °]ø»ð½˜h(ÌÐ	IFyDê÷¬ø(ÅÑ×ç¿J-÷ÿ_®ûÿÂ!÷ÿ'®ûÿ5®ûÿìjÆx(4÷ÿ§_÷ÿðµ¯-釰EL |DöȐC±ë‚
º±*;јh(Ûdà*5Ñ=H"Ôø”xDÀkê÷hû:HBò³q:K"xD{D?àÓø°’»ñ۠F FØøÈX™F	ñ&FTø&¨B4Ð6³EøÑ&Tø&(F"ê÷ßù('Ñ6³EôÑðöìšè»%H&%IxD%L&KyDh|D{Dh$M’"F}DÍéeðªìBòŠq H" KxD{DÈ÷‚ú °½èð½ÙÔZø&(ÕК«ñKFDF(œÛH­QFxDÍé ªF+Fê÷\ø°ñÿ?ŽÜBòqÖçBòzqÓç¿@j­ûÿôwöN÷ÿÛ^÷ÿ>ö+÷ÿe­ûÿ¶ ÷ÿ*^÷ÿtN÷ÿY^÷ÿе¯h	hˆG(¿нIFKÝ"yD{DFBò‹QÈ÷1ú Fн¿ùA÷ÿ½]÷ÿðµ¯-é„°6JHò\§ñ&!zDÅòëOðdF‘FUûóJFë9^ëÓvûS+H¿[B9ø ¢ñcÆ*5FéØ"
+8¿"Dë°ñÿ?
ÝLB6,
Ñ0x
ð˜è°½èð½- Áñø
,ñÐ$êäx!@F
ð.è³i¨ë“ÔÅi)Ú
àñRX¿ñ)ہF(F "ðèHF,ÔÛëbBø;‹T2úÓËç °½èð½*$÷ÿðµ¯-é„°6JHò\§ñ&!zDÅòëOðdF‘FUûóJFë9^ëÓvûS+H¿[B9ø ¢ñcÆ*5FéØ"
+8¿"Dë°ñÿ?
ÝLB6,
Ñ0x
ð$è°½èð½- Áñø
,ñÐ$êäx!@Fðºï³i¨ë“ÔÅi)Ú
àñRX¿ñ)ہF(F "ð ïHF,ÔÛëbBø;‹T2úÓËç °½èð½B#÷ÿ°µ¯IyDÑøÔð€ë³!FðÜìp¹FðˆëF(FA¹
HIxDyDhhð¼ê(F!hoð@B‘BÐ9!`¿°½F FðÆê(F°½ °½öfX‘D÷ÿ°µ¯F!IBh!KyD{D’lÑø`hšBÑ"#ðÂëF ±(F!F"ðlï°ñÿ?Ý)hoð@B‘BѰ½J±GF(ìÑÐ÷Õùð²ê °½ðvëF(áÑóçð¨ê )hoð@B‘BåÐ9)`¿°½F(Fðzê F°½¿ˆf"е¯F@hÐøÄx± FðhíX¹`hI€iyDˆBÑ Fðfí(¿н Fðhì hX±!oð@B¡`h‘BÐ9`¿ðJê`hÐø  F½èÐ@G¿áÿÿÿF€hoð@ChšB¿2`ˆhpG€hP±€µoFFF˜G(½è€@¿ pG pGFHxDhˆhŠ`oð@Ah‹B¿Y`(¿hoð@B‘BÑ pG9`úрµoFð
ê½è€@ pG¿èðµ¯-醰>L‚FŽh |Dò\pJ±n±.GÑÍhF•Fð2ìà.>ÑÍh•àFFð(ìÔø\F(F¨FÊhðPëP³F©ñ(Ú(hoð@AˆB¿0(`ÚøhŠBÐQ`¿ðÀéÊøP °½èð½Hª«!xDÍé`@Fé÷÷ý(&ԝÙçðRê »H%IxDJKyDhzD{DhL–|DÍéTðêBöMHOô˜rKxD{DÇ÷ÞÿOðÿ0°½èð½BöBîçBö=ëçe¡?÷ÿö®&÷ÿw?÷ÿn÷ÿäX÷ÿà+÷ÿY÷ÿ€µoFøVÉÔÐø˜ !GP±Ioð@CyD	h`
hšB¿2
`€½IJyDzDhÑh"Óøœ0˜G(çÑñç‚Äc`F€hoð@ChšB¿2`ˆhpG¿ðµ¯-郰*qÚF+@ð†€ ðré(𑀁F°hoð@Bh‘B¿1`°hÜIÉøyD‹FÑø¬HhøWÀ@ñ†€éHrhxD’lh‚B@ðŒ€0F"#ðê€F(ðŽ€êHxDh€Eð—€ ð>é(ð`FØøoð@AˆB¿0ÈøHF)FÅø€ðôë(ðR)hoð@D¡BÐ9)`
ÐÙø¡BÐ9ÉøÑFHFðÌè¡Fnà‚F(FðÆèPFÙø¡BìсFcàÂH&ÂIxDÂLÂKyDh|D{DhÀM’"F}DÍéeðé °½èð½˜h(?ôv¯¹IFyDé÷˜ü(ôn¯ °½èð½Bö+&Oð%$Oð
Oð	4á0Fðpé€F(ô„¯ðCú(ð
€F|ç0F*ð
G€F(ôt¯Ï÷³ÿðé(@ðû€žHoð@BxDhh‘B¿1`šM°h}DÕø€@EtÐÛøÐXÛøêh)FðÌé(ð®€Fhoð@AˆB¿0 ` ðŽè(ðç€qhFoð@@
h‚B¿2
`qhé`Ûø,
h‚B¿P`Ûø,‚Hoð@B)axDhh‘B¿1`ha ðhè(ð…€ÀéEoð@BÙø‘B¿1ÉøÀøÙøoð@B‘BÐ9ÉøÑFHFðè F¸ñ¿Øøoð@B‘BѰ½èð½9Èø÷ÑF@Fðìï F°½èð½ÛøÐHÛøâh!FðVé(RЂFhoð@AˆB¿0Êø ,FðèÕø€(OÐqhFoð@@
h‚B¿2
`qhé`Ûø,
h‚B¿P`Ûø,)aoð@AÙøˆB¿0Éø ÅøððÔø€À饒çðHè¹(FÏ÷Šþ;Böd+
&àBöq+
&;àBö(+&%àBö-+&$1àÕø€ð.è ¹ FÏ÷oþ(@ÑBö’+&êçBö”+&%àBöŸ+&$àBö+&OðÚçðRè€F(ôf®ðæPcF ð¦ï(ô¯Böf+
&%Oð
(FÄ÷dù FÄ÷aùPFÄ÷^ùHYFK2FxD{DÇ÷–ý ¹ñô0¯=ç‚FhçÔ$Ü$÷ÿ9¦ûÿœ÷ÿ¦ûÿ
¦ûÿr
`
œô.÷ÿT÷ÿðµ¯-釰^L&–|DöÈ–S±ë‚j³*OÑ	hžh‘.Ûvà*GÑ	h‘TJKhzDh“B}Ñð<ù(ð€hoð@D¡BÐ9`¿ðòîXIyDhh¢B¿hQ`°½èð½žhF.ÛÔøÈXšF
ñ	$FYø$¨B5Ð4¦BøÑ$Yø$(F"é÷Tü((Ñ4¦BôÑðlï(BFYÑ8H&8IxD8L9KyDh|D{Dh7M’"F}DÍéeðïBö13H"3KxD{DÇ÷öü °½èð½ØÔ[ø$‘)ÓИ>BFSF.ŒÛFH­YFxDÍé ªF+Fé÷Ïú(!Ô™ F{çJzDh‘B?ô|¯HIxDJÛhyDhzDhðâîBö51àBö61H"KxD{D¿çBöü!·çBö1´çP_û¡ûÿì
¢	 	N,÷ÿ¼÷ÿ2÷ÿÃR÷ÿ&
Þ ÷ÿM¢ûÿž÷ÿS÷ÿ°÷ÿAS÷ÿ€
е¯ðï„FÀk(RÐ6IChyD	h	h‹B-ÐJhRmTYÔ\hdm´ñÿ?ؿ²ñÿ?*ÝFdFð è¤FȳÜø<!Ìø<H±hoð@B‘BÐ9`¿ðî$Ioð@CyDhhšB¿hQ`н!Ìø<hoð@B‘BæÑêçZmð€BÐБøW RÌÕÓø¬ z±“h+Û2hŒBÊÐ2;ùÑ нÓø€0‹BÁÐ+ùÑ
HxDh°ú€ð@	(´ÑíçFdFÏ÷ ý¤F(¬Ñåç¿	Œ´ðµ¯-é‚°·K{DÓøIEðâ€FˆhF(ðè€ôhoð@A hˆB¿0 `¨hoð@Bh‘BÐ9`јFðœíCF¬`°hAð܀(Àòô€¥L|DÔø¬HhøWÀ@ñրhhšF‚l(F*ðۀG(ð܀hoð@B‘BÐ9`¿ðtíhh FÔø¬‚l(F*ð܀GF(ð݀`hØø”‚l F*ð؀GF hoð@A-ðӀˆBÐ8 `¿ FðNí°h(ÀðҀÖø€oð@AØøˆB¿0Èø~HihxDhB@ð‚€îh.~Ð1hoð@@¬hB¿11`!hB¿H `(hoð@AˆBÐ8(`¿(Fðí %FiFB1Íéh¡ë€(FÒ÷…ü.F¿0hoð@AˆBÑØøoð@AˆB"ÑT³(hoð@F°BÐ8(`¿(Fðøì hSF°BSÐ8 `PÑ FðîìKà80`¿0FðæìØøoð@AˆBÜÐ8Èø¿@FðÚì,ÔÑEòÕQeàCHDIxDyDhhð´ìEò’Q"gà ˜FðèF0Fð÷^ý(jÑEò”Q"YàEò¦Q
"Uà& —ç6H6IxDyDhhð”ìEò­Q
"FàðŽí(ô$¯ðÀìSFÙøoð@AˆB¿Óø0ÉøHF°½èð½ðvíF(ô#¯Eò·Q$àðlí%çˆBÐ8 `Ñ Fð|ìEò¹Qà ðÆïF0Fð÷ýø¹EòÀQ(hoð@BBÐ8(`Ñ(FFðbì!F"HKxD{DÇ÷¬úOð	HF°½èð½FCF§æ€FçP;"÷ÿ@\Ò3÷ÿn÷ÿ­N÷ÿðµ¯MøˆF[IÐøÀyDÑø€0œEBÐÜø¬ ʳ‘h)Û2hœB8Ð29ùÑñ<ËÈøjÈø@@k(ۓ±$Qø$P넵`Rø$PµbSø$P4 BµdñÑ@F]ø‹ð½#Oðÿ<Qø#@냬`Rø#@3˜BÅøH,bòÑêçaFá³Ñø€™BúÑ6IyD	hˆBKÐK³œEHÐÜø¬ ʳ‘h)Û2hB>Ð29ùÑ1H1IxDÛhÜø yDhhð<ì-HDöá-KOô„bxD{DÇ÷úOð@F]ø‹ð½H IxDyDhhðœëæç#IyD	h‹Bô‹¯IyD	hˆBÁÑàaF!±Ñø€™BúÑàIyD	h‹BÃÑhoð@B‘BÑñX@F]ø‹ð½€FKHøX;“B?ô‚¯)`¿ð„ë@F]ø‹ð½„Yv8ª÷ÿøV‚H÷ÿÎ;÷ÿ}M÷ÿ<„°ðµ¯-éðñ×é6êŒèñpñÃjqFH
ÔëIh)F÷Ûë€Ðø(>ñÚàOð¾ñ
Ûñ(qFPø ,*Ú9ñ÷ÑOðàÐø°»ñH¿Ëñ¼ñH¿ÌñC ÜE
“ȿF ÖE+ڪë¾ñÔëŠ	ëŽÎñ!ë	ë9uhŒBE`ujEbulEdòÑñp*<Ûñ(#Oðÿ1@ø <:Øø(@b@øKöÑ-àòE+ڮë
ºñÔñpÊñëŽ	ëŠ!ë	ë9nhŒBF`njFbmlEdòÑñp*Ûñ(#Oðÿ1@ø <:¬jb@øK÷ÑÖEȿòFºñ8Ûñ#%&ë…Rø%„hLEÐ,@ð•€&ƒb€l(ZÕ5ªEíÑØøºñ
–‘Àòò€Ýø4ñ(UF
FFPø )ðë€PøK9,̿û3û"=ïÑñpàØø  
’FÝø4ë	mhºñ•,FÛœñp(0SF%FPø i³Pøk9.̿ûDûU;ñÑë	‚B8¿uE!Ó ×øà°	ñpÝé
(@ðفëáÖH*FÖIxDyDhÑøÈhðüEòÿ@òUð>¼(F‚B8¿uEÝÒØøñpºñÙø,@Àò¦€ÜEaÝñ(QF"Fj³ñÿ?jÜh“BgÑPø <09ûòñѐàðìì‚F ð`ê(ð,„¹Noð@BOðdOð~D
–Öø5h‘B¿1`Öø5Ã`&°IyD‘HòQñÅòëUûñJëÑ~ûQ)H¿IBš2ø0(ª2D>“ñcÆ*uFãØ%
)8¿%ëèC°B@ð€
ñ ë€{ðÈîvâPF!Fë€Sl³ñÿ?ÜSj‹BÑRh8ûññÑ0àPFAÔë€@h(F÷Û끀j	àF
Fñp(ç–Fñp(ç ñ(RFQø <+Ú:ñ÷Ñ!à	h)H¿IB(OðCH¿@BˆBȿF"’ñ%F늃EÒYF%FQø+BûõùÓ(F”ð쀳FºñÍé	PÛ¨¤FñHOðÿ2[FTFSøk<
`Aø@lñöÑñ(	ñ˜F(]ÑšHFQFdFPø <9@ø+ûóFöÑ&ºñbڛàðìFð¢ëRHDöðqRL@òíBxD|D#FÆ÷‰ÿ(FðìðìFLHDöRa@òÅBxD#FÆ÷zÿ(FðþëEò8Oô£eã˜F(qШñ(	ñºñÕhàËñ
! êàpð¬í(ð7ƒ¨ëi!êá|ë“1DñƒÐø€…ádFºñKÔš¨ÌFQFë9^hZbûö2FöÑ&áFºñ9Û¨!(0RFPø <+¿`:ñöÑÍéž
ñ 	AFh"HF
ðhí(˜Àjޱ	ñ(RFj³ñÿ?.ÜhƒB+ÑQø <1:ûðñÑàQF	ëSl³ñÿ?ÜSjƒBÑRh9ûðñÑ™ F*F
ð>íà¿F¸U6UŽ÷ÿíD÷ÿiH÷ÿ“B÷ÿ˜ñ(Íé
˜š˜›Íø°ðÔû©@Fh"
ðí×øà°ñpÝø4Ýé
˜±˜F(@ð¼€QFH3ÔëIh)F÷Û뀀jºñ+Ú5àºñXÛØøQFÀjFë^l.*Õ^j–B'Ñ[h9ûòòÑ(hQFÀjëSl³ñÿ?ÍÜSjƒBÊÑRh9ûðñÑ4à ºñ
Ûñ(RFQø <+cÚ:ñ÷Ñ!^àñ(RFj³ñÿ?¬ÜhƒB©ÑQø <1:ûðñÑ(FRFPø(Éjj³ñÿ?™Üh‹B–ÑPø <0:ûññѻñÐðÖêF ñpññ( FSFþ÷àø(FðÎêØé!ñëŠÒj˜BÒPøkrC˜BúÓ F
ð|ì»ñ`Ðð°êF ñpññ( FSFþ÷ºø(FMà	h)H¿IB(H¿@BˆBÝ@Fð”ú0ðâ(FðŽú0ðálh»ñÐð†êF ñpññ( FSFþ÷ø(Fñpð|ê*Fñ(Øøñ5è"ñ("F3FÍøðÝú»ñ
Ðð\êF  F)F2FSFþ÷køHFðXê	˜ðê ‡áñRX¿ñ)	ÛÍé
@F "âF
ðìÔFÝé

™)Àò€ë
ñ ëJ3D5ñ›{“UõÓÝø,°(
›ð|hoð@BËøOðdÓøŒ
‘h‘B¿1`ÓøŒËø JFHòQÅòëRûó^ëÓvû#+H¿[B™1øPë8ñcÆ)2FåØ!
+8¿!D€D¹ñÿ?ÝEBñ
ž-јøðì(@Ñ3à-!Àñø

ž-ðÐ%êåy!HFðžë ³i©ë“ÔÆiàñRX¿ñ)ÛÓF‚F0F "
ð„ëPFÚF-ÛÝø,°ë	jBø;‹T2úÓ
žX¹Dö:qáÝø,°
ñ 
›}çÝø,°
žÐø€oð@BËøOðdÖøth‘B¿1`ÖøtËø "FHòQÅòëRûó^ëÓvû#+H¿[B™1øP(©D8ñcÆ)2FåØ!
+8¿!D(©´ñÿ?ëÝEB6-
Ñ0xð„ë2à-!Àñø
-ôÐ%êåy!HFðë(ð•€i©ë“ÔÄiàñRX¿ñ)ÛÓF‚F F "
ðëPFÚF-tÛÝø,°ë	jBø;‹T2úÓ
ž(nЁhoð@CËø ÖøhšB¿2`Öø
š#Ëø$ëD!ñ/XF÷÷û(TÐFÛøoð@D BÐ8Ëø¿XF
ð*î3H)F"xD@kè÷ý(h BÑDöSq	à8DöSq(`Ñ(FF
ðî!F(H@òáB(KxD{DÆ÷\üPFðàèEòá@òUðÒèF!H"K!FxD*F{DÆ÷Jü0FðÎèOðÿ0C°½è½èð@°pGÝø,°
ž“çDö(qÒçDöDqàDöNqàEòî@ò.UÖçEò÷@ò/UÑçDö0qàÝø,°Dö0qÛøoð@BBµÐ8]FËø°ѪçD[0$÷ÿ
B÷ÿ+÷ÿéA÷ÿðµ¯-éFFFð€è€F hoð@AˆB¿0 `(F
ð$î(_ÐF4HxDh„BJÐhh2IyD	hˆB¿@mð€P@Ñ F)FðÆèF(h.@Ðoð@JPEÐ8(`¿(F
ð€íHF1F"è÷iü0hPEÑDöŽq	à8DöŽq0`Ñ0F
F
ðlí)FH@òåBKxD{DÆ÷µû hoð@AˆBÐ8 `¿ F
ðXí@F½è½èð@
ðϼ F)FðŽèF(h.¾Ñoð@AˆBÑDö‰qÖçDö‡qÓç8Dö‰q.F(`ÍÑÇçà÷<øz+÷ÿ¿@÷ÿðµ¯MøhIkëÑr"ðËÛëb¼ñÛ#ëƒë¬jrjªbtbrh¬hª`t`ªl²ñÿ?
Ürl*Õ39œEèÑ ]ø‹ð½!H!IxDyDhÑøÀ@h
ðÊïF hoð@H!F@E¿0 `0F"è÷ÚûHDöÂqK@òéBxD{DÆ÷4û h@EÐ8 `¿ F
ðÚì(F
ð®ï
ð¤ïF
H
KDò?axD@ò¯2{DÆ÷û F
ðžïOðÿ0]ø‹ð½¿ª÷K`<÷ÿ½?÷ÿ#÷ÿ‹?÷ÿðµ¯-鉰×éžFziFÓø>ñÑø€Ùø`ÍéÂѸñ¨¿¼ñݐE¿”E3Ð.-Û F)F
ð(éÝéED>DõÑ"à.Íø€Û×øÀ	ñ
ñ	ññ®ñÍéŠYF˜KFÍé(F"Fÿ÷¸ÿÝé>D˜DíÑ	°½èð½rC F)F	°½è½èð@
ðۻðµ¯-郰×é\Fh+Òø€Ñ.Û FaF*F
ðÜè×øÀDD>õÑà.ۣñ
ññ	 FIFZFSFÍé\ÿ÷Öÿ×øÀDD>òѰ½èð½е¯„°F@hÐøÄ(jÑ F
ð(ªðôè hoð@AˆB¿0 `7HáhxDhBÐñ ðéàajBÑh"bboð@B‘BÐ9`¿
ðòë i(¿ðöè hoð@AˆB¿8 `Ýé!˜ðÊèàhX±!oð@Bá`h‘BÐ9`¿
ðÔë iX±!oð@B!ah‘BÐ9`¿
ðÆë`iX±!oð@Baah‘BÐ9`¿
ð¸ë`hÐø  FˆG°н F
ð®î(Ñ`hI€iyDˆBô‰¯ F
ðªî(ìтçÿÿÿ´ôðµ¯-é‚°_MF@h}D‚l0FÕøÀ*gАG‚F(hÐÚøÕø0‚lPF*hАGF(iÐÚøoð@AˆBÐ8Êø¿PF
ðnë`hÕø`‚l F*[АG‚F(\Ð hoð@A¨FˆBÐ8 `¿ F
ðXëCHiF"1xD$Èò–€k”Ñ÷¾ú(HÐF 
ðŒë(]ÐFÆé¥1FØø€
ðrî(ZÐ1hoð@B‘BÐ91`а½èð½F0F
ð(ë F°½èð½
ð
ì‚F(–ÑCö™@òi)Oð
$à
ðüëF(•ÑCö›@òi)$à
ðòë‚F(¢ÑCöž@òi)Oð
àCö©@òj)&PFÂ÷	ý FÂ÷ý0FÂ÷ýHAFKJFxD{DÆ÷;ù °½èð½Cö³@òi)&,FâçCö»@òi)Oð
Ûç@HÍ8÷ÿË;÷ÿžUðµ¯Mø½DNAh~DŠlÖøÀ*NАGF(OÐhhÖø0‚l(F*LАGF(MÐ(hoð@AˆBÐ8(`¿(F
ð¨ê`hÖø`‚l F*>АGF(?Ð hoð@AˆBÐ8 `¿ F
ð’ê 
ðØ꘳Å`FÖø„!F
ðÀíx³!hoð@B‘BÐ9!`Ð]ø»ð½F F
ðxê(F]ø»ð½
ðZëF(¯ÑOôhV%à
ðPëF(±ÑCö&	à
ðHëF(¿ÑCö&àCö&$àCö
&%(FÂ÷bü FÂ÷_üH1FK@òm"xD{DÆ÷–ø ]ø»ð½¬Fy9÷ÿ:÷ÿðµ¯Mø½FÀhFF(±)F G±]ø»ð½0i±)F G(öÑpi±)F G(ðÑpj8±)F G(¿ ]ø»ð½ ]ø»ð½¿°µ¯,Ioð@CyDhÁhÄ`"hšB¿2"`)¿
hšB,Ñ"hoð@CišBa¿2"`)¿
hšB'Ñ"hoð@CAišBDa¿2"`)¿
hšB"ÑAja±"Bboð@BhBÐ8`¿F
ðÒé °½:
`ÏÑFF
ðÊé(FÉç:
`ÔÑFF
ðÀé(FÎç:
`ÙÑFF
ð¸é FÓç¿¶ððµ¯-鍰
FøVßNF~DÉñCÐø˜ !G€F(ð¤ÚHÙIxDyD‘Ðø 	oÚøÈéoð@AˆBÑÈéªàBÈø ŠBÊø ÑÈø àoð@BÈø ‘BÊø¿0Êø Èø$Õø°ÍéÍé	òÜ@ò4Pö̱»ñò4–ßèð7"- F
ðœëÖøF FÊh
ðÆê(
ðF=+à»ñлñ@ðhi–Õé–Íé
–9àÕé– FÍé
–
ðxëF- Ú.àhiÕé– FÍé
–
ðlë!àÕø FÍø(
ðdëFÖø4 FÊh
ðŒê(ðȀF=-Û˜ÐøÜ FÊh
ð~ê(ðŠ€h(€òŠ€0Fç÷HÿF0Ñ
ðžé(@ð§€˜1IyD	hˆBЎJzDhB¿PEÐ
ð‚éF0
Ñ
ð†é(@ðì€Oðÿ6à&à@°ú€ðF	Ùøoð@AˆB¿0ÉøØøhŠBÐQ`¿
ð¾èØøÑEÈøLPÈøÑ™ÉoˆB
Ññ HF*F
ð¼í0UÐØø$h±hÕØø8xO)Ñ@x°ú€ðF	à&àÚøoð@AÈø$ ˆB¿0ÊøhæÔ™ÈøP`ˆj(¿ñ_ê€p@ðœ€ ÈøT@F
°½èð½
ðé(@ð‚€PHª
«!xDÍé° Fç÷±ü(ÔÝé
–fçBö–1SàFIyD
hñhÒøœ0"˜G€F(ô¹®[àBöA@òaNHOKxD{DCàBö£1:à
ðîè(iÑ;HOð;I&xD:J;KyDhzD{Dh9MÍøÀ}DÍée
ð èBöŠ1à
ðÒè(PÑ2H$2M»ñxD1K2I}Dh{DyDh0N¸¿$/J~DèPzD¨¿+F
ð€èBö¬1+H@ò]*KxD{DÅ÷WþØøoð@AˆBÐ8Èø¿@F	ðøïOð@F
°½èð½Bö‘1àçBö¥1Ýç¿lD*RÔïÈl!"ç÷ÍþBöçA@òu‰çBöˆ1ÉçOô.QÆç˜íÇ3÷ÿŽîˆî*íâ÷ÿ]3÷ÿB'÷ÿ…ûÿòì¢÷ÿ'÷ÿ¤÷ÿ̈́ûÿ3÷ÿ7#÷ÿ6÷ÿÁ#÷ÿ6÷ÿAk)²¿ ÀkhpG°µ¯FF
ðòꨱFhh!F€kBh(FG!hoð@B‘BÐ9!`¿°½F F	ðŒï(F°½ °½ðµ¯-éã°çL€F|DàmˆBð‹€Øø4 FFðBú(ð¿€àM}D.h°B𾀂h*@ðƀÐéšoð@AÙø ŠB¿2Éø Úø ŠB¿QÊøhoð@B‘BÐ9`¿	ðNïÎHxDÐø°ÙEcÐÌHxDhE¿±E\ÐHF	ðÞï(ñ¤€([Ð.¨h!!–	ðØë j(@ðž€ÁIØøyD-‘#•Ñø€ Bð܀Ðø¬0+ðр™h)Û3h–Bðπ39øÑØø `Øø4ØéâØøDÀ(Íø”
õyÍéH†Lۼñ9Ð&Rø&P	ë†\ø&@^ø&06°B‹`bŒdñÑ9àØøoð@AˆB¿0Èø@Fc°½èð½©ë°ú€ð@	(£ÑØøQFh@FG(ð²€FØøBi@FG(𮀀Fð¾#Oðÿ<	ëƒRø#P^ø#@3˜B´`ÆøH5bòÑ &Éà@ò›BöÒaRàFH‚IxDyDhh	ðŽîBöéa7àF*!Û|H"|IxDyDhh	ðï(àOôÏrBö÷a8àØø4(?÷]¯àl!"$ç÷týCö[q@òÓ"Oðð°½*ÔlH*lMxDlKmI}Dh{DyDh¿+F	ðÞîBöÚa"hoð@CšBÐ: F"`ÑF	ð`î!F@ò›Oð	Oð
^H_KxD{DÅ÷¤üOðð¢½Fé³Ñø€‘BúÑ)hˆEKÐb³BHÐÐø¬0F˳™h)Û3h–B=Ð39ùÑNKOI{DyDhÓhÂh0h	ðšîCösq@òÖ"$OððS½@ò¡BöqÃçOôÑrBö$q¾çBHBIxDyDhh	ðøíãç?IyD	hŠBôô®!™ˆEF
Ð!±Ñø€‘BúÑà8IyD	hŠBÄÑØøoð@AÍø”ñX	ˆB¿0ÈøÍø˜€/IÚøyDÙé#Íé.#	h+‘ˆBÍø¤Íø Íøˆ€Íø€°@ð£ƒÚøoð@AOðVFˆB¿0Êø ,!Oðÿ2$ '‘*–.©(’ë‚‘ñH‚F,˜س§à¿úM„ëHë@ët?ê.÷öÿâêUûöÿšê‹ûÿ–2÷ÿMþöÿn1÷ÿ2÷ÿéB-÷ÿîè`ôöÿòèÒèªè*hD)`l
ñ*žDF)_ՂF,˜(lÑÖé+š‘BnуE€ò½ƒðhPø+€ñØøoð@AˆB¿0Èø,¿ hoð@AˆBÑ@F
ðrê(³ÒHØøxDhBSÑØø(ò€ðØøÀñHCA\Ð	늉hêàraà8 `¿ F	ð8í@F
ðNê(ÙÑ#˜ÐøÈEqÑ'™.¨Ýé)–"ë1'‘‚b"‚`Oðÿ2‚d	à'˜(@ðµ‚/˜hD/ '
ñDF‚F,˜(’Ð,™0FˆG€F(¢Ñ@ãƒE€òNƒë‹Ðø€Žç@F	ð´F	ð¸ï!hoð@B‘B«Ð9!`¨сF F	ðììHFÝø¤ ç	ðŽí(@ðª‚	늁hOðÿ0
F-˜Dò³@ò29õpñs‚ŠB€òp‚Ýø¤	늁jQC(š²ñÿ??÷<¯/šD/‘:ç@F	ð~ïuçØø‚l-˜*ÐøÔ@FðҁGF(𵂠˜…BÐ{HxDh…B¿MEÐ(F	ð@í(ժ⠘(°ú€ð@	 ³sHihxDhB@ðف¨h(òìðéhÀñûöpÑ	ð*í(@ð„Oðÿ6(hoð@A–ˆBÐ8(`Ñ
à(hoð@AˆBÑ à8(`OðÑ(F	ðbìØø‚l-˜*Ðøä@Fð~GF(ðe‚ ˜…BÐPHxDh…B¿MEÐ(F	ðæì(ÕZ⠘(°ú€ð@	 ³GHihxDhB@𚁨h(ò­ðéhÀñHC0Ñ	ðÎì(@ð)„Oðÿ0(hoð@AˆBÐ8(`Ñ
à(hoð@AˆBÑ à8(`OðÑ(F	ðìØø‚l-˜*Ðøà@Fð*GF(ð‚ ˜…BÐ$HxDh…B¿MEÐ(F	ðŠì(Õ
⠘(°ú€ð@	³HihxDhB@ðZ¨h(òmðéhÀñHCAÑ	ðtì(@ðԃOðÿ0oð@A(hˆB#Ð8(` Ñà(hoð@AˆBÑ ࿌çæ
æPåTåšäžä8(`OðÑ(F	ðžëØø‚l-˜*ÐøÔ@FðȀGF(ð·(hoð@AˆBÐ8(`¿(F	ð„ëØø‚l-˜*Ðøä@F𵀐GF(𣁠hoð@AˆBÐ8 `¿ F	ðjëØø‚l-˜*Ðøà@F𢀐G(ðhoð@B‘BÐ9`ѐ˜	ðPë˜)™HE늓hÒø(lЙš)ð(Èà !šMEвñÿ?ݚB¨¿àF(¿ZàD"êârLEÍéÆ	Ð˜Ýø¤°ñÿ?ݘB¸¿F
à(Oðÿ0¿FÝø¤àD êàsœFF Fð$î™ûóûü'ûò.®ë…™œB©dªb¿0(š êàp¨`²ñÿ?Ý›˜l`D˜dà/˜`D/)'™*žX¿
F1
ñ'‘DFå	ðÆëF(ô-®àà	ðÀëF(ô®äà	ð¸ëF(ôծèà	ð²ëF(ô7¯ìà	ðªëF(ôJ¯ëà	ð¤ë(ô]¯ëà(F	ðlí(?ô.®F	ðníF hoð@AˆB?ô"®8 `¿ F	ð¢êæ(F	ð^íFæ(F	ðPí(?ôm®F	ðRíoð@A hˆBÐ8 `¿ F	ð†ê˜Xæ(F	ðBíTæ(F	ð6í(?ô¬®F	ð8íoð@A hˆBÐ8 `¿ F	ðlꘘæ(F	ð&í”æ-˜Dò)D@òu9œ0åIyD
hhhRFþ÷Ÿü	ð&íFàHáK!FxDJF{DÅ÷žø0F	ð"í%@òî"Dò#Ýé$©Ýø˜°*ž0hoð@C˜B@ðWaá%@òí"DòíçÑIyD	hˆB?ôW¬PF	ðòì(ð6‚F@ho,‘)Fð8‚Ýø¤Oðÿ;ÿ÷Q¼ÅHRF-™xDhÑøÈhþ÷Vü	ðÜìFÀHÀKDòíxDOôNr{DÅ÷Sø F	ðÖì%@ò2Dòسç%@òú"Dòo­ç@òú"Dòq¨ç%@òû"Dò…¢ç@òû"Dò‡ç%Oô?rDò›—çOô?rDò’ç%@òþ"Dò±Œç%@òÿ"Dò¾†ç%Oô@rDòË€ç	ðlê*žX±IyD	h	hÍ÷Õù(ðä	ðÖé*ž0hoð@AˆBÐ80`¿0F	ðªé-˜"Ýé$©Ðø€ihÝø˜°BeÐÑø¬ *ZБh)Û2hƒBZÐ29ùÑ.m.«Oð'Ë@òXÍéÆ.®Íé\ñnF\ø[¾ñFø[øÑðÊþ(ð=€F!˜€E*Ð-˜Ào(ðBØø ‚Bð¡€Òø¬0+ðH™h)Û3h†Bð”€39øÑÑKÑI{DÒhyDhÃh0h	ð¾éFF%OôDrDòF]à€F}àÑø€BÐ)ùѸIyD	hˆB§ѻñðç€.«ÕøPÀ'
ñXÛé1nˈè`@.®@òXÍødÀñnF\ø[¾ñFø[øÑðkþ(ðـ€F#˜h€Eðº€-˜Ào(ð؀Øø ‚BCÐÒø¬0+ðမh)Û3h†B4Ð39ùќKI{DÒhyDhÃh0h	ð^éFF%@ò2Dò F0hoð@C˜BÐ80`Ñ0F.FF
F	ðÚè)F5F"F-¿(hoð@C˜BmÑDFŽHKxD{DÄ÷ÿOð»ñÐÛøoð@AˆBÐ8Ëø¿XF	ð¶è,¿ hoð@AˆB>ѸñDйñ¿Ùøoð@AˆBѺñ¿Úøoð@AˆBÑ@Fc°½èð½¿hâô÷ÿ‘*÷ÿFáÒá`÷ÿû)÷ÿhà8Éø¿HF	ð~èØç8Êø¿PF	ðvè@Fc°½èð½8 `¿ F	ðjè¸ñºÑ@òŸBöqÿ÷	º8(`ŽÑ(FF
F	ðZè)F"F†ç€FÛøoð@AˆB‘їçAHBIxDBJyDhzDh	ð´èOðDò	OôCrnçDò@ò2içDò<OôDrdç7H7IxDyDhh	ðè;ç7H8IxDyDhh	ð
èÓæFi±Ñø€BúÑàFy±Ñø€BúÑÝø˜°Jç(IÝø˜°yD	hˆB?ôC¯ç(IÝø˜°yD	hˆB?ô:¯§æ@òú"Dòuµå@òû"Dò‹°åOô?rDò¡«åCöÔq@òë"$Ýé$©Ýø˜°ç%@òë"CöÖqOðÝé$©Ýø˜°0hoð@C˜Bôó®ýæ%@òë"Cöýq Fˆå¿RßHކ$÷ÿ§êöÿ&ݘèöÿôܘÞÈ"÷ÿ݆èöÿâÜV߆#÷ÿþöÿ‰'÷ÿðµ¯-郰F*ð€hˆFoð@A“FˆB¿0Èø0k(@ð9qk@Fð]ú(ðBFÞHxDÐøLEðA¢h*@ðLÔé¢oð@@oð@EÚøB¿1ÊøhB¿H` h’¨BÐ8 `¿ FðfïØø¨BÐ8Èø¿@FðZïÅHxDh‚EBÐÄIyD	hŠE¿ÊE;ÐPFðìï(ñ±hسJh0FYFG(ðFphMEÐé
@Ð)¿Jh*RÑ(¿Àh(@ð€™0Fí÷dÿF(KÑBöÐq@ò­ªàâHrhxDâIhyDÒhhðˆïOðÿ0°½èð½ªë°ú€ð@	±h(ÃÑÝø€0FiZFAF˜G(ðhoð@B‘B:Ñ% Uá)¿Jh*9Ñ™(¿Àh(@ð‰€0Fí÷#ÿF˜»Böéq@ò¯MFià™0FGF(³аh!F*Fƒh0F˜G(ðހ!hoð@F±BÐ9!`рF FðÆî@Fh±B@ðá9`¿ð¼î%á™0FGF(ËИh¬BðꀴHxDÀo(ðǀÔøEð߀Üø¬0+ðƀ™h)Û3h‚BðҀ39øѫJ«IzDÃhyDhÜø 0hðøîBöëq hoð@BBÐ8 `Ñ FFðzî!F@ò¯Ýø€HKxD{DÄ÷ÁüOðÿ0Éà™0Fí÷6þF(ô‰¯;ç0Fí÷.þF(©ÑtçH%JxDzDÐø°Ðk"æ÷?ýBöyqOôÓràBö‹qOôÔr%Oð
Îç…H†IxDyDhhð$î˜OôÔrBö¢qh+à*ÛqH"qIxDyDhhðšîàBö°qOôÕràBöºq@ò«%¦ç*ÔgH*gMxDgKhI}Dh{DyDh¿+Fð~îOôÔrBö“qOð
% hoð@C˜B?ô‹¯8 `ô‡¯ FFFðøí2F!F~çÝø€@ò­BöÒq hoð@C˜B?ôs¯æçCò@ò±%kçOHOIxDyDhhðÂíOçaFY±Ñø€BúÑ࿸ÛbÛ\ÛEIyD	hˆBô1¯°h!FZFÃh0F˜G(VÐ!hoð@F±BÐ9!`ÑF Fð°í(Fšhh±BÐ9`Ñð¦í Ýø€ºñ¿Úøoð@B‘BÑ-¿)hoð@B‘BѸñ¿Øøoð@B‘BѰ½èð½9ÊøçÑFPFð~í Fáç9)`åÑF(Fðtí Fßç9ÈøäÑF@Fðjí F°½èð½Böìq hoð@BBôܮâæôÛÝ÷ÿÎ-¨;„÷ÿ×"÷ÿÚ{êöÿÚÙËpûÿÖ!÷ÿíöÿv.‚ØôãöÿjØÎÙþ÷ÿ0ÙZæöÿðµ¯-郰F@h‹FøW@Ô ðní(ð-‚"hoð@AŠB¿Q!`Ä`à hoð@AˆB¿0 `”+êëpðî(ðՁÝøÀF»ñÛãH"oð@CxDÐøPhžB¿6`ÐøPîhFø"2“EòÑÚH•xDh(F¤Eð¼Üøoð@@B¿HÌøÜø)Àò¡€ $oð@HOð	&Oð
à˜(QÐOð
Üø	ñ	4E}Úë‰0FÎh1hAE¿11`(¿hAEѽM}Dèm†BàмHqhxDhBÐ0F	ð¾éP¹ßà9`ìÑð ìÝøÀççOð
!F´ñÿ?¨hؿÝøB"Òêh3hRø!CE¿Z2`êhBø!`hAE·Ð9`´Ñð|ìÝø/çÜøAð3ëOð
 ¢ç Fðºï(ð}F˜)F2F	ð@è)hAEÐ9)`Ñ)FFFðVì(FÝøÀ(õ†¯Cö^j@ò¶(OðdFOð	eF7áºúŠñÜøOêQoð@AˆBÑà&Oð$oð@AˆBÐ8ÌøиñЫëðvïF°¹CöŽj@òº(ïà`Fð인ñìѰHoð@BxDh!h‘B¿hH `(Fððï(ð送F ðJì(ðë€ÀéIÝé5)hoð@B‘B	Ð9)`ÑF(FFðîë+F F+¿hoð@B‘B
Ñ.¿1hoð@B‘BѰ½èð½9`ñÑFFðÒë Fëç91`ïÑF0FðÊë F°½èð½ ð
ì(ðڀ€LƒFoð@B|DÔø¸h‘B¿1`Ôø¸zIËøphyD
hAh‘B@ð̀hoð@B‘BÐ1`ph(ð¾€iJ
ÔOöÿsÁó‚Àò)¿Oöÿs)¿ÿ#à#ÐøÀ!FËøÔøoð@Dh¢B¿2`ÑøñËøXF!õ÷Åø(ðœ€FÛøoð@H@EÐ8Ëø¿XFð`ëèk!F"Oðæ÷Gú h@EÑCöKj@òµ(
à8 `Ñ FðJëCöKj@òµ(,FOð	4àCöÜZ@ò®(ðæ+zÖ^8× CöxZ@ò§(&$à5H5IxDyDhhðëCö¨Z@ò«(&%F.àCö“j@òº(OðOð	àCö•j@òº(Oð FÀ÷ýXFÀ÷ýHFÀ÷ý(HQF(KBFxD{DÄ÷Mù› -ôü®	ç CöfZ@ò¥(&%$Oð¤çCö^j@ò¶(àCö3j@òµ(OðŠçCö;j	àJzDh‘BÑÑjˆG3çCöFj@òµ(Oð	,F¼ç	JzDh‘BîÐaið
ï!çþÒ(àöÿ(`ԒÒÓÖÔøßöÿï÷ÿ„°ðµ¯-遰FÔHÇé‘xDÇé#Ðø€ÁEÐøop±ÏHxD
àØøoð@B‘B¿Ðø€HÈøbáÈHxDhoð@A hˆB¿0 ` ðÈê(ð°FØøoð@BOðB¿0Èø»HÆø€xDÐøh“B¿Z
`ÐøÆé1FÐø€"þ÷©ø‚F(ð™ÛH"ÊøñxDAoØøÊøoð@AˆB¿0ÈøPF@øX/2hŠBÐQ1`ÑF0Fð8ê FYFh"ðÊî¹ñÐ	ñPè/Q@è+øÑ*@ópÙøÁiHFˆG(ðbÚøÀoð@E>o
hªBÐ:
`ÑFFðê FÊøÀ	ñ ÙøT,"ÊøT
ñ ð˜îØø
ñ€Ûø¨BÊø4`Êé¿0Èø ÙøLÊøD `ó_
ñ 
ñ`ÊøLë†ÊéRˆB	ÒFh+Õ2ŠBùÓàÊøDë†	Úø,OðMEÊø(wÒoð@Hà5Êø(@MEoÒ(h\Fðí(ðŸ€,ƒF¿ h@E-ÑÚø(ðþì(ð—€YFFð€í(ðœ€F h@EÐ8 `¿ FðšéHqhxDhBѰh(<ØðñhÀñûô`#Ð0h@EÀÐ(à8 `¿ Fð~éÚø(ðÊì(ÌÑbà0Fð,ìp±Fð0ì!FFh@EàÐ8`¿FðféÙçð
ê(iÑOðÿ40h@E–Ð80`¿0FðVéç0FðìFÄçÚø×é!Êé1!oð@AˆBÑÐFà0\FÐFÊøoð@AˆBÐ8Êø¿PFð4é£F»ñ¿Ûøoð@AˆBÑ@F°½è½èð@°pG8Ëø¿XFðéïçDös@òBàDö@òB\F8H8KxD{DÃ÷[ÿ/àDö@òB hoð@C˜BÑàèÑäÑÊÑö%Dö„@òB4F hoð@C˜B	Ð8 `Ñ FFFðäè*F!FHKxD{DÃ÷.ÿºñ	Ð\FÚøOðoð@AˆB•ћçOð™çDö~@òõ2OðOð
 hoð@C˜BÒÑÛçDö‰@òõ2ÆçDö¨@òú2$£ç	ÑÙøoð@AˆB¿0Éø„æDöŸî÷\ù»ïöÿ±÷ÿš3ðöÿ÷ÿЀµoFý÷âþˆ±	I	JyDzD	hSoƒ`oð@C
hÀøÀšB¿2
`!e€½ÂÍ0ðµ¯Mø½)gÐQMoð@F}D+hK`h´B¿f`Ö¿k.dÑL¿Äk$Ìað¿l$bôŒ¿Dl$LbRL¿‚k"Šaj
`BkJaÂjÊ`‚jŠ`k
aoð@Bh”B¿c`Khh”BÐb`Ð*hH`BÐ ]ø»ð½FFFð,è F1F*hH`BðÑhoð@C˜BÐ8`Ð H`]ø»ð½FFðè!F H`]ø»ð½HIxDyDhhðîïOðÿ0]ø»ð½HFKxD{DÐø´ XkF"å÷ãþHCò·AKOôrxD{DÃ÷=þ`hh±hoð@C!FšBÐ:`ÑðÞï!F H`Oðÿ0]ø»ð½ÐÍ|äöÿ†Í!ò.xêöÿÏ÷ÿý÷,¼ðµ¯Mø½¸°*2ÚF+GÑ© Fü÷|û(LÐek¬Fh" FðHì-Û˜Àjë…Jl²ñÿ?
ÜJj‚BÑIh=ûðñÑ'HxDà&HxDhoð@Bh‘B¿1`8°]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEðêï 8°]ø»ð½˜h(´ÐIFyDå÷fû(­Ñ	àHCök!K@òs"xD{DÃ÷±ý 8°]ø»ð½¾ËvâöÿÙîöÿ6×öÿ›cûÿ¯îöÿèËæËkÝöÿ·÷ÿðµ¯Mø½¸°*4ÚF+IÑ© Fü÷üú(NÐek¬Fh" FðÈë-Û˜!Àj끓l³ñÿ?ܓjƒBђh1BûððÑ'HxDà&HxDhoð@Bh‘B¿1`8°]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEðhï 8°]ø»ð½˜h(²ÐIFyDå÷äú(«Ñ	àHCöÒ!K@òy"xD{DÃ÷/ý 8°]ø»ð½ºÊráöÿŸøöÿ2Ööÿ—bûÿuøöÿäÊâÊ¥	÷ÿ³÷ÿðµ¯Mø¸°*VڀF+kÑñ<ØøLØø @Øø40 ðx&Í+Íé„#ۍ±
ñx Qø `뀦`Rø `¦bUø `0ƒB¦dñÑà¨Fñ(Oðÿ0Qøk<Eø lRøk(bEøkôÑØø,Lð8ØøP/JÍ騑zD©ðúð­©h"(Fðë@F)Fðû`³8°]ø‹ð½H&IxDLKyDh|D{DhM’"F}DÍéeðÄî 8°]ø‹ð½˜h(ÐIFyDå÷@ú(ô‰¯àCöK1@ò"àCöV1@ò†"HKxD{DÃ÷…ü 8°]ø‹ð½rÉ*àöÿÂaûÿêÔöÿOaûÿ˜aûÿbûÿ•Ööÿ_÷ÿðµ¯MøҰ*VڀF+kÑñ<ØøLØø @Øø40 ðx&Í+Íé8„#ۍ±
ñà Qø `뀦`Rø `¦bUø `0ƒB¦dñÑà8¨Fñ(Oðÿ0Qøk<Eø lRøk(bEøkôÑØø,LðXØøP/JÍ騑zD8©ð\ùðv­©h"(Fð`ê@F)FðÙú`³R°]ø‹ð½H&IxDLKyDh|D{DhM’"F}DÍéeðî R°]ø‹ð½˜h(ÐIFyDå÷˜ù(ô‰¯àCöÅ1@ò"àCöÐ1@ò’"HKxD{DÃ÷Ýû R°]ø‹ð½"ÈÚÞöÿ§ÔöÿšÓöÿÿ_ûÿ}Ôöÿµ`ûÿzóöÿ÷ÿðµ¯Mø½„°*Ú{»#H$JxDzDÐø”Ðk"å÷Pü HCö&A K"xD{DÃ÷«û °]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEð²í °]ø»ð½˜h(ÌÐ	IFyDå÷.ù(ÅÑ×ç¿NÇÞöÿc_ûÿÆÒöÿ+_ûÿ9_ûÿðÊ)Tßöÿ«÷ÿðµ¯-釰EL |DöȐC±ë‚
º±*;јh(Ûdà*5Ñ=H"Ôø”xDÀkå÷êû:HCö«A:K"xD{D?àÓø°’»ñ۠F FØøÈX™F	ñ&FTø&¨B4Ð6³EøÑ&Tø&(F"å÷aú('Ñ6³EôÑðxíšè»%H&%IxD%L&KyDh|D{Dh$M’"F}DÍéeð,íCö‚A H" KxD{DÃ÷û °½èð½ÙÔZø&(ÕК«ñKFDF(œÛH­QFxDÍé ªF+Få÷Þø°ñÿ?ŽÜCöwAÖçCörAÓç¿D^ûÿø(Wþöÿß÷ÿBÆúÜöÿi^ûÿºÑöÿ.÷ÿÕýöÿ]÷ÿðµ¯-é¹°
Fh!F’F8ðé8i,7×écÕø€6“(ÛñH"Pø")@ñ2”B÷Ñ Fðšì(ðƒF,Û5–ñOð	Vø)ð’ï(ðù€ë‰	ñ	LEÈ`ñÑ5žà Fð|ìƒF(ðç€5•šøØø8€œMf(}D
ÑÕøP¥oð@AÚøˆBÐõªa	àÕøø£oð@AÚøˆBÐõ~q0ÊøÑø 0FðZï(ðF@Fðâî(ðހ€F ðDì(ðހÛøFoð@@"B¿1ËøÆé¹Oð	Æø€ÚøB¿HÊøÆø 1Fhoù÷*þ(ð@€F0h5oð@IHEÐ80`¿0FðÊëØøHE
ÐAoð@B‘BÈøÐ(Èø¿@Fð¸ëÚøoð@AˆBÐ8Êø¿PFð¬ëÝøиñð®€(hÝé62FCm@Fì÷ãü(XÐ!FJF#ì÷Úÿ(QԕèñmFÍé0DX$2–\øk<EøkùÑ
ñXh$MFUøk<LøkùÑü÷ø°ñÿ?3ÝÛøoð@AˆBÐ8Ëø¿XFðjë¸ñ¿Øøoð@AˆBÑ9°½èð½8Èø÷Ñ@F9°½è½èð@ð€º-H.IxDyDhhð¸ëOðOðÝøàÙø(¿hoð@B‘BÑ »ñÉé¼ÑÈç9`¿ð.ë »ñÉé°ѼçBöOð	àBöŸ4Oð&àBö¡&àBö¯Oð4HF5¿÷ý@F¿÷ý0F¿÷ýH@òK4™xD{DÃ÷PùOðºñô@¯²çOð±çDÄ÷÷ÿlâÞöÿõ÷ÿðµ¯Mø½š°*JChzDÒø€ÀcEÐÓø¬@Œ±£h+Û4"hbEÐ4;ùÑOð$àÓø€0cEÐ+ùÑJzDh”EðÑÐé1NmEkÑéÑé#ÍéæñÍéTX$iF^ø[<Aø[ùÑaFþ÷ûÿ±°]ø»ð½F ¿÷²ü	HDö>1	K@òMBxD{DÃ÷èø F°]ø»ð½¿âdÂ#÷öÿ%÷ÿðµ¯-éš°jÐø4ÐéƒÐøD9ñÍé%ۼñÐ$îFSø$Pë„\ø$`Xø$ 4¡EŠ`bŽdñÑàmFñ(Oðÿ<Xø[¹ñ	SøëÄø ÀDø \DøëòÑiFÿ÷dÿ(@ÐFSHxDh„BgÐQHxDÐø€(GÐbh‚B^ÐÒø¬0+NЙh)Û3h†BSÐ39ùÑJKJI{DÒhyDhÃh0hð–ê hoð@AˆBÐ8 `¿ FðêAHCòñQAKOôrxD{DÃ÷bø °½èð½0HDöÂ!/L@ò<BxD|D#FÃ÷Rø,HCòïQOôr#FxDåç+H,IxDyDhhðØé hoð@AˆBÊÑÏçF!±Ñø€BúÑà#IyD	hˆB®ÑñXü÷ªü0Ð hoð@AˆBÑ F°½èð½A!` Foð@B‘B·Ð9!`´ÑF FðÀé(F°½èð½HCòüQK@ò-"xD{DÃ÷ø!h oð@B‘B›ÐâçQÎöÿû	÷ÿŒøöÿ4Á¦°À"ÌöÿœÀÁ6÷ÿÀøöÿ
÷ÿøöÿ[	÷ÿе¯hÉiˆG(¿нIFK@ò2"yD{DFCòFaÂ÷Ìÿ FнÿÛöÿó÷ÿðµ¯-éF ðlê(~ÐFhkîk뀮B2Òoð@Ià6®B,Ò0hðªì(?Сh"iŠBÝhJE¿2`âhBø!1¡`hIEæÐ9`¿ðBéàç€F FAFðlìF@F)íÐCò½a"hoð@CšB Ñ)à Fðí(BÐ!hoð@B‘BÐ9!`нèð½F Fðé(F½èð½ Cò»a"hoð@CšB	Ð:"`ÑF FFðé!F(F(¿hoð@CšBÑH@ò9"KxD{DÂ÷Iÿ ½èð½:`ðÑFðîè!FëçCòµaèç CòÁa"hoð@CšBÏÑØç¿ŠÒöÿç÷ÿðµ¯-éFl(~Ð ðÐé(ðˆ€Fhk.l뀮B,Òoð@Ià6®B&Ò0hðìг¡h"iŠBÝhJE¿2`âhBø!1¡`hIEçÐ9`¿ð¦èáç€F FAFðÐëF@F)íÐCò0qà Fð~ì(QÐ!hoð@B‘BÐ9!`нèð½F Fð„è(F½èð½Cò.q "hoð@CšB	Ð:"`ÑF FFðpè(F!F(¿hoð@CšBÑ@òA"HKxD{DÂ÷±þ ½èð½:`ðÑFðVè!Fëç
H
JxDzDÐø¨Pk"ä÷7ÿCòq@ò?"ÞçCò(qÙçCò4q¿ç¾˜Jéöÿ·÷ÿðµ¯-éF@l(RÐ &ð*é(ð€€Fhknl뀮B/Òoð@Hà6®B)Ò0hðhë(TСh"iŠBÝhBE¿2`âhBø!1¡`hAEæÐ9`¿ðèàç‚F FQFð*ëFPF)íÐCò§xOôy5à FðÖë(JÐ!hoð@B‘BÐ9!`ÑF Fðàï(F½èð½HikxDÐøTBhRk*¿’h*Ñð‰ù(±½èð½G(ùÑCò‡x@òF)&àCò¥xOôyOð
&F0F¿÷ÈùPF¿÷ÅùHAFKJFxD{DÂ÷ýý ½èð½CòŸxOôyOð
æçCò«xÞç¿ÎÐöÿO÷ÿе¯@kðè(¿нIFKOôryD{DFCòîqÂ÷Ôý FнÎÑöÿ÷ÿе¯ÀjðÈê(¿нIFKOôryD{DFCö/Â÷ºý FнÉÏöÿÏ÷ÿðµ¯MøF,HihxDŠlÐø„(Fr³GF€³èjð êx³F F)Fðúêh³!hoð@F±BÐ9!`Ð)h±BÐ9)`Ð]ø‹ð½€F Fð4ï@F)h±BñÑóçF(Fð*ï F]ø‹ð½ðèF(ÎÑCöràCöt%àCöv F¿÷'ù(F¿÷$ùH1FKOôrxD{DÂ÷[ý ]ø‹ð½¿ÒÝØöÿ÷ÿðµ¯-遰VI€FiyD	hˆBÐ$Oð	ZàQIoð@C$yDÑøhšB¿2`ÑøØø4Øø<`ë
VE-Òoð@Kà6VE'ҁF0h%Fðê(kÐ-F¿(hXEÑHF!Fðšê(dÐÙøYEåÐ9ÉøáÑFHFð´î(FÛç8(`¿(Fð¬îäçhoð@B‘B¿1`Øøh“BÐZ
`ÑFFð˜î(FFÈøhoð@B%F‘B¿1`Øø¹ñ¿Ùøoð@B‘B
Ñ-¿)hoð@B‘B
Ѱ½èð½9ÉøðÑFHFðnî Fêç9)`îÑF(Fðdî F°½èð½Cö×@ò["àCöãOôr%FHKxD{DÂ÷¡ü Ã翌ºðŠÏöÿ—÷ÿ°µ¯FFðŽ阱F(F!Fðèé!hoð@B‘BÐ9!`¿°½F Fð,î(F°½ °½¿е¯„°F@hÐøÄ(LÑ Fð*訩ªðöê hoð@AˆB¿0 ` m(KÐ3IyD	hˆBFÐñ¿ó[RèABè+øÑ"(¿ó[âe8ۢe hoð@AˆB¿8 `Ýé!˜ðÐêÔøÀ`±!oð@BÄøÀh‘BÐ9`¿ðØí FðÞï Fü÷®ù°н FðÎè(­Ñ`hI€iyDˆB§Ñ FðÊè(íѡç  eÇçy¹ m(ÃÐ!oð@B¡eh‘B¼Ð9`¿ð¬í¶çDò‰bì÷_þ¿Aÿÿÿ´¸ðµ¯Mø½FÀhFF(±)F G±]ø»ð½0i±)F G(öÑpi±)F G(ðÑpj±)F G(êÑÖøÀ8±)F G(¿ ]ø»ð½ ]ø»𽰵¯Fü÷]û%Hoð@BxDhÔøÀÄøÀP)h‘B¿1)`(¿h‘B-Ѡm(¿¨BÑ  e °½ñ¿ó[RèABè+øÑ"(¿ó[âe¢¿¢e °½©¹ mX±!oð@B¡eh‘BÐ9`¿ð.í °½9`¿ð(íËçLòu2ì÷Úýt·ðµ¯Mø½„°*Ú{»#H$JxDzDÐø”Ðk"ä÷üû HDò¤q K"xD{DÂ÷Wû °]ø»ð½H$IxDNKyDh~D{DhM’2F}DÍéEð^í °]ø»ð½˜h(ÌÐ	IFyDä÷Úø(ÅÑ×翦¶^Íöÿ»NûÿÂöÿƒNûÿ‘NûÿH")Ëöÿ÷ÿðµ¯-釰EL |DöȐC±ë‚
º±*;јh(Ûdà*5Ñ=H"Ôø”xDÀkä÷–û:HDö):K"xD{D?àÓø°’»ñ۠F FØøÈX™F	ñ&FTø&¨B4Ð6³EøÑ&Tø&(F"ä÷
ú('Ñ6³EôÑð$íšè»%H&%IxD%L&KyDh|D{Dh$M’"F}DÍéeðØìOôA H" KxD{DÂ÷°ú °½èð½ÙÔZø&(ÕК«ñKFDF(œÛH­QFxDÍé ªF+Fä÷Šø°ñÿ?ŽÜDòõqÖçDòðqÓ翜
qMûÿP|ïöÿ7ÿöÿšµRÌöÿÁMûÿÁöÿ†þöÿúîöÿµþöÿðµ¯-éµ°‹FFFFðì3AhIm)ԁF-H-IxDyDhhàÐ餁Fl³×ø€0FAFð¨è)¿AFŒBȿ!Fë
²B"Ò!HxDhh IÍébyDZF+FðXìÙøoð@B‘BÐ9HFÉø¿ðÜë 5°½èð½!ë
²BÜÓøh(ѲEÙJÈ!è`­zD(F[Fðúë )F"ðþë°ñÿ?ÑÝHF5°½èð½¿ƴƒîöÿ޵7äöÿ{Òöÿðµ¯-é‚°ˆF3IšF‘FyDFðŽë(@ÐAFFðX쨱QFFðªîà±0FQFð†íÉøP³ hoð@AˆB9Ñ °½èð½"HxDhh(FðZí IF0FyDàHxDhÐø(FðLíF0FðˆèI*FÍé HFyDCFðÐë hoð@AˆBÑOðÿ0°½èð½8 `Oðÿ0а½èð½8 `OðöÑF FðBë(F°½è𽿍üöÿ–³óöÿ’³áöÿðµ¯-é‚°ˆF3IšF‘FyDFðë(@ÐAFFðà먱QFFð2îà±0FQFðíÉøP³ hoð@AˆB9Ñ °½èð½"HxDhh(Fðâì IF0FyDàHxDhÐø(FðÔìF0FðèI*FÍé HFyDCFðXë hoð@AˆBÑOðÿ0°½èð½8 `Oðÿ0а½èð½8 `OðöÑF FðÊê(F°½è𽿝ûöÿ¦²Éöÿ¢²MÅöÿðµ¯-é‘°¤N Íé+~DÍé
öÈõ`öÌ
JÐ*2؛Fë‚	ßèðRcØFÍé’XøŸ	–¹ñÛ	˜ñ%ÐøÌhTø%°Bðò5©E÷Ñ%Tø%0F"ä÷ø(@ðã5©EóÑðëš(@ð
ƒH&IxDL‚KyDh|D{Dh€M’"F}DÍéeðÌêEò©DAâ*çÑÑ頉hÍé ‘ðûF0&Ñ àÍé’ÛøÑé	–ÈFÍéÍé¹ñ€òîâÑ頋hÛø“Íé )€ò6‚ðôúF0ÑðÐê(@ðv‚HFÝø@€ð ê(ð=‚FÖøX)Fð>ï(ñ8‚)hoð@B‘BÐ9)`ð°€(𵀰oÖø|Bh’l*ð(‚GF(ð)‚LHahxDhB@ð‚åh-ð
‚)hoð@@¦hB¿1)`1hB¿H0` hoð@AˆBÐ8 `¿ FðØé 4F
©B1Íé
Z¡ë€ FÍ÷?ù-F¿(hoð@AˆB@ð.ð hoð@AˆBÐ8 `¿ Fð´é*HxDh€EÐ)IØøyD	hˆB@ðځ0FAFú÷áû(ðáhoð@B‘BÐ9`¿ð–é0hoð@AˆBÑ0F°½èð½A1`0Foð@B‘BÐ91`ð䀰½èð½ØFhXø¯Íé&PFÍø ºñ€òî€á¿|‚±:ÈöÿJûÿú¼öÿ_Iûÿä°°<°F(FðVé F(ôK¯ ðPê(ð¡FÖø¤oð@Bh‘B¿1`Öø¤éh`Öø€HðBê(ð1FFˆF	h 2F F+FðëF0hoð@AˆBÐ80`¿0Fð é,ðv(hoð@AFFˆBÐ8(`¿(FðéÖø¤ FÂ÷0ü(ðy€Fhoð@E¨BÐAÈø©BÐ(Èø¿@Fðøè h¨BÐ8 `¿ FðîèHFðlé(ð^FÖøT!Fðì(ðXF h¨BÐ8 `¿ FðÖè@F1F"ã÷¾ÿ0h¨BÐ80`¿0FðÈèEòQ½H"½KxD{DÁ÷ÿØøoð@AˆBÐ8Èø¿@Fð²è °½èð½8(`¿(Fð¦è.ôä®OðEò*Q"áF0Fðšè F°½èð½?õ®˜Pø%(?ô®©ñØø ÝøºñÛ	˜ñ$ÐøÀhUø$°BÐ4¢EøÑ$Uø$0F"ã÷öý(Ñ4¢EôÑðé(@ðû€Eò‹DOð3àôÔYø$(ïА˜ÍøØø ñ¹ñÛ	˜ñ$ÐøÈh‚FUø$°B8Ð4¡EøÑ$Uø$0F"ã÷Áý(+Ñ4¡EôÑðØè(@ðÀEò•DOðfH&fIxDfJfKyDhzD{DhdMÍøÀ}DÍéeð†èaH!FaK"xD{DÁ÷`þ °½èð½ÕÔ˜Pø$(ÏÐVF¨ñš˜Ýé©)ÿöʭLH«IFxDÍé 
ªXFã÷6ü(ñŠ€Ýé ð¯øF0��å% 	æEòÚA"EàEòÜA"2àð¾èF(ô׭EòQ"7àCIyD
hBICJÃhyD(hzDð2èEòBQàEòCQ>H	">KxD{DÁ÷þ1h oð@B‘B?ô.®(æEò¤D”çEòçA"àEòìA"(hoð@C˜B	Ð8(`Ñ(FFFð˜ï*F!F#H#KxD{DçOðEòïA"àEòýAÁæEòÿA" hoð@C˜B	Ð8 `Ñ FFFðxï*F!FHKxD{DÁ÷Áý¸ñ��æEò“DPçEò‰DMçEòDJçEòšDGç9Eûÿø¬°Ãöÿ‘Eûÿp¸öÿÕDûÿ¥Ðöÿööÿ§ÏöÿõöÿÒöÿu÷öÿD¬îÎöÿ\¹öÿõÏöÿeõöÿgÏöÿ×ôöÿ°µ¯Ah‘øWÉ
Ёh)ٽè°@ðоðÀhÁñHC°½ã÷ýˆ±Fÿ÷åÿ!hoð@B‘BóÐ9!`¿°½F Fðï(F°½Oðÿ0°½¿е¯„lœFÐøà2ðCð¿*$мñÑ*¿;‹¹Þø0*¿ñh!½èÐ@GÜø@,ìÐIyD
àHIxDÞø yDhhðJï нIyDHÞø xDhhð>ï нÈßöÿMæöÿRªpª2¸öÿе¯„lœFÐøà2ðCð¿*+мñÑ*¿;+Ñ:Þø0²ú‚òOêRQø" ¿ñhF½èÐ@GÜø@,åÐIyD
àHIxDÞø yDhhðüî нIyDHÞø xDhhððî н¿*ßöÿ¯åöÿ´©ҩ–Øöÿ°µ¯‚°…lŽF„h"ðLÁið*ѼñЬññà0rF†FdhÞø“cF G°°½HIxD"hyDhhðºî °°½L©¶Þöÿе¯ÐøHÀ"ðBÐøàð¼ñÑb±:à0FFh!FÞø=èÐ@`GHIxDÞø yDhhðŽî н¿ö¨^Þöÿðµ¯-鉰yM yN}D~D,höTÍé@k±ë‚*AÐ*ÑhÓø°”»ñsÛÃâ*pÐ*Ñh”kàjH²ñÿ?jLxDjN|DjMh~DiK}DiIhؿ&FÔCyDOêÔ|fL{D’|D²ñÿ?ÍéÆؿ+F"Fð@îKö1a`HAò2_KxD{DÁ÷ü$ F	°½èð½Óø°»ñ5Û0FñÐøTI•%Vø% BÐ5«EøљF’F%Vø% F"ã÷,û(Ñ5«EôÑ	à™F’FXø%@$±«ñ”à÷Õð8î(@ðö‚˜hRFKFž»ñ€òQ‚ÖøHhøWÀRÕ`h‚l F*uАG(wÐhoð@B‘BÐ9`¿ðlí`hÖø‚l F*ðA‚GF(ðB‚*I(FyDðrè)hoð@B‘BÐ9)`Ð(SÐ0Ñðôí(@ð:‚!0o‘©"1Èò”Ì÷±üF(ð0‚ F	°½èð½°FF(Fð0í0FFF(ÛÑ.àHIxDyDhhð
íEö“qŠ"⼨4ý„¨s@ûÿ|ñöÿšâöÿ¿öÿ(¿öÿAûÿràöÿgñöÿ.Ûöÿü¦ÀÔöÿðèí(ôˆ¯ðíah0oBð·Ñø¬ *𪁑h)Û2hƒBðª29øÑ0FÖø¼gFhòh1FðVî(ðفFhoð@AˆB¿0(`hhIFÙøÜ‚l(F*ðցGF(ðׁ(hoð@AˆBÐ8(`¿(FðºìphÙø¸‚lHF0F*ðƁGF(ðǁ0hoð@AˆBÐ80`¿0Fð ì F)FðtéAðº)hoð@B‘BJFÐ9)`ÑF(FðŒì0FJFh(ð¯€Òø¼WFêh)Fðøí(ðªFhoð@AˆB¿00`phÙøÜ‚lHF0F*𦁐GF(ð§0hoð@AˆBÐ80`¿0Fð\ìhhÙøØ‚lHF(F*𖁐GF(hoð@A.𑁈BÐ8(`¿(FðBì`hÙøÜ‚l F*ퟠ�G€F(ð‰èHqhxDhB@ð*õh-ð&)hoð@@´hB¿1)`!hB¿H `0hoð@AˆBÐ80`¿0Fðì &F©B1ÍéX¡ë€0FÌ÷zû-F¿(hoð@AˆB@ð„€Øøoð@AˆB@ðŠ€,ð‘€0hoð@E¨BÐ80`¿0Fðèë h¨B?ô«®Aoð@B‘B!`?ô¤®( `ô ® FVàÒø bFòh1FðHí(ð9Fhoð@AˆB¿0(`ÁHihxDhBð7Oð ©Íé„B¤ë€(FÌ÷%û¸ñF¿Øøoð@AˆBGÑ.NÐ(hoð@AˆBÐ8(`¿(FðšëÙøp"!Èò‘!F–Ì÷û(ð*F0hoð@AˆB?ôL®80`ôH®0Fð~ë F	°½èð½8(`¿(FðtëØøoð@AˆB?ôv¯8Èø¿@Fðfë,ôo¯KöÚa´à8Èø¿@FðXë.°ÑKöqAòÜ2(hoð@C˜B@ðª€ôàÑø€BÐ)ùрIyD	hˆBôY® hoð@AˆB¿0 ` F	°½èð½tH5F®AFxDÍé ªF3Fâ÷oÿ(OÔœ.FåðìF(ô¾­Eöºq"hHhKxD{DÁ÷eùðºë(?ôƭAòÐ2Köja²àAòÒ2Köua­à% ðæð¨ë(¹0FÉ÷éù(@ð§€AòÖ2KöªaœàðÚëF(ô)®Kö¬aàðÐëF(ô9®Kö¯aAòÖ26àKö²aAòÖ2(hoð@C˜B3Ñ~àKö#aåðxë ¹(FÉ÷ºù(zÑAò×2Kö½anàð¬ëF(ôY®Kö¿aàð¢ëgæˆBYÑAò×2KöÂa[àð˜ë€F(ôw®KöÅaAò×25F(hoð@C˜BKÐ8(`HÑ(FF
Fðšê)F"F@àKöaÆäð:ë ¹0FÉ÷|ù(>ÑAòÜ2Köþa0àÕø€¸ñ?ôîØøoð@@®hB¿1Èø1hB¿H0`(hoð@AˆBÐ8(`¿(Fðhê 5F¨æZ¥KöqAòÜ2´ç8Aò×2KöÂa(`¶Ð
HKxD{D‰äF|åFØåF…æ¿Á;ûÿhÑöÿìöÿ`£z¤ˆÙöÿ}êöÿ€µoFh‚hFG
Ÿíî
¸î@
 î
î
€½€3hÂhFG)¸¿pGðµ¯Mø½F
FF0hñhˆGAì=¤ìöÑ]ø»½èð@pG)¸¿pGðµ¯Mø½-틟í
ŠF
FF0h±hˆG
=î
¸î@
 î
¤ì
ñѽì‹]ø»½èð@pG¿€3¿¿ðµ¯-遰-í‹€F3HxDF3HxD‚F2HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(Fð>îAìà²IFRF	ëÀ
ëÀ‘íZø0!î‹Rhivë/Ó!ÐëÀØøíí›Øø0îI«ˆG±îHAìQì
î›ðïAì´î@›ñîú½ÕàØøØøˆGðAðïŸíAì0îA‹Qì½ì‹°½è𽿃»~)ÙÉ@DûÿüKûÿöûÿ¿¿ðµ¯-遰-í‹‚°ƒF)’F‘fÛ8HOð
Ÿí5‹xD€F6HxDFàÛøÛøˆGðAðÊîAì8î@›˜ëÊ
ñ
€í›˜‚EDÐÛéˆGÂÀ
@êATÍ
BêAv)F Fð¦íAìð²AFJFëÀ	ëÀ‘íYø0!î›RhauëÓÓ1ÄÐIyDëÀÛøíí«Ûø0îJ»ˆG±îIAìQìî«ðpîAì´î@«ñîú»հ簽싰½è𽃻~)ÙÉ@þBûÿøJûÿz~ûÿðµ¯-é-í‹7NFŸí3Š~D°F5N6H~DxDF h¡hˆGA
ÀóGîAFë…¸î@
‘í1FVø%±ëP/!îš#Øôÿ'Ð h¡hˆGî
î
	노î@
ííª1îJ î
ð@ðòíî
´î@ªñîúÄÕî
½ì‹½èð½ h¡hˆG
Ÿí
î
¸î@
 î
î
ðÌíŸí
î
0îAšî
½ì‹½èð½€3€³ÉNö@RûÿüUûÿú…ûÿðµ¯-遰-í
‹‚°)’iÛ;LFŸí8ЉF|DŸí7šŸí4ªOð
£F5L6H|DxD€Fà0h±hˆG
î
¸î@
 î
î
ð†íî
9î@º˜ëŠ
ñ
ÊE€íº;Ð0h±hˆGA
ÀóGîYFë…¸î@
‘í!FTø%±ëP/!îºßØôÿÊÐ0h±hˆGî
î
노î@
ííÊ1îL î

îʁð@ðNíî
´î@ÊñîúÄպç°½ì
‹°½èð½€3€³ÉNö@QûÿìTûÿê„ûÿ)¸¿pGðµ¯Mø½F
FF0hñhˆGðAðRíðA=Aì¤ìðÑ]ø»½èð@pG)¸¿pGðµ¯Mø½-틟íŠF
FF0h±hˆG
î
¸î@
 î
·îÀ
Qìð&íAì=·îÀ±î@
¤ì
åѽì‹]ø»½èð@pG¿€³¿¿ðµ¯-遰-í
‹€FKH¾î‹xDFJHxD‚FIHxDƒFØéˆGF@
@êÁVÁóS$0F!Fðèëê²KF	ëÂAìQFZø2“í
ëÂë!î@›Ih!î+X¿°îB›0tëTÓ³)îëÂØøíí«Øø)î»1îJˈGAìQìî«ð¬ìAì´î@«ñîú·Õ2àŸí‹ØøØøˆGðAðªìFFØøØøˆGðAFìK î›ðšì)î	AìðAAì2îA´î@ñîúØݟí¨9î±î@›X¿°î@›Qì½ì
‹°½èð½¿Áè lªƒѿ3­	‚´;
@VWûÿP_ûÿJgûÿ)¸¿pGðµ¯Mø½F
FF0FðŽìAì=¤ìöÑ]ø»½èð@pGðµ¯-é-í‹QNF¾î‹~D°FONPH~DŸíIšxDF h¡hˆGA
ŲîAFë…¸î@
‘íÁ1F!î@ª!î
X¿°î@ªVø%±ëP/'Øm³·îÊ
 h¡h î!G
î
	노î@
íí*Qì1îB î	
î*·îºðòëAì´îKñîú»Ýî
½ì‹½èð½Ÿí"ŠFŸí"š h¡hˆG
î
¸î@
 î
î
ðªëF h¡hˆG

îZî
¸î@
 î
î
ð˜ëî
*î	
±îA* î:2îA´îCñîúÑݟí°0î
±î@ªX¿°î@ªî
½ì‹½èð½€3€³SŒ¾¤Ýi@ÜmûÿÔqûÿÎuûÿ)¸¿pGðµ¯Mø½F
FF0FðÎëDø=øÑ]ø»½èð@pGðµ¯-遰-í‹„°·î‹FCì+´îH›ñîúLѾHxD€F¾HxD‚F½HxDƒFÙéˆGÂÀ
@êAUÎ
BêAt1F(Fð\êAìà²AFRFëÀ
ëÀ‘íZø0!îËRhivëÀð9!&ÐëÀÙøíí‹Ùø0îH›ˆG±îLAìQì	î‹ð&ëAì´î@‹ñîú¼Õáµî@›ñîúџíËáÙøÙøˆGðAðëŸíAì0îAËÿà´îH›ñîú@񥀈î	‹L‹H|DxD‚FQìŸ킻8îI«Íé†HxDƒF
àÝéÝé2ðþêAì´îMËñîú@òـÙøÙøˆGAìÍéÙéˆGÂÀ
@êAUÎ
BêAx1F(FðÐéAì_úˆð!FRFëÀ
ëÀ‘íZø0!îÛRhivë Ó_êa#ÐëÀÙøííëÙø0îNûˆG±îMAìQìîëð˜êAì´î@ëñîú»մîJËñîúŸÙàÙøÙøˆGðAð’êAì;î@۴îJËñîúŒÙ8îL€î	QìðZê°îJÝé2Aì	îLQìð~ê=îLAì´î@Ëñîú?ö}¯TàŸí0¶îË9î)î±îÀˆî«Ÿí+»HFðˆê°îHAì
îµî@ñîúñÙ.îÙøÙø î;!î+°îHûîû îۈGAì´îOñîúÔFFQì8îMûðêAì(F1F.î?î)îûîûðöéAì´îOñîú¼Õ)î
ËQ창싰½èð½UUUUUUտmÅþ²{򠿃»~)ÙÉ@><ûÿ8Dûÿ2xûÿb;ûÿ`CûÿJwûÿðµ¯-é-í‹·îŠF	î´îHšñîúKÑÄNŸíJ~D°FÃNÃH~DxDF h¡hˆGA
ÀóGîAFë…¸î@
‘í1FVø%±ëP/!îê#Øôÿ5Ð h¡hˆGî
î
	노î@
ííš1îI î
ð@ðréî
´î@šñîúÄÕî
½ì‹½èð½µî@šñîú%џí–êî
½ì‹½èð½ h¡hˆG
ْҔ
¸î@
 î
î
ð>éŸíŽ
î
0îAêî
½ì‹½èð½´îHšñîú@񡀈î	
ˆM}D©F‡MˆH}DxD‚Fí}º8îIªŸí|ʟí|Úàî
AFðjéî
´îOêñîú¦Ù h¡hˆG
î
¸î@
 îê h¡hˆGA
ÀóGîIF	놸î@
‘í)FUø&±ëP/!îú#Øôÿ&Ð h¡hˆGî
î

놸î@
íÐíŠ1îh î
Að@ðÔèî
ôî@ŠñîúÄմîJêñîú©Ùà h¡hˆG
î
¸î@
 î
î
ð²èî
=î@ú´îJêñîú‘Ù8îN
۔	
î
ððè°îJ
AFî
	îN
î
ðîè?îN
î
´î@êñîú?ö¯&çŸí0
²î¶îڟí.º9í-Ê)î
±îÀ
ˆîª Fðæè°îHúî

îúµî@úñîúñÙ h¡hˆG
.î
î
/î:¸îA î*/îúaîаîHîôîAŠñîúÔî
xîOšðšèî
î
9î€
.î
iîŠAîŠðŒèî
´îh
ñîú»Õ)îêî
½ì‹½è𽿫ªª¾ޓ½€3€³ÉNö@IûÿþLûÿü|ûÿHûÿLûÿ|ûÿ€µoFÐéˆG_êQOê0€½€µoFh‚hFG@€½€µoFh‚hFG@!€½€µoFh‚hFG!€½¿¿¿ðµ¯Mø-í
‹·îËAìŸíH»´îL›ñîúퟄ�î´î@›ñîúyбî«:îIQìðšî´îJ›€F
Fñîú\¿Oð%@F)FðÎîAìŸí7Ÿí8+0î	‹Œî îî+Ÿí5QìîŸí4+î+Ÿí4îŸí4+î+Ÿí4îŸí4+î+Ÿí4îŸí4+î+¾î‚îŸí2+8î»0îËð’ïAì´îJ›îËñîú<îH»ոñuñۿî›&$8î	‹QìðxïAì`Fñ´ë;î@»vëFFëÛQì½ì
‹]ø‹ð½¿¿5gGö¿…8–þÆ?—SˆBž¿¤A¤Az?<™ٰj_¿$ÿ+•K?88C¿  J?lÁlÁf¿UUUUUUµ?´¾dÈñgí?°µ¯FFð‚ï—íAìDì[î+Qì°½¿¿¿ðµ¯-遰-í‹€F5HCì+xDF4HxD‚F3HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðîAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðæîAì´î@«ñîú½ÕàØøØøˆGðAðæîŸíAì0îA›)îQì½ì‹°½è𽿃»~)ÙÉ@¾3ûÿ¸;ûÿ²oûÿ°µ¯hFÂhFFG—íAìDì[î+Qì°½€µoFð”ì—íAì!îQ쀽е¯FðŽìîJî
!î
î
нðµ¯-遰-í‹„°·î«FCì+—í›´îJ‹ñîúœ¿´îJ›ñîúÙ Fð`ìSì+Aì FðZìAì8îˆîQ창싰½èð½ŸíN´î@‹ñîúD¿´î@›ñîúcԊîŠî	QìÍéQìÍé háhˆGÝé2FFðRî‚F‹F háhˆGÝé2€F‰FðFîAìKì«0î´îJñîúàØFì[Iì‹3î;µî@;ñîúÕݵî@ñîúĿµî@+ñîú6Ü(F1FðòíF
F@FIFðìíAìEìK€î	î1î@‹µî@‹ñîú ݱîHQìððíðþíðA!à h8î	›áhˆGAì)î´îHŸíñîúH¿°îJsç€îpçQìðÐíðÞíAì8î@Q창싰½è½èð@ðؿ¿¿°̶Œe€¥*€µoF¶îCì+!îSì+ð˜ëAì0îQ쀽е¯-í‹¶î‹FCì+)îSì+ð‚ë—í«*îSì+Aì FðxëAì8î0î!î
 î	îQì½ì‹не¯-í‹Fð°íAì FðªíAìˆîQì½ì‹н¿ðµ¯-遰-í‹€F7HCì+xDF6HxD‚F5HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðHìAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðíAì´î@«ñîú½ÕàØøØøˆGðAðíŸí
Aì0îA›‰îQì½ì‹°½è½èð@ð¿¿¿ƒ»~)ÙÉ@0ûÿ8ûÿ
lûÿ¿¿ðµ¯-遰-í‹Cì+µî@‹ñîú	џí>Qì½ì‹°½èð½€F;HxDF:HxD‚F:HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(Fð¸ëAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ð„ìAì´î@«ñîú½ÕàØøØøˆGðAð‚ìŸíAì0îA›·î€îQìSì+½ì‹°½è½èð@ð¾¿¿¿ƒ»~)ÙÉ@ø.ûÿò6ûÿìjûÿ¿¿ðµ¯-遰-í‹€F;HCì+xDF:HxD‚F9HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(Fð0ëAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðúëAì´î@«ñîú½ÕàØøØøˆGðAðúëŸíAì0îA›·î€î‹±îIQìðªëðASì+½ì‹°½è½èð@ð򽃻~)ÙÉ@æ-ûÿà5ûÿÚiûÿе¯-í‹¶î«F—í›Cì+ háhˆGAì´îJñîúڵî@ñîúðÝ0îQìðŠëAì	î‹Qì½ì‹н°î1î@1î@QìðxëAì	î@‹Qì½ì‹не¯-í‹·î«F—í‹Cì+ háhˆGAì:î@´îJñîúóÕQìðTëðAðPëAìî@›Qì½ì‹не¯-í‹—í‹Cì+F háhˆGAìµî@ñîúõݷî1î@€îQìð*ëAìî›Qì½ì‹н°µ¯FFðrë—íAìDì[î+Qì½è°@ð>½ðµ¯-遰-í‹€F7HCì+xDF6HxD‚F5HxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðêAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðÖêAì´î@«ñîú½ÕàØøØøˆGðAðÖêŸí
Aì0îA›9î	±îÀ îQì½ì‹°½è𽿃»~)ÙÉ@ž+ûÿ˜3ûÿ’gûÿðµ¯Mø½-í‹¶îFCì+!î‹ðØêSì+F FFð€è±îÈAìFì[±îÀ!îîQì½ì‹]ø»ð½¿ðµ¯-遰-틐°²îFCì+´î@‹ñîú	ڵî@‹ñîú@ðdOð&á±îÈFFŸíßíěíÄŸíÅ+9î‚î¸î9îŸíÄ+Ÿíū	í¿;ŸíÄ+ƒî0îQìŸíÂ:î
û1îëðê€FF0F)Fðê±îHíAì¾î»¿îˍíD싍ìëí%à°îN«íëÝéíí;AìÝé
í+1îAìÝéíûî+Aì0îA2îM´îAñîú@òÙøÙøˆGAì¶î+0î°îÀ2îAۏî
9î°îH+î+Ÿí•2îQìðœéðxè€FFÙøÙøˆGŸíAì´îAÛñîú۴îNñîú@ò܀.Æԟ툴îAÛñîúմîMñîúºÜ-î
Šî9îÛðŽéÍéQìðˆéÍé@F1Fð‚èÍé
¸ñŸíxÛvñÿô{¯ñ
°îJëFñPFYFðnè±îÚñOðOðr븿$Aì0îMQìðè‚F‹F,¿Oð
OðPFYFðNèAìŸía+Ÿíb=îû·î€î îîŸí^+Qìî+Ÿí]îŸí]+î+Ÿí]îŸí]+î+Ÿí]îŸí]+î+Ÿí]îîŸí\?îÛ0î«ðéAì,
î«:îOÛô¯ºñ{ñÿö¯°îN«$%íë?îûQìðøèAìhDñµë
=î@ÛtëFFëÛêæ±îHQìðúè·î‹Aì !F€FÙøÙøˆGAìñFñ(îI‹ñîúëÜ@F1F°½ì‹°½è𽿿¿=
ףp=@˜nƒÀÊí?333333ÀrŠŽäòò?B>è٬úÀ[¶Ö	m™?h‘í|?5®¿$—ÿ~ûñ?rù鷯í?…ëQ¸…Û?ìQ¸…ë±?9´Èv¾ŸŠ?5gGö¿…8–þÆ?—SˆBž¿¤A¤Az?<™ٰj_¿$ÿ+•K?88C¿  J?lÁlÁf¿UUUUUUµ?´¾dÈñgí?е¯Fð`î·î—í0îA€îAì F îSì+½èÐ@ðˆºðµ¯-遰-í‹¶°<iFF/–Íé&# hx±Ôéi@P@C	єí—í´îAñîú𮃷î›F)F’F—í‹9îH»´îH»ñîúȿ°îH»ðïAìŸíã+9îKË î îí±îÁ,î+ŸíÞ;0î«î+QìðØï€F‰FQìðÒïð®î«FF
Fðìî¶îÄé«AìŸíÒ;Iì‹°F1î{  `/žÄé…2îÛ7îMû°îJ+îK+7î
ë:îOK,î[>îJk„î+†îK1îŸíÃ;°îIkƒî°îI;î;îkŸí¿["î;1î[$îK5î…î0î	…î+-î0î2î+„í‹í»„í»°îB»í˄í˄í
«„íۍí{„í{„íûí ë„íëí*[„í[í$;„í;í"K„íKí4„íí0„í„í +0hñhˆGAì0hñh+îëˆG´îMëAìñîú@óÂÝø˜°Ýøœ ñJñ´ëfëðRîÍø̀€F‰F F1F2•
”–ðFîAì3˜Iì‹Ýé2X0EñÍéð8îFFCì+Ÿí;*î
»ëjë/ž$îƒî+Ÿí{[ƒî;5îB+‚î+5îC;Ÿíx[ƒî;5îB+‚î+5îC;Ÿíu[ƒî;5îB+‚î5îC;Ÿír+ƒî2î@€î2îAíKŸínKî
€îíîí+í;í
«‚î«¶î+¿î‹í,»í»íî‹ðÞí;îíAì¶î@F)F0î*î	›í,»íðÊí2Aìíûí(í‹à´îNË/žñîú@ó*‚0hñhˆGAì0hñh+îëˆG´îMëAìñîú@ó
‚í4´î@ëñîú,ÝQìðœîí0Aì´îAëñîúuݝí"€îí 1î@QìðfîðBí‚F&˜°ë
'˜ˆAÄ۵î@Ëñîú¿Нí0‹Fí"pà>îMí*;í(€î?î1î@¶î+1î°îÁî
·îK°îD+î+2îA˴îDËñîú˜ÜQìð.îð
í‚F‹FLàffffffÂõ(\@š™™™™™.@€4@ôýÔxé&Á?€a@ÀX@€`@à|@¸Ê@€MAí$€î?îQìðòíðÎì)?õU¯µî@Ëñîú?ôO¯í4‚F‹Fí$>î@ î!îË3˜ºë2˜kë	ˆêép‰êéq°ëépaëéq°ñqñÀòþ€ðæìAì´îK‹ñîú@óô€¨û"û	@Bû	bëðÒì°î‹î¶î0îŸíÒîí+¶î;î‹î+Aì0îí;Qì"îëî»;îNûð®íAì´îOËñîúñ;î´î@˝íûí,»ñîú?÷á®
˜™°ë
aëð’ìAìŸí©Ÿíªñ"îûKñ€î1î@€îŸí¥°îB‹1î@€îíí
í+€îëðnìAìíQìí î!îŸí˜+í;€î‹2îC+‚îëðVííí€îSì+Aì!îûFFðFíAìŸí‹Qì1îN‹°îAëíîûð6í+îFF@FIFŸíyŸíz+î2îAîŸíx+2îAîŸíw+2îAî>î@€î»ðìí+FìKAìí;ˆî+/žîûŸíní‹‹î‚îí+í,»2î+3î+2î1î´î@˝íûñîú?÷2®ZàÝø̀¸ë
uë"Ú˜·îëºë˜í,»{ëÿö®Ýéd F1FðÐëAì4Fñºë‰î{ë0îJ.îëëÚÿå·îëñKñºë{ëí,»Ûñå0F!Fð®ëAì6Dñ‰î0îJŽîë¸ëuëëÚÜåí
îL>îQìðrìðNë‚F‹F¶î&˜'™°ë
aë—í´î@ñîúܿPFYF6°½ì‹°½èð½F)Fðrë”í”íí”í”í+í ”íÔé…í*”í”íۍí$”í”íûí"”í”í »í4Aìí!î"îí”íí+í0Ë俀a@ÀX@€`@à|@¸Ê@€MAUUUUUUÅ?ðµ¯-遰-í‹>i‚F—틘F‘F0hx±Öéê€ê	Cіí´îHñîúð‘€HFAFðþêAì·î*î»0îH›î	Qì±îÀ²î°îKËîËðèëAì"´îJË î
Qìñîúȿ°îJËUìK†í‹2`Æé˜ðèëAì F)F†í»†í«†í›ð‚êƒF
FÆéµÚøÚøˆGAì ´îJ»!ñîú;ݰîJË à¹ëhëðªêAì0F!Fð¤ê-îAì0F,î!F)îî;îL»°î@˴îL»ñîúÝFAñ»ëuëÖÚÚøÚøˆGAì °îJË!´îL»ñîúçܽì‹°½èð½Öéµ–í«–í›¨çðµ¯-遰-í‹„°Cì+‚Fµî@‹ ñîú+Ð×é˜YêOðð؀¶î<i´î@‹ñîúٷî«HFAF:îH‹ð@êAì³î(î»´î@»ñîú#ÙPFJFCF”í‹ð–ë¯à!±àHFAFð&êAì³î+î«´î@«ñîú@ò©€PFJFCF”í‹ðzë˜à hx±Ôéê€ê	Cєí´îHñîúð':îH›QìðúêAì"Äø î"`Qì„í‹ðëî	«²î±îʰîK+î+Aì´îL+ñîúȿ°îL+Sì+„í»Äø€„í«„í›FFðˆéƒF
FÄéµÚøÚøˆGAì ´îJ»!ñîú;ݰîJË à¹ëhëð°éAì0F!Fðªé(î
Aì0F,î!F)îî;îL»°î@˴îL»ñîúÝFAñ»ëuëÖÚÚøÚøˆGAì °îJË!´îL»ñîúçܹëhë°½ì‹°½èð½ hx±Ôéê€ê	Cєí´îHñîúퟸ�îË<îH›QìðXêAì"Äø î"`Qì„í‹ðbê
î	˲î±ḭ̂îJ+î+´îK+ñîúȿ°îK+Sì+„í«AìÄø€„후í«FFðæèƒF
FÄéµÚøÚøˆGAì ´îJ»!ñîúݰîJË!à¹ëhëðéAì0F!Fðé-îAì0F,î!F)îî;îL»°î@˴îL»ñîú÷y¯FAñ»ëuëÕÚÚøÚøˆGAì °îJË!´îL»ñîúçÜ_çÔéµ”í«”í›
çÔéµ”í«”í›¥ç¿¿ðµ¯Mø½-í‹—í›´îI›ñîú\ֵî@›Cì+ñîúѶî(îAà·î´î@‹ñîú$ݿîF8î¶î îSì+ð¤ïF FFðîé±îÉAìFì[0î2îîQì½ì‹]ø»ð½¶î«F)î
Sì+ðÚïIAêÐq@ðtèAì F0î î
Sì+ðrïAì0îQì½ì‹]ø»ð½ŸíQì½ì‹]ø»ð½¿øðµ¯-é-í‹‚°—íFFFíðXï¶î€F0F‰F—í‹(îSì+ð<ïAìIì‹0îDì[!î îîQ창싽èð½е¯-í‹FCì+ðléAì—í;±î+ háh î î#î î+î+3î±îÂ+ˆî0îB°îH›î›(î9î€î	«ˆî‹ˆGAì´îHñîúˆ¿°îJ›Qì½ì‹н¿¿¿е¯-í‹‚°—í›´îI›ñîú€ñŸí‡F´î@›ñîúÕ háhˆGAì¿î0î0îŸí‰ î«Qì°½ì‹нŸízCì+´î@›ñîúշî€î	í«0î	»SàŸís´î@›ñîú,ٷî F€î	±îðèèAìŸín	íj´îA«Ÿín:îñîúH¿°î@«´îA«Ÿígñîú:îȿ°î@«Qì°½ì‹н±î)î·î°îA+î	+±îÂ0î0î+±îÂ+9î	;0îB€îî0îî»í«·î˰î۟íO« háhˆGAì î
Qìðè°îLAì háhî;îîë;îN î	û=îO‹ˆGAì°î@îµî@ñîúڏîQìðèAì0î0îOµî@ñîúÅÛ háhˆGSì+Aì¶î‹FFðè´îH›AìðAñîúAìH¿°îAí0î‹°îÈ0î
ŸíQìSì+ðèŸíAìµî@‹1îJñîúH¿°î@«Qì°½ì‹нŸí«Qì°½ì‹н¿ø:Œ0âŽyE>ñh㈵øä>€„.A-DTû!@-DTû!	À-DTû!À-DTû!	@ðµ¯-é-틃ðA€FFCì+ð¾ï·î«AìØøØøˆGAì´îH»ñîúBځFFØøØøˆGAì)îQìð`ïAìðE î´îA»Eìñîú-ØFHF1FðfïFF F)Fð`ïAìF웁î0î
Qìð4ïðîµî@»ñîú¹ÐBqñµ۽싽èð½! ½ì‹½èð½´î@» !ñîú¸¿ ½ì‹½è𽀵oF-í‹hCì+ÂhFGAì´îHñîúݷî! 1îH°îH+!î‹0Añ2î+´îBñîúóܽì‹€½! ½ì‹€½¿¿ðµ¯-遰-í‹€FEHCì+xDFDHxD‚FCHxDƒFØéˆGÂÀ
@êAUÎ
BêAt1F(FðîAìà²IFRF	ëÀ
ëÀ‘íZø0!î›Rhivë/Ó!ÐëÀØøíí«Øø0îJ»ˆG±îIAìQìî«ðÊîAì´î@«ñîú½ÕàØøØøˆGðAðÊîŸíAì0îA›±îHQì±îI‹ð¼îAìˆîQìð”îF
FðFíŸíEìK´î@ñîú¤¿Oðÿ0oðA½ì‹°½è𽃻~)ÙÉ@àC†ûÿ€ûÿzOûÿ¿¿€µoF-틟íCì+´î@‹ñîúڽ싽è€@ð›¸hÂhFGAì´îHñîúݷî! 1îH°îH+!î‹0Añ2î+´îBñîúóܽì‹€½! ½ì‹€½¿¿UUUUUUÕ?Ÿí?Cì+´îAñîú¢¿! pGðµ¯-遰-í‹¿î‹F0î«Yì‹@FIFð&î±îJFFŸí0›Sì+Qìð*îˆî
[ì«Fì[·îÛ:î»Aì háhˆGAìRF[F=î@îQìðîð¾íFF háhˆGFì[´îIëñîúâܴîMëñîúÝԍîBFKF0î
AìQìððíAì/î1î+ îî
€î´îAñîúÀØ(F1Fðjì½ì‹°½è𽿐@àC€µoF-í‹Cì+—í‹—í»8îI«hÂhF;îIˌî
ېGAì´îMñîúÙ8îK·î+!î
2î@!î±îÀ8î@Qì½ì‹€½,î
!î±îÀ0î	Qì½ì‹€½ðµ¯-éFRêEÐ_êSFOê2CCFOê‘Bê€r@êAêOêBêr@êAêOê"Bêb@ê Aê@êIOêBBêBAêIêc¹0h±hˆG(@¸ëtñöÓ!½èð½ÖéˆG(@ê	¸ëtëôӽèð½ !½èð½ðµ¯-郰×é¹FšFF[ê	ð£€=i¹ñ¸iÑi꡹0h±hˆGàê	1Ðð±|iÖéˆG(@!@»ëyëõÓ
à(cÐ0h±hˆG(@XEùØëxàÖéˆGëJë
ràÖéÍ騈GñIñ
 û2û
"û$»ëyë$ӓoê	oêFF
FFBFSFðí“FšHF)F²ëtëÒFÖéˆG û#û
3²ëû3sëñӠû%Ýé&áû
b+F û
ì4Fáû4¡ûIVëBñëTëAñ
à0h±hÍø€ñˆG û”ÙEØoêAFðÀëIEÙ
F0h±hˆG û…BøØÝø€ëJñ
@FQF°½èð½ðµ¯-éˆFB±ñ	FFÑ(h©hˆG€D@F½èð½¸hX±F(h©hˆG0@ Bù؀D@F½èð½(h©hˆG û	¦¢E
ØàCIFð~ëQEÙF(h©hˆG û	„BøذD@F½èð½*ð•€ðµ¯-郰×饁FOöÿpF‚BÑÚøx³hˆ(`Úø82à¸hȱÚøFˆF
àhˆ(`Úø8Êø)h!@±BÙ(òÑÙøÙøˆG(` ïçÚøñ‘¨±hˆ(`ÚøDàADOàFÙøÙøˆG(`!F Êø(ˆDAàÙøÙøˆG(`$Êø@ú‹ñÕø€úˆðûûú‹ðˆB)ҐOöÿpp@‘ð똈BÒF™àOê@(`ÚøDÊø@Õø€úˆðûûú‹ð°B
Ò,ëÑÙøÙøˆG™$(`èç™ëA°½è½èð@ˆ²pG*ð•€ðµ¯-郰×é¥FFÿ*	ÑÚø³(h
(`Úø84à¸hбÚøFˆFà(h
(`Úø8Êø)h!@±BÙ(ñÑÙøÙøˆG(` ïçÚøñ‘°±(h
(`ÚøDàADNàFÙøÙøˆG(`!F Êø(xD@àÙøÙøˆG(`$Êø@_ú‹ñÕø€_úˆðûû_ú‹ðˆB(Ґ†ðÿ‘ðhꘈBÒF™àOê (`ÚøDÊø@Õø€_úˆðûû_ú‹ð°B
Ò,ëÑÙøÙøˆG™$(`èç™ë!°½è½èð@ȲpGº±°µ¯×éT)h)± h@ `(h8àh‚hFG ` (` hð½è°@FpGðµ¯-釰™FF×éEF×ø°:iTêÐxišFÍé9í¹eê)eÑ*ÀòQ0hF±hˆGQFë
Iñ"FbëèñÑAá*Àò?ëè9:ûÑ9áê1ðˆ€(ð—€_êUOê4*Àò+ºhOð
CúhCŠBê€r@êC
	Bêr@êC

Bêb@ê C@êD
BêBCDê×é˜ÖéˆG(@!@¹ëxëõÓ›ÝøÀKø:Aë	ëÊ
ñ
H`8i‚EãÑíà(ð·€*Àòè€ûhOðºh_êSOê2CCŠBê€r@êC
	Bêr@êC

Bêb@ê C
BêB@ê@C@ê½h0h±hˆG @¨BùØë
Kø8ëÈQFñIñA`8i€EéѬà*Àòª€ÖéFˆGë
"FAë	bSFëèñњà*À򘀸hOðùhDAñÀCÈC•"àFÝø*û#ÝéëûëûªûèÀBñëHñ@¹iAø<ëÌBñH`ñ8i„EgÐÖéÍøG‚F‹F û+F
ûû¸h@øh¨AÉÓ‘"F˜™ðê˜Ýøu띾ҐF™FÖéˆG‚F‹F û
û°ëûqë	ïөç*1۸hOð
ñ	oêàÝø°˜¹i@Aø:ëÊKñA`
ñ
8i‚EÐ0h±hˆG û	µ¸hƒEæØ@FIFðÀèYEÝø°àÙF0h±hˆG û	„BøØ×ç°½èð½ðµ¯-é…°×ø ›Fš±ñ	FF‘ѻñoÛ0h±hˆG™»ñDJøõÑdà»ñaÛJø»ñúÑ[à¸h€³ _êPOê5»ñQÛ)COðŠBê€r@êC
	Bêr@êC

Bêb@ê C
Bê@@ê0h±hˆG @¨BùØ™DJø(ñØEñÑ(à»ñ%ÛèC!à™˜@DJø!1YEБ0h±hˆG û	¨BïØIF˜ð:è˜FB™æÙ0h±hˆG û	„BøØÝç°½èð½ðµ¯-é…°×ø°™F‘ê±FOöÿpF‚B"ѹñÀò¤€! 	à9š¹ñ	D+ø+ð—€)óÑ0h±hˆG!ðç¹ñÀòŒ€˜+ø¹ñ	úфà¸hȳ _êPOê5¹ñzÛ)COðŠBê€r@êC
	Bêr@êC

Bê`@ê! à9ꓲ«B
Ù)öÑ0h±hˆG!ꓲ«BôØ›D+ø ñÈEìÑHà¹ñEÛèCi€²%úúOð 	à˜™ëA+ø5ME0иñШñà0h±hˆGOð²û
ô¡²QEåÒÍéP˜‘QFðˆï˜ˆBÙÒ˜
Fà¨ñ²û
��BÎҸñóÑ0h±hˆGOððç°½èð½ðµ¯-é…°Føh™F‹FұFÿ*"ѹñTÛ! 
à9
›¹ñ	ëø+“FÐ)òÑ(h©hˆG!ïç¹ñ<ÛIFZFð2ï°½èð½¸h°³ _êPOê6¹ñ*Û1COðŠBê€r@êC
	Bêp@ê! à9
êӲ³B
Ù)öÑ(h©hˆG!êӲ³BôØûhZDø ñÈEìѰ½èð½¹ñøÛðCq2Oð
βOð Íé¹àÝø°úhë!ø

ñ
™ŠEßиñШñ
à(h©hˆGOðrûù_ú‰û³EàҐ1F˜ðÎî‹EÒÝéF	à¨ñ
rûù_ú‰ñ¡BÍҸñòÑ(h©hˆGOðïçÝéÁçðµ¯Mø½+ÛþhFұF! à9@ðø+<Ð)õÑ(h©hˆG!ðø+<óÑ]ø»ð½
F0F!Fð|î]ø»ð½ðµ¯-遰-í‹„°ƒF8i×ø€F ñ	F¹ñÍø#۷î‹×ø þh–íXFÍéT€îÍø Sì+ð.í-ÈéŒAhtñ۶ìñ¹ñ	8î@‹áÑàhtñ۸h™@ø1PëÁD`°½ì‹°½èð½ÔÔðµ¯-釰€FRêOðБF×é!C¿¹i)Ѱ½èð½OꉚFðì(ð€×éìƒF¾ñÐ !à1qEÐëÁ\ø1 [hVsñóÛ$&4Kø Fñ¥ñvëôÛåç¸iëÚq=i~iûóJñ_ê`Oê1Jpë*F¸¿©ë+’“ð€IOð¹h°A¨¿"×øà±úð@	C˜(VÐÈOð
©ññF’à˜âDD˜‚E`ÒÍøuFž\FÝø@F2F#ðÚìTø >"hDø  ¹ñ	DøïÑšëÊ®FYFQø;Pø3`ëÃlh6@ø3`Dñ:k`ðÑ˜Ýø×øÀ(øhIFbFÄÑÑé6ðèEãeë:áè6ôѸçOðÿ0°½è𽹸hðFOðOêÀúhCF¾hÓéTòè@¡A>ãèõѸhàD†D˜†EìÓXFðRë °½èð½ðµ¯-鏰RêÍé#	Ð×éQê¿×øà¾ñѰ½èð½Ýé%×ø€ëÖsFñ_êbOê3\|먿%Dfëûö-¿ZF	’¿F.Íé
FÚÐ×ø ×ø
ëȦñ
ž’>	žvñr۸ñoÓYOð|ë¸úˆñO𨿠I	COêÈà˜æD‚D˜†E°ÒÍø4 TFÝéh%Ýé	«Íø0àÙé#˜¶Íø hëè@	ðòë»ëÄéjë
»ñzñ۹hh	ñ	4BFàÓÛñÝø0àOð×øÀpë
¿¿˜@ø>°ëÎÀø ˜Ýø4 ×ø(·Ñ aF	ë
ëZø Yø0uhdhšJø dë09r`ìѡçY|ëÛ
˜8	˜pñÿöN¯	›OêÈ!žAD
šÆé#Dš–‘BõÓ>ç¸ñ7Ð
™ OêÈOðIB	™ˆAÚ™SF
˜FFëÎAø>	˜P`JFÓéTòè@¡A>ãèõјÆDâD†EåÓçJFSFFFÓéTòè@¡A>ãèõјÆDâD†EíÓç
˜8	˜pñÿöý®Ýé!
˜ÂéþçÔÔÔÔðµ¯-遰-í‹’°×éº×élëJë¸ñ
eñ¶ñ
|ñÍé	2À򬁀qëÀ򧁸ë™FeëˆtëO𸿠(”¿¤FÍø@ÀF‘¿FpLñð¨ëAì´ëyë
RFO𸿠(XF¿JF F0FBñ’ðëAìñEñðˆë)îAìîQìð^ìð:ë‚F‹FðÈìÍ阰ë
dëð¾ìÍé¶ë
™aëð¶ì
œºhÍéùhqë	O𸿠(¿IF‘F‘¿¡Fœ¹ë¡Aë
‘Aëð–ìÝø<°AìÝø8 ¶ëtë
OðQF¸¿ (XF¿!F0F0Añð.ëAì0F!Fð(ëAì¸ëeë
–ðëAìXFQFðë‹F™‚FHFðëAì@F)FKì«ð
ëF¸ñ‰FeñðëIìK)î;î+Šî"î;!îAì¶î‹î0î±îÀÛî	‹³î°îH
îQìðÀëAìÝéŸ�´îL›AìÝéñîú¸îëAìÝéȿ°îL›¾îËAì2îŸí•+1î
î«0 háhˆGF
F háhˆGAìEìk0î*î€î8îµî@ñîúåԴîIñîúàÚQìðxëðTêFˆFðâëªF5FF˜F™°ë	aëðÖëAì
˜Dìk,FUF°ë	
˜0îÛ`ëPFYFðÄëAì˜™ë	=îÛAëð¸ë±î1îOAì°îN+=îî+;î@۴îM+ñîúÙ?îM/î·î´îAñîúŽÚ F)FðFëAì0î´îMñîú?ö¯
›"¸h	™ÀøhˆAO𸿠(¿ØFÑF³ë	;iaëžóž{iv븿"*¿HFAFxàëÕpOð
Eñ_êaOê0‘€qëO𸿠¸ë	eë(¿ãF±F²ësë5ÚPsñ1۹ñ{ñ,ÛFF¸ñ˜eñBF+Fð`é€qëO𸿠qdñ(¿FF¹ñkñ¹ñ{ñÓVêжëFtë‹FÕÛàFFHFYFˆê…êC3dë*¿%F3F
˜	™:iÀž©A²žziv븿Oð
ºñ¿F)F°½ì‹°½è𽿿¿˜3?Írû?q¼ÓëÃì?"Ðñ}ŠAÛ#IyDëÀíQìpG€µoF-í
‹ð|éŸíAì·î(î îî›¶îî«8íËðfê9îAìŸí+
î+î‹8î½ì
‹½è€@QìpG¿¿¿€vÀUUUUUUµ?µ¾dÈñgí?°BûÿÔÔÔԐ@-épâ@ àÀ/ àÁ?!àÀBàÁCàëÄ àÄ@Ѐ½èQã:ÿ/Pá 3ÿ/1Ïoá?oá0CàΏâÁLàƒÁLà0 ãÿ/á°ã€@-é¡뀀½èPá1ƒ"@ Pá1ƒ"@ Pá2ƒ"@ Pá2ƒ"@ 
Pá3ƒ"
@ 
Pá3ƒ"
@ Pá4ƒ"@ Pá4ƒ"@ Pá5ƒ"@ Pá5ƒ"@ 
Pá6ƒ"
@ 
Pá6ƒ"
@ 	Pá7ƒ"	@ 	Pá7ƒ"	@ Pá8ƒ"@ Pá8ƒ"@ Pá9ƒ"@ Pá9ƒ"@ Pá:ƒ"@ Pá:ƒ"@ Pá;ƒ"@ Pá;ƒ"@ Pá<ƒ"@ Pá<ƒ"@ Pá€0ƒ"@ Pá@0ƒ"@ Pá 0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@  áÿ/á0Aì@õîúñîZH-é`ñî0Qìëpâá∽èêÔÔÔÔ0Aì ã@õî ãúñîÿ/‘ßí	+ßí¡`îá¼î@øî¢Aîîà¼î
îÿ/áð=ðÁî	ßí
+ßíãÀøî0Dã¡+@î0Aì rî0Qìÿ/áð ãðA0à ã	ßí0%Dã1Bìã0Dã qî1Aì¡pî0Qìÿ/áð ã0Åÿ/áÿ/ášêê0 á á  áê  á°ãšêà-åÐMâ
  áëåЍâðäQãs:o
Páj:Ïoá?oá0Cà͏âÁLàƒÁLà0 ãÿ/áPá1ƒ"@ Pá1ƒ"@ Pá2ƒ"@ Pá2ƒ"@ 
Pá3ƒ"
@ 
Pá3ƒ"
@ Pá4ƒ"@ Pá4ƒ"@ Pá5ƒ"@ Pá5ƒ"@ 
Pá6ƒ"
@ 
Pá6ƒ"
@ 	Pá7ƒ"	@ 	Pá7ƒ"	@ Pá8ƒ"@ Pá8ƒ"@ Pá9ƒ"@ Pá9ƒ"@ Pá:ƒ"@ Pá:ƒ"@ Pá;ƒ"@ Pá;ƒ"@ Pá<ƒ"@ Pá<ƒ"@ Pá€0ƒ"@ Pá@0ƒ"@ Pá 0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ Pá0ƒ"@ ‚å áÿ/á‚å ãÿ/á0 ã0‚åÿ/á ãuÿÿê@@-éÐMâ`â`åë å0åЍâ@€½èðO-éÐMâ( å` áQã

P áRã
Sã)
oáOoá@Dà TãD:Zã`ŠPŠêSã5
Zã
P ã`ŠåPŠå` ã á áЍâð½èSã<
Pãh
Câás3ÿæZãoá`ŠŠ5` áê` ãP ã á áЍâð½èBâá*Zã0 @@Š0ŠRãÜÿÿ
2ÿæ  ãoá…0 á Âá5Q á" á0â0c‚á á áЍâð½è á@ áP áiþÿëZã` á–E` ?êà„â` ã ^ã
@$â5ž át á0އá´ áê á áЍâð½èoáooáFà` ã!àâ ^ã= à ã€ á ã° áP ãˆp á‰ á«‡á¨€á€Wà@àáÀààá@”à±à Q€ Q¡ á‹ ᦿá†`…áà^âP áìÿÿ¦ á‹Pá† áZãÁãð€Ê`€á á áЍâð½è á á@ á(þÿë` áZã–Ta P ãðÊ á áЍâð½èoáOoáDàQãoÿÿ*`!âàâF á¶ á0Ž„á5ž á` ãÅÿÿê^㊠Ànâ5ž áL á0Ž„á¼ á½ÿÿê@Ànâ `N␠ãL á0¶„á5† ál áµÿÿê@ò@ÀòüD`G@ò”ÀòüD`G@òXLÀòüD`G@ò¼\ÀòüD`G@òLÀòüD`G@òä\ÀòüD`G@òˆ<ÀòüD`G@òLlÀòüD`G@ò|ÀòüD`G@ö4ÀòüD`G@òøÀòüD`G@ö¼ÀòüD`G@ö ,ÀòüD`G@ö¤,ÀòüD`G@ò¨lÀòüD`GOö,Ïöÿ|üD`G@öÀ<ÀòüD`G@öT<ÀòüD`G@öØ<ÀòüD`G@ö,ÀòüD`G@ö@LÀòüD`Gà-åæâêŽâpþ¾åÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔÔƏâʌâXþ¼åÔÔÔÔƏâʌâLþ¼åÔÔÔÔƏâʌâ@þ¼åÔÔÔÔƏâʌâ4þ¼åÔÔÔÔƏâʌâ(þ¼åÔÔÔÔƏâʌâþ¼åÔÔÔÔƏâʌâþ¼åÔÔÔÔƏâʌâþ¼åÔÔÔÔƏâʌâøý¼åÔÔÔÔƏâʌâìý¼åÔÔÔÔƏâʌâàý¼åÔÔÔÔƏâʌâÔý¼åÔÔÔÔƏâʌâÈý¼åÔÔÔÔƏâʌâ¼ý¼åÔÔÔÔƏâʌâ°ý¼åÔÔÔÔƏâʌâ¤ý¼åÔÔÔÔƏâʌâ˜ý¼åÔÔÔÔƏâʌâŒý¼åÔÔÔÔƏâʌâ€ý¼åÔÔÔÔƏâʌâtý¼åÔÔÔÔƏâʌâhý¼åÔÔÔÔƏâʌâ\ý¼åÔÔÔÔƏâʌâPý¼åÔÔÔÔƏâʌâDý¼åÔÔÔÔƏâʌâ8ý¼åÔÔÔÔƏâʌâ,ý¼åÔÔÔÔƏâʌâ ý¼åÔÔÔÔƏâʌâý¼åÔÔÔÔƏâʌâý¼åÔÔÔÔƏâʌâüü¼åÔÔÔÔƏâʌâðü¼åÔÔÔÔƏâʌâäü¼åÔÔÔÔƏâʌâØü¼åÔÔÔÔƏâʌâÌü¼åÔÔÔÔƏâʌâÀü¼åÔÔÔÔƏâʌâ´ü¼åÔÔÔÔƏâʌâ¨ü¼åÔÔÔÔƏâʌâœü¼åÔÔÔÔƏâʌâü¼åÔÔÔÔƏâʌâ„ü¼åÔÔÔÔƏâʌâxü¼åÔÔÔÔƏâʌâlü¼åÔÔÔÔƏâʌâ`ü¼åÔÔÔÔƏâʌâTü¼åÔÔÔÔƏâʌâHü¼åÔÔÔÔƏâʌâ<ü¼åÔÔÔÔƏâʌâ0ü¼åÔÔÔÔƏâʌâ$ü¼åÔÔÔÔƏâʌâü¼åÔÔÔÔƏâʌâü¼åÔÔÔÔƏâʌâü¼åÔÔÔÔƏâʌâôû¼åÔÔÔÔƏâʌâèû¼åÔÔÔÔƏâʌâÜû¼åÔÔÔÔƏâʌâÐû¼åÔÔÔÔƏâʌâÄû¼åÔÔÔÔƏâʌâ¸û¼åÔÔÔÔƏâʌâ¬û¼åÔÔÔÔƏâʌâ û¼åÔÔÔÔƏâʌâ”û¼åÔÔÔÔƏâʌâˆû¼åÔÔÔÔƏâʌâ|û¼åÔÔÔÔƏâʌâpû¼åÔÔÔÔƏâʌâdû¼åÔÔÔÔƏâʌâXû¼åÔÔÔÔƏâʌâLû¼åÔÔÔÔƏâʌâ@û¼åÔÔÔÔƏâʌâ4û¼åÔÔÔÔƏâʌâ(û¼åÔÔÔÔƏâʌâû¼åÔÔÔÔƏâʌâû¼åÔÔÔÔƏâʌâû¼åÔÔÔÔƏâʌâøú¼åÔÔÔÔƏâʌâìú¼åÔÔÔÔƏâʌâàú¼åÔÔÔÔƏâʌâÔú¼åÔÔÔÔƏâʌâÈú¼åÔÔÔÔƏâʌâ¼ú¼åÔÔÔÔƏâʌâ°ú¼åÔÔÔÔƏâʌâ¤ú¼åÔÔÔÔƏâʌâ˜ú¼åÔÔÔÔƏâʌâŒú¼åÔÔÔÔƏâʌâ€ú¼åÔÔÔÔƏâʌâtú¼åÔÔÔÔƏâʌâhú¼åÔÔÔÔƏâʌâ\ú¼åÔÔÔÔƏâʌâPú¼åÔÔÔÔƏâʌâDú¼åÔÔÔÔƏâʌâ8ú¼åÔÔÔÔƏâʌâ,ú¼åÔÔÔÔƏâʌâ ú¼åÔÔÔÔƏâʌâú¼åÔÔÔÔƏâʌâú¼åÔÔÔÔƏâʌâüù¼åÔÔÔÔƏâʌâðù¼åÔÔÔÔƏâʌâäù¼åÔÔÔÔƏâʌâØù¼åÔÔÔÔƏâʌâÌù¼åÔÔÔÔƏâʌâÀù¼åÔÔÔÔƏâʌâ´ù¼åÔÔÔÔƏâʌâ¨ù¼åÔÔÔÔƏâʌâœù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâ„ù¼åÔÔÔÔƏâʌâxù¼åÔÔÔÔƏâʌâlù¼åÔÔÔÔƏâʌâ`ù¼åÔÔÔÔƏâʌâTù¼åÔÔÔÔƏâʌâHù¼åÔÔÔÔƏâʌâ<ù¼åÔÔÔÔƏâʌâ0ù¼åÔÔÔÔƏâʌâ$ù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâù¼åÔÔÔÔƏâʌâôø¼åÔÔÔÔƏâʌâèø¼åÔÔÔÔƏâʌâÜø¼åÔÔÔÔƏâʌâÐø¼åÔÔÔÔƏâʌâÄø¼åÔÔÔÔƏâʌâ¸ø¼åÔÔÔÔƏâʌâ¬ø¼åÔÔÔÔƏâʌâ ø¼åÔÔÔÔƏâʌâ”ø¼åÔÔÔÔƏâʌâˆø¼åÔÔÔÔƏâʌâ|ø¼åÔÔÔÔƏâʌâpø¼åÔÔÔÔƏâʌâdø¼åÔÔÔÔƏâʌâXø¼åÔÔÔÔƏâʌâLø¼åÔÔÔÔƏâʌâ@ø¼åÔÔÔÔƏâʌâ4ø¼åÔÔÔÔƏâʌâ(ø¼åÔÔÔÔƏâʌâø¼åÔÔÔÔƏâʌâø¼åÔÔÔÔƏâʌâø¼åÔÔÔÔƏâʌâø÷¼åÔÔÔÔƏâʌâì÷¼åÔÔÔÔƏâʌâà÷¼åÔÔÔÔƏâʌâÔ÷¼åÔÔÔÔƏâʌâÈ÷¼åÔÔÔÔƏâʌâ¼÷¼åÔÔÔÔƏâʌâ°÷¼åÔÔÔÔƏâʌâ¤÷¼åÔÔÔÔƏâʌâ˜÷¼åÔÔÔÔƏâʌâŒ÷¼åÔÔÔÔƏâʌâ€÷¼åÔÔÔÔƏâʌât÷¼åÔÔÔÔƏâʌâh÷¼åÔÔÔÔƏâʌâ\÷¼åÔÔÔÔƏâʌâP÷¼åÔÔÔÔƏâʌâD÷¼åÔÔÔÔƏâʌâ8÷¼åÔÔÔÔƏâʌâ,÷¼åÔÔÔÔƏâʌâ ÷¼åÔÔÔÔƏâʌâ÷¼åÔÔÔÔƏâʌâ÷¼åÔÔÔÔƏâʌâüö¼åÔÔÔÔƏâʌâðö¼åÔÔÔÔƏâʌâäö¼åÔÔÔÔƏâʌâØö¼åÔÔÔÔƏâʌâÌö¼åÔÔÔÔƏâʌâÀö¼åÔÔÔÔƏâʌâ´ö¼åÔÔÔÔƏâʌâ¨ö¼åÔÔÔÔƏâʌâœö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâ„ö¼åÔÔÔÔƏâʌâxö¼åÔÔÔÔƏâʌâlö¼åÔÔÔÔƏâʌâ`ö¼åÔÔÔÔƏâʌâTö¼åÔÔÔÔƏâʌâHö¼åÔÔÔÔƏâʌâ<ö¼åÔÔÔÔƏâʌâ0ö¼åÔÔÔÔƏâʌâ$ö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâö¼åÔÔÔÔƏâʌâôõ¼åÔÔÔÔƏâʌâèõ¼åÔÔÔÔƏâʌâÜõ¼åÔÔÔÔƏâʌâÐõ¼åÔÔÔÔƏâʌâÄõ¼åÔÔÔÔƏâʌâ¸õ¼åÔÔÔÔƏâʌâ¬õ¼åÔÔÔÔƏâʌâ õ¼åÔÔÔÔƏâʌâ”õ¼åÔÔÔÔƏâʌâˆõ¼åÔÔÔÔƏâʌâ|õ¼åÔÔÔÔƏâʌâpõ¼åÔÔÔÔƏâʌâdõ¼åÔÔÔÔƏâʌâXõ¼åÔÔÔÔƏâʌâLõ¼åÔÔÔÔƏâʌâ@õ¼åÔÔÔÔƏâʌâ4õ¼åÔÔÔÔƏâʌâ(õ¼åÔÔÔÔƏâʌâõ¼åÔÔÔÔ 8
¤((ezrûÿÿo-èúÿÿoÓ,>0:
€
‹õþÿo$8
ðÿÿoþÿÿoPÿÿÿo ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	 ë	Dw`
l}
õ(a+ÿÿÿÿÿÿÿÿOw`}¸¥¸µ¸L©¹qº`~
€~
¨~
9¼ V‚վa‚­Oí¾9¿
yí¾9¿x\…¿µ¿l‚…¿µ¿®MÀ1ÀÐZ•ÀÁÀu‚•ÀÁÀXq5Á‚\5ÁPXMÁìrMÁeqiÁ
liÁùt‰ÁÅÁOe‰ÁÅÁ%{U‘¢!ÃIÃ~‚½Ãoq°…Q	R!UDù\WÉW4„
D‡
=XÑZx<Í	¸‡
à‡
¹	ì‡
 ô‡
4ˆ
ñ	”hm'	Ñ'	Dç'	(	\ˆ
M(	u)	,ZX	D	E	œˆ
Ĉ
µF	Ј
DÝG	1H	؈
X‰
íH	ûfÌ€	 D`
	m	 Š
!k	Ž\9]DY¿=]‚f¿Õ]‚V‚Í_‚s¿	b‚y¿“Åùg‚šÅEÍUo‚JÍ!Øs‚-Ø–ã)v‚«ã5é‚>éö±˜‚ö€øٟ‚‡ø’‘¥‚š|¹µ‚Œ ½‚§·*ÑÀ‚Æ*™6)É‚Ÿ6¹AÕÌ‚»AôPÐ‚QÝ\!Õ‚ç\Ãf-Ø‚Øf(qùÛ‚8qGzEÞ‚Rz·ŠQá‚
ٖå‚à– )è‚% 1­5ë‚7­ù¹A·Æò‚¾ÆÛØÉõ‚äØëäù‚õäÏõQý‚ØõÙþ]‚Þþ8	)‚C	²ý‚»t"m5‚†"Ä2ÍC‚Ì2!=ÕF‚&=HÍI‚HtPÉL‚ƒP/cab‚9c»nYe‚Ïnˆ¡j‚ˆªœ¥m‚Ɯ5°™q‚?°z»½Œ‚ƒ»:Åý®‚BÅÅË)±‚ÑËÑ)	 DÑ?	U	pU£	©	£	é	•	á 	µHI 	HÑm"	‚1Ñ#	‚EÑm$	Ž\É)	DÑá)	‚1Ñ
.	‚õL	M	õL	AM	ù\	Yk	Ž\Ál	D%\Ål	‚ïfÅm	‚ZÑÉn	‚Ep	‚Ñiq	‚1Ñr	‚iÑAw	kÑ5y	MÑiy	pѝz	tZå{	xÑ%}	}ÑY}	Z}	†ÑU~	Ñ‚	‚1ÑB	‚£Ñ݆	‚Y¿=]‚f¿Õ]‚V‚Í_‚s¿	b‚y¿“Åùg‚šÅEÍUo‚JÍ!Øs‚-Ø–ã)v‚«ã5é‚>éö±˜‚ö€øٟ‚‡ø’‘¥‚š|¹µ‚Œ ½‚§·*ÑÀ‚Æ*™6)É‚Ÿ6¹AÕÌ‚»AôPÐ‚QÝ\!Õ‚ç\Ãf-Ø‚Øf(qùÛ‚8qGzEÞ‚Rz·ŠQá‚
ٖå‚à– )è‚% 1­5ë‚7­ù¹A·Æò‚¾ÆÛØÉõ‚äØëäù‚õäÏõQý‚ØõÙþ]‚Þþ8	)‚C	²ý‚»t"m5‚†"Ä2ÍC‚Ì2!=ÕF‚&=HÍI‚HtPÉL‚ƒP/cab‚9c»nYe‚Ïnˆ¡j‚ˆªœ¥m‚Ɯ5°™q‚?°z»½Œ‚ƒ»:Åý®‚BÅÅË)±‚ÑË·Ñ%	‚ÃÑLinker: LLD 18.0.3Android (12470979, +pgo, +bolt, +lto, +mlgo, based on r522817c) clang version 18.0.3 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262)A;aeabi1C2.09
A	
"&.fini_array.ARM.exidx.text.got.comment.note.android.ident.got.plt.rel.plt.bss.ARM.attributes.dynstr.gnu.version_r.data.rel.ro.rel.dyn.gnu.version.dynsym.gnu.hash.relro_padding.note.gnu.build-id.dynamic.shstrtab.rodata.data,TT˜Âìì$¡”ÿÿÿo@oþÿÿoPP@©öÿÿoðg€€‹‹	--è
p‚ô=ô=8I	B,>,>0è2`D`D0ä((ÃM ë	 ë	€~ 8
 ø	$8
$ø	Õ,8
,ø	Àì8
ìø	(@:
ú	$³8=
8ý	Èð8}
8ý	(R`
`
0#0`
ÌWp,
<Þh
ö