Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / mtrand.cpython-312.so
Size: Mime:
ELF4\ì
4 	(444   Û
 Û
@ Û
  (`@Èß
È_È_Ô
Ô@¬Û
¬¬ÀÀRåtd Û
  (`PåtdàðàðàðddQåtdTTT¼¼„Androidr27c12479018GNUf ^Z_é”;õ9âp:S¦~7eÎ=N`y‹›²ÅÑâ÷2>Qd{†”¡­Çãëø(8J[r‡ŸÀÏÚêö&2?Pdx…‘¤ÇÖãïý*/EXhxƒ¤µÊÛ÷9IZl~˜«ÇÜéõ,<Jcp„›«¼ÌÚçóÿ
4IZhzŒ“©¿ÍÝõ%2FWm…™¥¶ÄØåö		,	@	U	a	p		”	¢	°	Â	Ñ	á	ò	


4
C
W
e
~

¨
Ã
Õ
ä
õ
&DTfrv|ˆŒ•š ¦ª¯´¹/ –#
À Í c
Èc
ȵˆµgl Ž__cxa_finalize__cxa_atexit__register_atforkPyInit_mtrandPyModuleDef_InitPyThreadState_GetPyInterpreterState_GetIDPyExc_ImportErrorPyErr_SetStringPyObject_GetAttrStringPyModule_NewObject_Py_DeallocPyModule_GetDictPyDict_SetItemString_Py_NoneStructPyExc_AttributeErrorPyErr_ExceptionMatchesPyErr_ClearPyExc_RuntimeErrorPyImport_AddModulePyObject_SetAttrStringPy_VersionPyOS_snprintfPyErr_WarnExPyTuple_NewPyBytes_FromStringAndSizePyUnicode_FromStringAndSizestrrchrPyType_ReadyPyExc_TypeErrorPyErr_FormatPyFloat_FromDoublePyLong_FromLongPyLong_FromStringPyObject_SetAttrPyImport_GetModuleDictPyDict_GetItemStringPyObject_GenericGetAttr_PyObject_GenericGetAttrWithDictPyDict_SetItemPyList_NewPyType_ModifiedPyLong_TypePyErr_OccurredPyExc_NameErrorPyObject_GetAttrPyList_TypePyTuple_TypePyObject_GetIterPyExc_StopIteration_PyDict_NewPresizedPyTuple_PackPySlice_New_Py_EllipsisObjectPyUnstable_Code_NewWithPosOnlyArgs_Py_TrueStructPyGC_DisablePyGC_EnablePyCapsule_NewmallocPyObject_GetItemPyCapsule_GetPointerfreePyImport_ImportModulePyImport_GetModule_Py_FalseStructPyObject_IsTruePyDict_NewPyImport_ImportModuleLevelObjectPyModule_GetNamePyUnicode_FromStringPyUnicode_Concat_PyThreadState_UncheckedGetPyException_GetTracebackPyCapsule_TypePyExc_ModuleNotFoundErrorPyExc_Exception_PyObject_GC_NewPyObject_GC_TrackPyExc_SystemError_PyDict_GetItem_KnownHashPyLong_FromSsize_tPyErr_GivenExceptionMatches_PyObject_GetDictPtrPyObject_NotPyFrame_NewPyTraceBack_HerePyUnicode_FromFormatPyUnicode_AsUTF8PyCode_NewEmptyPyMem_ReallocPyException_SetTracebackPyMem_MallocPyObject_GC_UnTrackPyObject_ClearWeakRefsPyObject_GC_DelPyTuple_GetSlicePyTuple_GetItemPyObject_FreePyMethod_NewPyDict_SizePyDict_NextPyMem_FreePyErr_NoMemoryPyUnicode_InternFromStringPyExc_RuntimeWarningPyUnicode_DecodePyObject_HashPyBaseObject_TypePyCapsule_IsValidmemcpyPy_EnterRecursiveCallPy_LeaveRecursiveCallPyObject_CallPyErr_SetObjectPyObject_GC_IsFinalizedPyObject_CallFinalizerFromDeallocPyMethod_TypePyNumber_AddPyNumber_InPlaceAddPyCFunction_TypePyVectorcall_FunctionPyObject_VectorcallDictPyObject_IsInstancePyDict_TypePyObject_SetItemPyObject_SizePySequence_ContainsPyFloat_TypePyFloat_AsDouble_PyType_LookupPyEval_SaveThreadPyEval_RestoreThreadPyLong_FromLongLongPyObject_RichComparePyBool_TypePyUnicode_TypePyUnicode_FormatPyNumber_RemainderPyNumber_LongPyList_AppendPyNumber_MultiplyPyList_AsTuplePySequence_ListPyExc_ValueErrorPySequence_TuplePyUnicode_ComparememcmpPyDict_GetItemWithErrorPyExc_KeyErrorPyExc_OverflowErrorPyLong_AsLongPyExc_DeprecationWarningPyErr_WarnFormatPyErr_NormalizeExceptionPyNumber_InPlaceTrueDividePyNumber_SubtractPyNumber_IndexPyLong_AsSsize_tPyExc_IndexErrorPyLong_AsLongLongPyUnicode_New_PyUnicode_FastCopyCharactersPyObject_FormatPyCapsule_GetNamePyDict_Copyexplog1pexpflog1pfpowlogpowflogfexpm1floorcosacosfmodceilmemsetlibm.soLIBClibc.solibpython3.12.so ¤¨ÐÔØÜèìðôøü $(,048<@DHLPTÜ_è_ì_`` `$`0`4`@`D`P`T`\```d`l`p`t`|`€`„`Œ``”`œ` `¤`¬`°`´`¼`À`Ä`Ì`Ð`Ô`Ü`à`ä`ì`ð`ô`ü`aaaaaa a$a,a0a4a<a@aDaLaPaTa\a`adalapata|a€a„aŒaa”aœa a¤a¬a°a´a¼aÀaÄaÌaÐaÔaÜaàaäaìaðaôaüabbbbbb b$b,b0b4b<b@bDbLbPbTb\b`bdblbpbtb|b€b„bŒbb”bœb b¤b¬b°b´b¼bÀbÄbÌbÐbÔbÜbàbäbìbðbôbübcccccc c$c,c0c4c<c@cDcLcPcTc\c`cdclcpctc|c€c„cŒcc”cœc c¤c¬c¼cÈcÜcðcdd$d(d,d8d€d„d dÈdÌdÐdÜdàdädðdôdødeeeee e,e0e4e@eDeHeTeXehele|e€ee”e¤e¨e¸e¼eÌeÐeÔeàeäeèeôeøeüeffff fPf\fpfˆfœf f¤f¸fÀfØfàfgg$g(g4g8gDgHgTgXg`gdghgpgtgxg€g„gˆgg”g˜g g¤g¨g°g´g¸gÀgÄgÈgÐgÔgØgàgägègðgôgøghhhhhh h$h(h0h4h8h@hDhHhPhThXh`hdhhhphthxh€h„hˆhh”h˜h h¤h¨h°h´h¸hÀhÄhÈhÐhÔhØhàhähèhðhôhøhiiiiii i$i(i0i4i8i@iDiHiPiTiXi`idihipitixi€i„iˆii”i˜i i¤i¨i°i´i¸iÀiÄiÈiÐiÔiØiàiäièiðiôiøijjjjjj j$j(j0j4j8j@jDjHjPjTjXj`jtjxj|jlptx|€„%ˆ*Œ,.”/˜1œ5 7¤A¨J¬K°L´O¸i¼lÀuÄxÈ|Ì€à‡äˆX\•`–d˜hŸx|€„ˆŒ”	˜
œ ¤
¨¬°´¸¼ÀÄÈÌÐÔØÜ à!ä"è#ì$ð&ô'ø(ü)+-023468 9$:(;,<0=4>8?<@@BDCHDLEPFTGXH\I`MdNhPlQpRtSxT|U€V„WˆXŒYZ”[˜\œ] ^¤_¨`¬a°b´c¸d¼eÀfÄgÈhÌjÐkÔmØnÜoàpäqèrìsðtôvøwüyz{}~‚ƒ „$…(†,‰0Š4‹8Œ<@ŽDH‘L’P“T”X—\™`šd›hœlpžt x¡|¢€£„¤ˆ¥Œ¦§”¨˜©œª «¤¬¨­¬®°¯´°¸±¼²À³Ä´ÿÿÿÿÿÿÿÿÿÿÿÿÿÿ
	€€€€€€
²lûÿ.mûÿùlûÿÓlûÿ.mûÿ.mûÿ.mûÿmûÿ¦güÿÏhüÿ‹hüÿ¯hüÿ…üÿԆüÿ…†üÿ­†üÿ^†üÿ¾…üÿ·…üÿ°…üÿ©…üÿF°üÿä±üÿ±üÿ¹±üÿz±üÿõ°üÿî°üÿç°üÿà°üÿgµüÿ޶üÿ“¶üÿµ¶üÿ°¸üÿ	¶üÿÿµüÿõµüÿ"Òüÿ‹ÓüÿOÓüÿoÓüÿ=çüÿ˜èüÿXèüÿtèüÿUêüÿÛçüÿÔçüÿÉçüÿÈïüÿ7ñüÿûðüÿñüÿfôüÿõüÿKõüÿoõüÿAùüÿÙúüÿvúüÿªúüÿKúüÿ¶ýÿßýÿ›ýÿ¿ýÿÖ
ýÿÿýÿ»ýÿßýÿíýÿFýÿýÿ"ýÿõ ýÿ‰ýÿ‚ýÿwýÿ­"ýÿ$ýÿÆ#ýÿâ#ýÿµ%ýÿI#ýÿB#ýÿ7#ýÿm'ýÿÆ(ýÿ†(ýÿ¢(ýÿu*ýÿ	(ýÿ(ýÿ÷'ýÿ-,ýÿ†-ýÿF-ýÿb-ýÿ5/ýÿÉ,ýÿÂ,ýÿ·,ýÿv4ýÿŸ5ýÿ[5ýÿ5ýÿp9ýÿ ;ýÿ½:ýÿñ:ýÿ:ýÿUýÿÊVýÿVýÿŸVýÿö{ýÿ-}ýÿé|ýÿ
}ýÿbýÿýÿ³ŽýÿçŽýÿ‚ŽýÿR¥ýÿ‹§ýÿ¿¦ýÿî¦ýÿަýÿ¿§ýÿ¦ýÿ¦ýÿ¦ýÿý¥ýÿVáýÿ’âýÿYâýÿyâýÿnumpy.random.mtrandnumpy/random/mtrand.pyx__reduce____module____name___is_coroutineCannot take a larger sample than population when 'replace=False'DeprecationWarningFewer non-zero entries in p than sizeImportErrorIndexErrorInvalid bit generator. The bit generator must be instantized._MT19937MT19937Negative dimensions are not allowedOverflowErrorProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.
In future version, providing byteorder will raise a ValueErrorRandomStateRandomState.__getstate__RandomState.__reduce__RandomState.__setstate___RandomState__randomstate_ctorRandomState.betaRandomState.binomialRandomState.binomial (line 3366)RandomState.bytesRandomState.bytes (line 819)RandomState.chisquareRandomState.chisquare (line 1926)RandomState.choiceRandomState.choice (line 855)RandomState.dirichletRandomState.dirichlet (line 4416)RandomState.exponentialRandomState.exponential (line 504)RandomState.fRandomState.f (line 1748)RandomState.gammaRandomState.gamma (line 1664)RandomState.geometricRandomState.geometric (line 3791)RandomState.get_stateRandomState.gumbelRandomState.gumbel (line 2777)RandomState.hypergeometricRandomState.hypergeometric (line 3853)RandomState.laplaceRandomState.laplace (line 2683)RandomState.logisticRandomState.logistic (line 2901)RandomState.lognormalRandomState.lognormal (line 2987)RandomState.logseriesRandomState.logseries (line 3984)RandomState.multinomialRandomState.multinomial (line 4272)RandomState.multivariate_normalRandomState.multivariate_normal (line 4073)RandomState.negative_binomialRandomState.negative_binomial (line 3518)RandomState.noncentral_chisquareRandomState.noncentral_chisquare (line 2002)RandomState.noncentral_fRandomState.noncentral_f (line 1842)RandomState.normalRandomState.normal (line 1473)RandomState.paretoRandomState.pareto (line 2367)RandomState.permutationRandomState.permutation (line 4690)RandomState.poissonRandomState.poisson (line 3612)RandomState.powerRandomState.power (line 2574)RandomState.randRandomState.rand (line 1196)RandomState.randintRandomState.randint (line 688)RandomState.randnRandomState.randn (line 1240)RandomState.randomRandomState.random_integersRandomState.random_integers (line 1308)RandomState.random_sampleRandomState.random_sample (line 389)RandomState.rayleighRandomState.rayleigh (line 3103)RandomState.seedRandomState.seed (line 232)RandomState.set_stateRandomState.shuffleRandomState.shuffle (line 4565)RandomState.standard_cauchyRandomState.standard_cauchy (line 2088)RandomState.standard_exponentialRandomState.standard_exponential (line 581)RandomState.standard_gammaRandomState.standard_gamma (line 1582)RandomState.standard_normalRandomState.standard_normal (line 1404)RandomState.standard_tRandomState.standard_t (line 2163)RandomState.tomaxintRandomState.tomaxint (line 625)RandomState.triangularRandomState.triangular (line 3257)RandomState.uniformRandomState.uniform (line 1069)RandomState.vonmisesRandomState.vonmises (line 2278)RandomState.waldRandomState.wald (line 3180)RandomState.weibullRandomState.weibull (line 2470)RandomState.zipfRandomState.zipf (line 3695)Range exceeds valid boundsRuntimeWarningSequenceShuffling a one dimensional array subclass containing objects gives incorrect results for most array subclasses.  Please use the new random number API instead: https://numpy.org/doc/stable/reference/random/index.html
The new API fixes this issue. This version will not be fixed due to stability guarantees of the API.TThis function is deprecated. Please call randint(1, {low} + 1) insteadThis function is deprecated. Please call randint({low}, {high} + 1) insteadTypeErrorUnsupported dtype %r for randintUserWarningValueError?()*._a'a' and 'p' must have same size'a' cannot be empty unless no samples are takena must be 1-dimensionala must be 1-dimensional or an integera must be greater than 0 unless no samples are takenaccaddahighall__all__allclosealowalphaalpha <= 0alpha_arralpha_dataanyarangeargsarrarrayarray is read-onlyasarrayastypeasyncio.coroutines at 0x{:X}atolbbg_type
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability mass function (PMF) for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        bit_generatorbitgenbufbuf_ptr
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        can only re-seed a MT19937 BitGeneratorcapsulecastingcdfcheck_validcheck_valid must equal 'warn', 'raise', or 'ignore'
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=1}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        .. warning::
            This function uses the C-long dtype, which is 32bit on windows
            and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
            Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
            and 64bit on 64bit platforms.


        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        __class____class_getitem__cline_in_tracebackcntcollections.abccopycount_nonzerocovcov must be 2 dimensional and squarecovariance is not symmetric positive-semidefinite.cumsumddfdfdendfnumdiric
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               https://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        disabledot_dp_dtypeemptyempty_likeenable_endpoint__enter__epsequal__exit__
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        final_shapefinfoflagsflat_foundfleftfloat64fmodeformatfoundfright
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gaussgc
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        getget_state and legacy can only be used with the MT19937 BitGenerator. To silence this warning, set `legacy` to False.greater
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        has_gausshigh_high
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability mass function (PMF) for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        iididxignore__import___inindex_initializingint16int32int64int8intpinvaccis_scalarisenabledisfiniteisnanisnativeisscalarissubdtypeititemitemsizejkkappakeykwargsllam
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        leftleft > modeleft == rightlegacylegacy can only be True when the underlying bitgenerator is an instance of MT19937._legacy_seedinglengthlessless_equallnbadlngoodlnsampleloclocklogical_or
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        longlow_low__main___maskedmay_share_memorymeanmean and cov must have same lengthmean must be 1 dimensionalmethodmethod_namemnarrmnixmodemode > rightmsg_mt19937mumultin
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        .. warning::
          This function defaults to the C-long dtype, which is 32bit on windows
          and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
          Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
          and 64bit on 64bit platforms.


        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

        - Spherical covariance (`cov` is a multiple of the identity matrix)
        - Diagonal covariance (`cov` has non-negative elements, and only on
          the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        nn_arrn_uint32n_uniqnbadndim
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        .. warning::
           This function returns the C-long dtype, which is 32bit on windows
           and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
           Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
           and 64bit on 64bit platforms.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        newnewbyteorderngoodngood + nbad < nsampleniniternonc
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the standard deviation:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        npnsamplenumpy._core.multiarray failed to importnumpy._core.umath failed to importnumpy.linalgnumpy.randomobject_' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.offsetoleftomodeonbadongoodonsampleoperatororightoutpp_arr'p' must be 1-dimensionalp_sum
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        parr
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _picklepix
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The probability mass function (PMF) of Poisson distribution is

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        _poisson_lam_maxpop_sizepos
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        probabilities are not non-negativeprobabilities contain NaNprobabilities do not sum to 1prodpsdpvalspvals must be a 1-d sequence__pyx_vtable__raise_rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is long.

            .. warning::
              This function defaults to the C-long dtype, which is 32bit on windows
              and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
              Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
              and 64bit on 64bit platforms.  Which corresponds to `np.intp`.
              (`dtype=int` is not the same as in most NumPy functions.)

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `numpy.int_` between `low` and `high`, inclusive.

        Return random integers of type `numpy.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `numpy.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        randomsrandoms_data__randomstate_ctorrangeravel
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        reducereplaceresreshaperesult_typeretreturn_indexreversedrightrtolscalesearchsorted
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        selfset_state can only be used with legacy MT19937 state instances.shape
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        sidesigmasingletonsizesort__spec__sqrtststacklevel
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              https://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        statestate dictionary is not valid.state must be a dict or a tuple.__str__stridestridessubtractsumsum(pvals[:-1]) > 1.0sum(pvals[:-1].astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.svdsztaketemp__test__tobytestol
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo("long").max``].

        .. warning::
           This function uses the C-long dtype, which is 32bit on windows
           and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
           Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
           and 64bit on 64bit platforms.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        totsize
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        u<u4uint16uint32uint64uint8
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        np.float32(5.0)


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        uniform_samplesuniqueunique_indicesunsafevval_arrval_datavalue
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and concentration (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Concentration of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the concentration,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and concentration
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        warnwarnings
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        writeablexx must be an integer or at least 1-dimensionalx_ptryou are shuffling a 'zeros
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability mass function (PMF) for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        __getstate____setstate__seed
        seed(seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        get_state
        get_state(legacy=True)

        Return a tuple representing the internal state of the generator.

        For more details, see `set_state`.

        Parameters
        ----------
        legacy : bool, optional
            Flag indicating to return a legacy tuple state when the BitGenerator
            is MT19937, instead of a dict. Raises ValueError if the underlying
            bit generator is not an instance of MT19937.

        Returns
        -------
        out : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            If legacy is True, the returned tuple has the following items:

            1. the string 'MT19937'.
            2. a 1-D array of 624 unsigned integer keys.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If `legacy` is False, or the BitGenerator is not MT19937, then
            state is returned as a dictionary.

        See Also
        --------
        set_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        set_state
        set_state(state)

        Set the internal state of the generator from a tuple.

        For use if one has reason to manually (re-)set the internal state of
        the bit generator used by the RandomState instance. By default,
        RandomState uses the "Mersenne Twister"[1]_ pseudo-random number
        generating algorithm.

        Parameters
        ----------
        state : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The `state` tuple has the following items:

            1. the string 'MT19937', specifying the Mersenne Twister algorithm.
            2. a 1-D array of 624 unsigned integers ``keys``.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If state is a dictionary, it is directly set using the BitGenerators
            `state` property.

        Returns
        -------
        out : None
            Returns 'None' on success.

        See Also
        --------
        get_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        For backwards compatibility, the form (str, array of 624 uints, int) is
        also accepted although it is missing some information about the cached
        Gaussian value: ``state = ('MT19937', keys, pos)``.

        References
        ----------
        .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
           623-dimensionally equidistributed uniform pseudorandom number
           generator," *ACM Trans. on Modeling and Computer Simulation*,
           Vol. 8, No. 1, pp. 3-30, Jan. 1998.

        random_sample
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the `~numpy.random.Generator.random`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        random.Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        random
        random(size=None)

        Return random floats in the half-open interval [0.0, 1.0). Alias for
        `random_sample` to ease forward-porting to the new random API.
        beta
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        .. note::
            New code should use the `~numpy.random.Generator.beta`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.


        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        See Also
        --------
        random.Generator.beta: which should be used for new code.
        exponential
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        Examples
        --------
        A real world example: Assume a company has 10000 customer support 
        agents and the average time between customer calls is 4 minutes.

        >>> n = 10000
        >>> time_between_calls = np.random.default_rng().exponential(scale=4, size=n)

        What is the probability that a customer will call in the next 
        4 to 5 minutes? 
        
        >>> x = ((time_between_calls < 5).sum())/n 
        >>> y = ((time_between_calls < 4).sum())/n
        >>> x-y
        0.08 # may vary

        See Also
        --------
        random.Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        standard_exponential
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_exponential`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        random.Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        tomaxint
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo("long").max``].

        .. warning::
           This function uses the C-long dtype, which is 32bit on windows
           and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
           Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
           and 64bit on 64bit platforms.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        randint
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the `~numpy.random.Generator.integers`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is long.

            .. warning::
              This function defaults to the C-long dtype, which is 32bit on windows
              and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
              Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
              and 64bit on 64bit platforms.  Which corresponds to `np.intp`.
              (`dtype=int` is not the same as in most NumPy functions.)

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        random.Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        bytes
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the `~numpy.random.Generator.bytes`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        random.Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        choice
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. note::
            New code should use the `~numpy.random.Generator.choice`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        .. warning::
            This function uses the C-long dtype, which is 32bit on windows
            and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
            Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
            and 64bit on 64bit platforms.


        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        random.Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        uniform
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the `~numpy.random.Generator.uniform`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The high limit may be included in the 
            returned array of floats due to floating-point rounding in the 
            equation ``low + (high-low) * random_sample()``.  The default value 
            is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        random.Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        np.float32(5.0)


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        randn
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use::

            sigma * np.random.randn(...) + mu

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        random_integers
        random_integers(low, high=None, size=None)

        Random integers of type `numpy.int_` between `low` and `high`, inclusive.

        Return random integers of type `numpy.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `numpy.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        standard_normal
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        random.Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from the normal distribution with mean ``mu`` and
        standard deviation ``sigma``, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        normal
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the `~numpy.random.Generator.normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the standard deviation:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from the normal distribution with
        mean 3 and standard deviation 2.5:

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        standard_gamma
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gamma
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the `~numpy.random.Generator.gamma`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        f
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the `~numpy.random.Generator.f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        noncentral_f
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_f`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        random.Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        chisquare
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the `~numpy.random.Generator.chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        random.Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=1}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        noncentral_chisquare
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.noncentral_chisquare`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        random.Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        standard_cauchy
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.standard_cauchy`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        random.Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              https://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        standard_t
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the `~numpy.random.Generator.standard_t`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        random.Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        vonmises
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and concentration (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the `~numpy.random.Generator.vonmises`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Concentration of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the concentration,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and concentration
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        pareto
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the `~numpy.random.Generator.pareto`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        weibull
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the `~numpy.random.Generator.weibull`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        random.Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        power
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the `~numpy.random.Generator.power`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a <= 0.

        See Also
        --------
        random.Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        laplace
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the `~numpy.random.Generator.laplace`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        random.Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        gumbel
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the `~numpy.random.Generator.gumbel`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        random.Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        logistic
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the `~numpy.random.Generator.logistic`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        lognormal
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the `~numpy.random.Generator.lognormal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        random.Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.prod(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        rayleigh
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the `~numpy.random.Generator.rayleigh`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        random.Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        wald
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the `~numpy.random.Generator.wald`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        random.Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        triangular
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the `~numpy.random.Generator.triangular`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        random.Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        binomial
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the `~numpy.random.Generator.binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability mass function (PMF) for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               https://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        negative_binomial
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the
            `~numpy.random.Generator.negative_binomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        .. warning::
           This function returns the C-long dtype, which is 32bit on windows
           and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
           Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
           and 64bit on 64bit platforms.

        See Also
        --------
        random.Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        poisson
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the `~numpy.random.Generator.poisson`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        random.Generator.poisson: which should be used for new code.

        Notes
        -----
        The probability mass function (PMF) of Poisson distribution is

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        zipf
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        discrete probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the `~numpy.random.Generator.zipf`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        random.Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability mass function (PMF) for the Zipf distribution is

        .. math:: p(k) = \frac{k^{-a}}{\zeta(a)},

        for integers :math:`k \geq 1`, where :math:`\zeta` is the Riemann Zeta
        function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 4.0
        >>> n = 20000
        >>> s = np.random.zipf(a, n)

        Display the histogram of the samples, along with
        the expected histogram based on the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import zeta  # doctest: +SKIP

        `bincount` provides a fast histogram for small integers.

        >>> count = np.bincount(s)
        >>> k = np.arange(1, s.max() + 1)

        >>> plt.bar(k, count[1:], alpha=0.5, label='sample count')
        >>> plt.plot(k, n*(k**-a)/zeta(a), 'k.-', alpha=0.5,
        ...          label='expected count')   # doctest: +SKIP
        >>> plt.semilogy()
        >>> plt.grid(alpha=0.4)
        >>> plt.legend()
        >>> plt.title(f'Zipf sample, a={a}, size={n}')
        >>> plt.show()

        geometric
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the `~numpy.random.Generator.geometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        random.Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        hypergeometric
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the
            `~numpy.random.Generator.hypergeometric`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability mass function (PMF) for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               https://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        logseries
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 <= ``p`` < 1.

        .. note::
            New code should use the `~numpy.random.Generator.logseries`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range [0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        random.Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        multivariate_normal
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the
            `~numpy.random.Generator.multivariate_normal`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

        - Spherical covariance (`cov` is a multiple of the identity matrix)
        - Diagonal covariance (`cov` has non-negative elements, and only on
          the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        Here we generate 800 samples from the bivariate normal distribution
        with mean [0, 0] and covariance matrix [[6, -3], [-3, 3.5]].  The
        expected variances of the first and second components of the sample
        are 6 and 3.5, respectively, and the expected correlation
        coefficient is -3/sqrt(6*3.5) ≈ -0.65465.

        >>> cov = np.array([[6, -3], [-3, 3.5]])
        >>> pts = np.random.multivariate_normal([0, 0], cov, size=800)

        Check that the mean, covariance, and correlation coefficient of the
        sample are close to the expected values:

        >>> pts.mean(axis=0)
        array([ 0.0326911 , -0.01280782])  # may vary
        >>> np.cov(pts.T)
        array([[ 5.96202397, -2.85602287],
               [-2.85602287,  3.47613949]])  # may vary
        >>> np.corrcoef(pts.T)[0, 1]
        -0.6273591314603949  # may vary

        We can visualize this data with a scatter plot.  The orientation
        of the point cloud illustrates the negative correlation of the
        components of this sample.

        >>> import matplotlib.pyplot as plt
        >>> plt.plot(pts[:, 0], pts[:, 1], '.', alpha=0.5)
        >>> plt.axis('equal')
        >>> plt.grid()
        >>> plt.show()
        multinomial
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the `~numpy.random.Generator.multinomial`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        .. warning::
          This function defaults to the C-long dtype, which is 32bit on windows
          and otherwise 64bit on 64bit platforms (and 32bit on 32bit ones).
          Since NumPy 2.0, NumPy's default integer is 32bit on 32bit platforms
          and 64bit on 64bit platforms.


        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        random.Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        dirichlet
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the `~numpy.random.Generator.dirichlet`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        ------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        random.Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               https://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        shuffle
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the `~numpy.random.Generator.shuffle`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        random.Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        permutation
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the
            `~numpy.random.Generator.permutation`
            method of a `~numpy.random.Generator` instance instead;
            please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        random.Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        s_bit_generatortypeboolnumpydtypedouble
    seed(seed=None)

    Reseed the singleton RandomState instance.

    Notes
    -----
    This is a convenience, legacy function that exists to support
    older code that uses the singleton RandomState. Best practice
    is to use a dedicated ``Generator`` instance rather than
    the random variate generation methods exposed directly in
    the random module.

    See Also
    --------
    numpy.random.Generator
    get_bit_generator
    Returns the singleton RandomState's bit generator

    Returns
    -------
    BitGenerator
        The bit generator that underlies the singleton RandomState instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random`` namespace. This function, and its counterpart set method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    set_bit_generator
    numpy.random.Generator
    set_bit_generator
    Sets the singleton RandomState's bit generator

    Parameters
    ----------
    bitgen
        A bit generator instance

    Notes
    -----
    The singleton RandomState provides the random variate generators in the
    ``numpy.random``namespace. This function, and its counterpart get method,
    provides a path to hot-swap the default MT19937 bit generator with a
    user provided alternative. These function are intended to provide
    a continuous path where a single underlying bit generator can be
    used both with an instance of ``Generator`` and with the singleton
    instance of RandomState.

    See Also
    --------
    get_bit_generator
    numpy.random.Generator
    sample
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    ranf
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    …ëQ¸…Û?>@à|@ð¿$ÿ+•K?ffffff@˜3?Írû?@@h‘í|?5®¿À3­	‚´;
@9´Èv¾ŸŠ?333333@Áè lªƒѿUUUUUUÕ?˜nƒÀÊí?88C¿mÅþ²{ò ?=
ףp=@ÀX@ð?ê-™—q=ƒ»~)ÙÉ@  J?-DTû!	À0̶Œe€¥*àCà¿$@à?@5gGö¿@q¼ÓëÃì?<™ٰj_¿…8–þÆ?B>è٬ú@ìQ¸…ë±?€4@ôýÔxé&Á?ñh㈵øä>š™™™™™.@€a@—SˆBž¿lÁlÁf¿UUUUUUµ?rŠŽäòò?€MA€„.AÂõ(\@ä?€`@´¾dÈñgý?:Œ0âŽyE>$—ÿ~ûñ?¸Ê@¤A¤Az?[¶Ö	m™?rù鷯í?UUUUUUÅ?-DTû!	@4294967296name '%U' is not definednumpy.random.mtrand.RandomStateexactlyMissing type object_rand_int16numpy.random.mtrand.ranfnumpy.random.mtrand.RandomState.bytesnumpy.random.mtrand.RandomState.standard_normalnumpy.random.mtrand.RandomState.standard_tSeedSequence%.200s() takes no arguments (%zd given)__name__ must be set to a string objectsetting function's dictionary to a non-dict%s() got multiple values for keyword argument '%U'__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)numpy.random.mtrand.RandomState.random_samplenumpy.random.mtrand.RandomState.fndarray_rand_bool_rand_int32numpy.random.mtrand.get_bit_generatordoes not matchShared Cython type %.200s has the wrong size, try recompilingtoo many values to unpack (expected %zd)numpy.random.mtrand.RandomState.vonmisesflexiblevalidate_output_shapeC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)numpy.core._multiarray_umath%.200s() keywords must be stringsnumpy.random.mtrand.RandomState.randintnumpy.random.mtrand.RandomState.multivariate_normalcomplexfloating__qualname__numpy.random.mtrand.RandomState.set_stateneed more than %zd value%.1s to unpacknumpy.random.mtrand.RandomState.rayleighmultiple bases have vtable conflict: '%.200s' and '%.200s'integer%.200s does not export expected C function %.200sloader__package__func_doc__dict__at most%.200s() takes %.8s %zd positional argument%.1s (%zd given)numpy.random.mtrand.RandomState.tomaxintfloatingLEGACY_POISSON_LAM_MAXdiscPyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)module was compiled against NumPy C-API version 0x%x (NumPy 1.20) but the running NumPy has C-API version 0x%x. Check the section C-API incompatibility at the Troubleshooting ImportError section at https://numpy.org/devdocs/user/troubleshooting-importerror.html#c-api-incompatibility for indications on how to solve this problem.an integer is requiredassignmentPOISSON_LAM_MAX_rand_uint8_rand_int64numpy._core._multiarray_umath_ARRAY_API is NULL pointercannot fit '%.200s' into an index-sized integernumpy.random.mtrand.RandomState.lognormalnumpy.random.mtrand.RandomState.shuffle%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectnumpy.random.mtrand.RandomState.logseriesSeedlessSequencePyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)_ARRAY_APIFATAL: module compiled as unknown endiannumpy/random/mtrand.cpython-312.so.p/numpy/random/mtrand.pyx.cfunc_closure
    RandomState(seed=None)

    Container for the slow Mersenne Twister pseudo-random number generator.
    Consider using a different BitGenerator with the Generator container
    instead.

    `RandomState` and `Generator` expose a number of methods for generating
    random numbers drawn from a variety of probability distributions. In
    addition to the distribution-specific arguments, each method takes a
    keyword argument `size` that defaults to ``None``. If `size` is ``None``,
    then a single value is generated and returned. If `size` is an integer,
    then a 1-D array filled with generated values is returned. If `size` is a
    tuple, then an array with that shape is filled and returned.

    **Compatibility Guarantee**

    A fixed bit generator using a fixed seed and a fixed series of calls to
    'RandomState' methods using the same parameters will always produce the
    same results up to roundoff error except when the values were incorrect.
    `RandomState` is effectively frozen and will only receive updates that
    are required by changes in the internals of Numpy. More substantial
    changes, including algorithmic improvements, are reserved for
    `Generator`.

    Parameters
    ----------
    seed : {None, int, array_like, BitGenerator}, optional
        Random seed used to initialize the pseudo-random number generator or
        an instantized BitGenerator.  If an integer or array, used as a seed for
        the MT19937 BitGenerator. Values can be any integer between 0 and
        2**32 - 1 inclusive, an array (or other sequence) of such integers,
        or ``None`` (the default).  If `seed` is ``None``, then the `MT19937`
        BitGenerator is initialized by reading data from ``/dev/urandom``
        (or the Windows analogue) if available or seed from the clock
        otherwise.

    Notes
    -----
    The Python stdlib module "random" also contains a Mersenne Twister
    pseudo-random number generator with a number of methods that are similar
    to the ones available in `RandomState`. `RandomState`, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    See Also
    --------
    Generator
    MT19937
    numpy.random.BitGenerator

    numpy.random.mtrand.RandomState.permutationnumpy.random._bounded_integers__file__parentsubmodule_search_locationsnumpy.random.mtrand.RandomState.randnumpy.PyArray_MultiIterNew3_rand_int8check_array_constraintPyObject *(PyObject *, PyArrayObject *)func_dictNULL result without error in PyObject_Callnumpy.random.mtrand.RandomState.normalnumpy.random.mtrand.RandomState.__init__check_constraintdouble (double *, npy_intp)__loader__init numpy.random.mtrand_cython_3_0_12func_name__globals____repr__numpy.random.mtrand.RandomState.paretodouble_fillnumpy.random.mtrand.samplenumpy.random.mtrand.RandomState.seednumpy.random.mtrand.RandomState.laplacenumpy.random.mtrand.RandomState.waldnumpy.random.mtrand.RandomState.triangularflatiterPyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)__defaults__changes to cyfunction.__kwdefaults__ will not currently affect the values used in function callsnumpy.random.mtrand.RandomState.noncentral_fModule 'mtrand' has already been imported. Re-initialisation is not supported.intnumpy.random.mtrand.RandomState.random_integersnumpy.random.mtrand.RandomState.standard_gammanumpy.random.mtrand.RandomState.gammanumpy.random.mtrand.RandomState.dirichlethasattr(): attribute name must be stringnumberC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)_rand_uint64%s (%s:%d)cython_runtime%.200s() takes exactly one argument (%zd given)numpy.random.mtrand.RandomState.__repr__numpy.random.mtrand.RandomState.exponential__init__%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject_rand_uint16PyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)cannot import name %S__path__numpy.random.mtrand.RandomState.get_stateinvalid vtable found for imported typecharacterufuncmodule compiled against ABI version 0x%x but this version of numpy is 0x%xnumpy.random.mtrand.set_bit_generatorShared Cython type %.200s is not a type object__code__function's dictionary may not be deleted__kwdefaults__ must be set to a dict objectBitGeneratornumpy.random.mtrand.RandomState.noncentral_chisquare_rand_uint32originnumpy/__init__.cython-30.pxdcompile time Python version %d.%d of module '%.100s' %s runtime version %d.%dnumpy.random.mtrand.RandomState.__setstate__deletion%.200s() needs an argumentnumpy.random.mtrand.RandomState.choicenumpy.random.mtrand.RandomState.geometricint (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)uint64_t_ARRAY_API is not PyCapsule objectfunc_globalsfunc_codecalling %R should have returned an instance of BaseException, not %Rnumpy.random.mtrand.RandomState.standard_exponential'%.200s' object does not support slice %.10snumpy.random.mtrand.int64_to_longnumpy.random.mtrand.RandomState.multinomial%.200s.%.200s is not a type objectkahan_sumname__closure____qualname__ must be set to a string objectat leastnumpy.random.mtrand.RandomState.betanumpy.random.mtrand.RandomState.gumbelunsignedintegerMAXSIZEcontnumpy.import_arraybuiltins%.200s() takes no keyword argumentsfunc_defaults__defaults__ must be set to a tuple objectnumpy.random.mtrand.RandomState.negative_binomialextension type '%.200s' has no __dict__ slot, but base type '%.200s' has: either add 'cdef dict __dict__' to the extension type or add '__slots__ = [...]' to the base typePyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)_cython_3_0_12.cython_function_or_methodunbound method %.200S() needs an argument__annotations__ must be set to a dict objectnumpy.random.mtrand.RandomState.randnnumpy.random.mtrand.RandomState.weibullnumpy.random.mtrand.RandomState.logisticbroadcast%.200s does not export expected C variable %.200sFATAL: module compiled as little endian, but detected different endianness at runtime'%.200s' object is unsliceable__doc__changes to cyfunction.__defaults__ will not currently affect the values used in function callsnumpy.random.mtrand.RandomState.binomialnumpy.random.mtrand.RandomState.poissonnumpy.random.mtrand.RandomState.hypergeometricbase class '%.200s' is not a heap typenumpy.random.bit_generatornumpy.random._commoncont_broadcast_3discrete_broadcast_iiinumpy.random.mtrand.seedInterpreter change detected - this module can only be loaded into one interpreter per process.__builtins__<cyfunction %U at %p>__kwdefaults__ while calling a Python objectraise: exception class must be a subclass of BaseException%s() got an unexpected keyword argument '%U'numpy.PyArray_MultiIterNew2mtrandBad call flags for CyFunctionnumpy.random.mtrand.RandomState.__str__numpy.random.mtrand.RandomState.__getstate__numpy.random.mtrand.RandomState.__reduce__Cannot convert %.200s to %.200s'%.200s' object is not subscriptablenumpy.random.mtrand.RandomState.uniformnumpy.random.mtrand.RandomState.standard_cauchynumpy.random.mtrand.RandomState.powernumpy.random.mtrand.RandomState._initialize_bit_generatornumpy.random.mtrand.RandomState.zipfcomplexsignedintegerinexactkeywords must be strings__annotations__numpy.random.mtrand.RandomState.randomnumpy.random.mtrand.RandomState.chisquarejoin() result is too long for a Python stringgeneric__pyx_capi__int (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)€?¤Ýi@ޓ=?ASŒ¾€3@@ÉNö@ÀÁ]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛe'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msyÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒx€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9;`ð¤| ¥¤0¥¸@¥Ì`¥ô¥(	%\	ð¥„	 ©Ä	,,2P,\2PqdD`v¬E{€GÐ{ÀGð~HPäHDIà‚„I0‡ÈI ˆJ‰`J€Š JðŠìJ ‹`K@“¤K€“ÔK°“LДÀL`–œMÜM™N0šÀNtOàœˆOPÐOНP ž<P°žtPОˆP`ŸÀP°ŸüPP 4Qp HQ `QРxQ0¡´Qà¡ R@¢\Rð¢ÈR@£Sà£LS@¥ÔS°¥T@FTàFU@G`U0H U°HV`ILVJœVLàVÐLøVMlW0NäW O„XàO¸X SüXV@YðV˜Y€WÐY _ZÀ_lZ b@[°bT[eD\h ]Ðmd]s¨]@€ì]°0^ è^°“ô_€˜ü`œÜaž°b±øb Ó<c@Ü€cPá0dpöxdPú¼d0þeÀDe@fgÐägp Ðh@%Øi+ðjÀ.Ðk3Øl 6¬mà9Œn°>”opBtp0FTqðI4r°N spSt0Xøtð\äu€`ÄvPeÌwx¨\x0­xy ±lz0µ`{@¹T|Íœ|ѐ}P
Ø} , ~ðFh~ Hè~0e,ðe˜piT€pkȀ0l°mD0n˜ÀnЁPoD‚ào„‚qȂrƒrXƒ@ï ƒàï„€ðx„ðð´„ ñ…`òX…àò …°ó†ôd†€ô¬†õð†€öx‡pû¼‡@üø‡ÀüLˆ€0”ˆ1؈°1ìˆ 2$‰°2\‰à3(Š5àŠ@6˜‹ð6Œ 7dŒ 8Ȍ 8$ðAhàB䍐F؎@IðK``LœM܏@N€ND°NlO¬`OìÐP(‘`Rl‘°S¨‘0U葰U(’`Vh’X¬’àXì’àZ$“0[d“Pc¬“Àjè“ðj” k8”Pk`”€kˆ”`m°mè” o$•poL•Àot•pœ•Psø•°s –`tP–Àt€–0v¼–Ðwø–py4—Pzp—{ —€{ЗÐ{ø—P}4˜à}d˜°ƒ¨˜ „ؘ  ™‘d™p’œ™”ô™$š°•`šš̚Л›Pœ@› ž|›p ¸›€¢ø›P£(œ ¤hœ ¦¨œp§蜩,pªpЪ¨p¯è0±(ž ³hž°µ¨ž0¶Ÿà¶@Ÿ0¸|Ÿ¸¤Ÿð½ôŸ@¾ оD `¿t ð¿œ PÀĠÀÀì  Ã(¡PÄX¡pÆ”¡àÇġPÉô¡Ë$¢ËT¢Îˆ¢°Ðآ`Ñ£ÐÑ0£ÀÒ`£ Ø¤£àØ̣€Ú¤@Û(¤€ÛP¤ß¬¤zR|ˆ$lœ#ACƒEAWADtœXpœ$llœACƒEASA0”dœ/ACƒEAIMDA HA0È`œ-ACƒEAMDDD HA$ü\œ#ACƒEAWA<$dœ"AAAAC0†‡ƒ…E4A0AAAAd(dTŸê‚AAAAF€†‡ƒ…E„A€hˆGŒBH€`ŒAH€fŒGH€^ŒGH€^„LˆAŒFH€nŒWA”A˜AœB B¤A¨E¬A°H„BˆAŒBH€KŒBH€QˆHŒAH€QˆBŒAH€QŒGH€_ˆBŒAH€KˆAŒAH€oŒBH€LŒGH€G„AˆAŒAH€K„AˆAŒBH€SŒAH€QŒAH€VP€QˆEŒBH€QˆEŒEH€QˆEŒEH€QŒBH€QŒBH€Q„HˆBŒAH€QŒBH€Z„FˆFŒFH€ZˆGŒAH€G„FˆAŒAH€h„BˆAŒAH€n„BˆAŒAH€n„BˆAŒAH€n„BˆAŒAH€n„BˆAŒAH€n„BˆAŒAH€n„BˆAŒAH€n„BˆAŒAH€n„BˆAŒAH€n„BˆAŒAH€€„AˆFŒFH€aŒAH€X„AˆFŒFH€YŒAH€CŒBH€qŒDH€[ŒAH€Z„AˆFŒFH€YŒAH€SŒAH€V„AˆFŒFJ€[ŒAH€CŒBH€oŒFH€]ŒAH€Z„AˆFŒFJ€[ŒAH€UŒAH€[M€S„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€S„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€S„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€S„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€q„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€g„EˆFŒFH€aŒDH€CŒFH€Q„FˆFŒFH€U„DˆFŒFH€aŒDH€CŒFH€Q„FˆFŒFH€o„DˆFŒFH€aŒDH€CŒFH€Q„FˆFŒFH€o„DˆFŒFH€aŒDH€CŒFH€Q„FˆFŒFH€o„DˆFŒFH€aŒDH€CŒFH€Q„FˆFŒFH€o„DˆFŒFH€aŒDH€CŒFH€Q„FˆFŒFH€o„DˆFŒFH€aŒDH€CŒFH€Q„FˆFŒFH€o„DˆFŒFH€aŒDH€CŒFH€[ŒBH€^„FˆFŒFH€xŒDH€I„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€S„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€S„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€S„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€i„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€S„AˆFŒFH€YŒAH€CŒFH€Q„FˆFŒFH€S„AˆFŒFH€YŒAH€CŒFH€]ŒEH€M„AˆFŒFH€YŒAH€lˆAŒAE€`ŒAH€C„DˆFŒFH€iŒDH€rˆAŒDE€cŒDH€C„AˆFŒFH€YŒAH€lˆAŒAE€`ŒAH€C„DˆFŒFH€iŒDH€rˆAŒDE€cŒDH€C„AˆFŒFH€YŒAH€lˆAŒAE€`ŒAH€C„DˆFŒFH€iŒDH€rˆAŒDE€cŒDH€C„AˆFŒFH€YŒAH€lˆAŒAE€`ŒAH€C„DˆFŒFH€iŒDH€rˆAŒDE€cŒDH€C„AˆFŒFH€YŒAH€lˆAŒAG€eˆOŒDH€fŒAG€RˆGŒBH€QAAAAA€·ˆAŒAE€hˆAŒAE€hˆAŒAE€hˆAŒAE€hˆAŒAE€hˆAŒAE€hˆAŒAE€eˆAŒAE€eˆAŒAE€e„GˆAŒBH€]ˆAŒAE€_„GˆAŒBH€ŽŒAH€_ŒAJ€dŒAJ€ˆAŒAH€MˆAŒAH€MˆAŒAH€MˆAŒAH€MˆAŒAH€MˆAŒAH€MˆAŒAH€MˆAŒAH€MˆAŒAH€MˆAŒAH€]ˆAŒAH€uˆAŒDH€xˆAŒAH€uˆAŒDH€xˆAŒAH€uˆAŒDH€xˆAŒAH€uˆAŒDH€JˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€eŒDH€jˆAŒDD€@ˆAŒDH€cŒDH€C„AˆFŒFH€UŒAH€dˆAŒAD€@ˆAŒAH€`ŒAH€C„DˆFŒFH€aŒDH€N„FˆFŒFH€i„DˆFŒFH€aŒDH€V„FˆFŒFH€O„DˆFŒFH€aŒDH€V„FˆFŒFH€O„DˆFŒFH€aŒDH€V„FˆFŒFH€O„DˆFŒFH€aŒDH€V„FˆFŒFH€O„DˆFŒFH€aŒDH€CŒBH€Œ„AˆFŒFH€aŒDH€x„AˆAŒDG€h„AˆAŒDH€]ŒDH€p„AˆAŒDD€n„AˆAŒDH€]ŒDH€p„AˆAŒDD€n„AˆAŒDH€]ŒDH€p„AˆAŒDD€n„AˆAŒDH€]ŒDH€p„AˆAŒDD€n„AˆAŒDH€aŒDH€wˆFŒDE€rŒDH€bŒDH€h„IˆAŒBH€ŒDH€{ŒDE€~„DˆFŒFH€aŒDH€IŒDH€C„AˆFŒFH€[ŒAH€fŒAH€z„AˆAŒAD€„AˆAŒAH€cŒAH€CŒDH€]„BˆAŒAG€¸„BˆAŒAH€]„BˆAŒAD€T„BˆAŒAH€KŒBH€O„FˆFŒDH€S„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„FˆFŒDH€K„DˆFŒFH€iŒDJ€,Ì)Üù4ACƒEA[AAKAü)ìù÷DAAAAFÀ†‡ƒ…EÄAÀIÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÄFÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÄFÈFÌBÐHÀQÄFÈFÌBÐHÀUÄAÈEÌBÐHÀQÈFÌBÐHÀQÄFÈFÌBÐHÀQÄFÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÄEÈAÌAÐHÀQÈFÌBÐHÀQÄFÈFÌBÐHÀQÈFÌBÐHÀQÄDÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀQÄFÈFÌBÐHÀQÄGÈFÌBÐHÀQÈFÌBÐHÀQÈFÌBÐHÀwÈHÌEÐHÀMcÀRÌAÐLÀQÄFÈFÌBÐHÀwÈBÌDÐHÀMkÀRÌAÐLÀQÄFÈFÌBÐHÀwÈBÌDÐHÀMkÀRÌAÐLÀQÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀRÌAÐLÀQÈDÌBÐHÀTÄFÈFÌBÐHÀwÈBÌDÐHÀMkÀRÌAÐLÀQÈKÌBÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMkÀRÌAÐLÀTÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀRÌAÐLÀQÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀRÌAÐLÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMkÀRÌAÐLÀTÄFÈFÌBÐHÀwÈBÌDÐHÀMkÀRÌAÐLÀQÄDÈFÌBÐHÀ{ÈBÌDÐHÀMdÀRÌAÐLÀQÄFÈFÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMcÀRÌAÐLÀQÈFÌFÐFÔFØFÜFàFäFèFìBðHÀwÈBÌDÐHÀMcÀRÌAÐLÀTÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀRÌAÐLÀTÄFÈFÌFÐFÔFØFÜFàFäFèFìFðFôFøFüF€F„FˆFŒFF”F˜FœB HÀwÈBÌDÐHÀMcÀRÌAÐLÀSÄDÈAÌBÐHÀQÌFÐFÔFØFÜFàFäFèFìFðFôFøFüB€HÀwÈBÌDÐHÀMcÀRÌAÐLÀRÄFÈFÌBÐHÀQÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀRÌAÐLÀ{ÈBÌDÐHÀMdÀRÌAÐLÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀRÌAÐLÀQÄEÈAÌBÐHÀ{ÈBÌDÐHÀMdÀRÌAÐLÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀTÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀQÈFÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMcÀSÌAÐHÀTÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀTÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀQÌFÐFÔFØFÜFàFäFèFìFðFôFøFüB€HÀwÈBÌDÐHÀMcÀSÌAÐHÀQÄFÈFÌFÐFÔFØFÜFàFäFèFìFðFôFøFüB€HÀwÈBÌDÐHÀMcÀSÌAÐHÀQÈFÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMcÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMhÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀQÈFÌFÐFÔFØFÜFàFäFèFìFðFôFøFüB€HÀwÈBÌDÐHÀMfÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀQÄFÈFÌFÐFÔFØFÜFàFäFèFìFðFôFøFüB€HÀwÈBÌDÐHÀMcÀSÌAÐHÀTÄFÈDÌBÐHÀQÈFÌFÐFÔFØFÜFàFäFèFìFðFôFøFüF€F„FˆFŒBHÀwÈBÌDÐHÀMcÀSÌAÐHÀTÄFÈFÌFÐFÔFØFÜFàFäFèFìFðFôFøFüB€HÀwÈBÌDÐHÀMcÀSÌAÐHÀQÄFÈFÌFÐFÔFØFÜFàFäFèFìBðHÀwÈBÌDÐHÀMcÀSÌAÐHÀQÌFÐFÔFØFÜBàHÀwÈBÌDÐHÀMdÀSÌAÐHÀQÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀSÌAÐHÀqÈBÌDÐHÀM[ÀSÌAÐHÀQÄFÈFÌBÐHÀwÈBÌDÐHÀMdÀSÌAÐHÀQÄFÈFÌBÐHÀwÈBÌDÐHÀMhÀSÌAÐHÀ{ÈBÌDÐHÀMdÀSÌAÐHÀQÄEÈAÌFÐHÀËAAAAD<ä,AAAAC@†‡ƒ…EDA@ÄLAPH@FDBHBLAPH@MDAHFLFPH@YLAPH@DLAPH@_HFLFPH@IHBLAPH@ZHDLFPL@^LAPL@fHFLFPH@GHBLEPH@uHDLFPL@[LAPT@zDIHE@aDCHALBPHLDPJ@wHFLFPH@IHBLAPH@^LAPH@EHALFPH@VLDPHDFHFLFPH@YDDHALBPH@HAAAAA@ÐL=¬0’AAAAC †‡ƒ…E$A I,G0H R$L(E,A0H _,A0H C,A0H M$L(B,A0H _,A0H C,A0H M$L(B,A0H _,A0H C,G0H M$L(B,A0H Q$L(E,A0H Q$L(E,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H Q$L(B,A0H _,A0H C,G0H M$L(B,A0H M$L(B,A0H b$L(B,A0H o,A0H EAAAA< ?x3ÏAAAAC †‡ƒ…E$A ½AAAA<`?4AAAAC †‡ƒ…E$A 
AAAAà ?è6QAAAAC †‡ƒ…G$A I,A0H h$B(A,A0H d$B(A,A0H e,A0H E(A,A0E \(A,A0E z,A0H NAAAAA C,A0L ^,A0H U,A0H N,B0B4A8F<A@H [,A0H L(A,A0H O(A,A0H \„@d8eAAAAC †‡ƒ…I$A T,D0A4A8F<A@H R,A0L CAAAAA <ä@t8AAAAC0†‡ƒ…I4A0`AAAAA0@$AT9EAAAAC@†‡ƒ…EDA@ŠAAAAA@@hA`=pAAAAC †‡ƒ…I$A &AAAAA P¬AŒ>ZAAA†ƒGAICAF HTAAANAAEEAA<B˜>qAAAAC0†‡ƒ…E4A0uAAAAA0H@BØ?gACƒEARAAgAAOAACAA HApŒBü?­ACƒEA_BAA HGAACAA HGAEGAA EnAAAA HKA@C8@˜AAAAC@†‡ƒ…KDA@rAAAAA@,DC”G?AAA†ƒEAsAA0tC¤G,ACƒEAMGCA HA´¨C GAAAAC †‡ƒ…E$A i$A(A,A0D N$C(B,A0H K(B,A0H G(H,A0H R,A0L CB F(C,A0HAAAAA M$C(A,A0G Q,A0H I$I(A,B0H EØ`DHŠAAAAC †‡ƒ…E$A \(A,A0E R(A,A0E R(A,A0E R(A,A0E R(A,A0E R(A,A0E R(A,A0E R(A,A0E R(A,A0E R(A,A0E N(A,A0E N(A,A0E |(A,A0E GAAAA<<E¼HRAAAAC †‡ƒ…E$A @AAAA4|EÜJ=ACƒEAUAA HAAPA¨´EäJ0AAAAC †‡ƒ…G$A z,A0H K(B K,A0H N(B,B C$A(A,B K,A0H O(C,A0EB I(G,B0H EAAAAA P$H(A,B0B i$B(A,B0°`FhK‚AAAAC@†‡ƒ…MDA@ZLAPH@°LAPH@dDAHALDPH@rDEHELDPH@IDDHALDPK@ULAPH@eLAPH@ELDPH@GAAAAA@LLAPH@MHGLBPH@GDMD(GPMpAAA†ƒEAdAAA^AAA\AA,pGxMtACƒEAjAA|A8 GÈMLAAA†ƒEAdAAAYAA4ÜGÜM…ACƒEAFAAMAAbAH4N4(H@N…ACƒEAFAAMAAbA8`H˜NDAAA†ƒEAdAAAQAA4œH¬N•ACƒEAFAAMAArAÔHOèH O EAI(O6EA8IPOSAAA†ƒEAaAAAcAAhTItO°AAA†‡ƒEAtHAB HhAAACA JAAAAIGB HFAA8ÀI¸OSAAA†ƒEAaAAAcAAhüIÜO°AAA†‡ƒEAtHAB HhAAACA JAAAAIGB HFAA8hJ PMAAA†ƒEAaAAA]AAD¤J4P˜AAC †ƒE$A UAAA MAAA bAA„ìJŒP]AAAAC †‡ƒ…E$A @,B0H `,B0A4B8B<F@H S,A0H Y(A,A0E U,A0H ZAAAAA L(A,A00tKdQiAAA†ƒGATAAA„¨K Q‹ AAAFÀ\†‡ƒEÄ\AÀ\æŸÌ\AÐ\HÀ\VÈ\AÌ\AÐ\HÀ\\Ä\AÈ\AÌ\AÐ\HÀ\KÈ\AÌ\AÐ\HÀ\YÌ\AÐ\HÀ\KAAAp0L¨ñ”AAA†ƒGA\BAA HGAAAGAA E_GAB JCAAAAA HX¤LÔñ_ACƒEAVBAA HAAGAA EGAAAA HNA<MØñìAAAAC †‡ƒ…E$A ÚAAAAd@Mˆò}AAA†ƒEACAAAHAAACAA HAAAEAAAHAA@¨M ò©AAAAC †‡ƒ…E$A sAAAAA LìMó­AAAAC †‡ƒ…E$A (A,C0H JAAAAA @<NlóqAAAAC †‡ƒ…E$A aAAAAA €N¨õ3EAp˜NÐõ·AAAAC †‡ƒ…E$A w$B(A,D0H N$E(A,E0H$D(A,A0H$D(D,A0H _AAAAtOö–AAAAC †‡ƒ…I$A S,G0H G$D(A,A0E PAAAAA C$D(A,A0HB V(G,B0H œ„ODöìAAAAC †‡ƒ…E$A g(G,B0G C(A,A0HAAAAA C,B0J I$B(A,A0H S,A0H Z$A(A,B0G C(A,A0H QE C,A00$P”ö¸AAA†ƒEA}AAA@XP ÷¶AAAAC0†‡ƒ…E4A0´AAAAA0@œPœúìAAAAC0†‡ƒ…E4A0ÎAAAAA0TàPHýVAAAAC †‡ƒ…E$A \(A,A0E Q(A,A0E IAAAA48QPý‡AAAC †‡ƒE$A wAAA@pQ¨ý‘AAAACP†‡ƒ…ETAPAAAAAPT´Q“AAA†ƒEASBA IiAAA[AAAIBFA IÐRLÖAAAAC †‡ƒ…I$A ë,E0H J$A(D,A0D F$A(D,A0HE C,E0H _,G0H K$B(A,A0G s,G0H K(B,A0B C$B(A,A0J N,G0H G(A,A0E PAAAAA V(G,B0H àRXìôRT[AAAAC †‡ƒ…E$A y(A,A0E \$G(F,A0H e,G0H K$A(A,E0E `,A0H Q,A0H X,A0L U,A0L C(M,E0H GAAAAA I$Y(A,B0A4A8A<B@H O,H0H J(A,A0H a$A(A,E0H v(G,B0H ØäSÄzAAAAC0†‡ƒ…E4A0x8A<A@E0r<A@L0c<C@H0X<A@L0u<A@H0M<F@H0i4Y8A<B@ADAHALBPH0H8M<E@H0G<A@L0jAAAAA0{4D8A<A@H0V8A<A@H0g<A@M0C8M<E@E0@ÀTh:AAAACP†‡ƒ…ETAPkAAAAAP@Ud)AAAACP†‡ƒ…ETAPªAAAAAP@HUP5
AAAAC`†‡ƒ…EdA`HAAAAA`@ŒUL"j
AAAAC`†‡ƒ…EdA`•AAAAA`´ÐUx/nAAAAC0†‡ƒ…E4A0–4P8A<A@ADAHALBPH0H8M<E@H0E<F@H0}<M@ADAHALAPI0V<A@L0CAAAAA0P<A@H0C8R<E@E0Q4A8A<A@H0ˆV01„AAAAC0†‡ƒ…E4A0˜4P8A<A@ADAHALBPH0H8M<E@E0v<D@H0w8A<A@E0\4A8F<A@H0c<G@H0K4D8A<A@E0`<A@H0U<A@H0X<A@L0U<A@L0C8M<E@H0GAAAAA08A<A@H0l4A8A<E@H0P4D8A<A@H0@8G<B@H0”W´3ÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPܜX|7‡AAAAC@†‡ƒ…EDA@ÆDVHALAPATAXA\B`H@HHMLEPH@]LDPH@„LDPH@DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@UDAHALAPH@Ð|Y,:|AAAAC0†‡ƒ…E4A0–4P8A<A@ADAHALBPH0H8M<E@H0E<F@H0}4M8B<A@ADBHALAPBTAXA\B`AdAhAlApI0V<A@L0CAAAAA0P<A@H0C8R<E@E0Q4A8A<A@H0DPZØ;eAAAAC€†‡ƒ…E„A€uAAAAA€@˜ZNŸ"AAAACp†‡ƒ…EtApPAAAAAp@ÜZ\pAAAACP†‡ƒ…ETAPaAAAAAP¬ [¸xAAAAC`†‡ƒ…EdA`ÊlDpH`›dPhAlApAtAxA|B€H`HhMlEpH`ÈlDpH`älDpH`¤lDpH`adAhAlApH`CAAAAA`SdDhAlApH`DÐ[}AAAAFÀ†‡ƒ…EÄAÀV
AAAAAÀ@\ð‘ÞAAAAC0†‡ƒ…E4A0¬AAAAA0@\\Œ•ÞAAAAC0†‡ƒ…E4A0¬AAAAA0@ \(™‡AAAACp†‡ƒ…EtApœAAAAApÐä\t«|AAAAC0†‡ƒ…E4A0–4P8A<A@ADAHALBPH0H8M<E@H0E<F@H0}4M8B<A@ADBHALAPBTAXA\B`AdAhAlApI0V<A@L0CAAAAA0P<A@H0C8R<E@E0Q4A8A<A@H0è¸] ­ÄAAAACP†‡ƒ…ETAPÊ\D`HPsTVXA\A`AdAhAlBpHPHXM\E`HPÚ\D`HP¤\D`HP•TMXB\A`FdBhFlApBtAxD|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPܤ^±³AAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@è„_ä³—AAAACP†‡ƒ…ETAPÊ\D`HPŒTPXA\A`AdAhAlBpHPHXM\E`HPÇ\D`HP”\D`HP{TMXB\F`FdBhFlApBtFxD|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPp`˜·ÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPxa`»·AAAAC`†‡ƒ…EdA`ÊlDpH`^dVhAlApAtAxA|B€H`1lDpH`„lDpH`udYhAlBpAtAxA|F€H`ChOlEpH`slDpH`{dMhBlFpDtBxF|D€B„FˆAŒBA”A˜AœA I`VlApL`CAAAAA`PlApH`ChRlEpE`UdAhAlApH`ܐbÀ³AAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@pcèÂÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPÐxd°ÆAAAAC0†‡ƒ…E4A0–4P8A<A@ADAHALBPH0H8M<E@H0E<F@H04M8B<A@ADBHALAPBTAXA\B`AdDhAlApI0V<A@L0CAAAAA0P<A@H0C8R<E@E0Q4A8A<A@H0ÜLelȳAAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@,fLËÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPÜ4gϳAAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@ÜhôѳAAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@ÜôhÔÔ³AAAAC@†‡ƒ…EDA@LDPH@SDPHALAPATAXA\B`H@HHMLEPH@~LDPH@‹DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@QDAHALAPH@èÔi´×±AAAACP†‡ƒ…ETAPÊ\D`HPqTVXA\A`AdAhAlBpHPHXM\E`HPÌ\D`HP¤\D`HP‹TMXB\F`FdBhFlApBtFxA|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPèÀjˆÛ±AAAACP†‡ƒ…ETAPÊ\D`HPqTVXA\A`AdAhAlBpHPHXM\E`HPÌ\D`HP¤\D`HP‹TMXB\F`FdBhFlApBtFxA|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPè¬k\ß±AAAACP†‡ƒ…ETAPÊ\D`HPqTVXA\A`AdAhAlBpHPHXM\E`HPÌ\D`HP¤\D`HP‹TMXB\F`FdBhFlApBtFxA|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPè˜l0ã±AAAACP†‡ƒ…ETAPÊ\D`HPqTVXA\A`AdAhAlBpHPHXM\E`HPÌ\D`HP¤\D`HP‹TMXB\F`FdBhFlApBtFxA|B€A„DˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HP܄mç‡AAAAC@†‡ƒ…EDA@ÆDVHALAPATAXA\B`H@HHMLEPH@]LDPH@„LDPH@DMHBLAPATBXA\A`BdFhDlBpAtDxA|A€I@VLAPL@CAAAAA@PLAPH@CHRLEPE@UDAHALAPH@dn´éÇAAAACP†‡ƒ…ETAPº\D`HPeTVXA\A`AdAhAlBpHPú\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{TMXB\F`FdBhFlDpBtFxA|B€A„AˆAŒAIPV\A`LPCAAAAAPP\A`HPCXR\E`EPUTAXA\A`HPDlo|í¹AAAAFІ‡ƒ…EÔAÐëAAAAAÐD´oôê&AAAAF°†‡ƒ…E´A°"AAAAA°üoœ/.AAAACP†‡ƒ…ETAPÊ\D`HPcTVXA\A`AdAhAlBpHPü\D`HPcTZXA\B`AdAhAlBpHPHXM\E`HPu\D`HP{THXF\F`BdFhDlBpFtAxB|B€A„AˆAŒAIPW\A`HP]\A`LPCAAAAAPO\A`HPCXR\E`EPCXR\E`LPeTAXA\A`HPðq°3íAAAAC@†‡ƒ…EDA@ÂDVHALAPATAXA\B`H@HHMLEPH@aLDPH@”LDPH@“DHHALAPBTAXA\B`FdAhBlBpAtDxA|A€I@WLAPH@]LAPL@CAAAAA@OLAPH@CHRLEPE@CHRLEPL@cDAHALAPH@ðr¬6AAAAC@†‡ƒ…EDA@
LDPH@QDPHALAPATAXA\B`H@HHMLEPH@‚LDPH@‡DHHALAPBTAXA\B`FdDhBlBpAtAxA|A€I@WLAPH@]LAPL@CAAAAA@OLAPH@CHRLEPE@CHRLEPL@aDAHALAPH@ðsÈ9AAAAC@†‡ƒ…EDA@
LDPH@QDPHALAPATAXA\B`H@HHMLEPH@‚LDPH@‡DHHALAPBTAXA\B`FdDhBlBpAtAxA|A€I@WLAPH@]LAPL@CAAAAA@OLAPH@CHRLEPE@CHRLEPL@aDAHALAPH@Dôsä<¿AAAAF°†‡ƒ…E´A°AAAAA°ð<t\PAAAAC@†‡ƒ…EDA@
LDPH@QDPHALAPATAXA\B`H@HHMLEPH@‚LDPH@‡DHHALAPBTAXA\B`FdDhBlBpAtAxA|A€I@WLAPH@]LAPL@CAAAAA@OLAPH@CHRLEPE@CHRLEPL@aDAHALAPH@D0uxS4<AAAAF°†‡ƒ…E´A°06AAAAA°DxupÆAAAAF †‡ƒ…E¤A AAAAA DÀuø­ÎAAAAF°†‡ƒ…E´A°`AAAAA°|v€È¨AAAAC0†‡ƒ…E4A0¬<F@H0e4Y8A<B@ADAHALBPH0H8M<E@H0EAAAAA0{4A8A<A@H0@ˆv°ÉŽAAAAC`†‡ƒ…EdA`­AAAAA`hÌvüåÀAAAAC †‡ƒ…E$A D$A(A,B0H EAAAAA J$E(A,C0H [$J(A,B ¸8wPæ~AAAAC0†‡ƒ…I4A0W<A@H0V4E8E<A@H0Z<A@H0.8A<A@H0Y8A<A@H0V4D8A<B@B0O4D8A<B@H0Y<A@H0_<A@L0CAAAAA0Y<A@H0f4pôwéöAAAAC †‡ƒ…G$A ¸$A(A,A0H _,A0J B,A0L yAAAAA F$A(A,D0J 4hx ê±AAAC †‡ƒG$A fAAAA @ x(ërAAAAC †‡ƒ…E$A ðAAAAA Päxdì€AAA†ƒEAbAAAQAAApAAAHAA48yì‹ACƒGA_AArAAhAppyèì‡AAA†‡ƒGA[G A$A(A,B0HOABB HVAAACAAACA HCAA<äyí„AAAAC †‡ƒ…E$A rAAAA@$zTí¢AAAAC0†‡ƒ…I4A0SAAAAA08hzÀîzAAA†ƒEA`AAAKAAP¤zï€AAA†ƒEAbAAAQAAApAAAHAADøz0ï°|AAAAFÀ†‡ƒ…GÄAÀµtAAAAAÀh@{˜k•AAA†ƒEAvAAAHAAAHAAAKBAA HEAAEWAAh¬{Ìk—AAA†ƒEAyAAAEAAAJAAAKBAA HEAAEWAA8|laAA†‡EAvAACAAZAXT|4l§AAAAC †‡ƒ…E$A M$C(A,B0H EAAAAA I(G,B0G D°|ˆl¸AAC †ƒE$A dAAA @AAA @AADø|mzAAA†ƒEA`AAA@AAAHAAp@}8mÇAAAAC †‡ƒ…E$A ~$A(A,A0H I$D(A,A0F T,A0L `$C(A,B0H HAAAAL´}”mPAAA†ƒEA]AA EAAARAAAHAAD~”m|AAA†ƒEAyAAAiAAAHAA@L~ÌmAAAAC †‡ƒ…G$A YAAAAA „~˜nìAAAAC †‡ƒ…G$A h$B(A,A0H Y,G0H T,A0L I(A,A0E \$I(A,B0H EAAAAA (A,A0H @oëAAAAC0†‡ƒ…G4A0‡AAAAA08\¬sÈAAAC †‡ƒE$A yAAAA P˜@t€AAA†ƒEAbAAAQAAApAAAHAADìlt±3AAAAC€†‡ƒ…I„A€i0AAAAA€@4€ä§
AAAAC0†‡ƒ…E4A0ÁAAAAA0x€°¨4Œ€¼¨nAAAC †‡ƒE$A ^AAA4Āô¨AAAC †‡ƒE$A AAAÈü€L©,AAAAFà†‡ƒ…GäAàPèAìAðHàbäAèAìBðHàBèGìAðAôAøAüF€HàQìAðHàHAAAAAà\äIèAìAðAôAøEüE€HäBèAìBðHà´ȁ°©(AAAAC †‡ƒ…I$A I(G,A0H P(A,E0H I(D,A0H K(D,A0H h,A0H G$A(A,A0H Q,A0H E,A0H(G,D0A4A8A<D@H Z,A0H EAAAA´€‚(ª(AAAAC †‡ƒ…I$A I(G,A0H P(A,E0H I(D,A0H K(D,A0H h,A0H G$A(A,A0H Q,A0H E,A0H(G,D0A4A8A<D@H Z,A0H EAAAAh8ƒ ª¨AAAAC †‡ƒ…E$A E(B,B0FAAAAA [$C(A,B0B O$C(A,B0H E\¤ƒäª¦AAA†‡ƒEAOCB FAAAA[BOBAB HCAA`„4«€AAAAC †‡ƒ…E$A |,D0A4A8A<B@FAAAAA I$H(A,B0H EXh„P«sAAA†‡ƒEAzAAB FAAAAIHAB HCAA@Ąt«M	AAAACP†‡ƒ…ETAP¸AAAAAPx…€´áAAAAC †‡ƒ…E$A O$C(A,F0H e(A,A0E V,A0L CAAAAA _(A,A0H S(O,E0H ð„…ô´¥AAAAC0†‡ƒ…E4A0f4C8A<F@H0y4C8A<B@H0Q<A@H0C8R<E@E0D<F@H0e4Y8A<B@ADAHALBPH0H8M<E@H0~4D8A<A@H0l8V0I8G<B@H0@8D<A@E0V<A@H0k<A@L0CAAAAA0C8R<E@H0@x†°·°AAAAC0†‡ƒ…E4A0•AAAAA0@¼†º°AAAAC0†‡ƒ…E4A0•AAAAA08‡ˆ¼aAA†‡EAvAACAAZA<<‡¼¼­AAAAC†‡ƒ…E A›AAAA<|‡,½%AAAAC †‡ƒ…E$A AAAA$¼‡¾;ACƒEAoA$ä‡4¾!ACƒEAUA<ˆ<¾NAAAAC †‡ƒ…E$A |AAAA<LˆL¾_AAAAC †‡ƒ…E$A MAAAA8Œˆl¾eAAAF†‡ƒE”ARAAA@Ȉ ¿‚AAAAC†‡ƒ…E”ApAAAA8‰ìÀLAACP†ƒETAPïAAAPLAA<H‰ÂrAAAAC`†‡ƒ…EdA``AAAA<ˆ‰@ÃwAAAACP†‡ƒ…ETAPeAAAA<ȉ€Ã¦AAAAC`†‡ƒ…EdA`”AAAA@ŠðÃ#AAAAFÀ†‡ƒ…EÄAÀAAAA<LŠÜÅMAAAAC †‡ƒ…E$A {AAAA4ŒŠìÅóAAACp†‡ƒEtApãAAA<Ċ´ÇMAAAAC †‡ƒ…E$A {AAAAD‹ÄÇAAAAF†‡ƒ…E”A`AAAAA8L‹œÏcAAAFÀ†‡ƒEÄAÀPAAA$ˆ‹ÐÖ'ACƒEA[A$°‹ØÖ#ACƒEAWA$؋àÖ%ACƒEAYA$ŒèÖ#ACƒEAWA4(ŒðÖÚAAAC`†‡ƒEdA`ÊAAA$`Œ˜ØCAC ƒE$A wA8ˆŒÀØbAAAC€†‡ƒE„A€RAAA$ČôÙCAC ƒE$A wA$ìŒÚIAC0ƒE4A0}A$DÚIAC ƒE$A }AX<lÚ7AAFÀ†ƒEÄAÀ AAPÀAAAÀ{AAAÀÛAA$˜PÝ[AC0ƒE4A0OA,
ˆÝ¤AACP†ƒETAP–AA,ðÞXAAC@†ƒEDA@JAA8 Ž8ÞaAAAC€†‡ƒE„A€QAAA8\Žlß’AAAF†‡ƒE”AAAA8˜ŽÐà˜AAAF†‡ƒE”A…AAA8Ԏ4âÕAACP†ƒETAP}AAAPGAA,Øâ®AACP†ƒETAP AA,@XãAAC0†ƒE4A0qAA$p¨ãBAC ƒE$A vA8˜ÐãrAAAC€†‡ƒE„A€bAAA,ԏåƒAAC@†ƒEDA@uAA@tåËAAAAFІ‡ƒ…EÔAжAAAA,HëkAAC0†ƒE4A0]AADx@ëú
AAAAF€†‡ƒ…E„A€U
AAAAA€@øõæAAAAC`†‡ƒ…EdA`¶AAAAA`4‘¤÷RAAACP†‡ƒETAPBAAAT<‘ÌøAACp†ƒEtApAAAAp]AAAp‚AAApfAA,”‘ú¦AACP†ƒETAP˜AA8đ”úîAAC@†ƒEDA@ÇAAA@VAAh’HûBAAFà†ƒEäAàGAAAàiAAAà¹AAAà¥AAAàWAAHl’,ÿÎAAF †ƒE¤A –AAA TAAA MAA$¸’°tAC ƒE$A hA8à’ÊAAAF †‡ƒE¤A ·AAA8“œPAAAF †‡ƒE¤A =AAA<X“°AAF †ƒE¤A iAAA ÒAA,˜“€ÎAC@ƒEDA@AA@qA<ȓ ÄAAAAC †‡ƒ…E$A ²AAAA<”°tAAAAC@†‡ƒ…EDA@bAAAA<H”ð	ÃAAAAC †‡ƒ…E$A ±AAAA@ˆ”€
AAAAC0†‡ƒ…E4A0/AAAAP0@̔ÌfAAAAC0†‡ƒ…E4A0AAAAI04•øUAAAC †‡ƒE$A EAAA<H• 
œAAAACP†‡ƒ…ETAPŠAAAA<ˆ•€¸AAAAC0†‡ƒ…E4A0¦AAAA<ȕlAAAAC0†‡ƒ…E4A0ZAAAA<–0AAAAC0†‡ƒ…E4A0ôAAAATH–zAAAAC †‡ƒ…E$A z,F0F JB H$D(A,A0HAAAA< –(¯AAAAC@†‡ƒ…EDA@AAAA8à–˜LAAC`†ƒEdA`fAAA`AA$—¬\AC0ƒE4A0PALD—äZAAF°†ƒE´A°™AAA°‡AAA°cAA$”—ôIAC0ƒE4A0}A$¼—‰AC0ƒE4A0}A,䗄ŽAC0ƒE4A0_AA0aA$˜ä‹AC@ƒEDA@A$<˜L[AC0ƒE4A0OA$d˜„dAC0ƒE4A0XA8Œ˜Ì×AAAF †‡ƒE¤A ÄAAA,Șp"¦AACP†ƒETAP˜AA8ø˜ð"AACp†ƒEtAp÷AAApVAA,4™Ô$pAAC`†ƒEdA`bAA,d™&oAACP†ƒETAPaAA,”™T'¹AACp†ƒEtAp«AA,ęä(rAAC0†ƒE4A0dAA0ô™4)tAAC€†ƒE„A€fAAL(š€+œAAF°†ƒE´A°<AAA°rAAA°×AA,xšÐ-¤AACP†ƒETAP–AA$¨šP.dAC0ƒE4A0XA,ʘ.âAAC †ƒE$A ÔAA@›X/ÕAAAAF †‡ƒ…E¤A ÀAAAA$D›ô42AC ƒE$A fA0l›5 AAC€†ƒE„A€’AA$ ›x6´AC@ƒEDA@¨A$ț73AC ƒE$A gAXð›(7†AAFІƒEÔAÐGAAAÐiAAAÐ¥AAAÐWAA8Lœ\:¨AAAF†‡ƒE”A•AAASƒìè[Ó‡ƒ4þÿÿ‰$èr<ƒÄ[АÐéëÿÿÿSƒìè[ÃC‡‹D$…ÀtÿЃÄ[ÐSƒìè[Ã#‡ƒìƒ4þÿÿ‹´xúÿPÿt$Qè<ƒÄ[ÐSƒìè[Ã󆍃4þÿÿPÿt$ÿt$ÿt$èè;ƒÄ[ÃÌÌÌSƒìè[Ãƍƒ\B‰$èÒ;ƒÄ[АUSWVƒìè[Ð†è¸;‹@‰$è½;‹‹°B‹³¬B‰÷!σÿÿt'1Æ1Ñ	ñt6‹ƒÿÿÿ‹‹,‡ùÿ‰L$‰$è–;é·‰ƒ¬B‰“°B!Ѓøÿ„ ‹³DM…öt‹=ÿÿÿ?„‹@‰éƒ‹L$0ƒâ€ùÿ‰D$‰$èU;1ö…À„Z‰lj$èQ;‹ùÿÿÿ?tI‰u‰<$‰ÇèH;‰ø…À„-‰Ɖ$èD;‰D$…À„ƒfùÿ‰D$‹D$0‰$èò:…À„„‰ʼnD$ƒTvùÿ‰D$‹D$‰$è;‰NjE=ÿÿÿ?tH‰Eu‰,$èÔ:…ÿˆ»ƒ~ùÿ‰D$‹|$0‰<$è–:…À„F‰ʼnD$ƒìtùÿ‰D$‹D$‰$è²:‹Mùÿÿÿ?tI‰Mu‰,$‰Çèw:‰ø‹|$0…ÀˆXƒõtùÿ‰D$‰<$è7:…À„‰ʼnD$ƒfùÿ‰D$‹D$‰$èS:‹Mùÿÿÿ?tI‰Mu‰,$‰Çè:‰ø‹|$0…Àˆùƒütùÿ‰D$‰<$èØ9…À„ĉÅ;ƒÿÿÿt*‰l$ƒ_|ùÿ‰D$‹D$‰$èì9Áè‹Mùÿÿÿ?uë1Mùÿÿÿ?tI‰Mt
„À„™é‹‰,$‰Çè’9‰ø„À„€ëu‹ƒÿÿÿ‹‰$è¦9…Àtaè­9éœþÿÿ‹ƒÿÿÿ‹‰$èˆ9…ÀtCè9éáþÿÿ‹ƒÿÿÿ‹‰$èj9…Àt%èq9é"ÿÿÿ‹ƒÿÿÿ‹‰$èL9…ÀtèS9ë	‰ñè
ƒ1ö‰ðƒÄ^_[]АUSWVììè[Ã]ƒ‹„$‹‹DM…Ét,9Á„‹ƒÿÿÿƒì‹xxùÿQÿ0èz8ƒÄ¸ÿÿÿÿéû0‰ƒDM‹ùÿÿÿ?tA‰ƒìPè‘8ƒÄ‰ƒLMÇD$…À„µ1‹ùÿÿÿ?tA‰ƒìƒ¤ùÿPèœ8ƒÄ…À„‹ùÿÿÿ?tA‰‰ƒPMƒìƒ
zùÿPèo8ƒÄ…À„„‹ùÿÿÿ?tA‰‰ƒTMƒìƒ‹‡ùÿÿ³PMPÿ³DMèF8ƒÄ…Àˆ_‹ƒÿÿÿ‹‰AáÿÿùtP‰ÁÁéÁè¶Ѓì»dcùÿ«õÿƒ:~ùÿt$,RQWUjjPhÈVèû7ƒÄ,jVjèþ7ƒÄ…Àˆoƒìjèù7ƒÄ‰ƒXM…À„
1ƒì³õÿjVèç7ƒÄ‰ƒ\M…À„õ0ƒìjVèÛ7ƒÄ‰ƒ`M…À„ã0ƒìƒxvùÿPè[7ƒÄ…À„މƋ=ÿÿÿ?t@‰‹»PFƒìj.Wè¡7ƒÄh…ÀDïƒìUVè¬6ƒÄ…Àtb‰Nj@ƒxTˆ¼ƒ:}ùÿéÊ1Àé/ǃPM¿€éW.ǃTM¿€éC.¿€é9.ǃdMé%.‹ƒÿÿÿƒìÿ0èƒ6ƒÄ…Àtaè‡6ƒì»DFWè7ƒÄ…ÀxFƒìWUVè†6ƒÄ…=xj‹ƒDF=ÿÿÿ?t@‰ƒDFë¿*€éÁ-‹G;ƒTFu‰ýë;1íë7ƒscùÿ‹‹ÿÿÿƒìUPÿ1è¯6ƒÄ‹1í=ÿÿÿ?tH‰uƒìWè³5ƒÄ‹=ÿÿÿ?tH‰uƒìVè™5ƒÄ‰«dM…í„J-è#ùƒìWÀò$èc6ƒÄ‰ƒøV…À„×.ƒìhð?jèC6ƒÄ‰ƒüV…À„·.ƒìhŽyE>h:Œ0âè 6ƒÄ‰ƒW…À„”.ƒìhhð?hq¬‹Ûèý5ƒÄ‰ƒW…À„q.ƒìjèò5ƒÄ‰ƒW…À„V.ƒìjè×5ƒÄ‰ƒW…À„;.ƒìƒ<`ùÿjjPèÃ5ƒÄ‰ƒW…À„.ƒìjÿè˜5ƒÄ‰ƒW…À„ü-ƒ»0Mt%ƒìÿ³ðRÿ³hSÿ³DMè„5ƒÄ…ÀˆÂ,è„5…À„U.‰ƃ썻õÿWPèz5ƒÄ…Àuƒìÿ³DMWVèC4ƒÄ…Àˆ±0‹³ìQ‹ƒPM‹H‹IH;‹ÿÿÿ….jjVPè?5ƒÄ…À„.‰ƒŒY‹³¨O‹ƒPM‹H‹IH;‹ÿÿÿ….jjVPè5ƒÄ…À„
.‰ƒY‹³œO‹ƒPM‹H‹IH;‹ÿÿÿ…ù-jjVPèË4ƒÄ…À„.‰ƒ”Y‹³„O‹ƒPM‹H‹IH;‹ÿÿÿ…î-jjVPè‘4ƒÄ…À„÷-‰ƒ˜Y‹³U‹ƒPM‹H‹IH;‹ÿÿÿ…ã-jjVPèW4ƒÄ…À„ì-‰ƒœY‹³ÄM‹ƒPM‹H‹IH;‹ÿÿÿ…Ø-jjVPè4ƒÄ…À„á-‰ƒ Y‹³èM‹ƒPM‹H‹IH;‹ÿÿÿ…Í-jjVPèã3ƒÄ…À„Ö-‰ƒ¤Y‹³¤O‹ƒPM‹H‹IH;‹ÿÿÿ…¿-jjVPè©3ƒÄ…À„È-‰ƒ¨Y‹³4U‹ƒPM‹H‹IH;‹ÿÿÿ…±-jjVPèo3ƒÄ…À„º-‰ƒ¬Y‹³ÐM‹ƒPM‹H‹IH;‹ÿÿÿ…Ò-jjVPè53ƒÄ…À„Û-‰ƒ°Y‹‹ÌMèù•‰ƒ´Y…À„‘-èö{…Àˆ#*èéÀ…Àˆö-èìŅÀˆõ-èʅÀˆô-èB˅Àˆó-‹‹TèO΅À„ì-‰ƃìPÿ³Tÿ³LMè°2ƒÄÇD$…Àˆ¾)‹=ÿÿÿ?tH‰uƒìVè&1ƒÄ‹‹ÄVèøÍ…À„Ç-‰ƃìPÿ³ÄVÿ³LMèY2ƒÄ…Àˆ)‹=ÿÿÿ?tH‰uƒìVè×0ƒÄƒìjè:2ƒÄ…À„œ-‰ƋƒˆO‹ùÿÿÿ?t	A‰‹ƒˆO‹N‰‹‹ÄPƒì‰òjèÍσÄ…À„s-‰ŋ=ÿÿÿ?tH‰uƒìVèi0ƒÄ‹“ˆO‰éè	ЅÀ„`-‰ƃìPÿ³ˆOÿ³LMèš1ƒÄ…Àˆì(‹=ÿÿÿ?tH‰uƒìVè0ƒÄ‹E=ÿÿÿ?tH‰EuƒìUèü/ƒÄ‹‹ØSèÎ̅À„-ƒìPÿ³ÌSÿ³LM‰Æè/1ƒÄ1í…Àˆ¡(‹=ÿÿÿ?tH‰uƒìVè«/ƒÄƒìjè1ƒÄ…À„ï,‹“ÜM‹
ùÿÿÿ?t	A‰
‹“ÜM‹H‰‹‹,Sƒì‰ƉÂjè¡ÎƒÄ‰D$…À„Â,‹=ÿÿÿ?tH‰uƒìVè;/ƒÄ‹“ÜM‹L$èÙ΅À„¢,ƒìPÿ³ØMÿ³LM‰Æèj0ƒÄ…Àˆò'‹=ÿÿÿ?t‰ñH‰uƒìQèæ.ƒÄ‹L$‹=ÿÿÿ?tH‰uƒìQèÈ.ƒÄèÏƒøÿ„ë,‹ƒHMòƒìò$è/ƒÄ…À„Ý,‰Ƌƒ¼MƒìVÿ³dTÿ°„èØ/ƒÄ…Àˆ~'‹=ÿÿÿ?tH‰uƒìVèV.ƒÄƒìÿ³¼MèÅ/ƒÄ‹´Bºÿ³¨Xÿ³LMÿ³ìSÿ³øMè:ӃÄ…À„},‰Ƌƒ¼MƒìVÿ³¼Qÿ°„èR/ƒÄ…Àˆ'‹=ÿÿÿ?tH‰uƒìVèÐ-ƒÄƒìÿ³¼Mè?/ƒÄ‹ÄBºÿ³¬Xÿ³LMÿ³ìSÿ³Nè´ÒƒÄ…À„,‰Ƌƒ¼MƒìVÿ³€Uÿ°„èÌ.ƒÄ…Àˆ¸&‹=ÿÿÿ?tH‰uƒìVèJ-ƒÄƒìÿ³¼Mè¹.ƒÄ‹ÔBºÿ³°Xÿ³LMÿ³ìSÿ³üMè.҃Ä…À„½+‰Ƌƒ¼MƒìVÿ³Uÿ°„èF.ƒÄ…Àˆ\&‹=ÿÿÿ?tH‰uƒìVèÄ,ƒÄƒìÿ³¼Mè3.ƒÄ‹äBºÿ³´Xÿ³LMÿ³ìSÿ³Oè¨ÑƒÄ…À„]+‰ƋƒìW‰FL‹ùÿÿÿ?tA‰ÇD$‹ƒ¼MƒìVÿ³\Uÿ°„è¢-ƒÄ…ÀˆÖ%‹=ÿÿÿ?tH‰uƒìVè ,ƒÄƒìÿ³¼Mè-ƒÄ‹ôBºÿ³¸Xÿ³LMÿ³ìSÿ³TNèуÄ…À„ß*‹“ôW‰PL‹
ùÿÿÿ?tA‰
‹‹¼Mƒì‰D$Pÿ³°Qÿ±„è-ƒÄ…Àˆl%‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èw+ƒÄƒìÿ³¼Mèæ,ƒÄ‹Cºÿ³¼Xÿ³LMÿ³ìSÿ³Oè[ЃÄ‰D$…À„X*‹ƒ¼Mƒìÿt$ÿ³tUÿ°„èn,ƒÄ…Àˆè$‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èá*ƒÄƒìÿ³¼MèP,ƒÄ‹Cºÿ³ÀXÿ³LMÿ³ìSÿ³üNèÅσĉD$…À„è)‹ƒìW‹L$‰AL‹ùÿÿÿ?tA‰‹ƒ¼Mƒìÿt$ÿ³àTÿ°„è¾+ƒÄ…ÀˆJ$‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è1*ƒÄƒìÿ³¼Mè +ƒÄ‹$Cºÿ³ÄXÿ³LMÿ³ìSÿ³ðNèσĉD$…À„^)‹ƒìW‹L$‰AL‹ùÿÿÿ?tA‰‹ƒ¼Mƒìÿt$ÿ³ÌTÿ°„è+ƒÄ…ÀˆÔ%‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è)ƒÄƒìÿ³¼Mèð*ƒÄ‹4Cºÿ³ÈXÿ³LMÿ³ìSÿ³Nèe΃ĉD$…À„Ô(‹ƒìW‹L$‰AL‹ùÿÿÿ?tA‰‹ƒ¼Mƒìÿt$ÿ³DPÿ°„è^*ƒÄ…Àˆ6%‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èÑ(ƒÄƒìÿ³¼Mè@*ƒÄ‹DCºÿ³ÌXÿ³LMÿ³ìSÿ³4NèµÍƒÄ‰D$…À„0)‹ƒX‹L$‰AL‹ùÿÿÿ?tA‰‹ƒ¼Mƒìÿt$ÿ³DQÿ°„è®)ƒÄ…Àˆè$‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è!(ƒÄƒìÿ³¼Mè)ƒÄ‹TCºÿ³ÐXÿ³LMÿ³ìSÿ³(Oè̓ĉD$…À„¦(‹ƒìW‹L$‰AL‹ùÿÿÿ?tA‰‹ƒ¼Mƒìÿt$ÿ³ÌUÿ°„èþ(ƒÄ…Àˆ^$‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èq'ƒÄƒìÿ³¼Mèà(ƒÄ‹dCºÿ³ÔXÿ³LMÿ³ìSÿ³HOèŨĉD$…À„(‹ƒìW‹L$‰AL‹ùÿÿÿ?tA‰‹ƒ¼Mƒìÿt$ÿ³DVÿ°„èN(ƒÄ…Àˆ
$‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èÁ&ƒÄƒìÿ³¼Mè0(ƒÄ‹»ÿÿÿ‹=ÿÿÿ?t@‰‰»Wƒìjè'ƒÄ‰D$…À„˜'‹ƒÿÿÿ‹ùÿÿÿ?tA‰‹L$‰A‹ùÿÿÿ?tA‰‹L$‰A‹=ÿÿÿ?t@‰‹D$‰x‹tCºÿ³ØXÿ³LMÿ³ìSÿ³àNè3˃Ä…À„8'‰ƋD$‰FL‹=ÿÿÿ?t*H‹T$‰
ùÿÿÿ?t‹L$‰…Àuƒìÿt$èÏ%ƒÄ‹ƒ¼MƒìVÿ³´Tÿ°„è'ƒÄ…Àˆð"‹=ÿÿÿ?tH‰uƒìVè%ƒÄƒìÿ³¼Mèþ&ƒÄ‹„Cºÿ³ÜXÿ³LMÿ³ìSÿ³NèsʃÄ…À„œ&‰Ƌƒ¼MƒìVÿ³tPÿ°„è‹&ƒÄ…ÀˆB#‹=ÿÿÿ?tH‰uƒìVè	%ƒÄƒìÿ³¼Mèx&ƒÄ‹”Cºÿ³àXÿ³LMÿ³ìSÿ³$NèíɃÄ…À„<&‰Ƌƒ X‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³¨Pÿ°„èï%ƒÄ…Àˆà"‹=ÿÿÿ?tH‰uƒìVèm$ƒÄƒìÿ³¼MèÜ%ƒÄ‹¤Cºÿ³äXÿ³LMÿ³ìSÿ³XOèQɃÄ…À„Æ%‰Ƌƒ(X‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³xVÿ°„èS%ƒÄ…Àˆj"‹=ÿÿÿ?tH‰uƒìVèÑ#ƒÄƒìÿ³¼Mè@%ƒÄ‹´Cºÿ³èXÿ³LMÿ³ìSÿ³ØNèµÈƒÄ…À„P%‰Ƌƒ¼MƒìVÿ³¤Tÿ°„èÍ$ƒÄ…Àˆ
"‹=ÿÿÿ?tH‰uƒìVèK#ƒÄƒìÿ³¼Mèº$ƒÄ‹ÄCºÿ³ìXÿ³LMÿ³ìSÿ³èNè/ȃÄ…À„ð$‰Ƌƒ¼MƒìVÿ³ÀTÿ°„èG$ƒÄ…Àˆª!‹=ÿÿÿ?tH‰uƒìVèÅ"ƒÄƒìÿ³¼Mè4$ƒÄ‹ÔCºÿ³ðXÿ³LMÿ³ìSÿ³ôNè©ÇƒÄ…À„$‰Ƌƒ4X‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ÔTÿ°„è«#ƒÄ…Àˆ4!‹=ÿÿÿ?tH‰uƒìVè)"ƒÄƒìÿ³¼Mè˜#ƒÄ‹äCºÿ³ôXÿ³LMÿ³ìSÿ³8Oè
ǃÄ…À„$‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³äUÿ°„è#ƒÄ…Àˆ¾ ‹=ÿÿÿ?tH‰uƒìVè!ƒÄƒìÿ³¼Mèü"ƒÄ‹ôCºÿ³øXÿ³LMÿ³ìSÿ³°NèqƃÄ…À„¤#‰Ƌƒ(X‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ÀSÿ°„ès"ƒÄ…ÀˆH ‹=ÿÿÿ?tH‰uƒìVèñ ƒÄƒìÿ³¼Mè`"ƒÄ‹Dºÿ³üXÿ³LMÿ³ìSÿ³0OèÕŃÄ…À„.#‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ØUÿ°„è×!ƒÄ…ÀˆÒ‹=ÿÿÿ?tH‰uƒìVèU ƒÄƒìÿ³¼MèÄ!ƒÄ‹Dºÿ³Yÿ³LMÿ³ìSÿ³DNè9ŃÄ…À„¸"‰ƋƒX‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³„Qÿ°„è;!ƒÄ…Àˆ\‹=ÿÿÿ?tH‰uƒìV蹃ăìÿ³¼Mè(!ƒÄ‹$Dºÿ³Yÿ³LMÿ³ìSÿ³<NèÄƒÄ…À„B"‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³PQÿ°„èŸ ƒÄ…ÀˆÌ‹=ÿÿÿ?tH‰uƒìVèƒÄƒìÿ³¼MèŒ ƒÄ‹4Dºÿ³Yÿ³LMÿ³ìSÿ³¨NèăÄ…À„Ì!‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³´Sÿ°„è ƒÄ…ÀˆV‹=ÿÿÿ?tH‰uƒìV聃ăìÿ³¼MèðƒÄ‹DDºÿ³Yÿ³LMÿ³ìSÿ³NèeÃÄ…À„V!‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³œPÿ°„ègƒÄ…Àˆà‹=ÿÿÿ?tH‰uƒìVèåƒÄƒìÿ³¼MèTƒÄ‹TDºÿ³Yÿ³LMÿ³ìSÿ³ NèɃÄ…À„à ‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³¨Sÿ°„è˃ąÀˆj‹=ÿÿÿ?tH‰uƒìVèIƒÄƒìÿ³¼M踃č‹dDºÿ³Yÿ³LMÿ³ìSÿ³ Oè-ƒÄ…À„j ‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ÀUÿ°„è/ƒÄ…Àˆ‹=ÿÿÿ?tH‰uƒìV譃ăìÿ³¼MèƒÄ‹tDºÿ³Yÿ³LMÿ³ìSÿ³@Oè‘ÁƒÄ…À„ô‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ðUÿ°„蓃ąÀˆ‹=ÿÿÿ?tH‰uƒìVèƒÄƒìÿ³¼M考č‹„Dºÿ³Yÿ³LMÿ³ìSÿ³`OèõÀƒÄ…À„~‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³¤Vÿ°„è÷ƒÄ…Àˆ‹=ÿÿÿ?tH‰uƒìVèuƒÄƒìÿ³¼MèäƒÄ‹”Dºÿ³ Yÿ³LMÿ³ìSÿ³¸NèYÀƒÄ…À„‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³4Tÿ°„è[ƒÄ…Àˆ¤‹=ÿÿÿ?tH‰uƒìVèكăìÿ³¼MèHƒÄ‹¤Dºÿ³$Yÿ³LMÿ³ìSÿ³pO轿ƒÄ…À„’‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ÈVÿ°„迃ąÀˆ.‹=ÿÿÿ?tH‰uƒìVè=ƒÄƒìÿ³¼M謃č‹´Dºÿ³(Yÿ³LMÿ³ìSÿ³ÐNè!¿ƒÄ…À„‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³pTÿ°„è#ƒÄ…Àˆ¸‹=ÿÿÿ?tH‰uƒìV衃ăìÿ³¼MèƒÄ‹ÄDºÿ³,Yÿ³LMÿ³ìSÿ³hN腾ƒÄ…À„¦‰Ƌƒ(X‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³pRÿ°„臃ąÀˆB‹=ÿÿÿ?tH‰uƒìVèƒÄƒìÿ³¼MètƒÄ‹ÔDºÿ³0Yÿ³LMÿ³ìSÿ³XNè齃Ä…À„0‰Ƌƒ(X‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ÄQÿ°„èëƒÄ…ÀˆÌ‹=ÿÿÿ?tH‰uƒìVèiƒÄƒìÿ³¼MèØƒÄ‹äDºÿ³4Yÿ³LMÿ³ìSÿ³pNèM½ƒÄ…À„º‰Ƌƒ(X‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³¼Rÿ°„èOƒÄ…ÀˆV‹=ÿÿÿ?tH‰uƒìVè̓ăìÿ³¼Mè<ƒÄ‹ôDºÿ³8Yÿ³LMÿ³ìSÿ³xN豼ƒÄ…À„D‰Ƌƒ(X‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ÈRÿ°„賃ąÀˆà‹=ÿÿÿ?tH‰uƒìVè1ƒÄƒìÿ³¼M蠃č‹Eºÿ³<Yÿ³LMÿ³ìSÿ³O較ąÀ„ΉƋƒX‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³Uÿ°„èƒÄ…Àˆj‹=ÿÿÿ?tH‰uƒìV蕃ăìÿ³¼MèƒÄ‹Eºÿ³@Yÿ³LMÿ³ìSÿ³hOèy»ƒÄ…À„X‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³°Vÿ°„è{ƒÄ…Àˆô‹=ÿÿÿ?tH‰uƒìVèùƒÄƒìÿ³¼MèhƒÄ‹$Eºÿ³DYÿ³LMÿ³ìSÿ³POèݺƒÄ…À„ê‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³PVÿ°„è߃ąÀˆ~‹=ÿÿÿ?tH‰uƒìVè]ƒÄƒìÿ³¼Mè̃č‹4Eºÿ³HYÿ³LMÿ³ìSÿ³NèAºƒÄ…À„t‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³PPÿ°„èCƒÄ…Àˆ‹=ÿÿÿ?tH‰uƒìVèÁƒÄƒìÿ³¼Mè0ƒÄ‹DEºÿ³LYÿ³LMÿ³ìSÿ³˜N襹ƒÄ…À„ì‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³xSÿ°„觃ąÀˆ’‹=ÿÿÿ?tH‰uƒìVè%ƒÄƒìÿ³¼M蔃č‹TEºÿ³PYÿ³LMÿ³ìSÿ³ÈNè	¹ƒÄ…À„‰ƋƒX‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³XTÿ°„èƒÄ…Àˆ‹=ÿÿÿ?tH‰uƒìV艃ăìÿ³¼MèøƒÄ‹dEºÿ³TYÿ³LMÿ³ìSÿ³xOèm¸ƒÄ…À„‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ìVÿ°„èoƒÄ…Àˆ¦‹=ÿÿÿ?tH‰uƒìVèíƒÄƒìÿ³¼Mè\ƒÄ‹tEºÿ³XYÿ³LMÿ³ìSÿ³LNèѷƒÄ…À„š‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³˜Qÿ°„èӃąÀˆ0‹=ÿÿÿ?tH‰uƒìVèQƒÄƒìÿ³¼MèÀƒÄ‹„Eºÿ³\Yÿ³LMÿ³ìSÿ³`Nè5·ƒÄ…À„>‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ÜQÿ°„è7ƒÄ…Àˆº‹=ÿÿÿ?tH‰uƒìV赃ăìÿ³¼Mè$ƒÄ‹”Eºÿ³`Yÿ³LMÿ³ìSÿ³€N虶ƒÄ…À„¶‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³ÔRÿ°„蛃ąÀˆD‹=ÿÿÿ?tH‰uƒìVèƒÄƒìÿ³¼M舃苤Eºÿ³dYÿ³LMÿ³ìSÿ³NèýµƒÄ…À„.‰ƋƒˆX‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³HSÿ°„èÿƒÄ…ÀˆÎ‹=ÿÿÿ?tH‰uƒìVè}ƒÄƒìÿ³¼MèìƒÄ‹´Eºÿ³hYÿ³LMÿ³ìSÿ³ˆNèaµƒÄ…À„¦‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³<Sÿ°„ècƒÄ…ÀˆX‹=ÿÿÿ?tH‰uƒìVèáƒÄƒìÿ³¼MèPƒÄ‹ÄEºÿ³lYÿ³LMÿ³ìSÿ³,NèŴƒÄ…À„‰ƋƒìW‰FL‹ùÿÿÿ?tA‰‹ƒ¼MƒìVÿ³Qÿ°„èǃąÀˆâ‹=ÿÿÿ?tH‰uƒìVèEƒÄƒìÿ³¼M贃č‹ÔEºÿ³pYÿ³LMÿ³ìSÿ³Oè)´ƒÄ…À„–‰Ƌƒ¼MƒìVÿ³ŒUÿ°„èAƒÄ…Àˆ‚‹=ÿÿÿ?tH‰uƒìV迃ăìÿ³¼Mè.ƒÄ‹äEºÿ³tYÿ³LMÿ³ìSÿ³ÀN裳ƒÄ…À„$‰Ƌƒ¼MƒìVÿ³DTÿ°„軃ąÀˆ"‹=ÿÿÿ?tH‰uƒìVè9ƒÄƒìÿ³¼M訃ċ‹¼MÇD$$ÇD$ T$$ƒìh€讋ƒÄ…À„³‰ƃìPÿ³¬Tÿ³LMè<ƒÄ…ÀˆÉ‹=ÿÿÿ?tH‰uƒìVèº
ƒÄ‹‹¬Tè<´…À„x‰ƋƒDP‹N‹IHƒì…É„sPVÿуĉD$ƒ|$„v‹=ÿÿÿ?tH‰uƒìVè^
ƒÄƒìÿt$ÿ³DPÿ³LM裃ÄÇD$…ÀˆN‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è
ƒÄ‹‹¬T萳‰D$…À„‹ƒPP‹L$‹I‹IHƒì…É„Pÿt$ÿуĉƅÀ„‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è£ƒÄƒìVÿ³PPÿ³LMèë
ƒÄ…ÀˆÌ‹=ÿÿÿ?tH‰uƒìVèiƒÄ‹‹¬Tè벅À„«‰ƋƒtP‹N‹IHƒì…É„¦PVÿуĉD$ƒ|$„©‹=ÿÿÿ?tH‰uƒìVè
ƒÄƒìÿt$ÿ³tPÿ³LMèR
ƒÄÇD$…Àˆe‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$轃ċ‹¬Tè?²‰D$…À„:‹ƒœP‹L$‹I‹IHƒì…É„3Pÿt$ÿуĉƅÀ„6‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èRƒÄƒìVÿ³œPÿ³LMèšƒÄ…ÀˆÏ‹=ÿÿÿ?tH‰uƒìVèƒÄ‹‹¬T蚱…À„Þ‰Ƌƒ¨P‹N‹IHƒì…É„ÙPVÿуĉD$ƒ|$„Ü‹=ÿÿÿ?tH‰uƒìVè¼
ƒÄƒìÿt$ÿ³¨Pÿ³LMèƒÄÇD$…Àˆh‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èl
ƒÄ‹‹¬TèD$…À„m‹ƒQ‹L$‹I‹IHƒì…É„fPÿt$ÿуĉƅÀ„i‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è
ƒÄƒìVÿ³Qÿ³LMèIƒÄ…Àˆæ‹=ÿÿÿ?tH‰uƒìVèÇ	ƒÄ‹‹¬TèI°…À„‰ƋƒDQ‹N‹IHƒì…É„PVÿуĉD$ƒ|$„‹=ÿÿÿ?tH‰uƒìVèk	ƒÄƒìÿt$ÿ³DQÿ³LMè°
ƒÄÇD$…ÀˆW‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è	ƒÄ‹‹¬T蝯‰D$…À„ ‹ƒPQ‹L$‹I‹IHƒì…É„™Pÿt$ÿуĉƅÀ„œ‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$调ăìVÿ³PQÿ³LMèø	ƒÄ…Àˆq‹=ÿÿÿ?tH‰uƒìVèvƒÄ‹‹¬Tèø®…À„V‰Ƌƒ„Q‹N‹IHƒì…É„QPVÿÑéO¿2€1ɋƒDM…Àt]ƒ»LM”€ñÑu(ƒìƒ%õÿ‹_vùÿ‰úPÿt$葱ƒÄ‹ƒDM…ÀtGǃDM‹ùÿÿÿ?t3I‰u.ƒìPèÒë è[	…Àu‹ƒÿÿÿƒì‹_vùÿQÿ0考Ä1»DMÄì^_[]ÿP€±éTÿÿÿ¿]€±éHÿÿÿ‰t$ÇD$¿t€ÇD$éÿ‰t$ÇD$¿€€ÇD$éá‰t$ÇD$ÇD$¿”€‰l$é¿¿¡€ÇD$±é×ÇD$‰t$ÇD$¿µ€é‰t$ÇD$ÇD$³¿ˀég‰t$ÇD$ÇD$É¿؀éI¿€épþÿÿ‰t$ÇD$ÇD$Ì¿å€é!1ɿI€éHþÿÿ‰t$ÇD$ÇD$Ï¿ò€é÷‰t$ÇD$迁éá¿.€éþÿÿ¿/€éþýÿÿ¿0€éôýÿÿÇD$¿é±ÇD$;¿éŸÇD$…¿)é¿T€±é´ýÿÿƒì…É„’VPÿуÄ…À…íÑÿÿèüjèW»ŒYémƒì…É„zVPÿуÄ…À…øÑÿÿèÍjè(»Yé>ƒì…É„bVPÿуÄ…À…Òÿÿèžjèù»”Yéƒì…É„JVPÿуÄ…À…Òÿÿèojèʍ»˜Yéàƒì…É„2VPÿуÄ…À…Òÿÿè@j蛍»œY鱃ì…É„VPÿуÄ…À…$Òÿÿèjèl» Y邃ì…É„VPÿуÄ…À…/Òÿÿèâiè=»¤YëVƒì…É„íVPÿуÄ…À…=Òÿÿè¶i荻¨Yë*ƒì…É„ØVPÿуÄ…À…KÒÿÿèŠiè卻¬Y…Àu‹ƒ ÿÿÿƒì‹G`ùÿVQÿ0èƒÄÇ¿[€±éçûÿÿƒì…É„”VPÿуÄ…À…*Òÿÿè/i芅Àu‹ƒ ÿÿÿƒì‹G`ùÿVQÿ0较Äǃ°Yë¥ÇD$»¿7éSÇD$Ä¿EéA¿b€±éhûÿÿ¿c€±é\ûÿÿ¿d€±éPûÿÿ¿e€±éDûÿÿÇD$¿r€±é0ûÿÿ¿V€±é$ûÿÿÇD$ø¿SéßÇD$¿~€±éþúÿÿÇD$E¿aé¹ÇD$¿Š€±éØúÿÿ‰t$ÇD$¿€ÇD$鏿’€ÇD$‰î1í±é£ÇD$q¿oë`ÇD$¿Ÿ€±éúÿÿ¿ŒÇD$°éF9ÇD$¿«€±éYúÿÿ¿°€ÇD$±ëIÇD$ÇD$¿³€ÇD$‹L$‹=ÿÿÿ?tH‰uƒìQèGƒÄ‹t$…ö±‹l$t‹=ÿÿÿ?tH‰uƒìV豃ąít‹E=ÿÿÿ?tH‰Et
‹D$‰D$éÂùÿÿƒìUèð±ƒÄ‹D$‰D$é§ùÿÿ¿™ÇD$3én8ÇD$j¿±éùÿÿÇD$³¿ɀ±émùÿÿ¿§ÇD$Wé48ÇD$É¿ր±éGùÿÿ¿µÇD$-é8ÇD$̿〱é!ùÿÿ¿ÇD$¬éè7ÇD$Ï¿ð€±éûøÿÿ¿ρÇD$ØéÂ7ÇD$è¿ý€±éÕøÿÿ¿݁ÇD$éœ7ÇD$¿±靸ÿÿ¿ëÇD$|év7ÇD$;¿±鉸ÿÿ¿ùÇD$ÁéP7ÇD$…¿&±écøÿÿ¿‚ÇD$.é*7ÇD$»¿4±é=øÿÿ¿‚ÇD$€é7ÇD$Ä¿B±éøÿÿVPèçƒÄ…À…XÌÿÿéfúÿÿVPèЃąÀ…{Ìÿÿé~úÿÿVP蹃ąÀ…žÌÿÿé–úÿÿVP袃ąÀ…ÁÌÿÿé®úÿÿVP苃ąÀ…äÌÿÿéÆúÿÿVPètƒÄ…À…ÍÿÿéÞúÿÿVPè]ƒÄ…À…*ÍÿÿéöúÿÿVPèFƒÄ…À…MÍÿÿéûÿÿVPè/ƒÄ…À…pÍÿÿé ûÿÿVPèƒÄ…À…“Íÿÿédûÿÿ¿#‚ÇD$Ôéø5ÇD$ø¿P±é÷ÿÿ¿1‚ÇD$2éÒ5ÇD$E¿^±éåöÿÿ¿?‚ÇD$†é¬5ÇD$q¿l±é¿öÿÿ¿M‚ÇD$Òé†5ÇD$°¿}±é™öÿÿÇD$°¿ˆéTüÿÿ¿[‚ÇD$(éN5ÇD$3¿—±éaöÿÿ¿i‚ÇD$sé(5ÇD$W¿¤±é;öÿÿ¿w‚ÇD$æé5ÇD$-¿²±éöÿÿ¿…‚ÇD$?	éÜ4ÇD$¬¿±éïõÿÿ¿“‚ÇD$¦	é¶4ÇD$Ø¿́±éÉõÿÿ¿¡‚ÇD$
é4ÇD$¿ځ±é£õÿÿ¿¯‚ÇD${
éj4ÇD$|¿è±é}õÿÿ¿½‚ÇD$Ù
éD4ÇD$Á¿ö±éWõÿÿ¿˂ÇD$Ué4ÇD$.¿‚±é1õÿÿ¿قÇD$«éø3ÇD$€¿‚±éõÿÿ¿ç‚ÇD$éÒ3ÇD$Ô¿ ‚±éåôÿÿ¿õ‚ÇD$lé¬3ÇD$2¿.‚±é¿ôÿÿ¿ƒÇD$¹é†3ÇD$†¿<‚±é™ôÿÿ¿ƒÇD$&
é`3ÇD$Ò¿J‚±ésôÿÿ¿ƒÇD$¾
é:3ÇD$(¿X‚±éMôÿÿ¿-ƒÇD$é3ÇD$s¿f‚±é'ôÿÿ¿;ƒÇD$oéî2ÇD$æ¿t‚±éôÿÿ¿IƒÇD$ÏéÈ2ÇD$?	¿‚‚±éÛóÿÿ¿WƒÇD$
é¢2ÇD$¦	¿‚±éµóÿÿ¿eƒÇD$é|2ÇD$
¿ž‚±éóÿÿ¿sƒÇD$ééV2ÇD${
¿¬‚±éióÿÿ¿ƒÇD$°é02ÇD$Ù
¿º‚±éCóÿÿ¿ƒÇD$@é
2ÇD$U¿Ȃ±éóÿÿ¿œƒÇD$Õéä1ÇD$«¿ւ±é÷òÿÿ¿©ƒÇD$Ré¾1ÇD$¿ä‚±éÑòÿÿ¿¶ƒÇD$˜é˜1ÇD$l¿ò‚±é«òÿÿÇD$š¿ŃÇD$éføÿÿÇD$¹¿ƒ±é}òÿÿ¿ԃÇD$›éD1ÇD$&
¿ƒ±éWòÿÿÇD$¾
¿ƒ±éCòÿÿÇD$œ¿ãƒÇD$éþ÷ÿÿ¿òƒÇD$éð0ÇD$¿*ƒ±éòÿÿÇD$o¿8ƒ±éïñÿÿÇD$ž¿„ÇD$éª÷ÿÿÇD$Ï¿Fƒ±éÁñÿÿ¿„ÇD$Ÿéˆ0ÇD$ ¿„ÇD$éj÷ÿÿÇD$
¿Tƒ±éñÿÿÇD$¿bƒ±émñÿÿÇD$é¿pƒ±éYñÿÿÇD$°¿~ƒ±éEñÿÿÇD$@¿Œƒ±é1ñÿÿÇD$Õ¿šƒ±éñÿÿÇD$R¿§ƒ±é	ñÿÿÇD$˜¿´ƒ±éõðÿÿÇD$š¿±éáðÿÿPVè±úƒÄ‰D$ƒ|$…Šëÿÿ¿ƒÇD$šé/ÇD$›¿σ±é¢ðÿÿPÿt$èoúƒÄ‰ƅÀ…ýëÿÿÇD$›¿уÇD$éFöÿÿÇD$œ¿ރ±é]ðÿÿPVè-úƒÄ‰D$ƒ|$…Wìÿÿ¿àƒÇD$œé/ÇD$¿íƒ±éðÿÿPÿt$èëùƒÄ‰ƅÀ…ÊìÿÿÇD$¿ïƒÇD$éÂõÿÿÇD$ž¿üƒ±éÙïÿÿPVè©ùƒÄ‰D$ƒ|$…$íÿÿ¿þƒÇD$žé‡.ÇD$Ÿ¿„±éšïÿÿPÿt$ègùƒÄ‰ƅÀ…—íÿÿÇD$Ÿ¿
„ÇD$é>õÿÿÇD$ ¿„±éUïÿÿPVè%ùƒÄ‰D$ƒ|$…ñíÿÿ¿„ÇD$ é.ÇD$¡¿)„±éïÿÿPÿt$èãøƒÄ‰ƅÀ…dîÿÿÇD$¡¿+„ÇD$éºôÿÿ¿.„ÇD$¡é¬-ÇD$¢¿8„±é¿îÿÿPVèøƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèÆöƒÄƒìÿt$ÿ³„Qÿ³LMèøƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èzöƒÄ‹‹¬Tèüœ‰D$…ÀtL‹ƒ°Q‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿:„ÇD$¢éÔ,ÇD$¢¿=„ÇD$é¶óÿÿÇD$£¿G„±éÍíÿÿPÿt$èš÷ƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èËõƒÄƒìVÿ³°Qÿ³LMè÷ƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVè•õƒÄ‹‹¬T蜅ÀtG‰Ƌƒ˜Q‹N‹IHƒì…ÉtFPVÿÑëGÇD$£¿I„ÇD$éìòÿÿ¿L„ÇD$£éÞ+ÇD$¤¿V„±éñìÿÿPVèÁöƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèøôƒÄƒìÿt$ÿ³˜Qÿ³LMè=öƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è¬ôƒÄ‹‹¬Tè.›‰D$…ÀtL‹ƒÄQ‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿X„ÇD$¤é+ÇD$¤¿[„ÇD$éèñÿÿÇD$¥¿e„±éÿëÿÿPÿt$èÌõƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èýóƒÄƒìVÿ³ÄQÿ³LMèEõƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVèÇóƒÄ‹‹¬TèIš…ÀtG‰ƋƒÜQ‹N‹IHƒì…ÉtFPVÿÑëGÇD$¥¿g„ÇD$éñÿÿ¿j„ÇD$¥é*ÇD$¦¿t„±é#ëÿÿPVèóôƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVè*óƒÄƒìÿt$ÿ³ÜQÿ³LMèoôƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èÞòƒÄ‹‹¬Tè`™‰D$…ÀtL‹ƒpR‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿v„ÇD$¦é8)ÇD$¦¿y„ÇD$éðÿÿÇD$§¿ƒ„±é1êÿÿPÿt$èþóƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è/òƒÄƒìVÿ³pRÿ³LMèwóƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVèùñƒÄ‹‹¬Tè{˜…ÀtG‰Ƌƒ¼R‹N‹IHƒì…ÉtFPVÿÑëGÇD$§¿…„ÇD$éPïÿÿ¿ˆ„ÇD$§éB(ÇD$¨¿’„±éUéÿÿPVè%óƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVè\ñƒÄƒìÿt$ÿ³¼Rÿ³LMè¡òƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èñƒÄ‹‹¬T蒗‰D$…ÀtL‹ƒÈR‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿”„ÇD$¨éj'ÇD$¨¿—„ÇD$éLîÿÿÇD$©¿¡„±écèÿÿPÿt$è0òƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èaðƒÄƒìVÿ³ÈRÿ³LMè©ñƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVè+ðƒÄ‹‹¬T譖…ÀtG‰ƋƒÔR‹N‹IHƒì…ÉtFPVÿÑëGÇD$©¿£„ÇD$é‚íÿÿ¿¦„ÇD$©ét&ÇD$ª¿°„±é‡çÿÿPVèWñƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèŽïƒÄƒìÿt$ÿ³ÔRÿ³LMèÓðƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èBïƒÄ‹‹¬Tèĕ‰D$…ÀtL‹ƒ<S‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿²„ÇD$ªéœ%ÇD$ª¿µ„ÇD$é~ìÿÿÇD$«¿¿„±长ÿÿPÿt$èbðƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è“îƒÄƒìVÿ³<Sÿ³LMèÛïƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVè]îƒÄ‹‹¬Tèߔ…ÀtG‰ƋƒHS‹N‹IHƒì…ÉtFPVÿÑëGÇD$«¿DÇD$é´ëÿÿ¿ĄÇD$«é¦$ÇD$¬¿΄±é¹åÿÿPVè‰ïƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèÀíƒÄƒìÿt$ÿ³HSÿ³LMèïƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$ètíƒÄ‹‹¬Tèö“‰D$…ÀtL‹ƒxS‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿ЄÇD$¬éÎ#ÇD$¬¿ӄÇD$é°êÿÿÇD$­¿݄±éÇäÿÿPÿt$è”îƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èÅìƒÄƒìVÿ³xSÿ³LMè
îƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVèìƒÄ‹‹¬Tè“…ÀtG‰Ƌƒ¨S‹N‹IHƒì…ÉtFPVÿÑëGÇD$­¿߄ÇD$éæéÿÿ¿â„ÇD$­éØ"ÇD$®¿ì„±éëãÿÿPVè»íƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèòëƒÄƒìÿt$ÿ³¨Sÿ³LMè7íƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è¦ëƒÄ‹‹¬Tè(’‰D$…ÀtL‹ƒ´S‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿î„ÇD$®é"ÇD$®¿ñ„ÇD$éâèÿÿÇD$¯¿û„±éùâÿÿPÿt$èÆìƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è÷êƒÄƒìVÿ³´Sÿ³LMè?ìƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVèÁêƒÄ‹‹¬TèC‘…ÀtG‰ƋƒÀS‹N‹IHƒì…ÉtFPVÿÑëGÇD$¯¿ý„ÇD$éèÿÿ¿…ÇD$¯é
!ÇD$°¿
…±éâÿÿPVèíëƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVè$êƒÄƒìÿt$ÿ³ÀSÿ³LMèiëƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èØéƒÄ‹‹¬TèZ‰D$…ÀtL‹ƒ4T‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿…ÇD$°é2 ÇD$°¿…ÇD$éçÿÿÇD$±¿…±é+áÿÿPÿt$èøêƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è)éƒÄƒìVÿ³4Tÿ³LMèqêƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVèóèƒÄ‹‹¬Tèu…ÀtG‰ƋƒDT‹N‹IHƒì…ÉtFPVÿÑëGÇD$±¿…ÇD$éJæÿÿ¿…ÇD$±é<ÇD$²¿(…±éOàÿÿPVèêƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèVèƒÄƒìÿt$ÿ³DTÿ³LMè›éƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è
èƒÄ‹‹¬T茎‰D$…ÀtL‹ƒXT‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿*…ÇD$²édÇD$²¿-…ÇD$éFåÿÿÇD$³¿7…±é]ßÿÿPÿt$è*éƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è[çƒÄƒìVÿ³XTÿ³LMè£èƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVè%çƒÄ‹‹¬T觍…ÀtG‰ƋƒpT‹N‹IHƒì…ÉtFPVÿÑëGÇD$³¿9…ÇD$é|äÿÿ¿<…ÇD$³énÇD$´¿F…±éÞÿÿPVèQèƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèˆæƒÄƒìÿt$ÿ³pTÿ³LMèÍçƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è<æƒÄ‹‹¬T辌‰D$…ÀtL‹ƒ¤T‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿H…ÇD$´é–ÇD$´¿K…ÇD$éxãÿÿÇD$µ¿U…±éÝÿÿPÿt$è\çƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èåƒÄƒìVÿ³¤Tÿ³LMèÕæƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVèWåƒÄ‹‹¬Tèً…ÀtG‰Ƌƒ´T‹N‹IHƒì…ÉtFPVÿÑëGÇD$µ¿W…ÇD$é®âÿÿ¿Z…ÇD$µé ÇD$¶¿d…±é³ÜÿÿPVèƒæƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèºäƒÄƒìÿt$ÿ³´Tÿ³LMèÿåƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$ènäƒÄ‹‹¬TèðЉD$…ÀtL‹ƒÀT‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿f…ÇD$¶éÈÇD$¶¿i…ÇD$éªáÿÿÇD$·¿s…±éÁÛÿÿPÿt$èŽåƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è¿ãƒÄƒìVÿ³ÀTÿ³LMèåƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVè‰ãƒÄ‹‹¬T芅ÀtG‰ƋƒÌT‹N‹IHƒì…ÉtFPVÿÑëGÇD$·¿u…ÇD$éààÿÿ¿x…ÇD$·éÒÇD$¸¿‚…±éåÚÿÿPVèµäƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèìâƒÄƒìÿt$ÿ³ÌTÿ³LMè1äƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è âƒÄ‹‹¬Tè"‰‰D$…ÀtL‹ƒÔT‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿„…ÇD$¸éúÇD$¸¿‡…ÇD$éÜßÿÿÇD$¹¿‘…±éóÙÿÿPÿt$èÀãƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èñáƒÄƒìVÿ³ÔTÿ³LMè9ãƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVè»áƒÄ‹‹¬Tè=ˆ…ÀtG‰ƋƒàT‹N‹IHƒì…ÉtFPVÿÑëGÇD$¹¿“…ÇD$éßÿÿ¿–…ÇD$¹éÇD$º¿ …±éÙÿÿPVèçâƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèáƒÄƒìÿt$ÿ³àTÿ³LMècâƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èÒàƒÄ‹‹¬TèT‡‰D$…ÀtL‹ƒU‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿¢…ÇD$ºé,ÇD$º¿¥…ÇD$éÞÿÿÇD$»¿¯…±é%ØÿÿPÿt$èòáƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è#àƒÄƒìVÿ³Uÿ³LMèkáƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVèí߃ċ‹¬Tèo†…ÀtG‰ƋƒtU‹N‹IHƒì…ÉtFPVÿÑëGÇD$»¿±…ÇD$éDÝÿÿ¿´…ÇD$»é6ÇD$¼¿¾…±éI×ÿÿPVèáƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèP߃ăìÿt$ÿ³tUÿ³LMè•àƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è߃ċ‹¬T膅‰D$…ÀtL‹ƒŒU‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJ¿ÇD$¼é^ÇD$¼¿ÅÇD$é@ÜÿÿÇD$½¿ͅ±éWÖÿÿPÿt$è$àƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èUރăìVÿ³ŒUÿ³LMèßƒÄ…Àx^‹=ÿÿÿ?tH‰uƒìVèރċ‹¬T衄…ÀtG‰ƋƒÀU‹N‹IHƒì…ÉtFPVÿÑëGÇD$½¿υÇD$évÛÿÿÇD$½¿҅éhÇD$¾¿܅±é{ÕÿÿPVèK߃ĉD$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVè‚݃ăìÿt$ÿ³ÀUÿ³LMèÇÞƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è6݃ċ‹¬T踃‰D$…ÀtL‹ƒÌU‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJÇD$¾¿ޅéÇD$¾¿á…ÇD$érÚÿÿÇD$¿¿ë…±é‰ÔÿÿPÿt$èVރĉƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è‡ÜƒÄƒìVÿ³ÌUÿ³LMèÏ݃ąÀx^‹=ÿÿÿ?tH‰uƒìVèQ܃ċ‹¬Tèӂ…ÀtG‰ƋƒØU‹N‹IHƒì…ÉtFPVÿÑëGÇD$¿¿í…ÇD$é¨ÙÿÿÇD$¿¿ð…éšÇD$À¿ú…±é­ÓÿÿPVè}݃ĉD$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVè´ÛƒÄƒìÿt$ÿ³ØUÿ³LMèù܃ÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èhۃċ‹¬TèꁉD$…ÀtL‹ƒäU‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJÇD$À¿ü…éÂÇD$À¿ÿ…ÇD$館ÿÿÇD$Á¿	†±é»ÒÿÿPÿt$èˆÜƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è¹ÚƒÄƒìVÿ³äUÿ³LMè܃ąÀx^‹=ÿÿÿ?tH‰uƒìVèƒÚƒÄ‹‹¬T聅ÀtG‰ƋƒðU‹N‹IHƒì…ÉtFPVÿÑëGÇD$Á¿†ÇD$éÚ×ÿÿÇD$Á¿†éÌÇD$¿†±éßÑÿÿPVè¯ÛƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèæÙƒÄƒìÿt$ÿ³ðUÿ³LMè+ÛƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èšÙƒÄ‹‹¬T耉D$…ÀtL‹ƒPV‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJÇD$¿†éôÇD$¿†ÇD$éÖÖÿÿÇD$ÿ'†±éíÐÿÿPÿt$èºÚƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èëØƒÄƒìVÿ³PVÿ³LMè3ڃąÀx^‹=ÿÿÿ?tH‰uƒìVèµØƒÄ‹‹¬Tè7…ÀtG‰ƋƒxV‹N‹IHƒì…ÉtFPVÿÑëGÇD$ÿ)†ÇD$éÖÿÿÇD$ÿ,†éþÇD$Ä¿6†±éÐÿÿPVèáكĉD$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèØƒÄƒìÿt$ÿ³xVÿ³LMè]ÙƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èÌ׃ċ‹¬TèN~‰D$…ÀtL‹ƒ¤V‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJÇD$Ä¿8†é&ÇD$Ä¿;†ÇD$éÕÿÿÇD$Å¿E†±éÏÿÿPÿt$èìØƒÄ‰ƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è׃ăìVÿ³¤Vÿ³LMèe؃ąÀx^‹=ÿÿÿ?tH‰uƒìVèçփċ‹¬Tèi}…ÀtG‰Ƌƒ°V‹N‹IHƒì…ÉtFPVÿÑëGÇD$Å¿G†ÇD$é>ÔÿÿÇD$Å¿J†é0
ÇD$Æ¿T†±éCÎÿÿPVèØƒÄ‰D$ƒ|$„™‹=ÿÿÿ?tH‰uƒìVèJփăìÿt$ÿ³°Vÿ³LMè×ƒÄÇD$…Àxj‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èþՃċ‹¬Tè€|‰D$…ÀtL‹ƒÈV‹L$‹I‹IHƒì…ÉtIPÿt$ÿÑëJÇD$Æ¿V†éXÇD$Æ¿Y†ÇD$é:ÓÿÿÇD$Ç¿c†±éQÍÿÿPÿt$è׃ĉƅÀ„…‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èOՃăìVÿ³ÈVÿ³LMè—փąÀx^‹=ÿÿÿ?tH‰uƒìVèՃċ‹¬Tè›{…ÀtG‰ƋƒìV‹N‹IHƒì…ÉtFPVÿÑëGÇD$Ç¿e†ÇD$épÒÿÿÇD$Ç¿h†ébÇD$È¿r†±éuÌÿÿPVèEփĉD$ƒ|$„(‹=ÿÿÿ?tH‰uƒìVè|ԃăìÿt$ÿ³ìVÿ³LMèÁՃąÀˆ‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è4ԃč‹ôE1Òÿ³xYÿ³LMÿ³ìSÿ³\Uè,yƒÄ‰D$…À„Ê
‹ƒìW‹L$‰AL‹ùÿÿÿ?tA‰ƒìÿt$ÿ³\Uÿ³LMè+ՃąÀˆ¡
‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èžÓƒÄ‹FÇD$1Òÿ³|Yÿ³LMÿ³ìSÿ³¨QèŽxƒÄ‰D$…À„b
ƒìÿt$ÿ³¨Qÿ³LMè§ÔƒÄ…ÀˆS
‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èӃč‹FÇD$1Òÿ³€Yÿ³LMÿ³ìSÿ³lUè
xƒÄ‰D$…À„
ƒìÿt$ÿ³lUÿ³LMè#ԃąÀˆý	‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è–҃č‹$FÇD$1Òÿ³„Yÿ³LMÿ³ìSÿ³HUè†wƒÄ‰D$…À„¶	ƒìÿt$ÿ³HUÿ³LMèŸÓƒÄ…Àˆ§	‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è҃č‹4FÇD$1Òÿ³ˆYÿ³LMÿ³ìSÿ³øTèwƒÄ‰D$…À„`	ƒìÿt$ÿ³øTÿ³LMèӃąÀˆQ	‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èŽÑƒÄƒìj5èñ҃ĉD$…À„-	‹ƒôM‹ùÿÿÿ?t	A‰‹ƒôM‹L$‹I‰‹ƒHP‹ùÿÿÿ?t	A‰‹ƒHP‹L$‹I‰A‹ƒTP‹ùÿÿÿ?t	A‰‹ƒTP‹L$‹I‰A‹ƒxP‹ùÿÿÿ?t	A‰‹ƒxP‹L$‹I‰A‹ƒ P‹ùÿÿÿ?t	A‰‹ƒ P‹L$‹I‰A‹ƒ¬P‹ùÿÿÿ?t	A‰‹ƒ¬P‹L$‹I‰A‹ƒQ‹ùÿÿÿ?t	A‰‹ƒQ‹L$‹I‰A‹ƒHQ‹ùÿÿÿ?t	A‰‹ƒHQ‹L$‹I‰A‹ƒTQ‹ùÿÿÿ?t	A‰‹ƒTQ‹L$‹I‰A ‹ƒˆQ‹ùÿÿÿ?t	A‰‹ƒˆQ‹L$‹I‰A$‹ƒœQ‹ùÿÿÿ?t	A‰‹ƒœQ‹L$‹I‰A(‹ƒ¬Q‹ùÿÿÿ?t	A‰‹ƒ¬Q‹L$‹I‰A,‹ƒ´Q‹ùÿÿÿ?t	A‰‹ƒ´Q‹L$‹I‰A0‹ƒÈQ‹ùÿÿÿ?t	A‰‹ƒÈQ‹L$‹I‰A4‹ƒàQ‹ùÿÿÿ?t	A‰‹ƒàQ‹L$‹I‰A8‹ƒtR‹ùÿÿÿ?t	A‰‹ƒtR‹L$‹I‰A<‹ƒÀR‹ùÿÿÿ?t	A‰‹ƒÀR‹L$‹I‰A@‹ƒÌR‹ùÿÿÿ?t	A‰‹ƒÌR‹L$‹I‰AD‹ƒØR‹ùÿÿÿ?t	A‰‹ƒØR‹L$‹I‰AH‹ƒ@S‹ùÿÿÿ?t	A‰‹ƒ@S‹L$‹I‰AL‹ƒLS‹ùÿÿÿ?t	A‰‹ƒLS‹L$‹I‰AP‹ƒ|S‹ùÿÿÿ?t	A‰‹ƒ|S‹L$‹I‰AT‹ƒ¬S‹ùÿÿÿ?t	A‰‹ƒ¬S‹L$‹I‰AX‹ƒ¸S‹ùÿÿÿ?t	A‰‹ƒ¸S‹L$‹I‰A\‹ƒÄS‹ùÿÿÿ?t	A‰‹ƒÄS‹L$‹I‰A`‹ƒ8T‹ùÿÿÿ?t	A‰‹ƒ8T‹L$‹I‰Ad‹ƒHT‹ùÿÿÿ?t	A‰‹ƒHT‹L$‹I‰Ah‹ƒ\T‹ùÿÿÿ?t	A‰‹ƒ\T‹L$‹I‰Al‹ƒtT‹ùÿÿÿ?t	A‰‹ƒtT‹L$‹I‰Ap‹ƒ¨T‹ùÿÿÿ?t	A‰‹ƒ¨T‹L$‹I‰At‹ƒ¸T‹ùÿÿÿ?t	A‰‹ƒ¸T‹L$‹I‰Ax‹ƒÄT‹ùÿÿÿ?t	A‰‹ƒÄT‹L$‹I‰A|‹ƒÐT‹ùÿÿÿ?t	A‰‹ƒÐT‹L$‹I‰€‹ƒØT‹ùÿÿÿ?t	A‰‹ƒØT‹L$‹I‰„‹ƒäT‹ùÿÿÿ?t	A‰‹ƒäT‹L$‹I‰ˆ‹ƒüT‹ùÿÿÿ?t	A‰‹ƒüT‹L$‹I‰Œ‹ƒU‹ùÿÿÿ?t	A‰‹ƒU‹L$‹I‰‹ƒLU‹ùÿÿÿ?t	A‰‹ƒLU‹L$‹I‰”‹ƒ`U‹ùÿÿÿ?t	A‰‹ƒ`U‹L$‹I‰˜‹ƒpU‹ùÿÿÿ?t	A‰‹ƒpU‹L$‹I‰œ‹ƒxU‹ùÿÿÿ?t	A‰‹ƒxU‹L$‹I‰ ‹ƒU‹ùÿÿÿ?t	A‰‹ƒU‹L$‹I‰¤‹ƒÄU‹ùÿÿÿ?t	A‰‹ƒÄU‹L$‹I‰¨‹ƒÐU‹ùÿÿÿ?t	A‰‹ƒÐU‹L$‹I‰¬‹ƒÜU‹ùÿÿÿ?t	A‰‹ƒÜU‹L$‹I‰°‹ƒèU‹ùÿÿÿ?t	A‰‹ƒèU‹L$‹I‰´‹ƒôU‹ùÿÿÿ?t	A‰‹ƒôU‹L$‹I‰¸‹ƒTV‹ùÿÿÿ?t	A‰‹ƒTV‹L$‹I‰¼‹ƒ|V‹ùÿÿÿ?t	A‰‹ƒ|V‹L$‹I‰À‹ƒ¨V‹ùÿÿÿ?t	A‰‹ƒ¨V‹L$‹I‰Ä‹ƒ´V‹ùÿÿÿ?t	A‰‹ƒ´V‹L$‹I‰È‹ƒÌV‹ùÿÿÿ?t	A‰‹ƒÌV‹L$‹I‰Ì‹ƒðV‹ùÿÿÿ?t	A‰‹ƒðV‹T$‹J‰ÐƒìRÿ³ôOÿ³LMè@˃ąÀˆ¤‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è³ÉƒÄ‹‹\Uè5p‰D$…À„‚‹ƒ$S‹“èS‹L$‹I‹ILƒì…É„uRPÿt$ÿÑésÇD$È¿t†±1íéÇÿÿÇD$ÈÇD$¿w†ÇD$éÑÆÿÿÇD$Ê¿†±éèÀÿÿÇD$ÊÇD$ÇD$¿„†é›ÆÿÿÇD$⿎†±é²ÀÿÿÇD$⿐†ÇD$émÆÿÿÇD$ü¿š†±é„ÀÿÿÇD$ü¿œ†ÇD$é?ÆÿÿÇD$¿¦†±éVÀÿÿÇD$¿¨†ÇD$éÆÿÿÇD$!¿²†±é(ÀÿÿÇD$!ÇD$¿´†éãÅÿÿÇD$(¿¾†±éú¿ÿÿÇD$(ÇD$¿_‡éµÅÿÿÇD$`¿i‡±é̿ÿÿRPÿt$èɃąÀx_‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èÏǃċ‹øTèQn‰D$…ÀtA‹ƒ$S‹“èS‹L$‹I‹ILƒì…Ét8RPÿt$ÿÑë9ÇD$`ÇD$¿k‡éÅÿÿÇD$a¿u‡±é-¿ÿÿRPÿt$èyȃąÀx_‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è0ǃċ‹HUè²m‰D$…ÀtA‹ƒ$S‹“èS‹L$‹I‹ILƒì…Ét8RPÿt$ÿÑë9ÇD$aÇD$¿w‡éwÄÿÿÇD$b¿‡±鎾ÿÿRPÿt$èÚǃąÀx_‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è‘ÆƒÄ‹‹¨Qèm‰D$…ÀtA‹ƒ$S‹“èS‹L$‹I‹ILƒì…Ét8RPÿt$ÿÑë9ÇD$bÇD$¿ƒ‡éØÃÿÿÇD$c¿‡±éï½ÿÿRPÿt$è;ǃąÀx_‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èòŃċ‹lUètl‰D$…ÀtA‹ƒ$S‹“èS‹L$‹I‹ILƒì…Ét8RPÿt$ÿÑë9ÇD$cÇD$¿‡é9ÃÿÿÇD$d¿™‡±éP½ÿÿRPÿt$èœÆƒÄ…Àˆ‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èOŃċ‹ôOèÑk‰D$…À„æ‹D$‹@‹H8…É„è‹I…É„݃ìÿ³<Xÿt$ÿуÄÇD$g¿§‡‰D$…À„ƒÂÿÿ‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èËăċD$‹@;ƒ$ÿÿÿ„©;ƒ(ÿÿÿ„ƒìÿt$èMƃĉD$…À„£‹D$‹@‹pp…ö„«‹D$‹ÇD$ÿÿÿÿéÇÇD$dÇD$¿›‡éíÁÿÿÇD$g¿¥‡±é¼ÿÿ‹‹ÿÿÿƒì“Ž…ùÿÿpRÿ1èŃÄÇD$g¿§‡é¢Áÿÿ‹D$‹ÇD$=ÿÿÿ?u@‹D$‰D$1öëhÇD$g1�‡±‹t$é›ÁÿÿÇD$ÇD$g¿±‡éUÁÿÿ@‹L$‰1öÇD$‰L$=ÿÿÿ?tH‹L$‰uƒìÿt$è†ÃƒÄ‹ƒ$ÿÿÿ‰D$…öu*‹L$‹A‹T$9Qu39D$‹D$‹@‹L$‹ˆë/ƒìÿt$ÿփĉD$…Àu3é³9D$Î‹D$‹L$‹Dˆ‰D$‹=ÿÿÿ?t@‹L$‰ÿD$ƒìÿt$ÿ³Sÿ³LMèLăąÀˆÔ‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è¿ÂƒÄ‹‹SèAi‰D$…À„¢‹‹¼M‹T$èvk…À„¥‰ŋD$‹=ÿÿÿ?tH‹L$‰uƒìÿt$èjƒăìUÿ³Sÿ³LMè²ÃƒÄ…Àˆp‹E=ÿÿÿ?tH‰EuƒìUè.ƒċ‹Sè°h…À„_‰Nj=ÿÿÿ?tH‰uƒìWèÿÁƒÄ;»ÿÿÿ„wþÿÿ‹‹Sèuh…À„>‰ŋƒ$S‹“èS‹M‹ILƒì…ÉtRPUÿÑëRPUèÓƒąÀˆ#‹E=ÿÿÿ?„!þÿÿH‰E…þÿÿƒìUè‡ÁƒÄéþÿÿè
Ã…Àt‹‹,ÿÿÿ‹‰Áè×i…À„øèšÁ‹D$‹=ÿÿÿ?tH‹L$‰uƒìÿt$è8ÁƒÄ‹ƒDM‹‹S‹P‹RLƒì…Ò„ÃjQPÿÒéÁ¿߇顾ÿÿÇD$¿é‡ÇD$h釾ÿÿ¿ë‡ÇD$héu¾ÿÿÇD$¿î‡ÇD$h‰l$éW¾ÿÿÇD$iÇD$¿ø‡é=¾ÿÿÇD$¿ˆÇD$jé#¾ÿÿÇD$¿ˆÇD$j‰l$é¾ÿÿÇD$¿هéó½ÿÿjQPèlÁƒÄ…Àx!‹ƒDM‹‹S‹P‹RLƒì…ÒtjQPÿÒë¿"ˆÇD$l±éٷÿÿjQPè'ÁƒÄ…Àˆšƒìj-è²ÁƒÄ‰D$…À„•ƒìÿ³dUÿ³Oÿt$è+ÁƒÄÇD$…Àˆvƒìÿ³èTÿ³Oÿt$èÁƒÄ…Àˆeƒìÿ³LQÿ³8Nÿt$èÝÀƒÄ…ÀˆTƒìÿ³ÔUÿ³,Oÿt$èºÀƒÄ…ÀˆCƒìÿ³HVÿ³LOÿt$è—ÀƒÄ…Àˆ2ƒìÿ³¼Tÿ³äNÿt$ètÀƒÄ…Àˆ!ƒìÿ³|Pÿ³Nÿt$èQÀƒÄ…Àˆƒìÿ³°Pÿ³(Nÿt$è.ÀƒÄ…Àˆÿƒìÿ³€Vÿ³\Oÿt$èÀƒÄ…Àˆîƒìÿ³°Tÿ³ÜNÿt$è迃ąÀˆÝƒìÿ³ÈTÿ³ìNÿt$èſƒÄ…ÀˆÌƒìÿ³ÜTÿ³øNÿt$袿ƒÄ…Àˆ»ƒìÿ³ìUÿ³<Oÿt$迃ąÀˆªƒìÿ³ÈSÿ³´Nÿt$è\¿ƒÄ…Àˆ™ƒìÿ³àUÿ³4Oÿt$è9¿ƒÄ…Àˆˆƒìÿ³ŒQÿ³HNÿt$迃ąÀˆwƒìÿ³XQÿ³@Nÿt$èó¾ƒÄ…Àˆfƒìÿ³¼Sÿ³¬Nÿt$èоƒÄ…ÀˆUƒìÿ³¤Pÿ³ Nÿt$譾ƒÄ…ÀˆDƒìÿ³°Sÿ³¤Nÿt$芾ƒÄ…Àˆ3ƒìÿ³ÈUÿ³$Oÿt$èg¾ƒÄ…Àˆ"ƒìÿ³øUÿ³DOÿt$èD¾ƒÄ…Àˆƒìÿ³¬Vÿ³dOÿt$è!¾ƒÄ…Àˆƒìÿ³<Tÿ³¼Nÿt$èþ½ƒÄ…Àˆïƒìÿ³ÐVÿ³tOÿt$è۽ƒÄ…ÀˆÞƒìÿ³xTÿ³ÔNÿt$踽ƒÄ…ÀˆÍƒìÿ³xRÿ³lNÿt$蕽ƒÄ…Àˆ¼ƒìÿ³ÌQÿ³\Nÿt$èr½ƒÄ…Àˆ«ƒìÿ³ÄRÿ³tNÿt$èO½ƒÄ…Àˆšƒìÿ³ÐRÿ³|Nÿt$è,½ƒÄ…Àˆ‰ƒìÿ³Uÿ³Oÿt$è	½ƒÄ…Àˆxƒìÿ³¸Vÿ³lOÿt$èæ¼ƒÄ…Àˆgƒìÿ³XVÿ³TOÿt$èüƒÄ…ÀˆVƒìÿ³XPÿ³Nÿt$蠼ƒÄ…ÀˆEƒìÿ³€Sÿ³œNÿt$è}¼ƒÄ…Àˆ4ƒìÿ³`Tÿ³ÌNÿt$èZ¼ƒÄ…Àˆ#ƒìÿ³ôVÿ³|Oÿt$è7¼ƒÄ…Àˆƒìÿ³ Qÿ³PNÿt$較ąÀˆƒìÿ³äQÿ³dNÿt$èñ»ƒÄ…Àˆðƒìÿ³ÜRÿ³„Nÿt$èλƒÄ…Àˆßƒìÿ³PSÿ³”Nÿt$諻ƒÄ…ÀˆÎƒìÿ³DSÿ³ŒNÿt$舻ƒÄ…Àˆ½ƒìÿ³Qÿ³0Nÿt$èe»ƒÄ…Àˆ¬ƒìÿ³”Uÿ³Oÿt$èB»ƒÄ…Àˆ›ƒìÿ³LTÿ³ÄNÿt$軃ąÀˆŠƒìÿt$ÿ³8Vÿ³LMèüºƒÄ…Àˆy‹D$‹=ÿÿÿ?„ӱÿÿH‹L$‰…Ʊÿÿƒìÿt$èg¹鲱ÿÿ¿#ˆÇD$l±é±ÿÿ¿*ˆ±é±ÿÿÇD$¿,ˆéζÿÿÇD$¿-ˆ鼶ÿÿÇD$¿.ˆ骶ÿÿÇD$¿/ˆ阶ÿÿÇD$¿0ˆ醶ÿÿÇD$¿1ˆét¶ÿÿÇD$¿2ˆéb¶ÿÿÇD$¿3ˆéP¶ÿÿÇD$¿4ˆé>¶ÿÿÇD$¿5ˆé,¶ÿÿÇD$¿6ˆé¶ÿÿÇD$¿7ˆé¶ÿÿÇD$¿8ˆéöµÿÿÇD$¿9ˆéäµÿÿÇD$¿:ˆéҵÿÿÇD$¿;ˆé5ÿÿÇD$¿<ˆ鮵ÿÿÇD$¿=ˆ霵ÿÿÇD$¿>ˆ銵ÿÿÇD$¿?ˆéxµÿÿÇD$¿@ˆéfµÿÿÇD$¿AˆéTµÿÿÇD$¿BˆéBµÿÿÇD$¿Cˆé0µÿÿÇD$¿DˆéµÿÿÇD$¿EˆéµÿÿÇD$¿Fˆéú´ÿÿÇD$¿Gˆéè´ÿÿÇD$¿HˆéִÿÿÇD$¿IˆéĴÿÿÇD$¿Jˆ鲴ÿÿÇD$¿Kˆ頴ÿÿÇD$¿Lˆ鎴ÿÿÇD$¿Mˆé|´ÿÿÇD$¿Nˆéj´ÿÿÇD$¿OˆéX´ÿÿÇD$¿PˆéF´ÿÿÇD$¿Qˆé4´ÿÿÇD$¿Rˆé"´ÿÿÇD$¿Sˆé´ÿÿÇD$¿Tˆéþ³ÿÿÇD$¿Uˆéì³ÿÿÇD$¿VˆéڳÿÿÇD$¿WˆéȳÿÿÇD$¿Xˆ鶳ÿÿÇD$¿Yˆ餳ÿÿSƒìè[Ãs…Ét‹=ÿÿÿ?tH‰tƒÄ[É$èѵƒÄ[АUSWVì¬è[Ã-ƒìÿ³ÜSjèj·ƒÄ‰ƒW…À„°Dƒìÿ³àSjèI·ƒÄ‰ƒ W…À„Dƒìÿ³dRjè(·ƒÄ‰ƒ$W…À„nDƒìÿ³ÔMj跃ĉƒ(W…À„MDƒìÿ³€Pjèæ¶ƒÄ‰ƒ,W…À„,Dƒìÿ³˜Yÿ³¸Qj迶ƒÄ‰ƒ0W…À„Dƒìÿ³ŒRj螶ƒÄ‰ƒ8W…À„äCƒìÿ³Vjè}¶ƒÄ‰ƒ<W…À„ÃCƒìÿ³Vjè\¶ƒÄ‰ƒ@W…À„¢Cƒìÿ³|Ujè;¶ƒÄ‰ƒDW…À„Cƒìÿ³øVÿ³Qj趃ĉƒHW…À„ZCƒìÿ³Wÿ³ÐQjèíµƒÄ‰ƒLW…À„3C‹ƒÿÿÿPP‰D$4PjèȵƒÄ‰ƒPW…À„Cƒìÿ³äRj觵ƒÄ‰ƒTW…À„íBƒìÿ³ Yÿ³ìMj耵ƒÄ‰ƒXW…À„ÆBƒìÿ³Wÿ³WjèYµƒÄ‰ƒ\W…À„ŸBƒìÿ³ÜOjè8µƒÄ‰ƒ`W…À„~Bƒìÿ³àOj赃ĉƒdW…À„]Bƒìÿ³ØOjèö´ƒÄ‰ƒhW…À„<Bƒìÿ³ÔOjèմƒÄ‰ƒlW…À„Bƒìÿ³,Tj贴ƒÄ‰ƒpW…À„úAƒìÿ³ÐOj蓴ƒÄ‰ƒtW…À„ÙAƒìÿ³€Tjèr´ƒÄ‰ƒxW…À„¸Aƒìÿ³|TjèQ´ƒÄ‰ƒ|W…À„—Aƒìÿ³„Tjè0´ƒÄ‰ƒ€W…À„vAƒìÿ³ÀMj贃ĉƒ„W…À„UAƒìÿ³äMjèĉƒˆW…À„4Aƒìÿ³ÈMjèͳƒÄ‰ƒŒW…À„Aƒìÿ³XMj謳ƒÄ‰ƒW…À„ò@ƒìÿ³€Oj苳ƒÄ‰ƒ”W…À„Ñ@ƒìÿ³€Rjèj³ƒÄ‰ƒ˜W…À„°@ƒìÿ³ SjèI³ƒÄ‰ƒœW…À„@ƒìÿ³„Rjè(³ƒÄ‰ƒ W…À„n@ƒìÿ³”Sj賃ĉƒ¤W…À„M@ƒìÿ³Sjèæ²ƒÄ‰ƒ¨W…À„,@ƒìÿ³ÔPjèŲƒÄ‰ƒ¬W…À„@ƒìÿ³Sj褲ƒÄ‰ƒ°W…À„ê?ƒì‹D$0PPP蔲ƒÄ‰ƒ4W…À„Ê?ƒìÿ³˜Pjèc²ƒÄ‰ƒ´W…À„©?ƒìÿ³˜Yÿ³ØPjè<²ƒÄ‰ƒ¸W…À„‚?ƒìÿ³ØPj貃ĉƒ¼W…À„a?ƒìÿt$0ÿ³4Wjèö±ƒÄ‰ƒÀW…À„<?ƒìÿ³˜TjèձƒÄ‰ƒÄW…À„?ƒìÿ³Pj贱ƒÄ‰ƒÈW…À„ú>ƒìÿ³$Pj蓱ƒÄ‰ƒÌW…À„Ù>ƒìÿ³¨Yÿ³ŒOjèl±ƒÄ‰ƒÐW…À„²>ƒì‹ƒ0ÿÿÿPÿ³WjèD±ƒÄ‰ƒÔW…À„Š>ƒìÿ³ÜVjè#±ƒÄ‰ƒØW…À„i>ƒìÿ³hUj豃ĉƒÜW…À„H>‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ¼Q‰D$ƒìƒõÿj‰D$P膯ƒÄ…À„Y:‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒõÿ$ÇD$<ÉÇD$ÇD$èf°ƒÄP‹ùÿÿÿ?tI‰uƒìV‰ÆèY®‰ðƒÄ‰ƒ¨X…À„m=ƒìÿ³üUÿ³hUj调ĉƒàW…À„F=‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ€U‰D$ƒìjÿt$苮ƒÄ…À„o9‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒäõÿ)„$€$ÇD$<ÌÇD$ÇD$èc¯ƒÄP‹ùÿÿÿ?tI‰uƒìV‰ÆèV­‰ðƒÄ‰ƒ¬X…À„j<ƒìÿ³Nÿ³hUjèý®ƒÄ‰ƒäW…À„C<‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒU‰D$ƒìjÿt$舭ƒÄ…À„}8‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ4õÿ)„$À$ÇD$<ÏÇD$ÇD$è`®ƒÄP‹ùÿÿÿ?tI‰uƒìV‰ÆèS¬‰ðƒÄ‰ƒ°X…À„g;ƒìÿ³\Uÿ³hUjèú­ƒÄ‰ƒèW…À„@;‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ\U‰D$ƒìjÿt$腬ƒÄ…À„‹7‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$€$ÇD$<èÇD$ÇD$èd­ƒÄP‹ùÿÿÿ?tI‰uƒìV‰ÆèW«‰ðƒÄ‰ƒ´X…À„k:ƒìÿt$4j譃ĉƒìW…À„L:ÿ³¸Uÿ³ˆRÿ³hUjèܬƒÄ‰ƒðW…À„":‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ°Q‰D$ƒìjÿt$èg«ƒÄ…À„~6‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ4õÿ)„$Ð$ÇD$<ÇD$ÇD$è?¬ƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æè2ª‰ðƒÄ‰ƒ¸X…À„F9ƒì‹ƒ4ÿÿÿ‰D$tPjèګƒÄ‰ƒôW…À„ 9ƒìÿ³ Vÿ³¸Uÿ³üUÿ³hUj觫ƒÄ ‰ƒøW…À„í8‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒtU‰D$ƒìjÿt$è2ªƒÄ…À„Z5‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒôõÿ)„$à$ÇD$<;ÇD$ÇD$è
«ƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æèý¨‰ðƒÄ‰ƒ¼X…À„8ÿ³4Vÿ³¨Uÿ³hUj衪ƒÄ‰ƒüW…À„ç7‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒàT‰D$ƒìjÿt$è,©ƒÄ…À„e4‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$Ð$ÇD$<…ÇD$ÇD$誃ÄP‹ùÿÿÿ?tI‰uƒìV‰Æèþ§‰ðƒÄ‰ƒÀX…À„7ƒìÿ³¨Uÿ³hUj襩ƒÄ‰ƒX…À„ë6‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒÌT‰D$ƒìjÿt$è0¨ƒÄ…À„z3‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$€$ÇD$<»ÇD$ÇD$詃ÄP‹ùÿÿÿ?tI‰uƒìV‰Æè§‰ðƒÄ‰ƒÄX…À„6ƒìÿ³¨Uÿ³<Pÿ³ÈOÿ³hUj蝨ƒÄ ‰ƒX…À„ã5‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒDP‰D$ƒìjÿt$è(§ƒÄ…À„ƒ2‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ„õÿ)„$$ÇD$<ÄÇD$ÇD$訃ÄP‹ùÿÿÿ?tI‰uƒìV‰Æèó¥‰ðƒÄ‰ƒÈX…À„5ÿ³¨Uÿ³PUÿ³hUj藧ƒÄ‰ƒX…À„Ý4‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒDQ‰D$ƒìjÿt$è"¦ƒÄ…À„Ž1‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ”õÿ)„$ $ÇD$<øÇD$ÇD$èú¦ƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æèí¤‰ðƒÄ‰ƒÌX…À„4ƒìÿt$0ÿ³üVj薦ƒÄ‰ƒX…À„Ü3‹ƒ\M‰D$‹«XM‹ƒX‰D$‹ƒðS‰D$‹»ÌUƒìjÿt$襃ąÀ„š0‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$€$ÇD$<EÇD$ÇD$èü¥ƒÄP‹ùÿÿÿ?tI‰uƒìV‰ÆèðƒÄ‰ƒÐX…À„3ƒìÿ³èQÿ³ðTÿ³ìTÿ³TSÿ³¨Uÿ³hUjè~¥ƒÄ ‰ƒX…À„Ä2‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒDV‰D$ƒìjÿt$è	¤ƒÄ…À„—/‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒdõÿ$ÇD$<qÇD$ÇD$è餃ÄP‹ùÿÿÿ?tI‰uƒìV‰Æèܢ‰ðƒÄ‰ƒÔX…À„ð1ƒìÿ³,Uÿ³0Qÿ³ôRÿ³ Qÿ³Qÿ³¨Uÿ³ÔQÿ³èRÿ³hUj	èY¤ƒÄ0‰ƒX…À„Ÿ1‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ´T‰D$ƒìjÿt$è䢃ąÀ„ƒ.‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒDõÿ$ÇD$<°ÇD$ÇD$èģƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æ跡‰ðƒÄ‰ƒØX…À„Ë0ÿ³`Sÿ³”Rÿ³hUjè[£ƒÄ‰ƒX…À„¡0‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒtP‰D$ƒìjÿt$èæ¡ƒÄ…À„–-‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$Ð$ÇD$<3ÇD$ÇD$èŢƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æ踠‰ðƒÄ‰ƒÜX…À„Ì/ÿ³ Uÿ³ŒVÿ³ÄOÿ³„Sÿ³ØVÿ³hQÿ³|Qÿ³dSÿ³ðQÿ³„Vÿ³Pÿ³„Uÿ³$Rÿ³0Tÿ³TTÿ³8Pÿ³àPÿ³hTÿ³ Tÿ³Uÿ³¨Uÿ³ÈOÿ³hUjè䡃Ä`‰ƒX…À„*/‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ¨P‰D$ƒìjÿt$èo ƒÄ…À„0,‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒÄõÿ$ÇD$<WÇD$ÇD$èO¡ƒÄP‹ùÿÿÿ?tI‰uƒìV‰ÆèBŸ‰ðƒÄ‰ƒàX…À„V.‹D$,Pÿt$pPjèĉƒ X…À„4.ƒìÿ³4Vÿ³Uÿ³ØQÿ³ìRÿ³Pÿ³ìOÿ³üOÿ³$Rÿ³¨Uÿ³ÔQÿ³èRÿ³hUj苠ƒÄ@‰ƒ$X…À„Ñ-‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒxV‰D$ƒìjÿt$蟃ąÀ„è*‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒÔõÿ$ÇD$<-ÇD$ÇD$èöŸƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æè靉ðƒÄ‰ƒäX…À„ý,ÿt$,ÿ³üVÿ³øVj菟ƒÄ‰ƒ(X…À„Õ,ƒìÿ³Pÿ³hUjèhŸƒÄ‰ƒ,X…À„®,‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ¤T‰D$ƒìjÿt$èóƒÄ…À„Ö)‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$À$ÇD$<¬ÇD$ÇD$èҞƒÄP‹ùÿÿÿ?tI‰uƒìV‰ÆèŜ‰ðƒÄ‰ƒèX…À„Ù+‹ƒ\M‰D$‹«XM‹ƒ,X‰D$‹ƒðS‰D$‹»ÀTƒìjÿt$蝃ąÀ„)‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$À$ÇD$<ØÇD$ÇD$èùƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æè웉ðƒÄ‰ƒìX…À„+ƒìÿ³¨Uÿ³ÔQÿ³èRÿ³hUj臝ƒÄ ‰ƒ0X…À„Í*‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒÔT‰D$ƒìjÿt$蜃ąÀ„(‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$$ÇD$<ÇD$ÇD$èñœƒÄP‹ùÿÿÿ?tI‰uƒìV‰Æè䚉ðƒÄ‰ƒðX…À„ø)ƒì‹D$0PPj葜ƒÄ‰ƒ4X…À„×)‹ƒ\M‰D$‹«XM‹ƒX‰D$‹ƒðS‰D$‹»äUƒìjÿt$蛃ąÀ„.'‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$€$ÇD$<|ÇD$ÇD$è÷›ƒÄP‹ùÿÿÿ?tI‰uƒìV‰ÆèꙉðƒÄ‰ƒôX…À„þ(ƒìÿ³¨Uÿ³PUÿ³¬Rÿ³hUj腛ƒÄ ‰ƒ8X…À„Ë(‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒÀS‰D$ƒìjÿt$蚃ąÀ„7&‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$$ÇD$<ÁÇD$ÇD$èÄP‰Nj=ÿÿÿ?tH‰uƒìVè㘃ĉ»øX…ÿ„ù'ÿ³¨Uÿ³„Uÿ³hUj艚ƒÄ‰ƒ@X…À„Ï'‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒØU‰D$ƒìjÿt$虃ąÀ„L%‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$ $ÇD$<.ÇD$ÇD$èó™ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVè痃ĉ»üX…ÿ„ý&ƒìÿ³¨Uÿ³PUÿ³„Uÿ³hUj脙ƒÄ ‰ƒDX…À„Ê&‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ„Q‰D$ƒìjÿt$蘃ąÀ„X$‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$$ÇD$<€ÇD$ÇD$èÄP‰Nj=ÿÿÿ?tH‰uƒìVè▃ĉ»Y…ÿ„ø%ƒìÿ³¨Uÿ³ìPÿ³ôPÿ³hUjè˜ƒÄ ‰ƒHX…À„Å%‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒPQ‰D$ƒìjÿt$è
—ƒÄ…À„d#‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$$ÇD$<ÔÇD$ÇD$èé—ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèݕƒÄ‰»Y…ÿ„ó$ƒìÿ³¨Uÿ³ Sÿ³ìPÿ³ôPÿ³hUjèt—ƒÄ ‰ƒLX…À„º$‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ´S‰D$ƒìjÿt$èÿ•ƒÄ…À„j"‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒTõÿ$ÇD$<2ÇD$ÇD$èߖƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèӔƒÄ‰»Y…ÿ„é#ÿ³¨Uÿ³äPÿ³hUjèy–ƒÄ‰ƒPX…À„¿#‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒœP‰D$ƒìjÿt$蕃ąÀ„€!‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$ $ÇD$<†ÇD$ÇD$è㕃ÄP‰Nj=ÿÿÿ?tH‰uƒìVèדƒÄ‰»Y…ÿ„í"ƒìÿ³¨Uÿ³ Sÿ³äPÿ³hUjèt•ƒÄ ‰ƒTX…À„º"‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ¨S‰D$ƒìjÿt$èÿ“ƒÄ…À„Œ ‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$$ÇD$<ÒÇD$ÇD$èޔƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèҒƒÄ‰»Y…ÿ„è!‹ƒ\M‰D$‹«XM‹ƒX‰D$‹ƒðS‰D$‹»ÀUƒìjÿt$è)“ƒÄ…À„ljƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$€$ÇD$<(ÇD$ÇD$蔃ÄP‰Nj=ÿÿÿ?tH‰uƒìVèü‘ƒÄ‰»Y…ÿ„!‹ƒ\M‰D$‹«XM‹ƒPX‰D$‹ƒðS‰D$‹»ðUƒìjÿt$èS’ƒÄ…À„‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$ $ÇD$<sÇD$ÇD$è2“ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVè&‘ƒÄ‰»Y…ÿ„< ƒìÿ³¨Uÿ³TRÿ³0Sÿ³hUjèÒƒÄ ‰ƒXX…À„	 ‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ¤V‰D$ƒìjÿt$èN‘ƒÄ…À„‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$$ÇD$<æÇD$ÇD$è-’ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVè!ƒÄ‰»Y…ÿ„7ÿ³¨Uÿ³ÈOÿ³hUjèǑƒÄ‰ƒ\X…À„
‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ4T‰D$ƒìjÿt$èRƒÄ…À„#‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$ $ÇD$<?	ÇD$ÇD$è1‘ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVè%ƒÄ‰» Y…ÿ„;‹ƒ\M‰D$‹«XM‹ƒ\X‰D$‹ƒðS‰D$‹»ÈVƒìjÿt$è|ƒÄ…À„^‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$ $ÇD$<¦	ÇD$ÇD$è[ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèOŽƒÄ‰»$Y…ÿ„e‹ƒ\M‰D$‹«XM‹ƒ\X‰D$‹ƒðS‰D$‹»pTƒìjÿt$覎ƒÄ…À„™‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$ $ÇD$<
ÇD$ÇD$腏ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèyƒÄ‰»(Y…ÿ„‹ƒ\M‰D$‹«XM‹ƒ8X‰D$‹ƒðS‰D$‹»pRƒìjÿt$èЍƒÄ…À„Ô‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$$ÇD$<{
ÇD$ÇD$诎ƒÄP‰Nj=ÿÿÿ?tH‰uƒìV裌ƒÄ‰»,Y…ÿ„¹‹ƒ\M‰D$‹«XM‹ƒ8X‰D$‹ƒðS‰D$‹»ÄQƒìjÿt$èúŒƒÄ…À„‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$$ÇD$<Ù
ÇD$ÇD$èٍƒÄP‰Nj=ÿÿÿ?tH‰uƒìVè͋ƒÄ‰»0Y…ÿ„㋃\M‰D$‹«XM‹ƒ8X‰D$‹ƒðS‰D$‹»¼Rƒìjÿt$è$ŒƒÄ…À„J‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$$ÇD$<UÇD$ÇD$荃ÄP‰Nj=ÿÿÿ?tH‰uƒìVè÷ŠƒÄ‰»4Y…ÿ„
ƒìÿ³¨Uÿ³œUÿ³üRÿ³hUj蔌ƒÄ ‰ƒ`X…À„Ú‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒÈR‰D$ƒìjÿt$苃ąÀ„V‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$$ÇD$<«ÇD$ÇD$èþ‹ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèò‰ƒÄ‰»8Y…ÿ„‹ƒ\M‰D$‹«XM‹ƒX‰D$‹ƒðS‰D$‹»Uƒìjÿt$èIŠƒÄ…À„‘‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$X‰L$0‰l$,‰l$(‹L$T‰L$$‰l$ ‰l$‰D$(„$ $ÇD$<ÇD$ÇD$è(‹ƒÄP‰Nj=ÿÿÿ?tH‰uƒìV艃ĉ»<Y…ÿ„2ƒìÿ³¨Uÿ³PUÿ³üRÿ³hUj蹊ƒÄ ‰ƒdX…À„ÿ‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ°V‰D$ƒìjÿt$èD‰ƒÄ…À„‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$$ÇD$<lÇD$ÇD$è#ŠƒÄP‰Nj=ÿÿÿ?tH‰uƒìV舃ĉ»@Y…ÿ„-ƒìÿ³Tÿ³Tÿ³Tÿ³€Qÿ³tQÿ³lQÿ³$Rÿ³¨Uÿ³8Uÿ³Sÿ³|Rÿ³hUj脉ƒÄ@‰ƒhX…À„ʉNjƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒPV‰D$ƒìjÿt$舃ąÀ„y‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒDõÿ$ÇD$<¹ÇD$ÇD$èÄP‰Nj=ÿÿÿ?tH‰uƒìVèㆃĉ»DY…ÿ„ùƒìÿ³\Sÿ³(Tÿ³@Rÿ³ðTÿ³ìTÿ³ÀPÿ³èQÿ³$Rÿ³üQÿ³Qÿ³¨Uÿ³ Tÿ³TSÿ³hUjèDˆƒÄ@‰ƒlX…À„ЉNjƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒPP‰D$ƒìjÿt$èφƒÄ…À„J‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒõÿ$ÇD$<&
ÇD$ÇD$诇ƒÄP‰Nj=ÿÿÿ?tH‰uƒìV装ƒÄ‰»HY…ÿ„¹ƒìÿ³Tÿ³¨Uÿ³ Tÿ³TSÿ³hUjè:‡ƒÄ ‰ƒpX…À„€‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒxS‰D$ƒìjÿt$èŅƒÄ…À„Q‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ”õÿ$ÇD$<¾
ÇD$ÇD$襆ƒÄP‰Nj=ÿÿÿ?tH‰uƒìV虄ƒÄ‰»LY…ÿ„¯ƒìÿ³Tÿ³¨Uÿ³hRÿ³hUjè6†ƒÄ ‰ƒtX…À„|‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒXT‰D$ƒìjÿt$èDƒÄ…À„^‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ´õÿ)D$`$ÇD$<ÇD$ÇD$蜅ƒÄP‰Nj=ÿÿÿ?tH‰uƒìV萃ƒÄ‰»PY…ÿ„¦ƒìÿ³Tÿ³¨Uÿ³ÈOÿ³hUjè-…ƒÄ ‰ƒxX…À„s‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒìV‰D$0ƒìjÿt$踃ƒÄ…À„f‰ƃìP‰D$D‹D$T‰D$@‹Œ$€‰L$8‰L$4‹L$X‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(D$`$ÇD$<oÇD$ÇD$藄ƒÄP‰Nj=ÿÿÿ?tH‰uƒìV苂ƒÄ‰»TY…ÿ„¡ƒìÿ³Tÿ³¨Uÿ³ Tÿ³hUjè(„ƒÄ ‰ƒ|X…À„n‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ˜Q‰D$0ƒìjÿt$賂ƒÄ…À„r‰ƃìP‰D$D‹D$T‰D$@‹Œ$€‰L$8‰L$4‹L$X‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(D$`$ÇD$<ÏÇD$ÇD$蒃ƒÄP‰Nj=ÿÿÿ?tH‰uƒìV膁ƒÄ‰»XY…ÿ„œƒìÿ³Tÿ³¨Rÿ³ Rÿ³¤Rÿ³Tÿ³Tÿ³Tÿ³$Rÿ³¨Uÿ³ÐSÿ³lSÿ³ŒSÿ³hUj
è킃Ä@‰ƒ€X…À„3‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒÜQ‰D$0ƒìjÿt$èxƒÄ…À„H‰ƃìP‰D$D‹D$T‰D$@‹Œ$€‰L$8‰L$4‹L$X‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ´õÿ$ÇD$<
ÇD$ÇD$èU‚ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèI€ƒÄ‰»\Y…ÿ„_‹ƒ\M‰D$‹«XM‹ƒ|X‰D$‹ƒðS‰D$0‹»ÔRƒìjÿt$蠀ƒÄ…À„‰ƃìP‰D$D‹D$T‰D$@‰|$8‰|$4‹Œ$€‰L$0‰l$,‰l$(‹L$X‰L$$‰l$ ‰l$‰D$(D$`$ÇD$<ÇD$ÇD$聃ÄP‰Nj=ÿÿÿ?tH‰uƒìVèsƒÄ‰»`Y…ÿ„‰ƒìÿ³ŒTÿ³”Vÿ³DUÿ³`Vÿ³ØVÿ³\Qÿ³„Uÿ³(Vÿ³@Vÿ³”Pÿ³¨Uÿ³ÐPÿ³üRÿ³hUjèԀƒÄ@‰ƒ„X…À„‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒHS‰D$ƒìjÿt$è_ƒÄ…À„Q
‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒtõÿ$ÇD$<éÇD$ÇD$è?€ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVè3~ƒÄ‰»dY…ÿ„I
ÿ³Wÿ³ÀVÿt$4jèۃĉƒˆX…À„!
ƒìÿ³8Sÿ³„Uÿ³(Sÿ³˜Sÿ³Sÿ³TTÿ³Sÿ³@Tÿ³œSÿ³üSÿ³,Vÿ³èQÿ³àPÿ³¨Uÿ³Tÿ³TSÿ³hUjèZƒÄP‰ƒŒX…À„ ‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ<S‰D$ƒìjÿt$èå}ƒÄ…À„å‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒõÿ$ÇD$<°ÇD$ÇD$èÅ~ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVè¹|ƒÄ‰»hY…ÿ„Ïÿ³üPÿ³„Uÿ³Rÿ³äOÿ³œVÿ³Pÿ³˜Vÿ³Pÿ³LRÿ³èQÿ³LVÿ³PRÿ³¨Uÿ³Pÿ³hUjè~ƒÄ@‰ƒX…À„]‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒQ‰D$ƒìjÿt$è¢|ƒÄ…À„°
‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ„õÿ$ÇD$<@ÇD$ÇD$è‚}ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèv{ƒÄ‰»lY…ÿ„Œ
ƒìÿ³lPÿ³pPÿ³àVÿ³HRÿ³Vÿ³TSÿ³LRÿ³èQÿ³ØVÿ³hUj
èï|ƒÄ0‰ƒ”X…À„5
‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒŒU‰D$ƒìjÿt$èz{ƒÄ…À„–	‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒ$õÿ$ÇD$<ÕÇD$ÇD$èZ|ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèNzƒÄ‰»pY…ÿ„d	ƒìÿ³ðQÿ³Pÿ³ØVÿ³hUjèë{ƒÄ ‰ƒ˜X…À„1	‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒDT‰D$ƒìjÿt$èvzƒÄ…À„ ‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$à$ÇD$<RÇD$ÇD$èU{ƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèIyƒÄ‰»tY…ÿ„_ƒìÿ³LPÿ³\UjèòzƒÄ‰ƒœX…À„8‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒ\U‰D$ƒìjÿt$è}yƒÄ…À„µ‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$À$ÇD$<ÊÇD$ÇD$è\zƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèPxƒÄ‰»xY…ÿ„f‹ƒ\M‰D$‹«XM‹ƒðS‰D$‹»¨Qƒìjÿt$è±xƒÄ…À„÷‰ƃìP‰D$D‹D$`‰D$@‰|$8‰|$4‹L$T‰L$0‰l$,‰l$(‰l$$‰l$ ‰l$‰D$WÀ$ÇD$<âÇD$ÇD$è™yƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèwƒÄ‰»|Y…ÿ„£ƒìÿ³¤Uÿ³dPjè6yƒÄ‰ƒ X…À„|‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒlU‰D$ƒìjÿt$èÁwƒÄ…À„‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(„$À$ÇD$<üÇD$ÇD$è xƒÄP‰Nj=ÿÿÿ?tH‰uƒìVè”vƒÄ‰»€Y…ÿ„ªƒìÿ³`Rÿ³Pjè=xƒÄ‰ƒ¤X…À„ƒ‰Njƒ\M‰D$‹«XM‹ƒðS‰D$‹ƒHU‰D$ƒìjÿt$èÈvƒÄ…À„*‰ƃìP‰D$D‹D$`‰D$@‹L$X‰L$8‰L$4‹L$T‰L$0‰l$,‰l$(‰|$$‰l$ ‰l$‰D$(ƒÄõÿ)D$`$ÇD$<ÇD$ÇD$è£wƒÄP‰Nj=ÿÿÿ?tH‰uƒìVè—uƒÄ‰»„Y…ÿ„­‹ƒ\M‰D$‹«XM‹ƒ¤X‰D$‹ƒðS‰D$0‹»øTƒìjÿt$èîuƒÄ…À„^‰ƃìP‰D$D‹D$T‰D$@‰|$8‰|$4‹Œ$€‰L$0‰l$,‰l$(‹L$X‰L$$‰l$ ‰l$‰D$(D$`$ÇD$<!ÇD$ÇD$èÍvƒÄP‰Nj=ÿÿÿ?tH‰uƒìVèÁtƒÄ‰»ˆY…ÿ„׃ì‹D$0PPÿ³Wè|vƒÄ‰Iƒ<X1É…³é©ƒ¨XÇ阍ƒ¬XÇ重ƒ°XÇévƒ´XÇéeƒ¸XÇéTƒ¼XÇéCƒÀXÇé2ƒÄXÇé!ƒÈXÇ鍃ÌXÇéÿƒÐXÇéÔXÇéݍƒØXÇé̍ƒÜXÇ黍ƒàXÇ骍ƒäXÇ降ƒèXÇ鈍ƒìXÇéwƒðXÇéfƒôXÇéUƒøXÇéDƒüXÇé3ƒYÇé"ƒYÇ鍃YÇ鍃YÇéYÇéލƒYÇé͍ƒYÇ鼍ƒYÇ髍ƒ YÇ隍ƒ$YÇ鉍ƒ(YÇéxƒ,YÇégƒ0YÇéVƒ4YÇéEƒ8YÇé4ƒ<YÇé#ƒ@YÇ鍃DYÇ鍃HYÇéðƒLYÇéߍƒPYÇé΍ƒTYÇ齍ƒXYÇ鬍ƒ\YÇ雍ƒ`YÇ銍ƒdYÇë|ƒhYÇënƒlYÇë`ƒpYÇëRƒtYÇëDƒxYÇë6ƒ|YÇë(ƒ€YÇ덃„YÇëƒˆYǸÿÿÿÿĬ^_[]АUSWVƒì,è[Ã0»«¸Y‰«ÄYƒ„üÿ‰ƒ¸Yƒ üÿ‰ƒ¼YƒD üÿ‰ƒÀY³ØH‰³¼M‹ƒ€I…Àtg‹Hƒù|_ƒ»hItI1Ґ‹|öGU„B9Ñuíë;‹“äH‰T$I1Ґ‹|öGU„…B9Ñuàèûq‰ǀ‹-IƒìVè¹pƒÄ‰ƀ£-Iý…ÿtèäq…öˆú‹»¼Mƒ¿u‹GH;ƒÿÿÿu‹ƒÿÿÿ‰GH‹»¼MƒìjjUè¶qƒÄ‰ƅÀ„ăìVÿ³œTÿ·„èÔpƒÄ…Àˆ¤‹=ÿÿÿ?tH‰uƒìVèRoƒÄ‹‹¼M‹€‰L$‹‰¨‰L$1ÿ…ÀtG‹€€…Àuõ½ƒìPè5qƒÄ‰D$Çÿÿÿÿ‹L$ƒyŒÂ…ÿŽƒl$€¸‹“ÿÿÿ‰T$ “’|ùÿ‰T$됐‹D$$@‹L$;A†‰D$$‹Dƒìÿ³œTÿ°„èÒpƒÄ…ÀtˉŃìjPèÎpƒÄ‰E	D$u1èüo‹L$…Àu$ƒìÿt$$‹D$,ÿ0è"n‹L$ƒÄ‹E=ÿÿÿ?tH‰EuƒìUè'n‹L$ƒÄ…É„Xÿÿÿ1ö‹l$‹m‹D$‹°ƒúÿ…¼ƒìÿ³œTÿµ„è)pƒÄ…Àt<ƒìj‰D$4Pè#pƒÄ‰…Àu‰T$èQo‹T$…Àt‹L$(‹=ÿÿÿ?u4‹L$ëV1ҋL$ëNƒìÿt$$‹D$,ÿ0è\m‹T$ ƒÄ‹L$(‹=ÿÿÿ?tÌH‰‰ȋL$uƒìP‰T$ è`m‹T$ ‹L$ƒÄ‹D$‰°ÇD°ÿÿÿÿ9Ê„yþÿÿ…Òt(ƒí€F9÷…ÿÿÿédþÿÿ‹ƒÿÿÿƒì‹”†ùÿÿwé0‹D$‹‹L$‹T$$‹L‘‹“ÿÿÿ³ŸeùÿÿqÿpVÿ2èÁmƒÄÿt$è5oéû½‹ƒÿÿÿ‰D$³’|ùÿ됐EƒÅþ‹L$;i‰Å}w‹©ƒìÿ³œTÿ°„èÈnƒÄ…ÀtщǃìjPèÄnƒÄ…Àu	èøm…Àt‹=ÿÿÿ?t«H‰u¦ƒìWèMlƒÄ똃ìV‹D$ÿ0è	lƒÄ‹=ÿÿÿ?uÒéxÿÿÿèclƒìÿt$èwnƒÄÿ³¼Mÿ³ðMÿ³DMèmƒÄ‰Á1Éy%닃ÿÿÿ‹<‚ùÿÿwÿt$Qÿ0èµlƒÄ¸ÿÿÿÿƒÄ,^_[]Éñ辵ÿÿëꐐUSWVƒìè[Ã ¶ƒì«¤ùÿUèþmƒÄ¾ÿÿÿÿ…À„V‰ǃ썃ÞUùÿ‰ù‰êjhÌP較ĉƒhM…À„
‹=ÿÿÿ?tH‰uƒìWè:kƒÄƒìUèžmƒÄ…À„û‰ǃ썃ãUùÿ‰ù‰êjjP誻ƒÄ‰ƒlM…À„²‹=ÿÿÿ?tH‰uƒìWèâjƒÄƒìUèFmƒÄ…À„£‰ǃ썃'Šùÿ‰ù‰êjjPèR»ƒÄ‰ƒpM…À„Z‹=ÿÿÿ?tH‰uƒìWèŠjƒÄƒì«èUùÿUèèlƒÄ…À„E‰ǃ썃îUùÿ‰ù‰êjjPèôºƒÄ‰ƒtM…À„üƒìƒ‘wùÿ‰ù‰êjh$PèɺƒÄ‰ƒxM…À„у썃ü„ùÿ‰ù‰êjh˜P螺ƒÄ‰ƒ|M…À„¦ƒìƒcùÿ‰ù‰êjj,PèvºƒÄ‰ƒ€M…À„~ƒìƒíŠùÿ‰ù‰êjjPèNºƒÄ‰ƒ„M…À„Vƒìƒ£yùÿ‰ù‰êjjPè&ºƒÄ‰ƒˆM…À„.ƒìƒÚeùÿ‰ù‰êjjPèþ¹ƒÄ‰ƒŒM…À„ƒìƒ/Šùÿ‰ù‰êjjPèֹƒÄ‰ƒM…À„ރ썃tùÿ‰ù‰êjjP讹ƒÄ‰ƒ”M…À„¶ƒìƒ=Šùÿ‰ù‰êjjP膹ƒÄ‰ƒ˜M…À„Žƒìƒ¦fùÿ‰ù‰êjjPè^¹ƒÄ‰ƒœM…À„fƒìƒeùÿ‰ù‰êjjPè6¹ƒÄ‰ƒ M…À„>ƒìƒdùÿ‰ù‰êjjP蹃ĉƒ¤M…À„ƒìƒ¹|ùÿ‰ù‰êjjPèæ¸ƒÄ‰ƒ¨M…À„îƒìƒÃ|ùÿ‰ù‰êjj|P辸ƒÄ‰ƒ¬M…À„Æ‹=ÿÿÿ?tH‰uƒìWèögƒÄƒì«»†ùÿUèTjƒÄ…À„±‰ǃ썃Ç}ùÿ‰ù‰êjj0Pè`¸ƒÄ‰ƒ°M…ÀtlƒìƒBaùÿ‰ù‰êjj Pè<¸ƒÄ‰ƒ´M…ÀtH‹ˆ„蔷‰ƒZ…Àt3ƒìƒÇjùÿ‰ù‰êjjP踃ĉƒ¸M…Àt‹1ö=ÿÿÿ?t#1öë‹=ÿÿÿ?t¾ÿÿÿÿH‰uƒìWè+gƒÄ‰ðƒÄ^_[]АUSWVƒìè[À±ƒֆùÿ‰$è_i¾ÿÿÿÿ…À„—‰Ǎ«ôUùÿ‰l$ƒHM‰$“Oiùÿ‰ù萸…ÀxV‰l$ƒZ‰$“¯fùÿ‰ùèr¸…Àx8ƒ}ùÿ‰D$ƒ Z‰$“„ùÿ‰ùèN¸…Àx‹1ö=ÿÿÿ?t$1öH‰uë‹=ÿÿÿ?t¾ÿÿÿÿH‰u‰<$èKf‰ðƒÄ^_[]ÐUSWVƒìè[ð°ƒÍtùÿ‰$èh¾ÿÿÿÿ…À„ä‰Ǎ«Øjùÿ‰l$ƒäY‰$“õyùÿ‰ùèð¸…ÀˆŸ‰l$ƒèY‰$“	~ùÿ‰ùèθ…Àˆ}‰l$ƒìY‰$“{ùÿ‰ù謸…Àˆ[‰l$ƒðY‰$“_iùÿ‰ù芸…Àˆ9‰l$ƒôY‰$“'cùÿ‰ùèh¸…Àˆ‰l$ƒØY‰$“kiùÿ‰ùèF¸…Àˆõ‰l$ƒÔY‰$“2cùÿ‰ùè$¸…ÀˆÓ‰l$ƒÜY‰$“œ`ùÿ‰ù踅Àˆ±‰l$ƒàY‰$“Xuùÿ‰ùèà·…Àˆ‹=ÿÿÿ?t
H‰u‰<$èÂdƒֆùÿ‰$è$g…À„~‰Ǎƒ‹ùÿ‰D$ƒZ‰$“'vùÿ‰ù芷…Àˆ9ƒ*ùÿ‰D$ƒZ‰$“cuùÿ‰ùèb·…Àˆƒ8vùÿ‰D$ƒøY‰$“؀ùÿ‰ùè:·…Àˆéƒšwùÿ‰D$ƒÈY‰$“Ívùÿ‰ùè·…ÀˆÁƒzuùÿ‰D$ƒZ‰$“dùÿ‰ùèê¶…Àˆ™ƒ*{ùÿ‰D$ƒÌY‰$“Œùÿ‰ùè¶…ÀxuƒËfùÿ‰D$ƒZ‰$“Æfùÿ‰ù螶…ÀxQ«è‚ùÿ‰l$ƒüY‰$“ë†ùÿ‰ùèz¶…Àx-‰l$ƒZ‰$“ü†ùÿ‰ùè\¶…Àx‹1ö=ÿÿÿ?t1öë‹=ÿÿÿ?t¾ÿÿÿÿH‰u‰<$è.c‰ðƒÄ^_[]АUSWVƒì‰Íè[Î­ƒìQè‚eƒÄ…À„­‰Njƒ°U‹O‹IH;‹ÿÿÿ‰l$…¦jjPWèdƒÄ‰ŅÀ„
‹ƒR‹M‹IH;‹ÿÿÿ…™jjPUèîcƒÄ‰ƅÀ„¢;³4ÿÿÿt;³8ÿÿÿt;³ÿÿÿtƒìVèeƒÄë1À;³4ÿÿÿ”À…ƒ1ɋE=ÿÿÿ?ukëoèÕc…À„êèxbéàƒì…É„'PWÿуĉŅÀ…VÿÿÿèBÇëYƒì…É„PUÿуĉƅÀ…cÿÿÿèÇ1ö±‹E=ÿÿÿ?tH‰Et31í„Éu‹=ÿÿÿ?tH‰uƒìVè¾aƒÄ…íu*èòa‰øƒÄ^_[]ÃìU‰L$è›aƒÄ1í€|$tºë֋E=ÿÿÿ?tH‰EuƒìUètaƒÄ‹=ÿÿÿ?‹l$tH‰uƒìWèVaƒÄèîc…ÀtB‰ƃìjjPÿ³LMUèäcƒÄ ‰Nj=ÿÿÿ?„pÿÿÿH‰…gÿÿÿƒìVèaƒÄéVÿÿÿ1ÿéOÿÿÿPWèšbƒÄ‰ŅÀ…,þÿÿéÑþÿÿPUèbƒÄ‰ƅÀ…CþÿÿéÛþÿÿUSWVƒì‰ՉÏè[Ã,«èDc…ÀtA‰ƃìÿt$,UPÿ³LMWè9cƒÄ ‹ùÿÿÿ?tI‰uƒìV‰Æèl`‰ðƒÄƒÄ^_[]Ã1Àë��USWVƒì‰։Ïè[üª‹A‹@H…Àt‰t$‰<$ÿЅÀtƒÄ^_[]Ét$‰<$è®a…Àu苃ÿÿÿ‹‰$è*`…À„Šè-`‰<$è¥bÇD$…À„’‰$èb…À„‚‹‹ÀO‰L$‰D$‰$èb…Àtp‰ljt$‰$è}b…Àt`‰ʼn$èb‰D$‰é脩ÿÿ‰ùè}©ÿÿ‹L$èt©ÿÿ‹D$…À…Fÿÿÿ‹ƒÿÿÿ‹‰t$‹I|ùÿ‰L$‰$è*`1Àé!ÿÿÿÇD$1ÿ1í몐USWVƒì,è[à©ÇD$(ÇD$$ÇD$ èða‹P@‹‹ÿÿÿ‰D$됋R…Òt9‹:…ÿtó9Ïtùÿÿÿ?tA‰‹W‹
ùÿÿÿ?tA‰
‰T$‰<$è¶a‰D$ëÇD$1ÿÇD$ƒwiùÿ‰$èa‰ŅÀtxƒ)kùÿ‰D$‰,$èX^‰ƋE=ÿÿÿ?t
H‰E„õ…ö„\‹F;ƒ<ÿÿÿtw‹ƒÿÿÿ‹‹†ùÿ‰L$‰$è^‹=ÿÿÿ?„*H‰…!‰4$è^鋃@ÿÿÿ‹‰$è2^…À„üè5^ƒmdùÿ‰$èW`‰ŅÀ…Sÿÿÿéډ4$ÇD$è`‰ƒÐY‹ùÿÿÿ?tI‰u‰4$è«]‹ƒÐY…ÀtFÿ=rY‹ƒÿÿÿ‹0‹ƒÐYÿ‰D$ƒÉ|ùÿ‰D$‰4$ÇD$ëj‰,$èe]…ö…ÿÿÿë]‹ƒÿÿÿ‹‹•iùÿ‰L$‰$è]ëA‹ƒÐYÿL‰ƒZƒø
‹‹ÿÿÿ‹	‰D$ƒãgùÿ‰D$‰$ÇD$èÞ]‹ƒDÿÿÿ‹‹l$‹M<è
ÅÀ„“ƒ~ùÿ‰D$Ç$‹‘ùÿº"èQD$ ‰D$D$$‰$T$(‰éèwê…Àxc‹‹´Y‹“WÇ$èÈÇD$…À„†‰ʼnÁè’È‹E¾I"=ÿÿÿ?tH‰Eu‰,$èU\‹l$ë¾"ÇD$ë
¾9"ÇD$‹M@‹D$‰D$‰<$‹T$èœë‹D$(…Àt‹ùÿÿÿ?t
I‰u‰$èý[‹D$$…Àt‹ùÿÿÿ?t
I‰u‰$èÞ[‹D$ …Àt‹ùÿÿÿ?t
I‰u‰$è¿[ƒ~ùÿ‰D$‹D$‰$‹‘ùÿ‰òè1¸ÿÿÿÿƒÄ,^_[]˃ÐYÿHƒø‹L$t…Àus‹ƒÿÿÿ‹‹4kùÿéþÿÿ…Ét‹=ÿÿÿ?t
H‰u‰$èN[…ÿ‹t$t‹=ÿÿÿ?t
H‰u‰<$è0[1ötŽ‹ùÿÿÿ?t„I‰…{ÿÿÿ‰4$è[1Àélÿÿÿ‹ƒÿÿÿ‹‹8…ùÿé¨ýÿÿ¾E"é–þÿÿUSWVƒì‰ՉÏè[ÃL¥‹ƒdM‰$èË]…À„?‰ƋL$$‹D$ ‰nHÇF‰~‰vÇF8…Ét
‹úÿÿÿ?tB‰‹T$(‰NÇF ÇF$‹ùÿÿÿ?tA‰‹L$,‰F(ÇF,ÇF‰V0‹=ÿÿÿ?t@‰…Ét‹=ÿÿÿ?t@‰‰N4ÇF@ÇFDÇF<WÀFLÇF\¸#Gƒø~=‚t&=‚t'ƒøuAƒd
ÿÿë$ƒøtƒøu/ƒ´	ÿÿ덃ÿÿë
ƒ”ÿÿë1	F‰4$èÎ\‰ðƒÄ^_[]˃Hÿÿÿ‹‹gˆùÿ‰L$‰$èZY‹=ÿÿÿ?t
H‰u‰4$ètY1öëÂSVP‰Îè[Ã⣃ìÿqQÿ³LMè}\ƒÄ…Àt‹ùÿÿÿ?tA‰ƒÄ^[Ãè¾Z…Àu‰ñƒÄ^[éN½1Ä^[АUSWVƒìè[À£‹q‹n8…í„(‹E…À„‹t$8…öt‹‰T$‰$ÿЃÄ^_[]ÉL$ƒ|$<t$‰$èö[‰…À„‹L$4…ɉT$t‹	1öëI1ҋƒÿÿÿ‹L$4…ɉT$uæƒ|$@t&‹L$0‰$‰Æè±[‰Ið‰΅Éu‹L$è^¢ÿÿé³1ö‹‹ÿÿÿ‹“ÿÿÿ‰T$‰L$‰$èZ‰NjL$…Ét‹=ÿÿÿ?t
H‰u‰$èX…öt‹=ÿÿÿ?t
H‰u‰4$èX…ÿtW‰|$‹D$‰$ÿU‹ùÿÿÿ?„ÿÿÿI‰…ÿÿÿ‰<$‰ÆèÎW‰ðéöþÿÿ‹F‹‹ÿÿÿ‹	‰D$ƒŽ…ùÿ‰D$‰$è†X1ÀéÎþÿÿSƒìè[Ã¢9Ñu
¸ƒÄ[ËAƒxTy1öAW@t+‹B‹@T…ÀyöBW@t
è.ÁƒÄ[ét
èÁƒÄ[ÃìRQè~ZƒÄ[АSƒìè[Ó¡‹Bö@Wt%‹A‹@H;ƒÿÿÿu1jjRQè>XƒÄ…Àt6ƒÄ[ÃìRQèxXƒÄ…ÀuêƒÄ[éÈÁƒì…Àt7RQÿЃÄ…ÀuÏèá»è<X…Àu.‹ƒÿÿÿ‹ùÿÿÿ?t±A‹ƒÿÿÿ‰ƒÄ[ÃRQè#XƒÄ…Àu•ëÄ1Ä[АUSWVƒì,‰ՉL$$è[ÃڠèBY‰D$(…í‰\$tIƒ»TM„_‹D$(‹x<Ç@<…ÿ‰l$t-‹w‹=ÿÿÿ?t@‰‹o…ít‹E=ÿÿÿ?t@‰Eë1íé1ö1í‹\$‹ƒTM‰$è@Y‹“¼P…Àt;‹‹J‰L$‰T$‰$èñX…ÀtP;ƒ8ÿÿÿto‹\$;ƒ4ÿÿÿtk‰$èY…ÀuWë]‹‹TMè`º…Àt‰D$ ‰$èðX…À…¯‹ƒ4ÿÿÿéªè¨U‹ƒTM‹‹¼P‹“8ÿÿÿ‰T$‰L$‰$èfVÇD$…ÿt	9o…S‹L$(‹A<‰y<…Àt‹ùÿÿÿ?t	I‰„^…öt‹=ÿÿÿ?t	H‰„a…ít‹E=ÿÿÿ?t
H‰E„b‹\$‹l$‰è÷ØCD$@‰D$ …Àt#‹ƒ,Z…Àt‹³$Z‰ñIˆ¨‹T$ 9Tðü}]‹D$(‹P<Ç@<…҉T$„'‹B‰D$‹=ÿÿÿ?t@‹L$‰‹r…ö„™‹=ÿÿÿ?„@‰‹|$D…í…ÿ醅Ét=‰t$‰l$1ÿ‹\$ 됐‰ñ9÷}3‰Î)þ‰òÁêòÑúú‹lЉÖ9Ýá}!z‰Îë؉t$‰l$‹h1ҋ\$ 1É9ÝœÁÊ;T$‹\$‹l$6ÿÿÿ‹L$ 9LÐ…(ÿÿÿ‹<Ћ=ÿÿÿ?t@‰‹ƒLM‰D$‰|$‹D$(‰$ÇD$èW‰ƅÀt‹D$@‰F‰4$èW‹=ÿÿÿ?„sH‰…j‰<$èjSé]ÇD$1ö‹|$D…턌‰l$ƒ]kùÿ‰D$‹D$$‰D$ƒzùÿ‰$èËV…l$‹T$„á‰D$$‰$è¿V…À„«‹L$@‰L$‰D$‰<$è³V‰NjL$$‹=ÿÿÿ?t?H‰‹T$u:‰$èÓRë,1ö‹|$D…í…tÿÿÿ‹D$@‰D$‹D$$‰D$‰<$èkV‰Njl$‹T$…ÿ„_…Òt	9r…A‹L$(‹A<‰Q<…Àt‹ùÿÿÿ?t
I‰u‰$ègR…ít‹E=ÿÿÿ?tH‰Eu‰,$èKR…öt‹=ÿÿÿ?t
H‰u‰4$è1Rƒ|$ „gþÿÿ‹ƒ,Z…À„‚‹«$Z‰éIˆš‰î‹T$ 9TèüŒº…É„‚‰l$1Ò됐‰ڍS‰Ήñ9ò}m‰Í)ՉîÁîîÑþ֋lð‰ó;l$ ß|։ÞëY‰$‹\$è¦Q…ö…’üÿÿéŸüÿÿ‰4$‹\$èQ…텏üÿÿéžüÿÿ‰,$‹\$ètQé‘üÿÿ‰l$‹h1Û1É;l$ œIÞ΋l$9î‹\$}‹L$ 9Lð„3;«(Z‰|$u0í‰L$‰$èðT…À„ƒÅ@‰ƒ,Z‰«(Z‹«$Z‰ï)÷~y‰éƒÿrV‰t$$‰ûƒãü‰é)ىê‰Ý÷݉T$4ЃÆø1ҐDÖèLÖøÖDÖðƒÂü9Õuæ9ߋ\$‹l$‹t$$t"‰÷‹TÈø‹tÈü‰tȉȍQÿ‰Ñ9ú‰þä‹L$ ‰Lð‹|$‰<ðE‰«$Z‹=ÿÿÿ?…Ÿüÿÿéüÿÿ‹L$$‹=ÿÿÿ?‹T$tH‰u‰$è>P‹T$…ít‹E=ÿÿÿ?tH‰Eu‰,$èP‹T$…Òt‹=ÿÿÿ?tH‰t"…öt‹=ÿÿÿ?t
H‰u‰4$èîOƒÄ,^_[]É$éoüÿÿ‰l$‰<$‹\$è®Sé˜úÿÿ‹ƒ8ÿÿÿ‹T$ ‹
ùÿÿÿ?u	‹\$éïùÿÿ‰D$I‰
tm‹D$‹\$éÙùÿÿÇ$èzS…Àt2‹L$‰,Zǁ(Z@ǁ$Z‹L$ ‰H‰ù‰8‹=ÿÿÿ?u3‹\$éŒûÿÿ‰t$‰$èS‹T$éªüÿÿ‰$‹\$è*O‹D$édùÿÿ@‰‹\$éVûÿÿ‹|$éMûÿÿ‹ð‰ý‰<ð‹=ÿÿÿ?tH‰t‹\$‰ïé,ûÿÿ‰$‹\$èßN‰ïéûÿÿSVPè[ÃD™‹t$‰4$èµRƒ~t‰4$è·R‰4$èï‰4$è·RƒÄ^[ÐSƒìè[Ã™‹D$ƒì‹˜‡ùÿPÿp(Qè	RƒÄ[АUSWVƒìè[ÃИ‹|$(‹l$$‹t$ ‹V…Òt‹EƒÅ…ÿ…ŽjPUVÿÒë}‹FHƒàƒøucƒìÿujUè:RƒÄ‰Ç1ÿtEƒìjUè4RƒÄ…Àthƒì‰ñ‰Âÿt$0Wè̃ċùÿÿÿ?tI‰uƒìW‰Æè¿M‰ðƒÄƒÄë‹Vƒì‰ñWUè–ƒÄ^_[]Ähÿÿÿƒì‰ñWPUè§ëߋ=ÿÿÿ?tH‰uƒìWènMƒÄ‹ƒÿÿÿƒì‹.„ùÿÿv(Qÿ0è1NƒÄ1Ä뤐USWVƒìè[ð—‹t$(‹|$$‹l$ ‹E8…ÀtƒìVPÿ׃Ä…À…J‹E…ÀtƒìVPÿ׃Ä…À…1‹E …ÀtƒìVPÿ׃Ä…À…‹E$…ÀtƒìVPÿ׃Ä…À…ÿ‹E(…ÀtƒìVPÿ׃Ä…À…æ‹E,…ÀtƒìVPÿ׃Ä…À…Í‹E0…ÀtƒìVPÿ׃Ä…À…´‹E4…ÀtƒìVPÿ׃Ä…À…›‹E…ÀtƒìVPÿ׃Ä…À…‚‹EL…ÀtƒìVPÿ׃Ä…Àum‹EP…ÀtƒìVPÿ׃Ä…ÀuX‹E\…ÀtƒìVPÿ׃Ä…ÀuC‹M<1	L$…Ét6‹M@…É~/1Òë‹M@‹T$B1À9Ê}‹D$‹…Àtî‰T$ƒìVPÿ׃Ä…ÀtՃÄ^_[]АUSWVƒìè[Ã –‹t$ ‹F8…ÀtÇF8‹ùÿÿÿ?t
I‰u‰$ètK‹F…ÀtÇF‹ùÿÿÿ?t
I‰u‰$èOK‹F …ÀtÇF ‹ùÿÿÿ?t
I‰u‰$è*K‹F$…ÀtÇF$‹ùÿÿÿ?t
I‰u‰$èK‹F(…ÀtÇF(‹ùÿÿÿ?t
I‰u‰$èàJ‹F,…ÀtÇF,‹ùÿÿÿ?t
I‰u‰$è»J‹F0…ÀtÇF0‹ùÿÿÿ?t
I‰u‰$è–J‹F4…ÀtÇF4‹ùÿÿÿ?t
I‰u‰$èqJ‹FÇF…Àt‹ùÿÿÿ?t
I‰u‰$èLJ‹FL…ÀtÇFL‹ùÿÿÿ?t
I‰u‰$è'J‹FP…ÀtÇFP‹ùÿÿÿ?t
I‰u‰$èJ‹FX…ÀtÇFX‹ùÿÿÿ?t
I‰u‰$èÝI‹F\…ÀtÇF\‹ùÿÿÿ?t
I‰u‰$è¸I‹~<…ÿtIƒ~@~41íë
E;n@} ‹¯…Àtó‹ùÿÿÿ?téI‰uä‰$è|Iëڋ~<‰<$è¿MÇF<1Ä^_[]АSƒìè[ÃÓ‹L$‹D$…ÉtƒìQPèŠMƒÄ[ˁùÿÿÿ?tA‰ƒÄ[АUSWVƒì‰Öè[Ã~“‹y‹WƒâJƒú‡’‹D$$‹l$ ‹‹”“äõÿÚÿâ‰L$…ÀtƒìPè1MƒÄ…À…„ƒìë*‰L$…ÀtƒìPèMƒÄ…Àug‹E…Àu}ƒìjë-ƒìPUë&‰L$…ÀtƒìPèãLƒÄ…Àu:‹EƒøudƒìÿuVÿ׃Ä닃Hÿÿÿƒì‹gˆùÿQÿ0èHƒÄ1Ä^_[]ˋÿÿÿ‹D$‹@ƒì“­ùÿÿ0Rÿ1ë.‹“ÿÿÿ‹L$‹I³Oaùÿë‹“ÿÿÿ‹L$‹I³zùÿPÿ1Vÿ2èÂHë¡USWVƒì,‰T$‰L$(è[ÃH’‹D$H‹l$D‹x/ÁàƒìPè›KƒÄ…À„ñ‰ƅí‰|$„—‹D$@1Ƀýr4‰ò)ƒú r+‰éƒáø1ҐL–L–ƒÂ9Ñuç9étX‰ê‰õ‰։ʃæt‰ʐ‹<‰|•BNuõ‹t$D)ñƒùü‹|$‰î‹l$Dw%‹‰–‹L‰L–‹L‰L–‹L‰L–ƒÂ9ÕuۃìWè‚GƒÄ…À„A‰D$,®ÇD$$D$L$T$$PQRÿt$Tè@KƒÄ…	t$ „¿1öë:‹L$‹T$‰L2‰D5D$PD$PD$,Pÿt$TèøJƒÄƒÆ…Àt.‹D$‹‹P#zTùÿÿÿ?tA‰‹D$‹ùÿÿÿ?t©A‰‹D$렅ÿ‹|$‹t$ „šÿt$ÿt$HVÿt$4ÿT$‹L$ ƒÄ‰D$‹=ÿÿÿ?tH‰uƒìQèýEƒÄ…ÿ~,1ö됐F9÷t!‹Dµ‹ùÿÿÿ?tíI‰uèƒìPèÏEƒÄëڃìÿt$,èNJƒÄ‹D$ƒÄ,^_[]ÃèJJ1ÀëïƒìVè-JƒÄ1Àëߋƒÿÿÿƒì‹EŠùÿQÿ0èOEƒÄÇD$‹L$‹=ÿÿÿ?…Xÿÿÿédÿÿÿ‹L$‹A(‹úÿÿÿ?tB‰‹A(АSVPè[ä‹t$‹F,…Àt‹ùÿÿÿ?tA‰‹F,ƒÄ^[ËF‹@…Àt‰$è¾G‰F,…ÀuÑ1Ä^[˃ÿÿÿ‹ùÿÿÿ?tÉA‹ƒÿÿÿ‰ƒÄ^[ÃSƒìè[Ã3‹L$…Ét‹T$‹=ÿÿÿ?u$‹B,‰J,…Àu'1Ä[ˋÿÿÿ‹T$‹=ÿÿÿ?tÜ@‰‹B,‰J,…Àtًùÿÿÿ?tÏI‰uʉ$èSD1Ä[АSVPè[ôŽ‹t$‹F$…Àt‹ùÿÿÿ?tA‰‹F$ƒÄ^[ËF‹‰$è³H‰F$…ÀuÖ1Ä^[АSƒìè[ÃcŽ‹D$…ÀtI‹HöAWt@‹T$‹ùÿÿÿ?tA‰‹J$‰B$1Ét‹úÿÿÿ?tJ‰tƒÄ[É$è–C1Ä[˃ÿÿÿ‹‹waùÿ‰L$‰$èEC¸ÿÿÿÿƒÄ[А‹L$‹A(‹úÿÿÿ?tB‰‹A(АSƒìè[ó‹D$…ÀtI‹HöAWt@‹T$‹ùÿÿÿ?tA‰‹J(‰B(1Ét‹úÿÿÿ?tJ‰tƒÄ[É$èæB1Ä[˃ÿÿÿ‹‹ó€ùÿ‰L$‰$è•B¸ÿÿÿÿƒÄ[АSVPè[Ã$‹t$‹F …Àt‹ùÿÿÿ?tA‰‹F ƒÄ^[ÃèE‰F …ÀuÞ1Ä^[АSƒìè[Ãӌ‹D$…ÀtI‹HöAW tP‹T$‹ùÿÿÿ?tA‰‹J ‰B 1Ét‹úÿÿÿ?tJ‰tƒÄ[É$èB1Ä[˃ÿÿÿ‹‹r}ùÿ닃ÿÿÿ‹‹Ÿaùÿ‰L$‰$è¥A¸ÿÿÿÿƒÄ[А‹L$‹A0‹úÿÿÿ?tB‰‹A0АèXÀŒ‹€ÿÿÿ‹ùÿÿÿ?tA‰ÃèYÁ÷‹‹D$‹@4…Àt‹ùÿÿÿ?uˁÿÿÿ‹ùÿÿÿ?tïA‰АSVPè[ô‹‹t$‹FL…Àt‹ùÿÿÿ?tA‰ƒÄ^[Ã~Tt‰ñè6…Àx
‹FLë׋ƒÿÿÿëÏ1Ä^[АSWVè[ÃT‹‹D$‹³ÿÿÿ…Àt;ƒÿÿÿt‹HöAW‰Æt]‹|$‹ƒLÿÿÿƒì‹µ…ùÿjQÿ0èAƒÄ‹=ÿÿÿ?t@‰‹OL‰wL1Ét‹úÿÿÿ?tJ‰t^_[ÃìQè\@1Ä^_[˃ÿÿÿƒì‹߁ùÿQÿ0è@ƒÄ¸ÿÿÿÿ^_[ÃSVPè[äŠ‹t$‹FP…Àt‹ùÿÿÿ?tA‰ƒÄ^[Ã~Tt‰ñè&…Àx
‹FPë׋ƒÿÿÿëÏ1Ä^[АSWVè[ÃDŠ‹D$‹³ÿÿÿ…Àt;ƒÿÿÿt‹HöAW ‰Æt]‹|$‹ƒLÿÿÿƒì‹êwùÿjQÿ0è@ƒÄ‹=ÿÿÿ?t@‰‹OP‰wP1Ét‹úÿÿÿ?tJ‰t^_[ÃìQèL?1Ä^_[˃ÿÿÿƒì‹›}ùÿQÿ0èü>ƒÄ¸ÿÿÿÿ^_[ÃSVPè[Ô‰‹t$‹FX…Àt‹ùÿÿÿ?tA‰ƒÄ^[ÃèŽA…Àt‰FX‹ùÿÿÿ?uáëâ1Ä^[АSVƒìè[ÃB‰‹L$$1:…Ét ;‹ÿÿÿt‹QöBW tB‹úÿÿÿ?tB‰‰ʋt$ ‹NX‰VX…Ét‹úÿÿÿ?tJ‰tƒÄ^[É$èe>1Ä^[˃ÿÿÿ‹‹X„ùÿ‰L$‰$è>¸ÿÿÿÿƒÄ^[АUSWVƒìè[àˆ‹|$ ‹G\…À…ËöGHu‹ƒ8ÿÿÿ‹ùÿÿÿ?…ɉG\鹋« RƒìjèL?ƒÄ…À„î‰NjE=ÿÿÿ?t@‰E‹G‰(ƒìjWjjÿ³0PèW@ƒÄ ‰Ƌ=ÿÿÿ?tH‰uƒìWè‹=ƒÄ…ö‹|$ tn‹F‹@Hƒì…À„UVÿЃÄ‰G\‹ùÿÿÿ?tI‰uƒìVèM=ƒÄ‹G\…Àt1‹ùÿÿÿ?tA‰‹G\ƒÄ^_[]ÃA‹ƒ8ÿÿÿ‰‰G\ùÿÿÿ?täA‰ëßèM=‹ƒ4ÿÿÿ‹ùÿÿÿ?„ÿÿÿA‹ƒ4ÿÿÿ‰‰G\ùÿÿÿ?t²ëÌ1Àë¬UVèx>éhÿÿÿSVP‰Îè[ÃB‡‰$ÿQT…ÀtG‹H‰NL‹úÿÿÿ?tB‰‹H‰NP‹úÿÿÿ?tB‰‹1öùÿÿÿ?t
I‰u‰$èv<‰ðƒÄ^[þÿÿÿÿë񐐐SWVì0.è[ÃΆƒÀM‰D$ƒjõÿ‰D$ÇD$AÇD$ÆD$ÆD$ÆD$ƒÄM‰D$ƒ«õÿ‰D$ÇD$ ÇD$$ÆD$(ÆD$)ÆD$*ƒÈM‰D$,ƒ¾õÿ‰D$0ÇD$4&ÇD$8ÆD$<ÆD$=ÆD$>ƒÌM‰D$@ƒäõÿ‰D$DÇD$HÇD$LÆD$PÆD$QÆD$RƒÐM‰D$Tƒðõÿ‰D$XÇD$\ÇD$`ÆD$dÆD$eÆD$fƒÔM‰D$hƒûõÿ‰D$lÇD$p>ÇD$tÆD$xÆD$yÆD$zƒØM‰D$|ƒ9õÿ‰„$€DŽ$„	DŽ$ˆƄ$ŒƄ$Ƅ$ŽƒÜM‰„$ƒBõÿ‰„$”DŽ$˜DŽ$œƄ$ Ƅ$¡Ƅ$¢‹àM‰Œ$¤‰„$¨DŽ$¬DŽ$°Ƅ$´Ƅ$µƄ$¶ƒäM‰„$¸ƒJõÿ‰„$¼DŽ$À$DŽ$ÄƄ$ÈƄ$ÉƄ$ʍƒèM‰„$̍ƒnõÿ‰„$ÐDŽ$ÔDŽ$ØƄ$ÜƄ$ÝƄ$ލƒìM‰„$àƒ|õÿ‰„$äDŽ$èËDŽ$ìƄ$ðƄ$ñƄ$òƒðM‰„$ôƒGõÿ‰„$øDŽ$üDŽ$Ƅ$Ƅ$Ƅ$‹ôM‰Œ$‰„$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒøM‰„$ƒSõÿ‰„$ DŽ$$DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒüM‰„$0ƒlõÿ‰„$4DŽ$8DŽ$<Ƅ$@Ƅ$AƄ$BƒN‰„$Dƒƒõÿ‰„$HDŽ$LDŽ$PƄ$TƄ$UƄ$VƒN‰„$Xƒœõÿ‰„$\DŽ$`DŽ$dƄ$hƄ$iƄ$jƒN‰„$lƒ»õÿ‰„$pDŽ$tDŽ$xƄ$|Ƅ$}Ƅ$~ƒN‰„$€ƒÌõÿ‰„$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘Ƅ$’ƒN‰„$”ƒáõÿ‰„$˜DŽ$œ!DŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒN‰„$¨ƒõÿ‰„$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒN‰„$¼ƒõÿ‰„$ÀDŽ$ÄDŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒN‰„$Ѝƒ1õÿ‰„$ÔDŽ$ØDŽ$ÜƄ$àƄ$áƄ$⍃ N‰„$䍃Gõÿ‰„$èDŽ$ì"DŽ$ðƄ$ôƄ$õƄ$öƒ$N‰„$øƒiõÿ‰„$üDŽ$DŽ$Ƅ$Ƅ$	Ƅ$
ƒ(N‰„$ƒ|õÿ‰„$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒ,N‰„$ ƒšõÿ‰„$$DŽ$(DŽ$,Ƅ$0Ƅ$1Ƅ$2ƒ0N‰„$4ƒ°õÿ‰„$8DŽ$<"DŽ$@Ƅ$DƄ$EƄ$Fƒ4N‰„$HƒÒõÿ‰„$LDŽ$PDŽ$TƄ$XƄ$YƄ$Zƒ8N‰„$\ƒêõÿ‰„$`DŽ$d#DŽ$hƄ$lƄ$mƄ$nƒ<N‰„$pƒ
õÿ‰„$tDŽ$xDŽ$|Ƅ$€Ƅ$Ƅ$‚ƒ@N‰„$„ƒõÿ‰„$ˆDŽ$ŒDŽ$Ƅ$”Ƅ$•Ƅ$–ƒDN‰„$˜ƒ5õÿ‰„$œDŽ$ DŽ$¤Ƅ$¨Ƅ$©Ƅ$ªƒHN‰„$¬ƒGõÿ‰„$°DŽ$´DŽ$¸Ƅ$¼Ƅ$½Ƅ$¾ƒLN‰„$Àƒeõÿ‰„$ÄDŽ$ÈDŽ$ÌƄ$ÐƄ$ÑƄ$ҍƒPN‰„$ԍƒ{õÿ‰„$ØDŽ$Ü"DŽ$àƄ$äƄ$åƄ$捃TN‰„$荃õÿ‰„$ìDŽ$ðDŽ$ôƄ$øƄ$ùƄ$úƒXN‰„$üƒ³õÿ‰„$DŽ$DŽ$Ƅ$Ƅ$
Ƅ$ƒ\N‰„$ƒÆõÿ‰„$DŽ$DŽ$Ƅ$ Ƅ$!Ƅ$"ƒ`N‰„$$ƒåõÿ‰„$(DŽ$,DŽ$0Ƅ$4Ƅ$5Ƅ$6ƒdN‰„$8ƒõÿ‰„$<DŽ$@'DŽ$DƄ$HƄ$IƄ$JƒhN‰„$Lƒ'õÿ‰„$PDŽ$TDŽ$XƄ$\Ƅ$]Ƅ$^ƒlN‰„$`ƒ;õÿ‰„$dDŽ$h DŽ$lƄ$pƄ$qƄ$rƒpN‰„$tƒ[õÿ‰„$xDŽ$|DŽ$€Ƅ$„Ƅ$…Ƅ$†ƒtN‰„$ˆƒpõÿ‰„$ŒDŽ$!DŽ$”Ƅ$˜Ƅ$™Ƅ$šƒxN‰„$œƒ‘õÿ‰„$ DŽ$¤DŽ$¨Ƅ$¬Ƅ$­Ƅ$®ƒ|N‰„$°ƒ§õÿ‰„$´DŽ$¸"DŽ$¼Ƅ$ÀƄ$ÁƄ$ƒ€N‰„$čƒÉõÿ‰„$ÈDŽ$ÌDŽ$ÐƄ$ÔƄ$ÕƄ$֍ƒ„N‰„$؍ƒßõÿ‰„$ÜDŽ$à"DŽ$äƄ$èƄ$éƄ$ꍃˆN‰„$썃õÿ‰„$ðDŽ$ôDŽ$øƄ$üƄ$ýƄ$þƒŒN‰„$ƒõÿ‰„$DŽ$$DŽ$Ƅ$Ƅ$Ƅ$ƒN‰„$ƒ=õÿ‰„$DŽ$ DŽ$ Ƅ$$Ƅ$%Ƅ$&ƒ”N‰„$(ƒ]õÿ‰„$,DŽ$0,DŽ$4Ƅ$8Ƅ$9Ƅ$:ƒ˜N‰„$<ƒ‰õÿ‰„$@DŽ$DDŽ$HƄ$LƄ$MƄ$NƒœN‰„$Pƒ§õÿ‰„$TDŽ$X*DŽ$\Ƅ$`Ƅ$aƄ$bƒ N‰„$dƒÑõÿ‰„$hDŽ$l!DŽ$pƄ$tƄ$uƄ$vƒ¤N‰„$xƒòõÿ‰„$|DŽ$€-DŽ$„Ƅ$ˆƄ$‰Ƅ$Šƒ¨N‰„$Œƒõÿ‰„$DŽ$”DŽ$˜Ƅ$œƄ$Ƅ$žƒ¬N‰„$ ƒ8õÿ‰„$¤DŽ$¨%DŽ$¬Ƅ$°Ƅ$±Ƅ$²ƒ°N‰„$´ƒ]õÿ‰„$¸DŽ$¼DŽ$ÀƄ$ÄƄ$ÅƄ$ƍƒ´N‰„$ȍƒpõÿ‰„$ÌDŽ$ÐDŽ$ÔƄ$ØƄ$ÙƄ$ڍƒ¸N‰„$܍ƒõÿ‰„$àDŽ$äDŽ$èƄ$ìƄ$íƄ$¼N‰„$ðƒ¢õÿ‰„$ôDŽ$øDŽ$üƄ$Ƅ$Ƅ$ƒÀN‰„$ƒÁõÿ‰„$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒÄN‰„$ƒÙõÿ‰„$DŽ$ $DŽ$$Ƅ$(Ƅ$)Ƅ$*ƒÈN‰„$,ƒýõÿ‰„$0DŽ$4DŽ$8Ƅ$<Ƅ$=Ƅ$>ƒÌN‰„$@ƒõÿ‰„$DDŽ$H DŽ$LƄ$PƄ$QƄ$RƒÐN‰„$Tƒ1õÿ‰„$XDŽ$\DŽ$`Ƅ$dƄ$eƄ$fƒÔN‰„$hƒCõÿ‰„$lDŽ$pDŽ$tƄ$xƄ$yƄ$zƒØN‰„$|ƒaõÿ‰„$€DŽ$„DŽ$ˆƄ$ŒƄ$Ƅ$ŽƒÜN‰„$ƒrõÿ‰„$”DŽ$˜DŽ$œƄ$ Ƅ$¡Ƅ$¢ƒàN‰„$¤ƒõÿ‰„$¨DŽ$¬DŽ$°Ƅ$´Ƅ$µƄ$¶ƒäN‰„$¸ƒ£õÿ‰„$¼DŽ$ÀDŽ$ÄƄ$ÈƄ$ÉƄ$ʍƒèN‰„$̍ƒÂõÿ‰„$ÐDŽ$ÔDŽ$ØƄ$ÜƄ$ÝƄ$ލƒìN‰„$àƒÔõÿ‰„$äDŽ$èDŽ$ìƄ$ðƄ$ñƄ$òƒðN‰„$ôƒòõÿ‰„$øDŽ$üDŽ$Ƅ$Ƅ$Ƅ$ƒôN‰„$ƒõÿ‰„$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒøN‰„$ƒ!õÿ‰„$ DŽ$$(DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒüN‰„$0ƒIõÿ‰„$4DŽ$8DŽ$<Ƅ$@Ƅ$AƄ$BƒO‰„$Dƒcõÿ‰„$HDŽ$L%DŽ$PƄ$TƄ$UƄ$VƒO‰„$Xƒˆõÿ‰„$\DŽ$`DŽ$dƄ$hƄ$iƄ$jƒO‰„$lƒõÿ‰„$pDŽ$t!DŽ$xƄ$|Ƅ$}Ƅ$~ƒO‰„$€ƒ¾õÿ‰„$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘Ƅ$’ƒO‰„$”ƒÏõÿ‰„$˜DŽ$œDŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒO‰„$¨ƒëõÿ‰„$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒO‰„$¼ƒõÿ‰„$ÀDŽ$ÄDŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒO‰„$Ѝƒõÿ‰„$ÔDŽ$Ø DŽ$ÜƄ$àƄ$áƄ$⍃ O‰„$䍃5õÿ‰„$èDŽ$ìDŽ$ðƄ$ôƄ$õƄ$öƒ$O‰„$øƒQõÿ‰„$üDŽ$(DŽ$Ƅ$Ƅ$	Ƅ$
ƒ(O‰„$ƒyõÿ‰„$DŽ$!DŽ$Ƅ$Ƅ$Ƅ$ƒ,O‰„$ ƒšõÿ‰„$$DŽ$(,DŽ$,Ƅ$0Ƅ$1Ƅ$2ƒ0O‰„$4ƒÆõÿ‰„$8DŽ$<DŽ$@Ƅ$DƄ$EƄ$Fƒ4O‰„$Hƒáõÿ‰„$LDŽ$P'DŽ$TƄ$XƄ$YƄ$Zƒ8O‰„$\ƒ õÿ‰„$`DŽ$dDŽ$hƄ$lƄ$mƄ$nƒ<O‰„$pƒ$ õÿ‰„$tDŽ$x(DŽ$|Ƅ$€Ƅ$Ƅ$‚ƒ@O‰„$„ƒL õÿ‰„$ˆDŽ$ŒDŽ$Ƅ$”Ƅ$•Ƅ$–ƒDO‰„$˜ƒc õÿ‰„$œDŽ$ #DŽ$¤Ƅ$¨Ƅ$©Ƅ$ªƒHO‰„$¬ƒ† õÿ‰„$°DŽ$´DŽ$¸Ƅ$¼Ƅ$½Ƅ$¾ƒLO‰„$Àƒ› õÿ‰„$ÄDŽ$È DŽ$ÌƄ$ÐƄ$ÑƄ$ҍƒPO‰„$ԍƒ» õÿ‰„$ØDŽ$ÜDŽ$àƄ$äƄ$åƄ$捃TO‰„$èƒÒ õÿ‰„$ìDŽ$ð#DŽ$ôƄ$øƄ$ùƄ$úƒXO‰„$üƒõ õÿ‰„$DŽ$DŽ$Ƅ$Ƅ$
Ƅ$ƒ\O‰„$ƒ	!õÿ‰„$DŽ$ DŽ$Ƅ$ Ƅ$!Ƅ$"ƒ`O‰„$$ƒ)!õÿ‰„$(DŽ$,DŽ$0Ƅ$4Ƅ$5Ƅ$6ƒdO‰„$8ƒ>!õÿ‰„$<DŽ$@!DŽ$DƄ$HƄ$IƄ$JƒhO‰„$Lƒ_!õÿ‰„$PDŽ$TDŽ$XƄ$\Ƅ$]Ƅ$^ƒlO‰„$`ƒp!õÿ‰„$dDŽ$hDŽ$lƄ$pƄ$qƄ$rƒpO‰„$tƒ!õÿ‰„$xDŽ$|DŽ$€Ƅ$„Ƅ$…Ƅ$†ƒtO‰„$ˆƒ¡!õÿ‰„$ŒDŽ$ DŽ$”Ƅ$˜Ƅ$™Ƅ$šƒxO‰„$œƒÁ!õÿ‰„$ DŽ$¤DŽ$¨Ƅ$¬Ƅ$­Ƅ$®ƒ|O‰„$°ƒÒ!õÿ‰„$´DŽ$¸DŽ$¼Ƅ$ÀƄ$ÁƄ$ƒ€O‰„$čƒï!õÿ‰„$ÈDŽ$ÌDŽ$ÐƄ$ÔƄ$ÕƄ$֍ƒ„O‰„$؍ƒ
"õÿ‰„$ÜDŽ$àDŽ$äƄ$èƄ$éƄ$ꍃˆO‰„$썃"õÿ‰„$ðDŽ$ô	DŽ$øƄ$üƄ$ýƄ$þƒŒO‰„$	ƒ""õÿ‰„$	DŽ$	>DŽ$	Ƅ$	Ƅ$	Ƅ$	ƒO‰„$	ƒ`#õÿ‰„$	DŽ$	DŽ$ 	Ƅ$$	Ƅ$%	Ƅ$&	ƒ”O‰„$(	ƒb#õÿ‰„$,	DŽ$0	GDŽ$4	Ƅ$8	Ƅ$9	Ƅ$:	ƒ˜O‰„$<	ƒ©#õÿ‰„$@	DŽ$D	LDŽ$H	Ƅ$L	Ƅ$M	Ƅ$N	ƒœO‰„$P	ƒõ#õÿ‰„$T	DŽ$X	
DŽ$\	Ƅ$`	Ƅ$a	Ƅ$b	ƒ O‰„$d	ƒÿ#õÿ‰„$h	DŽ$l	!DŽ$p	Ƅ$t	Ƅ$u	Ƅ$v	ƒ¤O‰„$x	ƒ $õÿ‰„$|	DŽ$€	DŽ$„	Ƅ$ˆ	Ƅ$‰	Ƅ$Š	ƒ¨O‰„$Œ	ƒ,$õÿ‰„$	DŽ$”	DŽ$˜	Ƅ$œ	Ƅ$	Ƅ$ž	ƒ¬O‰„$ 	ƒõÿ‰„$¤	DŽ$¨	DŽ$¬	Ƅ$°	Ƅ$±	Ƅ$²	ƒ°O‰„$´	ƒ7$õÿ‰„$¸	DŽ$¼	DŽ$À	Ƅ$Ä	Ƅ$Å	Ƅ$Æ	ƒ´O‰„$È	ƒ9$õÿ‰„$Ì	DŽ$Ð	DŽ$Ô	Ƅ$Ø	Ƅ$Ù	Ƅ$Ú	ƒ¸O‰„$Ü	ƒ;$õÿ‰„$à	DŽ$ä	DŽ$è	Ƅ$ì	Ƅ$í	Ƅ$î	ƒ¼O‰„$ð	ƒ=$õÿ‰„$ô	DŽ$ø	DŽ$ü	Ƅ$
Ƅ$
Ƅ$
ƒÀO‰„$
ƒ?$õÿ‰„$
DŽ$
DŽ$
Ƅ$
Ƅ$
Ƅ$
ƒÄO‰„$
ƒA$õÿ‰„$
DŽ$ 
DŽ$$
Ƅ$(
Ƅ$)
Ƅ$*
ƒÈO‰„$,
ƒC$õÿ‰„$0
DŽ$4
DŽ$8
Ƅ$<
Ƅ$=
Ƅ$>
‹ÌO‰Œ$@
‰„$D
DŽ$H
DŽ$L
Ƅ$P
Ƅ$Q
Ƅ$R
ƒÐO‰„$T
ƒE$õÿ‰„$X
DŽ$\
 DŽ$`
Ƅ$d
Ƅ$e
Ƅ$f
ƒÔO‰„$h
ƒe$õÿ‰„$l
DŽ$p
0DŽ$t
Ƅ$x
Ƅ$y
Ƅ$z
ƒØO‰„$|
ƒ•$õÿ‰„$€
DŽ$„
DŽ$ˆ
Ƅ$Œ
Ƅ$
Ƅ$Ž
ƒÜO‰„$
ƒ­$õÿ‰„$”
DŽ$˜
&DŽ$œ
Ƅ$ 
Ƅ$¡
Ƅ$¢
ƒàO‰„$¤
ƒÓ$õÿ‰„$¨
DŽ$¬
5DŽ$°
Ƅ$´
Ƅ$µ
Ƅ$¶
ƒäO‰„$¸
ƒ%õÿ‰„$¼
DŽ$À
DŽ$Ä
Ƅ$È
Ƅ$É
Ƅ$Ê
ƒèO‰„$Ì
ƒ%õÿ‰„$Ð
DŽ$Ô
DŽ$Ø
Ƅ$Ü
Ƅ$Ý
Ƅ$Þ
ƒìO‰„$à
ƒ%õÿ‰„$ä
DŽ$è
DŽ$ì
Ƅ$ð
Ƅ$ñ
Ƅ$ò
ƒðO‰„$ô
ƒ%õÿ‰„$ø
DŽ$ü
DŽ$Ƅ$Ƅ$Ƅ$ƒôO‰„$ƒ%õÿ‰„$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒøO‰„$ƒ"%õÿ‰„$ DŽ$$	DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒüO‹+%õÿ‰„$0‰Œ$4DŽ$8DŽ$<Ƅ$@Ƅ$AƄ$BƒP‹0%õÿ‰„$D‰Œ$HDŽ$LDŽ$PƄ$TƄ$UƄ$VƒP‹6%õÿ‰„$X‰Œ$\DŽ$`DŽ$dƄ$hƄ$iƄ$jƒP‹A%õÿ‰„$l‰Œ$pDŽ$t
DŽ$xƄ$|Ƅ$}Ƅ$~ƒP‹K%õÿ‰„$€‰Œ$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘Ƅ$’ƒP‹V%õÿ‰„$”‰Œ$˜DŽ$œDŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒP‹Z%õÿ‰„$¨‰Œ$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒP‹a%õÿ‰„$¼‰Œ$ÀDŽ$ÄDŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒP‹f%õÿ‰„$ЉŒ$ÔDŽ$ØDŽ$ÜƄ$àƄ$áƄ$⍃ P‹j%õÿ‰„$䉌$èDŽ$ìDŽ$ðƄ$ôƄ$õƄ$öƒ$P‹p%õÿ‰„$ø‰Œ$üDŽ$DŽ$Ƅ$Ƅ$	Ƅ$
ƒ(P‹ƒ%õÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒ,P‹‹%õÿ‰„$ ‰Œ$$DŽ$(DŽ$,Ƅ$0Ƅ$1Ƅ$2ƒ0P‹’%õÿ‰„$4‰Œ$8DŽ$<DŽ$@Ƅ$DƄ$EƄ$Fƒ4P‹¥%õÿ‰„$H‰Œ$LDŽ$PDŽ$TƄ$XƄ$YƄ$Zƒ8P‹°%õÿ‰„$\‰Œ$`DŽ$dDŽ$hƄ$lƄ$mƄ$nƒ<P‹µ%õÿ‰„$p‰Œ$tDŽ$xDŽ$|Ƅ$€Ƅ$ƒ@PƄ$‚‰„$„‰Œ$ˆDŽ$ŒDŽ$Ƅ$”Ƅ$•Ƅ$–ƒDP‹ïN÷ÿ‰„$˜‰Œ$œDŽ$ DŽ$¤Ƅ$¨Ƅ$©ƒHPƄ$ª‰„$¬‰Œ$°DŽ$´DŽ$¸Ƅ$¼Ƅ$½Ƅ$¾ƒLP‹·%õÿ‰„$À‰Œ$ÄDŽ$ÈDŽ$ÌƄ$ÐƄ$ÑƄ$ÒƒPP‹8Äøÿ‰„$Ô‰Œ$ØDŽ$Ü	DŽ$àƄ$äƄ$åƒTPƄ$æ‰„$è‰Œ$ìDŽ$ð	DŽ$ôƄ$øƄ$ùƄ$úƒXP‹¿%õÿ‰„$ü‰Œ$
DŽ$
DŽ$
Ƅ$
Ƅ$

Ƅ$
ƒ\P‹Ï4õÿ‰„$
‰Œ$
DŽ$
DŽ$
Ƅ$ 
Ƅ$!
Ƅ$"
ƒ`P‹ÏUùÿ‰„$$
‰Œ$(
DŽ$,
DŽ$0
Ƅ$4
Ƅ$5
Ƅ$6
ƒdP‹Ý4õÿ‰„$8
‰Œ$<
DŽ$@
DŽ$D
Ƅ$H
Ƅ$I
Ƅ$J
ƒhP‹ãUùÿ‰„$L
‰Œ$P
DŽ$T
DŽ$X
Ƅ$\
Ƅ$]
Ƅ$^
ƒlP‹ä4õÿ‰„$`
‰Œ$d
DŽ$h
DŽ$l
Ƅ$p
Ƅ$q
Ƅ$r
ƒpP‹è4õÿ‰„$t
‰Œ$x
DŽ$|
DŽ$€
Ƅ$„
Ƅ$…
Ƅ$†
ƒtP‹kw÷ÿ‰„$ˆ
‰Œ$Œ
DŽ$
DŽ$”
Ƅ$˜
Ƅ$™
ƒxPƄ$š
‰„$œ
‰Œ$ 
DŽ$¤
DŽ$¨
Ƅ$¬
Ƅ$­
Ƅ$®
ƒ|P‹ð4õÿ‰„$°
‰Œ$´
DŽ$¸
žDŽ$¼
Ƅ$À
Ƅ$Á
Ƅ$Â
ƒ€P‹Ž7õÿ‰„$Ä
‰Œ$È
DŽ$Ì
(DŽ$Ð
Ƅ$Ô
Ƅ$Õ
Ƅ$Ö
ƒ„P‹¶7õÿ‰„$Ø
‰Œ$Ü
DŽ$à
DŽ$ä
Ƅ$è
Ƅ$é
ƒˆPƄ$ê
‰„$ì
‰Œ$ð
DŽ$ô
DŽ$ø
Ƅ$ü
Ƅ$ý
Ƅ$þ
ƒŒP‹¾7õÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒP‹Æ7õÿ‰„$‰Œ$DŽ$DŽ$ Ƅ$$Ƅ$%Ƅ$&ƒ”P‹Ê7õÿ‰„$(‰Œ$,DŽ$0DŽ$4Ƅ$8Ƅ$9Ƅ$:ƒ˜P‹Ö7õÿ‰„$<‰Œ$@DŽ$D4DŽ$HƄ$LƄ$MƄ$NƒœP‹Þú÷ÿ‰„$P‰Œ$TDŽ$X
DŽ$\Ƅ$`Ƅ$aƒ PƄ$b‰„$d‰Œ$hDŽ$l
DŽ$pƄ$tƄ$uƄ$vƒ¤P‹
8õÿ‰„$x‰Œ$|DŽ$€6	DŽ$„Ƅ$ˆƄ$‰Ƅ$Šƒ¨P‹z÷ÿ‰„$Œ‰Œ$DŽ$”DŽ$˜Ƅ$œƄ$ƒ¬PƄ$ž‰„$ ‰Œ$¤DŽ$¨DŽ$¬Ƅ$°Ƅ$±Ƅ$²ƒ°P‹@Aõÿ‰„$´‰Œ$¸DŽ$¼ÙDŽ$ÀƄ$ÄƄ$ÅƄ$ƍƒ´P‹Põÿ‰„$ȉŒ$ÌDŽ$Ð
DŽ$ÔƄ$ØƄ$ÙƄ$ڍƒ¸P‹#Põÿ‰„$܉Œ$àDŽ$äDŽ$èƄ$ìƄ$íƄ$¼P‹5Põÿ‰„$ð‰Œ$ôDŽ$øDŽ$üƄ$Ƅ$Ƅ$ƒÀP‹HPõÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒÄP‹LPõÿ‰„$‰Œ$DŽ$ DŽ$$Ƅ$(Ƅ$)Ƅ$*ƒÈP‹\Põÿ‰„$,‰Œ$0DŽ$4DŽ$8Ƅ$<Ƅ$=Ƅ$>ƒÌP‹aPõÿ‰„$@‰Œ$DDŽ$HDŽ$LƄ$PƄ$QƄ$RƒÐP‹oPõÿ‰„$T‰Œ$XDŽ$\DŽ$`Ƅ$dƄ$eƄ$fƒÔP‹sPõÿ‰„$h‰Œ$lDŽ$p%DŽ$tƄ$xƄ$yƄ$zƒØP‹˜Põÿ‰„$|‰Œ$€DŽ$„3DŽ$ˆƄ$ŒƄ$Ƅ$ŽƒÜP‹ËPõÿ‰„$‰Œ$”DŽ$˜DŽ$œƄ$ Ƅ$¡Ƅ$¢ƒàP‹ÒPõÿ‰„$¤‰Œ$¨DŽ$¬DŽ$°Ƅ$´Ƅ$µƄ$¶ƒäP‹ÔPõÿ‰„$¸‰Œ$¼DŽ$ÀDŽ$ÄƄ$ÈƄ$ɍƒèPƄ$ʉ„$̉Œ$ÐDŽ$ÔDŽ$ØƄ$ÜƄ$ÝƄ$ލƒìP‹×Põÿ‰„$à‰Œ$äDŽ$èDŽ$ìƄ$ðƄ$ñƒðPƄ$ò‰„$ô‰Œ$øDŽ$üDŽ$Ƅ$Ƅ$Ƅ$ƒôP‹ÝPõÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$ƒøPƄ$‰„$‰Œ$ DŽ$$DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒüP‹ãPõÿ‰„$0‰Œ$4DŽ$8DŽ$<Ƅ$@Ƅ$AƄ$BƒQ‹­?ùÿ‰„$D‰Œ$HDŽ$L
DŽ$PƄ$TƄ$UƒQƄ$V‰„$X‰Œ$\DŽ$`
DŽ$dƄ$hƄ$iƄ$jƒQ‹éPõÿ‰„$l‰Œ$pDŽ$tbDŽ$xƄ$|Ƅ$}Ƅ$~ƒQ‹K]õÿ‰„$€‰Œ$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘Ƅ$’ƒQ‹S]õÿ‰„$”‰Œ$˜DŽ$œDŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒQ‹ôUùÿ‰„$¨‰Œ$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒQ‹W]õÿ‰„$¼‰Œ$ÀDŽ$ÄDŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒQ‹îUùÿ‰„$ЉŒ$ÔDŽ$ØDŽ$ÜƄ$àƄ$áƄ$⍃ Q‹[]õÿ‰„$䉌$èDŽ$ìDŽ$ðƄ$ôƄ$õƄ$öƒ$Q‹b]õÿ‰„$ø‰Œ$üDŽ$DŽ$Ƅ$Ƅ$	Ƅ$
ƒ(Q‹h]õÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒ,Q‹s]õÿ‰„$ ‰Œ$$DŽ$(DŽ$,Ƅ$0Ƅ$1Ƅ$2ƒ0Q‹z]õÿ‰„$4‰Œ$8DŽ$<
DŽ$@Ƅ$DƄ$EƄ$Fƒ4Q‹„]õÿ‰„$H‰Œ$LDŽ$P
DŽ$TƄ$XƄ$YƄ$Zƒ8Q‹Ž]õÿ‰„$\‰Œ$`DŽ$dDŽ$hƄ$lƄ$mƄ$nƒ<Q‹’]õÿ‰„$p‰Œ$tDŽ$xDŽ$|Ƅ$€Ƅ$Ƅ$‚ƒ@Q‹˜]õÿ‰„$„‰Œ$ˆDŽ$Œ	DŽ$Ƅ$”Ƅ$•Ƅ$–ƒDQ‹iU÷ÿ‰„$˜‰Œ$œDŽ$ DŽ$¤Ƅ$¨Ƅ$©ƒHQƄ$ª‰„$¬‰Œ$°DŽ$´DŽ$¸Ƅ$¼Ƅ$½Ƅ$¾ƒLQ‹¡]õÿ‰„$À‰Œ$ÄDŽ$È•
DŽ$ÌƄ$ÐƄ$ÑƄ$ҍƒPQ‹¤ß÷ÿ‰„$Ô‰Œ$ØDŽ$ÜDŽ$àƄ$äƄ$千TQƄ$扄$艌$ìDŽ$ðDŽ$ôƄ$øƄ$ùƄ$úƒXQ‹6hõÿ‰„$ü‰Œ$DŽ$DŽ$Ƅ$Ƅ$
Ƅ$ƒ\Q‹Rvõÿ‰„$‰Œ$DŽ$DŽ$Ƅ$ Ƅ$!Ƅ$"ƒ`Q‹^võÿ‰„$$‰Œ$(DŽ$,DŽ$0Ƅ$4Ƅ$5Ƅ$6ƒdQ‹dvõÿ‰„$8‰Œ$<DŽ$@DŽ$DƄ$HƄ$IƄ$JƒhQ‹jvõÿ‰„$L‰Œ$PDŽ$TDŽ$XƄ$\Ƅ$]Ƅ$^ƒlQ‹uvõÿ‰„$`‰Œ$dDŽ$hDŽ$lƄ$pƄ$qƄ$rƒpQ‹{võÿ‰„$t‰Œ$xDŽ$|DŽ$€Ƅ$„Ƅ$…Ƅ$†ƒtQ‹ƒvõÿ‰„$ˆ‰Œ$ŒDŽ$DŽ$”Ƅ$˜Ƅ$™Ƅ$šƒxQ‹‰võÿ‰„$œ‰Œ$ DŽ$¤DŽ$¨Ƅ$¬Ƅ$­Ƅ$®ƒ|Q‹võÿ‰„$°‰Œ$´DŽ$¸DŽ$¼Ƅ$ÀƄ$ÁƄ$ƒ€Q‹–võÿ‰„$ĉŒ$ÈDŽ$ÌDŽ$ÐƄ$ÔƄ$ÕƄ$֍ƒ„Q‹ŽÓ÷ÿ‰„$؉Œ$ÜDŽ$àDŽ$äƄ$èƄ$鍃ˆQƄ$ꉄ$쉌$ðDŽ$ôDŽ$øƄ$üƄ$ýƄ$þƒŒQ‹võÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒQ‹­‚õÿ‰„$‰Œ$DŽ$DŽ$ Ƅ$$Ƅ$%Ƅ$&ƒ”Q‹³‚õÿ‰„$(‰Œ$,DŽ$0DŽ$4Ƅ$8Ƅ$9Ƅ$:ƒ˜Q‹øøÿ‰„$<‰Œ$@DŽ$D
DŽ$HƄ$LƄ$MƒœQƄ$N‰„$P‰Œ$TDŽ$X
DŽ$\Ƅ$`Ƅ$aƄ$bƒ Q‹¶‚õÿ‰„$d‰Œ$hDŽ$l{DŽ$pƄ$tƄ$uƄ$vƒ¤Q‹1Šõÿ‰„$x‰Œ$|DŽ$€DŽ$„Ƅ$ˆƄ$‰Ƅ$Šƒ¨Q‹¦Wùÿ‰„$Œ‰Œ$DŽ$”DŽ$˜Ƅ$œƄ$ƒ¬QƄ$ž‰„$ ‰Œ$¤DŽ$¨DŽ$¬Ƅ$°Ƅ$±Ƅ$²ƒ°Q‹^;÷ÿ‰„$´‰Œ$¸DŽ$¼
DŽ$ÀƄ$ÄƄ$ōƒ´QƄ$Ɖ„$ȉŒ$ÌDŽ$Ð
DŽ$ÔƄ$ØƄ$ÙƄ$ڍƒ¸Q‹5Šõÿ‰„$܉Œ$àDŽ$äuDŽ$èƄ$ìƄ$íƄ$¼Q‹È8÷ÿ‰„$ð‰Œ$ôDŽ$ø
DŽ$üƄ$Ƅ$Ƅ$ƒÀQ‹ªŠõÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒÄQ‹Žrøÿ‰„$‰Œ$DŽ$ DŽ$$Ƅ$(Ƅ$)ƒÈQƄ$*‰„$,‰Œ$0DŽ$4DŽ$8Ƅ$<Ƅ$=Ƅ$>ƒÌQ‹²Šõÿ‰„$@‰Œ$DDŽ$H!DŽ$LƄ$PƄ$QƄ$RƒÐQ‹ӝõÿ‰„$T‰Œ$XDŽ$\
DŽ$`Ƅ$dƄ$eƄ$fƒÔQ‹ݝõÿ‰„$h‰Œ$lDŽ$pDŽ$tƄ$xƄ$yƄ$zƒØQ‹âõÿ‰„$|‰Œ$€DŽ$„DŽ$ˆƄ$ŒƄ$Ƅ$ŽƒÜQ‹šÿøÿ‰„$‰Œ$”DŽ$˜DŽ$œƄ$ Ƅ$¡ƒàQƄ$¢‰„$¤‰Œ$¨DŽ$¬DŽ$°Ƅ$´Ƅ$µƄ$¶ƒäQ‹èõÿ‰„$¸‰Œ$¼DŽ$À{DŽ$ÄƄ$ÈƄ$ÉƄ$ʍƒèQ‹c®õÿ‰„$̉Œ$ÐDŽ$ÔDŽ$ØƄ$ÜƄ$ÝƄ$ލƒìQ‹e®õÿ‰„$à‰Œ$äDŽ$èDŽ$ìƄ$ðƄ$ñƄ$òƒðQ‹h®õÿ‰„$ô‰Œ$øDŽ$üDŽ$Ƅ$Ƅ$Ƅ$ƒôQ‹l®õÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒøQ‹s®õÿ‰„$‰Œ$ DŽ$$DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒüQ‹~®õÿ‰„$0‰Œ$4DŽ$8DŽ$<Ƅ$@Ƅ$AƄ$BƒR‹‚®õÿ‰„$D‰Œ$HDŽ$LDŽ$PƄ$TƄ$UƄ$VƒR‹ˆ®õÿ‰„$X‰Œ$\DŽ$`DŽ$dƄ$hƄ$iƄ$jƒR‹–®õÿ‰„$l‰Œ$pDŽ$tDŽ$xƄ$|Ƅ$}Ƅ$~ƒR‹œ®õÿ‰„$€‰Œ$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘Ƅ$’ƒR‹¢®õÿ‰„$”‰Œ$˜DŽ$œDŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒR‹¨®õÿ‰„$¨‰Œ$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒR‹­®õÿ‰„$¼‰Œ$ÀDŽ$ÄDŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒR‹²®õÿ‰„$ЉŒ$ÔDŽ$ØDŽ$ÜƄ$àƄ$áƄ$⍃ R‹\õÿ‰„$䉌$èDŽ$ìDŽ$ðƄ$ôƄ$õƄ$öƒ$R‹¹®õÿ‰„$ø‰Œ$üDŽ$
DŽ$Ƅ$Ƅ$	Ƅ$
ƒ(R‹îõÿ‰„$‰Œ$DŽ$
DŽ$Ƅ$Ƅ$Ƅ$ƒ,R‹ͮõÿ‰„$ ‰Œ$$DŽ$(	DŽ$,Ƅ$0Ƅ$1Ƅ$2ƒ0R‹֮õÿ‰„$4‰Œ$8DŽ$<DŽ$@Ƅ$DƄ$EƄ$Fƒ4R‹ܮõÿ‰„$H‰Œ$LDŽ$P	DŽ$TƄ$XƄ$YƄ$Zƒ8R‹å®õÿ‰„$\‰Œ$`DŽ$d	DŽ$hƄ$lƄ$mƄ$nƒ<R‹î®õÿ‰„$p‰Œ$tDŽ$xDŽ$|Ƅ$€Ƅ$Ƅ$‚ƒ@R‹ù®õÿ‰„$„‰Œ$ˆDŽ$ŒDŽ$Ƅ$”Ƅ$•Ƅ$–ƒDR‹ü®õÿ‰„$˜‰Œ$œDŽ$ DŽ$¤Ƅ$¨Ƅ$©Ƅ$ªƒHR‹¯õÿ‰„$¬‰Œ$°DŽ$´	DŽ$¸Ƅ$¼Ƅ$½Ƅ$¾ƒLR‹
¯õÿ‰„$À‰Œ$ÄDŽ$ÈDŽ$ÌƄ$ÐƄ$ÑƄ$ҍƒPR‹¯õÿ‰„$Ô‰Œ$ØDŽ$ÜDŽ$àƄ$äƄ$åƄ$捃TR‹¯õÿ‰„$艌$ìDŽ$ðDŽ$ôƄ$øƄ$ùƒXRƄ$ú‰„$ü‰Œ$DŽ$DŽ$Ƅ$Ƅ$
Ƅ$ƒ\R‹¯õÿ‰„$‰Œ$DŽ$DŽ$Ƅ$ Ƅ$!Ƅ$"ƒ`R‹¯õÿ‰„$$‰Œ$(DŽ$,DŽ$0Ƅ$4Ƅ$5Ƅ$6ƒdR‹¯õÿ‰„$8‰Œ$<DŽ$@DŽ$DƄ$HƄ$IƄ$JƒhR‹!¯õÿ‰„$L‰Œ$PDŽ$TDŽ$XƄ$\Ƅ$]ƒlRƄ$^‰„$`‰Œ$dDŽ$hDŽ$lƄ$pƄ$qƄ$rƒpR‹³døÿ‰„$t‰Œ$xDŽ$|DŽ$€Ƅ$„Ƅ$…ƒtRƄ$†‰„$ˆ‰Œ$ŒDŽ$DŽ$”Ƅ$˜Ƅ$™Ƅ$šƒxR‹%¯õÿ‰„$œ‰Œ$ DŽ$¤Ó
DŽ$¨Ƅ$¬Ƅ$­Ƅ$®ƒ|R‹ø¼õÿ‰„$°‰Œ$´DŽ$¸DŽ$¼Ƅ$ÀƄ$ÁƄ$ƒ€R‹ý¼õÿ‰„$ĉŒ$ÈDŽ$ÌDŽ$ÐƄ$ÔƄ$ÕƄ$֍ƒ„R‹	½õÿ‰„$؉Œ$ÜDŽ$àDŽ$äƄ$èƄ$éƄ$ꍃˆR‹½õÿ‰„$쉌$ðDŽ$ôDŽ$øƄ$üƄ$ýƄ$þƒŒR‹½õÿ‰„$‰Œ$DŽ$TDŽ$Ƅ$Ƅ$Ƅ$ƒR‹r½õÿ‰„$‰Œ$DŽ$DŽ$ Ƅ$$Ƅ$%Ƅ$&ƒ”R‹‚½õÿ‰„$(‰Œ$,DŽ$0DŽ$4Ƅ$8Ƅ$9Ƅ$:ƒ˜R‹‰½õÿ‰„$<‰Œ$@DŽ$DDŽ$HƄ$LƄ$MƄ$NƒœR‹Ž½õÿ‰„$P‰Œ$TDŽ$XDŽ$\Ƅ$`Ƅ$aƄ$bƒ R‹™½õÿ‰„$d‰Œ$hDŽ$lDŽ$pƄ$tƄ$uƄ$vƒ¤R‹Ÿ½õÿ‰„$x‰Œ$|DŽ$€DŽ$„Ƅ$ˆƄ$‰Ƅ$Šƒ¨R‹¦½õÿ‰„$Œ‰Œ$DŽ$”	DŽ$˜Ƅ$œƄ$Ƅ$žƒ¬R‹¯½õÿ‰„$ ‰Œ$¤DŽ$¨DŽ$¬Ƅ$°Ƅ$±ƒ°RƄ$²‰„$´‰Œ$¸DŽ$¼DŽ$ÀƄ$ÄƄ$ÅƄ$ƍƒ´R‹³½õÿ‰„$ȉŒ$ÌDŽ$ÐDŽ$ÔƄ$ØƄ$ÙƄ$ڍƒ¸R‹¸½õÿ‰„$܉Œ$àDŽ$äDŽ$èƄ$ìƄ$íƄ$¼R‹¶…øÿ‰„$ð‰Œ$ôDŽ$ø	DŽ$üƄ$Ƅ$ƒÀRƄ$‰„$‰Œ$DŽ$	DŽ$Ƅ$Ƅ$Ƅ$ƒÄR‹ýõÿ‰„$‰Œ$DŽ$ qDŽ$$Ƅ$(Ƅ$)Ƅ$*ƒÈR‹0’øÿ‰„$,‰Œ$0DŽ$4
DŽ$8Ƅ$<Ƅ$=ƒÌRƄ$>‰„$@‰Œ$DDŽ$H
DŽ$LƄ$PƄ$QƄ$RƒÐR‹4Êõÿ‰„$T‰Œ$XDŽ$\ÎDŽ$`Ƅ$dƄ$eƄ$fƒÔR‹$ùÿ‰„$h‰Œ$lDŽ$p
DŽ$tƄ$xƄ$yƒØRƄ$z‰„$|‰Œ$€DŽ$„
DŽ$ˆƄ$ŒƄ$Ƅ$ŽƒÜR‹Üõÿ‰„$‰Œ$”DŽ$˜öDŽ$œƄ$ Ƅ$¡Ƅ$¢ƒàR‹øçõÿ‰„$¤‰Œ$¨DŽ$¬DŽ$°Ƅ$´Ƅ$µƒäRƄ$¶‰„$¸‰Œ$¼DŽ$ÀDŽ$ÄƄ$ÈƄ$ÉƄ$ʍƒèR‹ýçõÿ‰„$̉Œ$ÐDŽ$ÔDŽ$ØƄ$ÜƄ$ÝƄ$ލƒìR‹èõÿ‰„$à‰Œ$äDŽ$èDŽ$ìƄ$ðƄ$ñƄ$òƒðR‹èõÿ‰„$ô‰Œ$øDŽ$ü	DŽ$Ƅ$Ƅ$Ƅ$ƒôR‹èõÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒøR‹èõÿ‰„$‰Œ$ DŽ$$DŽ$(Ƅ$,Ƅ$-Ƅ$.ƒüR‹(èõÿ‰„$0‰Œ$4DŽ$8DŽ$<Ƅ$@Ƅ$AƒSƄ$B‰„$D‰Œ$HDŽ$LDŽ$PƄ$TƄ$UƄ$VƒS‹-èõÿ‰„$X‰Œ$\DŽ$`#DŽ$dƄ$hƄ$iƄ$jƒS‹Pèõÿ‰„$l‰Œ$pDŽ$tDŽ$xƄ$|Ƅ$}Ƅ$~ƒS‹kèõÿ‰„$€‰Œ$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘Ƅ$’ƒS‹rèõÿ‰„$”‰Œ$˜DŽ$œDŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒS‹~èõÿ‰„$¨‰Œ$¬DŽ$°DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒS‹„èõÿ‰„$¼‰Œ$ÀDŽ$ÄDŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒS‹‰èõÿ‰„$ЉŒ$ÔDŽ$ØDŽ$ÜƄ$àƄ$áƄ$⍃ S‹Žèõÿ‰„$䉌$èDŽ$ì
DŽ$ðƄ$ôƄ$õƄ$öƒ$S‹Hõÿ‰„$ø‰Œ$üDŽ$DŽ$Ƅ$Ƅ$	Ƅ$
ƒ(S‹›èõÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒ,S‹Ÿèõÿ‰„$ ‰Œ$$DŽ$(	DŽ$,Ƅ$0Ƅ$1Ƅ$2ƒ0S‹¨èõÿ‰„$4‰Œ$8DŽ$<DŽ$@Ƅ$DƄ$Eƒ4SƄ$F‰„$H‰Œ$LDŽ$PDŽ$TƄ$XƄ$YƄ$Zƒ8S‹«èõÿ‰„$\‰Œ$`DŽ$dDŽ$hƄ$lƄ$mƄ$nƒ<S‹&2ùÿ‰„$p‰Œ$tDŽ$xDŽ$|Ƅ$€Ƅ$ƒ@SƄ$‚‰„$„‰Œ$ˆDŽ$ŒDŽ$Ƅ$”Ƅ$•Ƅ$–ƒDS‹²èõÿ‰„$˜‰Œ$œDŽ$ {
DŽ$¤Ƅ$¨Ƅ$©Ƅ$ªƒHS‹$ùÿ‰„$¬‰Œ$°DŽ$´DŽ$¸Ƅ$¼Ƅ$½ƒLSƄ$¾‰„$À‰Œ$ÄDŽ$ÈDŽ$ÌƄ$ÐƄ$ÑƄ$ҍƒPS‹-öõÿ‰„$Ô‰Œ$ØDŽ$ÜîDŽ$àƄ$äƄ$åƄ$捃TS‹öÿ‰„$艌$ìDŽ$ðDŽ$ôƄ$øƄ$ùƒXSƄ$ú‰„$ü‰Œ$DŽ$DŽ$Ƅ$Ƅ$
Ƅ$ƒ\S‹öÿ‰„$‰Œ$DŽ$DŽ$Ƅ$ Ƅ$!Ƅ$"ƒ`S‹#öÿ‰„$$‰Œ$(DŽ$,	DŽ$0Ƅ$4Ƅ$5Ƅ$6ƒdS‹,öÿ‰„$8‰Œ$<DŽ$@DŽ$DƄ$HƄ$IƄ$JƒhS‹Sõÿ‰„$L‰Œ$PDŽ$T	DŽ$XƄ$\Ƅ$]Ƅ$^ƒlS‹3öÿ‰„$`‰Œ$dDŽ$hDŽ$lƄ$pƄ$qƒpSƄ$r‰„$t‰Œ$xDŽ$|DŽ$€Ƅ$„Ƅ$…Ƅ$†ƒtS‹8öÿ‰„$ˆ‰Œ$ŒDŽ$DŽ$”Ƅ$˜Ƅ$™Ƅ$šƒxS‹QÓøÿ‰„$œ‰Œ$ DŽ$¤DŽ$¨Ƅ$¬Ƅ$­ƒ|SƄ$®‰„$°‰Œ$´DŽ$¸DŽ$¼Ƅ$ÀƄ$ÁƄ$ƒ€S‹=öÿ‰„$ĉŒ$ÈDŽ$̪DŽ$ÐƄ$ÔƄ$ÕƄ$֍ƒ„S‹çöÿ‰„$؉Œ$ÜDŽ$àDŽ$äƄ$èƄ$éƄ$ꍃˆS‹ëöÿ‰„$쉌$ðDŽ$ô
DŽ$øƄ$üƄ$ýƄ$þƒŒS‹øöÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$ƒSƄ$‰„$‰Œ$DŽ$DŽ$ Ƅ$$Ƅ$%Ƅ$&ƒ”S‹þöÿ‰„$(‰Œ$,DŽ$0DŽ$4Ƅ$8Ƅ$9Ƅ$:ƒ˜S‹öÿ‰„$<‰Œ$@DŽ$DDŽ$HƄ$LƄ$MƄ$NƒœS‹öÿ‰„$P‰Œ$TDŽ$XDŽ$\Ƅ$`Ƅ$aƄ$bƒ S‹öÿ‰„$d‰Œ$hDŽ$lDŽ$pƄ$tƄ$uƒ¤SƄ$v‰„$x‰Œ$|DŽ$€DŽ$„Ƅ$ˆƄ$‰Ƅ$Šƒ¨S‹øÿ‰„$Œ‰Œ$DŽ$”DŽ$˜Ƅ$œƄ$ƒ¬SƄ$ž‰„$ ‰Œ$¤DŽ$¨DŽ$¬Ƅ$°Ƅ$±Ƅ$²ƒ°S‹#öÿ‰„$´‰Œ$¸DŽ$¼ŸDŽ$ÀƄ$ÄƄ$ÅƄ$ƍƒ´S‹Âí÷ÿ‰„$ȉŒ$ÌDŽ$Ð
DŽ$ÔƄ$ØƄ$ٍƒ¸SƄ$Ú‰„$܉Œ$àDŽ$ä
DŽ$èƄ$ìƄ$íƄ$¼S‹Â&öÿ‰„$ð‰Œ$ôDŽ$ø
DŽ$üƄ$Ƅ$Ƅ$ƒÀS‹|¸÷ÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$ƒÄSƄ$‰„$‰Œ$DŽ$ DŽ$$Ƅ$(Ƅ$)Ƅ$*ƒÈS‹Ñ3öÿ‰„$,‰Œ$0DŽ$4ÜDŽ$8Ƅ$<Ƅ$=Ƅ$>ƒÌS‹­Cöÿ‰„$@‰Œ$DDŽ$HDŽ$LƄ$PƄ$QƄ$RƒÐS‹°Cöÿ‰„$T‰Œ$XDŽ$\DŽ$`Ƅ$dƄ$eƒÔSƄ$f‰„$h‰Œ$lDŽ$pDŽ$tƄ$xƄ$yƄ$zƒØS‹èUùÿ‰„$|‰Œ$€DŽ$„DŽ$ˆƄ$ŒƄ$Ƅ$ŽƒÜS‹¸Cöÿ‰„$‰Œ$”DŽ$˜(DŽ$œƄ$ Ƅ$¡Ƅ$¢ƒàS‹àCöÿ‰„$¤‰Œ$¨DŽ$¬#DŽ$°Ƅ$´Ƅ$µƄ$¶ƒäS‹Döÿ‰„$¸‰Œ$¼DŽ$À
DŽ$ÄƄ$ÈƄ$ÉƄ$ʍƒèS‹Döÿ‰„$̉Œ$ÐDŽ$Ô
DŽ$ØƄ$ÜƄ$ÝƄ$ލƒìS‹õÿ‰„$à‰Œ$äDŽ$èDŽ$ìƄ$ðƄ$ñƄ$òƒðS‹%õÿ‰„$ô‰Œ$øDŽ$üDŽ$Ƅ$Ƅ$Ƅ$ƒôS‹Döÿ‰„$‰Œ$DŽ$DŽ$Ƅ$Ƅ$Ƅ$ƒøS‹%Döÿ‰„$‰Œ$ DŽ$$ÂDŽ$(Ƅ$,Ƅ$-Ƅ$.ƒüS‹çDöÿ‰„$0‰Œ$4DŽ$8DŽ$<Ƅ$@Ƅ$AƄ$BƒT‹îDöÿ‰„$D‰Œ$HDŽ$LDŽ$PƄ$TƄ$UƄ$VƒT‹ôDöÿ‰„$X‰Œ$\DŽ$`DŽ$dƄ$hƄ$iƄ$jƒT‹úDöÿ‰„$l‰Œ$pDŽ$tDŽ$xƄ$|Ƅ$}Ƅ$~ƒT‹Eöÿ‰„$€‰Œ$„DŽ$ˆDŽ$ŒƄ$Ƅ$‘Ƅ$’ƒT‹Eöÿ‰„$”‰Œ$˜DŽ$œ	DŽ$ Ƅ$¤Ƅ$¥Ƅ$¦ƒT‹Eöÿ‰„$¨‰Œ$¬DŽ$°	DŽ$´Ƅ$¸Ƅ$¹Ƅ$ºƒT‹Eöÿ‰„$¼‰Œ$ÀDŽ$ÄDŽ$ÈƄ$ÌƄ$ÍƄ$΍ƒT‹ Eöÿ‰„$ЉŒ$ÔDŽ$ØDŽ$ÜƄ$àƄ$áƄ$⍃ T‹$Eöÿ‰„$䉌$èDŽ$ìDŽ$ðƄ$ôƄ$õƒ$TƄ$ö‰„$ø‰Œ$üDŽ$ DŽ$ Ƅ$ Ƅ$	 Ƅ$
 ƒ(T‹&Eöÿ‰„$ ‰Œ$ DŽ$ DŽ$ Ƅ$ Ƅ$ Ƅ$ ƒ,T‹,Eöÿ‰„$  ‰Œ$$ DŽ$( DŽ$, Ƅ$0 Ƅ$1 Ƅ$2 ƒ0T‹FEöÿ‰„$4 ‰Œ$8 DŽ$< DŽ$@ Ƅ$D Ƅ$E Ƅ$F ƒ4T‹É8øÿ‰„$H ‰Œ$L DŽ$P DŽ$T Ƅ$X Ƅ$Y ƒ8TƄ$Z ‰„$\ ‰Œ$` DŽ$d DŽ$h Ƅ$l Ƅ$m Ƅ$n ƒ<T‹LEöÿ‰„$p ‰Œ$t DŽ$x ÷DŽ$| Ƅ$€ Ƅ$ Ƅ$‚ ƒ@T‹CUöÿ‰„$„ ‰Œ$ˆ DŽ$Œ DŽ$ Ƅ$” Ƅ$• Ƅ$– ƒDT‹ÑPùÿ‰„$˜ ‰Œ$œ DŽ$  DŽ$¤ Ƅ$¨ Ƅ$© ƒHTƄ$ª ‰„$¬ ‰Œ$° DŽ$´ DŽ$¸ Ƅ$¼ Ƅ$½ Ƅ$¾ ƒLT‹HUöÿ‰„$À ‰Œ$Ä DŽ$È ðDŽ$Ì Ƅ$Ð fDŽ$Ñ ƒPT‹8Zöÿ‰„$Ô ‰Œ$Ø DŽ$Ü DŽ$à fDŽ$ä Ƅ$æ ƒTT‹@Zöÿ‰„$è ‰Œ$ì DŽ$ð DŽ$ô fDŽ$ø Ƅ$ú ƒXT‹
âøÿ‰„$ü ‰Œ$!DŽ$!DŽ$!Ƅ$!ƒ\TfDŽ$
!‰„$!‰Œ$!DŽ$!DŽ$!fDŽ$ !Ƅ$"!ƒ`T‹DZöÿ‰„$$!‰Œ$(!DŽ$,!&
DŽ$0!fDŽ$4!Ƅ$6!ƒdT‹jdöÿ‰„$8!‰Œ$<!DŽ$@!DŽ$D!fDŽ$H!Ƅ$J!ƒhT‹{döÿ‰„$L!‰Œ$P!DŽ$T!	DŽ$X!fDŽ$\!Ƅ$^!ƒlT‹„döÿ‰„$`!‰Œ$d!DŽ$h!DŽ$l!fDŽ$p!Ƅ$r!ƒpT‹½Vøÿ‰„$t!‰Œ$x!DŽ$|!DŽ$€!fDŽ$„!ƒtTƄ$†!‰„$ˆ!‰Œ$Œ!DŽ$!DŽ$”!fDŽ$˜!Ƅ$š!ƒxT‹ˆdöÿ‰„$œ!‰Œ$ !DŽ$¤!ð
DŽ$¨!fDŽ$¬!Ƅ$®!ƒ|T‹xröÿ‰„$°!‰Œ$´!DŽ$¸!#DŽ$¼!fDŽ$À!Ƅ$Â!ƒ€T‹›röÿ‰„$Ä!‰Œ$È!DŽ$Ì!DŽ$Ð!fDŽ$Ô!Ƅ$Ö!ƒ„T‹µröÿ‰„$Ø!‰Œ$Ü!DŽ$à!DŽ$ä!fDŽ$è!Ƅ$ê!ƒˆT‹Óröÿ‰„$ì!‰Œ$ð!DŽ$ô!DŽ$ø!fDŽ$ü!Ƅ$þ!ƒŒT‹Øröÿ‰„$"‰Œ$"DŽ$"DŽ$"fDŽ$"Ƅ$"ƒT‹Üröÿ‰„$"‰Œ$"DŽ$"DŽ$ "fDŽ$$"ƒ”TƄ$&"‰„$("‰Œ$,"DŽ$0"DŽ$4"fDŽ$8"Ƅ$:"ƒ˜T‹âröÿ‰„$<"‰Œ$@"DŽ$D"DŽ$H"fDŽ$L"Ƅ$N"ƒœT‹ÿröÿ‰„$P"‰Œ$T"DŽ$X"DŽ$\"fDŽ$`"Ƅ$b"ƒ T‹söÿ‰„$d"‰Œ$h"DŽ$l"DŽ$p"fDŽ$t"Ƅ$v"ƒ¤T‹"—÷ÿ‰„$x"‰Œ$|"DŽ$€"DŽ$„"fDŽ$ˆ"ƒ¨TƄ$Š"‰„$Œ"‰Œ$"DŽ$”"DŽ$˜"fDŽ$œ"Ƅ$ž"ƒ¬T‹söÿ‰„$ "‰Œ$¤"DŽ$¨"DŽ$¬"Ƅ$°"fDŽ$±"ƒ°T‹söÿ‰„$´"‰Œ$¸"DŽ$¼"qDŽ$À"fDŽ$Ä"Ƅ$Æ"ƒ´T‹lj÷ÿ‰„$È"‰Œ$Ì"DŽ$Ð"DŽ$Ô"fDŽ$Ø"ƒ¸TƄ$Ú"‰„$Ü"‰Œ$à"DŽ$ä"DŽ$è"fDŽ$ì"Ƅ$î"ƒ¼T‹‹wöÿ‰„$ð"‰Œ$ô"DŽ$ø"÷DŽ$ü"fDŽ$#Ƅ$#ƒÀT‹˜›÷ÿ‰„$#‰Œ$#DŽ$#DŽ$#fDŽ$#ƒÄTƄ$#‰„$#‰Œ$#DŽ$ #DŽ$$#fDŽ$(#Ƅ$*#ƒÈT‹‚„öÿ‰„$,#‰Œ$0#DŽ$4#(	DŽ$8#fDŽ$<#Ƅ$>#ƒÌT‹/N÷ÿ‰„$@#‰Œ$D#DŽ$H#DŽ$L#fDŽ$P#ƒÐTƄ$R#‰„$T#‰Œ$X#DŽ$\#DŽ$`#fDŽ$d#Ƅ$f#ƒÔT‹Ƥ÷ÿ‰„$h#‰Œ$l#DŽ$p#DŽ$t#fDŽ$x#ƒØTƄ$z#‰„$|#‰Œ$€#DŽ$„#DŽ$ˆ#fDŽ$Œ#Ƅ$Ž#ƒÜT‹ªöÿ‰„$#‰Œ$”#DŽ$˜#DŽ$œ#fDŽ$ #Ƅ$¢#ƒàT‹mG÷ÿ‰„$¤#‰Œ$¨#DŽ$¬#DŽ$°#fDŽ$´#ƒäTƄ$¶#‰„$¸#‰Œ$¼#DŽ$À#DŽ$Ä#fDŽ$È#Ƅ$Ê#ƒèT‹Ƙöÿ‰„$Ì#‰Œ$Ð#DŽ$Ô#´DŽ$Ø#fDŽ$Ü#Ƅ$Þ#ƒìT‹zŸöÿ‰„$à#‰Œ$ä#DŽ$è#DŽ$ì#fDŽ$ð#Ƅ$ò#ƒðT‹‚Ÿöÿ‰„$ô#‰Œ$ø#DŽ$ü#
DŽ$$fDŽ$$Ƅ$$ƒôT‹Ÿöÿ‰„$$‰Œ$$DŽ$$DŽ$$fDŽ$$Ƅ$$ƒøT‹Ö]ùÿ‰„$$‰Œ$ $DŽ$$$DŽ$($fDŽ$,$ƒüTƄ$.$‰„$0$‰Œ$4$DŽ$8$DŽ$<$fDŽ$@$Ƅ$B$ƒU‹¢Ÿöÿ‰„$D$‰Œ$H$DŽ$L$DŽ$P$fDŽ$T$Ƅ$V$ƒU‹¨Ÿöÿ‰„$X$‰Œ$\$DŽ$`$DŽ$d$fDŽ$h$Ƅ$j$ƒU‹¤øÿ‰„$l$‰Œ$p$DŽ$t$	DŽ$x$fDŽ$|$ƒUƄ$~$‰„$€$‰Œ$„$DŽ$ˆ$	DŽ$Œ$fDŽ$$Ƅ$’$ƒU‹®Ÿöÿ‰„$”$‰Œ$˜$DŽ$œ$ 
DŽ$ $fDŽ$¤$Ƅ$¦$ƒU‹Ωöÿ‰„$¨$‰Œ$¬$DŽ$°$DŽ$´$fDŽ$¸$Ƅ$º$ƒU‹=õÿ‰„$¼$‰Œ$À$DŽ$Ä$DŽ$È$fDŽ$Ì$Ƅ$Î$ƒU‹թöÿ‰„$Ð$‰Œ$Ô$DŽ$Ø$DŽ$Ü$fDŽ$à$Ƅ$â$ƒ U‹ݩöÿ‰„$ä$‰Œ$è$DŽ$ì$DŽ$ð$fDŽ$ô$Ƅ$ö$ƒ$U‹á©öÿ‰„$ø$‰Œ$ü$DŽ$%DŽ$%fDŽ$%Ƅ$
%ƒ(U‹é©öÿ‰„$%‰Œ$%DŽ$%DŽ$%fDŽ$%Ƅ$%ƒ,U‹õ©öÿ‰„$ %‰Œ$$%DŽ$(%DŽ$,%fDŽ$0%Ƅ$2%ƒ0U‹ù©öÿ‰„$4%‰Œ$8%DŽ$<%
DŽ$@%fDŽ$D%Ƅ$F%ƒ4U‹ªöÿ‰„$H%‰Œ$L%DŽ$P%	DŽ$T%fDŽ$X%Ƅ$Z%ƒ8U‹ªöÿ‰„$\%‰Œ$`%DŽ$d%DŽ$h%fDŽ$l%ƒ<UƄ$n%‰„$p%‰Œ$t%DŽ$x%DŽ$|%fDŽ$€%Ƅ$‚%ƒ@U‹ªöÿ‰„$„%‰Œ$ˆ%DŽ$Œ%DŽ$%fDŽ$”%Ƅ$–%ƒDU‹ÍUùÿ‰„$˜%‰Œ$œ%DŽ$ %DŽ$¤%fDŽ$¨%Ƅ$ª%ƒHU‹g]ùÿ‰„$¬%‰Œ$°%DŽ$´%DŽ$¸%fDŽ$¼%ƒLUƄ$¾%‰„$À%‰Œ$Ä%DŽ$È%DŽ$Ì%fDŽ$Ð%Ƅ$Ò%ƒPU‹ªöÿ‰„$Ô%‰Œ$Ø%DŽ$Ü%DŽ$à%fDŽ$ä%ƒTUƄ$æ%‰„$è%‰Œ$ì%DŽ$ð%DŽ$ô%fDŽ$ø%Ƅ$ú%ƒXU‹ ªöÿ‰„$ü%‰Œ$&DŽ$&
DŽ$&fDŽ$&Ƅ$&ƒ\U‹â8÷ÿ‰„$&‰Œ$&DŽ$&DŽ$&fDŽ$ &ƒ`UƄ$"&‰„$$&‰Œ$(&DŽ$,&DŽ$0&fDŽ$4&Ƅ$6&ƒdU‹-ªöÿ‰„$8&‰Œ$<&DŽ$@&wDŽ$D&fDŽ$H&Ƅ$J&ƒhU‹¤¬öÿ‰„$L&‰Œ$P&DŽ$T&DŽ$X&fDŽ$\&Ƅ$^&ƒlU‹žZùÿ‰„$`&‰Œ$d&DŽ$h&DŽ$l&fDŽ$p&ƒpUƄ$r&‰„$t&‰Œ$x&DŽ$|&DŽ$€&fDŽ$„&Ƅ$†&ƒtU‹X@÷ÿ‰„$ˆ&‰Œ$Œ&DŽ$&
DŽ$”&fDŽ$˜&ƒxUƄ$š&‰„$œ&‰Œ$ &DŽ$¤&
DŽ$¨&fDŽ$¬&Ƅ$®&ƒ|U‹©¬öÿ‰„$°&‰Œ$´&DŽ$¸&@DŽ$¼&fDŽ$À&Ƅ$Â&ƒ€U‹Õ8÷ÿ‰„$Ä&‰Œ$È&DŽ$Ì&
DŽ$Ð&fDŽ$Ô&Ƅ$Ö&ƒ„U‹é¬öÿ‰„$Ø&‰Œ$Ü&DŽ$à&DŽ$ä&fDŽ$è&ƒˆUƄ$ê&‰„$ì&‰Œ$ð&DŽ$ô&DŽ$ø&fDŽ$ü&Ƅ$þ&ƒŒU‹Lùÿ‰„$'‰Œ$'DŽ$'DŽ$'fDŽ$'ƒUƄ$'‰„$'‰Œ$'DŽ$'DŽ$ 'fDŽ$$'Ƅ$&'ƒ”U‹ï¬öÿ‰„$('‰Œ$,'DŽ$0'°DŽ$4'fDŽ$8'Ƅ$:'ƒ˜U‹Ÿ±öÿ‰„$<'‰Œ$@'DŽ$D'DŽ$H'fDŽ$L'Ƅ$N'ƒœU‹¤±öÿ‰„$P'‰Œ$T'DŽ$X'DŽ$\'fDŽ$`'ƒ UƄ$b'‰„$d'‰Œ$h'DŽ$l'DŽ$p'fDŽ$t'Ƅ$v'ƒ¤U‹ª±öÿ‰„$x'‰Œ$|'DŽ$€'
DŽ$„'fDŽ$ˆ'Ƅ$Š'ƒ¨U‹´±öÿ‰„$Œ'‰Œ$'DŽ$”'DŽ$˜'fDŽ$œ'Ƅ$ž'ƒ¬U‹¹±öÿ‰„$ '‰Œ$¤'DŽ$¨'DŽ$¬'fDŽ$°'Ƅ$²'ƒ°U‹¾±öÿ‰„$´'‰Œ$¸'DŽ$¼'	DŽ$À'fDŽ$Ä'Ƅ$Æ'ƒ´U‹DZöÿ‰„$È'‰Œ$Ì'DŽ$Ð'DŽ$Ô'fDŽ$Ø'Ƅ$Ú'ƒ¸U‹̱öÿ‰„$Ü'‰Œ$à'DŽ$ä'DŽ$è'fDŽ$ì'Ƅ$î'ƒ¼U‹ϱöÿ‰„$ð'‰Œ$ô'DŽ$ø'DŽ$ü'fDŽ$(Ƅ$(ƒÀU‹Òøÿ‰„$(‰Œ$(DŽ$(DŽ$(fDŽ$(ƒÄUƄ$(‰„$(‰Œ$(DŽ$ (DŽ$$(fDŽ$((Ƅ$*(ƒÈU‹ڱöÿ‰„$,(‰Œ$0(DŽ$4(B
DŽ$8(fDŽ$<(Ƅ$>(ƒÌU‹
`÷ÿ‰„$@(‰Œ$D(DŽ$H(DŽ$L(fDŽ$P(ƒÐUƄ$R(‰„$T(‰Œ$X(DŽ$\(DŽ$`(fDŽ$d(Ƅ$f(ƒÔU‹¼öÿ‰„$h(‰Œ$l(DŽ$p(6DŽ$t(fDŽ$x(Ƅ$z(ƒØU‹_È÷ÿ‰„$|(‰Œ$€(DŽ$„(DŽ$ˆ(fDŽ$Œ(ƒÜUƄ$Ž(‰„$(‰Œ$”(DŽ$˜(DŽ$œ(fDŽ$ (Ƅ$¢(ƒàU‹RÀöÿ‰„$¤(‰Œ$¨(DŽ$¬( DŽ$°(fDŽ$´(Ƅ$¶(ƒäU‹ò¯÷ÿ‰„$¸(‰Œ$¼(DŽ$À(DŽ$Ä(fDŽ$È(ƒèUƄ$Ê(‰„$Ì(‰Œ$Ð(DŽ$Ô(DŽ$Ø(fDŽ$Ü(Ƅ$Þ(ƒìU‹rËöÿ‰„$à(‰Œ$ä(DŽ$è(zDŽ$ì(fDŽ$ð(Ƅ$ò(ƒðU‹$øÿ‰„$ô(‰Œ$ø(DŽ$ü(DŽ$)fDŽ$)ƒôUƄ$)‰„$)‰Œ$)DŽ$)DŽ$)fDŽ$)Ƅ$)ƒøU‹ìÓöÿ‰„$)‰Œ$ )DŽ$$)‚DŽ$()fDŽ$,)Ƅ$.)ƒüU‹nåöÿ‰„$0)‰Œ$4)DŽ$8)DŽ$<)fDŽ$@)ƒVƄ$B)‰„$D)‰Œ$H)DŽ$L)DŽ$P)fDŽ$T)Ƅ$V)ƒV‹tåöÿ‰„$X)‰Œ$\)DŽ$`)DŽ$d)fDŽ$h)Ƅ$j)ƒV‹“åöÿ‰„$l)‰Œ$p)DŽ$t)!DŽ$x)fDŽ$|)Ƅ$~)ƒV‹´åöÿ‰„$€)‰Œ$„)DŽ$ˆ)DŽ$Œ)fDŽ$)Ƅ$’)ƒV‹¼åöÿ‰„$”)‰Œ$˜)DŽ$œ)DŽ$ )fDŽ$¤)Ƅ$¦)ƒV‹Ãåöÿ‰„$¨)‰Œ$¬)DŽ$°)DŽ$´)fDŽ$¸)Ƅ$º)ƒV‹Ëåöÿ‰„$¼)‰Œ$À)DŽ$Ä)	DŽ$È)fDŽ$Ì)Ƅ$Î)ƒV‹Ôåöÿ‰„$Ð)‰Œ$Ô)DŽ$Ø)DŽ$Ü)fDŽ$à)Ƅ$â)ƒ V‹Øåöÿ‰„$ä)‰Œ$è)DŽ$ì)DŽ$ð)fDŽ$ô)Ƅ$ö)ƒ$V‹îåöÿ‰„$ø)‰Œ$ü)DŽ$*ØDŽ$*fDŽ$*Ƅ$
*ƒ(V‹Ææöÿ‰„$*‰Œ$*DŽ$*DŽ$*fDŽ$*Ƅ$*ƒ,V‹Êæöÿ‰„$ *‰Œ$$*DŽ$(*DŽ$,*fDŽ$0*Ƅ$2*ƒ0V‹Íæöÿ‰„$4*‰Œ$8*DŽ$<*DŽ$@*fDŽ$D*Ƅ$F*ƒ4V‹Òæöÿ‰„$H*‰Œ$L*DŽ$P*DŽ$T*fDŽ$X*Ƅ$Z*ƒ8V‹×æöÿ‰„$\*‰Œ$`*DŽ$d*	DŽ$h*fDŽ$l*Ƅ$n*ƒ<V‹àæöÿ‰„$p*‰Œ$t*DŽ$x*DŽ$|*fDŽ$€*Ƅ$‚*ƒ@V‹èæöÿ‰„$„*‰Œ$ˆ*DŽ$Œ*DŽ$*fDŽ$”*Ƅ$–*ƒDV‹Ud÷ÿ‰„$˜*‰Œ$œ*DŽ$ *	DŽ$¤*fDŽ$¨*Ƅ$ª*ƒHV‹ìæöÿ‰„$¬*‰Œ$°*DŽ$´*DŽ$¸*fDŽ$¼*Ƅ$¾*ƒLV‹úìöÿ‰„$À*‰Œ$Ä*DŽ$È*DŽ$Ì*fDŽ$Ð*Ƅ$Ò*ƒPV‹¡¹øÿ‰„$Ô*‰Œ$Ø*DŽ$Ü*DŽ$à*fDŽ$ä*ƒTVƄ$æ*‰„$è*‰Œ$ì*DŽ$ð*DŽ$ô*fDŽ$ø*Ƅ$ú*ƒXV‹íöÿ‰„$ü*‰Œ$+DŽ$+Œ
DŽ$+fDŽ$+Ƅ$+ƒ\V‹ÞUùÿ‰„$+‰Œ$+DŽ$+DŽ$+fDŽ$ +Ƅ$"+ƒ`V‹Ž÷öÿ‰„$$+‰Œ$(+DŽ$,+DŽ$0+fDŽ$4+Ƅ$6+ƒdV‹÷öÿ‰„$8+‰Œ$<+DŽ$@+DŽ$D+fDŽ$H+Ƅ$J+ƒhV‹”÷öÿ‰„$L+‰Œ$P+DŽ$T+DŽ$X+fDŽ$\+Ƅ$^+ƒlV‹›÷öÿ‰„$`+‰Œ$d+DŽ$h+DŽ$l+fDŽ$p+Ƅ$r+ƒpV‹¢÷öÿ‰„$t+‰Œ$x+DŽ$|+DŽ$€+fDŽ$„+Ƅ$†+ƒtV‹©÷öÿ‰„$ˆ+‰Œ$Œ+DŽ$+DŽ$”+fDŽ$˜+Ƅ$š+ƒxV‹ïˆ÷ÿ‰„$œ+‰Œ$ +DŽ$¤+DŽ$¨+fDŽ$¬+ƒ|VƄ$®+‰„$°+‰Œ$´+DŽ$¸+DŽ$¼+fDŽ$À+Ƅ$Â+ƒ€V‹¯÷öÿ‰„$Ä+‰Œ$È+DŽ$Ì++DŽ$Ð+fDŽ$Ô+Ƅ$Ö+ƒ„V‹Ú÷ÿ‰„$Ø+‰Œ$Ü+DŽ$à+DŽ$ä+fDŽ$è+Ƅ$ê+ƒˆV‹ê÷ÿ‰„$ì+‰Œ$ð+DŽ$ô+DŽ$ø+fDŽ$ü+Ƅ$þ+ƒŒV‹ñ÷ÿ‰„$,‰Œ$,DŽ$,DŽ$,fDŽ$,Ƅ$,ƒV‹÷ÿ‰„$,‰Œ$,DŽ$,DŽ$ ,fDŽ$$,Ƅ$&,ƒ”V‹÷ÿ‰„$(,‰Œ$,,DŽ$0,DŽ$4,fDŽ$8,Ƅ$:,ƒ˜V‹	÷ÿ‰„$<,‰Œ$@,DŽ$D,DŽ$H,fDŽ$L,Ƅ$N,ƒœV‹÷ÿ‰„$P,‰Œ$T,DŽ$X,	DŽ$\,fDŽ$`,Ƅ$b,ƒ V‹÷ÿ‰„$d,‰Œ$h,DŽ$l,DŽ$p,fDŽ$t,Ƅ$v,ƒ¤V‹±+øÿ‰„$x,‰Œ$|,DŽ$€,	DŽ$„,fDŽ$ˆ,ƒ¨VƄ$Š,‰„$Œ,‰Œ$,DŽ$”,	DŽ$˜,fDŽ$œ,Ƅ$ž,ƒ¬V‹ ÷ÿ‰„$ ,‰Œ$¤,DŽ$¨,
DŽ$¬,fDŽ$°,Ƅ$²,ƒ°V‹1®øÿ‰„$´,‰Œ$¸,DŽ$¼,DŽ$À,fDŽ$Ä,ƒ´VƄ$Æ,‰„$È,‰Œ$Ì,DŽ$Ð,DŽ$Ô,fDŽ$Ø,Ƅ$Ú,ƒ¸V‹/÷ÿ‰„$Ü,‰Œ$à,DŽ$ä,kDŽ$è,fDŽ$ì,Ƅ$î,ƒ¼V‹š÷ÿ‰„$ð,‰Œ$ô,DŽ$ø,DŽ$ü,fDŽ$-ƒÀVƄ$-‰„$-‰Œ$-DŽ$-DŽ$-fDŽ$-Ƅ$-ƒÄV‹Ÿ÷ÿ‰„$-‰Œ$-DŽ$ -	DŽ$$-fDŽ$(-Ƅ$*-ƒÈV‹ÇHøÿ‰„$,-‰Œ$0-DŽ$4-DŽ$8-fDŽ$<-ƒÌVƄ$>-‰„$@-‰Œ$D-DŽ$H-DŽ$L-fDŽ$P-Ƅ$R-ƒÐV‹¨÷ÿ‰„$T-‰Œ$X-DŽ$\-î
DŽ$`-fDŽ$d-Ƅ$f-ƒÔV‹–,÷ÿ‰„$h-‰Œ$l-DŽ$p-
DŽ$t-fDŽ$x-Ƅ$z-ƒØV‹ ,÷ÿ‰„$|-‰Œ$€-DŽ$„-DŽ$ˆ-fDŽ$Œ-Ƅ$Ž-ƒÜV‹¢,÷ÿ‰„$-‰Œ$”-DŽ$˜-/DŽ$œ-fDŽ$ -Ƅ$¢-ƒàV‹Ñ,÷ÿ‰„$¤-‰Œ$¨-DŽ$¬-DŽ$°-fDŽ$´-Ƅ$¶-ƒäV‹×,÷ÿ‰„$¸-‰Œ$¼-DŽ$À-DŽ$Ä-fDŽ$È-Ƅ$Ê-ƒèV‹í,÷ÿ‰„$Ì-‰Œ$Ð-DŽ$Ô-DŽ$Ø-fDŽ$Ü-Ƅ$Þ-ƒìV‹;ìøÿ‰„$à-‰Œ$ä-DŽ$è-DŽ$ì-fDŽ$ð-ƒðVƄ$ò-‰„$ô-‰Œ$ø-DŽ$ü-DŽ$.fDŽ$.Ƅ$.ƒôV‹ó,÷ÿ‰„$.‰Œ$.DŽ$.ÕDŽ$.fDŽ$.Ƅ$.WÀ„$.DŽ$,.‹|$…ÿ„·t$ë
‹>ƒÆ…ÿ„¤‹Fð‹Nô¶Vý
Vüt$€~þt>ƒìP衃ĉ…ÀulëʐIƒìQPè圃ĉ…ÀuL몐‹VøI…ÒtjRQPèޠƒÄ‰…Àu%냃ìQP蹜ƒÄ‰…À„lÿÿÿƒìP跠ƒÄéOÿÿÿÄ0.^_[АSVP‰Îè[ÃB拃PM‹H‹IH;‹ÿÿÿujjVPèðœƒÄ…ÀtƒÄ^[Ãì…Ét@VPÿуÄ…Àuèè¬è‰Á1Éu֋ƒ ÿÿÿƒì‹G`ùÿVQÿ0è7œ1ăÄ^[ÃVPè圃ąÀu¥뻐Sƒìè[ãå‹A‹@H;ƒÿÿÿujjRQèWœƒÄ[Ãì…ÀtRQÿЃÄ…ÀtƒÄ[ÃRQ脜ƒÄ…Àuíè1Ä[ÐUSWVƒìè[Ã@å訝‹p<…ö„Á‹‹ÿÿÿ‹‹N9ÑtK‹z‹T÷Çuq‹iƒ}TyX…ÿyT¿@#yTtJöBW@tD‹¹¬…ÿt)‹O…É~v1í9T¯tME9éuõëgÇ@<ëH‹‰€9Ñt3…Éuò1É;“Pÿÿÿ”Áë‰T$‰$‰Æèqë‰Æèh‰Ið…Ét$‹p<Ç@<…öt‹=ÿÿÿ?t
H‰u‰4$è왃Ä^_[]АSVPè[ÃTä…ÉtW‹I9Ñt5‹B‹@T©uK‹qƒ~Ty*…Ày&¸@#ATtöBW@tèwƒÄ^[øƒÄ^[ÃìRQè̜ƒÄ^[Ã1Ä^[Ã蹃Ä^[АUSWVƒìè[ÃÐã‹t$$‹|$ …ÿt9wua‹A<‰y<…Àt‹ùÿÿÿ?tI‰u‰$‰×虉ú…Òt‹=ÿÿÿ?t
H‰u‰$èý˜…öt‹=ÿÿÿ?t
H‰u‰4$è㘃Ä^_[]Ét$‰<$‰T$‰Í詜‰é‹T$‹A<‰y<…Àu‡렐USWVƒìè[Ã ã‹r1öށ9L‚tv@9Æuõ…ö~z1ÿ‹Dº9Ètc‰T$‹QƒzTyEöAW@t?‹P‹RT…Òy"ö@W@t‰͉Âè+…Àu3G1À9þ‹T$‰éu»ë)÷Ât‰͉ÂèwëڃìP‰ÍQèi›ƒÄëɸƒÄ^_[]Ã1Àë��USWVƒìè[Ãpâ‹t$$‹l$ ‹=ÿÿÿ?t@‰‹E‹ùÿÿÿ?t
I‰u‰$迗‰u‹ƒ„P‹N‹IH…É„‰D$‰4$ÿхÀ„»Ç}ùÿ‰|$‰$‰Æècœ…	t$„*‰|$‰4$軙‰DžÀu
èð˜…À…„E‹O‰M E‰E$‹E‰,$ÿP…À„4‹ùÿÿÿ?t
I‰u‰$è—‹ƒ´R‹T$$‹J‹IH…É„‰D$‰$ÿхÀ„‹°‹úÿÿÿ?tJ‰u‰$‰ÆèՖ‰ퟤ�‹ƒÿÿÿ‹ùÿÿÿ?‹T$t	A‹ƒÿÿÿ‰‹
ùÿÿÿ?tI‰
u‰$‰Æ藖‰ðƒÄ^_[]ÉD$‰4$è!˜…À…âþÿÿ1Éèràþÿƒ%õÿ‰D$Ç$ڍ‹ȉùÿº)èá?ÿÿ1À븋‹Y‹“(WÇ$赾݅À„’‰ʼnÁè?‹E¿/)=ÿÿÿ?tFH‰Eu@‰,$è–ë6¿T)¾áë*‰D$‰$舗…À…ìþÿÿ¿_)¾âë
¿A)¾ß1ÉèÃßþÿƒ%õÿ‰D$‰4$‹ȉùÿ‰úè9?ÿÿ1T$…Ò…ëþÿÿéÿÿÿ¿+)ëՐèXÀ÷ß‹L$ÇA(WÀòA,‹€ÿÿÿ‹ùÿÿÿ?tA‰АUSWVƒìè[ðß‹|$$oÿ…í~~‹D$,‹L$ ƒÁ‰L$¯èl$0÷؉D$OƒìjWÿt$è0VƒÄ‰Æ¯t$,t$0ƒì‹D$,PV‹D$@P这ƒÄÿt$,UV豙ƒÄÿt$,ÿt$<U蠙ƒÄl$ƒÿw¤‹ƒÿÿÿ‹ùÿÿÿ?tA‰ƒÄ^_[]АUSWVƒì‰׉Îè[ÃìÞ‹A‹h@…ít9ƒìƒ½‡ùÿPèP™ƒÄ…Àu?ƒìÿt$$WVÿՃĉÆèD™‰ð…ötƒÄ^_[]Ãìÿt$$WVè8™ƒÄëè螕…Àt1Àë؋ƒHÿÿÿƒì‹¬uùÿQÿ0迓ƒÄëАUSWVƒìè[ÃPÞ‹A‹PT÷Â@u#…ÒyöAW@u+‹ƒÿÿÿƒì‹܇ùÿQÿ0èn“ë
ƒìQP蘃Ä^_[]Ãìj‰Í蔃ąÀtm‰ǃìjPU艘ƒÄ‰Ƌ=ÿÿÿ?tH‰uƒìWèM“ƒÄ…öt<‹Fö@W@u‹‹ÿÿÿ“ÀùÿPURÿ1è”ë
ƒìVUèK˜ƒÄ‹=ÿÿÿ?tH‰tƒÄésÿÿÿƒìVèù’ébÿÿÿSVPè[ÃdÝ‹t$‹Fƒ¸Äuj‰4$èɖ‹F…ÀtÇF‹ùÿÿÿ?t
I‰u‰$褒‹†°…Àt!dž°‹ùÿÿÿ?t
I‰u‰$èy’‹F‰4$ÿ ƒÄ^[É4$蟗…ÀuŠ‹F‹”"üÿ9H…xÿÿÿ‰4$著…ÀuÐégÿÿÿUSWVƒìè[àÜ‹T$0‹ƒV‹J‹IH…É„­‰D$‰$ÿщƅÀ„°‹F;ƒTÿÿÿ…y‹n…í„n‰ñ‹v‹E=ÿÿÿ?u‹=ÿÿÿ?u‹¿=ÿÿÿ?u ë+@‰E‹=ÿÿÿ?tã@‰‹¿=ÿÿÿ?t
H‰u‰$腑‰l$ÇD$½÷؍ƒÂ‰<$‰ñè‰Džít‹E=ÿÿÿ?tH‰Eu‰,$èB‘…ÿ„‹=ÿÿÿ?t
H‰u‰4$è$‘‹ƒ4P‹‹xQ‹P‹RH…Ò„Û‰L$‰$ÿ҉Å1ö…À„Þ‹‹ŒYÇD$T$‹D$0‰D$Ç$€è…À„·‰|$‹M;‹Tÿÿÿ‰D$…O‹}…ÿ„D‰é‹m‹úÿÿÿ?u‹Uúÿÿÿ?u‹¾úÿÿÿ?u#ë2B‰‹Uúÿÿÿ?táB‰U‹¾úÿÿÿ?tJ‰u‰$èL‹D$‰|$‰D$µ÷؍ƒÂF‰4$‰éèÖ
‰ƅÿt‹=ÿÿÿ?t
H‰u‰<$è
‹L$‹=ÿÿÿ?t
H‰u‰$èð…ö‹|$„Û‹E=ÿÿÿ?tH‰Eu‰,$è̏‰t$‰<$è •…À„¸‹ùÿÿÿ?tI‰t‹ùÿÿÿ?t-I‰u(‰4$‰Æ萏‰ðë‰<$‰÷‰Æ耏‰ð‰þ‹ùÿÿÿ?uӃÄ^_[]Ã1í1ÿéÜýÿÿ1ö1ÿéÿÿÿ‰D$‰$è쐉ƅÀ…Pýÿÿº…&雺™&1íëX‰L$‰$èЉÅ1ö…À…"þÿÿº&뺟&ë1öº´&뺸&1í‹=ÿÿÿ?tH‰u‰<$‰÷‰Öèߎ‰ò‰þ…öt‹=ÿÿÿ?tH‰u‰4$‰Ö迎‰ò…ít‹E=ÿÿÿ?tH‰Eu‰,$‰Ö蟎‰òƒ%õÿ‰D$Ç$Á‹Lzùÿè8ÿÿ1ÀéÿÿÿUSWVƒìè[ÃàØ‹t$0‹ƒ´P‹N‹IH…É„µ‰D$‰4$ÿщÅÇD$ąÀ„¸‹ƒhS‹M‹IH…É„°‰D$‰,$ÿщDžÀ„³‹E=ÿÿÿ?tH‰Eu‰,$è덋F‹‹´P‹P‹RH…Ò„’‰L$‰$ÿ҉ÆÇD$ŅÀ„•‹ƒhS‹N‹IH…É„‰D$‰4$ÿщŅÀ„‹=ÿÿÿ?t
H‰u‰4$è|‹ƒ´O‰l$‰$èʒ…À„l‰ƋE=ÿÿÿ?tH‰Eu‰,$èH‹ƒ¸O‰D$‰4$薒…À„B‰ŋ=ÿÿÿ?t
H‰u‰4$草l$‰<$èz’…À„"‹Mùÿÿÿ?tI‰Mt‹ùÿÿÿ?t)I‰u$‰<$‰Æè،‰ðë‰,$‰Æèʌ‰ð‹ùÿÿÿ?u׋ùÿÿÿ?tA‰‰Ɓùÿÿÿ?t
I‰u‰$蚌‰ðƒÄ^_[]ÉD$‰4$è$މÅÇD$ąÀ…HþÿÿÇD$'1íë‰D$‰,$èú‰DžÀ…MþÿÿÇD$'1ö1ÿël‰L$‰$è֍‰ÆÇD$ŅÀ…kþÿÿÇD$'1íë@‰D$‰4$謍‰ŅÀ…pþÿÿÇD$'1íë ÇD$'ëÇD$'1íë
ÇD$'1ö‰éèÏÕþÿ‰ñèÈÕþÿƒ%õÿ‰D$‹D$‰$‹…ˆùÿ‹T$è85ÿÿ…ÿ¸„ÿÿÿ‹1ö‰øùÿÿÿ?…âþÿÿéêþÿÿUSWVƒìè[ÃðÕ‹|$(‹t$$‹l$ ‹E…ÀtƒìWPÿփÄ…Àu‹…°…ÀtƒìWPÿփÄ…Àu1Ä^_[]АSWVƒìè[ÑÕ‹|$ ‹G‹³ÿÿÿ‰w‹ùÿÿÿ?tA‰…Àt‹ùÿÿÿ?t
I‰u‰$è֊‹‡°‰·°‹ùÿÿÿ?tA‰…Àt‹ùÿÿÿ?t
I‰u‰$袊1Ä^_[АUSWVƒì<è[ÃÕ‹T$X‹D$T‹h‹\U‰L$0ÇD$4‹³ÿÿÿ‰t$,…Ò„Â…ítƒý…Æ‹p‰t$,‰$袎‰Džíu0…ÿ~,‹ƒ\U‹H‰L$‰D$‹D$X‰$è;…À„!‰ƉD$,O…ÿ;³ÿÿÿ„S‹ƒˆP‹HöAW„û‹N‹IH…É„‰D$‰4$ÿхÀ„‹ùÿÿÿ?t
I‰u‰$蟉‹=ÿÿÿ?t@‰‰÷麃ý„Œ…í„æ1í™
‹9fùÿ“ùÿIы‹ÿÿÿ‹	³õÿ»ÍUùÿIþ‰l$‰|$‰D$‰T$ƒ¡zùÿ‰D$ƒAfùÿ‰D$‰$芺q%ƒ%õÿ‰D$Ç$µ‹þuùÿè‘2ÿÿ¸ÿÿÿÿéq‹p‰t$,;³ÿÿÿ…üþÿÿëMèmŠ…À…!ƒ¡zùÿ‰D$‰l$D$,‰D$D$0‰$‹L$X1Òè…ÀˆÁ‹t$,;³ÿÿÿ…­þÿÿ‹«ØM‹ƒLM‹M‰L$‰l$‰$見…À„(‰Ƌ=ÿÿÿ?t@‰‹F1ÿ;ƒTÿÿÿ„B1í‰l$0ÇD$4½÷؍ƒÂ4‰<$‰ñèØ‰Džít‹E=ÿÿÿ?tH‰Eu‰,$è
ˆ…ÿ„+‹=ÿÿÿ?„#H‰…‰4$é
ºc%é½þÿÿ‹ƒÿÿÿ‹‹zyùÿ‰L$‰$萇¹¸¿Ø%éX‰D$‰4$èE‰…À…çýÿÿ‰t$8èԇ‹»ØM‹ƒLM‹O‰L$‰|$‰$襊…À„î‰Ƌ=ÿÿÿ?t@‰‹F1ÿ;ƒTÿÿÿ„×1í‰l$0ÇD$4½÷؍ƒÂ4‰<$‰ñè׉Džít‹E=ÿÿÿ?tH‰Eu‰,$è	‡…ÿ„‹=ÿÿÿ?t
H‰u‰4$è놋ƒR‹O‹IH…É„¬‰D$‰<$ÿщƅÀ„¯‹F;ƒTÿÿÿ‰|$(…ñ‹n…í„æ‹N‹E=ÿÿÿ?u‹=ÿÿÿ?u‹¿=ÿÿÿ?u ë'@‰E‹=ÿÿÿ?tã@‰‹¿=ÿÿÿ?t	H‰„Û‰Ήl$0‹D$8‰D$4½÷؍ƒÂ4G‰<$‰ñèá…ít‹Mùÿÿÿ?tI‰Mu‰,$‰Ç膉ø…À„‹ùÿÿÿ?‹|$(tI‰u‰4$‰Æèë…‰ð‹ùÿÿÿ?t
I‰u‰$è҅‹D$P‹H‰|$‰$ÿ…ÀtO‰K1úÿÿÿ?tJ‰u
‰$装1ùÿÿÿ?tI‰u‰<$‰Æ舅‰ðƒÄ<^_[]É4$‰Îèt…éÿÿÿ¸¾º=&‹%õÿ‰L$‰$‹þuùÿèÝ.ÿÿ¸ÿÿÿÿë¥èц¿¬%…À…Љéè]éÿÿ…9·„ljƋF1ÿ;ƒTÿÿÿ…¾üÿÿ‹n…í„b‹N‹E=ÿÿÿ?u>‹=ÿÿÿ?uB‹¿=ÿÿÿ?uE‰ÎéŠüÿÿÇD$(ºÀ%¿·éÄ1ÿ1íé`þÿÿ@‰E‹=ÿÿÿ?t¾@‰‹¿=ÿÿÿ?t»‰L$(H‰u‰4$舄‹t$(é2üÿÿè
†…À…Ù‰ùè›èÿÿ…?ã%¹¹…ύƒ%õÿ‰D$‰$‹þuùÿ‰úé9ûÿÿÇD$(º÷%¿¹ë/‰D$‰<$迅‰ƅÀ…Qýÿÿ¸ºº&é¡þÿÿº&¿º‹=ÿÿÿ?tH‰u‰4$‰Öè䃉òƒ%õÿ‰D$‰<$‹þuùÿèZ-ÿÿ¸ÿÿÿÿ‹|$(…ÿ…þÿÿé.þÿÿº^%éúÿÿ¹·éGÿÿÿ1ÿéJûÿÿ¿ã%¹¹é1ÿÿÿ‰ƋF1ÿ;ƒTÿÿÿ…)üÿÿ‹n…ítj‹F‰D$(‹E=ÿÿÿ?u‹D$(‹=ÿÿÿ?u!‹¿=ÿÿÿ?u(ë3@‰E‹D$(‹=ÿÿÿ?tß@‹L$(‰‹¿=ÿÿÿ?t
H‰u‰4$胋t$(éºûÿÿ1ÿé±ûÿÿSVPè[ÃdÍ‹D$ö@VuYƒìjPÿ˜ƒÄ…Àt"‹‹ÄY‰H‹‹ÿÿÿ‰H‹úÿÿÿ?u‰ˆ°ƒÄ^[Ír‰1‰ˆ°þÿÿÿ?tçƒÂ‰ƒÄ^[ˋPÿÿÿƒìjÿ³XMPÿ‘œƒÄ…Àu›뻐USWVƒì‰T$è[ü̸ÿÿÿ#D$ ‰$‰D$trƒø…Ç‹$‹H;‹Xÿÿÿ„	‹ƒdM9Á„û‹‘¬…Ò„<‹J…ÉŽŽ1ÿ‹³Xÿÿÿ‹lº9Å„Á9õ„¹G9ùuçë^‹I;‹Xÿÿÿ„+‹ƒdM9Á„‹‘¬…Ò„Ä‹J…É~i1ÿ‹³Xÿÿÿ‹lº9Å„é9õ„áG9ùuçƒì‹t$VèʆƒÄ…L$tjQÿt$VÿÐë…Ét-jQÿt$V貆ƒÄérƒì‹t$V荆ƒÄ…L$uË»XM‹F‹h@…턺ƒìƒ½‡ùÿPè߅ƒÄ…À…:ƒìjWVÿÕé‰ʅÒt%‹’€9Âuòë9‰ʅÒ„‡‹’€9Âuîé˜;ƒPÿÿÿt‹ƒXÿÿÿ…É„.ÿÿÿ‹‰€9Áuî‹$‹@‹HöÁ„ÿÿÿ¿öÁ u‹$‹y‹pƒìƒ½‡ùÿPèG…ƒÄ…À…¢ƒìjWëwƒìjWVèH…éÿÿÿ;ƒPÿÿÿt‹ƒXÿÿÿ…É„¶þÿÿ‹‰€9Áuî‹$‹@‹HöÁ„šþÿÿ½öÁ u‹$‹i‹L$‹9‹pƒìƒ½‡ùÿPèɄƒÄ…Àu(ƒìWUÿփĉÆèD‰ð…ötƒÄ^_[]Ãè.…Àt1Àë닃Hÿÿÿƒì‹¬uùÿQÿ0èOƒÄëАé;íÿÿUSWVƒìè[ÃÐÉ‹L$(…ɏ^‹L$,…É…†‹D$ ‹‹°Q‹P‹RHƒì…Ò„’QPÿ҃ĉDžÀ„•褁‰ƅÀ„ƒì‹ƒ8ÿÿÿPÿ³ˆRVèD€ƒÄ…Àˆˆ‰ø‹»XM‰D$‹@‹h@…í„_ƒìƒ½‡ùÿP调ƒÄ…À…cƒìVW‹|$WÿՃĉÅ蟃…í„S‹=ÿÿÿ?tH‰uƒìWèp~ƒÄ‹=ÿÿÿ?twH‰urƒìVèV~ƒÄëdº‰'‹=ÿÿÿ?tH‰uƒìW‰×è3~‰úƒÄ…öt‹=ÿÿÿ?tH‰uƒìV‰Öè~‰òƒÄƒìƒ%õÿ‹­ˆùÿPhÊè‚'ÿÿƒÄ1í‰èƒÄ^_[]˃ÿÿÿƒì“ÍUùÿ³€`ùÿ»È8÷ÿ«AfùÿQRjVWUÿ0è”~ƒÄ ëy„pþÿÿƒì“È8÷ÿj赃ąÀ…Uþÿÿë™QPè!ƒÄ‰DžÀ…kþÿÿº…'é^ÿÿÿº‡'éÿÿÿƒìVW‹|$Wèq‚ƒÄ‰ŅÀ…½þÿÿ뺊'‹|$éèþÿÿè¿~…Àt
ºŠ'éÕþÿÿ‹ƒHÿÿÿƒì‹¬uùÿQÿ0èÚ|ƒÄëڐUSWVƒìè[ÃpÇ‹L$<‹l$8‹D$4“üU‰T$ÇD$…Ét&¨…í„aƒý…΋(‰l$‹A…À~éƒý…³‹(‰l$‹D$0‹‹tU‹P‹RHƒì…Ò„ˆQPÿ҃ĉƅÀ„‹‹F;ƒTÿÿÿ‰l$…[‹N…É„P‹~‹=ÿÿÿ?u‹=ÿÿÿ?u‹½=ÿÿÿ?uë2@‰‹=ÿÿÿ?tä@‰‹½=ÿÿÿ?tH‰uƒìV‰Îèú{‰ñƒÄ‰þ‰L$‹D$‰D$­÷؉ύƒÂEƒì‰ñUèzùÿÿƒÄ…ÿt!‰ú‹ùÿÿÿ?tI‰
uƒìR‰Çè§{‰øƒÄ…À„‹ùÿÿÿ?t	I‰„ö‹ùÿÿÿ?„I‰…ýƒìPèg{ƒÄéì‰T$‹i…í~Z‹“üU1��9T±„ìF9õuñ‰T$1��‰ϋT±ƒì‹L$jèlƒÄ…À…¯F9õ‰ùuÚè…|…l$8…O‹ƒÿÿÿƒì‹õÿ“€`ùÿ³Õ8÷ÿ»AfùÿUQjRVWÿ0èš{ƒÄ ºô'ƒìƒ%õÿ‹ˆ~ùÿPhÌè($ÿÿƒÄ1Àë7ƒìV‰Æè†z‰ðƒÄ‹ùÿÿÿ?…úþÿÿ‹ƒÿÿÿ‹ùÿÿÿ?t	A‹ƒÿÿÿ‰ƒÄ^_[]ÉùˆPÿÿÿ‰ê‹D$‹,°‰l$…í„;ÿÿÿ‰ÐH‹T$…ÀސýÿÿƒÕ8÷ÿt$|$Pÿt$<VWèìýƒÄ…Àxu‹l$éfýÿÿ1É1íéþÿÿQPèŒ{ƒÄ‰ƅÀ…uýÿÿº"(ë$‹º6(=ÿÿÿ?tH‰uƒìVè¼yº6(ƒÄƒìƒ%õÿ‹ˆ~ùÿPhÍéýþÿÿºä'éÞþÿÿºé'éÔþÿÿUSWVƒì<è[ÃðËD$X…À^‹L$\…É…šÇ$è¹z…À„®‰ƋƒôT‹ùÿÿÿ?t	A‰‹ƒôT‹N‰‹»PTè¶{º(ÇD$,ЅÀ„–‰ŋƒLM‰t$‰l$‰D$‰<$ÇD$è{‰NjE=ÿÿÿ?tH‰Eu‰,$èÃx…ÿ„e‰ý‹=ÿÿÿ?t
H‰u‰4$è£x‹“ôT‰éèFÿÿ1ɅÀ„,‰Nj=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰<$èfx‹E=ÿÿÿ?tH‰Eu‰,$èNxÇ$èÒx…À„ð‰ŋD$P‹H‹úÿÿÿ?tB‰‹H‰M‹‹°Q‹P‹RH…Ò„ö‰L$‰$ÿ҉ƅ9„ùèzÇD$,օÀ„ø‹“ˆR‹‹8ÿÿÿ‰L$‰T$‰D$(‰$èy…ÀˆÔ‰l$0‰|$8‹«XM‹F‹x@…ÿ„Àƒ½‡ùÿ‰$è‹|º¹(…À…ЋD$(‰D$‰l$‰4$ÿ׉Çèv|‰|$4…ÿ‹|$8„É‹=ÿÿÿ?t
H‰u‰4$è@w‹L$(‹=ÿÿÿ?‹l$0t
H‰u‰$è"wÇ$è¦w…t$4„i‹ùÿÿÿ?tA‰‰x‰h‰p‹ùÿÿÿ?…ÊéÖº¸(‹L$(‹=ÿÿÿ?tH‰u‰4$‰L$(‰Öè¼v‰ò‹L$(1ö…ít(‹E=ÿÿÿ?tH‰Eu‰,$‰t$4‰ΉÕèv‰ê‰ñ‹t$4…Ét‹=ÿÿÿ?tH‰u‰$‰õ‰Öèjv‰ò‰î…öt‹=ÿÿÿ?tH‰u‰4$‰ÖèJv‰òƒ%õÿ‰D$‹D$,‰$‹ڈùÿè¼ÿÿ1ÿt‹ùÿÿÿ?tI‰u‰<$‰Æè
v‰ðƒÄ<^_[]ˋÿÿÿ‹	‰D$ƒÍUùÿ‰D$ƒ€`ùÿ‰D$ƒ=õÿ‰D$ƒAfùÿ‰D$‰$ÇD$èŸv1À밃y„\üÿÿÇ$“=õÿè¿ø…À…Büÿÿ1À눍ƒ%õÿ‰D$Ç$Ѝ‹ڈùÿº˜(èÿÿ1Àé`ÿÿÿ1í1É1ÿéˆþÿÿº (ÇD$,Ð1ÿ1öéšþÿÿƒ%õÿ‰D$Ç$֍‹ڈùÿº¯(è¹ÿÿ1ùÿÿÿ?…ýþÿÿé	ÿÿÿ‰L$‰$è¨v‰ƅ9…ýÿÿº´(ÇD$,Ö1öé5þÿÿº¶(1Ééþÿÿ‹D$(‰D$‰l$‰4$èåy‰D$4…|$8…_ýÿÿº¹(ë‹|$8‹l$0éÅýÿÿº½(ÇD$,Ö1ÉéÝýÿÿèv…l$0t‹L$(º¹(éšýÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è(tëÖ1í1É1ÿº(énýÿÿUSWVƒì<è[ð¾‹L$\‹l$X‹D$T“\U‰T$4ÇD$8‹»ÿÿÿ‰|$,…Ét¨…턬ƒýu&‹8‰|$,‹Aé;…í„;ƒýu‹8‰|$,é+1í™
‹9fùÿ“ùÿIы‹ÿÿÿ‹	³õÿ»ÍUùÿIþ‰l$‰|$‰D$‰T$ƒâ8÷ÿ‰D$ƒAfùÿ‰D$‰$èRtºü)ƒ%õÿ‰D$Ç$荋ôvùÿèáÿÿ1À龋A…ÀŽŸ‰T$01ö‹«\U‰D$(9l±t1F9ðuõ1��‰ϋT±Ç$‰éè\ú…ÀuF9t$(‰ùußë"‰ùx‹D$0‹<°…ÿt‰|$,‹D$(H‹l$X‹T$0ë#‰ÎèTt…À…‹»ÿÿÿ‹l$X‰ñ‹T$0‹D$(…À8‰|$(‹D$P‹x‹=ÿÿÿ?t@‰‹«ØM‹ƒLM‹M‰L$‰l$‰$èšu…À„‰Ƌ=ÿÿÿ?t@‰‰t$‰<$èèwƒøÿ„‹ùÿÿÿ?tI‰t‹ùÿÿÿ?t)I‰u$‰4$‰Æèr‰ðë‰<$‰Çè	r‰ø‹ùÿÿÿ?uׅÀ„Æ‹D$P‹@‹‹R‹P‹RH…Ò„î‰L$‰$ÿ҉DžÀ„ñ‹G;ƒTÿÿÿ…N‹O…É„C‹w‹=ÿÿÿ?u‹=ÿÿÿ?u‹½=ÿÿÿ?uë.@‰‹=ÿÿÿ?tä@‰‹½=ÿÿÿ?tH‰u‰<$‰Ïè\q‰ù‰÷‰L$4‹D$(‰D$8­÷؉΍ƒÂ8E‰,$‰ùèàîÿÿ…öt‰ò‹ùÿÿÿ?tI‰
u‰$‰Æèq‰ð…À„=‹ùÿÿÿ?tI‰t‹ùÿÿÿ?t%I‰u ‰$èápë‰<$‰ÆèÕp‰ð‹ùÿÿÿ?uۋL$P‹A‰$ÿP…À„0‹ùÿÿÿ?tI‰t!‹ƒÿÿÿ‹ùÿÿÿ?t	A‹ƒÿÿÿ‰ƒÄ<^_[]É$è|p‹ƒÿÿÿ‹ùÿÿÿ?u×ëÞ1É1íé	ÿÿÿèìq1ö…Àu‰éèÔÿÿ…À…)º.*½üë}º0*½üëq‹‹”Y‹“,WÇ$è—Ûÿÿ½ý…À„å‰ƉÁè!Üÿÿ‹ºA*=ÿÿÿ?ty½ýëU‰L$‰$è€q‰DžÀ…þÿÿºS*½þëPºg*½þ1ö‹=ÿÿÿ?tH‰u‰<$‰×è¦o‰ú…öt&‹=ÿÿÿ?tH‰u‰4$‰Öèˆo‰òë
ºt*½ÿƒ%õÿ‰D$‰,$éüÿÿƒâ8÷ÿ‰D$‰l$D$,‰D$D$4‰$è&ó…Àx	‹|$,é™üÿÿºî)éÂûÿÿºé)é¸ûÿÿº=*뤉ÆéÃüÿÿUSWVƒìLè[À¹‹L$l‹l$h‹D$d“ˆR‰T$DÇD$H‹³4ÿÿÿ‰t$@…Ét¨…턹ƒýu3‹0‰t$@‹Aé;…í„;ƒýu‹0‰t$@‹=ÿÿÿ?…,é*1í™
‹9fùÿ“ùÿIы‹ÿÿÿ‹	³õÿ»ÍUùÿIþ‰l$‰|$‰D$‰T$ƒ^;÷ÿ‰D$ƒAfùÿ‰D$‰$èoºà*ƒ%õÿ‰D$Ç$‹h|ùÿè¤ÿÿ1öéM‹A…ÀŽ’1��R‰T$<‰D$49l±t1F9ðuõ1��‰ϋT±Ç$‰éè,õ…ÀuF9t$4‰ùußë"‰ùx‹D$<‹4°…öt‰t$@‹D$4H‹l$h‹T$<ë#‰Ïè$o…À…m‹³4ÿÿÿ‹l$h‰ù‹T$<‹D$4…À>‹=ÿÿÿ?t@‰‹D$`‹@‹‹üU‹P‹RH…Ò„“‰L$‰$ÿ҉DžÀ„–‹G‹“\P;ƒ\ÿÿÿ…–‰ùèzö‰ŅÀ„›‹“àMÇ$‰éè\ô…Àˆ”‹Mùÿÿÿ?t
I‰M„ƒ…	|$<„“;³4ÿÿÿt);³8ÿÿÿt!;³ÿÿÿt‰4$èCo…Àˆ¹…Àuéb1À;³4ÿÿÿ”À„O‰t$0‹³ÄV‹ƒLM‹N‰L$‰t$‰$èœo…À„Љŋ=ÿÿÿ?t@‰E‹ƒ¼V‹M‹IH…É„ö‰D$‰,$ÿщÆÇD$8+…À„ù‹E=ÿÿÿ?tH‰Eu‰,$èl‹»0W‹F‹h@…í„ڍƒ½‡ùÿ‰$èìp…À…		‰|$‰4$ÇD$ÿՉÅèÜp…í„		‹=ÿÿÿ?t
H‰u‰4$è®k‹E=ÿÿÿ?‹|$<tH‰Eu‰,$è’k‹‹8ÿÿÿ‹=ÿÿÿ?‹T$0‹t$`t@‰‹=ÿÿÿ?‰L$4t3H‰u.‰$è^kë$‰,$‰õ‰ÆèPk‰ð‰î…	|$<…mþÿÿ‰t$4‹t$`‹F(‰$è-l…À„Ú‰ŋƒÐQ‰l$‰D$‰<$è½p…ÀˆÌ‹E=ÿÿÿ?tH‰Eu‰,$èíjòF,ò$èÎk…À„¯‰ŋƒQ‰l$‰D$‰<$ènp…Àˆ£‹E=ÿÿÿ?tH‰Eu‰,$èžj‹l$4;«4ÿÿÿ”À;«8ÿÿÿ”Á;«ÿÿÿ”ÂʈT$,€úu
1À;«4ÿÿÿ”Àë‰,$èíl…Àˆy…À„›‹n‹E=ÿÿÿ?t@‰E‹»ØM‹ƒLM‹O‰L$‰|$‰$èMm…À„X‰Ƌ=ÿÿÿ?t@‰‰t$‰,$è›oƒøÿ„ˆ‰NjE=ÿÿÿ?tH‰Eu‰,$èØi‹=ÿÿÿ?t
H‰u‰4$èÂi…ÿ‹|$<‹l$4„è€|$,t
1À;«4ÿÿÿ”Àë‰,$è&l…Àˆ%…À„ˆ‹G‹“\P;ƒ\ÿÿÿ…<‰ùèÊò‰ÆÇD$87…À„A‹G‹“V;ƒ\ÿÿÿ…[‰ùèœò‰ŅÀ„`‹E‹“\R;ƒ\ÿÿÿ…Z‰éèvò…À„_‰D$,‹E=ÿÿÿ?tH‰Eu‰,$èòh‹G‹“V;ƒ\ÿÿÿ…;‰ùè6ò‰ŅÀ„@‹E‹“lT;ƒ\ÿÿÿ…:‰éèò…À„?‰D$(‹E=ÿÿÿ?tH‰Eu‰,$èŒh‹G‹“ÐQ;ƒ\ÿÿÿ…‰ùèÐñ‰ŅÀ„ ‹G‹“Q;ƒ\ÿÿÿ‰ù‰÷…&è¨ñ…À„-‰ÆÇ$èÂh…À„9‰x‹L$,‰H‹L$(‰H‰h‰p‰Ƌl$4‹|$<‹=ÿÿÿ?uë&‹=ÿÿÿ?u‰þë@‰‰þ=ÿÿÿ?t
H‰u‰<$èØg‹E=ÿÿÿ?tH‰Eu‰,$èÀg‰ðƒÄL^_[]ÉL$‰$èJi‰DžÀ…júÿÿÇD$$+ÇD$8)驉T$‰<$è¿i‰ŅÀ…eúÿÿÇD$8*ÇD$$!+é~ÇD$8*ÇD$$#+ékÇD$8/ÇD$$b+ë"ÇD$8/ÇD$$d+ë$ÇD$80ÇD$$n+1íëÇD$80ÇD$$p+1öÇD$,ÇD$(ÇD$ ‹D$4‰D$0éTÇD$$z+ÇD$81ëq‹‹Y‹“8WÇ$è2ÒÿÿÇD$82…À„‰ƉÁè¹Òÿÿ‹=ÿÿÿ?…º‰è1í1öÇD$,ÇD$(ÇD$ éÄÇD$$©+ÇD$86‰è1í1öÇD$,ÇD$(‰D$0ÇD$ 骍ƒ^;÷ÿ‰D$‰l$D$@‰D$D$D‰$èðé…Àˆß‹t$@‹=ÿÿÿ?…øÿÿéŽøÿÿÇD$8*ÇD$$*+1í‰t$01öÇD$,ÇD$(ÇD$ é5èHgÇD$81…Àu‰ùèÕÉÿÿ…À…´1öÇD$,ÇD$(ÇD$ ‹D$4‰D$0‹|$<ÇD$$‚+éâÇD$$„+ÇD$81ÇD$,ÇD$(ÇD$ ‹D$4‰D$0éZ‰T$‰<$èig‰ÆÇD$87…À…¿ûÿÿÇD$$´+‰è1í1öÇD$,ÇD$(ÇD$ ‰D$0é`‰T$‰<$èg‰ŅÀ… ûÿÿÇD$$¶+1íéÂýÿÿ‰T$‰,$è÷f…À…¡ûÿÿÇD$$¸+é¡ýÿÿ‰T$‰<$èÖf‰ŅÀ…ÀûÿÿÇD$$»+1íé„ýÿÿ‰T$‰,$è±f…À…ÁûÿÿÇD$$½+écýÿÿ‰T$‰<$èf‰ŅÀ…àûÿÿÇD$$È+1íÇD$ ÇD$88é>ýÿÿ‰T$‰$è[f…À…ÓûÿÿÇD$$Ê+ÇD$ ÇD$88‹D$4‰D$0ëÇD$$Ô+‹D$4‰D$0‰t$ ‰þ‹|$<éJH‰u‰4$èÅc1í1öÇD$,ÇD$(ÇD$ ‹D$4‰D$0ÇD$$—+éèeÇD$8+…Àu‰ñè¬Çÿÿ…À…’1í1öÇD$,ÇD$(ÇD$ ÇD$$6+éÉD$‰,$èßd‰ÆÇD$8+…À…÷ÿÿÇD$$8+éDýÿÿ‰|$‰4$ÇD$è,h‰ŅÀ…>÷ÿÿÇD$$C+1íÇD$,ÇD$(ÇD$ éÿÿÿ1íÇD$,ÇD$(ÇD$ ‹|$<ë+èFd…|$<„¢1íÇD$,ÇD$(ÇD$ ÇD$$C+‰é聬þÿ‰ñèz¬þÿ‹L$,èq¬þÿ‹L$(èh¬þÿ‹L$ è_¬þÿƒ%õÿ‰D$‹D$8‰$‹h|ùÿ‹T$$èÏÿÿ‹l$0…ÿ¾…%úÿÿéQúÿÿºÒ*éïóÿÿºÍ*éåóÿÿÇD$$“+éùüÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è¾aé?ÿÿÿ‰ÆéÛ÷ÿÿ‰Åé†õÿÿUSWVƒìLè[Ã@¬‹t$l‹|$h‹D$d‹üU‰L$8ÇD$<…öt(‰ñ¸…ÿ„ƒÿ…{‹0‰t$4‹A…À~éfƒÿ…`‹0‰t$4‹F‹@T© …¸©„nÇD$Ç$ÇD$(‰ñ1ÒèHë…À„«‰ŋ“àMÇ$‰Áèjè…Àˆœ‰NjE=ÿÿÿ?tH‰Eu‰,$èè`…ÿ…™è{c…À„ç‰ÇÇD$Ç$‰ñ1ÒèÙê¹z…À„ωŋƒ\P‰l$‰D$‰<$èôa…Àˆ|‹E=ÿÿÿ?tH‰Eu‰,$èt`èc…À„H
‰ÅÇD$Ç$‰ñºèjê…À„<
‰|$ ‹‹\R‰D$‰L$‰,$‰Çè†a…ÀˆÒ‹=ÿÿÿ?t
H‰u‰<$è`ÇD$Ç$‰ñºè
ê…À„þ	‹‹lT‰D$‰L$‰,$‰Çè-a…Àˆ‹=ÿÿÿ?t‰ùH‰u‰$è­_‹ƒV‰l$‰D$‹|$ ‰<$èó`…Àˆ8‹E=ÿÿÿ?tH‰Eu‰,$ès_‰4$è+eƒøÿ„%
1ɃøŒÇD$Ç$‰ñºè\é…À„
‰ŋƒÐQ‰l$‰D$‰<$èÌd…Àˆù	‹E=ÿÿÿ?tH‰Eu‰,$èü^ÇD$Ç$‰ñºèé…À„Ê	‰ŋƒQ‰l$‰D$‰<$èqd…Àˆ»	‹E=ÿÿÿ?tH‰Eu‰,$è¡^‹‰ùëK‹ƒ\P‰D$‰4$èYd½p…Àˆý„Ë‹ƒV‰D$‰4$è4d…Àˆ3„«‹1ɉ÷=ÿÿÿ?t@‰‰L$‹ƒ¤Q‹O‹IH…É„w‰D$‰<$ÿщŅÀ„z‰|$ ‹³HW‹E‹x@…ÿ„uƒ½‡ùÿ‰$èõbº‹-¹ÇD$(…À…‰t$‰,$ÇD$ÿ׉ÆèÓb…ö„Z‹E=ÿÿÿ?tH‰Eu‰,$è£]‹F;ƒ`ÿÿÿ„«‰4$èlcÝ\$@›òL$@阉T$ ‹q…ö~V‹“üU1ÿ9T¹„!G9þuñ‰T$(1ÿ‰͋T¹Ç$‹L$(èŠä…À…åG9þ‰éuÛè¦^…|$h…‹ƒÿÿÿ‹‰|$‹õÿ‰L$‹€`ùÿ‰L$‹X@÷ÿ‰L$‹Afùÿ‰L$‰$ÇD$è¦]ºf,ƒ%õÿ‰D$Ç$;鉋»Y‹³<W‹G‹h@…í„덃½‡ùÿ‰$èƒa…À…‰t$‰<$ÇD$ÿՉÇèsa…ÿ„Õ‰ùètÈÿÿ‹½qºº,=ÿÿÿ?tH‰u
‰<$è4\ºº,ƒ%õÿ‰D$‰,$‹%eùÿè§ÿÿ1Àé߉l$(ÇD$º1-‰ýÇD$$1ÿ¹zéÔòN¸ÿÿÿÿò*Àf.ÈšÀ•ÁÁuòL$(èR]òL$(…À…ï‹|$`‹=ÿÿÿ?tH‰u‰4$òL$(è”[òL$(òO,‹ƒ¤Q‹T$ ‹J‹IH…É„8‰D$‰$ÿхÀ„;‹³LW‰D$(‹@‹h@…í„:ƒ½‡ùÿ‰$è:`º›-¹‚ÇD$$…À…C‰t$‹t$(‰4$ÇD$ÿՉÅè`…í„0‹=ÿÿÿ?t
H‰u‰4$èæZ‰éèæ‰ƃøÿu
èc\…À…k‹E=ÿÿÿ?tH‰Eu‰,$è³Z‰w(‹G‹‹üU‹P‹RL…Ò„õ‹|$ ‰|$‰L$‰$ÿҋl$…Àˆø‹ƒÿÿÿ‹ùÿÿÿ?„íA‹ƒÿÿÿ‰‹ùÿÿÿ?…äéú‰|$$‰l$(ÇD$º?-ë‰|$$‰l$(ÇD$ºC-‹l$ 1ÿ¹{‹E=ÿÿÿ?tH‰Eu‰,$‰ΉÕèùY‰ê‰ñ‹t$(…ö‹l$t"‹=ÿÿÿ?tH‰u‰4$‰L$(‰ÖèÍY‰ò‹L$(‹t$$…öt"‹=ÿÿÿ?tH‰u‰4$‰L$(‰Öè£Y‰ò‹L$(ƒ%õÿ‰D$‰$‹%eùÿèÿÿ1ÿ„)‹ùÿÿÿ?„I‰…‰<$‰ÆèZY‰ðé‰l$(ÇD$ºE-é>ýÿÿ‰éˆüÿÿ‰ò‹D$ ‹4¸‰t$4…ö„üÿÿ‰ÐH‹|$h‹T$ …ÀŽ©÷ÿÿƒX@÷ÿ‰D$‰|$D$4‰D$D$8‰$èËÜ…Àˆy‹t$4év÷ÿÿ‹‹”Y‹“@WÇ$èBÄÿÿ½u…À„Þ‰ljÁèÌÄÿÿ‹ºø,=ÿÿÿ?„küÿÿH‰…büÿÿ‰<$è‰Xºø,éPüÿÿº¤,éFüÿÿ½wº
-é7üÿÿº-¹wÇD$$ÇD$鉋‹Y‹“DWÇ$è¯Ãÿÿ½x…À„U‰ljÁè9Äÿÿ‹º-=ÿÿÿ?„ØûÿÿH‰…Ïûÿÿ‰<$èöWº-é½ûÿÿ½zº--é®ûÿÿÇD$º/-‰ýÇD$(ÇD$$1ÿé¢ýÿÿ‰D$‰<$èKY‰ŅÀ…†ùÿÿ¸º‰-‹l$é‰t$‰,$ÇD$èš\‰ƅÀ…µùÿÿº‹-¹éèìX…|$ „ÇD$$¹º‹-é$ýÿÿ‰D$‰$èÍX…À…Åûÿÿ¸‚º™-‹|$ ‹l$锉t$‹t$(‰4$ÇD$è\‰ŅÀ…ðûÿÿº›-¹‚é"‹|$ ‹l$‹t$(éãüÿÿèWX…|$ ‹l$„‹t$(¹‚º›-é»üÿÿ‹|$ ‰|$‰L$‰$è°W‹l$…À‰üÿÿ¸ƒº©-‹%õÿ‰L$‰$‹%eùÿèòÿþÿ1ùÿÿÿ?…åüÿÿ…ít‹Mùÿÿÿ?tI‰Mu‰,$‰Æè3V‰ðƒÄL^_[]úª,éðùÿÿÇD$º;-‰ýÇD$(ë4‰l$(ÇD$º=-‰ýëºV,é&ùÿÿ‰l$(ÇD$ºA-‹l$ ÇD$$é©ûÿÿºŽ-¹ÇD$$‹|$ ‹l$é½ûÿÿ‰t$‰<$ÇD$è²Z‰DžÀ…-ùÿÿë
èW…À„ô½qº¶,é;ùÿÿº[,韸ÿÿºž-¹‚ÇD$(ÇD$$‹|$ é(ûÿÿ1í¸|ºQ-é²þÿÿ1í¸}º\-é¡þÿÿº^-¹}ë1í¸~ºh-é„þÿÿºj-¹~ÇD$(ÇD$$ÇD$éÂúÿÿºô,éžøÿÿº-锸ÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èyTéTýÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èZTéÎýÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è;TéíþÿÿUSWVƒìè[ÃО‹L$<‹l$8‹T$4ƒ¨U‰D$ÇD$‹ƒÿÿÿ‰D$…Ét4ª…í„¡ƒýu&‹‰D$‹Qé2…í„2ƒýu‹‰D$é"1í™
‹9fùÿ“ùÿIы‹ÿÿÿ³õÿ»ÍUùÿIþƒì³mG÷ÿ«Afùÿÿt$<WPRVUÿ1èTƒÄ º.ƒìƒ%õÿ‹ÏbùÿPh…èýþÿƒÄ1Àé‹Q…ÒŽ¡‰t$1��U9D±t<F9òuõ1��‰ՋT±ƒì‰ljÁjèŒÚƒÄ…ÀuF‰ê9õ‹L$<‰øuØë"‹L$<‰êx‹D$‹°…Àt‰D$J‹l$8‹t$ë#‰׉Îè{T…À…狃ÿÿÿ‹l$8‰ñ‹t$‰ú…ҏš‹L$0‹±°‹úÿÿÿ?tB‰ƒÁƒì‹“ÿÿÿ‹»dÿÿÿRVPQWÿ“ÈYƒÄ ‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆètR‰ðƒÄƒÄ^_[]Áùÿÿÿ?tI‰uƒìVèQRƒÄƒìƒ%õÿ‹ÏbùÿºD.Ph¹é«þÿÿƒmG÷ÿ‰òt$|$PUVWèöՃąÀx	‹D$é=ÿÿÿº.écþÿÿº.éYþÿÿUSWVƒìè[Ã`œ‹t$<‹T$8‹D$4‹¨U‰L$ÇD$‹«ÿÿÿ‰l$…öt ‰ñ4…Ò„—ƒúu&‹(‰l$‹Aé…Ò„ƒúu‹(‰l$é
1Ò™
‹9fùÿ“ùÿIы‹ÿÿÿ³õÿ»ÍUùÿIþƒì³/N÷ÿ«Afùÿÿt$<WPRVUÿ1èRƒÄ º°.ƒìƒ%õÿ‹nŠùÿPh»é׋A…ÀŽ“‰t$1��U‰D$9l±t2F9ðuõ1��‰ϋT±ƒì‰éjè.؃ąÀuF9t$‰ùuÞë"‰ùx‹D$‹,°…ít‰l$‹D$H‹T$8‹t$ë#‰Îè#R…À…ù‹«ÿÿÿ‹T$8‰ñ‹t$‹D$…Àr‹D$0‹‹àT‹P‹RHƒì…Ò„2QPÿ҃ĉDžÀ„5èÞR‰ƅÀ„-ƒìUÿ³¨UVè„QƒÄ…Àˆ‰‰t$‹³XM‹G‹h@…í„1ƒìƒ½‡ùÿPèòTƒÄ…À…=ƒìÿt$VWÿՃĉÅèâT…í„‹=ÿÿÿ?tH‰uƒìWè³OƒÄ‹L$‹=ÿÿÿ?twH‰urƒìQè•OƒÄëdºâ.‹=ÿÿÿ?tH‰uƒìW‰×èrO‰úƒÄ…öt‹=ÿÿÿ?tH‰uƒìV‰ÖèPO‰òƒÄƒìƒ%õÿ‹nŠùÿPhÂèÁøþÿƒÄ1í‰èƒÄ^_[]ÃQPè»PƒÄ‰DžÀ…ËþÿÿºÞ.뼺à.érÿÿÿ»/N÷ÿ‰ðt$‰ՉÂWUVD$ PèÀ҃ąÀx=‹l$éaþÿÿƒìÿt$VWèâSƒÄ‰ŅÀ…ëþÿÿë	è>P…Àt"ºã.‹t$éÿÿÿº¢.ékýÿÿº.éaýÿÿ‹ƒHÿÿÿƒì‹¬uùÿQÿ0èANƒÄ됐USWVƒì<è[ÃИ‹L$\‹t$X‹D$TÇD$ÇD$“ÈO‰T$,“<P‰T$0“¨U‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³õÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«ÈO1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjèðԃąÀ…G9þ‹L$\uÜèO…t$Xt$ºE/麃þ„̃þu‹x‰|$éÁ1þœ
‹ùÿ“9fùÿLуð‹‹ÿÿÿƒì³ÍUùÿ»ïN÷ÿ«Afùÿÿt$\VPRWUÿ1èæMƒÄ ºm/éN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹«<P1��9l±„¥F9÷uñ1��‹T±ƒì‰éjè`ӃąÀurF9÷‹L$\uàè{M…À…6‹ƒÿÿÿƒì‹ÍUùÿ“ùÿ³ïN÷ÿ»AfùÿjQjRVWÿ0è“LƒÄ ºO/ƒìƒ%õÿ‹(ùÿPhÄè!õþÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjèp҃ąÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#èeL…À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹hÿÿÿRjÿ³¬Oÿ³øVjÿ³@Pÿt$8jÿ³ÌOUjVWPQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè5J‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVèJƒÄƒìƒ%õÿ‹(ùÿº¤/PhóéZþÿÿƒïN÷ÿ‰õt$|$,‹T$ PUVWè³ÍƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿº[/éþÿÿºM/éøýÿÿºV/éîýÿÿUSWVƒì,è[Ã”‹L$L‹|$H‹D$D“PU‰T$ “¨U‰T$$ÇD$(‹“üV‰T$‹³ÿÿÿ‰t$…Ét2,¸…ÿ„؃ÿ„ºƒÿuC‰l$‹p‰t$‹‰T$‹Aé䋳ÿÿÿ…ÿ„Þƒÿtƒÿu‹p‰t$‹‰T$鉸÷ÐÁèƒàþ…ÿ‹ùÿ“9fùÿHы‹ÿÿÿƒì³ÍUùÿ»iU÷ÿ«Afùÿÿt$LVPRWUÿ1è{IƒÄ º0ƒìƒ%õÿ‹uzùÿPhøè	òþÿƒÄ1Àé׉l$‹‰T$A‹y雋y…ÿŽ0‰l$‰t$A1ö‹«PU‰T$‰D$9l±t2F9÷uõ1��‹T±ƒì‰éjèpσąÀuF9÷‹L$Luàë"‹L$Lx‹D$‹°…Àt‰D$O‰‹t$‹D$ëègI‹L$L…T$‹t$‹D$…¬…ÿŽ˜‰|$‰T$‹8…ÿ~_‹«¨U1ö9l±t2F9÷uõ1��‹T±ƒì‰éjèà΃ąÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#èÕH…À… ‹³ÿÿÿ‹|$H‹T$‹L$L‹D$…ÀÇ‰t$‰T$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“øV‹»¬Oƒì‹«ÿÿÿ‹‹lÿÿÿUjWRjWRjÿ³TUÿt$4jVÿt$<PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèF‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVèzFƒÄƒìƒ%õÿ‹uzùÿºU0Ph?éÚýÿÿƒiU÷ÿt$‰ý|$ ‹T$PUVWèʃąÀx
‹T$‹t$éÿÿÿº
0éŠýÿÿº0é€ýÿÿº0évýÿÿUSWVƒìè[Ãp‹L$<‹l$8‹T$4ƒ¨U‰D$ÇD$‹ƒÿÿÿ‰D$…Ét4ª…í„¡ƒýu&‹‰D$‹Qé2…í„2ƒýu‹‰D$é"1í™
‹9fùÿ“ùÿIы‹ÿÿÿ³õÿ»ÍUùÿIþƒì³
`÷ÿ«Afùÿÿt$<WPRVUÿ1è!FƒÄ ºÁ0ƒìƒ%õÿ‹€ùÿPhEè¯îþÿƒÄ1Àé‹Q…ÒŽ¡‰t$1��U9D±t<F9òuõ1��‰ՋT±ƒì‰ljÁjè,̃ąÀuF‰ê9õ‹L$<‰øuØë"‹L$<‰êx‹D$‹°…Àt‰D$J‹l$8‹t$ë#‰׉ÎèF…À…õ‹ƒÿÿÿ‹l$8‰ñ‹t$‰ú…ҏ¨‹L$0‹±°‹úÿÿÿ?tB‰ƒÁ$ƒì‹»ÿÿÿ‹“pÿÿÿWjWWjWWjWWjVPQRÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèD‰ðƒÄƒÄ^_[]Áùÿÿÿ?tI‰uƒìVèãCƒÄƒìƒ%õÿ‹€ùÿºø0Phkéþÿÿƒ
`÷ÿ‰òt$|$PUVWèˆÇƒÄ…Àx	‹D$é/ÿÿÿº³0éUþÿÿº®0éKþÿÿUSWVƒìlè[Ãð‹Œ$Œ‹¬$ˆ‹„$„‹´$€“¨U‰T$TÇD$X‹»ÿÿÿ‰|$P…Ét¨…í„¥ƒýu‹(‰l$P‹AéXƒý„ú…í„Õ1í™
‹9fùÿ“ùÿIы‹ÿÿÿ‹	³õÿ»ÍUùÿIþ‰l$‰|$‰D$‰T$ƒUd÷ÿ‰D$ƒAfùÿ‰D$‰$è‰Cºd1ƒ%õÿ‰D$Ç$q‹}fùÿèìþÿ1ÿé~
‹A…À~M‰T$(‰|$,1��U‰D$49l±tVF9ðuõ1��‰ϋT±Ç$‰éèœÉ…Àu0F9t$4‰ùußëNÇD$DÇD$@ÇD$8逋(‰l$PëU‰ùx%‹D$(‹°…Àt‰D$P‹T$4J‰ʼnЋ´$€‹T$(ë$‰ÎèhC‰ñ…´$€‹l$,‹T$(‹D$4…}…À?ÇD$DÇD$@ÇD$8;«ÿÿÿ„ÿ‹»ÌS‹ƒLM‹O‰L$‰|$‰$è D…À„B
‰Ƌ=ÿÿÿ?t@‰‰t$8‹ƒ$Q‹N‹IH…É„P
‰D$‰4$ÿщljD$@…À„S
‹=ÿÿÿ?t
H‰u‰4$èAÇ$è™A‰D$81҅À„L
‰ƋE=ÿÿÿ?t@‰E‰nèƒC‰D$D‰D$(…À„=
‰|$4‹»ÌS‹ƒLM‹O‰L$‰|$‰$èàC…À„+
‰ŋ=ÿÿÿ?t@‰E‹ƒR‹M‹IH…É„9
‰D$‰,$ÿщÇÇD$0§…À„<
‹E=ÿÿÿ?tH‰Eu‰,$èR@‹ƒQ‰|$‰D$‹D$(‰$è˜A…Àˆ7‹=ÿÿÿ?t
H‰u‰<$è@‹D$4‹@‹x@…ÿ„éƒ½‡ùÿ‰$èúD1íÇD$,b2…À…‹D$(‰D$‰t$‹l$4‰,$ÿ׉ÇèÜD‰ø…ÿ„Ï‹Mùÿÿÿ?‰D$<tI‰Mu‰,$è¥?‹D$<ÇD$@‹ùÿÿÿ?‹¬$€tI‰u‰4$è{?‹D$<ÇD$8‹T$(‹
ùÿÿÿ?tI‰
u‰$èT?‹D$<‹úÿÿÿ?tJ‰ùÿÿÿ?t‰…Òu‰$è+?‹D$<ÇD$D‹H‰L$0‹p‹‹ÐY‹P‰t$‰$ÿ‘x‰D$L…ÀŽ´E‰D$,ÇD$4‹ƒTÿÿÿ‰D$H됐‹D$4@‰D$49D$L„~‹µ°‹«@Q‹~‰l$‰<$è’D…À„~‹H‹‰ˆ…Ét-‰|$‰t$‰$ÿщD$(…Œ$€u1éd‹úÿÿÿ?‹Œ$€‰D$(tB‰‹±°‹«4Q‹~‰l$‰<$èD…À„)‹P‹Šˆ…Ét ‰|$‰t$‰$ÿхÀ„‹P됐‹ùÿÿÿ?tA‰ÇD$8;T$H…é‹h‰l$8…í„Ú‹x‹Mùÿÿÿ?u!‹ùÿÿÿ?u%‹¾ùÿÿÿ?u(ë6A‰M‹ùÿÿÿ?tÛA‰‹¾ùÿÿÿ?tI‰u‰$èc=‰ù‰l$TÇD$XµT$X)‰4$‰Ïèëºÿÿ‰ʼnD$D‹D$8…Àt‹ùÿÿÿ?tI‰u‰$è=ÇD$8…í„,‹=ÿÿÿ?tH‰u‰<$èê<‹D$D‹ùÿÿÿ?‹¬$€tI‰u‰$è¾<ÇD$Dè£B‰NjD$,‰$è¥Å‹L$0‹t$4‰Tñ‰ñ‰<$èŽB‹³PW‹L$(‹A‹x@…ÿ„Œƒ½‡ùÿ‰$èXA…À…™‰t$‹t$(‰4$ÇD$ÿ׉ÇèDA…ÿtp‹=ÿÿÿ?tH‰u‰4$è<…ÿ„n‹=ÿÿÿ?„+ýÿÿH‰…"ýÿÿ‰<$èê;éýÿÿ1í1ö‰Áé|þÿÿ‰t$‰$ÇD$‰Îèä@‰ÇëèK=…Àt1ÿ‹t$(é|ÿÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èb;ëً¶°‹«@Q‹~‰l$‰<$èeA…À„3‹H‹‰ˆ…Ét:‰|$‰t$‰$ÿщD$4…Œ$€u6é‹t$<‹ùÿÿÿ?…‰÷é#‹úÿÿÿ?‹Œ$€‰D$4tB‰‹¹°‹ƒ4Q‹o‰D$(‰D$‰,$èß@…À„؉Ƌ@‹ˆˆ…Ét3‰l$‰|$‰4$ÿщD$@…À„‰	‰Ƌ@ÇD$8;ƒTÿÿÿt*é(‹ùÿÿÿ?tA‰‰t$@ÇD$8;ƒTÿÿÿ…‹n‰l$8…í„ô‹~‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‰|$@‹¹=ÿÿÿ?tH‰u
‰4$è5:¹‰þ‰l$TÇD$X÷؍ƒÂX‰$‰ñ蹷ÿÿ‰D$D…ít‹Mùÿÿÿ?tI‰Mu‰,$‰Çèæ9‰øÇD$8…À„ùÿÿÿ?tI‰u‰4$‰Æè»9‰ðÇD$@‹ùÿÿÿ?‹¼$€t
I‰u‰$è“9è~<‰D$0‹@@‹«ÿÿÿ됐‹@…Àt7‹0…ötó9îtï‹=ÿÿÿ?t@‰‹N‹=ÿÿÿ?t@‰‰L$L‰4$è8<‰D$HëÇD$L1öÇD$HG‰$è%‰T$‰$è)?ÇD$D…À„X‰NjD$0‹H@‹‰1…Àt‹ùÿÿÿ?t
I‰u‰$èÑ8‹L$L…Ét‹=ÿÿÿ?t
H‰u‰$è³8‰|$(‹L$H…Ét‹=ÿÿÿ?t
H‰u‰$è‘8‹³PW‹l$4‹E‹x@…ÿ„öƒ½‡ùÿ‰$èk=…À…‰t$‹l$4‰,$ÇD$ÿ׉ÆèW=…ö‹|$(„ý‹Mùÿÿÿ?tI‰Mu‰,$è"8…ö„¶‹ùÿÿÿ?t
I‰u‰4$è8‰øƒÄl^_[]Ã1íÇD$,`2‹L$(‹1Ò=ÿÿÿ?tH‰u
‰$èÓ71ҋD$@…Àt‹ùÿÿÿ?tI‰u‰$‰Öè°7‰ò‹D$8…	Öt‹ùÿÿÿ?t
I‰u‰$è7…ít‹E=ÿÿÿ?tH‰Eu‰,$èq7…ÿt‹=ÿÿÿ?t
H‰u‰<$èW7ƒ%õÿ‰D$‹D$0‰$‹}fùÿ‹T$,èÇàþÿ…ö„§ôÿÿ‹1ÿéÿÿÿA‰‰÷éÿÿÿ‹ƒÿÿÿ‹‰l$‰$è8<1íÇD$0¬ÇD$,“2ël‹ƒÿÿÿ‹‰l$‰$è<ÇD$,•21ÿëÇD$,©2‹T$<‹L$(‹1íÇD$0¬=ÿÿÿ?„ÜþÿÿH‰…Óþÿÿ‰$èœ6ë1íÇD$0¬ÇD$,ß21ÿ‹T$<é¬þÿÿ1í1ÉéFüÿÿƒUd÷ÿ‰D$‹„$ˆ‰D$D$P‰D$D$T‰$è+º…Àˆr‹l$Pé‡ôÿÿ‹ƒÿÿÿ‹‰l$‰$èV;ÇD$0¤ÇD$,­11Òép‹ƒÿÿÿ‹‹L$(‰L$‰$è';ÇD$@ÇD$,¯1ëÇD$,Ã1‹L$4‹1Ò=ÿÿÿ?u
ÇD$0¤é"ÇD$0¤H‰…‰$è¨51Òé‰l$,ÇD$@ÇD$8»%õÿ‰|$Ç$¥‹}fùÿ‰L$hºÚ1èøÞþÿD$8‰D$D$@‰$T$D‹L$0èËL$D…	L$(ˆu‰|$d‹T$@‹D$8‰D$`‰D$‰T$\‰T$‰L$Ç$èà6…À„H‰ÅÇ$‹|$4‰ù‰Âèr ÿÿ‰D$<‹=ÿÿÿ?t
H‰u‰<$èØ4‹E=ÿÿÿ?tH‰Eu‰,$èÀ4‹|$<…ÿ„þ;»4ÿÿÿ„î;»8ÿÿÿ„â;»ÿÿÿ„Ö‰<$è7éÔ‰t$‰,$ÇD$è9‰Ƌ|$(é)üÿÿÇD$0¤ÇD$,.21Òé®1ö‹l$4‹|$(éüÿÿèÉ5…À„E1ö‹l$4éëûÿÿè±5…À…L‰ùèB˜ÿÿ‰D$8…À…ÝÇD$0§ÇD$,O21ÒëS‰D$‰4$è†5‰ljD$@…À…­òÿÿÇD$,Q2ÇD$0§1ÿ1í1ҋD$8…	Ö…üÿÿé"üÿÿÇD$0§ÇD$,T21í1ÿéÅûÿÿÇD$0§ÇD$,Y21í1ÿéªûÿÿè51íÇD$,[2…Àu‰ù蓗ÿÿ…À…91ÿÇD$0§é]ûÿÿ‰D$‰,$èà4‰ÇÇD$0§…À…Äòÿÿ1ÿÇD$,]2é0ûÿÿ‹D$(‰D$‰t$‹l$4‰,$è'8…À…=óÿÿ1íÇD$,b2ë˜è~4…À„:1ÿÇD$0§‹L$(1íéæúÿÿºV1é#ðÿÿÇD$,î1éŽ1À;»4ÿÿÿ”	ŋ=ÿÿÿ?t
H‰u‰<$è—2…íx_„‹L$(è„|þÿÇD$D‹L$\ès|þÿÇD$@‹L$`èb|þÿ‹D$0‹H@‹D$H‰D$‰4$‹T$LèÇÁ‹l$,é¯ðÿÿºQ1éïÿÿÇD$,û1‹D$0‹H@‹D$H‰D$‰4$‹T$Lè‘ÁÇD$0¤1í¿º‹L$(…É…úÿÿéúÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è¢1éœýÿÿÇD$8éºýÿÿÇD$,ò1ëŠÇD$,÷1뀋ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èb1é§þÿÿè81‹L$`‰L$‹L$\‰$‰KT$(è˜ÿÿ‹D$0‹H@‹D$H‰D$‰4$‹T$LèÓÀ‹D$d‰D$Ç$¤‹L$hº2é©îÿÿÇD$,¯1éLûÿÿ‰ÆéÌïÿÿ‰Åé‚ðÿÿUSWVƒì\è[À{‹T$x‹D$tÇD$8‹èR‰L$H‹ÔQ‰L$L‹¨U‰L$P‹Q‰L$TÇD$X‹»ÿÿÿ‰|$<‰|$@‹³W‰t$Dƒ|$|„¤ƒú‡ä‰L$ ‹Œ“õÿÙÿá‰t$,‰|$0‹D$|‹p…ö~_P‹«èR1ÿ‰T$4‹D$|9l¸„G9þuí1ÿ‹D$|‹T¸Ç$‰éèz·…À…ãG9þuÝè˜1…T$xtSº]3魍JÿƒùwA‹»ÿÿÿ‹Œ‹(õÿىúÿá‹p‰t$D‹x‰|$@‹P‰T$<‹(‰l$8‹E=ÿÿÿ?…]é—1ÒŸ
D@‹ùÿ‰Ս“9fùÿNы‹ÿÿÿ‹	³õÿ»ÍUùÿNþ‰l$‰|$‰T$“lj÷ÿ‰T$“Afùÿ‰T$‰$‰D$è.0º3ƒ%õÿ‰D$Ç$°‹¬dùÿè½Øþÿ1Àép‹p‰t$D‹x‰|$@‹P‰T$<‹(‰l$8‹D$|‹Hé׉t$,‹P‰T$<‹(‰l$8‹D$|H‹@…À+阋x‰|$@‹P‰T$<‹(‰l$8‹D$|H‰L$4‹@éωt$,‹(‰l$8‹D$|P‹p…öŽ‰t$$‰l$‰|$0‰T$4‹2…öŽ¢‹«ÔQ1ÿ‹D$|9l¸tpG9þuñ1ÿ‹D$|‹T¸Ç$‰é蚵…Àu>G9þuáëWˆþÿÿ‹D$ ‹,¸‰l$8…í„	þÿÿN‹|$0‹T$4…öqÿÿÿ‹»ÿÿÿ‰úé¹x‹D$ ‹¸…Òt‰T$<‹D$$H‹|$0‹l$ëèc/…À…Ћ“ÿÿÿ‹|$0‹l$‹D$$‹L$4…À~r‰D$$‰l$‰T$(‰L$4‹1…öŽ“‹«¨U1ÿ‹D$|9l¸tPG9þuñ1ÿ‹D$|‹T¸Ç$‰é誴…ÀuG9þuáë;‹t$,‹E=ÿÿÿ?…Øéx"‹D$ ‹<¸…ÿt‰|$@‹D$$H‹T$(‹t$,‹l$ë#è.…À…ò‹»ÿÿÿ‹T$(‹t$,‹l$‹D$$…À޵‰D$$‰l$‰|$0‰t$,‰T$(‹D$4‹0…ö~r‹«Q1ÿ‹D$|9l¸t9G9þuñ1ÿ‹D$|‹T¸Ç$‰éèڳ…ÀuG9þuáë&x$‹D$ ‹¸…Àt‰D$D‹L$$I‰ƋT$(‹|$0‹l$ë!èÔ-…T$(‹t$,‹|$0‹l$‹L$$…§…É{‹E=ÿÿÿ?…Á‹=ÿÿÿ?…Å;“ÿÿÿ‰|$0„ȉT$(‰l$$‹»tM;³ÿÿÿ‰t$,„#ÇD$HT$L‰t$LÇ$€‰ùèm©ÿÿ‰ŅÀ…Jºì3é+ƒlj÷ÿ‰D$‹D$x‰D$D$8‰D$D$H‰$‹L$|‹T$ è[¯…Àˆè‹l$8‹T$<‹|$@‹t$D‹E=ÿÿÿ?„?ÿÿÿ@‰E‹=ÿÿÿ?„;ÿÿÿ@‰;“ÿÿÿ‰|$0…8ÿÿÿ‹E=ÿÿÿ?t@‰E‹ƒÿÿÿ‹ùÿÿÿ?t
I‰u‰$è+‹‹W‹=ÿÿÿ?t	@‰‹‹W‹E=ÿÿÿ?‰L$$tH‰Eu‰,$èÒ*‰l$(‹»tM;³ÿÿÿ‰t$,…Ýþÿÿ‹«TW‹G‹p@…ö„ƒ½‡ùÿ‰$è–/ºñ3…À…‰l$‰<$ÇD$ÿ։Åè/…í„õ‹ƒ4R‹M‹IH…É„-‰D$‰,$ÿщDžÀ„0;»4ÿÿÿt,;»8ÿÿÿt$;»ÿÿÿt‰<$è²,…Àˆ‹ùÿÿÿ?uë1À;»4ÿÿÿ”ùÿÿÿ?t	I‰„h…À…*‹³ÄV‹ƒLM‹N‰L$‰t$‰$èù,…À„’‰Nj=ÿÿÿ?t@‰‰l$‹ƒ¼V‹O‹IH…É„•‰D$‰<$ÿщŅÀ„˜‹=ÿÿÿ?t
H‰u‰<$èr)‹³XW‹E‹x@…ÿ„ƒ½‡ùÿ‰$èP.º41ɅÀ…‰t$‰,$ÇD$ÿ׉Çè9.…ÿ„·‹E=ÿÿÿ?tH‰Eu‰,$è	)‹=ÿÿÿ?t
H‰u‰<$èó(‹ƒˆS‹l$‹M‹IH…É„J‰D$‰,$ÿщDžÀ„M‹G;ƒTÿÿÿ…
‹o…í„ÿ
‹w‹E=ÿÿÿ?u2‹=ÿÿÿ?u6‹¹=ÿÿÿ?u9ëI‰<$‰Æè~(‰ð…À…¶é‡þÿÿ@‰E‹=ÿÿÿ?tÊ@‰‹¹=ÿÿÿ?tH‰u
‰<$èD(¹‰÷‰l$HÇD$L÷؍ƒÂL‰$‰ùèȥÿÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$èú'…ö„½‹=ÿÿÿ?‹l$t
H‰u‰<$èØ'‹E=ÿÿÿ?tH‰Eu‰,$èÀ'‰õ‹³ÌS‹ƒLM‹N‰L$‰t$‰$èÏ*…À„ ‰Nj=ÿÿÿ?t@‰‹t$,‰l$‹ƒR‹O‹IH…É„Ÿ‰D$‰<$ÿщŅÀ„¢‹=ÿÿÿ?t
H‰u‰<$èD'‰l$‹D$‰$ÇD$è\-1ɅÀ„y‰NjE=ÿÿÿ?tH‰Et8;»4ÿÿÿt@;»8ÿÿÿt8;»ÿÿÿt0‰<$è€)…l$ˆL‹ùÿÿÿ?u+ë.‰,$èÐ&;»4ÿÿÿuÀ1À;»4ÿÿÿ”l$‹ùÿÿÿ?tI‰ti‹L$p…Àtu‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$0‰D$‹D$(‰D$‹D$$‰$ÇD$ÇD$ÿ“ÔY…À…6¾ºx4é³
‰<$‰Çè7&‰ø‹L$p…Àu‹‹«ÌS‹ƒLM‹M‰L$‰l$‰$è>)…À„߉Nj=ÿÿÿ?t@‰‹ƒR‹O‹IH…É„è‰D$‰<$ÿщŅ9„ë‹=ÿÿÿ?t
H‰u‰<$è¶%‰l$‹D$‰$ÇD$èÎ+‰Ç1ÿ„Õ‹E=ÿÿÿ?tH‰Eu‰,$èz%;»4ÿÿÿt4;»8ÿÿÿt,;»ÿÿÿt$‰<$èê'…l$‹L$pˆ³‹úÿÿÿ?uë"1À;»4ÿÿÿ”l$‹L$p‹úÿÿÿ?tJ‰te…Àtu‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$0‰D$‹D$(‰D$‹D$$‰$ÇD$ÇD$ÿ“ØY…À…¬
¾º£4é*‰<$‰Çè­$‰ø‹L$p…Àu‹‹«ÌS‹ƒLM‹M‰L$‰l$‰$è´'…À„‰Nj=ÿÿÿ?t@‰‹ƒR‹O‹IH…É„‰D$‰<$ÿщŅÀ„‹=ÿÿÿ?t
H‰u‰<$è1$‰l$‹D$‰$ÇD$èI*1ɅÀ„ì‰NjE=ÿÿÿ?tH‰Eu‰,$èõ#;»4ÿÿÿt4;»8ÿÿÿt,;»ÿÿÿt$‰<$èe&…l$‹L$pˆ±‹úÿÿÿ?uë21À;»4ÿÿÿ”l$‹L$p‹úÿÿÿ?tJ‰u‰<$‰Çè#‰ø‹L$p…Àta‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$0‰D$‹D$(‰D$‹D$$‰$ÇD$ÇD$ÿ“ÜY…À…	¾ºÎ4锋«ÌS‹ƒLM‹M‰L$‰l$‰$è3&…À„
‰Nj=ÿÿÿ?t@‰‹ƒR‹O‹IH…É„H‰D$‰<$ÿщŅÀ„K‹=ÿÿÿ?t
H‰u‰<$è°"‰l$‹D$‰$ÇD$èÈ(…À„(‰NjE=ÿÿÿ?tH‰Eu‰,$èv";»4ÿÿÿt3;»8ÿÿÿt+;»ÿÿÿt#‰<$èæ$…l$‹L$py"¾ºì4é®1À;»4ÿÿÿ”l$‹L$p‹úÿÿÿ?tJ‰u‰<$‰Çè"‰ø‹L$p…Àta‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$0‰D$‹D$(‰D$‹D$$‰$ÇD$ÇD$ÿ“àY…À…™¾ ºù4é‹‹ÌSè)Èþÿ…À„:‰NjƒpV‹O‹IH…É„2‰D$‰<$ÿщŅÀ„5‹=ÿÿÿ?t
H‰u‰<$èR!‰l$‹D$‰$ÇD$èj'…À„‰NjE=ÿÿÿ?tH‰Eu‰,$è!;»4ÿÿÿt3;»8ÿÿÿt+;»ÿÿÿt#‰<$èˆ#…l$‹L$py"¾!º5éO1À;»4ÿÿÿ”l$‹L$p‹úÿÿÿ?tJ‰u‰<$‰Çè± ‰ø‹L$p…Àta‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$0‰D$‹D$(‰D$‹D$$‰$ÇD$ÇD$ÿ“äY…À…;¾"º$5鸋‹ÌSèËÆþÿ…À„ ‰NjƒlV‹O‹IH…É„‰D$‰<$ÿщŅÀ„‹=ÿÿÿ?t
H‰u‰<$èô‰l$‹D$‰$ÇD$è&…À„ù‰NjE=ÿÿÿ?tH‰Eu‰,$èº;»4ÿÿÿt3;»8ÿÿÿt+;»ÿÿÿt#‰<$è*"…l$‹L$py"¾#ºB5éò1À;»4ÿÿÿ”l$‹L$p‹úÿÿÿ?tJ‰u‰<$‰ÇèS‰ø‹L$p…Àta‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$0‰D$‹D$(‰D$‹D$$‰$ÇD$ÇD$ÿ“èY…À…ݾ$ºO5é[‹‹ÌSèmÅþÿ…À„	‰NjƒhV‹O‹IH…É„‰D$‰<$ÿщŅÀ„‹=ÿÿÿ?t
H‰u‰<$è–‰l$‹D$‰$ÇD$è®$…À„à
‰NjE=ÿÿÿ?tH‰Eu‰,$è\;»4ÿÿÿt3;»8ÿÿÿt+;»ÿÿÿt#‰<$èÌ …l$‹L$py"¾%ºm5é“1À;»4ÿÿÿ”l$‹L$p‹úÿÿÿ?tJ‰u‰<$‰Çèõ‰ø‹L$p…Àta‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$0‰D$‹D$(‰D$‹D$$‰$ÇD$ÇD$ÿ“ìY…À…¾&ºz5éü‹‹ÌSèÄþÿ…À„ð‰NjƒtV‹O‹IH…É„ë‰D$‰<$ÿщŅÀ„î‹=ÿÿÿ?t
H‰u‰<$è8‰l$‹D$‰$ÇD$èP#…À„É‰NjE=ÿÿÿ?tH‰Eu‰,$èþ;»4ÿÿÿt3;»8ÿÿÿt+;»ÿÿÿt#‰<$èn…l$‹L$py"¾'º˜5é6	1À;»4ÿÿÿ”l$‹L$p‹úÿÿÿ?tJ‰u‰<$‰Çè—‰ø‹L$p…À„‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$0‰D$‹D$(‰D$‹D$$‰$ÇD$ÇD$ÿ“ðY…À…¾(º¥5雉D$‰,$載DžÀ…Ðñÿÿº4¾	é8
¾	º4ëiè‚…Àu‰ñè€ÿÿ…À…<
1ÿºd4¾é
‰D$‰<$èb‰ŅÀ…^ôÿÿ¾ºf4éþºi4‰ïéÁ¾ºk41	D$ ‹=ÿÿÿ?…sé‹‹ÌSèûÁþÿ…À„#‰NjƒhP‹O‹IH…É„‰D$‰<$ÿщŅÀ„!‹=ÿÿÿ?t
H‰u‰<$è$‰l$‹D$‰$ÇD$è<!…À„ú
‰NjE=ÿÿÿ?tH‰Eu‰,$èê;»4ÿÿÿt<;»8ÿÿÿt4;»ÿÿÿt,‰<$èZ…l$‹L$py+¾)ºÃ5é!ÿÿÿ1í1Ééiòÿÿ1À;»4ÿÿÿ”l$‹L$p‹úÿÿÿ?tJ‰u‰<$‰Çèz‰ø‹L$p…À„q
‹¹°‹=ÿÿÿ?t@‰ƒÁ‰|$‰L$‹D$0‰D$‹D$(‰D$‹D$$‰$ÇD$ÇD$ÿ“ôY…À„Ú
‰D$ ‹=ÿÿÿ?t
H‰u‰<$è;³ÿÿÿ”À;³tÿÿÿ”KT$0;“ÿÿÿ…Á„ˆ‹«ÌS‹ƒLM‹M‰L$‰l$‰$èç…À„‰Nj=ÿÿÿ?t@‰‹ƒ P‹O‹IH…É„‰D$‰<$ÿщŅL$ „‹=ÿÿÿ?tH‰u‰<$è`‹L$ ‹E1ÿ;ƒTÿÿÿ„õ1ö‰t$H‰L$L½÷؍ƒÂLG‰<$‰éèזÿÿ‰Džöt‹=ÿÿÿ?t
H‰u‰4$è…ÿ„ï‹E=ÿÿÿ?tH‰Eu‰,$è닃„U‹O‹IH…ɋt$,„ƉD$‰<$ÿщŅÀ„É‹=ÿÿÿ?t
H‰u‰<$誋ƒXM‰D$‰,$ÇD$èÀ…À„¡‰NjE=ÿÿÿ?tH‰Eu‰,$èn;»4ÿÿÿt0;»8ÿÿÿt(;»ÿÿÿt ‰<$èÞ…l$ˆ}‹ùÿÿÿ?uë"1À;»4ÿÿÿ”l$‹ùÿÿÿ?t	I‰„²…À„¾‹=ÿÿÿ?t@‰‹F1ÿ;ƒTÿÿÿ„v1ö‹D$ ‰t$H‰D$L½÷؍ƒÂLG‰<$‹L$,èu•ÿÿ…öt‹ùÿÿÿ?tI‰u‰4$‰Æè¨‰ð…t$(‹|$$„w‹L$,‹úÿÿÿ?tJ‰u‰$‰D$èw‹D$‹T$ ‹Mùÿÿÿ?u;ëS‰<$‰ÇèX‰ø…À…Bÿÿÿ‹T$ ‹=ÿÿÿ?t@‰‰Ћt$(‹|$$‹Mùÿÿÿ?tI‰Mu‰,$‰D$‰Õè‰ê‹D$…Òt‹
ùÿÿÿ?tI‰
u‰$‰Åèò‰è…ÿt‹ùÿÿÿ?tI‰u‰<$‰ÇèÓ‰ø‹ùÿÿÿ?tI‰u‰4$‰Æè¸‰ðƒÄ\^_[]Ãè9¾/…Àu‰éèÉzÿÿ…À…õ‹|$ ‹l$º6鶉D$‰<$è‰ŅL$ …ïüÿÿ¾/º6é‹u…ö„‹U‹=ÿÿÿ?…k‹=ÿÿÿ?…n‹E¿=ÿÿÿ?…q‰ÕéËüÿÿº)6ë+‰D$‰<$衉ŅÀ…7ýÿÿ¾/º-6‹l$ë,º06¾/‰ï‹l$‹=ÿÿÿ?…Âéξ/º26‹D$ ‰D$ ‹=ÿÿÿ?…žéª‰l$‰<$ÇD$è­‰ŅÀ…ëÿÿºñ3‹t$(‹|$$ëèÿ…t$(‹|$$„5ºñ3ƒ%õÿ‰D$Ç$‹¬dùÿèξþÿ1ÿ…Hþÿÿé^þÿÿ躅Àu‰ñèOyÿÿ…À…‚1ÿº4¾é=‰D$‰<$蚉ŅÀ…hëÿÿ¾º41Àé.‰t$‰,$ÇD$èë‰DžÀ… ëÿÿ¾º4阉ï‹l$¾‰L$ ‹=ÿÿÿ?…Žéš‰D$‰,$è%‰DžÀ…³ëÿÿ1ÿº'4¾é¡èõ…À„R‰ï‹l$1ɾº4‰L$ ‹=ÿÿÿ?…2é>¾º;41ÉëPè²…Àu‰éèGxÿÿ…À…‹l$º4¾é1‰D$‰<$萉Ņ9…îÿÿ¾º‘4‹l$‰L$ ‹=ÿÿÿ?„Ëéµ¾º”4‰ï‹l$‰D$ ‹=ÿÿÿ?…”é ¾º–41ɉL$ ‹=ÿÿÿ?uv邉ð‹v…ö„€‹h‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‹L$,‹¿=ÿÿÿ?tH‰u‹D$,‰$è,‰l$,‹l$é2ûÿÿºQ6¾0‹|$,‹=ÿÿÿ?tH‰u‰<$‰×èù‰úƒ%õÿ‰D$‰4$‹¬dùÿèo¼þÿ1t$(‹|$$é]ûÿÿ@‰‹=ÿÿÿ?„’üÿÿ@‰‹E¿=ÿÿÿ?„üÿÿ‰T$0H‰Eu‰,$蘋l$0‹L$ éBùÿÿºw3é8ãÿÿºr3é.ãÿÿè…Àu‰éè—vÿÿ…À…Ø‹l$ºº4¾遉D$‰<$èà‰ŅÀ…ïíÿÿ¾º¼4‹l$é•öÿÿ¾º¿4éuöÿÿ¾ºÁ4éwöÿÿºk3é²âÿÿºd3é¨âÿÿè|…Àu‰éèvÿÿ…À…]‹l$ºå4¾1ÿƒ%õÿ‰D$‰4$‹¬dùÿèA»þÿ‰ú‹t$(‹|$$1Mùÿÿÿ?…múÿÿé‚úÿÿ‰D$‰<$è%‰ŅÀ…µîÿÿ¾ºç4‹l$éÛýÿÿ¾ºê41Àé¤ýÿÿ1ÿº5¾!뀉D$‰<$è݉ŅÀ…Ëïÿÿ¾!º5é>üÿÿ¾!º51Éétõÿÿ1ÿº;5¾#é9ÿÿÿ‰D$‰<$è–‰ŅÀ…âðÿÿ¾#º=51Ééýÿÿ¾#º@5énÿÿÿ1ÿºf5¾%éòþÿÿ‰D$‰<$èO‰ŅÀ…ùñÿÿ¾%ºh5é°ûÿÿ¾%ºk5émÿÿÿ1ÿº‘5¾'é­þÿÿ‰D$‰<$è
‰ŅÀ…óÿÿ¾'º“51Ééxüÿÿ¾'º–5éâþÿÿ1ÿº¼5¾)éfþÿÿ‰D$‰<$èÉŅÀ…ßôÿÿ¾)º¾5é$ûÿÿ¾)ºÁ5éáþÿÿ‹ƒ O;ƒÿÿÿ„‹L$‹I;‹xÿÿÿtº#QT…é‹L$‰L$‰$èü‰DžÀ„é‹‹”YÇD$HT$L‰|$LÇ$€è@ÿÿ…À„Ô‰Ƌ=ÿÿÿ?t
H‰u‰<$èp‰ñè‰{ÿÿ‹=ÿÿÿ?t
H‰u‰4$èS‹l$ºï5¾,éuýÿÿ¾*ºÐ5é£óÿÿ1ÿéßõÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èàé¬ùÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èÁéúÿÿ1ÿ1öé»ûÿÿ‹L$‰L$‰$è#‰DžÀ…ÿÿÿ1ÿºè5¾,‹l$éëüÿÿ¾,ºê51ÉéÌúÿÿ‰Çéçÿÿ‰Çéôôÿÿ‰ÇéÛäÿÿ‰Çéèÿÿ‰Njt$,éêÿÿ‰Njt$,é„ëÿÿUSWVƒì<è[ÃàX‹t$X‹D$T‹”R‰L$0ÇD$4ƒ|$\t*°…ö„ºƒþ…‹‰L$,‹D$\‹x…ÿ~é*ƒþ…ý‹‰L$,èþ‰Ńøÿ„e‹D$PMÿ}…ÉIù‹‹´T‹P‹RH…Ò„‰L$‰$ÿ҅À„ ‰D$ èV‰ÆÇD$$TÇD$(…À„‰l$8ÁÿG‰<$èÌ…À„û‰ŋƒ¨U‰l$‰D$‰4$èÌ…Àˆ½‹E=ÿÿÿ?tH‰Eu‰,$èL
‹»ÌS‹ƒLM‹O‰L$‰|$‰$è]…À„º‰ŋ=ÿÿÿ?t@‰E‹ƒlV‹M‹IH…ɄÉD$‰,$ÿщDžÀ„Æ‹E=ÿÿÿ?tH‰Eu‰,$è×‹ƒQ‰|$‰D$‰4$è!…Àˆ‰t$‹=ÿÿÿ?t
H‰u‰<$èŸ‹³\W‹D$ ‹@‹x@…ÿ„pƒ½‡ùÿ‰$èy…À…Ì‹D$‰D$‰t$‹t$ ‰4$ÿ׉Åèe…í„›‹=ÿÿÿ?t
H‰u‰4$è7‹L$‹=ÿÿÿ?t
H‰u‰$è‹ƒ,P‹M‹IH…É„$‰D$‰,$ÿщƅÀ„'‹E=ÿÿÿ?tH‰Eu‰,$èÞ‹F;ƒTÿÿÿ…R‹~…ÿ„G‰ñ‹v‹=ÿÿÿ?…µ‹=ÿÿÿ?…¸‹½=ÿÿÿ?…·é¿è
…À„ŽýÿÿºÚ6鴉T$ ‹D$\‹x…ÿ~K‹«”R1ö9l°„JF9÷uñ1��‹T°Ç$‰é莒…À…F9÷‹D$\uÝè¨…t$X…ÿ‹ƒÿÿÿ‹‰t$‹õÿ‰L$‹€`ùÿ‰L$‹kw÷ÿ‰L$‹Afùÿ‰L$‰$ÇD$診Þ6ƒ%õÿ‰D$Ç$3‹Á`ùÿ雿07ë1í‰|$(¿?7‹L$ ‹=ÿÿÿ?t
H‰u‰$è{
…öt‹=ÿÿÿ?t
H‰u‰4$èa
…ít‹E=ÿÿÿ?tH‰Eu‰,$èE
‹l$(…í‹t$$t‹E=ÿÿÿ?tH‰Eu‰,$è!
ƒ%õÿ‰D$‰4$‹Á`ùÿ‰ú藳þÿ1Ä<^_[]Ã@‰‹=ÿÿÿ?„Hþÿÿ@‰‹½=ÿÿÿ?t
H‰u‰$èÏ	‰|$0‹ƒdV‰D$4­÷؍ƒÂ4E‰,$‰ñèW‡ÿÿ‰Ņÿt‹=ÿÿÿ?t
H‰u‰<$è‹	…í„î‹=ÿÿÿ?t
H‰u‰4$èm	‹ƒ<V‹M‹IH…ɄˉD$‰,$ÿщƋE…ö„Î=ÿÿÿ?tH‰Eu‰,$è.	‹F;ƒTÿÿÿ…«‹~…ÿ„ ‰ñ‹v‹=ÿÿÿ?u‹=ÿÿÿ?u‹½=ÿÿÿ?uë*@‰‹=ÿÿÿ?tä@‰‹½=ÿÿÿ?t
H‰u‰$èÉ|$0ÇD$4­÷؍ƒÂ4‰,$‰ñèN†ÿÿ‰Ņÿt‹=ÿÿÿ?t
H‰u‰<$è‚…í‹|$8„‹=ÿÿÿ?t
H‰u‰4$è`(ƒdõÿD$‰<$‰é1Òè8¯þÿ‹M…À„ùÿÿÿ?„,þÿÿI‰M…"þÿÿ‰,$‰Æè‰ðéþÿÿ‹D$\ˆïüÿÿ‹L$ ‹±‰L$,…É„ÜüÿÿO‹t$X‹T$ …ÿŽåùÿÿ‰Mƒkw÷ÿ‰D$‰t$D$,‰D$D$0‰$褋…Àˆ¹‹L$,é°ùÿÿ‰L$‰$èG	…À…àùÿÿ¿"7¾Téoýÿÿ¿,7ë¿.71íéèüÿÿ1ÿ1íé¥ýÿÿ1í1ÿé¨þÿÿèö…Àu‰ùè‹kÿÿ…À…y1íÇD$$U¿:7éªüÿÿ‰D$‰,$èÓ‰DžÀ…:úÿÿ¿<7ÇD$$Ué‚üÿÿ‹D$‰D$‰t$‹t$ ‰4$è‰ŅÀ…¨úÿÿ¿I71í‹t$éPüÿÿ‰D$‰,$èy‰ƅÀ…Ùúÿÿ¿U7¾U‹E=ÿÿÿ?„–üÿÿéƒüÿÿè=…À„¬1í‹t$¿I7éüÿÿ¿j7ë8‰D$‰,$è"‰ƋE…ö…2ýÿÿ¿n7¾U=ÿÿÿ?„?üÿÿé,üÿÿ¿ƒ7ÇD$$U1íÇD$(‹=ÿÿÿ?…ÉûÿÿéÑûÿÿ¿‡7¾Uùÿÿÿ?„ûûÿÿI‰M…ñûÿÿéäûÿÿºÎ6é@ûÿÿºÓ6é6ûÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è¯é5ÿÿÿ‰Åé½øÿÿUSWVƒìLè[Ã@P‹L$l‹t$h‹D$dÇD$ “ÈO‰T$8“¨U‰T$<“U‰T$@“ T‰T$DÇD$H‹»ÿÿÿ‰|$$‹«4ÿÿÿ‰l$(‰|$,…É„”ƒþ‡Ì°‰T$4‹”³8õÿÚÿâ‰l$‰|$‹q…ö~SQ‰T$‹«ÈO1ÿ9l¹„òG9þuñ1ÿ‹T¹ƒì‰éjèPŒƒÄ…À…·G9þ‹L$luÜèg…t$htKºø7闍Nÿƒùw9‹«4ÿÿÿ‹»ÿÿÿ‹Œ‹Lõÿىþÿá‹x‰|$,‹h‰l$(‹p‰t$$‹‰T$ éA1öŸ
L@ƒùÿ“9fùÿNЋƒÿÿÿ³õÿ»ÍUùÿNþƒì³z÷ÿ«Afùÿÿt$lWQRVUÿ0èƒÄ º(8ƒìƒ%õÿ‹Ù~ùÿPhW褭þÿƒÄ1ÀéÙ‹x‰|$,‹h‰l$(‹p‰t$$‹‰T$ ‹Aé ‹p‰t$$‹‰T$ A‰D$‹Aé'‹h‰l$(‹p‰t$$‹‰T$ A‰D$‹A…Àºé]‹‰T$ A‰D$‹q…öŽˆ‰t$‰T$‰l$‰|$‹D$‹0…öŽŸ‹»¨U1퐐9|©tmE9îuõ1퐐‹T©ƒì‰ùj蠊ƒÄ…ÀuFE9î‹L$luàëc‹L$lˆHþÿÿ‹D$4‹¸‰T$ …Ò„5þÿÿN‹|$‹l$…öxÿÿÿ‹»ÿÿÿ‰þé°‹L$lx"‹D$4‹4¨…öt‰t$$‹D$H‹|$‹l$‹T$ë'èV…À…ꋳÿÿÿ‹L$l‹|$‹l$‹T$‹D$…ÀŽY‰t$0‰D$‰T$‰|$‹D$‹0…ö~h‹»U1퐐9|©t2E9îuõ1퐐‹T©ƒì‰ùj谉ƒÄ…ÀuE9î‹L$luàë$‹L$lx‹D$4‹,¨…ít‰l$(‹D$H‹|$‹T$ë#襅À…/‹«4ÿÿÿ‹L$l‹|$‹T$‹D$‹t$0…Àލ‰t$0‰D$‰T$‰l$‹D$‹0…ö~g‹» T1퐐9|©t2E9îuõ1퐐‹T©ƒì‰ùj艃ąÀuE9î‹L$luàë$‹L$lx‹D$4‹<¨…ÿt‰|$,‹D$H‹l$‹T$ëèõ…Àuy‹»ÿÿÿ‹L$l‹l$‹T$‹D$‹t$0…À‹L$`ƒìWUV贑ƒÄƒÄL^_[]̓z÷ÿt$ |$8‹T$4Pÿt$lVWè넃ąÀx‹T$ ‹t$$‹l$(‹|$,믺8éºüÿÿº
8é°üÿÿº8é¦üÿÿºÿ7éœüÿÿUSWVì¬è[Ã-K‹”$ȋ„$č‹èR‰Œ$ˆ‹ÔQ‰Œ$Œ‹¨U‰Œ$DŽ$”‹»øV‰|$|‹«üV‰¬$€‹³ÿÿÿ‰´$„ƒ¼$Ì„“ƒú‡¿‰L$T‹Œ“\õÿÙÿá‰t$\‹Œ$̋q…öŽ~‰|$H‰l$`A1ÿ‹«èR‰D$<9l¹„oG9þuñ1ÿ‹T¹Ç$‰é臅À…6G9þ‹Œ$ÌuÚéFƒúw0‹³ÿÿÿ‹Œ“lõÿÙÿá‹p‰´$„‹h‰¬$€‹8‰|$|霉Ð÷ÐÁè…ҍ@‹ùÿ‰֍“9fùÿHы‹ÿÿÿ‹	‰t$³ÍUùÿ‰t$‰D$‰T$ƒïˆ÷ÿ‰D$ƒAfùÿ‰D$‰$èùÿºOAƒ%õÿ‰D$Ç$-‹J‰ùÿ舨þÿ1Àé‘‹h‰¬$€‹8‰|$|‹Œ$̍Q‹AéJ‹p‰´$„‹h‰¬$€‹8‰|$|‹„$̋@éʉt$\‰l$`‹8‰|$|‹Œ$̍A‹qëF‹t$\鬋Œ$Ìx‹D$T‹¸…Àt
‰D$|N‰NjD$<ëèêÿ‹Œ$̅|$H‹D$<……ö~S‰t$@‰|$H‰D$<‹0…öŽ|‹«ÔQ1ÿ9l¹tDG9þuõ1ÿ‹T¹Ç$‰éè^……ÀuG9þ‹Œ$ÌuÞë?‹l$`‹t$\鋌$Ìx)‹D$T‹¸…Àt‰„$€‹T$@J‰ʼnЋt$\‹|$H‹T$<ë(è8ÿ‹Œ$̅t$\‹l$`‹|$H‹D$@‹T$<…1…ÀŽ©‰D$@‰|$H‰l$`‹2…ö~i‹«¨U1ÿ9l¹t0G9þuõ1ÿ‹T¹Ç$‰é螄…ÀuG9þ‹Œ$ÌuÞë*x(‹D$T‹4¸…öt‰´$„‹D$@H‹l$`‹|$H‹”$Èë&èþ…À…—‹³ÿÿÿ‹l$`‹|$H‹”$ȋD$@…À¹	‰t$\‹ƒÐY‹°Ç$ÿ´f(ƒ¤õÿf)D$`fD$‰D$‰|$H‰<$ÿօÀ„9	‰Nj=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰<$èhü‹ƒÐY‹°Ç$ÿ´f(D$`fD$‰D$‰,$ÿօ	|$`‰D$T„ö‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t
‰…À„¡‹GF„©‹»ÌS‹ƒLM‹O‰L$‰|$‰$è
ÿ…À„		‰ŋ=ÿÿÿ?t@‰E‹|$`‹ƒV‹M‹IH…É„ 	‰D$‰,$ÿщƅÀ„#	‹E=ÿÿÿ?tH‰Eu‰,$èƒû‹F1í;ƒTÿÿÿ„	1ÿ‰¼$ˆ‹D$T‰„$Œ‹D$`‰„$­÷؍ŒƒÍ‰,$‰ñèäxÿÿ‰D$<…ÿt‹=ÿÿÿ?t
H‰u‰<$èû‹|$<…ÿ„ã‹=ÿÿÿ?t
H‰u‰4$èôú‹=ÿÿÿ?t@‰‹ƒÐY‰<$ÿ…t$T„¸‰Nj=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰<$è§ú‰|$@‹«ÌS‹ƒLM‹M‰L$‰l$‰$è´ý…À„x‰Nj=ÿÿÿ?t@‰‹l$@‹ƒðO‹O‹IH…É„}‰D$‰<$ÿы‰D$H…À„€ùÿÿÿ?t
I‰u‰<$è*ú‹«ÌS‹ƒLM‹M‰L$‰l$‰$è;ý…À„…‰Nj=ÿÿÿ?t@‰‹l$@‹ƒ,R‹O‹IH…É„Ÿ‰D$‰<$ÿхÀ„¢‹ùÿÿÿ?tI‰u‰<$‰Æè³ù‰ð‹H1ÿ;‹Tÿÿÿ„Š1ö‰´$ˆ‰¬$Œ½÷ٍŒG‰<$‰D$P‰Áèwÿÿ‰Džöt‹=ÿÿÿ?t
H‰u‰4$èSù…ÿ„x‹L$P‹=ÿÿÿ?t
H‰u‰$è1ù‹L$H‹A1ö;ƒTÿÿÿ„^1퉬$ˆ‰¼$Œµ÷؍ŒF‰4$‹L$Hèvÿÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$èÏø‹=ÿÿÿ?t
H‰u‰<$è¹ø…ö‹¬$À„8‹L$H‹=ÿÿÿ?‹|$`t
H‰u‰$èŒø;³4ÿÿÿt,;³8ÿÿÿt$;³ÿÿÿt‰4$èüú…Àˆ‹ùÿÿÿ?uë&1À;³4ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æè4ø‰ð…À„þ‹µ°‹=ÿÿÿ?t@‰ƒÅ‹ƒ¬O‹‹øV‹“ÿÿÿ‰T$8‰L$,‰D$0‰D$$‰D$‹D$\‰D$‹D$@‰D$ ‰|$‰t$‰l$‹ƒ|ÿÿÿ‰$ÇD$4ÇD$(ÇD$ÇD$ÿ“ÌY…À„¹‹ùÿÿÿ?u
‹t$T‹l$@é§I‰‹l$@…u‰4$‰Æèn÷‰ðéd‰4$è_÷‹GF…Wûÿÿ‹D$H‰$è'ýݜ$ ›ò„$ òD$@f.ƒ\^ùÿšÀ•ÁÁu
è©ø…À…y
‰,$èéüݜ$˜›ò„$˜òD$Hf.ƒ\^ùÿšÀ•ÁÁu
èkø…À…J
òD$Hò\D$@òD$H‹»ÌS‹ƒLM‹O‰L$‰|$‰$èÒù…À„ωŋ=ÿÿÿ?t@‰E‹|$`‹ƒ,R‹M‹IH…É„æ‰D$‰,$ÿщƅÀ„é‹E=ÿÿÿ?tH‰Eu‰,$èHöòD$Hò$è(÷ÇD$X–…À„Ù‹N1í;‹Tÿÿÿ‰D$<„Ú1ÿ‰¬$ˆ‰„$Œ½÷؍ŒG‰<$‰ñè–sÿÿ‰Džít‹E=ÿÿÿ?tH‰Eu‰,$èÈõ‹l$<‹E=ÿÿÿ?tH‰Eu‰,$è¬õ…ÿ‹¬$À„®‹=ÿÿÿ?t
H‰u‰4$è‡õ;»4ÿÿÿt,;»8ÿÿÿt$;»ÿÿÿt‰<$è÷÷…ÀˆŠ‹ùÿÿÿ?uë&1À;»4ÿÿÿ”ùÿÿÿ?tI‰u‰<$‰Æè/õ‰ð…À„v‹½°‹=ÿÿÿ?t@‰òD$@ò$èóõ…À„׉D$@‰îòD$Hò$èÕõ…À„܉ѯ‹ƒ¬O‹‹øV‹“ÿÿÿ‰T$8‰L$,‰D$0‰D$$‰D$‹D$\‰D$‰l$H‰l$ ‹D$@‰D$‰|$‰t$‹ƒ|ÿÿÿ‰$ÇD$4ÇD$(ÇD$ÇD$ÿ“ÌY…À„y‹ùÿÿÿ?tI‰u‰<$‰ÇèBô‰ø‹T$@‹
ùÿÿÿ?‹|$HtI‰
u‰$‰Æèô‰ð‹‰ú1íùÿÿÿ?‹|$`uÇD$<‹t$TëI‰
‹t$Tu‰$‰Åèêó‰è1íÇD$<‹ùÿÿÿ?tI‰u‰<$‰ÇèÅó‰ø…öt‹ùÿÿÿ?tI‰u‰4$‰Æè¦ó‰ð…í‹|$<t‹Mùÿÿÿ?tI‰Mu‰,$‰Æèó‰ð…ÿt‹ùÿÿÿ?tI‰u‰<$‰Æèbó‰ðĬ^_[]̓%õÿ‰D$Ç$‹J‰ùÿº”Aé7ôÿÿ¾£A¹ÇD$<1íé΍ƒïˆ÷ÿ‰D$‰T$D$|‰D$„$ˆ‰$‹Œ$̋T$TèËv…ÀˆA‹|$|‹¬$€‹´$„éøõÿÿèWô¾UB…À…š‰ùèãVÿÿÇD$<½…9Ÿ„L‹|$`‰ÅéÌöÿÿ‰D$‰,$è"ô‰ƅÀ…ÝöÿÿºWBÇD$XŸéü‹~…ÿ„O‹N‹=ÿÿÿ?…;‹=ÿÿÿ?…>‹½=ÿÿÿ?…=éAÇD$XŸºlBé+1�B¹£é·èó¾’B…Àu‰éèVÿÿ…À…1‹l$@¹¤éŒ‰D$‰<$èmó‹‰D$H…À…€÷ÿÿùÿÿÿ?t
I‰u‰<$èªñƒ%õÿ‰D$Ç$¤‹J‰ùÿº”Bè›þÿ1|$`é ýÿÿè	óÇD$X¤1ö…Àu‰éè”Uÿÿ…À…±ÇD$P‹|$`‹l$@‹L$Hº—B饉D$‰<$èÒò…À…^÷ÿÿ1öÇD$X¤º™BéO‹p…ö„‹h‹ùÿÿÿ?…‹Mùÿÿÿ?…‹¿ùÿÿÿ?…é&º®BÇD$X¤1ö‹|$`ëk‹i…í„·‹Q‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‹L$H‹¾=ÿÿÿ?t	H‰„@‰T$HéX÷ÿÿºÅBÇD$X¤1öÇD$P‹|$`‹l$@‹L$H鱺ÉBÇD$X¤ÇD$P‹l$@鱋‹¤Y‹“”WÇ$è”[ÿÿ…À„‰ljÁè#\ÿÿ‹¾ÙB=ÿÿÿ?‹l$@¹¥…Šé–1ÉÇD$X¦ºöB‹l$@éXèVñ¾ÝA…À…׉ùèâSÿÿÇD$<½…9–„K‹|$`‰Åéùÿÿ‰D$‰,$è!ñ‰ƅÀ…ùÿÿºßAÇD$X–1öÇD$PÇD$<‰é1í鶺âA1íÇD$<1É鯋n…í„`‹V‹Mùÿÿÿ?tA‰M‰l$P‹
ùÿÿÿ?tA‰
‰Ջ¿úÿÿÿ?…|‰î鈺÷A1íÇD$<1ɋ|$`ébÇD$X–ºûA1íÇD$<ÇD$H1öé苋¤Y‹“”WÇ$èZÿÿÇD$<…À„À‰ljÁèžZÿÿ‹¾B½=ÿÿÿ?¹—tÇD$<H‰u‰<$‰ÏèOî‰ùƒ%õÿ‰D$‰$‹J‰ùÿ‰òè×þÿ‹|$`‹t$T1ÀéFúÿÿÇD$Xšº(BÇD$<ÇD$H1ö1íë:ÇD$X›º2BÇD$<ÇD$HëÇD$X™º<BÇD$<1í‹t$@‹=ÿÿÿ?tH‰u‰<$‰×è¯í‰úÇD$P‹L$H…ɋ|$`t‹=ÿÿÿ?tH‰u‰$‰T$`èí‹T$`…ö‹L$Pt"‹=ÿÿÿ?tH‰u‰4$‰L$P‰ÖèWí‰ò‹L$P…Ét‹=ÿÿÿ?tH‰u‰$‰Öè5í‰òƒ%õÿ‰D$‹D$X‰$‹J‰ùÿ觖þÿ1Àé
ùÿÿ@‰‹=ÿÿÿ?„Âúÿÿ@‰‹½=ÿÿÿ?t	H‰„œ‰ÎéoñÿÿA‰‹Mùÿÿÿ?„âûÿÿA‰M‹¿ùÿÿÿ?t
I‰u‰$è­ì‰è‹l$@éóÿÿº;Aé„íÿÿ¾ÀA¹“é_ùÿÿ¾ÊA¹”éPùÿÿJ‰u‰4$èmì‰î‹D$<‹l$PéMöÿÿº6Aé@íÿÿº/Aé6íÿÿ‰4$‰Îè@ìéËðÿÿ‰$‰T$Hè/ìéóÿÿº(AéíÿÿÇD$<1�é¿ýÿÿ1íé“ðÿÿ1ÿ1öéQÿÿÿ1öéÙòÿÿ¾ÕB‹l$@¹¥é•ýÿÿÇD$<1�éýÿÿ1íé´õÿÿ¾B1�éiýÿÿ‰Njt$Té=ñÿÿ‰Çé¯ñÿÿUSWVƒìè[Ã6‹t$8…ö…Ÿ‹t$4‹=ÿÿÿ?t@‰‹D$0‹N…É„äƒùÿ„§‹‹àT‹P‹RH…Ò„¨‰L$‰$ÿ҉DžÀ„«èÍí‰ŅÀ„Ћƒ¨U‰t$‰D$‰,$èmì…Àˆ³‰ø‹»XM‰D$‹@‹p@…ö„¿ƒ½‡ùÿ‰$èÝﺐC…À…Ήl$‰|$‹|$‰<$ÿ։ÆèÈï‰ð…ö„¹‹ùÿÿÿ?‹t$4„I‰…‰<$‰Æè‰ê‰ð‹t$4éàT‹P‹RH…Ò„ò‰L$‰$ÿ҉ŅÀ„õ‹E;ƒTÿÿÿ…¢‹}…ÿ„—‹u‹=ÿÿÿ?u‹=ÿÿÿ?u‹E¹=ÿÿÿ?u ë1@‰‹=ÿÿÿ?tã@‰‹E¹=ÿÿÿ?tH‰Eu
‰,$èë鹉õ‹t$4‰|$ÇD$÷؍ƒÂ‰$‰éèkgÿÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰Æèžé‰ð‹t$4…À„G‹Mùÿÿÿ?tI‰Mu‰,$‰Æèué‰ð‹t$4‹ùÿÿÿ?t{I‰uv‰4$‰ÆèVé‰ðëhºC‹=ÿÿÿ?tH‰u‰<$‰×è5é‰ú¿Ö…ít‹E=ÿÿÿ?tH‰Eu‰,$‰Õèé‰ꍃ%õÿ‰D$‰<$‹uùÿ膒þÿ1ùÿÿÿ?u…ƒÄ^_[]É4$èJí…À„QýÿÿÇ$“"—÷ÿ‰ñèÞk…À…5ýÿÿ1ÀëȺQC¿Óë˜1ÿ1Éé½þÿÿ‰L$‰$è1ê‰DžÀ…Uýÿÿº‹C¿Öéjÿÿÿ‰L$‰$èê‰ŅÀ…þÿÿº]C¿ÔéEÿÿÿºCéüþÿÿºqC¿Ô‹E=ÿÿÿ?…ÿÿÿéÿÿÿ‰l$‰|$‹|$‰<$è8í…À…býÿÿºC‹t$4éµþÿÿ‹t$4‹|$é¨þÿÿè€é…t$4t
ºCé‘þÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è”çëڐUSWVƒìè[Ã02‹t$8…ö…Ÿ‹t$4‹=ÿÿÿ?t@‰‹D$0‹N…É„äƒùÿ„§‹‹äU‹P‹RH…Ò„¨‰L$‰$ÿ҉DžÀ„«èíé‰ŅÀ„Ћƒ¨U‰t$‰D$‰,$èè…Àˆ³‰ø‹»XM‰D$‹@‹p@…ö„¿ƒ½‡ùÿ‰$èýëº&D…À…Ήl$‰|$‹|$‰<$ÿ։Æèèë‰ð…ö„¹‹ùÿÿÿ?‹t$4„I‰…‰<$‰Æè©æ‰ð‹t$4éäU‹P‹RH…Ò„ò‰L$‰$ÿ҉ŅÀ„õ‹E;ƒTÿÿÿ…¢‹}…ÿ„—‹u‹=ÿÿÿ?u‹=ÿÿÿ?u‹E¹=ÿÿÿ?u ë1@‰‹=ÿÿÿ?tã@‰‹E¹=ÿÿÿ?tH‰Eu
‰,$èæ¹‰õ‹t$4‰|$ÇD$÷؍ƒÂ‰$‰éè‹cÿÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰Æè¾å‰ð‹t$4…À„G‹Mùÿÿÿ?tI‰Mu‰,$‰Æè•å‰ð‹t$4‹ùÿÿÿ?t{I‰uv‰4$‰Æèvå‰ðëhº%D‹=ÿÿÿ?tH‰u‰<$‰×èUå‰ú¿…ít‹E=ÿÿÿ?tH‰Eu‰,$‰Õè0å‰ꍃ%õÿ‰D$‰<$‹…„ùÿ覎þÿ1ùÿÿÿ?u…ƒÄ^_[]É4$èjé…À„QýÿÿÇ$“˜›÷ÿ‰ñèþg…À…5ýÿÿ1ÀëȺçC¿ë˜1ÿ1Éé½þÿÿ‰L$‰$èQæ‰DžÀ…Uýÿÿº!D¿éjÿÿÿ‰L$‰$è,æ‰ŅÀ…þÿÿºóC¿éEÿÿÿº#DéüþÿÿºD¿‹E=ÿÿÿ?…ÿÿÿéÿÿÿ‰l$‰|$‹|$‰<$èXé…À…býÿÿº&D‹t$4éµþÿÿ‹t$4‹|$é¨þÿÿè å…t$4t
º&Dé‘þÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è´ãëڐUSWVƒì\è[ÃP.‹L$|‹l$x‹D$tÇD$@“èR‰T$L“ÔQ‰T$P“¨U‰T$TÇD$X‹³ÿÿÿ‰t$D‰t$H…É„—ƒý‡º¨‰T$ ‹”«|õÿÚÿâ‰t$<‹q…ö~ZQ‰T$$‹«èR1ÿ9l¹„ÞG9þuñ1ÿ‹T¹Ç$‰éènj…À…¤G9þ‹L$|uÝèˆä…l$xt6ºŠD鎋³ÿÿÿƒý„[ƒýtƒýu‹p‰t$H‹h‰l$Dé@1íŸ
D‹ùÿ“9fùÿNы‹ÿÿÿ‹	³õÿ»ÍUùÿNþ‰l$‰|$‰T$“Ƥ÷ÿ‰T$“Afùÿ‰T$‰$‰D$è=㺰Dƒ%õÿ‰D$Ç$‹Ëxùÿè̋þÿ1Àéû
‹h‰l$D‹‰T$@y‹A…ÀUéõ‹p‰t$H‹h‰l$D‹‰T$@‹AéÑ‹‰T$@y‹A…À޳‰D$,‰T$(‰t$<‰|$$‹7…öŽ×‹«ÔQ1ÿ9l¹„¤G9þuñ1ÿ‹T¹Ç$‰éèîh…ÀurG9þ‹L$|uá鈉õ‹‰T$@‹=ÿÿÿ?…PéN‹L$|ˆ[þÿÿ‹D$ ‹¸‰T$@…Ò„Hþÿÿ‰ðH‹t$<‹|$$…ÀMÿÿÿ‹³ÿÿÿ‰õ‹=ÿÿÿ?…é‹L$|x‹D$ ‹,¸…ít‰l$D‹D$,H‹t$<‹T$(ë#èâ…À…/‹«ÿÿÿ‹t$<‹T$(‹L$|‹D$,‹|$$…ÀŽ¥‰D$,‰T$(‰l$$‹7…ö~h‹«¨U1ÿ9l¹t1G9þuõ1ÿ‹T¹Ç$‰éèÞg…ÀuG9þ‹L$|uáë$‹L$|x‹D$ ‹4¸…öt‰t$H‹D$,H‹l$$‹T$(ë#èÖá…À…‹³ÿÿÿ‹l$$‹T$(‹L$|‹D$,…À¨	‹=ÿÿÿ?t@‰‰T$(‰t$<‹E=ÿÿÿ?t@‰E‹³ÄV‹ƒLM‹N‰L$‰t$‰$èã‰Ç;«ÿÿÿ„!…ÿ‰l$$„¤‹=ÿÿÿ?t@‰‹ƒ¼V‹O‹IH…É„¸‰D$‰<$ÿÑÇD$8…À„»‰D$,‹=ÿÿÿ?t
H‰u‰<$èrß‹ƒ˜O‹‹xQ‹P‹RH…Ò„¥‰L$‰$ÿҋ|$(…À„¨‰D$0èÚá¾v…À„¤‰ŋƒèR‰|$‰D$‰,$èuà…Àˆ¨‹ƒÔQ‹L$$‰L$‰D$‰,$èSà…Àˆ‹³XM‹L$0‹A‹x@…ÿ„w
ƒ½‡ùÿ‰$èÅãÇD$4]E…À…‰l$‰t$‹t$0‰4$ÿ׉Çè­ã…ÿ„ë
‹=ÿÿÿ?t
H‰u‰4$èÞ‹E=ÿÿÿ?tH‰Eu‰,$ègÞ‹L$,‹A1í;ƒTÿÿÿ„:
1ö‰l$L‰|$P‹ƒ Y‰D$Tµ÷؍ƒÂPƒÎ‰4$‹L$,èÐ[ÿÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$èÞ‹=ÿÿÿ?t
H‰u‰<$èìÝ…ö‹l$$„
‹L$,‹=ÿÿÿ?‹|$(t	H‰„³‹=ÿÿÿ?…»‰|$ éÃ…ÿ„E‹=ÿÿÿ?t@‰‹ƒ¼V‹O‹IH…É„‡‰D$‰<$ÿхÀ„ЉD$0‹=ÿÿÿ?t
H‰u‰<$è]Ý‹ƒ”O‹‹xQ‹P‹RH…Ò„‚‰L$‰$ÿ҉DžÀ„…èËß‹«ÿÿÿ¾n1ɅÀ„™‹‹èR‹t$(‰t$‰L$‰D$8‰$èXÞ…Àˆ¶‰l$$‹³XM‹G‹h@…í„]	ƒ½‡ùÿ‰$èÊá…À…e	‹D$8‰D$‰t$‰<$ÿՉÅèºá…í„Ø	‹=ÿÿÿ?t
H‰u‰<$èŒÜ‹L$8‹=ÿÿÿ?t
H‰u‰$èrÜ‹L$0‹A1ÿ;ƒTÿÿÿ„
	1ö‰|$L‰l$P‹ƒ Y‰D$Tµ÷؍ƒÂPƒÎ‰4$‹L$0èÛYÿÿ‰ƅÿt‹=ÿÿÿ?t
H‰u‰<$èÜ‹E=ÿÿÿ?‹T$0tH‰Eu‰,$èóÛ‹T$0…ö‹|$(„ó‹=ÿÿÿ?t
H‰u‰$èÍÛ‹=ÿÿÿ?t
H‰u‰4$è·Û‹=ÿÿÿ?t@‰‹ƒÿÿÿ‹ùÿÿÿ?t
I‰u‰$èŽÛ‹‹W‹=ÿÿÿ?t	@‰‹‹W‰L$ ‹=ÿÿÿ?uK‰ýëxÇD$4[EëÇD$4\E‰|$ ‰l$8‹l$$‹L$,‹T$0é4ÇD$4þD‰t$ 1ɋT$0¾néî‰þ‰ýH‰u(ë‰$èÛ‹=ÿÿÿ?„Eýÿÿ‰|$ H‰u‰4$èíÚ‰l$$‹D$p‹‹´T‹P‹RH…Ò„©‰L$‰$ÿҋt$<‰D$(…À„¬‹L$$‹A;ƒÿÿÿ„Ô‰$èýà…À„c‹H‹»W;‹ÿÿÿ…Ž‹Pö…Ãú‡Çƒâ¹)щůHA‰$èRÛ‰DžÀ„u‰è‹ùÿÿÿ?t
I‰u‰$è/ÚÇ$è³Ú…À„Y‹T$ ‹
ùÿÿÿ?tA‰
‰P‰D$,‰xè›Ü…À„@‰Njƒ¨U‰t$‰D$‰<$è;Û…Àˆ8‹ƒQ‹‹dR‰L$‰D$‰<$èÛ…l$(ˆ0‹E‹p@…ö„ƒ½‡ùÿ‰$èÞÇD$4ŸE…À…ì‰|$‹D$,‰D$‹l$(‰,$ÿ։ÆèsÞ‰ð…ö„ì‹Mùÿÿÿ?‹T$ tI‰Mu‰,$‰Æè:Ù‰ð‹T$ ‹l$,‹Mùÿÿÿ?tI‰Mu‰,$‰ÆèÙ‰ð‹T$ ‹ùÿÿÿ?‹l$$„‹I‰…‚‰<$‰׉ÆèèØ‰ð‰ú‹
ùÿÿÿ?…néz‹=ÿÿÿ?t@‰‹»W‰ȋPö„=þÿÿ‹ùÿÿÿ?„]þÿÿA‰éUþÿÿÇD$4E‹L$,‹T$ ‹l$(‹E=ÿÿÿ?uë0ÇD$4žE‹L$,‹T$ ‹E=ÿÿÿ?tH‰Eu‰,$‰ÎèQ؉ñ‹T$ ‰T$ 1ҾyÇD$8…ÿ‹l$$tv‹=ÿÿÿ?tH‰u‰<$‰t$$‰Ή×èØ‰ú‰ñ‹t$$…Òt"‹=ÿÿÿ?tH‰u‰$‰t$$‰Îèê׉ñ‹t$$‹T$8…Òt"‹=ÿÿÿ?tH‰u‰$‰t$$‰ÎèÀ׉ñ‹t$$‹T$ ‰ׅÉt‹=ÿÿÿ?t
H‰u‰$èš×‰úƒ%õÿ‰D$‰4$‹Ëxùÿ‰֋T$4è
þÿ1	ò…öt‹
ùÿÿÿ?tI‰
u‰$‰ÆèY׉ð‹Mùÿÿÿ?tI‰Mu‰,$‰Æè<׉ðƒÄ\^_[]ÃÇD$4ŽE1É1ÿé’þÿÿè¬Ø½tÇD$ JE…À…͉ñè0;ÿÿ…À„¾‰Njl$$é4÷ÿÿ‰D$‰<$èØÇD$8…À…E÷ÿÿ¾tÇD$4LE‹D$(‰D$ 1ɉúé­þÿÿ‰L$‰$èGØ‹|$(…À…X÷ÿÿ¾vÇD$4WEéÉÇD$4YE‰|$ é-ûÿÿƒƤ÷ÿ‰D$‹D$x‰D$D$@‰D$D$L‰$‹T$ è.Z…Àˆ¢‹T$@‹l$D‹t$H‹=ÿÿÿ?…öÿÿéöÿÿ‰L$‰$è¼×‹t$<‰D$(…À…Tûÿÿ¾yÇD$4ŒE‹l$$‹T$ éZþÿÿ;‹`ÿÿÿ„¥‰|$‰ʼn$è8Ûéûÿÿ1ÿÇD$4E‰éé3ýÿÿÇD$4“E1Éé$ýÿÿ1ÿÇD$4›Eéýÿÿ‰ʼnуá¸)ÈÁê¯Ѓú„oƒúþ…‰é‹E‰ÂÁêÁàE1É÷ØÑé[‰l$$èêÖ½mÇD$ íD…Àu‰ñèr9ÿÿ…À…ڍƒ%õÿ‰D$‰,$‹Ëxùÿ‹T$ è®~þÿ1l$$‹T$(‹
ùÿÿÿ?…žýÿÿéªýÿÿ‰D$‰<$è•Ö…À…v÷ÿÿ‹«ÿÿÿÇD$4ïD¾m1ÒÇD$81ɋD$(‰D$ é‘üÿÿ‰L$‰$èUÖ‰DžÀ…{÷ÿÿ1ɾnÇD$4úD‹«ÿÿÿ‹D$(‰D$ ÇD$8‹T$0éwüÿÿÇD$4üDÇD$8‹D$(‰D$ ‹T$0é,üÿÿ‰l$‰t$‰$‰ÎèjÙ‰DžÀ…«õÿÿÇD$4]E‹D$(‰D$ ‰l$8‹l$$‹L$,‰ò¾véüÿÿ‹i…í„_‹Q‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‹L$,‹¾=ÿÿÿ?…‰T$,éõÿÿ¾tÇD$4|E‹|$(‹L$,‹=ÿÿÿ?…üÿÿéüÿÿè5Õ…À„ö‹D$(‰D$ ‰l$8‹l$$‹L$,‹T$0¾véuûÿÿ‹D$8‰D$‰t$‰<$è‡Ø‰ŅÀ…»öÿÿÇD$4ÿD雉l$$‹y…ÿ„¹‹i‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‹D$0‹¾=ÿÿÿ?tH‹L$0‰u‹D$0‰$èýÒ‰l$0‹l$$é•öÿÿ1ɾmÇD$4E‹«ÿÿÿ‰|$ ÇD$8éÄúÿÿÇD$4ÿDèMÔ…À„6‹D$(‰D$ ‹l$$év÷ÿÿºDéBðÿÿ‰|$‹D$,‰D$‹l$(‰,$è¢×…À…!ùÿÿÇD$4ŸEéúùÿÿèøÓ…À…Íùÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èÒé®ùÿÿ¹ò*IÅòX@ò$èÓéÐ÷ÿÿº˜DéÀïÿÿ‰ê‹E‰ÁÁéÁàEƒÀƒÑ‰$‰L$èØéŸ÷ÿÿ‹ƒÿÿÿ‹@0‰|$‰,$ÿéˆ÷ÿÿ‰T$ H‰u‹D$,‰$èÅÑ‹D$ ‰D$,éhóÿÿº‘DéVïÿÿ1íéUóÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è]Ñéëýÿÿ1ÿ1öé†þÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è5Ñé«þÿÿ‰Çé½óÿÿUSWVƒìè[ÃÀ‹L$<‹l$8‹T$4ƒ¨U‰D$ÇD$‹ƒÿÿÿ‰D$…Ét4ª…í„¡ƒýu&‹‰D$‹Qé2…í„2ƒýu‹‰D$é"1í™
‹9fùÿ“ùÿIы‹ÿÿÿ³õÿ»ÍUùÿIþƒì³ò¯÷ÿ«Afùÿÿt$<WPRVUÿ1èqÑƒÄ ºFƒìƒ%õÿ‹ç`ùÿPh|èÿyþÿƒÄ1Àé‹Q…ÒŽ¡‰t$1��U9D±t<F9òuõ1��‰ՋT±ƒì‰ljÁjè|WƒÄ…ÀuF‰ê9õ‹L$<‰øuØë"‹L$<‰êx‹D$‹°…Àt‰D$J‹l$8‹t$ë#‰׉ÎèkÑ…À…õ‹ƒÿÿÿ‹l$8‰ñ‹t$‰ú…ҏ¨‹L$0‹±°‹úÿÿÿ?tB‰ƒÁ$ƒì‹»ÿÿÿ‹“€ÿÿÿWjWWjWWjWWjVPQRÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèVωðƒÄƒÄ^_[]Áùÿÿÿ?tI‰uƒìVè3σă썃%õÿ‹ç`ùÿºIFPh»éþÿÿƒò¯÷ÿ‰òt$|$PUVWèØRƒÄ…Àx	‹D$é/ÿÿÿºFéUþÿÿºÿEéKþÿÿUSWVƒì<è[Ã@‹T$X‹D$T‹¬R‰L$,‹PU‰L$0‹¨U‰L$4ÇD$8‹³øV‰t$‹«üV‰l$‹‹ÿÿÿ‰L$ ƒ|$\„‘ƒú‡¿‰L$‰L$(‹Œ“ŒõÿÙÿá‹L$\‹A…ÀŽ	‰l$Q1ÿ‹«¬R‰D$‰T$$9l¹„FG9øuñ1ÿ‹T¹ƒì‰éjèPUƒÄ…À…G9|$‹L$\uÚé#ƒúw2‹‹ÿÿÿ‰L$‹Œ“œõÿÙÿá‹H‰L$‰L$ ‹h‰l$‹0‰t$éo‰Ð÷ÐÁè…ҍ@ƒùÿ“9fùÿHЋƒÿÿÿƒì³ÍUùÿ»|¸÷ÿ«Afùÿÿt$\VQRWUÿ0è8ÎƒÄ ºÑFƒìƒ%õÿ‹×uùÿPhÁèÆvþÿƒÄ1Àé‹h‰l$‹0‰t$‹L$\Q‹Aé$‹H‰L$‰L$ ‹h‰l$‹0‰t$‹L$\‹A鵉l$‹0‰t$‹L$\Q‹Aë=‹L$\x‹D$(‹¸…Àt‰D$‹T$J‰ƉЋT$$ëè=΋L$\…D$‹T$$…ƒ…À~W‰D$‰t$‰T$$‹2…ö~v‹«PU1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éjè°SƒÄ…ÀuG9þ‹L$\uàë1‹l$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$J‰ʼnЋt$‹T$$ë!è˜Í‹L$\…l$‹t$‹D$‹T$$…Ì…À޵‰D$‰t$‰l$‹2…ö~p‹«¨U1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjèSƒÄ…ÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$ ‹D$H‹l$‹t$‹T$Xë+èíÌ…À…+‹ƒÿÿÿ‰D$‹l$‹t$‹T$X‹L$\‹D$…ÀÂ‰t$‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“¬Oƒì‹»ÿÿÿ‹‹„ÿÿÿWjRÿ³øVjÿ³TUUjRÿt$8jVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè²Ê‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVèÊƒÄƒìƒ%õÿ‹×uùÿºGPh(é2ýÿÿƒ|¸÷ÿt$|$,‰ՋT$(PUVWè0NƒÄ…Àx‹t$‹l$‹D$ ‰D$éÿÿÿº½FéÚüÿÿº¸FéÐüÿÿº±FéÆüÿÿºªFé¼üÿÿUSWVƒì,è[Ãp‹L$L‹|$H‹D$DÇD$ÇD$“„U‰T$ “¨U‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«„U1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjè>PƒÄ…À…¨F‰ú9÷‹L$LuØèSÊ…|$H…V1ÿŸ
‹ùÿ“9fùÿNы‹ÿÿÿ³õÿ»ÍUùÿNþ@ƒì³_È÷ÿ«Afùÿÿt$LWPRVUÿ1èLÉƒÄ ºGƒìƒ%õÿ‹ûxùÿPh.èÚqþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè OƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#èÉ…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“øV‹»¬Oƒì‹«ÿÿÿ‹‹ˆÿÿÿUjWRjWRjÿ³ˆUÿt$0jVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèáÆ‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVè¾ÆƒÄƒìƒ%õÿ‹ûxùÿº¸GPhzéMþÿÿƒ_È÷ÿt$‰ý|$ PUVWècJƒÄ…Àx‹D$‰D$‹t$éÿÿÿºqGéýýÿÿºeGéóýÿÿºlGééýÿÿUSWVƒì<è[ð‹L$\‹t$X‹D$TÇD$“„U‰T$,“PU‰T$0“¨U‰T$4ÇD$8‹»üV‰|$‹«ÿÿÿ‰l$…É„¢ƒþ‡Ë°‰T$(‹”³¬õÿÚÿâ‰l$$‰|$‹q…ö~aA‹«„U1ÿ‰D$ 9l¹„\G9þuñ1ÿ‹T¹ƒì‰éjèÀLƒÄ…À…!G9þ‹L$\uÜèׯ…t$Xt<ºH鈋«ÿÿÿƒþtƒþtƒþu‹h‰l$‹x‰|$‹‰D$‰D$éD1öŸ
Lƒùÿ“9fùÿNЋƒÿÿÿ³õÿ»ÍUùÿNþƒì³ŽÓ÷ÿ«Afùÿÿt$\WQRVUÿ0è•ÅƒÄ º?Hƒìƒ%õÿ‹*yùÿPh€è#nþÿƒÄ1ÀéI‹x‰|$‹‰D$‰D$A‹Qé‹h‰l$‹x‰|$‹‰D$‰D$‹A醋‰D$‰D$A‹q…ö;éu‹L$\ˆÞþÿÿ‹D$(‹¸‰D$‰D$…À„ÇþÿÿN‹|$‹l$$‹D$ …öŽ?‰t$‰l$$‰|$‰D$ ‹0…ö~`‹«PU1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjè KƒÄ…ÀuG9þ‹L$\uàë&‹L$\x ‹D$(‹¸…Àt‰D$‹T$J‰Njl$$‹D$ ë!èÅ‹L$\…|$‹l$$‹T$‹D$ …´…ÒŽ ‰T$‰|$‹0…ö~g‹«¨U1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjè€JƒÄ…ÀuG9þ‹L$\uàë$‹L$\x‹D$(‹,¸…ít‰l$‹D$H‹t$X‹|$ë#èuÄ…À… ‹«ÿÿÿ‹t$X‹|$‹L$\‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹ŒÿÿÿRjÿ³¬Oÿ³øVjÿ³TUWjÿ³ˆUÿt$4jVUPQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèE‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVè"ƒă썃%õÿ‹*yùÿºvHPhÏéhýÿÿƒŽÓ÷ÿ‰õt$|$,‹T$(PUVWèÃEƒÄ…Àx‹D$‰D$‹|$‹l$éÿÿÿº,Héýÿÿº'Héýÿÿº HéüüÿÿUSWVƒì<è[Ã‹L$\‹t$X‹D$TÇD$ÇD$“ôP‰T$,“ìP‰T$0“¨U‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³¼õÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«ôP1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjè0HƒÄ…À…G9þ‹L$\uÜèGÂ…t$Xt$ºÖH麃þ„̃þu‹x‰|$éÁ1þœ
‹ùÿ“9fùÿLуð‹‹ÿÿÿƒì³ÍUùÿ»¤ß÷ÿ«Afùÿÿt$\VPRWUÿ1è&ÁƒÄ ºþHéN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹«ìP1��9l±„¥F9÷uñ1��‹T±ƒì‰éjè FƒÄ…ÀurF9÷‹L$\uàè»À…À…6‹ƒÿÿÿƒì‹ÍUùÿ“ùÿ³¤ß÷ÿ»AfùÿjQjRVWÿ0èӿƒÄ ºàHƒìƒ%õÿ‹ýbùÿPhÔèahþÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè°EƒÄ…ÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#西…À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹ÿÿÿRjÿ³¬Oÿ³øVjÿ³ðPÿt$8jÿ³øPUjVWPQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æèu½‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVèR½ƒÄƒìƒ%õÿ‹ýbùÿº5IPh-éZþÿÿƒ¤ß÷ÿ‰õt$|$,‹T$ PUVWèó@ƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿºìHéþÿÿºÞHéøýÿÿºçHéîýÿÿUSWVƒìLè[Ã@‹L$l‹t$h‹D$dWÀòD$ÇD$ “ôP‰T$8“ìP‰T$<“ S‰T$@“¨U‰T$DÇD$H‹»ÿÿÿ‰|$$…É„™ƒþ‡£°‰T$,‹”³ÌõÿÚÿâ‰|$4‹q…ö~\A‹«ôP1ÿ‰D$(9l¹„—G9þuñ1ÿ‹T¹ƒì‰éjèPCƒÄ…À…\G9þ‹L$luÜèg½…t$ht¾˜I銃þt`ƒþu	‹x‰|$$ëX1þ
‹ùÿ“9fùÿLуÀ‹‹ÿÿÿƒì³ÍUùÿ»Âí÷ÿ«Afùÿÿt$lVPRWUÿ1èM¼ƒÄ ¾ÌIé%‹»ÿÿÿ‹H‰L$0‰L$ ‹H‰L$‰L$‹(‰l$éú‹x‰|$$‹P‰T$0‰T$ ‹P‰T$‰T$‹(‰l$‹Aélj|$4‹P‰T$‰T$‹‰D$‰D$A‰D$(‹y‰|$…ÿéN‹P‰T$0‰T$ ‹P‰T$‰T$‹(‰l$Q‹A…ÀÑél‰|$4‹‰D$‰D$A‰D$(‹y‰|$…ÿ2ëi‹L$lˆ£þÿÿ‹D$,‹¸‰D$…À„þÿÿ‰D$N‰t$‹D$(‹8…ÿ~9‹«ìP1ö9l±tLF9÷uõ1��‹T±ƒì‰éjèAƒÄ…Àu%F9÷‹L$luà諻…À…æ¾¢I¹鏋L$lxދD$,‹°‰D$…ÀtωD$ÿL$‹D$(‹8…ÿ~Q‹« S1��9l±„·F9÷uñ1��‹T±ƒì‰éjèAƒÄ…À…€F9÷‹L$luÜè»…À…H¾¬I¹‹ƒÿÿÿ‰D$ƒì“ÍUùÿ»ùÿ«Âí÷ÿƒAfùÿQRjWUP‹D$(ÿ0èºƒÄ ƒìƒ%õÿ‹Kxùÿ‰òPh2è¯bþÿƒÄ1ÀéS‹L$lxƒ‹D$,‹°‰D$ ‰D$0…À„lÿÿÿ‹D$H‹|$4‹l$‹T$(…ÀŽ ‰D$‰l$‹:…ÿ~g‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè@ƒÄ…ÀuF9÷‹L$luàë$‹L$lx‹D$,‹<°…ÿt‰|$$‹D$H‹t$h‹l$ë#èõ¹…À…:‹»ÿÿÿ‹t$h‹L$l‹l$‹D$…À½‹D$`‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹”ÿÿÿRjÿ³¤Sÿt$@jÿ³ðPÿt$(jÿ³øPUjVWPQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèǷ‰ðƒÄƒÄL^_[]Áùÿÿÿ?tI‰uƒìV褷ƒÄƒìƒ%õÿ‹KxùÿºJPhé^þÿÿƒÂí÷ÿ‰õt$|$8‹T$,PUVWèE;ƒÄ…Àx‹l$‹D$‰D$‹D$ ‰D$0‹|$$éÿÿÿ¾¸Iéüýÿÿ¾ªIéòýÿÿ¾ Iéèýÿÿ¾³IéÞýÿÿUSWVƒì,è[À‹L$L‹|$H‹D$DÇD$ÇD$“äP‰T$ “¨U‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«äP1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjèN=ƒÄ…À…¨F‰ú9÷‹L$LuØèc·…|$H…V1ÿŸ
‹ùÿ“9fùÿNы‹ÿÿÿ³õÿ»ÍUùÿNþ@ƒì³Þú÷ÿ«Afùÿÿt$LWPRVUÿ1è\¶ƒÄ º|Jƒìƒ%õÿ‹•ŠùÿPh†èê^þÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè0<ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#è%¶…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“øV‹»¬Oƒì‹«ÿÿÿ‹‹˜ÿÿÿUjWRjWRjÿ³èPÿt$0jVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æèñ³‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVèγƒÄƒìƒ%õÿ‹•Šùÿº³JPhÍéMþÿÿƒÞú÷ÿt$‰ý|$ PUVWès7ƒÄ…Àx‹D$‰D$‹t$éÿÿÿºlJéýýÿÿº`JéóýÿÿºgJééýÿÿUSWVƒì<è[ÃÀý‹L$\‹t$X‹D$TÇD$ÇD$“äP‰T$,“ S‰T$0“¨U‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³àõÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«äP1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjèà9ƒÄ…À…G9þ‹L$\uÜè÷³…t$Xt$ºK麃þ„̃þu‹x‰|$éÁ1þœ
‹ùÿ“9fùÿLуð‹‹ÿÿÿƒì³ÍUùÿ»øÿ«Afùÿÿt$\VPRWUÿ1èֲƒÄ º;KéN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹« S1��9l±„¥F9÷uñ1��‹T±ƒì‰éjèP8ƒÄ…ÀurF9÷‹L$\uàèk²…À…6‹ƒÿÿÿƒì‹ÍUùÿ“ùÿ³øÿ»AfùÿjQjRVWÿ0胱ƒÄ ºKƒìƒ%õÿ‹Ô}ùÿPhÒèZþÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè`7ƒÄ…ÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#èU±…À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹œÿÿÿRjÿ³¬Oÿ³øVjÿ³¤Sÿt$8jÿ³èPUjVWPQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè%¯‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìV诃ă썃%õÿ‹Ô}ùÿºrKPh#éZþÿÿƒøÿ‰õt$|$,‹T$ PUVWè£2ƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿº)KéþÿÿºKéøýÿÿº$KéîýÿÿUSWVƒìè[Ãðø‹L$<‹l$8‹T$4ƒ¨U‰D$ÇD$‹ƒÿÿÿ‰D$…Ét4ª…í„¡ƒýu&‹‰D$‹Qé2…í„2ƒýu‹‰D$é"1í™
‹9fùÿ“ùÿIы‹ÿÿÿ³õÿ»ÍUùÿIþƒì³Òøÿ«Afùÿÿt$<WPRVUÿ1衮ƒÄ ºÞKƒìƒ%õÿ‹r‰ùÿPh(è/WþÿƒÄ1Àé'‹Q…ÒŽ¡‰t$1��U9D±t<F9òuõ1��‰ՋT±ƒì‰ljÁjè¬4ƒÄ…ÀuF‰ê9õ‹L$<‰øuØë"‹L$<‰êx‹D$‹°…Àt‰D$J‹l$8‹t$ë#‰׉Î蛮…À…‹ƒÿÿÿ‹l$8‰ñ‹t$‰ú…ҏ»‰D$‹L$0‹±°‹úÿÿÿ?tB‰ƒÁ$‹»øV‹«¬Oƒì‹ƒÿÿÿ‹“ ÿÿÿPjUWjUWjUWjVÿt$@QRÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æès¬‰ðƒÄƒÄ^_[]Áùÿÿÿ?tI‰uƒìVèP¬ƒÄƒìƒ%õÿ‹r‰ùÿºLPhpéŠþÿÿƒÒøÿ‰òt$|$PUVWèõ/ƒÄ…Àx	‹D$éÿÿÿºÐKéBþÿÿºËKé8þÿÿUSWVƒì,è[Ã`ö‹L$L‹|$H‹D$DÇD$ÇD$“äP‰T$ “¨U‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«äP1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjè.2ƒÄ…À…¨F‰ú9÷‹L$LuØèC¬…|$H…V1ÿŸ
‹ùÿ“9fùÿNы‹ÿÿÿ³õÿ»ÍUùÿNþ@ƒì³$øÿ«Afùÿÿt$LWPRVUÿ1è<«ƒÄ ºŽLƒìƒ%õÿ‹aùÿPhsèÊSþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè1ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#è«…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“W‹»¬Oƒì‹«ÿÿÿ‹‹¤ÿÿÿUjWRjWRjÿ³èPÿt$0jVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèѨ‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìV讨ƒÄƒìƒ%õÿ‹aùÿºÅLPhàéMþÿÿƒ$øÿt$‰ý|$ PUVWèS,ƒÄ…Àx‹D$‰D$‹t$éÿÿÿº~LéýýÿÿºrLéóýÿÿºyLééýÿÿUSWVƒì<è[àò‹L$\‹t$X‹D$TÇD$ÇD$“0S‰T$,“TR‰T$0“¨U‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³ðõÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«0S1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjèÀ.ƒÄ…À…G9þ‹L$\uÜèר…t$Xt$º%M麃þ„̃þu‹x‰|$éÁ1þœ
‹ùÿ“9fùÿLуð‹‹ÿÿÿƒì³ÍUùÿ»±+øÿ«Afùÿÿt$\VPRWUÿ1趧ƒÄ ºMMéN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹«TR1��9l±„¥F9÷uñ1��‹T±ƒì‰éjè0-ƒÄ…ÀurF9÷‹L$\uàèK§…À…6‹ƒÿÿÿƒì‹ÍUùÿ“ùÿ³±+øÿ»AfùÿjQjRVWÿ0èc¦ƒÄ º/Mƒìƒ%õÿ‹ÚcùÿPhæèñNþÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè@,ƒÄ…ÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#è5¦…À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀƒì‹“ÿÿÿ‹‹¨ÿÿÿRjÿ³¬Oÿ³øVjÿ³XRÿt$8jÿ³4SUjVWPQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè¤‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVè⣃ă썃%õÿ‹Úcùÿº„MPh:	éZþÿÿƒ±+øÿ‰õt$|$,‹T$ PUVWèƒ'ƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿº;Méþÿÿº-Méøýÿÿº6MéîýÿÿUSWVƒì,è[ÃÐí‹L$L‹|$H‹D$DÇD$ÇD$“ÈO‰T$ “¨U‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«ÈO1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjèž)ƒÄ…À…¨F‰ú9÷‹L$LuØ賣…|$H…V1ÿŸ
‹ùÿ“9fùÿNы‹ÿÿÿ³õÿ»ÍUùÿNþ@ƒì³É8øÿ«Afùÿÿt$LWPRVUÿ1謢ƒÄ ºýMƒìƒ%õÿ‹¦vùÿPh?	è:KþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè€(ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#èu¢…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“øV‹»¬Oƒì‹«ÿÿÿ‹‹¬ÿÿÿUjWRjWRjÿ³ÌOÿt$0jVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèA ‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìV蠃ă썃%õÿ‹¦vùÿº4NPh¡	éMþÿÿƒÉ8øÿt$‰ý|$ PUVWèÃ#ƒÄ…Àx‹D$‰D$‹t$éÿÿÿºíMéýýÿÿºáMéóýÿÿºèMééýÿÿUSWVƒì,è[Ãê‹L$L‹|$H‹D$DÇD$ÇD$“ÈO‰T$ “¨U‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«ÈO1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjèÞ%ƒÄ…À…¨F‰ú9÷‹L$LuØèóŸ…|$H…V1ÿŸ
‹ùÿ“9fùÿNы‹ÿÿÿ³õÿ»ÍUùÿNþ@ƒì³ÇHøÿ«Afùÿÿt$LWPRVUÿ1èìžƒÄ º­Nƒìƒ%õÿ‹«„ùÿPh¦	èzGþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjèÀ$ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#赞…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“øV‹»¬Oƒì‹«ÿÿÿ‹‹°ÿÿÿUjWRjWRjÿ³ÌOÿt$0jVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æ聜‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVè^œƒÄƒìƒ%õÿ‹«„ùÿºäNPh	
éMþÿÿƒÇHøÿt$‰ý|$ PUVWè ƒÄ…Àx‹D$‰D$‹t$éÿÿÿºNéýýÿÿº‘Néóýÿÿº˜NééýÿÿUSWVƒì,è[ÃPæ‹L$L‹|$H‹D$DÇD$ÇD$“ÈO‰T$ “¨U‰T$$ÇD$(‹³ÿÿÿ‰t$…Ét.¸…ÿtfƒÿt@ƒÿ…Û‹p‰t$‹‰D$‰D$‹Aéƒÿ„0ƒÿ…°‹p‰t$é!‰T$‹‰D$y‹Q‰D$…ҏHéÛ‰t$‰T$‹Q…Ò~cA‹«ÈO1ö‰D$9l±„çF9òuñ1��‰׋T±ƒì‰éjè"ƒÄ…À…¨F‰ú9÷‹L$LuØè3œ…|$H…V1ÿŸ
‹ùÿ“9fùÿNы‹ÿÿÿ³õÿ»ÍUùÿNþ@ƒì³½Vøÿ«Afùÿÿt$LWPRVUÿ1è,›ƒÄ º]Oƒìƒ%õÿ‹¢‰ùÿPh
èºCþÿƒÄ1Àéd‹³ÿÿÿ‹‰D$‰D$é̋L$L‰úˆWÿÿÿ‹D$‹°‰D$…À„DÿÿÿJ‹t$‹|$‰D$…ÒŽ˜‰T$‹?…ÿ~c‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè!ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#èõš…À…&‹³ÿÿÿ‹|$H‹L$L‹T$‹D$…ÀÃ‰t$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ$‹“øV‹»¬Oƒì‹«ÿÿÿ‹‹´ÿÿÿUjWRjWRjÿ³ÌOÿt$0jVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèX‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìV螘ƒÄƒìƒ%õÿ‹¢‰ùÿº”OPhv
éMþÿÿƒ½Vøÿt$‰ý|$ PUVWèCƒÄ…Àx‹D$‰D$‹t$éÿÿÿºMOéýýÿÿºAOéóýÿÿºHOééýÿÿUSWVƒì<è[Ðâ‹T$X‹D$T‹¬R‰L$,‹PU‰L$0‹¨U‰L$4ÇD$8‹«øV‰l$‹»üV‰|$‹‹ÿÿÿ‰L$ƒ|$\„ƒú‡½‰L$‰L$(‹Œ“õÿÙÿá‹L$\‹q…öŽù‰l$‰|$A1ÿ‹«¬R‰D$ 9l¹„DG9þuñ1ÿ‹T¹ƒì‰éj蠃ąÀ…
G9þ‹L$\uÜéƒúw2‹‹ÿÿÿ‰L$‹Œ“õÿÙÿá‹H‰L$‰L$‹x‰|$‹(‰l$éa‰Ð÷ÐÁè…ҍ@ƒùÿ“9fùÿHЋƒÿÿÿƒì³ÍUùÿ»³døÿ«Afùÿÿt$\VQRWUÿ0芗ƒÄ ºPƒìƒ%õÿ‹wùÿPh{
è@þÿƒÄ1Àén‹x‰|$‹(‰l$‹L$\Q‹Aé‹H‰L$‰L$‹x‰|$‹(‰l$‹L$\‹A駉|$‹(‰l$‹L$\A‹që7‹L$\x‹D$(‹¸…Àt
‰D$N‰ŋD$ ë蕗‹L$\…l$‹D$ …x…ö~O‰t$$‰l$‰D$ ‹0…ö~n‹«PU1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éjèƒÄ…ÀuG9þ‹L$\uàë1‹|$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$$J‰ljЋl$‹T$ ë!èø–‹L$\…|$‹l$‹D$$‹T$ …É…À޵‰D$$‰l$‰|$‹2…ö~p‹«¨U1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjè`ƒÄ…ÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$‹D$$H‹|$‹l$‹T$Xë+èM–…À…(‹ƒÿÿÿ‰D$‹|$‹l$‹T$X‹L$\‹D$$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀƒì‹“ÿÿÿ‹‹¸ÿÿÿRjÿ³¬Oÿ³øVjÿ³TUWjÿ³°RUjVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè”‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVèò“ƒÄƒìƒ%õÿ‹wùÿºSPPhÔ
éCýÿÿƒ³døÿt$|$,‰ՋT$(PUVW蓃ąÀx‹l$‹|$‹D$‰D$éÿÿÿºPéëüÿÿºPéáüÿÿºüOé×üÿÿºõOéÍüÿÿUSWVƒì<è[ÃÐÝ‹T$X‹D$T‹¬R‰L$,‹PU‰L$0‹¨U‰L$4ÇD$8‹«øV‰l$‹»üV‰|$‹‹ÿÿÿ‰L$ƒ|$\„ƒú‡½‰L$‰L$(‹Œ“ õÿÙÿá‹L$\‹q…öŽù‰l$‰|$A1ÿ‹«¬R‰D$ 9l¹„DG9þuñ1ÿ‹T¹ƒì‰éjèàƒÄ…À…
G9þ‹L$\uÜéƒúw2‹‹ÿÿÿ‰L$‹Œ“0õÿÙÿá‹H‰L$‰L$‹x‰|$‹(‰l$éa‰Ð÷ÐÁè…ҍ@ƒùÿ“9fùÿHЋƒÿÿÿƒì³ÍUùÿ»Žrøÿ«Afùÿÿt$\VQRWUÿ0èʒƒÄ ºÛPƒìƒ%õÿ‹MùÿPhÙ
èX;þÿƒÄ1Àén‹x‰|$‹(‰l$‹L$\Q‹Aé‹H‰L$‰L$‹x‰|$‹(‰l$‹L$\‹A駉|$‹(‰l$‹L$\A‹që7‹L$\x‹D$(‹¸…Àt
‰D$N‰ŋD$ ëèՒ‹L$\…l$‹D$ …x…ö~O‰t$$‰l$‰D$ ‹0…ö~n‹«PU1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éjèPƒÄ…ÀuG9þ‹L$\uàë1‹|$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$$J‰ljЋl$‹T$ ë!è8’‹L$\…|$‹l$‹D$$‹T$ …É…À޵‰D$$‰l$‰|$‹2…ö~p‹«¨U1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éj蠃ąÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$‹D$$H‹|$‹l$‹T$Xë+荑…À…(‹ƒÿÿÿ‰D$‹|$‹l$‹T$X‹L$\‹D$$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀƒì‹“ÿÿÿ‹‹¼ÿÿÿRjÿ³¬Oÿ³øVjÿ³TUWjÿ³°RUjVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèU‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVè2ƒÄƒìƒ%õÿ‹MùÿºQPhPéCýÿÿƒŽrøÿt$|$,‰ՋT$(PUVWèӃąÀx‹l$‹|$‹D$‰D$éÿÿÿºÇPéëüÿÿºÂPéáüÿÿº»Pé×üÿÿº´PéÍüÿÿUSWVƒì<è[ÃÙ‹T$X‹D$T‹¬R‰L$,‹PU‰L$0‹¨U‰L$4ÇD$8‹«øV‰l$‹»üV‰|$‹‹ÿÿÿ‰L$ƒ|$\„ƒú‡½‰L$‰L$(‹Œ“@õÿÙÿá‹L$\‹q…öŽù‰l$‰|$A1ÿ‹«¬R‰D$ 9l¹„DG9þuñ1ÿ‹T¹ƒì‰éjè ƒÄ…À…
G9þ‹L$\uÜéƒúw2‹‹ÿÿÿ‰L$‹Œ“PõÿÙÿá‹H‰L$‰L$‹x‰|$‹(‰l$éa‰Ð÷ÐÁè…ҍ@ƒùÿ“9fùÿHЋƒÿÿÿƒì³ÍUùÿ»¶…øÿ«Afùÿÿt$\VQRWUÿ0è
ŽƒÄ ºšQƒìƒ%õÿ‹ӄùÿPhUè˜6þÿƒÄ1Àén‹x‰|$‹(‰l$‹L$\Q‹Aé‹H‰L$‰L$‹x‰|$‹(‰l$‹L$\‹A駉|$‹(‰l$‹L$\A‹që7‹L$\x‹D$(‹¸…Àt
‰D$N‰ŋD$ ë莋L$\…l$‹D$ …x…ö~O‰t$$‰l$‰D$ ‹0…ö~n‹«PU1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éj萃ąÀuG9þ‹L$\uàë1‹|$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$$J‰ljЋl$‹T$ ë!èx‹L$\…|$‹l$‹D$$‹T$ …É…À޵‰D$$‰l$‰|$‹2…ö~p‹«¨U1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjèàƒÄ…ÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$‹D$$H‹|$‹l$‹T$Xë+è͌…À…(‹ƒÿÿÿ‰D$‹|$‹l$‹T$X‹L$\‹D$$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀƒì‹“ÿÿÿ‹‹ÀÿÿÿRjÿ³¬Oÿ³øVjÿ³TUWjÿ³°RUjVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æ蕊‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVèrŠƒÄƒìƒ%õÿ‹ӄùÿºÑQPh¦éCýÿÿƒ¶…øÿt$|$,‰ՋT$(PUVWèƒÄ…Àx‹l$‹|$‹D$‰D$éÿÿÿº†QéëüÿÿºQéáüÿÿºzQé×üÿÿºsQéÍüÿÿUSWVƒì<è[ÃPÔ‹T$X‹D$T‹üR‰L$,‹œU‰L$0‹¨U‰L$4ÇD$8‹«øV‰l$‹»üV‰|$‹‹ÿÿÿ‰L$ƒ|$\„ƒú‡½‰L$‰L$(‹Œ“`õÿÙÿá‹L$\‹q…öŽù‰l$‰|$A1ÿ‹«üR‰D$ 9l¹„DG9þuñ1ÿ‹T¹ƒì‰éjè`ƒÄ…À…
G9þ‹L$\uÜéƒúw2‹‹ÿÿÿ‰L$‹Œ“põÿÙÿá‹H‰L$‰L$‹x‰|$‹(‰l$éa‰Ð÷ÐÁè…ҍ@ƒùÿ“9fùÿHЋƒÿÿÿƒì³ÍUùÿ»0’øÿ«Afùÿÿt$\VQRWUÿ0èJ‰ƒÄ ºYRƒìƒ%õÿ‹àiùÿPh«èØ1þÿƒÄ1Àén‹x‰|$‹(‰l$‹L$\Q‹Aé‹H‰L$‰L$‹x‰|$‹(‰l$‹L$\‹A駉|$‹(‰l$‹L$\A‹që7‹L$\x‹D$(‹¸…Àt
‰D$N‰ŋD$ ëèU‰‹L$\…l$‹D$ …x…ö~O‰t$$‰l$‰D$ ‹0…ö~n‹«œU1ÿ9l¹t;G9þuõ1ÿ‹T¹ƒì‰éjèЃąÀuG9þ‹L$\uàë1‹|$é‹L$\x"‹D$(‹¸…Àt‰D$‹T$$J‰ljЋl$‹T$ ë!踈‹L$\…|$‹l$‹D$$‹T$ …É…À޵‰D$$‰l$‰|$‹2…ö~p‹«¨U1ÿ9l¹t2G9þuõ1ÿ‹T¹ƒì‰éjè ƒÄ…ÀuG9þ‹L$\uàë,‹L$\x&‹D$(‹¸…Àt‰D$‰D$‹D$$H‹|$‹l$‹T$Xë+è
ˆ…À…(‹ƒÿÿÿ‰D$‹|$‹l$‹T$X‹L$\‹D$$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹ÄÿÿÿRjÿ³¬Oÿ³øVjÿ³ UWjÿ³SUjVÿt$@PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰ÆèՅ‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìV貅ƒÄƒìƒ%õÿ‹àiùÿºRPhéCýÿÿƒ0’øÿt$|$,‰ՋT$(PUVWèS	ƒÄ…Àx‹l$‹|$‹D$‰D$éÿÿÿºERéëüÿÿº@Réáüÿÿº9Ré×üÿÿº2RéÍüÿÿUSWVƒì,è[ÐÏ‹L$L‹|$H‹D$D“PU‰T$ “¨U‰T$$ÇD$(‹“üV‰T$‹³ÿÿÿ‰t$…Ét2,¸…ÿ„؃ÿ„ºƒÿuC‰l$‹p‰t$‹‰T$‹Aé䋳ÿÿÿ…ÿ„Þƒÿtƒÿu‹p‰t$‹‰T$鉸÷ÐÁèƒàþ…ÿ‹ùÿ“9fùÿHы‹ÿÿÿƒì³ÍUùÿ»¤øÿ«Afùÿÿt$LVPRWUÿ1è…ƒÄ º
Sƒìƒ%õÿ‹veùÿPhè™-þÿƒÄ1Àé׉l$‹‰T$A‹y雋y…ÿŽ0‰l$‰t$A1ö‹«PU‰T$‰D$9l±t2F9÷uõ1��‹T±ƒì‰éjèƒÄ…ÀuF9÷‹L$Luàë"‹L$Lx‹D$‹°…Àt‰D$O‰‹t$‹D$ëè÷„‹L$L…T$‹t$‹D$…¬…ÿŽ˜‰|$‰T$‹8…ÿ~_‹«¨U1ö9l±t2F9÷uõ1��‹T±ƒì‰éjèp
ƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹4°…öt‰t$‹D$H‹|$H‹T$ë#èe„…À… ‹³ÿÿÿ‹|$H‹T$‹L$L‹D$…ÀÇ‰t$‰T$‹D$@‹°°‹ùÿÿÿ?tA‰ƒÀ‹“øV‹»¬Oƒì‹«ÿÿÿ‹‹ÈÿÿÿUjWRjWRjÿ³TUÿt$4jVÿt$<PQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æè-‚‰ðƒÄƒÄ,^_[]Áùÿÿÿ?tI‰uƒìVè
‚ƒÄƒìƒ%õÿ‹veùÿºASPhgéÚýÿÿƒ¤øÿt$‰ý|$ ‹T$PUVW諃ąÀx
‹T$‹t$éÿÿÿºùRéŠýÿÿºôRé€ýÿÿºíRévýÿÿUSWVƒì<è[ÃÌ‹L$\‹t$X‹D$TÇD$ÇD$“üR‰T$,“PU‰T$0“¨U‰T$4ÇD$8‹»ÿÿÿ‰|$…É„”ƒþ‡¥°‰T$ ‹”³€õÿÚÿâ‰|$(‹q…ö~WA‰D$$‹«üR1ÿ9l¹„LG9þuñ1ÿ‹T¹ƒì‰éjè ƒÄ…À…G9þ‹L$\uÜè7‚…t$Xt$º¡S麃þ„̃þu‹x‰|$éÁ1þœ
‹ùÿ“9fùÿLуð‹‹ÿÿÿƒì³ÍUùÿ»1®øÿ«Afùÿÿt$\VPRWUÿ1èƒÄ ºÉSéN‹P‰T$‰T$‹(‰l$Q‹A…À‰é&‹x‰|$‹P‰T$‰T$‹(‰l$‹Aéþ‰|$(‹‰D$‰D$A‰D$$‹y‰|$…ÿQ頋»ÿÿÿ‹H‰L$‰L$‹(‰l$éÅ‹L$\ˆîþÿÿ‹D$ ‹¸‰D$…À„Ûþÿÿ‰D$N‰t$‹D$$‹8…ÿ~T‹«PU1��9l±„¥F9÷uñ1��‹T±ƒì‰éj萃ąÀurF9÷‹L$\uà諀…À…6‹ƒÿÿÿƒì‹ÍUùÿ“ùÿ³1®øÿ»AfùÿjQjRVWÿ0èÃƒÄ º«Sƒìƒ%õÿ‹AwùÿPhlèQ(þÿƒÄ1ÀéW‹L$\x‘‹D$ ‹°‰D$‰D$…À„zÿÿÿ‹D$H‹|$(‹l$‹T$$…ÀŽ¢‰D$‰l$‹:…ÿ~i‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éj蠃ąÀuF9÷‹L$\uàë$‹L$\x‹D$ ‹<°…ÿt‰|$‹D$H‹t$X‹l$ë#è•…À…*‹»ÿÿÿ‹t$X‹L$\‹l$‹D$…À¿‹D$P‹°°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹“ÿÿÿ‹‹ÌÿÿÿRjÿ³¬Oÿ³øVjÿ³TUÿt$8jÿ³SUjVWPQÿ“ÌYƒÄ@‹…Àt%ùÿÿÿ?tI‰uƒìV‰Æèe}‰ðƒÄƒÄ<^_[]Áùÿÿÿ?tI‰uƒìVèB}ƒÄƒìƒ%õÿ‹AwùÿºTPh´éZþÿÿƒ1®øÿ‰õt$|$,‹T$ PUVWèãƒÄ…Àx‹l$‹D$‰D$‹|$éÿÿÿº·Séþÿÿº©Séøýÿÿº²SéîýÿÿUSWVì¼è[Ã-Ç‹Œ$܋´$؋„$ÔfWÀòD$tÇD$|“|R‰”$„“S‰”$ˆ“8U‰”$Œ“¨U‰”$DŽ$”‹«ÿÿÿ‰¬$€…É„Ÿƒþ‡¬°‰T$H‹”³õÿÚÿâ‰l$p‹q…ö~_A‹«|R1ÿ‰D$T9l¹„±G9þuñ1ÿ‹T¹Ç$‰éè…À…tG9þ‹Œ$ÜuÚè5}…´$Øt ¾cT鱃þtoƒþu‹h‰¬$€ëd1þ‹ùÿ“9fùÿLѝÀ‹‹ÿÿÿ‹	‰t$³ÍUùÿ‰t$‰T$“¡¹øÿ‰T$“Afùÿ‰T$‰$‰D$è|¾—Té=‹«ÿÿÿ‹H‰L$X‰L$|‹H‰L$P‰L$x‹8‰|$té'‹h‰¬$€‹P‰T$X‰T$|‹P‰T$P‰T$x‹8‰|$t‹Aéñ‰l$p‹P‰T$P‰T$x‹‰D$L‰D$tA‰D$T‹y‰|$`…ÿéY‹P‰T$X‰T$|‹P‰T$P‰T$x‹8‰|$tQ‹A…Àìé–‰l$p‹‰D$L‰D$tA‰D$T‹y‰|$`…ÿ5ët‹Œ$܈‹þÿÿ‹D$H‹¸‰D$t‰D$L…À„tþÿÿN‰t$`‹D$T‹8…ÿ~A‹«S1��9l±tQF9÷uõ1��‹T±Ç$‰éè>…Àu(F9÷‹Œ$ÜuÞèY{…À…D¾mT¸鏋Œ$ÜxۋD$H‹°‰D$x‰D$P…ÀtÈÿL$`‹D$T‹8…ÿ~N‹«8U1ö9l±„ÉF9÷uñ1��‹T±Ç$‰éè®…À…ŒF9÷‹Œ$ÜuÚèÅz…À…¯¾wT¸‹‹ÿÿÿ‹	‰D$ƒÍUùÿ‰D$ƒùÿ‰D$ƒ¡¹øÿ‰D$ƒAfùÿ‰D$‰$ÇD$è¿yƒ%õÿ‰D$Ç$¹‹fwùÿ‰òèQ"þÿ1Àéï
‹Œ$܈sÿÿÿ‹D$H‹°‰D$|‰D$X…À„\ÿÿÿ‹D$`H‹l$p‹|$L‹T$T…Àޝ‰D$`‰|$L‹:…ÿ~p‹«¨U1��9l±t7F9÷uõ1��‹T±Ç$‰éèžÿ…ÀuF9÷‹Œ$ÜuÞë-‹Œ$Üx$‹D$H‹,°…ít‰¬$€‹D$`H‹|$L‹´$Øë)èŠy…À…΋«ÿÿÿ‹|$L‹´$؋Œ$܋D$`…À‹ƒÐY‹°Ç$ÿ´f(ƒ¤õÿf)D$`fD$‰D$‰<$ÿօÀ„7‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$èjw‰t$H‹ƒÐY‹°Ç$ÿ´f(D$`fD$‰D$‹D$P‰$ÿօ	D$L„ð‹úÿÿÿ?tJ‰ùÿÿÿ?t‰…Òu‰$èw‹ƒÐY‹°Ç$ÿ´f(D$`fD$‰D$‹D$X‰$ÿօÀ„‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$è£v‰t$T‹t$L‹F‹L$H9A‰l$pu
‹L$TA„¾‹»ÌS‹ƒLM‹O‰L$‰|$‰$èy…À„F‹ùÿÿÿ?tA‰‹“P‹H‹IH…É„P‰T$‰lj$ÿхÀ„S‰D$`‹=ÿÿÿ?t
H‰u‰<$è	v‹»ÌS‹ƒLM‹O‰L$‰|$‰$èy…À„'‰Ƌ=ÿÿÿ?t@‰‹ƒÀQ‹N‹IH…É„=‰D$‰4$ÿщDžÀ„@‹=ÿÿÿ?t
H‰u‰4$è—u‹G1ö;ƒTÿÿÿ„31퉬$„‹D$H‰„$ˆ‹D$L‰„$Œµ÷؍ˆƒÎ‰4$‰ùèøòþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$è*u…ö„‹=ÿÿÿ?t
H‰u‰<$èu‹L$`‹A1í;ƒTÿÿÿ„ø
1ÿ‰¼$„‰´$ˆ­÷؍ˆE‰,$‹L$`èxòþÿ‰…ÿt‹=ÿÿÿ?tH‰u‰<$‰×èªt‰ú‹=ÿÿÿ?‹l$HtH‰u‰4$‰ÖèŒt‰ò…ҋ|$`„É
‹=ÿÿÿ?‹t$LtH‰u‰<$‰×èbt‰ú;“4ÿÿÿt0;“8ÿÿÿt(;“ÿÿÿt ‰$‰×èÎv‰ú…Àˆ—
‹
ùÿÿÿ?uë&1À;“4ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰Çèt‰ø…À…l
‹»ÌS‹ƒLM‹O‰L$‰|$‰$èw…À„
‹ùÿÿÿ?‰ÇtA‰‹ƒP‹O‹IH…É„ƒ
‰D$‰<$ÿхÀ„†
‰D$P‹=ÿÿÿ?t
H‰u‰<$è…s‹³ÌS‹ƒLM‹N‰L$‰t$‰$è–v…À„Y
‰Nj=ÿÿÿ?t@‰‹ƒÀQ‹O‹IH…É„f
‰D$‰<$ÿщƅT$P„i
‹=ÿÿÿ?t
H‰u‰<$ès‹F1í;ƒTÿÿÿ„`
1ÿ‰¼$„‹D$L‰„$ˆ‹D$T‰„$Œ­÷؍ˆƒÍ‰,$‰ñèpðþÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰Çè£r‰ø…l$H„6
‹úÿÿÿ?‹L$PtJ‰u‰4$‰Æèxr‰ð‹L$P‹Q1ö;“Tÿÿÿ„"
1ÿ‰¼$„‰ʼn„$ˆµ÷؍ˆF‰4$‹L$Pèàïþÿ‰ƅÿt‹=ÿÿÿ?t
H‰u‰<$èr‹E=ÿÿÿ?tH‰Eu‰,$èüq…ö„ø	‹L$P‹=ÿÿÿ?‹l$Ht
H‰u‰$èÖq;³4ÿÿÿt,;³8ÿÿÿt$;³ÿÿÿt‰4$èFt…ÀˆÍ	‹ùÿÿÿ?uë&1À;³4ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æè~q‰ð…À…¨	‹»ÌS‹ƒLM‹O‰L$‰|$‰$è…t…t$L„·	‹ùÿÿÿ?tA‰‹“P‹H‹IH…É„½	‰T$‰lj$ÿхÀ„À	‰D$`‹=ÿÿÿ?t
H‰u‰<$èûp‹»ÌS‹ƒLM‹O‰L$‰|$‰$èt…À„	‰Ƌ=ÿÿÿ?t@‰‹ƒ<Q‹N‹IH…É„¢	‰D$‰4$ÿщDžÀ„¥	‹=ÿÿÿ?t
H‰u‰4$è‰p‹G1ö;ƒTÿÿÿ„”	1퉬$„‹D$H‰„$ˆ‹D$T‰„$Œµ÷؍ˆƒÎ‰4$‰ùèêíþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$èp…ö„p	‹=ÿÿÿ?t
H‰u‰<$èþo‹L$`‹A1í;ƒTÿÿÿ„a	1ÿ‰¼$„‰´$ˆ­÷؍ˆE‰,$‹L$`èjíþÿ‰…ÿt‹=ÿÿÿ?tH‰u‰<$‰×èœo‰ú‹=ÿÿÿ?‹l$HtH‰u‰4$‰Öè~o‰ò…Ò„6	‹L$`‹=ÿÿÿ?‹t$LtH‰u‰$‰î‰ÕèRo‰ê‰õ‹t$L;“4ÿÿÿt>;“8ÿÿÿt6;“ÿÿÿt.‰$‰÷‰î‰Õè´q‰ê‰õ‰þ…Œ$Ðy!¿ÂV¹
é41À;“4ÿÿÿ”Œ$Љ÷‰î‰ŋ=ÿÿÿ?tH‰u‰$èÖn‹Œ$Ѕí…¥‹‘°‹=ÿÿÿ?‰õt@‰ƒÁ‹ƒ¬O‰D$,‰D$ ‰D$‹D$p‰D$‹D$T‰D$(‰|$‰î‰l$‰T$‰L$‹ƒÐÿÿÿ‰$ÇD$0ÇD$$ÇD$‰Õÿ“üY…À„…‹Mùÿÿÿ?tI‰Mu‰,$‰Åè0n‰è‰õ‰þ‹Mùÿÿÿ?tI‰Mu‰,$‰Çèn‰ø…öt‹ùÿÿÿ?tI‰u‰4$‰Æèðm‰ð‹L$T…Ét‹úÿÿÿ?tJ‰u‰$‰ÆèÍm‰ðļ^_[]É<$è˜sݜ$°›ò„$°ò„$˜f.ƒ\^ùÿšÀ•ÁÁu
èo…À…e‹D$X‰$èSsݜ$¨›ò„$¨òD$Xf.ƒ\^ùÿšÀ•ÁÁu
èÕn…À…3‹D$P‰$èsݜ$ ›ò”$ f.“\^ùÿšÀ•ÁÁòT$`uè“nòT$`…À…û
ò„$˜f/ÂòL$X‡hf/ы”$Ї f.ÁšÀ•ÁÁ„׋º°‹=ÿÿÿ?t@‰ò$èm…À„ü‰ÆòD$`ò$èsm‰D$`…À„ÿòD$Xò$èWm…À„þ‰ŋ”$ЃÂ‹ƒ¬O‹‹ÿÿÿ‰L$8‰D$0‰D$$‰D$‹D$p‰D$‰l$P‰l$,‹D$`‰D$ ‰t$‰|$‰T$‹ƒÐÿÿÿ‰$ÇD$4ÇD$(ÇD$ÇD$ÿ“ÌY…À„I	‰ŋ=ÿÿÿ?t
H‰u‰<$èÄk‹=ÿÿÿ?t
H‰u‰4$è®k‹L$`‹úÿÿÿ?‰ètJ‰u‰$‰Æèk‰ð‹T$P‹
ùÿÿÿ?‹t$L‹l$H„IýÿÿI‰
…@ýÿÿ‰$‰Çè`k‰øé/ýÿÿƒ%õÿ‰D$Ç$
‹fwùÿºÛTéròÿÿ¹
¾êTë
¹
¾ùTÇD$T‹l$HéG	èœl¾ÛU…Àu‰ùè,Ïþÿ…À…»	‹l$H¹
é	‰T$‰lj$èxl…À…­ôÿÿ¹
‹l$H‰ú¿ÝUéëèFlÇD$XàU…Àu‰ùèÓÎþÿ…À…k	‹t$L‹l$H‹|$`1ҹ
鉉D$‰4$èl‰DžÀ…Àôÿÿ1ÒÇD$XâU¹
1ÿ‹l$Hé‹o…í„£‹O‹E=ÿÿÿ?…׋=ÿÿÿ?…Û‹¾=ÿÿÿ?…ÚéÞ1ÒÇD$X÷U¹
éj‹y…ÿ„V‹Q‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‹L$`‹½=ÿÿÿ?t	H‰„Z‰T$`éÀôÿÿ¹
ÇD$XV1ҋt$L飿V¹
龋‹Y‹“˜WÇ$èöÔþÿ…À„׉ljÁè…Õþÿ‹¾!V¹
éièßj¾3V…Àu‰ùèoÍþÿ…À…¹
éc‰D$‰<$èÁj…À…zõÿÿ¹
ÇD$X5V1Òéèj…Àu‰ñè%Íþÿ…À…Ï‹t$L‹T$P¿8V¹
é‰D$‰<$èjj‰ƅT$P…—õÿÿÇD$`ÇD$X:V¹
‹t$Léz‹~…ÿ„‹N‹=ÿÿÿ?…U‹=ÿÿÿ?…X‹½=ÿÿÿ?…Wé[ÇD$`ÇD$XOV¹
1ÿ‹T$Péñ‹y…ÿ„°‹i‹úÿÿÿ?…&‹Uúÿÿÿ?…)‹¾úÿÿÿ?…)é9¿fV¹
‹t$L‹T$P‹l$Hé¿jV¹
‰ò‹t$Léü‹‹Y‹“œWÇ$è4Óþÿ…À„/‰ljÁèÃÓþÿ‹¾yV¹
é§èi¾‹V…Àu‰ùè­Ëþÿ…À…^¹
顉T$‰lj$èýh…À…@öÿÿ¹
‰ú¿VétèÏhÇD$XV…Àu‰ùè\Ëþÿ…À…‹t$L‹|$`1ҹ
é‰D$‰4$è¤h‰DžÀ…[öÿÿ1ÒÇD$X’V¹
1ÿé–‹o…í„h‹O‹E=ÿÿÿ?…‹=ÿÿÿ?…‹¾=ÿÿÿ?…é1ÒÇD$X§V¹
‹l$H‹t$Léd‹y…ÿ„‹Q‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‹L$`‹½=ÿÿÿ?t	H‰„‰T$`éWöÿÿ¹
ÇD$X¾V1ҋt$L‹|$`é(‹‹Y‹“ WÇ$èŠÑþÿ…	õ„‰ljÁèÒþÿ‹¾ÑV¹
=ÿÿÿ?„H‰…
‰<$‰ÏèÍe‰ùéü¹ 
‰ê‰õ‰þ¿îVéፃ¡¹øÿ‰D$‰t$D$t‰D$„$„‰$‹T$Hèhé…Àˆø‹|$t‹D$x‰D$P‹D$|‰D$X‹¬$€é’íÿÿ@‰E‹=ÿÿÿ?„%ûÿÿ@‰‹¾=ÿÿÿ?t	H‰„‰Ïéªïÿÿ@‰‹=ÿÿÿ?„¨üÿÿ@‰‹½=ÿÿÿ?t	H‰„±‰ÎéòÿÿB‰‹Uúÿÿÿ?„×üÿÿB‰U‹¾úÿÿÿ?tJ‰u‰$‰D$`èÇd‹D$`‰l$Pé[òÿÿ@‰E‹=ÿÿÿ?„îýÿÿ@‰‹¾=ÿÿÿ?t	H‰„K‰Ïéôÿÿ¾ƒTéŸëÿÿ¾uTé•ëÿÿ‹‹Y‹“˜WÇ$èÜÏþÿ…À„ý‰ljÁèkÐþÿ‹¾FU=ÿÿÿ?…O‹l$H¹
éa‹‹Y‹“œWÇ$è“Ïþÿ…À„¾‰ljÁè"Ðþÿ‹¾fU=ÿÿÿ?…
‹l$H¹
é‹‹Y‹“ WÇ$èJÏþÿ…À„‰ljÁèÙÏþÿ‹¾†U=ÿÿÿ?…Ë‹l$H¹
éÏ1ÒÇD$X£U¹
ÇD$`‹t$L‹l$HëTÇD$X­U¹
ÇD$`ë
ÇD$X·U¹
‹l$H1ҋ=ÿÿÿ?tH‰u‰4$‰T$P‰Îè2c‰ñ‹T$P…ÿ‹t$Lt"‹=ÿÿÿ?tH‰u‰<$‰T$P‰Ïèc‰ù‹T$P‹|$`…ÿt"‹=ÿÿÿ?tH‰u‰<$‰T$P‰ÏèÞb‰ù‹T$P…ҋ|$Xt‹=ÿÿÿ?tH‰u‰L$`‰$è¶b‹L$`ƒ%õÿ‰D$‰$‹fwùÿ‰úè(þÿéçÇD$XÁU¹
‹T$Pé!øÿÿ¾kTé”éÿÿ‰<$‰Ïèibéàìÿÿ‰$‰T$`èXbé^íÿÿ‰4$‰ÎèIbéHïÿÿ‰<$‰Ïè:bé¿ñÿÿ‰$‰T$`è)bé=òÿÿ¾~Té;éÿÿ¹

¾U‹l$Hë@¹
¾$U‹l$Hë0¹
¾.U‹l$Hë ¹
ë¹
ë¹
H‰‹l$H„óûÿÿƒ%õÿ‰D$‰$‹fwùÿ‰òè@þÿ‹t$L1Àé{óÿÿ1öéìÿÿ1íé ìÿÿ¾V¹
ëÁ1íé†îÿÿ1öéïÿÿ¾uV¹
ë§1öéòðÿÿ1íézñÿÿ¾ÍV¹
덾BUéýÿÿ¾bUéSýÿÿ¾‚Ué’ýÿÿ‹t$Léæêÿÿ‰ÆéUëÿÿ‰Njt$LéZíÿÿ‰ÇéÇíÿÿ‹t$LéÒïÿÿ‰ÆéAðÿÿUSWVìœè[Ãm«‹Œ$¼‹¼$¸‹„$´ÇD$|ÇD$x“TS‰T$h“ T‰T$l“¨U‰T$pÇD$t‹³ÿÿÿ‰´$€…É„šƒÿ‡²¸‰T$P‹”»¤õÿÚÿâ‰t$(‹y…ÿ~ZQ‹³TS1í‰T$ 9t©„ÞE9ïuñ1퐐‹T©Ç$‰ñè~ç…À…¡E9$¼uÚè•a…¼$¸t+ºTWé`ƒÿ„Rƒÿu‹H‰L$(‰Œ$€éD1ÿ‹ùÿ“9fùÿLÑœð‹‹ÿÿÿ‹	‰|$³ÍUùÿ‰t$‰T$“8Äøÿ‰T$“Afùÿ‰T$‰$‰D$è[`º|Wéá‹P‰T$|‹‰D$4‰D$xy‹A‰T$ …ÀމD$H‹7…öŽC‹«¨U1ÿ9l¹„G9þuñ1ÿ‹T¹Ç$‰éè^æ…À…ÌG9þ‹Œ$¼uÚéè‹P‰T$(‰”$€‹P‰T$ ‰T$|‹‰D$4‰D$x‹A鿉t$(‹‰D$4‰D$xA‰D$ ‹q‰t$H…öX髋‹ÿÿÿ‰L$(‹h‰l$|‹‰D$4‰D$xé­‹Œ$¼ˆ^þÿÿ‹D$P‹¨‰D$x‰D$4…À„GþÿÿO‰|$H‹D$ ‹0…ö~X‹« T1ÿ9l¹„ÆG9þuñ1ÿ‹T¹Ç$‰éè^å…À…‰G9þ‹Œ$¼uÚèu_…À…‡‹ƒÿÿÿ‹‹ÍUùÿ‰L$‹ùÿ‰L$‹8Äøÿ‰L$‹Afùÿ‰L$‰$ÇD$ÇD$èu^º^Wƒ%õÿ‰D$Ç$&
‹†ùÿèþÿ1íé}‹Œ$¼ˆvÿÿÿ‹D$P‹¸‰T$|…Ò„cÿÿÿ‹D$HH‹t$(‹|$ ‰T$ …Àæýÿÿ‰t$(‹l$ ëb‹Œ$¼x$‹D$P‹¸…Àt‰D$(‰„$€‹D$HH‹¼$¸ë)èˆ^…À…Ì‹ƒÿÿÿ‰D$(‹¼$¸‹Œ$¼‹D$H…l$ ¶
ÇD$8ÇD$0ÇD$<‹ƒÐY‹°Ç$ÿ´f(ƒ¤õÿf)D$PfD$‰D$‰,$ÿ։Æ1҅À„þ‰l$ ‹=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$èF\‰t$‹~‹ƒÐY‹°Ç$ÿ´f(D$PfD$‰D$‹D$4‰$ÿօl$(„­‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t
‰…À„H‰t$H…ÿ‹t$u‹D$Hƒx„ö‹ƒ$T‰D$‰4$ÇD$ÿ“Zƒøÿ„g‹ƒXS‰D$‹D$H‰$ÇD$ÿ“Zƒøÿ„S;«ÿÿÿ„Þ‹»ÌS‹ƒLM‹O‰L$‰|$‰$è~^…À„~‰Ƌ=ÿÿÿ?t@‰‹ƒ$Q‹N‹IH…É„Ž‰D$‰4$ÿщD$8¿”
…À„‘‰D$4‹=ÿÿÿ?t
H‰u‰4$èðZ‹«ÌS‹ƒLM‹M‰L$‰l$‰$è^…À„\‰Ƌ=ÿÿÿ?t@‰‹ƒàR‹N‹IH…É„f‰D$‰4$ÿщʼnD$0…:‹L$4„W‹=ÿÿÿ?tH‰u‰4$èqZ‹L$4‹A1ÿ;ƒTÿÿÿ„;1ö‰t$h‹D$(‰D$l‰l$p½÷؍ƒÂlƒÏ‰<$‰ÏèÞ×þÿ‰…öt‹=ÿÿÿ?tH‰u‰4$‰ÖèZ‰ò‹E=ÿÿÿ?‰ùtH‰Eu‰,$‰ÖèòY‰ù‰òÇD$0…ҋt$„ø‹=ÿÿÿ?tH‰u‰$‰×èÂY‰ú‹1í=ÿÿÿ?„]H‰
ùÿÿÿ?„L‰1í…À…@é/‹ƒÐY‹L$H‰L$‰t$Ç$ÿŒ…À„š‰ʼnD$8;ƒÿÿÿ„Ó‹ƒ|M…À„ü‹M9Á„º‹‘¬…Ò„=‹r…ö~1ÿ9Dº„“G9þuñ‹I‹@‹“ÿÿÿ‹‰D$‰L$ƒ‰ùÿ‰D$‰$èÉYÇD$ ~X¿–
1í‹t$1Òéo‹D$ ‰$è£^ݜ$›ò„$òD$ f.ƒ\^ùÿšÀ•ÁÁu
è%Z…À…ê
‹L$4è„è‰ǃøÿu
èZ…À…Ä‹ƒ$T‰D$òD$ ò$ÇD$ÿ“Zƒøÿ„*WÀò*NjƒXS‰D$ò$ÇD$ÿ“Zƒøÿ„‰|$4;«ÿÿÿ„‹³ÌS‹ƒLM‹N‰L$‰t$‰$è[…À„‰Nj=ÿÿÿ?t@‰‰|$0‹ƒ$Q‹O‹IH…É„‰D$‰<$ÿщƉD$8…À„‰l$(‹=ÿÿÿ?t
H‰u‰<$è‰W‹»ÌS‹ƒLM‹O‰L$‰|$‰$èšZ…À„	‰ŋ=ÿÿÿ?t@‰E‰l$0‹ƒàR‹M‹IH…É„‰D$‰,$ÿщDžÀ„‹E=ÿÿÿ?tH‰Eu‰,$èWÇD$0‰ñ‹F1í;ƒTÿÿÿ„ò
1ö‰l$h‹D$(‰D$l‰|$pµ÷؍ƒÂlƒÎ‰4$‰ÎèwÔþÿ‰D$<…í‰D$,t‹Mùÿÿÿ?tI‰Mu‰,$è¢V‹D$,ÇD$0‹ùÿÿÿ?tI‰u‰<$èV‹D$,…À„Ô
‹ùÿÿÿ?tI‰u‰4$è\V‹D$,‹úÿÿÿ?tJ‰ùÿÿÿ?t‰…Òu‰$è3V‹D$,ÇD$<ÇD$8‹³ÐY‹H‰NjP‰L$‰$ÿ–x‰D$(‹G‰D$L‹„$°‹¸°‹«@Q‹w‰l$‰4$èÇ[…À„J
‹H‹‘ˆ…҉Á„¢‰t$‰|$‰$ÿ҉D$D…„$°…™é&
‰4$èU‰t$H…ÿ‹t$…ºùÿÿé§ùÿÿ‹„$°‹°°‹«@Q‹~‰l$‰<$èH[…À„¸‹H‹‰ˆ…Ʉ։|$‰t$‰$ÿщD$P…„$°…Îé–‹=ÿÿÿ?‰L$Dt@‰‹„$°‹¸°‹ƒ4Q‹w‰D$P‰D$‰4$èÔZ…À„	‰ŋ@‹ˆˆ…Ét ‰t$‰|$‰,$ÿщD$<…À„w	‰ŋ@ë‹Mùÿÿÿ?tA‰M‰l$<;ƒTÿÿÿ…a‹u…ö„V‹}‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰|$<‹E¹=ÿÿÿ?tH‰Eu
‰,$èGT¹‰ý‰t$hÇD$l÷؍ƒÂl‰$‰éèËÑþÿ‰D$8…ö‹|$4t‹ùÿÿÿ?tI‰u‰4$‰ÆèöS‰ð…À„¹‹Mùÿÿÿ?tI‰Mu‰,$‰ÆèÑS‰ðÇD$<‹ùÿÿÿ?t
I‰u‰$è°SÇD$8è£Y‰„$„ƒ|$(‹Œ$°òD$ ‹t$L~^Q‰T$PƒÁ41í‰úÁú‰T$@‰L$‹T$@‰T$‰|$òD$‹T$P‰$‰ÏèüBòD$ ‰ù‹|$4‰®E9l$(uƋ„$„‰$è'Y‹³PW‹l$D‹E‹x@…ÿ„
ƒ½‡ùÿ‰$èñW…À…'‰t$‰,$ÇD$ÿ׉ÆèáW…ö„‹E=ÿÿÿ?‹T$,tH‰Eu‰,$è­R‹T$,…ö„Ç‹=ÿÿÿ?tH‰u‰4$è‹R‹T$,‹=ÿÿÿ?u‰Ջt$éK@‰1ÿé
‹ùÿÿÿ?‰D$PtA‰‹„$°‹°°‹ƒ4Q‹n‰D$,‰D$‰,$è"X…À„¸‰Nj@‹ˆˆ…Ét ‰l$‰t$‰<$ÿщD$0…À„°‰Nj@닁ùÿÿÿ?tA‰‰|$0ÇD$<;ƒTÿÿÿ…ý‹o‰l$<…í„î‹w‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‰t$0‹¹=ÿÿÿ?tH‰u
‰<$è‹Q¹‰÷‰l$hÇD$l÷؍ƒÂl‰$‰ùèÏþÿ‰D$8…í‹t$t!‹Mùÿÿÿ?tI‰Mu‰,$‰Æè8Q‰ð‹t$ÇD$<…À„Ú‹ùÿÿÿ?tI‰u‰<$‰Æè	Q‰ð‹t$ÇD$0‹ùÿÿÿ?t
I‰u‰$èäPèÏS‰D$,‹@@‹‹ÿÿÿ‹”$°òD$ ë
‹@…ÀtD‹8…ÿtó9Ïtï‹=ÿÿÿ?t@‰‹O‹=ÿÿÿ?t@‰‰L$@‰<$èˆS‰D$D‹”$°òD$ ë1ÿÇD$@ÇD$DB‹l$4‰éÁùƒÂ4‰T$‰L$‰l$òD$‰$èú?‰$è2QÇD$8…À„‰ŋD$,‹H@‹‰9…Àt‹ùÿÿÿ?t
I‰u‰$èúO‹L$@…Ét‹=ÿÿÿ?t
H‰u‰$èÜO‹L$D…Ét‹=ÿÿÿ?t
H‰u‰$è¾O‹“PWÇ$‹|$P‰ùè&»þÿ‰ù‰Nj=ÿÿÿ?t
H‰u‰$èŒO…ÿ…F1íÇD$ <Z¿¯
éšöÿÿÇD$ ÝW¿‹
ÇD$H1íéôÇD$ ýW¿
ÇD$Hé^öÿÿÇD$ 'X¿‘
1íéPöÿÿÇD$ 0X¿’
1íé<öÿÿƒ8Äøÿ‰D$‰|$D$x‰D$D$h‰$‹T$PèÌ҅Àˆ„‹D$x‰D$4‹l$|‹„$€‰D$(éòÿÿèSPÇD$ CX…Àu‰ùèà²þÿ…À…h1í‹t$1ҿ”
é6‰D$‰4$è*P‰D$8¿”
…À…oóÿÿÇD$ EX1ÒëEèøOÇD$ HX…Àu‰é腲þÿ…À…¿”
1íé)	‰D$‰4$èÕOé’óÿÿÇD$ JX1íéó‹q…ö„‹Q‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰T$8‹¿=ÿÿÿ?uk‰Ñéˆóÿÿ1íÇD$ `X¿”
éøôÿÿƒ~ùÿ‰D$Ç$<‹Dˆùÿºu è=÷ýÿÇD$8ÇD$(–
ÇD$ |X1Ò1ÿ‹D$0…	Õ…Véh‰T$ H‰u‹D$4‰$èiM‹L$ éóÿÿºjWéÆïÿÿº\Wé¼ïÿÿ‹ƒHÿÿÿ‹‹ˆ`ùÿ‰L$‰$èMéDôÿÿ1É1öéäøÿÿºeWéŠïÿÿÇD$ ”Y¿«
1íé0ôÿÿÇD$ Y¿¬
1íéôÿÿ‰ʅÒ„Y‹’€9ÂuîéV1í1ÉéLûÿÿè[N…À…܉ñèì°þÿ‰D$0…À…ŒÇD$ ]Z¿³
éÂóÿÿ‰D$‰<$è2N‰ƉD$8…À…áôÿÿÇD$(³
ÇD$ _Z1Ò1ÿ‹t$‹D$0…	Õ…1éCèäM…À…r‰ùèu°þÿ‰D$0…À…1íÇD$ bZ¿³
é
‰D$‰,$è¹M‰DžÀ…çôÿÿ1íÇD$ dZën‹i‰l$0…í„'‹A‰D$P‹E=ÿÿÿ?t@‰E‹D$P‹=ÿÿÿ?t@‹T$P‰‹D$P‰D$8‹¾=ÿÿÿ?t
H‰u‰$è¨K‹L$Pé¬ôÿÿ1íÇD$ zZ1ҋt$¿³
é%‹ƒÿÿÿ‹‰l$‰$è¡P1íÇD$ žZ¿·
éŒ
‹ƒÿÿÿ‹‹L$P‰L$‰$èuPÇD$<ÇD$  ZëÇD$ ´Z‹D$D‹=ÿÿÿ?tH‹L$D‰u‹D$D‰$è	K‹t$‹T$,1�
镉t$‰,$ÇD$èP‰Æéøÿÿ1íÇD$ ÷Z¿·
‹t$éb1öéò÷ÿÿèFL…À„è1ö‹l$DéÚ÷ÿÿÇD$ €Y¿©
1íé¹ñÿÿ;ƒPÿÿÿ…rñÿÿÇD$8‹³ÌS‹ƒLM‹N‰L$‰t$‰$èŒM…À„‰Nj=ÿÿÿ?t@‰‹ƒ$Q‹O‹IH…É„$‰D$‰<$ÿщD$0‰D$4…À„'‹=ÿÿÿ?t
H‰u‰<$èJ‹ƒ„U‹M‹IH…É„‰D$‰,$ÿщDžÀ„‰l$(‹«ÌS‹ƒLM‹M‰L$‰l$‰$èéL…À„	‰Ƌ=ÿÿÿ?t@‰‹ƒàR‹N‹IH…É„‰D$‰4$ÿщD$<…L$4„‹úÿÿÿ?tJ‰u‰4$‰Æè]I‰ð‹L$4‹Q1í;“Tÿÿÿ‰D$ „51ö‰t$h‰|$l‰D$p­÷؍ƒÂlƒÍ‰,$‰L$4èÆÆþÿ‰‰D$8…öt‹=ÿÿÿ?tH‰u‰4$‰ÖèôH‰ò‹=ÿÿÿ?‹l$(‹L$4tH‰u‰<$‰ÖèÒH‹L$4‰ò‹|$ ‹=ÿÿÿ?‹t$tH‰u‰<$‰×è¬H‹L$4‰úÇD$<…Ò„ë‹=ÿÿÿ?tH‰u‰$‰×è~H‰ú‹=ÿÿÿ?tH‰
ùÿÿÿ?t‰…Àu‰$‰×èVH‰úÇD$8‹ƒÐY‹J‰׋R‰L$‰$ÿx‰D$4‹ƒÐY‹L$H‰L$‰t$‰|$,‰|$Ç$ÿŒ…À„I‰ljl$(‰D$0;ƒÿÿÿ„]‹ƒ|M…À„d‹O9Á„D‹‘¬…Ò„j‹r…ö~1퐐9Dª„E9îuñ‹I‹@‹“ÿÿÿ‹‰D$‰L$ƒ‰ùÿ‰D$‰$èYHÇD$ ÇX¿›
‹t$‹T$,‹l$(‹D$8…	|$(t‹ùÿÿÿ?tI‰u‰$‰×è;G‰ú‰ï‹D$0…	Õt‹ùÿÿÿ?t
I‰u‰$èG‹D$<…Àt‹ùÿÿÿ?t
I‰u‰$è÷Fƒ%õÿ‰D$‹D$(‰$‹†ùÿ‹T$ ègðýÿ…ít‰ê‹E1í=ÿÿÿ?…réz1íésƒ~ùÿ‰D$Ç$?‹<uùÿº§ è$ðýÿÇD$0ÇD$ ÅX¿›
‹T$,éÿÿÿ‹ƒHÿÿÿ‹‹ˆ`ùÿ‰L$‰$è,FéÞþÿÿ‰ʅÒ„¶‹’€9Âuîé³èÉGÇD$ ‰X…Àu‰ñèVªþÿ…À…ì‹t$1ҿ—
é®þÿÿ‰D$‰<$è¢G‰D$0‰D$4…À…Ùûÿÿ1öÇD$ ‹X‹=ÿÿÿ?…•靉D$‰,$èjG‰DžÀ…äûÿÿ1ÒÇD$ ŽX‹t$¿—
éHþÿÿè3G1öÇD$ X…Àu‰é辩þÿ…À…[‹l$(‹=ÿÿÿ?u3ë>‰D$‰4$èG‰D$<…L$4…åûÿÿÇD$ ’X‹l$(‹=ÿÿÿ?t
H‰u‰<$è9E¿—
…öt1ҋ=ÿÿÿ?tH‰u
‰4$èE1ҋt$é­ýÿÿ‹q…ö„
‹I‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰L$P‰L$0‹D$4‹½=ÿÿÿ?tH‹L$4‰u‹D$4‰$è¸D‹L$P‹D$ ékûÿÿ1ÒÇD$ ©X¿—
é7ýÿÿ;ƒPÿÿÿ…êüÿÿ‹L$(…Ét‹=ÿÿÿ?t
H‰u‰$èmD‹ƒ„U‹O‹IH…É„‰D$‰<$ÿщƉD$0…T$,„u‰T$‰4$ÿ“Z‰D$8…À„t‹ùÿÿÿ?tI‰u‰4$‰ÆèD‰ðÇD$0‹ùÿÿÿ?t
I‰u‰$èëCÇD$8‹„$°‹°°‹ƒ@Q‹n‰D$(‰D$‰,$è­I…À„/‹H‹‰ˆ…Ét!‰l$‰t$‰$ÿщD$@…„$°u鋁ùÿÿÿ?‰D$@tA‰‹„$°‹€°‹‹4Q‰D$(‹h‰L$ ‰L$‰,$è<I…À„ã‰Ƌ@‹ˆˆ…Ét7‰l$‹D$(‰D$‰4$ÿщD$0…À„׉Ƌ@ÇD$<;ƒTÿÿÿt*鋁ùÿÿÿ?tA‰‰t$0ÇD$<;ƒTÿÿÿ…ö‹N‰L$<…É„ç‹n‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‰l$0‹º=ÿÿÿ?tH‰u‰4$‰ÎèŒBº‰ñ‰î‰L$hÇD$l•÷؉ՍƒÂl‰,$‰͉ñè
Àþÿ‰é‰ʼnD$8…Ét‹=ÿÿÿ?t
H‰u‰$è8BÇD$<…í„ñ‹=ÿÿÿ?t
H‰u‰4$èBÇD$0‹E=ÿÿÿ?tH‰Eu‰,$èòAÇD$8èåG‰D$Dƒ|$4‹”$°ŽºB‰D$PƒÂ41	T$ ë ‹D$(@;D$4‹T$ „ˆ‰D$(‹‡œ‹ ‹€˜ò‹˜‹‰ÁÁù‰T$‰L$‰D$òD$‹D$P‰$è1‹˜‹‰˜‰ÿGƒ~‘1‹Zë'‹••˜‹”‡˜ÿB@;G`ÿÿÿ‹”‡˜ÿB‹¬‡˜‹U…ÒtȀ½œt1҃ù‹µ”‹v‹TÖ•˜븐ƒúu$‹U;•˜}^B‰U‹”‡˜‹²²˜덅Òx‰‹¬‡˜‹t•;´•”|YÇD•‹´‡˜‹¬–”)®˜rÿ…҉òÇéHÿÿÿÇE‹”‡˜ÿB‹”‡˜‹²+²˜²˜éÿÿÿF‰t•‹´‡˜‹”––˜éûþÿÿ‹D$D‰$èF‹³PW‹L$@‹A‹h@…í„ôƒ½‡ùÿ‰$èãD…À…$‰t$‹t$@‰4$ÇD$ÿՉÅèÏD…í„ó‹=ÿÿÿ?t
H‰u‰4$è¡?…턹‹E=ÿÿÿ?‹T$,tH‰Et‹=ÿÿÿ?u‰Ջt$ë6‰,$èl?‹T$,‹=ÿÿÿ?tã@‰‰Ջt$=ÿÿÿ?t
H‰u‰$èB?…ÿt‹=ÿÿÿ?t
H‰u‰<$è(?…öt‹=ÿÿÿ?t
H‰u‰4$è?‹L$H…Ét‹=ÿÿÿ?t
H‰u‰$èð>‰èĜ^_[]Ã1É1ÒéWüÿÿ‰D$‰<$èn@éyúÿÿÇD$ ÒX‰ý¿œ
‹t$éQ÷ÿÿÇD$(œ
ÇD$ ÔX‹t$‹T$,‹D$0…	Õ…^÷ÿÿép÷ÿÿ‹ƒÿÿÿ‹‹L$(‰L$‰$èžCÇD$ áX鉋ƒÿÿÿ‹‹L$ ‰L$‰$èyCÇD$0ÇD$ ãXëÇD$ ÷X‹T$,‹L$@‹=ÿÿÿ?‹t$tH‰u‰$è
>‹T$,‰ý¿
éöÿÿ‰t$‰$ÇD$‰ÎèC‰Åé)þÿÿÇD$ UY‰ý¿
‹t$‹T$,édöÿÿèO?…À„¡1í‹t$@éõýÿÿÇD$ ŠY¿ª
1íéÂäÿÿ‹ƒÿÿÿ‹‰l$‰$è´BÇD$ ±Y¿¯
é–äÿÿ‹ƒÿÿÿ‹‹L$,‰L$‰$èŠBÇD$0ÇD$ ³YëÇD$ ÇY‹D$P‹=ÿÿÿ?tH‹L$P‰u‹D$P‰$è=1í‹t$1ҿ¯
é¬õÿÿÇD$0ÇD$<ƒ%õÿ‰D$Ç$°
‹†ùÿºæYèkæýÿD$<‰D$D$0‰$T$8‹L$,èÊ…ÀˆÐ‹T$8‹L$0‹D$<‰„$„‰D$‰Œ$Œ‰L$‰”$ˆ‰T$Ç$èN>…À„ωÅÇ$‹t$P‰ñ‰Âèà§þÿ‰D$L‹=ÿÿÿ?tH‹L$P‰u‹D$P‰$è><‹E=ÿÿÿ?tH‰Eu‰,$è&<ƒ|$L„‹D$L;ƒ4ÿÿÿt5‹D$L;ƒ8ÿÿÿt)‹D$L;ƒÿÿÿt‹D$L‰$è{>‰ÆëÇD$ üYé1ɋD$L;ƒ4ÿÿÿ”I΋D$L‹=ÿÿÿ?tH‹L$L‰u‹D$L‰$è§;…öx^„‹Œ$ˆ葅ýÿÇD$8‹Œ$Œè}…ýÿ‹Œ$„èq…ýÿÇD$<‹D$,‹H@‹D$D‰D$‰<$‹T$@èÎʋl$(é>ãÿÿÇD$ 	Z‹D$,‹H@‹D$D‰D$‰<$‹T$@è¢Ê1�
éþõÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èÌ:é@ýÿÿ1ÿé”àÿÿ1í1öé3öÿÿÇD$0é*îÿÿÇD$0é”îÿÿ1íéÑãÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è|:éùïÿÿÇD$ Zé]ÿÿÿÇD$ ZéPÿÿÿè8:‹Œ$„‰L$‹Œ$Œ‰$‰K”$ˆè¡þÿÇD$8ÇD$0ÇD$<ÇD$ Zéÿÿÿ‰Æéßÿÿ‰Æéwßÿÿ‰Çéåïÿÿ‰Æéðÿÿ‰ÇéOâÿÿ‰ÅéÇâÿÿUSWVƒì<è[À„‹L$\‹t$X‹D$TÇD$ÇD$“TS‰T$,“ T‰T$0“¨U‰T$4ÇD$8‹«ÿÿÿ‰l$…É„¢ƒþ‡³°‰T$$‹”³´õÿÚÿâ‰l$‹A‰D$…À~eA‰D$(‹«TS1ÿ‹D$9l¹„JG9øuñ1ÿ‹T¹ƒì‰éjèÀƒÄ…À…G9|$‹L$\uÚè¥:…Àt$ºr[鼃þ„̃þu‹h‰l$éÁ1þœ
‹ùÿ“9fùÿLуð‹‹ÿÿÿƒì³ÍUùÿ»QÓøÿ«Afùÿÿt$\VPRWUÿ1èˆ9ƒÄ ºš[éP‹p‰t$‹‰T$y‹A‰t$…À‡é(‹h‰l$‹P‰T$‰T$‹‰T$‹Aé‰l$‹‰D$ ‰D$A‰D$(‹y‰|$…ÿP颋«ÿÿÿ‹H‰L$‰L$‹‰T$éÇ‹L$\ˆòþÿÿ‹D$$‹¸‰D$…À„ßþÿÿ‰D$ ÿL$‹D$(‹8…ÿ~W‹« T1��9l±„¥F9÷uñ1��‹T±ƒì‰éj迃Ä…ÀurF9÷‹L$\uàè9…À…‹ƒÿÿÿƒì‹ÍUùÿ“ùÿ³QÓøÿ»AfùÿjQjRVWÿ0è38ƒÄ º|[ƒìƒ%õÿ‹
‚ùÿPh¾
èÁàýÿƒÄ1Àéy‹L$\x‘‹D$$‹4°‰t$…öt‚‹D$H‹l$‹T$ ‹|$(‰t$…Àަ‰D$‰T$ ‹?…ÿ~m‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éj较ąÀuF9÷‹L$\uàë$‹L$\x‹D$$‹,°…ít‰l$‹D$H‹t$X‹T$ ë#è8…À…‹«ÿÿÿ‹t$X‹L$\‹T$ ‹D$…À‹D$P‹¸°‹ùÿÿÿ?tA‰ƒÀ$ƒì‹‹Ôÿÿÿjÿ³¬Oÿ³øVjÿ³$Tÿt$$jÿ³XSRjjWUPQÿ“ZƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWèÛ5ƒÄ‰ñèAJ…Àt^‹ùÿÿÿ?tI‰uƒìV‰Æè³5‰ðƒÄƒÄ<^_[]Ã=ÿÿÿ?tH‰uƒìWè‘5ƒÄƒìƒ%õÿ‹
‚ùÿºÑ[Phé9þÿÿƒì»%õÿ‹
‚ùÿºß[Wh‰ÇèÞÞýÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒQÓøÿ‰õt$|$,‹T$$PUVWèü¸ƒÄ…Àx‹T$‹D$‰D$‹l$é±þÿÿºˆ[é«ýÿÿºz[é¡ýÿÿºƒ[é—ýÿÿUSWVƒì,è[ÃP‹L$L‹|$H‹D$D“hR‰T$ “¨U‰T$$ÇD$(‹«üV‰l$‹“ÿÿÿ‰T$…Ét.4¸…ÿ„Ѓÿ„¶ƒÿu?‹P‰T$‹(‰l$‹Aé‹“ÿÿÿ…ÿ„úƒÿtƒÿu‹P‰T$‹(‰l$éÞ‰ø÷ÐÁèƒàþ…ÿ‹ùÿ“9fùÿHы‹ÿÿÿƒì³ÍUùÿ»
âøÿ«Afùÿÿt$LVPRWUÿ1èÏ4ƒÄ ºY\ƒìƒ%õÿ‹=†ùÿPhè]ÝýÿƒÄ1Àé‹(‰l$A‹y髋y…ÿŽP‰t$‰l$A1ö‹«hR‰T$‰D$9l±t2F9÷uõ1��‹T±ƒì‰éjè:ƒÄ…ÀuF9÷‹L$Luàë&‹L$Lx ‹D$‹°…Àt‰D$O‰ŋT$‹t$‹D$ë!è³4‹L$L…l$‹T$‹t$‹D$…
…ÿލ‰|$‰t$‰l$‹8…ÿ~g‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè ºƒÄ…ÀuF9÷‹L$Luàë(‹L$Lx"‹D$‹°…Òt‰T$‹D$H‹|$H‹l$‹t$ë'è4…À…r‹“ÿÿÿ‹|$H‹l$‹L$L‹t$‹D$…À‰T$‹D$@‹¸°‹ùÿÿÿ?tA‰ƒÀ‹“øV‹³¬Oƒì‹‹ØÿÿÿjVRjVRj
ÿ³lRUjjWÿt$@PQÿ“ZƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWèâ1ƒÄ‰ñèHF…Àt^‹ùÿÿÿ?tI‰uƒìV‰Æèº1‰ðƒÄƒÄ,^_[]Ã=ÿÿÿ?tH‰uƒìWè˜1ƒÄƒìƒ%õÿ‹=†ùÿº\Phhé¤ýÿÿƒì»%õÿ‹=†ùÿºž\Whm‰ÇèåÚýÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒ
âøÿ‰òt$‰ý|$ PUVW赃ąÀx
‹l$‹T$éºþÿÿºH\é ýÿÿºC\éýÿÿº<\éýÿÿUSWVƒì,è[Ã`{‹L$L‹|$H‹D$DÇD$ÇD$“ÈO‰T$ “¨U‰T$$ÇD$(‹«ÿÿÿ‰l$…Ét.¸…ÿtfƒÿt@ƒÿ…׋h‰l$‹‰D$‰D$‹Aéƒÿ„,ƒÿ…¬‹h‰l$é‰T$‹‰D$q‹y‰D$…ÿBéÛ‰l$‰T$‹y…ÿ~_A‰D$‹«ÈO1��9l±„áF9÷uñ1��‹T±ƒì‰éjè0·ƒÄ…À…¦F9÷‹L$LuÜèG1…|$H…ª1ÿŸ
‹ùÿ“9fùÿNы‹ÿÿÿ³õÿ»ÍUùÿNþ@ƒì³;ìøÿ«Afùÿÿt$LWPRVUÿ1è@0ƒÄ º]ƒìƒ%õÿ‹ŠùÿPhoèÎØýÿƒÄ1À郋«ÿÿÿ‹‰D$‰D$éЋL$LˆYÿÿÿ‹D$‹°‰D$…À„FÿÿÿO‹l$‹t$‰D$…ÿŽž‰|$‹>…ÿ~i‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éj趃ąÀuF9÷‹L$Luàë$‹L$Lx‹D$‹,°…ít‰l$‹D$H‹|$H‹T$ë#è0…À…v‹«ÿÿÿ‹|$H‹L$L‹T$‹D$…À‹D$@‹¸°‹ùÿÿÿ?tA‰ƒÀ‹“øV‹³¬Oƒì‹‹ÜÿÿÿjVRjVRjÿ³ÌOÿt$0jjWUPQÿ“ZƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWèÞ-ƒÄ‰ñèDB…Àt^‹ùÿÿÿ?tI‰uƒìV‰Æè¶-‰ðƒÄƒÄ,^_[]Ã=ÿÿÿ?tH‰uƒìWè”-ƒÄƒìƒ%õÿ‹ŠùÿºN]PhÈé/þÿÿƒì»%õÿ‹Šùÿº\]Wh͉ÇèáÖýÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒ;ìøÿt$‰ý|$ PUVW豃ąÀx‹D$‰D$‹l$é¼þÿÿº]é©ýÿÿºû\éŸýÿÿº]é•ýÿÿUSWVƒì,è[ÃPw‹L$L‹|$H‹D$DÇD$ÇD$“ T‰T$ “¨U‰T$$ÇD$(‹«ÿÿÿ‰l$…Ét.¸…ÿtfƒÿt@ƒÿ…׋h‰l$‹‰D$‰D$‹Aéƒÿ„,ƒÿ…¬‹h‰l$é‰T$‹‰D$q‹y‰D$…ÿBéÛ‰l$‰T$‹y…ÿ~_A‰D$‹« T1��9l±„áF9÷uñ1��‹T±ƒì‰éjè ³ƒÄ…À…¦F9÷‹L$LuÜè7-…|$H…ª1ÿŸ
‹ùÿ“9fùÿNы‹ÿÿÿ³õÿ»ÍUùÿNþ@ƒì³øøÿ«Afùÿÿt$LWPRVUÿ1è0,ƒÄ ºÕ]ƒìƒ%õÿ‹ùÿPhÏè¾ÔýÿƒÄ1À郋«ÿÿÿ‹‰D$‰D$éЋL$LˆYÿÿÿ‹D$‹°‰D$…À„FÿÿÿO‹l$‹t$‰D$…ÿŽž‰|$‹>…ÿ~i‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éj貃Ä…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹,°…ít‰l$‹D$H‹|$H‹T$ë#èõ+…À…v‹«ÿÿÿ‹|$H‹L$L‹T$‹D$…À‹D$@‹¸°‹ùÿÿÿ?tA‰ƒÀ‹“øV‹³¬Oƒì‹‹àÿÿÿjVRjVRjÿ³$Tÿt$0jjWUPQÿ“ZƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWèÎ)ƒÄ‰ñè4>…Àt^‹ùÿÿÿ?tI‰uƒìV‰Æè¦)‰ðƒÄƒÄ,^_[]Ã=ÿÿÿ?tH‰uƒìWè„)ƒÄƒìƒ%õÿ‹ùÿº^Phé/þÿÿƒì»%õÿ‹ùÿº^Wh‰ÇèÑÒýÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒøøÿt$‰ý|$ PUVWèó¬ƒÄ…Àx‹D$‰D$‹l$é¼þÿÿºÅ]é©ýÿÿº¹]éŸýÿÿºÀ]é•ýÿÿUSWVìœè[Ã=s‹Œ$¼‹´$¸‹„$´WÀòD$xDŽ$€“ŒS‰”$ˆ“lS‰”$Œ“ÐS‰”$“¨U‰”$”DŽ$˜‹«ÿÿÿ‰¬$„…É„ƒþ‡ª°‰T$X‹”³ÄõÿÚÿâ‰l$H‹i…í~]A‹³ŒS1ÿ‰D$\9t¹„ºG9ýuñ1ÿ‹T¹Ç$‰ñè.¯…À…}G9ý‹Œ$¼uÚèE)…´$¸t ¾}^éÁƒþtoƒþu‹h‰¬$„ëd1þ‹ùÿ“9fùÿLѝÀ‹‹ÿÿÿ‹	‰t$³ÍUùÿ‰t$‰T$“šÿøÿ‰T$“Afùÿ‰T$‰$‰D$è(¾±^éM‹«ÿÿÿ‹H‰L$L‰Œ$€‹H‰L$D‰L$|‹8‰|$xé&‹h‰¬$„‹P‰T$L‰”$€‹P‰T$D‰T$|‹8‰|$x‹Aéí‰l$H‹P‰T$D‰T$|‹‰D$T‰D$xA‰D$\‹y‰|$`…ÿéc‹P‰T$L‰”$€‹P‰T$D‰T$|‹8‰|$xQ‹A…Àö鏉l$H‹‰D$T‰D$xA‰D$\‹y‰|$`…ÿ5ë{‹Œ$¼ˆ‚þÿÿ‹D$X‹¸‰D$x‰D$T…À„kþÿÿM‰l$`‹D$\‹8…ÿ~H‹³lS1퐐9t©tQE9ïuõ1퐐‹T©Ç$‰ñè>­…Àu(E9$¼uÞèY'…À…·¾‡^¸鏋Œ$¼xۋD$X‹¨‰D$|‰D$D…ÀtÈÿL$`‹D$\‹8…ÿ~N‹³ÐS1í9t©„ÉE9ïuñ1퐐‹T©Ç$‰ñ讬…À…ŒE9$¼uÚèÅ&…À…p¾‘^¸‹‹ÿÿÿ‹	‰D$ƒÍUùÿ‰D$ƒùÿ‰D$ƒšÿøÿ‰D$ƒAfùÿ‰D$‰$ÇD$è¿%ƒ%õÿ‰D$Ç$
‹e†ùÿ‰òèQÎýÿ1À鋌$¼ˆsÿÿÿ‹D$X‹¨‰„$€‰D$L…À„Yÿÿÿ‹D$`H‹l$H‹|$T‹T$\…ÀŽž‰D$`‰|$T‹2…ö~f‹»¨U1퐐9|©t7E9îuõ1퐐‹T©Ç$‰ù螫…ÀuE9$¼uÞë&‹Œ$¼x‹D$X‹,¨…ít‰¬$„‹D$`H‹|$Të"è‘%…À…*‹«ÿÿÿ‹|$T‹Œ$¼‹D$`…À‰l$H‹ƒÐY‹°Ç$	ÿ´(ƒ¤õÿ)D$`D$‰D$‰<$ÿօÀ„‰ʼn|$T‹=ÿÿÿ?tH‰Mùÿÿÿ?t‰E…Àu‰,$èq#‹ƒÐY‹°Ç$	ÿ´(D$`D$‰D$‹D$D‰$ÿ։Dž	l$X„½‹=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰<$è#‹ƒÐY‹°Ç$	ÿ´(D$`D$‰D$‹D$L‰$ÿօÀ„m‰Ƌ=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$è±"‹G9E‰t$\‰|$Pu	F„ð‹»ÌS‹ƒLM‹O‰L$‰|$‰$è©%…À„&‰Ƌ=ÿÿÿ?t@‰‹ƒP‹N‹IH…É„3‰D$‰4$ÿщD$`…À„6‹=ÿÿÿ?t
H‰u‰4$è$"‹³ÌS‹ƒLM‹N‰L$‰t$‰$è5%…À„‰ŋ=ÿÿÿ?t@‰E‹ƒ˜R‹M‹IH…É„ ‰D$‰,$ÿхÀ„#‰D$D‹E=ÿÿÿ?tH‰Eu‰,$è­!‹»ÌS‹ƒLM‹O‰L$‰|$‰$è¾$…À„*‰ŋ=ÿÿÿ?t@‰E‹ƒèO‹M‹IH…É„7‰D$‰,$ÿщÇÇD$L†…À„:‹E=ÿÿÿ?tH‰Eu‰,$è0!‹G1ö;ƒTÿÿÿ„1퉴$ˆ‹D$X‰„$Œ‹D$P‰„$­÷؍ŒƒÍ‰,$‰ù葞þÿ‰Ņöt‹=ÿÿÿ?t
H‰u‰4$èÅ …í„ú‹=ÿÿÿ?t
H‰u‰<$è§ ‹D$D‹@1ÿ;ƒTÿÿÿ„Ú1ö‰¼$ˆ‰¬$Œ‹D$\‰„$µ÷؍ŒƒÎ‰4$‹L$Dèžþÿ‰ƅÿt‹=ÿÿÿ?t
H‰u‰<$è: ‹E=ÿÿÿ?tH‰Eu‰,$è" …ö‹L$D„¬‹=ÿÿÿ?t
H‰u‰$è ‹D$`‹@1í;ƒTÿÿÿ„»1ÿ‰¬$ˆ‰´$Œ½÷؍ŒG‰<$‹L$`èlþÿ‰Džít‹E=ÿÿÿ?tH‰Eu‰,$èž‹=ÿÿÿ?t
H‰u‰4$舅ÿ‹l$X„œ‹L$`‹=ÿÿÿ?t
H‰u‰$èb;»4ÿÿÿ‹t$\t,;»8ÿÿÿt$;»ÿÿÿt‰<$èÎ!…Àˆ‹ùÿÿÿ?uë&1À;»4ÿÿÿ”ùÿÿÿ?tI‰u‰<$‰Çè‰ø…À…è‹„$°‹¸°‹=ÿÿÿ?t@‰‹¬$°ƒÅ‹ƒS‹‹pS‹“ÔS‰T$,‰L$ ‰D$‹D$H‰D$‰t$(‹D$P‰D$‹D$X‰D$‰|$‰l$‹ƒäÿÿÿ‰$ÇD$0ÇD$$ÇD$ÿ“Z…À„»‰ŋ=ÿÿÿ?t
H‰u‰<$èP‰l$H‰éèµ2…l$X„Û‹|$P‹Mùÿÿÿ?tI‰Mu‰,$‰Åè‰è…ÿt‹ùÿÿÿ?tI‰u‰<$‰Çèû‰ø‹L$\…ɋt$Ht‹úÿÿÿ?tJ‰u‰$‰ÇèÔ‰ø…öt‹ùÿÿÿ?tI‰u‰4$‰Æèµ‰ðĜ^_[]ËL$Tèÿ6‰ƉÕ!Ѓøÿu
è…À…Ö‹L$DèÞ6‰D$`‰T$T!Ѓøÿu
èú…À…Å‹L$Lè¹6‰׉Â!øƒøÿ‰T$LuèÕ‹T$L…À…¨‹D$`ð‹L$Té9ÐùŒp‹„$°‹€°‰D$D‹=ÿÿÿ?t@‹L$D‰‰l$‰4$è#…À„ˆ‰ŋD$T‰D$‹D$`‰$èø"1ö‰D$`…À„~‰|$‹D$L‰$èÚ"…À„€‰Nj´$°ƒÆ‹ƒS‹‹pS‹“ÔS‰T$4‰L$(‰D$‹D$H‰D$‰|$T‰|$0‹D$`‰D$$‰l$‹|$D‰|$‰t$‹ƒäÿÿÿ‰$ÇD$8ÇD$,ÇD$ ÇD$ÇD$ÿ“Z‰D$H…À„ý‹=ÿÿÿ?t
H‰u‰<$è‹E=ÿÿÿ?tH‰Eu‰,$èï‹L$`‹=ÿÿÿ?‹t$Tt
H‰u‰$èÑ‹=ÿÿÿ?‹l$Xt
H‰u‰4$è·‹L$Hè0…À…mýÿÿ½„º®_鍃%õÿ‰D$Ç$t‹e†ùÿºø^é°öÿÿ½uº_ë
½vº_ÇD$\ÇD$HéÐèÖ½†…Àu‰ùèfþÿ…À…ÇD$HºÄ_靉D$‰4$è°‰D$`…À…ÊøÿÿºÆ_ÇD$L†1í1ÿéGèy1ÿÇD$L†…Àu‰ñèþÿ…À…­1í1ö‹L$`ºÉ_éñ‰D$‰,$èN…À…ÝøÿÿºË_ÇD$L†ÇD$D1ö‹E=ÿÿÿ?tH‰Eu‰,$‰×èu‰ú1í¿ƒ|$D…éèçÇD$L†1ö…Àu‰ùèr~þÿ…À…"1í1ÿºÎ_é͉D$‰,$èÀ‰ÇÇD$L†…À…ÆøÿÿºÐ_1ö顋w…ö„®‹O‹=ÿÿÿ?…ï‹=ÿÿÿ?…ò‹½=ÿÿÿ?…ñéõºå_1ö1íëY‹D$D‹x…ÿ„g‹P‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‹L$D‹¾=ÿÿÿ?t	H‰„‚‰T$DéÚøÿÿºü_1ö1í1ÿ‹L$D‹=ÿÿÿ?tH‰u‰$‰T$DèA‹T$D‹L$`…Éul酋D$`‹h…í„æ‹P‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‹L$`‹¿=ÿÿÿ?t	H‰„	‰T$`é÷øÿÿ1ÿÇD$L†º`1í1ö‹L$`‹=ÿÿÿ?tH‰u‰$‰T$D诋T$D…öt‹=ÿÿÿ?tH‰u‰4$‰Ö菉ò…ít‹E=ÿÿÿ?tH‰Eu‰,$‰Öèo‰ò…ÿt‹=ÿÿÿ?tH‰u‰<$‰ÖèQ‰òƒ%õÿ‰D$‹D$L‰$‹e†ùÿèÃÁýÿÇD$H1l$Xéçùÿÿº`¾†ëu‹‹Y‹“¤WÇ$è|ƒþÿ½‡ÇD$H…À„³‰ljÁèþƒþÿ‹º&`=ÿÿÿ?„M½‡H‰…?‰<$‰Öè´‰òé&ºB`¾‰‹l$X‹=ÿÿÿ?tH‰u‰<$‰×臉úƒ%õÿ‰D$‰4$‹e†ùÿèýÀýÿÇD$H1Àé%ùÿÿ½ŽºP`éЍƒšÿøÿ‰D$‹„$¸‰D$D$x‰D$„$ˆ‰$‹T$Xèÿš…ÀxT‹|$x‹D$|‰D$D‹„$€‰D$L‹¬$„éóÿÿ@‰‹=ÿÿÿ?„ýÿÿ@‰‹½=ÿÿÿ?t	H‰„ΉÏéªõÿÿ¾^éÞñÿÿ¾^éÔñÿÿ‹‹Y‹“¤WÇ$è‚þÿ½~…À„a‰ljÁ襂þÿ‹=ÿÿÿ?…³ÇD$Hºc_éçº_ÇD$L€ÇD$`éçüÿÿº‰_ÇD$LÇD$`é£ûÿÿº“_ÇD$L‚é‘ûÿÿº_ÇD$L‹t$Té{ûÿÿ¾…^é!ñÿÿ‰<$‰ÏèöéÔôÿÿ‰$‰T$DèåéPõÿÿ‰$‰T$`èÔéæõÿÿ¾˜^éæðÿÿ½~ºc_H‰u/éóýÿÿ½yº7_ÇD$Hë"½zºA_ë
½{ºK_ÇD$H‹|$Pƒ%õÿ‰D$‰,$‹e†ùÿèó¾ýÿ‹l$X1Mùÿÿÿ?„6÷ÿÿé÷ÿÿ1öé#ôÿÿ1ÿé©ôÿÿ1íéIõÿÿº"`뮺__량Æé¼òÿÿ‰Åé*óÿÿ‰ÅéšóÿÿUSWVƒì,è[À_‹L$L‹|$H‹D$DÇD$ÇD$“ T‰T$ “¨U‰T$$ÇD$(‹«ÿÿÿ‰l$…Ét.¸…ÿtfƒÿt@ƒÿ…׋h‰l$‹‰D$‰D$‹Aéƒÿ„,ƒÿ…¬‹h‰l$é‰T$‹‰D$q‹y‰D$…ÿBéÛ‰l$‰T$‹y…ÿ~_A‰D$‹« T1��9l±„áF9÷uñ1��‹T±ƒì‰éjèP›ƒÄ…À…¦F9÷‹L$LuÜèg…|$H…ª1ÿŸ
‹ùÿ“9fùÿNы‹ÿÿÿ³õÿ»ÍUùÿNþ@ƒì³$ùÿ«Afùÿÿt$LWPRVUÿ1è`ƒÄ ºÑ`ƒìƒ%õÿ‹jùÿPhèî¼ýÿƒÄ1À郋«ÿÿÿ‹‰D$‰D$éЋL$LˆYÿÿÿ‹D$‹°‰D$…À„FÿÿÿO‹l$‹t$‰D$…ÿŽž‰|$‹>…ÿ~i‹«¨U1��9l±t2F9÷uõ1��‹T±ƒì‰éjè0šƒÄ…ÀuF9÷‹L$Luàë$‹L$Lx‹D$‹,°…ít‰l$‹D$H‹|$H‹T$ë#è%…À…v‹«ÿÿÿ‹|$H‹L$L‹T$‹D$…À‹D$@‹¸°‹ùÿÿÿ?tA‰ƒÀ‹“øV‹³¬Oƒì‹‹èÿÿÿjVRjVRjÿ³$Tÿt$0jjWUPQÿ“ZƒÄ@‰Ƌ…ötJ=ÿÿÿ?tH‰uƒìWèþƒÄ‰ñèd&…Àt^‹ùÿÿÿ?tI‰uƒìV‰ÆèÖ‰ðƒÄƒÄ,^_[]Ã=ÿÿÿ?tH‰uƒìW贃ă썃%õÿ‹jùÿºaPháé/þÿÿƒì»%õÿ‹jùÿºaWhæ‰Çè»ýÿ‰øƒÄ‹ùÿÿÿ?…xÿÿÿ닍ƒ$ùÿt$‰ý|$ PUVWè#•ƒÄ…Àx‹D$‰D$‹l$é¼þÿÿºÁ`é©ýÿÿºµ`éŸýÿÿº¼`é•ýÿÿUSWVìœè[Ãm[‹¼$¸‹„$´ÇD$tÇD$p‹üR‰Œ$„‹ÐP‰Œ$ˆ‹¨U‰Œ$Œ‹”P‰Œ$‹@V‰Œ$”DŽ$˜‹“ÿÿÿ‰T$x‹«ÀV‰l$|‹‹W‰Œ$€ƒ¼$¼‰L$l„­ƒÿ‡ï¸‰L$@‹Œ»ØõÿÙÿá‰l$P‰T$H‹„$¼‹p…ö~bP‹«üR1ÿ‰T$d‹„$¼9l¸„åG9þuê1ÿ‹„$¼‹T¸Ç$‰éè'—…À…¯G9þuÚèE…¼$¸tUº~aépOþƒùwC‹“ÿÿÿ‹Œ‹ðõÿÙÿá‹H‰L$l‰Œ$€‹h‰l$|‹P‰T$x‰T$H‹H‰L$t‹‰T$péD1ÿ
D@‹ùÿ“9fùÿLы‹ÿÿÿ‹	‰|$³ÍUùÿ‰t$‰T$“$ùÿ‰T$“Afùÿ‰T$‰$‰D$è຺a鯋h‰l$|‹H‰L$H‰L$x‹H‰L$t‹‰T$p‹„$¼p‹xé…‰T$H‹H‰L$t‹‰T$p‹„$¼p‹@‰D$(…ÀÀé…‰l$P‹H‰L$H‰L$x‹H‰L$t‹‰T$p‹„$¼p‹@‰D$(…ÀŽL‰T$4‰L$L‰t$d‹>…ÿŽê‹«”P1��‹„$¼9l°„ªF9÷uê1��‹„$¼‹T°Ç$‰éèg•…Àu|F9÷uÞ阉T$H‰l$P‹‰D$4‰D$p‹„$¼H‰L$d‹x‰|$(…ÿæé;‹H‰L$l‰Œ$€‹H‰ΉL$|‹H‰L$H‰L$x‹H‰L$t‹‰T$p‹„$¼‹héx$‹D$@‹°…Àt‰D$|‹|$(O‰ŋL$L‹T$4‹t$dë!èì…L$L‹l$P‹T$4‹|$(‹t$d…[4‰|$(…ÿŽ#‰T$4‰l$P‰L$L‹>…ÿŽ„‹«@V1��‹„$¼9l°t9F9÷uî1��‹„$¼‹T°Ç$‰éè7”…ÀuF9÷uÞë2x0‹D$@‹°…Àt%‰„$€‹l$(M‰D$l‹L$L‹t$P‹T$4‹¼$¸ë$è%…L$L‹t$P‹T$4‹¼$¸‹l$(…‡3…í‰õŽ[ƒ$ùÿ‰D$‰|$D$p‰D$„$„‰$‹Œ$¼‹T$@萅Àˆ2‹T$p‹L$t‹D$x‰D$H‹l$|‹„$€‰D$léÿˆPüÿÿ‹D$@‹¸‰D$p…À„=üÿÿ‰D$4N‰t$(‹D$d‹8…ÿ~Z‹«ÐP1��‹„$¼9l°„´F9÷uê1��‹„$¼‹T°Ç$‰éè÷’…À…‚F9÷uÚè
…À…3‹ƒÿÿÿ‹‹ÍUùÿ‰L$‹ùÿ‰L$‹$ùÿ‰L$‹Afùÿ‰L$‰$ÇD$ÇD$èºˆaƒ%õÿ‰D$Ç$鍋Ôdùÿ褴ýÿ1íéE0x‹D$@‹°‰L$t…É„nÿÿÿ‹D$(H‹l$P‹T$4‹t$d‰D$(…ÀŽÊ‰T$4‰l$P‰L$L‰t$d‹>…ÿ~}‹«¨U1��‹„$¼9l°t9F9÷uî1��‹„$¼‹T°Ç$‰éèב…ÀuF9÷uÞë$x"‹D$@‹°…Àt‰D$H‰D$x‹D$(H‹L$L‹T$4ë#èÓ…À…)2‹ƒÿÿÿ‰D$H‹L$L‹T$4‹D$(‹t$d‰D$(…À´ûÿÿ‹l$P‹=ÿÿÿ?t@‰‰T$4‹=ÿÿÿ?t@‰‰L$LÇ$èU…À„h‹“(V‹
ùÿÿÿ?‰l$Pt	A‰
‹“(V‹H‰‹³äS‰ÅèNÇD$\þaÇD$<p…	l$(„M‰NjƒLM‰l$‰|$‰D$‰4$ÇD$è‰Ƌ=ÿÿÿ?t
H‰u‰<$èV	…ö„	‹L$(‹=ÿÿÿ?t
H‰u‰$è4	‹“(V‰ñèרýÿ‰D$d…À„-‹D$d‹=ÿÿÿ?t'H‹T$d‰
ùÿÿÿ?t‹L$d‰…Àu‹D$d‰$èç‹=ÿÿÿ?t
H‰u‰4$èÑ‹³ÌS‹ƒLM‹N‰L$‰t$‰$èâ…À„'‹ùÿÿÿ?tA‰‹“ P‹H‹IH…ɉD$(„e‰T$‰$ÿщƅT$4„h‹L$(‹=ÿÿÿ?tH‰u‰$èT‹T$4‰÷‹F1í;ƒTÿÿÿ„V1ö‰´$„‰”$ˆ­÷؍ˆE‰,$‰ý‰ù辅þÿ‰Džöt‹=ÿÿÿ?t
H‰u‰4$èò…ÿ„D‹E=ÿÿÿ?tH‰Et‹L$4‹=ÿÿÿ?t$H‰u‰$èÀë‰,$è¶‹L$4‹=ÿÿÿ?u܋³ÌS‹ƒLM‹N‰L$‰t$‰$èº
…À„ö‰ŋ=ÿÿÿ?t@‰E‹ƒ P‹M‹IH…É„2‰D$‰,$ÿщD$(…T$L„5‰|$@‹E=ÿÿÿ?tH‰Eu‰,$è*‹T$L‹D$(‹@1ÿ;ƒTÿÿÿ„.1ö‰´$„‰”$ˆ½÷؍ˆG‰<$‹L$(蒄þÿ‰Ņöt‹=ÿÿÿ?t
H‰u‰4$èÆ…í‹|$@„/‹T$(‹=ÿÿÿ?‹L$LtH‰t‹=ÿÿÿ?t$H‰u‰$èŽë‰$è„‹L$L‹=ÿÿÿ?u܋D$H;ƒÿÿÿtc‹HöAW…Ó‹ƒŒM9Á„Å‹‘¬…Ò„§‹J…É~1��9D²„›F9ñuñ‹L$H‹=ÿÿÿ?t@‰‰L$hé®Ç$èl‰D$h…À…–ºcbÇD$h‰l$L½vÇD$HÇD$DÇD$`ÇD$(ÇD$0ÇD$,é­.‹‰€9Át…Éuò;ƒPÿÿÿ…jÿÿÿÇ$èï‰D$h…À„"‹L$H‹=ÿÿÿ?t@‰‹D$h‹@‰‹ƒ„U‹O‹IH…É„è‰D$‰<$ÿщƅÀ„ë‰4$èë
ƒøÿ„싁ùÿÿÿ?tI‰u‰4$‰Æè	‰ðƒø‰l$8…ñ‹ƒ„U‹M‹IH…É„(‰D$‰,$ÿщƅÀ„+‰4$è‹
ƒøÿ„,‹ùÿÿÿ?t	I‰„ƒø‹l$8… ‹ƒ„U‹M‹IH…É„à‰D$‰,$ÿщƅÀ„ãÇD$Ç$‰ñ1Ò胎…À„ý‹ùÿÿÿ?‰D$(t
I‰u‰4$è@‹ƒ„U‹M‹IH…É„L‰D$‰,$ÿщÆÇD$H…À„OÇD$Ç$‰ñºèŽ…À„EÇD$<~‹ùÿÿÿ?tI‰u‰4$‰Æè͉ð‰ljD$‹l$(‰,$ÇD$èá	…À„;‰ƋE=ÿÿÿ?t‰éH‰Eu‰$荋=ÿÿÿ?t
H‰u‰<$èw;³4ÿÿÿt0;³8ÿÿÿt(;³ÿÿÿt ‰4$èç…|$@ˆ,‹ùÿÿÿ?uë*1À;³4ÿÿÿ”|$@‹ùÿÿÿ?tI‰u‰4$‰Æè‰ð…À…‹‹ƒ„U‹O‹IH…É„ï‰D$‰<$ÿщƅÀ„òÇD$Ç$‰ñ1ÒèÀ„ì‰ŋ=ÿÿÿ?t
H‰u‰4$讋ƒ„U‹T$8‹J‹IH…É„‰D$‰$ÿщƅÀ„ ÇD$Ç$‰ñ1Ò苌…À„&‹ùÿÿÿ?tI‰u‰4$‰ÆèJ‰ð‰D$(‰D$‰,$ÇD$è`…À„*‰ƋE=ÿÿÿ?tH‰Eu‰,$è‹L$(‹=ÿÿÿ?t
H‰u‰$èô;³4ÿÿÿ‹l$8t,;³8ÿÿÿt$;³ÿÿÿt‰4$è`…Àˆ‹ùÿÿÿ?uë&1À;³4ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æè˜‰ð…À…(‹D$h‹@‹H8…É„‹I…É„‹ƒ4W‰D$‹D$h‰$ÿÑÇD$D…À„L,‰Ƌ@;ƒ$ÿÿÿ…ƒ>…
‰t$HÇ‹ƒ„U‹O‹IH…É„W‰D$‰<$ÿхÀ„ZÇD$Ç$‰IÅ1Òè‹…À„J‰ƋE=ÿÿÿ?t‰éH‰Eu‰$èÇ‹L$H‹A‹I9Á~#Ñù9È~‹ùÿÿÿ?tA‰‹T$H‹J‰4@‰Bë‰t$‹D$H‰$èöƒøÿ„‹¼$°‹=ÿÿÿ?t
H‰u‰4$è`‹ƒäU‹O‹IH…É„-‰D$‰<$ÿщŅ|$@„0‹E;ƒTÿÿÿ…A‹u…ö„6‰é‹m‹=ÿÿÿ?u‹E=ÿÿÿ?u‹¿=ÿÿÿ?u!ë,@‰‹E=ÿÿÿ?tã@‰E‹¿=ÿÿÿ?t
H‰u‰$èÇÿ‰´$„‹D$H‰„$ˆ½÷؍ˆG‰<$‰éèH}þÿ…öt‹ùÿÿÿ?tI‰u‰4$‰Æè{ÿ‰ð…|$@„ ‹Mùÿÿÿ?tI‰Mu‰,$‰ÆèRÿ‰ð‹“$U‹H‹IH…ɉD$(„u‰T$‰$ÿщŅÀ„x‹L$(‹=ÿÿÿ?t
H‰u‰$èÿ‹ƒ„U‹O‹IH…É„÷‰D$‰<$ÿхÀ„úÇD$Ç$‰IÆ1Òè숅À„߉D$(‹=ÿÿÿ?t‰ñH‰u‰$è¨þ‹E;ƒTÿÿÿ…û‰é‹m…í„C‰ʋq‹E=ÿÿÿ?u‹=ÿÿÿ?u‹¿=ÿÿÿ?u ë+@‰E‹=ÿÿÿ?tã@‰‹¿=ÿÿÿ?t
H‰u‰$è9þ‰ñ‰¬$„‹ƒW‰„$ˆ‹D$(‰„$Œ½÷؍ˆƒÏ‰<$‰Îè©{þÿ‰D$D…ít‹E=ÿÿÿ?tH‰Eu‰,$èÙý‹L$(‹=ÿÿÿ?‹|$@t
H‰u‰$è»ýƒ|$D‰õ„‹E=ÿÿÿ?tH‰Eu‰,$è–ý‹ƒ,P‹T$8‹J‹IH…É„>‰D$‰$ÿщŅÀ„A‹³ÌS‹ƒLM‹N‰L$‰t$‰$è|…À„,‹ùÿÿÿ?tA‰‹“Q‹H‹IH…ɉD$X„a‰T$‰$ÿÑÇD$<š…À„d‰D$(‹L$X‹=ÿÿÿ?t
H‰u‰$èèü‹E;ƒTÿÿÿ…­‰é‹m…í„¢‰ʋq‹E=ÿÿÿ?u‹=ÿÿÿ?u‹¿=ÿÿÿ?u ë+@‰E‹=ÿÿÿ?tã@‰‹¿=ÿÿÿ?t
H‰u‰$èyü‰ñ‰¬$„‹D$(‰„$ˆ½÷؍ˆG‰<$‰Îèøyþÿ‰Dží‰D$Lt‹E=ÿÿÿ?tH‰Eu‰,$è&ü‹|$L‹L$(‹=ÿÿÿ?tH‰u‰$èü‹|$L…ÿ‰õ„Ù‹E=ÿÿÿ?tH‰Eu‰,$èâû‹|$L‹L$8‹=ÿÿÿ?tH‰u‰$èÄû‹|$L‹D$d‹=ÿÿÿ?t@‹T$d‰‹T$d‹B1ö‰ѽ;ƒTÿÿÿ„‹‰¬$„‰¼$ˆµ÷؍ˆF‰4$‰Ïèyþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$èGû…ö„¦‹=ÿÿÿ?t
H‰u‰<$è)û‹F;ƒ(ÿÿÿ…Á‹Fƒø‹|$@…s FV‰ñƒÁ‹‹‹	‰L$0‰K=ÿÿÿ?…"‹=ÿÿÿ?…%‹D$0‹=ÿÿÿ?t@‹l$0‰E‹=ÿÿÿ?‰T$(‰L$`t
H‰u‰4$è¦ú‹“ôQÇ$‹t$P‰ñèÀˆÖ„Á‹“ÀVÇ$‰ñè́½žÇD$,…Àˆ¾t"‹“ TÇ$‰ñ衁…Àˆ~…¤‹»ÌS‹ƒLM‹O‰L$‰|$‰$èDý…À„ƉƋ=ÿÿÿ?t@‰‹ƒøO‹N‹IH…ɄωD$‰4$ÿщD$X…À„Ò‹=ÿÿÿ?t
H‰u‰4$è¿ù‹»ÌS‹ƒLM‹O‰L$‰|$‰$èÐü…À„ЉƋ=ÿÿÿ?t@‰‹|$@‹ƒQ‹N‹IH…É„ø‰D$‰4$ÿщŅÀ„û‹=ÿÿÿ?t
H‰u‰4$èIù‹ƒO‹T$0‹J‹IH…É„‰D$‰$ÿщƅD$(„‰D$‰4$èŽÿ…À„‹ùÿÿÿ?tI‰u‰4$‰Æèíø‰ð‹M1ö;‹Tÿÿÿ‰l$8„1퉬$„‰lj„$ˆ‹D$0‰„$Œµ÷؍ˆƒÎ‰4$‹L$8èHvþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$èzø‹=ÿÿÿ?t
H‰u‰<$èdø…ö‹l$8„â‹E=ÿÿÿ?‹|$@tH‰Eu‰,$è<øÇ$èÀø…À„щʼnp‹L$L‹=ÿÿÿ?t@‰‰Mè«ú…À„Ó‰Ɖl$8‹ƒ@U‹l$l‰l$‰D$‰4$èCùÇD$TÇD$<¢…Àˆ}‹ƒ8P‰l$‰D$‰4$èù…Àˆi‹D$X‹@‹x@…ÿ‹l$8„¼ƒ½‡ùÿ‰$è‰üÇD$\‚d…À…Ɖt$‰l$‹D$X‰$ÿ׉Çèqü‰|$,…ÿ„‹|$X‹=ÿÿÿ?t
H‰u‰<$è;÷‹E=ÿÿÿ?tH‰Eu‰,$è#÷‹=ÿÿÿ?‹|$,t
H‰u‰4$è	÷;»4ÿÿÿ„;»8ÿÿÿ„;»ÿÿÿ„u‰<$èmù…L$Pˆ+…À…ék@‰‹=ÿÿÿ?„Ûûÿÿ@‰‹D$0‹=ÿÿÿ?…Ôûÿÿé×ûÿÿ‰4$‰Æè‘ö‰ðƒø‹l$8„àñÿÿ‹³Y‹»¬W‹F‹h@…í„\ƒ½‡ùÿ‰$èZûÇD$H…À…ĉ|$‰4$ÇD$ÿՉÆèBû…ö„‰ñèCbþÿ‹ÇD$H=ÿÿÿ?‹|$@u
ÇD$<ëÇD$<H‰u‰4$èïõÇD$D1ÉÇD$(ÇD$0ÇD$,‹l$8ºýbéZÇD$,‹»ÌS‹ƒLM‹O‰L$‰|$‰$èÈø…À„„‰Ƌ=ÿÿÿ?t@‰‹|$@‹ƒQ‹N‹IH…É„‰‰D$‰4$ÿщŅÀ„Œ‹=ÿÿÿ?t
H‰u‰4$èAõ‹³ÌS‹ƒLM‹N‰L$‰t$‰$èRø…À„€‹ùÿÿÿ?tA‰‹“´U‹H‹IH…ɉD$X„›‰T$‰$ÿхL$(„ž‰ljl$8‹T$X‹=ÿÿÿ?tH‰u‰$èÀô‹L$(‹G1í;ƒTÿÿÿ„‰1ö‰¬$„‰Œ$ˆµ÷؍ˆF‰4$‰ùè.rþÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$è`ô…ö„z‹=ÿÿÿ?t
H‰u‰<$èBô‹“ÀW‹N‹A4‹I8…É„O‹I…É„D‰T$‰4$ÿщŋ|$@…í„T‹=ÿÿÿ?t
H‰u‰4$èóó‹D$0‰D$‰,$ècú…À„D‰KE=ÿÿÿ?tH‰Eu‰,$‰Îè¿ó‰ñ‹D$8‹@1í;ƒTÿÿÿ„D1ö‰´$„‹D$D‰„$ˆ‰ωŒ$Œ­÷؍ˆƒÍ‰,$‹L$8èqþÿ‰Ņöt‹=ÿÿÿ?t
H‰u‰4$èNó‹=ÿÿÿ?t
H‰u‰<$è8ó…í„*‹L$8‹=ÿÿÿ?‹|$@t
H‰u‰$èó‹L$D‹=ÿÿÿ?t
H‰u‰$èøò‰|$‰,$è\ø‰D$D…À„‹E=ÿÿÿ?tH‰Eu‰,$èÈò‹D$H‰$èLù…À„í‰Ƌƒ„U‹T$D‹J‹IL…É„â‰t$‰D$‰$ÿхL$`ˆå‹=ÿÿÿ?t
H‰u‰4$èkò‹t$D‹=ÿÿÿ?t@‰‰t$4‹t$LéÇD$\€dëÇD$\dÇD$,‹D$`‰D$P‰ù‹l$8‹=ÿÿÿ?t	H‰„Љè‹T$(‰ωʼn|$4‹L$P‰T$(…T$\‹t$Tt(‹E=ÿÿÿ?tH‰Eu‰,$‰Չt$T‰ÏèÒñ‰ù‹t$T‰ê‹|$4‹l$X…ít0‹E=ÿÿÿ?t&H‰Eu ‰,$‰Չt$T‰|$@‰Ïèšñ‰ù‹|$@‹t$T‰ê‹l$L…ö„‹=ÿÿÿ?„éê1À;»4ÿÿÿ”L$P…À…¢ûÿÿ‹“ÀVÇ$è§x…Àˆ7„D‹‹ÄV辗ýÿ…À„z‹“¼V‹H‹IH…É„y‰T$‰ʼn$ÿщƅÀ„|‹E=ÿÿÿ?tH‰Eu‰,$èåð‹“¸WÇ$‰ñèQ\þÿ…À„q‹ùÿÿÿ?tI‰u‰4$‰Æè°ð‰ð‹ùÿÿÿ?„éúÿÿI‰…àúÿÿ‰$èðéÓúÿÿ‰4$‰Ïè€ð‰è‹T$(éiþÿÿƒ%õÿ‰D$Ç$p‹Ôdùÿºùaèä™ýÿ1í‹t$L‹T$4éK‹|$4ÇD$hÇD$HÇD$DÇD$P1ÒÇD$4ÇD$,1ö1ÀÇD$0ÇD$TÇD$dé
ÇD$TÇD$<pÇD$\bÇD$X1íÇD$,ÇD$0ÇD$(ÇD$PÇD$DÇD$HÇD$hÇD$d‹L$4é]ýÿÿèñ½sÇD$h…Àu‰ñè–Sþÿ…À…Áæÿÿ‹|$4ÇD$HÇD$DÇD$`ÇD$(ÇD$0ÇD$,ºbé(‰T$‰$è´ð‰ƅT$4…˜æÿÿÇD$\bÇD$<sÇD$h‰×ét‹w…ö„‰ù‹‹=ÿÿÿ?…:‹=ÿÿÿ?…=‹½=ÿÿÿ?„pæÿÿé;º&bÇD$<sÇD$hé”èðÇD$h…Àu‰ñè¤Rþÿ…À…„ÇD$HÇD$DÇD$`ÇD$(ÇD$0ÇD$,½tº4bé5‰D$‰,$èÁï‰D$(…T$L…Ëæÿÿº6bÇD$<tÇD$h‰|$4ÇD$HÇD$Déq	‹D$(‹p…ö„‹h‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‹L$(‹¿=ÿÿÿ?tH‰u‰$è˜í‹T$L‰l$(é|æÿÿÇD$\KbÇD$<tÇD$hÇD$HÇD$DéщD$‰<$èòî‰ƅÀ…èÿÿº±bÇD$<|éÛ	ÇD$TÇD$<|ÇD$\³bÇD$X‰ê1í‰T$L靋‹Y‹“¨WÇ$èqXþÿÇD$H…À„2‰ƉÁèøXþÿ‹=ÿÿÿ?…zÇD$<}邉D$‰,$èRî‰ƅÀ…ÕçÿÿºÕbÇD$<~é¯ÇD$TÇD$<~ÇD$\×bÇD$X1í‹D$8‰D$L‰ùÇD$,é·‹@‹‹ÿÿÿ‹	‰D$ƒŽ…ùÿ‰D$‰$èíº=cÇD$<‡éω4$èÂò…À…3ÇD$TÇD$<‡ÇD$\?cÇD$X‰l$L‰ù1íÇD$,é?1ö1ÿéìÿÿ…|$@„ýƒx„ó‰ñè/þ‰Ņí…¬÷ÿÿÇD$TÇD$<«ÇD$\eÇD$Xé\ùÿÿ@‰‹=ÿÿÿ?„Ãüÿÿ@‰‹½=ÿÿÿ?„0ãÿÿH‰…'ãÿÿ‰$èZë‹T$4éãÿÿÇD$<}H‰u‰4$è<ëÇD$D1ÉÇD$(ÇD$0ÇD$,‹l$8ºÃb駉|$‰4$ÇD$èð‰ƅÀ…ÄôÿÿºùbÇD$<ÇD$HÇD$D1ÉÇD$(ÇD$0ÇD$,‹|$@騉D$‰,$èBì‰ƅÀ…æÿÿºßbÇD$<~é+ÇD$D1ÉÇD$(ÇD$0ÇD$,‹|$@ëhÇD$TÇD$<~ÇD$\ábÇD$X‰ê1íÇD$,‰T$Léè´ë…|$@„{ÇD$D1ÉÇD$(ÇD$0ÇD$,ÇD$<‹l$8ºùbé{
‰D$‰,$ètë‰ÆÇD$H…À…±åÿÿÇD$<~ÇD$\äb‰l$Lé>üÿÿÇD$<~ÇD$\æb‰l$LÇD$DÇD$P1ÒÇD$4ÇD$,éýÇD$\éb‹D$8‰D$LÇD$DÇD$P1ÒÇD$4ÇD$,1öÇD$0ÇD$T‰ø‹|$@éÀÇD$\ìbÇD$<~é]‰D$‰<$èžê‰ƅÀ…æÿÿºcÇD$<€ÇD$HéâÇD$TÇD$<€ÇD$\cÇD$X1íÇD$,‹D$8‰D$L‰ùÇD$0ÇD$(ÇD$PÇD$DÇD$HéSöÿÿ‰D$‰$è
ê‰ƅÀ…àåÿÿºcÇD$<€ÇD$H‰|$4‹D$8‰D$LéMúÿÿÇD$TÇD$<€ÇD$\cÇD$XÇD$,ÇD$0‹D$8‰D$L‰ùé`ÿÿÿÇD$\cÇD$<€ÇD$H‹D$8‰D$LÇD$DÇD$P‰è1ÒÇD$4éÇD$\cÇD$<€ÇD$HÇD$DÇD$PÇD$lÇD$4ÇD$,1ÀÇD$0ÇD$Té5‹‹Y‹“°WÇ$èÎRþÿÇD$H…À„À‰ÆÇD$<‰ÁèMSþÿ‹=ÿÿÿ?t
H‰u‰4$èçÇD$D1ÉÇD$(ÇD$0ÇD$,‹l$8º+cé‚
‹ùÿÿÿ?t‰D$(I‰u‰4$èÌæ‹D$(‰D$Hé•åÿÿ‰D$‰<$èSè…À…¦åÿÿºLcÇD$<ˆ驉l$(ÇD$DÇD$\NcÇD$<ˆéãÇD$TÇD$<ˆÇD$\QcÇD$X1í‹D$8‰D$L‰ùÇD$,ÇD$0ÇD$(ÇD$PÇD$Déùóÿÿ‰D$‰<$è³ç‰Ņ|$@…Ðåÿÿº[cÇD$<‰ÇD$D1ÉÇD$(ÇD$0ÇD$,‹l$8éh	ºocé5‰T$‰$èWç‰ŅÀ…ˆæÿÿÇD$\scÇD$<‰ÇD$D‹D$8‰D$LÇD$P1ÒÇD$4ÇD$,1ö1ÀÇD$0ÇD$T‰T$l‰D$`‹L$(‹=ÿÿÿ?t
H‰u‰$è=å‹D$L‰D$8‹D$`‹L$0‰L$X‰ŋL$4‰L$0‹T$l‰T$(‹L$8‰L$L‰ù…ö…ßòÿÿéôòÿÿ‰D$‰<$è”æ…À…æÿÿºvcëW‰t$(ÇD$DÇD$\xcÇD$<‰‹D$8‰D$LÇD$P1ÒÇD$4‰èÇD$,1öé/ÿÿÿ1ÿ‰é1íé\æÿÿºŽcÇD$<‰ÇD$D‰|$4‹D$8‰D$L1ÉÇD$(ÇD$0ÇD$,ÇD$X1öéWòÿÿ1ÿ1íé	æÿÿ‰D$‰$èÔå‰ŅÀ…¿æÿÿºœcÇD$<šé(þÿÿè£åÇD$<š…Àu‰ñè0Hþÿ…À…Áæÿÿ‰|$4‹D$8‰D$LÇD$(ÇD$0ÇD$,ÇD$X1ö1ɺžcéÌñÿÿ‰T$‰$èRåÇD$<š…À…œæÿÿº c1ɉ|$4‹D$8‰D$LÇD$(ÇD$0ÇD$,1öé~ñÿÿº‹bÇD$<xÇD$hÇD$HÇD$D1ÉÇD$(ÇD$0ÇD$,éljé1í1ÿéªæÿÿº¶c1ɋD$@‰D$4‹D$8‰D$Lé•þÿÿ‹D$d‹h…턊‹@‰D$8‹E=ÿÿÿ?t@‰E‹D$8‹=ÿÿÿ?t@‹L$8‰‹D$d‹¾=ÿÿÿ?tH‹L$d‰u‹D$d‰$è¦â‹|$L‹L$8é	çÿÿº×cÇD$<›1ɋD$@‰D$4ÇD$(ÇD$0ÇD$,ÇD$X1ö‰ýégðÿÿ;ƒ$ÿÿÿ„œ‰4$èõã‰D$T…À„Ø‹=ÿÿÿ?t
H‰u‰4$è#â‹l$T‹E‹xp‰,$ÿ׍³ÍUùÿ‰D$`…À„Ô‰,$ÿ׉D$(…À„ω,$ÿ׉D$0…À„Ó‰,$ÿ׉zè_ñ…Àˆd	‹E=ÿÿÿ?…	‹|$@é
çÿÿºd½ÇD$,é¡
º(dé—
‹‹Y‹“´WÇ$è÷Lþÿ…À„‰ƉÁè†Mþÿ‹º>d=ÿÿÿ?…º‹|$@½ŸéN
èÑâ…Àu‰ùèfEþÿ…À…M‹|$@½¢ºPdé#
‰D$‰4$è¯â‰D$X…À….çÿÿÇD$TÇD$<¢ÇD$\RdÇD$X1í‹D$`‰D$P‹L$@ÇD$,é¢îÿÿèSâ…Àu‰ùèèDþÿ…À…ÖÇD$,‹|$@‹L$`ÇD$<¢ºUd1ö‹l$X‹E=ÿÿÿ?…Ëîÿÿéìîÿÿ‰D$‰4$èâ‰ŅÀ…çÿÿÇD$\WdÇD$<¢‹D$`‰D$P‹T$(‹D$0‰D$4‰t$(‹D$X‰D$0ÇD$,1ö1Àé¼úÿÿ‰D$‰$è·á‰ƅD$(…ïæÿÿºZdéÔÇD$\\d‹D$`‰D$P‹T$(‹D$0‰D$4‰t$(‰è‹L$X‰L$0ÇD$<¢ÇD$,1öéWúÿÿ‰D$4‰ï‹m…í„^
‰ù‹‹E=ÿÿÿ?…'‹=ÿÿÿ?…+‹¾=ÿÿÿ?…*é4ºrdÇD$<¢ÇD$,‹D$@‰D$4ë@ÇD$TÇD$<¢ÇD$\vd1íÇD$,釺~dÇD$<¢ÇD$,‰|$41ö‹L$`éíÿÿè—à…Àu‰ùè,Cþÿ…À…!
‹|$@½«ºëdéé‰D$‰4$èuà‰ŅÀ…téÿÿÇD$TÇD$<«ÇD$\ídÇD$X1í‹D$`‰D$P‰ùétìÿÿè%àÇD$<«ÇD$X…Àu‰ñèªBþÿ…À…eéÿÿ‹D$@‰D$41ö‹L$`ºðdéhìÿÿ‰T$‰$èîß…L$(…béÿÿºòdÇD$<«1ö‹D$@‰D$4‹L$`é0ìÿÿ‰ú‹o…í„Ï‹R‹E=ÿÿÿ?…Ï‹=ÿÿÿ?…Ó‹¾=ÿÿÿ?…Ö‰×éæÇD$\eÇD$<«‹D$`‰D$P‹T$(‹D$0‰D$4‰|$(‹D$81öÇD$0ÇD$T‹|$@é8øÿÿÇD$\eÇD$<«‹D$`‰D$P‹T$(‹D$0‰D$4‰l$(‹D$81öéõ÷ÿÿ‰L$4‹D$8‹p…ö„‹x‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‹L$8‹½=ÿÿÿ?tH‰u‹D$8‰$è݉|$8‹L$4é`éÿÿº$eÇD$<«ÇD$X‹D$@‰D$41ö‹L$`‹l$8éèêÿÿº2e‰l$D½¬éϺ>e½­éÀ‰t$‰D$‰$èÈÝ…L$`‰êÿÿº@eÇD$<­‹=ÿÿÿ?tH‰u‰4$‰T$\‰ý‰Ïèq܉ù‰ï‹T$\‹l$L‰L$`ƒ%õÿ‰D$‹D$<‰$‹ÔdùÿèՅýÿÇD$4‰î‰úƒ|$dt&‹D$d‹=ÿÿÿ?tH‹L$d‰u‹D$d‰$‰õè܉ú‹L$h…Ét‹=ÿÿÿ?tH‰u‰$‰÷‰ÕèêÛ‰ê‹L$H…ɋl$Dt‹=ÿÿÿ?tH‰u‰$‰÷‰ÖèÂÛ‰ò‰þ…ít ‹E=ÿÿÿ?tH‰Eu‰,$‰÷‰ÖèžÛ‰ò‰þ‹L$`…Ét‹=ÿÿÿ?tH‰u‰$‰÷‰ÖèxÛ‰ò‰þ‹L$(…ɋl$4t‹=ÿÿÿ?tH‰u‰$‰÷‰ÖèNÛ‰ò‰þ‹L$0…Ét‹=ÿÿÿ?tH‰u‰$‰÷‰Öè(Û‰ò‰þ‹L$,…Ét‹=ÿÿÿ?tH‰u‰$‰÷‰ÖèÛ‰ò‰þ…Òt‹=ÿÿÿ?tH‰u
‰$‰÷èâÚ…öt‹=ÿÿÿ?t
H‰u‰4$èÈÚ‰èĜ^_[]ú.d鹋Fƒø‹|$@u‹FPHé˜ßÿÿƒø|k‹ƒìÿÿÿ‹‹±cùÿ‰L$‰$ÇD$èPÛÇD$TÇD$<›ÇD$\ácÇD$X1íÇD$,‰ùÇD$0ÇD$(ÇD$PéèÿÿÇD$TÇD$<›ÇD$\ác…Àx4‹‹ìÿÿÿ‹	ƒø“õÿ»ÍUùÿDú‰|$‰D$ƒOeùÿ‰D$‰$è·ÚÇD$X1íÇD$,ÇD$0ÇD$(ÇD$P‹L$@é~çÿÿº¢aéjÎÿÿÇD$,ÇD$4>d½ŸH‰„t‹|$@é{@‰E‹=ÿÿÿ?„Õùÿÿ@‰‹¾=ÿÿÿ?t‰ÊH‰u‰$èBÙ‰|$8‹D$4éaàÿÿ@‰E‹=ÿÿÿ?„-ûÿÿ@‰‹¾=ÿÿÿ?„*ûÿÿ‰ù‰T$4H‰u‰<$èüØ‹|$4‹L$(éFäÿÿºaéµÍÿÿº–aé«Íÿÿ‰t$‰l$‹D$X‰$èç݉D$,…À…fáÿÿÇD$\‚dÇD$,épº‘d½£‹|$@é›èÚ…À„RÇD$,‹D$`‰D$P‹L$@éCæÿÿº†aé3ÍÿÿÇD$\dÇD$<›ÇD$P1ÒÇD$4ÇD$,1ö‹|$@‹D$`éËòÿÿ‹L$T‰ÎH‰‹|$@…qÝÿÿédÝÿÿºaéØÌÿÿºœd½¤‹|$@éý‹‹Y‹“¼WÇ$è]Cþÿ…À„À‰ƉÁèìCþÿ‹=ÿÿÿ?…š‹|$@½¨ºÎdé´º¦d½¥‹|$@顉T$‰ʼn$è+Ù‰ƅÀ…„æÿÿº¨dÇD$<¥‹|$@‹L$`‰î‹=ÿÿÿ?…×úÿÿéïúÿÿÇD$TÇD$<¥ÇD$\³dÇD$X1í‹D$`‰D$P‹L$@éÿäÿÿÇD$4Îd½¨H‰t‹|$@ºÎdë‰4$è׋|$@‹T$4ƒ%õÿ‰D$‰,$‹Ôdùÿèp€ýÿÇD$4é|äÿÿ‰ñèLê‰Ņí…¹âÿÿéëÿÿ1íéyÎÿÿ1ÿéžÏÿÿÇD$<}º¿bé¥ðÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èSÖéfìÿÿÇD$<º'cétðÿÿ1ö‰Á1íéÑÚÿÿÇD$TÇD$<›ÇD$\ûcÇD$X1íÇD$,‹L$@éêûÿÿÇD$(1ÿ뿍³õÿÇD$(ë¿‹D$T‹=ÿÿÿ?tH‹L$T‰u‹D$T‰$èæÕè1æ…Àu"‹ƒìÿÿÿ‹‰t$‰|$‹Oeùÿ‰L$‰$è›ÖÇD$PÇD$<›ÇD$\
dºÇD$4ÇD$,¾ÇD$0ÇD$TÇD$Xƒ|$(‹|$@‹D$`…ÿïÿÿéMãÿÿº:déûóÿÿ1ö1íéüÿÿ1í1öéEüÿÿ1í1öé%øÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èêÔéüÿÿºÊd‹|$@½¨é
þÿÿº=cÇD$<‡ÇD$Héñÿÿ‰ÅénÍÿÿ‰ÆéÜÚÿÿ‰ÆéIÛÿÿ‰ÆéJßÿÿUSWVìŒè[Ã-‹Œ$¬‹´$¨‹„$¤ÇD$\ÇD$X“TS‰T$l“T‰T$p“¨U‰T$tÇD$x‹“ÿÿÿ‰T$`…É„ƒþ‡»‰T$,°‰T$L‹”³õÿÚÿâ‹q…ö~]A‹«TS1ÿ‰D$<9l¹„BG9þuñ1ÿ‹T¹Ç$‰éè>[…À…G9þ‹Œ$¬uÚèUÕ…´$¨t1ºµeéÀ‰T$,ƒþtƒþu‹H‰L$`‹H‰L$\‹‰T$Xé’1þ‹ùÿ“9fùÿLÑœð‹‹ÿÿÿ‹	‰t$³ÍUùÿ‰t$‰T$“&2ùÿ‰T$“Afùÿ‰T$‰$‰D$èÔºÝeé;‹P‰T$\‹‰T$Xq‹A…Àxéò@òD$\‹‰T$X‹Aéó‹‰D$0‰D$XA‰D$<‹i‰l$H…í8釋Œ$¬ˆúþÿÿ‹D$L‹¸‰D$X…À„çþÿÿ‰D$0N‰t$H‹D$<‹(…í~T‹»T1��9|±„ÆF9õuñ1��‹T±Ç$‰ùè¾Y…À…‰F9õ‹Œ$¬uÚèÕÓ…À…|‹ƒÿÿÿ‹‹ÍUùÿ‰L$‹ùÿ‰L$‹&2ùÿ‰L$‹Afùÿ‰L$‰$ÇD$ÇD$èÕÒº¿eƒ%õÿ‰D$Ç$°‹‰€ùÿèd{ýÿ1Àé–‹Œ$¬ˆvÿÿÿ‹D$L‹°‰D$\…À„cÿÿÿ‹D$HH‹T$0‹t$<…ÀŽ¡‰T$0‰D$H‹.…í~h‹»¨U1ö9|±t7F9õuõ1��‹T±Ç$‰ùè¾X…ÀuF9õ‹Œ$¬uÞë*‹Œ$¬x!‹D$L‹°…Àt‰D$`‹D$HH‹´$¨‹T$0ë#è­Ò‹Œ$¬…´$¨‹D$H‹T$0…L…À2‰Ñè ë‰ǃøÿu
ètÒ…À…™‹l$\‹D$`‰D$0ÇD$4ÇD$@‹ƒÐY‹°Ç$ÿ´f(ƒÔõÿfD$‰D$‰l$H‰,$ÿ։ʼnD$DÇD$<…	D$(„F‹E=ÿÿÿ?tH‰Mùÿÿÿ?t‰E…Àu‰,$èKÐÇD$DÇD$4‹E…À„‹‹ÐY‹U‰D$‰$ÿ‘x‰ƋE‰D$L‹ƒ”T‰D$‰,$ÇD$ÿ“Zƒøÿ„6…ö„‰Fÿ‰D$‹D$L‰$ÿ“øYݜ$€›ò„$€ò‹ì^ùÿòX‹ô^ùÿf/ÁvN‹D$H‹P‹ƒ€M9„—‹Š¬…É„y‹Q…ÒŽ
1��9D±„hF9òuñéì‹D$0;ƒÿÿÿ‰|$|‰t$HtVè3Ò‰D$h‹@@‹L$,ë
‹@…Àty‹8…ÿtó9Ïtï‹=ÿÿÿ?t@‰‹O‹=ÿÿÿ?t@‰‰L$T‰<$èøÑ‰D$PëT‰4$èêωD$4…À„ljÆÇ$è`ωD$@…À„‰D$8‰pÇD$4éÀÇD$T1ÿÇD$P‹³T‹ƒLM‹N‰L$‰t$‰$è¯Ñ…À„é‰ŋ=ÿÿÿ?t@‰E‰l$4‹ƒR‹M‹IH…É„î‰D$‰,$ÿщƉD$D…À„ñ‹E=ÿÿÿ?tH‰Eu‰,$è!ÎÇD$4‹F1É;ƒTÿÿÿ„Ó1í‹D$0‰L$l‰D$p­÷؍ƒÂpE‰,$‰͉ñèŽKþÿ‰é‰ʼnD$@…Ét‹=ÿÿÿ?t
H‰u‰$è¼ÍÇD$4…í„‹=ÿÿÿ?t
H‰u‰4$è–Í‹D$H‰$èŠÎ…À„§‰ÆÇ$èÎ…À„̉h‰D$8‰pÇD$@ÇD$DÇD$4‹L$T…Ét‹=ÿÿÿ?t
H‰u‰$è,Í…ÿ‹l$(t‹=ÿÿÿ?t
H‰u‰<$èÍ‹L$P…Ét‹=ÿÿÿ?t
H‰u‰$èðÌ‹³ÌS‹ƒLM‹N‰L$‰t$‰$èÐ…À„0
‰Nj=ÿÿÿ?t@‰‰|$@‹ƒèV‹O‹IH…É„<
‰D$‰<$ÿщD$DÇD$,0‰D$ …À„,
‹=ÿÿÿ?t
H‰u‰<$èlÌÇ$èð̉D$@…À„
‰ŋL$8‹=ÿÿÿ?t@‰‰MèÚΉD$4…À„ü‰Nj³ÌS‹ƒLM‹N‰L$‰t$‰$è=Ï…À„à‹ùÿÿÿ?tA‰‰l$0‹“àR‹H‹IH…É„ä‰T$‰ʼn$ÿхÀ„ç‹Mùÿÿÿ?tI‰Mu‰,$‰Æè²Ë‰ð‹‹Q‰D$‰L$‰<$‰ÆèøÌ…Àˆ8‹=ÿÿÿ?t‰ñH‰u‰$èxË‹l$ ‹E‹p@…ö„½ƒ½‡ùÿ‰$èXÐ…À…ʼn|$‹D$0‰D$‰,$ÿ։ÆèHÐ…ö„Ä‹E=ÿÿÿ?tH‰Eu‰,$èËÇD$D‹L$0‹=ÿÿÿ?t
H‰u‰$èöÊÇD$@‹=ÿÿÿ?t
H‰u‰<$èØÊÇD$4‹=ÿÿÿ?t@‰‹n‹F‹‹ÐY‰t$P‹V‰D$‰$ÿ‘x‰Æò*D$|‹ƒXS‰D$ò$ÇD$ÿ“Zƒøÿ„õ‰l$T‹¼$ ‹L$H…Ét&‰ð™÷ù‰D$$ë#‰t$ ÇD$$þg1Ò1ÿ1ö‹l$(é`ÇD$$‹·°‹«@Q‹~‰l$‰<$è
Ð…À„Ê‹H‹‰ˆ…Ét!‰|$‰t$‰$ÿщD$ …„$ ué°‹ùÿÿÿ?‰D$ tA‰‹„$ ‹€°‹‹4Q‰ŋp‰L$0‰L$‰4$è›Ï…À„‰‰Nj@‹ˆˆ…Ét3‰t$‰l$‰<$ÿщD$4…À„‰Nj@ÇD$@;ƒTÿÿÿt*é¿	‹ùÿÿÿ?tA‰‰|$4ÇD$@;ƒTÿÿÿ…š	‹w‰t$@…ö„‹	‹W‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰T$4‹¹=ÿÿÿ?t	H‰„ˉ׉t$lÇD$p÷؍ƒÂp‰$‰ùè€Fþÿ…öt‹ùÿÿÿ?tI‰u‰4$‰Æè³È‰ðÇD$@…À„®‹ùÿÿÿ?tI‰u‰<$‰ÆèˆÈ‰ð‹|$TÇD$4‹ùÿÿÿ?t
I‰u‰$ècÈè^ΉD$h‹D$$…L$|‹t$L‹¬$ ~^U‰T$,ƒÅ4‰l$0‹T$HÁâ‰T$<‹T$0‰T$‹T$H‰T$‰t$‰|$‰L$‹T$,‰$‰ʼnÎè$Á‰ñ‹t$L‰è|$<HuŋD$h‰$èéÍ‹³PW‹l$ ‹E‹x@…ÿ„ƒ½‡ùÿ‰$è³Ì…À…]‰t$‹l$ ‰,$ÇD$ÿ׉ÆèŸÌ…ö„,‹E=ÿÿÿ?tH‰Eu‰,$èoÇ…ö„Û
‹=ÿÿÿ?‹l$(t
H‰u‰4$èMÇ‹t$P‹1ÿ=ÿÿÿ?t@‰‰ð…í…Méi‰<$‰×è"ǹé#þÿÿ‹’€9Ât…Òuò;ƒPÿÿÿ…Ž‹³ÌS‹ƒLM‹N‰L$‰t$‰$èÊ…À„ ‰Nj=ÿÿÿ?t@‰‰|$D‹ƒ<R‹O‹IH…É„,‰D$‰<$ÿщD$@ÇD$,‰D$L…À„‹=ÿÿÿ?t
H‰u‰<$èzÆ‹ƒQ‹T$H‹J‹IH…É„ø
‰D$‰$ÿщljD$D…L$L„î
‹A1ö;ƒTÿÿÿ„þ
1í‰t$l‰|$p‹ƒœM‰D$t­÷؍ƒÂpƒÍ‰,$‰L$Lè´Cþÿ‰ʼnD$4…öt‹=ÿÿÿ?t
H‰u‰4$èäÅ‹=ÿÿÿ?‹L$LtH‰u‰<$èÊÅ‹L$LÇD$D…í„ì
‹=ÿÿÿ?‹t$Ht
H‰u‰$èœÅÇD$@;«4ÿÿÿt-;«8ÿÿÿt%;«ÿÿÿt‰,$èÈ…Àˆ¯
‹Mùÿÿÿ?uë(1À;«4ÿÿÿ”Mùÿÿÿ?tI‰Mu‰,$‰Çè9ʼnø…l$(„»‹ƒQ‹N‹IH…É„w
‰D$‰4$ÿщljD$4ÇD$,…À„i
‹ƒ`ÿÿÿ‰D$‰<$ÇD$èˉD$@…À„M
‰Ƌ=ÿÿÿ?t
H‰u‰<$èºÄÇD$4;³4ÿÿÿt-;³8ÿÿÿt%;³ÿÿÿt‰4$è"Ç…|$HyÇD$$Àfé
1À;³4ÿÿÿ”|$H‹ùÿÿÿ?tI‰u‰4$‰ÆèUĉðÇD$@…À„Ó‹ƒV‹O‹IH…É„´‰D$‰<$ÿщljD$4ÇD$, …À„¦ÇD$D‹G;ƒTÿÿÿ…P‹o‰l$D…í„A‹w‹E=ÿÿÿ?t@‰E‹=ÿÿÿ?t@‰‰t$4‹¹=ÿÿÿ?tH‰u
‰<$è®Ã¹‰÷‰l$lÇD$p÷؍ƒÂp‰$‰ùè2Aþÿ‰D$@…ít‹Mùÿÿÿ?tI‰Mu‰,$‰Æè_ÉðÇD$D…À„‹ùÿÿÿ?‹l$(tI‰u‰<$‰Æè0Éð‹‹W‰L$‰$ÇD$‰ÇèBɉD$41҅À„ì‰Ƌ=ÿÿÿ?t‰ùH‰u‰$èêÂÇD$@;³4ÿÿÿt);³8ÿÿÿt!;³ÿÿÿt‰4$èRÅ…ÀyÇD$$éféO1À;³4ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰ÆèÂ‰ð…Àt‹»$V‹=ÿÿÿ?t"‹$Vë‹» V‹=ÿÿÿ?t‹ V@‰‹9‹‹YÇD$lT$p‰|$pÇ$€èä?þÿ‰D$4ÇD$,(…À„ç‰ƉÁè7.þÿ‹=ÿÿÿ?t
H‰u‰4$èÂÇD$4ÇD$$#g1ÒÇD$ ÇD$81ö‹D$D…Àt‹ùÿÿÿ?tI‰u‰$‰Õè¼Á‰ê‹l$(‹D$4…Àt‹ùÿÿÿ?tI‰u‰$‰Õè•Á‰ê‹l$(‹D$@…Àt‹ùÿÿÿ?tI‰u‰$‰ÕènÁ‰ê‹l$(‹L$<…Ét‹=ÿÿÿ?tH‰u‰$‰ÕèHÁ‰ê‹l$(…Òt‹=ÿÿÿ?t
H‰u‰$è(Á‹L$ …Ét‹=ÿÿÿ?t
H‰u‰$è
Áƒ%õÿ‰D$‹D$,‰$‹‰€ùÿ‹T$$èzjýÿ1ít!‹Mùÿÿÿ?tI‰Mu‰,$‰õ‰ÆèÇÀ‰ð‰î…öt‹ùÿÿÿ?tI‰u‰4$‰õ‰Æè¤À‰ð‰î…ÿt‹ùÿÿÿ?tI‰u‰<$‰÷‰ÆèÀ‰ð‰þ‹T$8…Òt‹
ùÿÿÿ?tI‰
u‰$‰÷‰ÆèZÀ‰ð‰þ…öt‹ùÿÿÿ?tI‰u‰4$‰Æè9À‰ðČ^_[]ÃÇD$$%fÇD$,鯋‹”Y‹“ÄWÇ$è+þÿ‰D$4…À„J	‰ÆÇD$,‰Áè,þÿ‹=ÿÿÿ?t
H‰u‰4$è̿ÇD$4ÇD$$BféfÇD$$ffÇD$,éQ1ö1Éé¤öÿÿè$Á…À…ø‰ñèµ#þÿ‰D$@…À…h	ÇD$$ígÇD$,0ë‰D$‰<$èûÀé¼òÿÿÇD$$ïg1ÒÇD$ éÇD$$ògéÛÇD$$÷géÎè°À…À…‘ÇD$$ùg‰ñè9#þÿ…À„ªéóÿÿ‰T$‰ʼn$èŽÀ…À…óÿÿÇD$$ûgÇD$ 1ÿ1ö‹D$(‰ê‰Åéèüÿÿƒ&2ùÿ‰D$‰t$D$X‰D$D$l‰$‹T$LèB…Àˆª‹T$Xé—íÿÿèÀ…À…‰ñèª"þÿ‰D$4…:kg„è‰Åéþïÿÿ‰D$‰,$èö¿‰ƉD$D…À…ðÿÿÇD$Dºmg‹t$Hës‹N‰L$4…É„¶‹V‹=ÿÿÿ?t@‰‰L$,‹=ÿÿÿ?t@‰‰T$D‹½=ÿÿÿ?…‰Öé‹t$Dº‚g…öuBëZ‹l$4ÇD$Dº†g…í‹t$HtM‹E=ÿÿÿ?tC‰T$,H‰Eu‰,$覽‹T$,ë+ºˆg‹=ÿÿÿ?t‰ÕH‰u‰4$能‰êÇD$D‹t$HÇD$4‹D$@…Àt‹ùÿÿÿ?tI‰u‰$‰ÕèL½‰êÇD$@ƒ%õÿ‰D$Ç$-‹‰€ùÿè¶fýÿD$@‰D$D$D‰$T$4‹L$hèÚJ…l$(x-‹L$0‹A;ƒ(ÿÿÿ…ì‹=ÿÿÿ?…ÆÇD$ éÄÇD$ ÇD$$®gÇD$,.ÇD$01ҋD$h‹H@‹‰9…Àt‹ùÿÿÿ?tI‰u‰$‰Ö苼‰ò‹L$T…ɋ|$Pt‹=ÿÿÿ?tH‰u‰$‰Öèe¼‰ò…ÿ„/ÇD$8‹=ÿÿÿ?„"‰ÕH‰u‹D$P‰$è3¼‹D$0‰D$<1ÿ1ö‰ê‹l$(é?úÿÿÇD$ @‰‰4$è	½ÇD$,/…À„'‰ÅÇ$è{¼…À„‰h‰D$ ‰D$‹t$0‰4$è,Á‰D$8…À„‹=ÿÿÿ?‹l$(t
H‰u‰4$覻‹L$ ‹=ÿÿÿ?t
H‰u‰$茻‹D$4…Àt‹ùÿÿÿ?t
I‰u‰$èm»ÇD$4‹D$D…Àt‹ùÿÿÿ?t
I‰u‰$èF»ÇD$D‹D$@…Àt‹ùÿÿÿ?t
I‰u‰$è»ÇD$@‹D$h‹H@‹‰9…Àt‹ùÿÿÿ?t
I‰u‰$èñº‹L$T…ɋt$Pt‹=ÿÿÿ?t
H‰u‰$èϺ…ö„×íÿÿ‹=ÿÿÿ?„ÊíÿÿH‰…Áíÿÿ‰4$é´íÿÿ‰|$‹D$0‰D$‰,$赿‰ƅÀ…[ïÿÿÇD$$hë*ÇD$$6hÇD$,5é¬ÇD$$hèï»…À„î1ÒÇD$ éþïÿÿ‹ƒÿÿÿ‹‰l$‰$èd¿ÇD$$XhÇD$,9ÇD$<ëZ‹ƒÿÿÿ‹‹L$0‰L$‰$è2¿ÇD$4¸Zhë¸nh‰D$$‹L$ ‹ÇD$,9ÇD$<=ÿÿÿ?t
H‰u‰$è91ÒÇD$ 1ÿ‹l$(‹t$PéÊ÷ÿÿ‰t$‰,$ÇD$賾‰ÆéòÿÿÇD$$ºhÇD$,9ÇD$<1ÒÇD$ 1ÿ‹t$P‹l$(é~÷ÿÿèæº…À„1ö‹l$ é¼ñÿÿº×eéIçÿÿÇD$$gé;÷ÿÿÇD$8‹D$0‰D$<éØÇD$,*ÇD$$?gé±ÇD$,*ÇD$$Ag霺Ëeéóæÿÿ‰T$8H‰u‰4$èҸ‹t$8‹D$0‹L$,é¿êÿÿº½eéÇæÿÿèBº…À…‰ñèÓþÿ‰D$D…À…ÇD$$fÇD$,ë4‰D$‰<$èºéÌñÿÿÇD$$‘fë‰D$‰$èþ¹éòÿÿÇD$$”f1ÒÇD$ ÇD$81ÿéYöÿÿ‹A‰D$0…À„‹D$L‹p‹D$0‹=ÿÿÿ?t@‹L$0‰‰ñ‹=ÿÿÿ?t@‰‰L$@‹D$L‹½=ÿÿÿ?tH‹L$L‰u‹D$L‰$èշ‰ñ‹t$0é–ñÿÿÇD$$©fé†ÇD$$­fë|ºÆeé¹åÿÿ1í1Ééùóÿÿ‰D$‰4$è4¹éòÿÿÇD$$¼fë#ÇD$$¾fë‰D$‰<$è¹éDóÿÿÇD$$ÏfÇD$<ÇD$ ÇD$81ÿ1ö1ÒébõÿÿÇD$$ãfÇD$<1ÒÇD$ ÇD$8éÎìÿÿÇD$$çfÇD$<é´þÿÿÇD$ ‰$製‰D$0…À…äÇD$$ºgÇD$,/éúÿÿÇD$$¼gëÇD$$¾g‰êë
ÇD$$Ãg1ҋl$(éöùÿÿÇD$,ÇD$$>féCþÿÿÇD$@é÷ÿÿÇD$$ùgé#üÿÿºkgéïøÿÿ1Ééaèÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è¶éóûÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è¶éÝüÿÿÇD$Dé‡ýÿÿ1ö1í‹L$LéÝïÿÿ‰ÇéSéÿÿ‰Çé>ïÿÿ‹t$HééùÿÿUSWVìœè[Ã]‹Œ$¼‹¬$¸‹„$´ÇD$lÇD$h“P‰T$\“¨U‰T$`ÇD$d‹»ÿÿÿ‰|$l…Ét2¨…í„˃ýt@ƒý…<‹x‰|$l‹‰D$0‰D$h‹AéDƒý„œƒý…‹x‰|$l鍉T$$‹0‰t$hQ‹i‰t$0…íޱ‰l$(‹:…ÿŽÓ‹«¨U1��9l±„—F9÷uñ1��‹T±Ç$‰éè.<…À…^F9÷‹Œ$¼uÚéw‰T$$‰|$0‹i…í~\Q‹»P1ö‰T$(9|±„ðF9õuñ1��‹T±Ç$‰ùè¾;…À…³F9õ‹Œ$¼uÚèյ…¬$¸…ë1퍓ùÿ‹9fùÿNÊŸ“ÿÿÿ‹³õÿ»ÍUùÿNþ@‰l$‰|$‰L$‹­?ùÿ‰L$‹Afùÿ‰L$‰$‰D$輴ºPiƒ%õÿ‰D$Ç$@‹PyùÿèK]ýÿ1Àé.
‹»ÿÿÿ‹0‰t$h隋Œ$¼ˆLÿÿÿ‹D$$‹4°‰t$h…ö„9ÿÿÿM‹|$0‹T$(‰t$0…íOþÿÿ‹t$0ë_‹Œ$¼x!‹D$$‹<°…ÿt‰|$l‹D$(H‹¬$¸‹T$$ë)èɴ…À…ð‹»ÿÿÿ‹¬$¸‹Œ$¼‹T$$‹D$(…t$0uÇD$,ÇD$<ÇD$@‰4$詸ÇD$ ƒøÿ„h‰õ‰D$(‹ƒÐY‹°Ç$ÿ´f(ƒõÿfD$‰D$‰,$ÿ։D$,…À„5‰Ɖ|$0‹=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$èl²‰t$LÇD$<‹«ÌS‹ƒLM‹M‰L$‰l$‰$èqµ…À„‰Ƌ=ÿÿÿ?t@‰‰t$,‹ƒP‹N‹IH…É„‰D$‰4$ÿщD$@ÇD$$´…À„‹=ÿÿÿ?t
H‰u‰4$èà±ÇD$,‹«ÌS‹ƒLM‹M‰L$‰l$‰$èé´…À„à‰Ƌ=ÿÿÿ?t@‰‹ƒœR‹N‹IH…É„ú‰D$‰4$ÿщŅÀ„ý‹=ÿÿÿ?t
H‰u‰4$èf±‹E1ÿ;ƒTÿÿÿ„è1ö‰t$\‹D$L‰D$`‹ƒW‰D$d½÷؍ƒÂ`ƒÏ‰<$‰éèÑ.þÿ‰D$,…öt‹ùÿÿÿ?tI‰u‰4$‰Æè±‰ð…À„Ë‹E=ÿÿÿ?tH‰Eu‰,$èް‹L$@‹A1í;ƒTÿÿÿ„´1ÿ‰|$\‹t$,‰t$`­÷؍ƒÂ`E‰,$‰L$ èO.þÿ‰ʼnD$<…ÿt‹=ÿÿÿ?t
H‰u‰<$è°‹=ÿÿÿ?‹L$ tH‰u‰4$èe°‹L$ ÇD$,…턈‹=ÿÿÿ?t
H‰u‰$è;°ÇD$@;«4ÿÿÿ‹t$Lt1;«8ÿÿÿt);«ÿÿÿt!‰,$蟲…L$(ˆL‹Uúÿÿÿ?uë01À;«4ÿÿÿ”L$(‹Uúÿÿÿ?tJ‰Uu‰,$‰Çè̯‰ø‹L$(…À…‹F‰„$„‹l$0;«ÿÿÿtZ蓲‰D$t‹@@‹‹ÿÿÿ됐‹@…À„‡‹0…ötï9Îtë‹=ÿÿÿ?t@‰‹N‹=ÿÿÿ?t@‰‰L$X‰4$èT²‰D$Pëb‰$èF°‰D$<ÇD$$¹…À„©‰ÆÇ$贯‰D$@…À„ž‰ʼnpÇD$<ÇD$@éÎÇD$X1öÇD$P‰t$ ‹»T‹ƒLM‹O‰L$‰|$‰$èù±…À„d
‰Ƌ=ÿÿÿ?t@‰‰t$<‹ƒR‹N‹IH…É„l
‰D$‰4$ÿщD$,…À„o
‹ùÿÿÿ?tI‰u‰4$‰Æèm®‰ðÇD$<‹H1ö;‹Tÿÿÿ„M
‰Å1ÿ‰t$\‹D$0‰D$`½÷؍ƒÂ`G‰<$‰éèØ+þÿ‰ljD$@…öt‹=ÿÿÿ?t
H‰u‰4$è®ÇD$<‰|$$…ÿ‹|$ „F
‹E=ÿÿÿ?‹L$(tH‰Eu‰,$èԭ‹L$(‰$èȮ…À„)
‰ÆÇ$èB®…À„D
‰ŋD$$‰E‰uÇD$@ÇD$,ÇD$<‹L$X…Ét‹=ÿÿÿ?t
H‰u‰$èh­…ÿ‹t$Pt‹=ÿÿÿ?t
H‰u‰<$èJ­…öt‹=ÿÿÿ?t
H‰u‰4$è0­‹»ÌS‹ƒLM‹O‰L$‰|$‰$èA°…À„ɉƋ=ÿÿÿ?t@‰‰t$,‹ƒèV‹N‹IH…Ʉ݉D$‰4$ÿщD$<ÇD$$À…À„à‰ï‰D$0‹=ÿÿÿ?t
H‰u‰4$説‹«ÌS‹ƒLM‹M‰L$‰l$‰$軯…À„¬‰Ƌ=ÿÿÿ?t@‰‰t$,‰ý‹ƒpQ‹N‹IH…É„¶‰D$‰4$ÿхL$0„¹‹úÿÿÿ?tJ‰u‰4$‰Æè-¬‰ð‹L$0ÇD$,‹Q1ö;“Tÿÿÿ‰l$D‰D$ „£1ÿ‰t$\‰l$`‰D$d½÷؍ƒÂ`ƒÏ‰<$‰ÍèŒ)þÿ‰ljD$@…öt‹=ÿÿÿ?t
H‰u‰4$輫ÇD$,‹t$ ‹=ÿÿÿ?‰étH‰u
‰4$蘫‰é…ÿ„Š‹=ÿÿÿ?t
H‰u‰$èx«‹„$°‰D$PÇD$<‹=ÿÿÿ?t@‰ÇD$@‹G‰D$$‹G‹‹ÐY‰|$T‹W‰D$‰$ÿ‘x‰Nj„$°‹°°‹ƒ@Q‹n‰D$0‰D$‰,$èõ°…À„‹H‹‰ˆ…Ét!‰l$‰t$‰$ÿщD$H…„$°u鋁ùÿÿÿ?‰D$HtA‰‹„$°‹°°‹ƒ4Q‹n‰D$0‰D$‰,$舰…À„ú‹P‹Šˆ…Ét)‰l$‰t$‰$ÿщD$<…À„ô‹P;“Tÿÿÿt"éß‹ùÿÿÿ?tA‰‰D$<;“Tÿÿÿ…‹p…ö„·‹h‹ùÿÿÿ?tA‰‹Mùÿÿÿ?tA‰M‰l$<‹ºùÿÿÿ?tI‰u
‰$è󩺉é‰t$\ÇD$`•÷؉ՍƒÂ`‰,$‰Íèu'þÿ‰D$@…öt‹ùÿÿÿ?tI‰u‰4$‰Æ褩‰ð…À„3‹Mùÿÿÿ?tI‰Mu‰,$‰Æè©‰ðÇD$<‹ùÿÿÿ?‹t$$t
I‰u‰$èZ©ÇD$@èM¯‰D$x…ÿ‹L$(Ž‹…ÉŽ]ƒD$P$‰̓å‰È%üÿÿ‰„$€͉D$|1Àòƒì^ùÿò„$ˆ‰|$X‰l$t됐‹D$ Ðt$|9ø,‰t$$‰D$ WÉ1ö‹¬$„‹|$PòL$0òDõòD$‰<$è&òL$0‹T$(ݜ$›ò„$‹D$$òðòXÈF9òu¹1Àò„$ˆò^Cú‹t$$‹Œ$€rO1òÆòYÈòÆòLÆòYÈòLÆòLÆòYÈòLÆòLÆòYÈòLƃÀ9Áu»‹l$t…í‹|$X„ÿÿÿÆ1ɐòÈòYÈòÈA9Íuíéèþÿÿ1ÀfWÀò‹ì^ùÿf(Ñò^ÐÈ9ø|ò‹D$x‰$趭‹³PW‹l$H‹E‹x@…ÿ„‡ƒ½‡ùÿ‰$耬…À…ĉt$‹l$H‰,$ÇD$ÿ׉Æèl¬…ö‹|$T„¤‹E=ÿÿÿ?tH‰Eu‰,$è8§…ö„H‹=ÿÿÿ?‹l$Dt
H‰u‰4$è§‹=ÿÿÿ?t@‰‰ø‹t$L…öt‹ùÿÿÿ?tI‰u‰4$‰Æè禉ð…ÿt‹ùÿÿÿ?tI‰u‰<$‰ÆèȦ‰ð…ít‹Mùÿÿÿ?tI‰Mu‰,$‰Æ触‰ð…ÿt‹ùÿÿÿ?tI‰u‰<$‰Æ舦‰ðĜ^_[]Ã1Ò1ö‰Áé„üÿÿº–iÇD$$°ë
º iÇD$$±ÇD$01ö1ÿ1íÇD$L‹D$,…À…Ûéõ踧…À…?
䎏I
þÿ‰D$,…À…Ë
º¯iÇD$$´éމD$‰4$菧‰D$@ÇD$$´…À…åóÿÿº±iédè\§…Àu‰éèñ	þÿ…À…~
ÇD$01ö1ÿ1�i‹D$,…À…Cé]‰D$‰4$è)§‰ŅÀ…ôÿÿº¶iÇD$0é
‹u…ö„Ž	‰é‹m‹=ÿÿÿ?…Š‹E=ÿÿÿ?…‹¿=ÿÿÿ?„Ýóÿÿ錉l$0ºËiÇD$ é°‹y…ÿ„=	‹q‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰t$@‹½=ÿÿÿ?t
H‰u‰$èФ‰ñéôÿÿºâiÇD$ éJºæiÇD$ é8‹‹Y‹“ÈWÇ$è
þÿ‰D$<ÇD$$µ…À„³‰ÆÇD$ ‰Áèˆþÿ‹=ÿÿÿ?t
H‰u‰4$èR¤ÇD$<ºõiéÓè˥…À…‰ùè\þÿ‰D$,…À…ìºÉjÇD$$ÀÇD$ 醉D$‰4$蚥‰D$<ÇD$$À…À… ÷ÿÿÇD$ ºËjëWèb¥…À…#ÇD$ ‰éèëþÿ‰D$,ºÎj…	ýt,‰Æé6÷ÿÿ‰D$‰4$è9¥…L$0…G÷ÿÿÇD$ ºÐjÇD$01ö1ÿ‹D$,…À…é+‹Q‰T$,…Ò„á‹i‰֋úÿÿÿ?tB‰‹Uúÿÿÿ?tB‰U‰l$<‹¿úÿÿÿ?tJ‰u‰$裋D$ ‰é‹l$Dé÷ÿÿºæjÇD$ ÇD$01ö1ÿ鋃ÿÿÿ‹‹L$0‰L$‰$èþ§ºkÇD$$ÆÇD$ ÇD$01ö‹l$D‹|$T‹D$,…À…Dé^‹ƒÿÿÿ‹‹L$0‰L$‰$讧ÇD$<ºk‹l$D‹L$Hë
º2k‹L$H‹l$D‹ÇD$ =ÿÿÿ?‹|$Tu
ÇD$$ÆëÇD$$ÆH‰u‰$‰Öè$¢‰òÇD$01ö‹D$,…À…µéωt$‰,$ÇD$觉Ƌ|$Té˜úÿÿº»kÇD$$ÆÇD$ ÇD$01ö‹l$D‹D$,…À…bé|1ö‹|$Tëè7£…À„51ö‹l$HéDúÿÿƒ­?ùÿ‰D$‰l$D$h‰D$D$\‰$èR%…Àˆ‹t$h‹|$léTîÿÿ‰þèæ¢¿Fj…À…‰ñèrþÿ‰D$<…À„ï‰Æé€òÿÿ‰D$‰4$èâ‰D$,…À…‘òÿÿÇD$,¿Hj釋p‰t$<…ö„«‹h‹ùÿÿÿ?tA‰‹Mùÿÿÿ?tA‰M‰l$,‹¿ùÿÿÿ?„ròÿÿI‰…iòÿÿ‰$诠é\òÿÿ‹t$,¿]j…ö‹l$0u<ëP‹t$<ÇD$,¿aj…ö‹l$0t?‹=ÿÿÿ?t6H‰u1‰4$èh ë'¿cj‹l$0‹=ÿÿÿ?t
H‰u‰4$èG ÇD$,ÇD$<‹D$@…Àt‹ùÿÿÿ?t
I‰u‰$è ÇD$@ƒ%õÿ‰D$Ç$¼‹Pyùÿ‰úè‚IýÿD$@‰D$D$,‰$T$<‹L$tè¦-1ö…Àˆk‹E;ƒ(ÿÿÿ…†‹E=ÿÿÿ?‹L$(t@‰E‰$裠ÇD$$¾‰D$0…À„}Ç$è …À„x‰NjD$0‰G‰|$‰,$èƤ‰é…À„l‰ŋ=ÿÿÿ?t
H‰u‰$èDŸ‹=ÿÿÿ?‹t$Pt
H‰u‰<$è*Ÿ‹D$<…Àt‹ùÿÿÿ?t
I‰u‰$èŸÇD$<‹D$,…|$ t‹ùÿÿÿ?t
I‰u‰$èàžÇD$,‹D$@…Àt‹ùÿÿÿ?t
I‰u‰$蹞ÇD$@‹D$t‹H@‹‰9…Àt‹ùÿÿÿ?t
I‰u‰$苞‹L$X…É„5ñÿÿ‹=ÿÿÿ?„(ñÿÿH‰…ñÿÿ‰$éñÿÿÇD$(ŠjÇD$$½1ÿ1í‹D$t‹H@‹‹T$ ‰…Àt‹ùÿÿÿ?t
I‰u‰$è#ž‰|$ ‹L$X…Ét‹=ÿÿÿ?t
H‰u‰$èž1ÿ‹L$P…ɋT$(t‹=ÿÿÿ?tH‰u‰$èݝ‹T$(‰l$01í‹D$,…ÀutéŽ@‰‹E=ÿÿÿ?„søÿÿ@‰E‹¿=ÿÿÿ?„LìÿÿH‰…Cìÿÿ‰$莝é6ìÿÿÇD$ ºjë
ÇD$ ºjÇD$01ö1ÿ1í‹D$,…Àt‹ùÿÿÿ?tI‰u‰$‰T$(è<‹T$(‹D$<…Àt‹ùÿÿÿ?tI‰u‰$‰T$(蝋T$(‹D$@…Àt‹ùÿÿÿ?tI‰u‰$‰T$(èT$(…öt‹=ÿÿÿ?tH‰u‰4$‰ÖèΜ‰ò‹L$0…Ét‹=ÿÿÿ?tH‰u‰$‰Ö謜‰ò‹L$ …ɋt$Lt‹=ÿÿÿ?tH‰u‰$‰T$(脜‹T$(ƒ%õÿ‰D$‹D$$‰$‹PyùÿèôEýÿ1ö…Zõÿÿépõÿÿº@iétèÿÿº4iéjèÿÿº;ié`èÿÿ‰,$èߢ…À…úÇD$(–jÇD$$¾éÁýÿÿÇD$(˜j1ÿé¶ýÿÿÇD$(šj1ÿ‹t$0é£ýÿÿÇD$(Ÿj‰Íé”ýÿÿÇD$,éÇõÿÿ1ÿéxêÿÿ1íéýêÿÿÇD$ ºñiéGþÿÿÇD$,é‡÷ÿÿÇD$ ÇD$,ºÎjÇD$01ö‰ý1ÿ‹D$,…À…!þÿÿé;þÿÿ1ö1ÿé]øÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è ›é¬ùÿÿ‰Å1öéòìÿÿ‰Æééÿÿ‰Æé‘éÿÿ‰Æé6îÿÿ‰ŋL$(éwûÿÿUSWVƒìè[Ðå‹T$<‹l$8‹D$4‹ØV‰L$ÇD$…Òt$‰э4¨…ít8ƒý…œ‹‰T$‹A…À~éƒý…‹‰T$‹L$0è_µéÉt$‹i…í~Q‹“ØV1��9T±„«F9õuñ‰T$1��‰ϋT±ƒì‹L$jè¼!ƒÄ…ÀuvF9õ‰ùuÞèٛ…l$8…±‹ƒÿÿÿƒì‹õÿ“€`ùÿ³Lùÿ»AfùÿUQjRVWÿ0èîšƒÄ º@lƒìƒ%õÿ‹
jùÿPhÕè|CýÿƒÄ1Ä^_[]Éùx‹D$‹°‰T$…Ò„zÿÿÿ‰èH‹l$8‹t$…ÀŽýþÿÿƒLùÿ‰òt$|$PUVWè|ƒÄ…Àx‹T$éÔþÿÿº0lé|ÿÿÿº5lérÿÿÿUSWVƒìLè[Ãàã‹t$l‹|$h‹D$d‹ØV‰L$<ÇD$@…öt(‰ñ¸…ÿ„ƒÿ…{‹(‰l$H‹A…À~é’ƒÿ…`‹(‰l$H‹MöAW‰l$,…%‹ƒŒM9Á„‹‘¬…Ò„ù
‹J…É~1��9D²„è
F9ñuñ‹»ÌS‹ƒLM‹O‰L$‰|$‰$è›…À„Ï‹ùÿÿÿ?‰ÇtA‰‹ƒ(P‹O‹IH…É„è‰D$‰<$ÿщƅÀ„ë‹=ÿÿÿ?t
H‰u‰<$è>˜‹F1ÿ;ƒTÿÿÿ‰t$(„â1ö‰t$<‰l$@½÷؍ƒÂ@G‰<$‹L$(è³þÿ‰Ņöt‹=ÿÿÿ?t
H‰u‰4$èç—…í„Ü‹L$(‹=ÿÿÿ?t
H‰u‰$èŗ‹ƒtS‹M‹IH…ɄЉD$‰,$ÿщDžÀ„Ó‹ƒW‰D$‰<$ÇD$贝…À„‰Ƌ=ÿÿÿ?t
H‰u‰<$èd—;³4ÿÿÿ„;³8ÿÿÿ„;³ÿÿÿ„‰4$èș…Àˆ”‹ùÿÿÿ?…ùé‰T$(‹i…í~W‹“ØV1��9T±„MF9õuñ‰T$ 1��‰ϋT±Ç$‹L$ è*…À…F9õ‰ùuÛèF˜…|$h…勃ÿÿÿ‹‰|$‹õÿ‰L$‹€`ùÿ‰L$‹ÑPùÿ‰L$‹Afùÿ‰L$‰$ÇD$èF—º(qƒ%õÿ‰D$Ç$R‹¡tùÿèÕ?ýÿ1Àé…1À;³4ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æè–‰ð…À…Š‹ƒtS‹M‹IH…ɄƉD$‰,$ÿÑ1ÿ…À„É‹“W9Љl$$t'‹H;‹ÿÿÿ…Ú‹Hƒáú1҃ùu1҃x”Â뺉Ջùÿÿÿ?t
I‰u‰$薕‹³ÌS‹ƒLM‹N‰L$‰t$‰$觘‰Dží„%…ÿ‹l$$„¸‹=ÿÿÿ?t@‰‹ƒøR‹O‹IH…É„Á‰D$‰<$ÿхÀ„ĉŋ=ÿÿÿ?t
H‰u‰<$è•‹E1ÿ;ƒTÿÿÿ„¯1ö‰t$<‹D$$‰D$@‹D$,‰D$D½÷؍ƒÂ@ƒÏ‰<$‰ï‰éèƒþÿ‰D$(…öt‹=ÿÿÿ?t
H‰u‰4$赔‹t$(…ö„™‹=ÿÿÿ?‹l$$t
H‰u‰<$菔;³4ÿÿÿ„;³8ÿÿÿ„õ;³ÿÿÿ„é‰4$èó–…Àˆg‹ùÿÿÿ?…àéì…ÿ‹l$$„Ï‹=ÿÿÿ?t@‰‹ƒP‹O‹IH…Ʉ؉D$‰<$ÿщD$,…À„Û‹=ÿÿÿ?t
H‰u‰<$èñ“‹ƒ„U‹M‹IH…ɄӉD$‰,$ÿщƅÀ„ÖÇD$Ç$‰ñ1ÒèÒ…À„؉Nj=ÿÿÿ?t
H‰u‰4$蒓Ç$è”…À„Ò‰D$(‰xè–ÇD$4”1ö‰D$0…À„Ì‹»ÌS‹ƒLM‹O‰L$‰|$‰$èm–…À„¶‹ùÿÿÿ?tA‰‹|$0‹“R‹H‹IH…ɉD$8„ljT$‰$ÿщD$ …À„Ê‹L$8‹=ÿÿÿ?t
H‰u‰$èݒ‹ƒQ‹l$ ‰l$‰D$‰<$è#”…ÀˆÍ‹E=ÿÿÿ?tH‰Eu‰,$裒‹D$,‹@‹x@…ÿ„ݍƒ½‡ùÿ‰$胗…À…l‹D$0‰D$‹D$(‰D$‹l$,‰,$ÿ׉Çèk—…ÿ„/‹E=ÿÿÿ?tH‰Eu‰,$è;’‹L$(‹=ÿÿÿ?‹t$`‹l$0t
H‰u‰$è’‹E=ÿÿÿ?tH‰Eu‰,$è’‹ƒŒU‹N‹IH…É„y‰D$‰4$ÿыl$$…À„|‹H;‹Tÿÿÿ‰|$ …}‹p…ö„r‹h‹ùÿÿÿ?…ä‹Mùÿÿÿ?…ç‹¿ùÿÿÿ?…çéï1À;³4ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æè^‘‰ð…À„‹³ÌS‹ƒLM‹N‰L$‰t$‰$èe”…À„ð‹ùÿÿÿ?tA‰‹“ P‹H‹IH…É„ø‰T$‰ʼn$ÿщDžÀ„û‹E=ÿÿÿ?tH‰Eu‰,$èߐ‹G1í;ƒTÿÿÿ„ø1ö‰t$<‹D$$‰D$@­÷؍ƒÂ@E‰,$‰ùèVþÿ…öt‹ùÿÿÿ?tI‰u‰4$‰Æ艐‰ð…À„ð‹ùÿÿÿ?‹l$$‹T$`tI‰u‰<$‰Æè^‰ð‹T$`‹Mùÿÿÿ?tI‰Mu‰,$‰Æè=‰ðë‰è‹T$`‰D$(‹ƒŒU‹J‹IH…É„I‰D$‰$ÿщDžÀ„L‹G;ƒTÿÿÿ‹D$(…'‹o…í„‹W‹Mùÿÿÿ?u‹
ùÿÿÿ?u‹¾ùÿÿÿ?u"ë)A‰M‹
ùÿÿÿ?táA‰
‹¾ùÿÿÿ?t	I‰„À‰׉l$<‰D$@µ÷؍ƒÂ@F‰4$‰ùè$
þÿ‰ƅít‹E=ÿÿÿ?tH‰Eu‰,$èV…ö„§
‹ùÿÿÿ?‹D$(tI‰u‰<$è3‹D$(‹ùÿÿÿ?tI‰u‰4$菋D$(‹ùÿÿÿ?„MA‰1ÿ‰Łùÿÿÿ?…äéñºÛrÇD$8‹l$,é͉<$‰×èΎ‹D$(é/ÿÿÿA‰‹Mùÿÿÿ?„ýÿÿA‰M‹¿ùÿÿÿ?t
I‰u‰$蓎‰t$<‹D$ ‰D$@½÷؍ƒÂ@G‰<$‰éèþÿ…ö‰ït‹ùÿÿÿ?tI‰u‰4$‰ÆèNމð…À„W‹ùÿÿÿ?‹l$$‰ú‹|$ tI‰
u‰$‰Æè!މð‹ùÿÿÿ?t
I‰u‰$莉é‰ú蟟…À…¹–ºsé–‹‰€9Át…Éuò;ƒPÿÿÿ…õÿÿ‹»ÌS‹ƒLM‹O‰L$‰|$‰$èߐ…À„f‰Ƌ=ÿÿÿ?t@‰‹ƒP‹N‹IH…É„u‰D$‰4$ÿхÀ„x‰D$8‹=ÿÿÿ?t
H‰u‰4$èZÇ$èލ…À„`‹Mùÿÿÿ?tA‰M‰D$(‰hèˏÇD$4ƒ…À„nÇD$$‰D$0‹»ÌS‹ƒLM‹O‰L$‰|$‰$è …À„M‰Ƌ=ÿÿÿ?t@‰‹|$0‹ƒ(U‹N‹IH…É„Y‰D$‰4$ÿхÀ„\‰D$ ‹=ÿÿÿ?t
H‰u‰4$藌‹»ÌS‹ƒLM‹O‰L$‰|$‰$訏…À„'‰Ƌ=ÿÿÿ?t@‰‹ƒàR‹N‹IH…É„/‰D$‰4$ÿщDžL$ „2‹=ÿÿÿ?tH‰u‰4$è!Œ‹L$ ‹A1í;ƒTÿÿÿ„1ö‰t$<‹D$,‰D$@‰|$D­÷؍ƒÂ@ƒÍ‰,$‰L$ èŒ	þÿ‰Ņöt‹=ÿÿÿ?t
H‰u‰4$è‹=ÿÿÿ?‹L$ tH‰u‰<$見‹L$ …í„Ý‹=ÿÿÿ?‹|$0t
H‰u‰$耋‹ƒQ‰l$‰D$‰<$èʌ…Àˆ@‹E=ÿÿÿ?tH‰Eu‰,$èJ‹‹l$8‹E‹p@…ö„•ƒ½‡ùÿ‰$è*ºŸq…À…³ÇD$$‰|$‹D$(‰D$‹l$8‰,$ÿ։Æè	‰÷…ö„·‹E=ÿÿÿ?tH‰Eu‰,$è׊‹L$(‹=ÿÿÿ?‹t$`t
H‰u‰$蹊‹L$0‹=ÿÿÿ?‰ýt
H‰u‰$蝊‹ƒŒU‹N‹IH…É„,‰D$‰4$ÿхÀ„/‹H;‹Tÿÿÿ‰l$$…‹p…ö„‹h‹ùÿÿÿ?…t‹Mùÿÿÿ?…w‹¿ùÿÿÿ?…w麝qÇD$$1öÇD$ ‹L$(‹=ÿÿÿ?tH‰u‰$‰T$(è퉋T$(‹L$8…Ét‹=ÿÿÿ?tH‰u‰$‰T$(èlj‹T$(‰l$,1l$$…ÿ‹L$ t.‰l$$‰ŋ=ÿÿÿ?tH‰u‰<$‰T$(‰Ï菉‰ù‹T$(‰è‹l$$‰D$ ‹D$,‰DžÀt"‹=ÿÿÿ?tH‰u‰<$‰T$(‰ÏèY‰‰ù‹T$(…öt‹=ÿÿÿ?tH‰u‰4$‰։Ïè5‰‰ù‰ò…ɋ|$ t‹=ÿÿÿ?tH‰u‰$‰Ö艉òƒ%õÿ‰D$‹D$4‰$‹¡tùÿèƒ2ýÿ1í„ì‹Mùÿÿÿ?…ËéØA‰‹Mùÿÿÿ?„‰þÿÿA‰M‹¿ùÿÿÿ?t
I‰u‰$裈‹L$$‰t$<‰L$@½÷؍ƒÂ@G‰<$‰éè-þÿ…ö‰ït‹ùÿÿÿ?tI‰u‰4$‰Æè^ˆ‰ð…l$$„?‹ùÿÿÿ?tI‰te‹ùÿÿÿ?tqI‰ul‰$è*ˆ‹Mùÿÿÿ?tdA‰M1ÿ‰èùÿÿÿ?tI‰Mu‰,$‰Æèÿ‡‰ð…ÿt@‹ùÿÿÿ?t6I‰u1‰<$‰Æèà‡‰ðë#‰<$‰Æè҇‰ð‹ùÿÿÿ?u‹Mùÿÿÿ?uœ‰èƒÄL^_[]Éùˆîðÿÿ‰ê‹D$(‹,°‰l$H…í„Ùðÿÿ‰ÐH‹|$h‹T$(…ÀŽ}îÿÿƒÑPùÿ‰D$‰|$D$H‰D$D$<‰$è?…ÀˆF‹l$HéJîÿÿ‰é‰Å1ÿ1öé¢þÿÿè̈½ƒ¾pq…À…‘‰ùèSëýÿ…À„‚‰Ƌl$,éwùÿÿ‰D$‰4$褈…À…ˆùÿÿ‰t$(ºrqÇD$4ƒéðÇD$ ÇD$4ƒºuq1ö1í1ÿÇD$$‹L$8‹=ÿÿÿ?…ÚüÿÿéêüÿÿÇD$$ºzqéÀè&ˆ…Àu‰ùè»êýÿ…À…a	1í1öÇD$ ‹|$0º|qé^üÿÿ‰D$‰4$èý‡…À…¤ùÿÿº~q1íé6üÿÿèԇ…Àu‰ùèiêýÿ…À…	1í1ö‹|$0ºqéüÿÿ‰D$‰4$資‰DžL$ …Îùÿÿºƒq1íëP‹q…ö„i‹Q‹=ÿÿÿ?…â‹=ÿÿÿ?…勽=ÿÿÿ?…äé躙qÇD$$1í1ö‹|$0é˜ûÿÿ‰|$‹D$(‰D$‰,$诊‰DžÀ…–úÿÿºŸqÇD$$1í1öÇD$ ë¾ÇD$$鄉D$‰4$èñ†…À…Ñúÿÿ1ÿ¹„º®qéæèÆ…À„ª1í1öÇD$ ‹|$0ºŸqéûÿÿºÂqÇD$4„é¥@‰‹=ÿÿÿ?„ÿÿÿ@‰‹½=ÿÿÿ?t	H‰„ΉÑéÄøÿÿ1ö1íé/õÿÿºqéZîÿÿèF†½‡¾äq…Àu‰ùèÑèýÿ…À……ƒ%õÿ‰D$‰,$‹¡tùÿ‰òé5îÿÿ‰D$‰<$膉ƅÀ…ìÿÿºæqÇD$4‡1í1ÀÇD$,1ö1Éé–úÿÿ‰ð‹v…ö„؉Kh‹=ÿÿÿ?…£‹E=ÿÿÿ?…¦‹¿=ÿÿÿ?…¦é®ºûqÇD$4‡ÇD$$ÇD$8é‰D$‰,$èu…‰DžÀ…-ìÿÿ1ÿ¹ˆº	réh1ÉÇD$4ˆºr1öÇD$ é'úÿÿ‰t$(º
rÇD$4ˆéŸ‹‹°Y‹“ØWÇ$èîîýÿ…À„
‰ƉÁè}ïýÿ‹=ÿÿÿ?t
H‰u‰4$èGƒºr1ÿ¹‰éä‰D$‰,$èʄ1ÿ…À…7íÿÿ¹Œº.r鿺qé¦ìÿÿ‰$‰T$ èû‚‹L$ éèöÿÿ‰D$(;‹`ÿÿÿ„‰T$‹D$(‰$ÇD$èúˆ‰Á賔…À‰¹º0rÇD$4ŒéÂè4„…Àu‰ñèÉæýÿ…À…ˆº;r1ÿ¹Žé.‰D$‰<$è„…À…<íÿÿ1ÉÇD$4Žº=r騋u…ö„þ‹E‰D$ ‹=ÿÿÿ?…"‹D$ ‹=ÿÿÿ?…%‹E¿=ÿÿÿ?…(é1ºRrÇD$4Ž1ÀÇD$,éWºVrÇD$4ŽÇD$8‰l$$1ÿ1íé½÷ÿÿ‰D$‰$èfƒ‰DžÀ…´ñÿÿ1ÿ¹ºr‹l$(éU1ÉÇD$4º£r1öÇD$ ‹l$(éøÿÿ@‰‹E=ÿÿÿ?„Zýÿÿ@‰E‹¿=ÿÿÿ?t
H‰u‰$èU‰l$(‹l$,é!éÿÿ‰Å1ÿ1öéªòÿÿèȂ…Àu‰ñè]åýÿ…À….ºar1ÿ¹é‰T$‰ʼn$覂‰DžÀ…ðÿÿºcrÇD$41ÀÇD$,1ö1ɉï‹l$$é%÷ÿÿ‹w…ö„ƒ‹G‰D$ ‹=ÿÿÿ?…ð‹D$ ‹=ÿÿÿ?…ó‹½=ÿÿÿ?…öéþ1ÉÇD$4ºxr1öÇD$ ‹l$$éøöÿÿèø…Àu‰ñèäýÿ…À…eºÅr1ÿ¹”éò‰D$‰<$è؁‰D$,…À…%ìÿÿºÇrÇD$4”ÇD$8‰l$$‰|$(é/þÿÿ‰D$‰,$螁‰ƅÀ…*ìÿÿ1ÉÇD$4”ºÊr1ö‹|$,ÇD$ é]öÿÿÇD$8‰t$(ºÌrÇD$4”‰l$$1ÿ1ö鄺ÏrÇD$4”1À1ö1ɋl$$éßõÿÿºÔrÇD$81ÿëWè
…Àu‰ùèŸãýÿ…À…~ÇD$8ÇD$ ‹|$0‹l$,ºÖré:õÿÿ‰T$‰$èـ‰D$ …À…6ìÿÿºØrÇD$ ‹l$,éõÿÿ@‰‹D$ ‹=ÿÿÿ?„Ûüÿÿ@‹L$ ‰‹E¿=ÿÿÿ?tH‰Eu‰,$èß~‹l$ éÑéÿÿ¸ò*D$(f.@›Â”Á ѶÑééÿÿ‹D$0‰D$‹D$(‰D$‹l$,‰,$踃‰DžÀ…;ìÿÿºÝrÇD$8ÇD$ éÈøÿÿ‰D$‰4$耋l$$…À…„ìÿÿ¹•ºìrƒ%õÿ‰D$‰$‹¡tùÿèÊ'ýÿ1Mùÿÿÿ?…öÿÿé'öÿÿ‹|$$è«…À„Ò‰|$$ÇD$8ÇD$ ‹|$0‹l$,ºÝréâóÿÿºsÇD$4•ÇD$,1ö1ɋl$$‹D$ éôÿÿ@‰‹D$ ‹=ÿÿÿ?„
ýÿÿ@‹L$ ‰‹½=ÿÿÿ?t
H‰u‰<$è‘}‹|$ é¼ìÿÿ1íéuñÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è7}é7øÿÿ1ÿ1öéüÿÿºré
úÿÿ1ÿéAèÿÿ1íésìÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è÷|éÿÿÿ‰ÆéAðÿÿ‰Æé²ðÿÿ‰Njl$,éŽäÿÿ‰Çé­çÿÿ‰‹D$(éHçÿÿ‰ÁéÐëÿÿ‰Çé¹èÿÿ‰ÁéºéÿÿUSWVƒìè[ÃPÇ‹t$ Ç$ÇD$‹Aö@Wt8¸…öu'ƒyt!‹I‰$‹ƒÿÿÿ³ˆùÿQRVÿ0èf}ƒÄ1Ä^_[]ÉT$|$jD$PW‰ÍQèဃąÀt$‹$‹@ö@W‰éuۋƒÿÿÿƒì‹Šdùÿÿt$Q멸…ö‹T$u¨‹$…Ét¡ë„USWVƒì‰T$è[ÌÆ‹l$8Ç$ÇD$ÇD$‰L$‹A‹@T‰D$‹t$0­‰D$‹$…Àt*‹ùÿÿÿ?t I‰uƒìPè²{ƒÄÇ$‹D$…|$t‹ùÿÿÿ?tI‰tOÇD$÷D$uND$PD$PD$PWèɃąÀ„I‹®‹$…ÉuR鯃ìPè&{ƒÄÇD$÷D$t³‹D$;G‹L‡‰$‹L$‹‰L$@‰D$‹®‹$…Étb‹T$9t‹LƒÂ…Éuñë?‹D$‹L$4‰Ç$ÇD$1À…Âþÿÿéçþÿÿ‹ùÿÿÿ?u&‹D$‹ùÿÿÿ?u)‹$‹@ö@Wu0顐A‰‹D$‹ùÿÿÿ?t×A‰‹$‹@ö@W„v‹®…ÀtU‹|$ëèª{…À…ǐ‹D>ƒÇ…Àt5‹‹P‹$;QuèƒìQP讀ƒÄ…ÀxÈuՋD$‹L$4‰9ƒ<>…ÿýÿÿ÷Åÿÿÿ?t_Áå1ÿëèL{…ÀumƒÇ9ýt@‹>‹‹$9Èt‹P;QuåƒìQPèK€ƒÄ…ÀxÃuҋ$‹‹ÿÿÿ“ËaùÿPÿt$@Rÿ1닃ÿÿÿ‹ˆùÿÿ4$ÿt$@Qÿ0è.zƒÄ‹$…Àt‹ùÿÿÿ?tI‰uƒìPè,yƒÄ‹L$¸ÿÿÿÿ…Ét‹úÿÿÿ?tJ‰uƒìQ‰Æèy‰ðƒÄƒÄ^_[]Ë$…Àt‹ùÿÿÿ?tI‰uƒìPèÖxƒÄ‹L$1Ét̋úÿÿÿ?tÂ1ÀJ‰u»멋ƒÿÿÿƒì‹ŠdùÿéHÿÿÿUSWVƒì‰Îè[ÃËL$ 9Ö„‹F‹z;ƒxÿÿÿua;»xÿÿÿuY‹F;B…t‹zƒÿÿt‹nƒýÿt9ý…\‹~‰|$Áïƒç‹j‰l$Áíƒå9ï…:öD$ …Å‹né͋«xÿÿÿ1ï1苫ÿÿÿ‰ñ1é	ù‹L$ ”D$1Õ	Å„þ€|$…óƒìQRVè~ƒÄ…Àt9;ƒ4ÿÿÿt;;ƒ8ÿÿÿt3;ƒÿÿÿt+ƒìP‰Æè7zƒÄ‰‰ð‹ùÿÿÿ?u(é°ºÿÿÿÿé¦1Ò;ƒ4ÿÿÿ”‹ùÿÿÿ?„I‰…„ƒìP‰ÖèZw‰òƒÄër1ÉöD$@”M,΃Å‹L$öÁ u‹Rë‰ÎöÁ@¹”Mʃƒÿ‰l$tƒÿu¶m¶
ë·m·
ë‹m‹
9͋L$ uƒøu1҃ùë1҃ù”‰ЃÄ^_[]ïøƒìWRÿt$‰Îè”}ƒÄ1Ò1ɅÀ”•CþDʶÑëɐSWVƒì‰Öè[ÃÁ‰T$‰$è`}…Àt‹ùÿÿÿ?tA‰ƒÄ^_[ÉÇèñw‰Iø…Éuê‹Fö@Wu‹ƒðÿÿÿ‹‰t$‰$èl{‰øëɉt$Ç$èøw‰ƅ	øt±‹ƒðÿÿÿ‹‰t$‰$è<{‰ø‹ùÿÿÿ?t‘I‰uŒ‰4$èóu‰ø뀐USWVƒìè[ÃPÀ‹t$$‹D$ ‹y;»$ÿÿÿt_;»(ÿÿÿ„‹w4‹8…ÿtuƒto‰͉$èÔx…À„‰ƉD$‰,$ÿW‹ùÿÿÿ?„ŒI‰…ƒ‰4$‰Æè_u‰ðëu‰ׅÒy‰ׅÀt‹yׅöt;ysc‹A‹¸‹ùÿÿÿ?uHëI…ötMƒ~tG…Òy…Àuk‰T$‰$ÿVë+‰ׅÒy‰ׅÀt‹yׅöt;ys‹D¹‹ùÿÿÿ?tA‰ƒÄ^_[]Éω$èx…Àt^‰ƉD$‰<$èw‹ùÿÿÿ?…Bÿÿÿë̉Չϋ…Àt-‰<$ÿЅÀx‰ê‰ùéwÿÿÿ‹ƒôÿÿÿ‹‰$è´t…Àtè»t‰ù‰êéUÿÿÿ1À눐SVPè[ÃԾ‹Aö@Wt*‹Qƒúv‰$è({ƒÄ^[Ãâ¸)ЯAƒÄ^[Ãè9…Àt*‰ƉÁè¬ÿÿÿ‹ùÿÿÿ?tÊI‰uʼn4$‰Æèós‰ðƒÄ^[øÿÿÿÿƒÄ^[ÃSƒì‰Èè[ÃQ¾‹IöAWt‹ùÿÿÿ?tA‰ƒÄ[ËI0…Ét-‹I@…Ét&‰$ÿхÀt‹H;‹ÿÿÿtٍ“Çxùÿ‰Áè4ƒÄ[Ãè
u…Àu‹ƒÿÿÿ‹‹-iùÿ‰L$‰$è,s1Ä[АSWV‰Îè[Ã½‹I‹AöAWu‹‹ÿÿÿƒì»¦bùÿPRRWÿ1èùsƒÄ ë‹‹øÿÿÿ“þaùÿPRjÿ1èýyƒÄ…Àt‹1ùÿÿÿ?tI‰t
^_[Éð^_[ÃìVèÒrƒÄ1À^_[АUSWVƒìè[Ã0½‹t$$‹|$ ‹«ÿÿÿ됐‹I…Ét5‹…Àtó9ètùÿÿÿ?tA‰‹H‰
‹úÿÿÿ?tB‰‰$èVuëÇÇ1	ƒÄ^_[]АUSWVƒì‰׉Îè[Ü¼ÇD$ÇD$‹A<‰D$ÇA<…Àt ‹H‰L$‹úÿÿÿ?tB‰‰$èÛt‰D$‹l$0D$‰D$D$‰D$D$‰$èÇxƒ~<…æ‹D$…Àt-‹L$‰D$‰$èuu…ÀˆÆ‹D$…Àt
‹ùÿÿÿ?tA‰‹D$…Àt
‹ùÿÿÿ?tA‰‹D$…Àt‹ùÿÿÿ?tA‰‹D$ë1L$‰‰E‹L$‹T$4‰
‹N@‹1‰‹D$…Àt‹ùÿÿÿ?t
I‰u‰$è
q‹D$…Àt‹ùÿÿÿ?t
I‰u‰$èîp1öt‹ùÿÿÿ?tI‰u
‰4$èÑp1Ä^_[]ÃÇÇE‹D$4NjL$觺üÿ‹L$螺üÿ‹L$蕺üÿ¸ÿÿÿÿ뿐SVPè[Ãôº‹t$‹‰1…Àt‹ùÿÿÿ?tI‰u‰$‰ÖèLp‰ò‹t$…Òt‹=ÿÿÿ?t
H‰u‰$è,p…öt‹=ÿÿÿ?tH‰tƒÄ^[É4$èpƒÄ^[АSVPè[Ãtº‹Aö@Wt*‹Qƒúv‰$èÈvƒÄ^[Ãâ¸)ЯAƒÄ^[ÃèÙûÿÿ…Àt*‰ƉÁè¬ÿÿÿ‹ùÿÿÿ?tÊI‰uʼn4$‰Æè“o‰ðƒÄ^[øÿÿÿÿƒÄ^[ÃUSWVì¬‰Öè[Ã빋„$ÀDŽ$”ÇD$LÇD$,ÇD$ ‹úÿÿÿ?…å‹”$ȋ8ÿÿÿÿ?…艌$˜‹=ÿÿÿ?t@‰‹«ÌS‹ƒLM‹M‰L$‰l$‰$èr…À„H‰Nj=ÿÿÿ?t@‰‰|$,‹ƒ(P‹O‹IH…É„EH‰D$‰<$ÿщD$ ½¼…À„HH‹=ÿÿÿ?t
H‰u‰<$è‹nÇD$,‹D$ ‹H1ÿ;‹Tÿÿÿ„¬H‹D$,‰„$„‰´$ˆ‹L$ ½÷؍ˆG‰<$èíëýÿ‰D$L‹L$,…É„‹=ÿÿÿ?‹¼$Èt
H‰u‰$èn‹D$LÇD$,…À„ü‹D$ ‹ùÿÿÿ?t
I‰u‰$èámÇD$ ‹D$L‰„$‹=ÿÿÿ?t
H‰u‰4$è¸mÇD$L‹ƒtS‹”$‹J‹IH…É„/H‰D$‰$ÿщD$LÇD$`½½…À„H‹‹W9È„›‹P;“ÿÿÿ…VK‹pƒæé†B‰‹”$ȋ8ÿÿÿÿ?„þÿÿG‰8‰Œ$˜‹=ÿÿÿ?…þÿÿéþÿÿ‹¼$ÈÇD$,…À…ÿÿÿÇD$8ÇD$(–8ÇD$`ÇD$1ÒÇD$$‰´$éÐZ¾‹ùÿÿÿ?t	I‰„QÇD$L…ö„Yèo‰D$‹@@‹‹ÿÿÿ‹´$ë‹@…Àt?‹…Òtó9Êtï‹=ÿÿÿ?t@‰‹B‰D$‹=ÿÿÿ?t@‹L$‰‰T$4‰$è@o‰D$|ëÇD$ÇD$4ÇD$|‹«T‹ƒLM‹M‰L$‰l$‰$è3o…À„=J‹ùÿÿÿ?tA‰‰D$ ‹‹R‹P‹RH…Ò„DJ‰L$‰$ÿ҉D$,1ÿ…À„GJ‹D$ ‹ùÿÿÿ?t
I‰u‰$è¤kÇD$ ‹ƒDR‹N‹IH…É„J‰D$‰4$ÿщŅt$„J‹E;ƒTÿÿÿ…‚D‹}…ÿ„wD‹u‹=ÿÿÿ?u‹=ÿÿÿ?u‹E¹=ÿÿÿ?u ë1@‰‹=ÿÿÿ?tã@‰‹E¹=ÿÿÿ?tH‰Eu
‰,$èk¹‰õ‹t$‰¼$„DŽ$ˆ÷؍ˆ‰$‰éè|èýÿ‰D$ …ÿt‹ùÿÿÿ?tI‰u‰<$è­j‹D$ …À„WI‹E=ÿÿÿ?tH‰Eu‰,$è‰j‹D$,‹H1ÿ½;‹Tÿÿÿ„PI‰¼$„‹D$ ‰„$ˆ‹L$,­÷؍ˆE‰,$èîçýÿ‰D$L…ÿt‹=ÿÿÿ?t
H‰u‰<$è j‹D$ ‹ùÿÿÿ?‹l$|t
I‰u‰$èjÇD$ ƒ|$L‹¼$È„ I‹D$,‹ùÿÿÿ?t
I‰u‰$èÌiÇD$,‹L$LÇD$L…öt‹=ÿÿÿ?tH‰u‰4$‰Îèœi‰ñ‹T$4…Òt‹=ÿÿÿ?tH‰u‰$‰Îèzi‰ñ…ít‹E=ÿÿÿ?tH‰Eu‰,$‰ÎèZi‰ñ‹ƒW‰D$‰L$|‰$ÇD$èjo‰D$ ½Ã…À„yIÇD$`;ƒ4ÿÿÿt2;ƒ8ÿÿÿt*;ƒÿÿÿt"‰$è‘k…Àˆ^I‰‹D$ ‹ùÿÿÿ?uë1Ò;ƒ4ÿÿÿ”‹ùÿÿÿ?t	I‰„aÇD$ …Ò„˜‹³ÌS‹ƒLM‹N‰L$‰t$‰$èÊk…À„ºS‹ùÿÿÿ?tA‰‰D$,‹‹ˆT‹P‹RH…Ò„¾S‰L$‰$ÿ҉D$L…À„ÁS‹D$,‹ùÿÿÿ?t
I‰u‰$è=hÇD$,‹D$L‹H1ö;‹Tÿÿÿ„T‹D$,‰„$„‹„$À‰„$ˆ‹L$Lµ÷؍ˆF‰4$è˜åýÿ‰D$ ‹L$,…Ét‹=ÿÿÿ?t
H‰u‰$èÆg‹D$ ÇD$,…À„ðS‹D$L‹ùÿÿÿ?t
I‰u‰$è—gÇD$L‹D$ ‹‹W9È„¨‹P;“ÿÿÿ…![‹p÷փæ鎉$èYgÇD$L…ö…§úÿÿ‹ƒtS‹´$‹N‹IH…É„[T‰D$‰4$ÿщD$ ½Å…À„^T‹‹W9È„‹P;“ÿÿÿ…z[‹Hƒáúºƒù…¡1҃x•Âé“1ö‹ùÿÿÿ?t
I‰u‰$è¼fÇD$ …ö„‹‹‹Y‹“dWÇ$èÒýÿ‰D$ ÇD$`½Ä…À„<q‰Áè”Òýÿ‹D$ ‹ùÿÿÿ?t
I‰u‰$èYfÇD$ ÇD$(t9éµQ1ҋùÿÿÿ?tI‰u‰$‰Õè)f‰êÇD$ …Ò…nS‹ƒ„U‹N‹IH…É„ÂS‰D$‰4$ÿщD$ ½È…À„ÅSÇD$Ç$ÇD$‰Á1Òèéïÿÿ‰D$L…À„ÐS‹D$ ‹ùÿÿÿ?t
I‰u‰$è¢eÇD$ ‹D$LÇD$L;ƒW„¶‰D$|‹ƒÿÿÿ9Ç„e‰<$è(kÇD$$ƒøÿ„ÉE‰ŋ³ÌS‹ƒLM‹N‰L$‰t$‰$èfh…À„¯E‹ùÿÿÿ?tA‰‰D$,‹‹´U‹P‹RH…҉l$`„µE‰L$‰$ÿ҉D$ ½Ï…À„¸E‹D$,‹ùÿÿÿ?t
I‰u‰$èÐdÇD$,‹³ÌS‹ƒLM‹N‰L$‰t$‰$èÙg…À„xE‹ùÿÿÿ?tA‰‹“`Q‹H‹IH…É„ŽE‰T$‰ʼn$ÿхÀ„‘E‰D$‹E=ÿÿÿ?tH‰Eu‰,$èQd‹³ÌS‹ƒLM‹N‰L$‰t$‰$èbg…À„hE‹ùÿÿÿ?tA‰‹“pQ‹H‹IH…É„{E‰T$‰ʼn$ÿщƅL$„~E‹E=ÿÿÿ?tH‰Eu‰,$èØc‹L$‹A1ÿ;ƒTÿÿÿ„ÇE1퉼$„‰´$ˆ­÷؍ˆE‰,$‰L$èDáýÿ‰D$,…ÿt‹=ÿÿÿ?t
H‰u‰<$èvc‹=ÿÿÿ?½Ï‹L$tH‰u‰4$èWc‹L$ƒ|$,‹¼$È„„E‹=ÿÿÿ?t
H‰u‰$è+c‹D$,‹‹8Q‹P‹RH…Ò„sE‰L$‰$ÿ҉ƅÀ„vE‹D$,‹ùÿÿÿ?t
I‰u‰$èåbÇD$,‹D$ ‹H1ÿ;‹Tÿÿÿ„PE‹D$,‰„$„‰´$ˆ‹L$ ½÷؍ˆG‰<$èGàýÿ‰D$L‹D$,…Àt‹ùÿÿÿ?t
I‰u‰$ètbÇD$,‹=ÿÿÿ?‹¼$Èt
H‰u‰4$èObƒ|$L„(E‹D$ ‹ùÿÿÿ?t
I‰u‰$è)bÇD$ ‹l$LÇD$L‹O‹ƒ€M9Á„‹‘¬…Ò„þ‹J…ÉŽÝ1��9D²„îF9ñuñ龉D$|‹³ÌS‹ƒLM‹N‰L$‰t$‰$èÙd…À„ _‹ùÿÿÿ?tA‰‰D$ ‹‹ˆT‹P‹RH…Ò„ _‰L$‰$ÿ҉D$,½É…À„£_‹D$ ‹ùÿÿÿ?t
I‰u‰$èGaÇD$ ‹D$,‹H1ö;‹Tÿÿÿ„€_‹D$ ‰„$„‹„$À‰„$ˆ‹L$,µ÷؍ˆF‰4$è¢Þýÿ‰D$L‹L$ …Ét‹=ÿÿÿ?t
H‰u‰$èÐ`‹D$LÇD$ …À„r_‹D$,‹ùÿÿÿ?t
I‰u‰$è¡`ÇD$,‹D$L‹‹W9ÈtA‹P;“ÿÿÿ…f‹p÷փ拁ùÿÿÿ?u,ë7‰$‰Öè^`‰òÇD$ …Ò…“÷ÿÿë)1ö‹ùÿÿÿ?t
I‰u‰$è1`ÇD$L…ö……J‹D$|‰D$|‹ƒÿÿÿ9Ç…›úÿÿ1ɉÇé¹‹‰€9Át…Éuò;ƒPÿÿÿ…Ú‹³ÌS‹ƒLM‹N‰L$‰t$‰$èùb…À„MN‹ùÿÿÿ?tA‰‰D$ ‹‹<R‹P‹RH…Ò„N‰L$‰$ÿÒ1҅À„“N‰D$‹D$ ‹ùÿÿÿ?t
I‰u‰$èj_ÇD$ ‹ƒQ‹O‹IH…É„™N‰D$‰<$ÿщD$ …t$º„ŒNÇD$,‹F1ÿ;ƒTÿÿÿ„¬N‹D$,‰„$„‹D$ ‰„$ˆ‹ƒœM‰„$Œ½÷؍ˆƒÏ‰<$‰ñè…Üýÿ‰D$L‹D$,…Àt‹ùÿÿÿ?t
I‰u‰$è²^ÇD$,‹D$ ‹ùÿÿÿ?‹¼$Èt
I‰u‰$èˆ^ÇD$ ƒ|$L„eN‹=ÿÿÿ?t
H‰u‰4$è_^‹T$L;“4ÿÿÿt0;“8ÿÿÿt(;“ÿÿÿt ‰$èË`…ÀˆAN‹T$L‹
ùÿÿÿ?uë1À;“4ÿÿÿ”
ùÿÿÿ?t	I‰
„ÛÇD$L…À„ç‰l$‹‹ÌSèvýÿ1ҽÒ…À„S‹“´U‹H‹IH…ɉD$„<S‰T$‰$ÿщD$ …À„?S‹L$‹=ÿÿÿ?t
H‰u‰$è]‹‹ÌSèýÿ‰D$,…À„KS‹‹`Q‹P‹RH…Ò„AS‰L$‰$ÿ҉ƅÀ„DS‹D$,‹ùÿÿÿ?t
I‰u‰$è7]ÇD$,‹ƒQ‹O‹IH…É„S‰D$‰<$ÿщD$,…À„"S‹F1ÿ;ƒTÿÿÿ„ŽS1퉼$„‹D$,‰„$ˆ­÷؍ˆE‰,$‰ñètÚýÿ‰D$‰ù蹦üÿ‹D$,‹ùÿÿÿ?t
I‰u‰$èž\ÇD$,‹L$…É„dS‹=ÿÿÿ?tH‰u‰4$èt\‹L$‹ƒ8Q‰ʋI‹IH…É„lS‰D$‰$ÿщƅÀ„oS‹L$‹=ÿÿÿ?t
H‰u‰$è-\‹D$ ‹H1ÿ½;‹Tÿÿÿ„ÀS‰¼$„‰´$ˆ‹L$ ­÷؍ˆE‰,$è–Ùýÿ‰D$L‰ùèۥüÿ‹=ÿÿÿ?t
H‰u‰4$èÅ[ƒ|$L‹¼$ȋl$„´S‹D$ ‹ùÿÿÿ?t
I‰u‰$è”[ÇD$ ‹E=ÿÿÿ?t@‰E‰l$ ‹D$L‰l$‰$ÇD$è’a1҅À„S‰Á;ƒ4ÿÿÿt4;‹8ÿÿÿt,;‹ÿÿÿt$‰$‰L$èÂ]‹L$…ÀˆëS‹úÿÿÿ?uë&1À;‹4ÿÿÿ”úÿÿÿ?tJ‰u‰$‰ÆèöZ‰ð…À„§‹D$L‹L$Lúÿÿÿ?tB‰‹1‹D$ ‹ùÿÿÿ?t
I‰u‰$èºZÇD$ ‹D$L‹ùÿÿÿ?t
I‰u‰$è—Z‰t$L‹=ÿÿÿ?tH‰ùÿÿÿ?t‰…Àu‰4$èoZ‹D$L‰D$X‹E=ÿÿÿ?tH‰Eu‰,$èOZÇD$Lë;‹D$ ‹L$ úÿÿÿ?…UÿÿÿéSÿÿÿ‰$‰Æè Z‰ðÇD$L…À…üÿÿ‰l$X‹ƒÐY‹°Ç$ÿ´f(ƒTõÿfD$‰D$‰<$ÿ։D$LÇD$…À„é<‰Ƌ=ÿÿÿ?t@‰‹D$L‹ùÿÿÿ?t	I‰„.ÇD$L‹=ÿÿÿ?t	H‰„U;³ÿÿÿt‹“€M‰ñèRh…À„½E‹N‹~‹ƒtS‹IH…ɉt$„Œ<‰D$‰4$ÿщƽØ…À„<‹“WÇ$‰ñèóf…Àˆ€<‰ŋ=ÿÿÿ?t
H‰u‰4$èY…í…Ö<‹ƒ¨U‹T$‹J‹IH…É„==‰D$‰$ÿщƽÚ…D$|„2=‰D$‰4$ÇD$èã^‰D$L…À„=‹=ÿÿÿ?t
H‰u‰4$è‘X‹T$L;“4ÿÿÿt4;“8ÿÿÿt,;“ÿÿÿt$‰$èýZ…Àˆè<‹T$L‹
ùÿÿÿ?‹t$`uë*1À;“4ÿÿÿ”
ùÿÿÿ?‹t$`tI‰
u‰$‰Åè)X‰èÇD$L…À…¤<‰t$‰<$ÿ“øYݜ$ ›ò„$ f)D$`‹‹ÌSèxþüÿ½Ý…À„Å<‰Ƌƒ0R‹N‹IH…É„$=‰D$‰4$ÿщD$ …À„'=‹=ÿÿÿ?t
H‰u‰4$èšWf(D$`ò$èzX…À„D=‰ƋD$ ‹H1í¿;‹Tÿÿÿ„Ð=‰¬$„‰´$ˆ‹L$ ½÷؍ˆG‰<$èéÔýÿ‰D$L‰éè.¡üÿ‹=ÿÿÿ?t
H‰u‰4$èWƒ|$L½Ý„Ì=‹D$ ‹ùÿÿÿ?t
I‰u‰$èíVÇD$ ‹T$L;“4ÿÿÿt0;“8ÿÿÿt(;“ÿÿÿt ‰$èQY…Àˆ§=‹T$L‹
ùÿÿÿ?uë&1À;“4ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰Æè…V‰ðÇD$L…À…‹=‹‹ÌSèøüüÿ‰D$ 1ҽß…À„T>‹‹¸R‹P‹RH…Ò„x>‰L$‰$ÿ҉ƅ:„{>‹D$ ‹ùÿÿÿ?t
I‰u‰$èVÇD$ ‹ƒU‹N‹IH…É„a>‰D$‰4$ÿщD$ …:„d>‹=ÿÿÿ?t
H‰u‰4$èÂU‹ƒW‰D$‹D$‰$ÇD$èÔ[…À„A>‰ƋD$ ‹H;‹Tÿÿÿ…°.‹h…í„¥.‹@‹Mùÿÿÿ?tA‰M‹ùÿÿÿ?tA‰‹L$ ‰D$ ‹¿=ÿÿÿ?t
H‰u‰$è:U‰¬$„‰´$ˆ‹L$ ½÷؍ˆG‰<$è½Òýÿ‰D$L‰éèŸüÿ‹=ÿÿÿ?t
H‰u‰4$èìTƒ|$L½ß„º=‹D$ ‹ùÿÿÿ?t
I‰u‰$èÁTÇD$ ‹T$L;“4ÿÿÿt0;“8ÿÿÿt(;“ÿÿÿt ‰$è%W…Àˆ}=‹T$L‹
ùÿÿÿ?uë&1À;“4ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰ÆèYT‰ðÇD$L…À…‚=f(D$`ò\ƒì^ùÿfTƒ$õÿf$èU‰D$LÇD$`½á…À„¹=‹L$X‰L$‰$ÇD$è&Z‰D$ …À„ª=‹D$L‹ùÿÿÿ?t
I‰u‰$èÏSÇD$L‹T$ ;“4ÿÿÿt4;“8ÿÿÿt,;“ÿÿÿt$‰$è3V…Àˆp=‹T$ ‹
ùÿÿÿ?‹|$uë*1À;“4ÿÿÿ”
ùÿÿÿ?‹|$tI‰
u‰$‰Æè_S‰ðÇD$ …À…7=‹L$X‹„$À‰„$œ;ƒÿÿÿ‰¼$€‰L$X„Ó‹ƒ8ÿÿÿ‰D$T‹=ÿÿÿ?t@‹T$T‰ÇD$ ‹Œ$œ‹=ÿÿÿ?t@‹Œ$œ‰‹Œ$À‰L$P‹³ÌS‹ƒLM‹N‰L$‰t$‰$èîU…À„>8‹ùÿÿÿ?tA‰‰D$ ‹‹ˆT‹P‹RH…Ò„Í8‰L$‰$ÿ҉D$L1ҽé…À„Â8‹D$ ‹ùÿÿÿ?t
I‰u‰$èZRÇD$ Ç$èÖR‰D$ …À„9‹T$P‹
ùÿÿÿ?tA‰
‹D$ ‰Pè½T…À„9‰D$`‹»ÌS‹ƒLM‹O‰L$‰|$‰$è"U…À„r9‰Ƌ=ÿÿÿ?t@‰‹¼$€‹ƒR‹N‹IH…É„Ê9‰D$‰4$ÿщD$,…:„Í9‹=ÿÿÿ?t
H‰u‰4$è‘Q‹ƒQ‹L$,‰L$‰D$‹D$`‰$èÓR…Àˆh‹D$,‹ùÿÿÿ?t
I‰u‰$èPQÇD$,‹t$L‹|$ ‹F‹h@…í„»=ƒ½‡ùÿ‰$è$V…À…Ô=‹D$`‰D$‰|$‰4$ÿՉÆèV…ö„§=‰t$,‹D$L‹ùÿÿÿ?‹¼$€t
I‰u‰$èÖPÇD$L‹D$ ‹ùÿÿÿ?t
I‰u‰$è³PÇD$ ‹L$`‹=ÿÿÿ?t
H‰u‰$è‘P‹„$À‹L$,‰Œ$À‹ùÿÿÿ?t
I‰u‰$èhPÇD$,‹ƒ8ÿÿÿ‰D$Téù‹ƒ4ÿÿÿ‰D$T‹=ÿÿÿ?t@‹T$T‰ÇD$ ‹“XM‹=ÿÿÿ?u~‰T$P‹ƒW‹ùÿÿÿ?…ƒé‡ÇD$(O<ÇD$ÇD$$ÇD$HÇD$8ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$1Òé£Q@‰‹ƒXM‰D$P‹ƒW‹ùÿÿÿ?t	A‰‹ƒW‹Œ$À‰„$À‹=ÿÿÿ?t
H‰u‰$èXO‹Œ$Ä;‹4ÿÿÿ„Å;‹8ÿÿÿ„¹;‹ÿÿÿ„­‰$èµQ…Àˆ +…À„¨;»ÿÿÿ„!‹ƒÜP‹O‹IH…É„@‰D$‰<$ÿѽñ…À„@ÇD$ ‹H1ÿ;‹Tÿÿÿ…’9‹H‰L$ …É„ƒ9‹p‹úÿÿÿ?…<‹ùÿÿÿ?…?‹¿ùÿÿÿ?…>éF1À;‹4ÿÿÿ”À…Xÿÿÿ‹„$À‹L$|‰L$‰$ÇD$è~T‰D$,½û…À„ô@ÇD$`;ƒ4ÿÿÿ„2;ƒ8ÿÿÿ„&;ƒÿÿÿ„‰$è™P…ÀˆÍ@‰‹D$,‹ùÿÿÿ?…鋃´T‹”$˜‹J‹IH…É„ŒH‰D$‰$ÿщƋ»ÿÿÿÇD$H½ù…À„wHÇ$è+N‰D$ …À„tH‹‹W‹úÿÿÿ?t
B‰‹D$ ‹‹W‰H‹L$|‹=ÿÿÿ?t@‰‹D$ ‰HèóO‰D$L…À„9H‹‹¨U‹T$P‰T$‰L$‰$èN…Àˆ!‹T$ ‹D$L‰$‰ñ蓸ýÿ‰D$,…À„¤L‹=ÿÿÿ?t
H‰u‰4$èñL‹D$ ‹ùÿÿÿ?t
I‰u‰$èÖLÇD$ ‹D$L‹ùÿÿÿ?t
I‰u‰$è³LÇD$L‹l$,ÇD$,‹»ÿÿÿÇD$H1ÉÇD$4ÇD$<ÇD$@ÇD$Dé«B‰‹ùÿÿÿ?„ÁýÿÿA‰‹¿ùÿÿÿ?t
I‰u‰$è:L‹D$ ‰„$„DŽ$ˆ½÷؍ˆ‰<$‰ñè¸Éýÿ‰D$,‹L$ …Ʉߋ=ÿÿÿ?‹¼$€t
H‰u‰$èÛK‹D$,ÇD$ …À„Å‹=ÿÿÿ?t
H‰u‰4$è±K‹t$,ÇD$,ÇD$Ç$‰ñºÿÿÿÿèªÕÿÿ‰D$,ÇD$$½ò…	t$„ä<‰D$‰4$èR‰D$x…À„Ö<‹D$,‹ùÿÿÿ?t
I‰u‰$è:KÇD$,‹L$‹=ÿÿÿ?t
H‰u‰$èK‹ƒàT‹”$˜‹J‹IH…É„ª<‰D$‰$ÿщD$,½ó…À„­<ÇD$ ‹H1ö;‹TÿÿÿuK‹H‰L$ …Ét@‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹¾=ÿÿÿ?t
H‰u‰$èƒJ‹D$ ‰„$„‹D$P‰„$ˆ‹L$,µ÷؍ˆF‰4$èþÇýÿ‰ƋL$ èC”üÿÇD$ …ö„A<‰t$0‹D$,‹ùÿÿÿ?t
I‰u‰$èJÇD$,‹ƒXU‹T$x‹J‹IH…É„k<‰D$‰$ÿщÆÇD$$½ô…À„\<Ç$èXJ‰D$,…À„Y<‹T$0‹
ùÿÿÿ?tA‰
‹D$,‰Pè?L‰D$ …À„=<‹‹˜U‹“<U‰T$‰L$‰$è×J…Àˆ†‹T$,‹D$ ‰$‰ñèݴýÿ‰D$L…À„™B‹=ÿÿÿ?t
H‰u‰4$è;I‹D$,‹ùÿÿÿ?t
I‰u‰$è IÇD$,‹D$ ‹ùÿÿÿ?t
I‰u‰$èýHÇD$ ‹t$LÇD$L‹‹ÌSènïüÿ‰D$ ½÷…À„"B‹‹(P‹P‹RH…Ò„B‰L$‰$ÿ҉D$,…À„B‹D$ ‹ùÿÿÿ?t
I‰u‰$è‰HÇD$ ‹D$,‹H1ÿ;‹Tÿÿÿ„óA‹D$ ‰„$„‰´$ˆ‹L$,½÷؍ˆG‰<$èëÅýÿ‰D$L‹L$ è.’üÿÇD$ ƒ|$L„ûA‹D$,‹ùÿÿÿ?‹¼$€t
I‰u‰$èùGÇD$,‹D$L‹‹,P‹P‹RH…Ò„B‰L$‰$ÿ҉D$,ÇD$$…À„"B‹D$L‹ùÿÿÿ?t
I‰u‰$è¡GÇD$L‹‹ÌSèîüÿ‰D$L…À„õA‹‹àR‹P‹RH…Ò„îA‰L$‰$ÿ҉D$ …À„ñA‹D$L‹ùÿÿÿ?t
I‰u‰$è>GÇD$LÇ$èºG‰D$L…À„ÃA‹L$ ‰HÇD$ èªI‰D$ …À„°A‹‹ŒP‹“V‰T$‰L$‰$èBH…Àˆu‹L$,‹T$L‹D$ ‰$èF²ýÿ…À„ÀE‰ŋD$,‹ùÿÿÿ?t
I‰u‰$è¡FÇD$,‹D$L‹ùÿÿÿ?t
I‰u‰$è~FÇD$L‹D$ ‹ùÿÿÿ?t
I‰u‰$è[FÇD$ ‹ÇD$H=ÿÿÿ?t
H‰u‰4$è5F1ÉÇD$4ÇD$<ÇD$@ÇD$D‰L$8‹„$œ;ƒÿÿÿ…Æé_1Ò;ƒ4ÿÿÿ”‹ùÿÿÿ?tI‰u‰$‰ÖèÓE‰òÇD$,…Ò…š8‹„$À‹‹W‰L$‰$ÇD$èÐK‰D$,½þ…À„È8;ƒ4ÿÿÿt2;ƒ8ÿÿÿt*;ƒÿÿÿt"‰$èÿG…Àˆ­8‰‹D$,‹ùÿÿÿ?uë&1Ò;ƒ4ÿÿÿ”‹ùÿÿÿ?tI‰u‰$‰Öè1E‰òÇD$,…Ò…r8;»ÿÿÿ„‹‹ÌSè˜ëüÿ‰D$L½…À„ö?‹‹ÌP‹P‹RH…Ò„ï?‰L$‰$ÿ҉D$ …À„ò?‹D$L‹ùÿÿÿ?t
I‰u‰$è³DÇD$L‹ƒW‰D$‰<$ÇD$èÁJ‰D$L…À„¶?‹D$ ‹H1ö¿;‹Tÿÿÿ„©?‰´$„‹D$L‰„$ˆ‹L$ ½÷؍ˆG‰<$èêÁýÿ‰D$,‰ñè/Žüÿ‹D$L‹ùÿÿÿ?t
I‰u‰$èDÇD$Lƒ|$,‹¼$€„?‹D$ ‹ùÿÿÿ?t
I‰u‰$èßCÇD$ ‹D$,‹Œ$À‰L$‰$ÇD$èèI‰D$ ÇD$`…À„L?‹D$,‹ùÿÿÿ?t
I‰u‰$è‰CÇD$,‹T$ ;“4ÿÿÿ„;“8ÿÿÿ„;“ÿÿÿ„ü‰$èáE…Àˆþ>‹T$ ‹
ùÿÿÿ?…ïéû‰<$è*C;³ÿÿÿ…Ÿéÿÿé¯éÿÿ‹¼$€ÇD$ …À…;÷ÿÿÇD$<ÇD$(©<‰t$`é14ÇD$(ñ<‰t$`ÇD$1ÒÇD$HÇD$8‹D$x‰D$ÇD$4ÇD$<ÇD$@ÇD$D1öé•D‹ƒDT‹”$˜‹J‹IH…É„ûB‰D$‰$ÿщD$,‹»ÿÿÿ½…À„ìB‹H;‹Tÿÿÿ‰¼$€…‚;‹p…ö„w;‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹¿=ÿÿÿ?t
H‰u‰$èøA‰´$„‹D$|‰„$ˆ‹L$,½÷؍ˆG‰<$èw¿ýÿ‰D$ ‰ñ輋üÿƒ|$ „kB‹D$,‹ùÿÿÿ?t
I‰u‰$è–AÇD$,‹L$ „$À‰D$ÇD$ÇD$ÇD$Ç$1ÒèIèüÿ‰D$,…À„SB‹D$ ‹ùÿÿÿ?t
I‰u‰$è2AÇD$ ‹t$,ÇD$,‹ƒ„U‹N‹IL…É„€B‹T$P‰T$‰D$‰4$ÿы»ÿÿÿ1ɅÀˆƒBÇD$HÇD$4ÇD$<ÇD$@ÇD$D‰õÇD$0ÇD$x‰L$8‹„$œ;ƒÿÿÿ…b‹u‹“€M‰ñèøN…À„J‹ƒDR‹NH…É„³F‰D$‰,$ÿщD$ …À„¶F‹H;‹Tÿÿÿ‰¼$€…º=‹p…ö„¯=‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$ ‰D$ ‹¿=ÿÿÿ?t
H‰u‰$èù?‰´$„‹ƒW‰„$ˆ‹L$ ½÷؍ˆG‰<$èv½ýÿ‰D$,‰ñ軉üÿƒ|$,„BF‹D$ ‹ùÿÿÿ?‹¼$€t
I‰u‰$èŽ?ÇD$ ‹t$,‹E=ÿÿÿ?tH‰Eu‰,$èj?ÇD$,é)1À;“4ÿÿÿ”
ùÿÿÿ?tI‰
u‰$‰Æè9?‰ðÇD$ …À…é:‹ƒW‹ùÿÿÿ?t	A‰‹ƒW‰„$”‹ƒÈP‹O‹IH…É„p;‰D$‰<$ÿщD$,½…À„s;ÇD$L‹H1ö;‹TÿÿÿuK‹H‰L$L…Ét@‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹¾=ÿÿÿ?t
H‰u‰$èy>‹D$L‰„$„DŽ$ˆ‹L$,µ÷؍ˆ‰4$èõ»ýÿ‰D$ ‹L$Lè8ˆüÿÇD$Lƒ|$ „Ì:‹D$,‹ùÿÿÿ?t
I‰u‰$è
>ÇD$,‹D$ ‰D$\‹=ÿÿÿ?t
H‰u‰<$èä=ÇD$ ‹‹ÌSèaäüÿ‰D$ ÇD$H½…À„®:‹‹èV‹P‹RH…Ò„§:‰L$‰$ÿ҉D$,…À„ª:‹D$ ‹ùÿÿÿ?t
I‰u‰$èt=ÇD$ Ç$èð=‰D$ …À„|:‹T$P‹
ùÿÿÿ?tA‰
‹D$ ‰Pè×?‰D$L…À„`:‹‹ÌSè°ãüÿ…À„Z:‰NjƒàR‹O‹IH…É„Q:‰D$‰<$ÿщƅÀ„T:‹=ÿÿÿ?t
H‰u‰<$èÙ<‹D$L‹‹Q‰t$‰L$‰$è>…ÀˆÑ‹=ÿÿÿ?t
H‰u‰4$è¡<‹L$,‹T$ ‹D$L‰$è
¨ýÿ‰D$D…¼$˜„$<‹D$,‹ùÿÿÿ?t
I‰u‰$è_<ÇD$,‹D$ ‹ùÿÿÿ?t
I‰u‰$è<<ÇD$ ‹D$L‹ùÿÿÿ?t
I‰u‰$è<ÇD$L‹ƒU‹T$D‹J‹IH…É„À;‰D$‰$ÿщD$L½…À„Ã;ÇD$ ‹H1ö;‹TÿÿÿuK‹H‰L$ …Ét@‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$L‰D$L‹¾=ÿÿÿ?t
H‰u‰$è;‹D$ ‰„$„DŽ$ˆ‹L$Lµ÷؍ˆ‰4$èû¸ýÿ‰ƋL$ è@…üÿÇD$ ‰t$@…ö„[;‹D$L‹ùÿÿÿ?t
I‰u‰$è;ÇD$L‹„$”‹Œ$À‰L$‰$ÇD$èAÇD$(n>…À„‰ÅÇD$‹ƒ4ÿÿÿ‰D$ÇD$<ÇD$4ÇD$$1Àë?ÇD$ ‹„$”‹Œ$À‰L$‰$ÇD$è¦@‰ŅD$8„,‰D$H‹L$$;l$‰L$8t6;«8ÿÿÿt.;«ÿÿÿt&‰,$èÎ<‹L$8…Àˆê‹Uúÿÿÿ?uë51À;l$”Uúÿÿÿ?tJ‰Uu‰,$‰Æèü9‰ð‹L$8…À„u‹ƒ¤T‹O‹IH…É„T‰D$‰<$ÿщD$L1ö…À„ž‹„$À‹Œ$”‰L$‰$èÓ@‰D$ …À„‚ÇD$,‹D$L‹H1ö;‹TÿÿÿuN‹H‰L$,…ÉtC‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$L‰D$L‹¾=ÿÿÿ?tH‰u‰$è39‹D$,‰„$„‹D$ ‰„$ˆ‹L$Lµ”$ˆ)ÂF‰4$譶ýÿ‰ŋL$,èò‚üÿÇD$,‹D$ ‹ùÿÿÿ?tI‰u‰$èÏ8ÇD$ …í„Ó‹D$L‹ùÿÿÿ?tI‰u
‰$è•8ÇD$L‹L$<è‚üÿ‹„$”‹‹W‰L$‰$ÇD$èŽ>1ö…À„‹‰Ç;D$t,;»8ÿÿÿt$;»ÿÿÿt‰<$èÄ:…Àˆt‹ùÿÿÿ?uë1À;|$”ùÿÿÿ?t	I‰„‰…À„œ„$”‰D$ÇD$ÇD$ÇD$Ç$ÇD$0‹L$@1Òè¯Þüÿ…À„Š"‰NjƒW‰D$‰|$‹D$\‰$èK=…Àˆ‡"‹=ÿÿÿ?t*H‰u%‰<$è}7ë‰<$‰Çèq7‰ø…À…kÿÿÿ‹‹ÌSèåÝüÿ‰D$L…À„¥‹‹ÜP‹P‹RH…Ò„Ô‰L$‰$ÿ҉D$ …À„†‹D$L‹ùÿÿÿ?tI‰u
‰$è7ÇD$L‹D$ ‹H1ö;‹Tÿÿÿ„Ÿ‹D$L‰„$„‹D$\‰„$ˆ‹L$ µ”$ˆ)ÂF‰4$è`´ýÿ‰NjL$L襀üÿÇD$L…ÿ„‰l$<‹D$ ‹ùÿÿÿ?tI‰u‰$èv6ÇD$ ‹L$è_€üÿÇD$Ç$‰ùºÿÿÿÿèdÀÿÿ1ö…À„î‰ʼnD$‰<$èL=‰D$ …À„ú‹E=ÿÿÿ?tH‰Et ‹L$ ‹=ÿÿÿ?t3H‰u.‰<$‰Ïèô5‰ùë ‰,$èè5‹L$ ‹=ÿÿÿ?uؐÇD$ ‹ƒXU‰ʋI‹IH…ɉT$„ƉD$‰$ÿщD$ …À„•Ç$è6…À„‹‰Njl$<‹E=ÿÿÿ?t@‰E‰oè	8‰D$L…À„‹‹‹˜U‹“<U‰T$‰L$‰$è¡6…Àˆ=
‹L$ ‹D$L‰$‰ú觠ýÿ‰D$,…À„V‹D$ ‹ùÿÿÿ?tI‰t ÇD$ ‹=ÿÿÿ?t7H‰u2‰<$èê4ë(‰$èà4ÇD$ ‹=ÿÿÿ?uؐ‹D$L‹ùÿÿÿ?tI‰u
‰$è¥4ÇD$L‹l$,‹L$4è‹~üÿÇD$,‹‹ÌSèÛüÿ‰D$,…À„´‹‹ˆV‹P‹RH…Ò„‰L$‰$ÿ҉D$L…À„•‹D$,‹ùÿÿÿ?tI‰u‰$è(4ÇD$,Ç$èœ4‰D$,…À„\‹Mùÿÿÿ?tA‰M‹D$,‰hè…6…À„C‰Njƒ0U‹L$‰L$‰D$‰<$è!5…Àˆä‹L$L‹T$,‰<$è)Ÿýÿ‰D$ …À„:‹D$L‹ùÿÿÿ?tI‰u
‰$è‚3ÇD$L‹D$,‹ùÿÿÿ?tI‰t ÇD$,‹=ÿÿÿ?t4H‰u/‰<$èG3ë%‰$è=3ÇD$,‹=ÿÿÿ?uؐ‹D$ ‹H;‹(ÿÿÿ…_‹Hƒù…«HƒÀ‹	‹‰D$,‰L$$‹	ùÿÿÿ?u%‹ùÿÿÿ?u0‹D$ ‹ùÿÿÿ?u3ëKA‹D$$‰‹D$,‹ùÿÿÿ?tÐA‰‹D$ ‹ùÿÿÿ?tI‰u‰$è2ÇD$ ‹L$8èo|üÿ‹|$,‹L$Hèb|üÿ‰úÇD$,‹ƒ¬U‹O‹IH…ɉ|$8„J‰D$‰$ÿщD$,…À„‹H;‹Tÿÿÿ…Š‹p…ö„‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹¿=ÿÿÿ?tH‰u	‰$èÑ1‰´$„DŽ$ˆ‹L$,½”$ˆ)‰<$èR¯ýÿ‰D$ ‰ñè—{üÿƒ|$ „¥‹D$,‹ùÿÿÿ?tI‰u	‰$èq1ÇD$,‹D$ ‹ùÿÿÿ?tI‰u‰$èM1ÇD$ ‹ƒ0V‹M‹IH…É„K‰D$‰,$ÿщD$,…T$8„M‹H;‹Tÿÿÿ…s‹p…ö„h‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹¿=ÿÿÿ?tH‰u‰$è±0‹T$8‰´$„‰”$ˆ‹L$,½”$ˆ)ÂG‰<$è%®ýÿ‰D$ ‰ñèjzüÿƒ|$ „±
‹D$,‹ùÿÿÿ?tI‰u‰$èD0ÇD$,‹D$ ‰D$4‹E=ÿÿÿ?‹¼$˜tH‰Eu	‰,$è0ÇD$ ‹ƒ¨U‹l$4‹M‹IH…É„8‰D$‰,$ÿщD$ 1ö…À„_
‹Œ$”‰D$‰$è&5‰D$,…À„M
‹D$ ‹ùÿÿÿ?tI‰u‰$èŸ/ÇD$ D$,‰D$„$”‰$‹L$@‰êè;@…Àˆ±‹D$,‹ùÿÿÿ?tI‰u‰$èH/ÇD$,‹ƒ¨U‹M‹IH…É„‹‰D$‰,$ÿщD$,…À„¯‹Œ$”‰D$‰$èl4‰D$ …À„¢‹D$,‹ùÿÿÿ?tI‰u
‰$èÕ.ÇD$,‹„$”‹L$ ‰Œ$”‹ùÿÿÿ?„ôÿÿI‰…ÿóÿÿ‰$è—.éòóÿÿ1ö1ÿé¹üÿÿ1ö1ÿéàýÿÿ‰D$‰<$è0‰D$L1ö…À…©ôÿÿéB	‰L$‰$èõ/‰D$ …À…)÷ÿÿéª	‹H‰L$L…É„R÷ÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$ ‰D$ ‹¾=ÿÿÿ?„÷ÿÿH‰…÷ÿÿ‰$èí-é÷ÿÿ‰D$‰$è|/‰D$ …À…7øÿÿéÇ	‰L$‰$è_/‰D$L…À…pùÿÿé
;‹$ÿÿÿ„&‰$èJ/‰D$L…À„þ8‹D$ ‹ùÿÿÿ?t
I‰u‰$ès-ÇD$ ‹D$L‹H‹yp‰$ÿ׉D$$…À„¼8‹D$L‰$ÿ׉D$,…À„¸8‹D$L‰$ÿ׉zè¶<…Àˆs5‹D$L‹ùÿÿÿ?t
I‰u‰$è-ÇD$Lé~úÿÿ‰D$‰$èŠ.‰D$,…À…³úÿÿéË	‰D$‰,$èm.‰D$,…T$8…²ûÿÿéú	‰D$‰,$èL.‰D$ 1ö…À…Åüÿÿé
‰D$‰,$è-.‰D$,…À…rýÿÿé
‹Hƒù…	‹HAéjùÿÿÇD$(+=ÇD$`ÇD$1ÒÇD$HÇD$8‹D$x‰D$ÇD$4ÇD$<ÇD$@ÇD$Dé.ÇD$(R=‰t$`ÇD$1ÒÇD$$ÇD$8ë*ÇD$(:>ÇD$`‰t$1ÒÇD$$ÇD$8‹|$\ÇD$4ÇD$<ÇD$@ÇD$D1öé†-‰$è+ÇD$L‹=ÿÿÿ?„ñÑÿÿéãÑÿÿ‹l$D‹EÇD$0=ÿÿÿ?t@‰E‹D$‰D$x‹|$\‰L$8‹„$œ;ƒÿÿÿ„žêÿÿ‰tS‹”$‹J‹IH…É„©‰D$‰$ÿщD$,½…À„¬‹“WÇ$‰Áè8…Àˆš‹L$,‹úÿÿÿ?tJ‰t3ÇD$,…ÀtC‹=ÿÿÿ?‹L$|t@‰‰õÇD$$‹D$x‰D$éÁ-‰$‰ý‰Çè‘*‰ø‰ïÇD$,…Àu½‹„$œ;ƒÿÿÿ„E‹ƒtS‹N‹IH…É„)1‰D$‰4$ÿщD$,½!…À„,1‹“WÇ$‰Áè\7…Àˆ1‹L$,‹úÿÿÿ?tJ‰u‰$‰ý‰Çè*‰ø‰ïÇD$,…À„È‹‹ÌSèvÐüÿ‰D$,½'…À„1‹‹$Q‹P‹RH…Ò„1‰L$‰$ÿ҉D$ …À„1‹D$,‹ùÿÿÿ?t
I‰u‰$è‘)ÇD$,è$,‰D$,…À„ä0‹ƒQ‹”$‹J‹IH…É„Ö0‰D$‰$ÿщŅÀ„Ù0‹D$,‹‹Q‰l$‰L$‰$è*…Àˆ¾‹E=ÿÿÿ?tH‰Eu‰,$è)‹L$ ‹“W‹D$,‰$èz”ýÿ…À„»0‰ŋD$ ‹ùÿÿÿ?t
I‰u‰$èÕ(‰¼$€ÇD$ ‹D$,‹ùÿÿÿ?t
I‰u‰$è«(ÇD$,‹Œ$‰òè5:…À„s0‰NjƒXM‰|$‰D$‰,$è%.…Àˆm0‹=ÿÿÿ?‹L$|tH‰u‰<$èS(‹L$|‹E=ÿÿÿ?t@‰E‰l$$‹D$x‰D$‹¼$€éM+‹Œ$‰òè»9…À„/‰ÅÇD$$‹D$x‰D$é+ÇD$(ý>‰è½ÇD$`‰|$1҉D$<‹|$\ëVÇD$(?ÇD$`‰|$‰l$4½‹|$\ë1ÇD$(¡?½ÇD$`‹D$8‰D$H‹D$$‰D$8‹|$\ÇD$1ÒÇD$$ÇD$0ék)ÇD$(€@ÇD$`‰l$1ÒÇD$$‹D$x‰D$½'é;)1öÇD$`ÇD$1ÒÇD$$ÇD$H‹|$\ÇD$8ÇD$4ÇD$<ÇD$0ÇD$½éá(1ÿ1Ééݻÿÿ1í1ÿé”ÑÿÿèY(…À…u1‰éèêŠýÿ‰D$,…À…œ3ÇD$8½¼ÇD$(8ÇD$`ÇD$1҉´$ÇD$$ëN‰D$‰<$è
(‰D$ ½¼…À…¸·ÿÿÇD$8ÇD$(8ÇD$`ÇD$1ÒÇD$$‰´$ÇD$HÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$TÇD$XÇD$|‹¼$ÈéÃ'‹H‰L$,…É„E·ÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$ ‰D$ ‹¿=ÿÿÿ?„·ÿÿH‰…·ÿÿ‰$èk%éø¶ÿÿ‰D$‰$èú&éɷÿÿÇD$(¤8é8/1öÇD$(o>ÇD$`‰l$1ÒÇD$$‹|$\é
ÇD$(z>ëÇD$(|>½	ÇD$`ÇD$1ÒÇD$$‹|$\ÇD$0éÞ&1öÇD$(‘>½	éÜÇD$(Ÿ>‰è½
ë-ÇD$( >‰è½
é·üÿÿÇD$(À>ëÇD$(Â>‰è½ÇD$`ÇD$é•üÿÿ1öÇD$(×>‰è½ÇD$`ÇD$‰D$<é”üÿÿÇD$(å>½
ÇD$`ÇD$‰|$énüÿÿÇD$(ç>ÇD$`‰l$½
‰|$éLüÿÿÇD$(ô>ëÇD$(ö>½ÇD$`ÇD$1ҋ|$\éSüÿÿÇD$(û>éÑûÿÿÇD$(þ>éÄûÿÿÇD$(
?ëÇD$(?ëÇD$(?ëÇD$(?ÇD$`ÇD$é¼ûÿÿÇD$<½ïÇD$(<é£ÇD$(?é‰ûÿÿƒùŒu‹ƒìÿÿÿ‹‹±cùÿ‰L$‰$ÇD$è$ÇD$(%?ÇD$`ÇD$éMûÿÿÇD$(Y?‹D$8‰D$H‹D$$‰D$8‰l$4½‹|$\ë`1öÇD$(m?‹D$8‰D$H‹D$$‰D$8‰l$4‹|$\½ë71öÇD$(z?‰T$Hë1öÇD$(Ž?‹D$8‰D$H‹D$$‰D$8‰l$4‹|$\½ÇD$`éñúÿÿÇD$(œ?éÃúÿÿÇD$(ž?é¶úÿÿÇD$(«?½é©úÿÿÇD$(­?½é—úÿÿÇD$`ÇD$1҉D$H‹D$$‰D$8‹|$\ÇD$$ÇD$0½é$;“`ÿÿÿ„\‰L$‰$ÇD$è(‰ÁèÉ3ÇD$(¦8…Àˆ¹+‰ƋD$Léù´ÿÿèI#…À…,‰éèڅýÿ‰D$ …À…´µÿÿ1ÿÇD$(Á8ëR‰L$‰$è&#‰D$,1ÿ…À…¹µÿÿÇD$(Ã8ë.‰D$‰4$è#‰Ņt$…ãµÿÿÇD$(Æ8ë
ÇD$(Ú8‰ï‹D$L…Àt{‹ùÿÿÿ?tqI‰ul‰$è!!ëb‹x…ÿ„ï+‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹½=ÿÿÿ?„n¶ÿÿH‰…e¶ÿÿ‰$èÌ éX¶ÿÿÇD$(ñ81ÿÇD$L‹D$,…Àt‹ùÿÿÿ?t
I‰u‰$è– ÇD$,‹D$ …Àt‹ùÿÿÿ?t
I‰u‰$èo ÇD$ …ÿt‹=ÿÿÿ?t
H‰u‰<$èM ‹D$‹@<½À…À„á*‹“”Y‹H9ы¼$È„É(‹B‹@T©…Ÿ(‹qƒ~T‰„(…À‰|(¸@#AT„n(öBW@„d(‹¬…t$„(‹H…ÉŽT)1ö9T°„b(F9ñuñé:)ÇD$`ÇD$(@9éÇD$(A9éÿ
½ÍÇD$(:ëvè
!…À…V*‰ñ蛃ýÿ‰D$,…À…Bºÿÿ½ÏÇD$(:ëG‰L$‰$èä ‰D$ ½Ï…À…HºÿÿÇD$(:ë è´ ÇD$(":…Àu‰ñèAƒýÿ…À…uºÿÿÇD$`ÇD$1Òéu
‰T$‰ʼn$è„ …À…oºÿÿÇD$($:ÇD$`ÇD$ë`èM ÇD$(':…=Ïu‰ñèՂýÿ…À…€ºÿÿÇD$`1Òé
‰T$‰ʼn$è  ‰ƅL$…‚ºÿÿÇD$():ÇD$`ÇD$HÇD$8ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$TÇD$X‰ê½Ïéý‹y…ÿ„â(‹Q‹=ÿÿÿ?…Ç‹=ÿÿÿ?…Ê‹½=ÿÿÿ?…ÉéÍÇD$4ÇD$(?:ÇD$`餉L$‰$è4‰ƅÀ…ŠºÿÿÇD$4ÇD$(C:ël‹H‰L$,…É„¡ºÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$ ‰D$ ‹¿=ÿÿÿ?„jºÿÿH‰…aºÿÿ‰$è!éTºÿÿÇD$4ÇD$(Y:ÇD$`ÇD$1ÒÇD$$ÇD$HÇD$8éx½ÔÇD$(;ÇD$`é‰D$‰4$èW‰ƽØ…À…qÃÿÿÇD$(;éÇD$(;‰t$`1ÒÇD$$ÇD$HÇD$8‹|$ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$T½Øé&‹‹Y‹“pWÇ$荇ýÿ½Ù…À„ø&‰ƉÁèˆýÿ‹ÇD$(.;=ÿÿÿ?t
H‰u‰4$èÙÇD$`1ÒÇD$$ÇD$HÇD$8ÇD$4‹|$鯉D$‰$è:é»ÂÿÿÇD$(@;ë}ÇD$(B;‰t$`ëwÇD$(D;ëe‹‹Y‹“tWÇ$èۆýÿ‰D$L½Û…À„O&‰Áèc‡ýÿ‹D$L‹ùÿÿÿ?t
I‰u‰$è(ÇD$LÇD$(S;ëÇD$(n;ÇD$`1ÒÇD$$ÇD$HÇD$8‹|$ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$T颉D$‰4$è5‰D$ …À…ÙÂÿÿÇD$(p;‰t$`érÿÿÿè…À…}%‰ñè”~ýÿ‰D$ …À…³ÇÿÿÇD$<½éÇD$(><é~ÇD$(s;ÇD$`1ÒÇD$$ÇD$HÇD$8‹|$ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$T½ÝéʼnL$‰$èXé+ÇÿÿÇD$(@<ÇD$`ÇD$é;‹h…턪$‹@‹Mùÿÿÿ?tA‰M‹ùÿÿÿ?tA‰‹L$ ‰D$ ‹¿=ÿÿÿ?„ìÁÿÿH‰…ãÁÿÿ‰$èAéÖÁÿÿÇD$<ÇD$(ˆ;é'ÇD$(C<ÇD$`éÉÿÿÇD$<ÇD$(Œ;éýÇD$(H<ÇD$`鐋‹Y‹“xWÇ$èP„ýÿ‰D$LÇD$`½Þ…À„ß#‰ÁèЄýÿ‹D$L‹ùÿÿÿ?t
I‰u‰$è•ÇD$LÇD$(›;ÇD$érýÿÿèÇD$(J<…Àu‰ùè|ýÿ…À…M%ÇD$ÇD$$ÇD$HÇD$8ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$é ÇD$(­;ëQ‰D$‰4$苉D$,…:…3ÆÿÿÇD$(L<‰t$én‰L$‰$è]‰ƅ:……ÁÿÿÇD$(¯;ÇD$`ÇD$éüÿÿ‰D$‰4$è%‰D$ …:…œÁÿÿÇD$(²;‰t$`ÇD$éWüÿÿÇD$(µ;ÇD$`ÇD$ÇD$$ÇD$HÇD$8‹|$ér
ÇD$<ÇD$(É;ëÇD$<ÇD$(Í;ÇD$`ÇD$1ÒÇD$$‹|$ÇD$HÇD$8ÇD$4éíûÿÿ‹‹Y‹“|WÇ$è-‚ýÿ‰D$LÇD$`½à…À„Ñ!‰Á譂ýÿ‹D$L‹ùÿÿÿ?t
I‰u‰$èrÇD$LÇD$(Ü;ÇD$éOûÿÿÇD$(î;ÇD$é:ûÿÿÇD$(ð;ÇD$é%ûÿÿÇD$(ò;ÇD$éûÿÿ‹‹Y‹“€WÇ$è~ýÿ‰D$ ½â…À„?!‰Áè‚ýÿ‹D$ ‹ùÿÿÿ?t
I‰u‰$èËÇD$ ÇD$(<ÇD$1ÒÇD$$ÇD$Hé‹‹Y‹“lWÇ$èýÿ‰D$LÇD$`½Ê…À„Ê ‰Á脁ýÿ‹D$L‹ùÿÿÿ?t
I‰u‰$èIÇD$LÇD$(õ9饉ÆéóÈÿÿÇD$(«>‰è½ÇD$`ÇD$ëÇD$(­>‰è½ÇD$`‰|$1҉D$<‹|$\ÇD$$1öéÙèc…À…– ‰ñèôxýÿ‰D$,ÇD$(H9…Àt%é.¬ÿÿ‰L$‰$èC‰D$L…À…?¬ÿÿÇD$(J9ÇD$1ÒÇD$$ÇD$HÇD$8ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$TÇD$Xé‹H‰L$,…É„ï«ÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$L‰D$L‹¾=ÿÿÿ?„¸«ÿÿH‰…¯«ÿÿ‰$èÇ颫ÿÿÇD$8ÇD$(_9és½ÖÇD$(;ÇD$`1ÒÇD$$ÇD$H‰÷ÇD$8éøÿÿ‹D$`‰D$‰|$‰4$胉D$,…À…_Âÿÿëèà…À„(ÇD$,ÇD$(Q<ÇD$ÇD$$ÇD$HÇD$8ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$½é‹¼$€1ÒéÔ‰D$‰4$èg‰D$ ½Å…À…¢«ÿÿÇD$(9陋‹Y‹“hWÇ$è~ýÿ‰D$ ÇD$`½Æ…À„w‰Áè‘~ýÿ‹D$ ‹ùÿÿÿ?t
I‰u‰$èVÇD$ ÇD$(¡9é1‰D$‰4$èÕ‰D$ ½È…À…;¬ÿÿÇD$8ÇD$(´9ÇD$`ÇD$1ÒÇD$$ÇD$HéÿÇD$(¶9ÇD$`éÐÇD$(%?…Éx4‹ƒìÿÿÿ‹ƒù“õÿ»ÍUùÿDú‰|$‰L$‹Oeùÿ‰L$‰$èxÇD$`ÇD$1҉l$4½‹|$\éõéÿÿèÿ…À…s‰ñèuýÿ‰D$ …À…¤±ÿÿÇD$4ÇD$(q:ÇD$`ÇD$1҉l$X½ÑÇD$$ÇD$HÇD$8é,öÿÿ‰L$‰$è 1҅À…m±ÿÿÇD$(s:ÇD$`ÇD$ÇD$$ÇD$HÇD$8‰l$XÇD$4é‰D$‰<$èIé_±ÿÿÇD$(v:ÇD$`ÇD$$ÇD$HÇD$8ÇD$4‰l$X鷋F‰D$,…À„E±ÿÿ‹v‹ùÿÿÿ?tA‰‹=ÿÿÿ?t@‰‹L$‹¿=ÿÿÿ?„±ÿÿH‰…
±ÿÿ‹D$‰$èéù°ÿÿÇD$4ÇD$(‹:ÇD$`‰t$ë ÇD$4ÇD$(:ÇD$`ÇD$1ÒÇD$$‰l$XÇD$HÇD$8ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$T½Ñéq‰D$‰$è‰D$,½…À…TäÿÿÇD$(?@ëÇD$(A@ÇD$`ÇD$1ÒÇD$$‹D$x‰D$é@‰‹=ÿÿÿ?„6ñÿÿ@‰‹½=ÿÿÿ?t	H‰„Ý
‰Ñé(«ÿÿ‰D$‰<$è}½ñ…À…ñ¿ÿÿÇD$<ÇD$(•<ÇD$`ÇD$1ÒÇD$$ÇD$HÇD$8ÇD$4éÝâÿÿÇD$(·<ëÇD$(¹<ÇD$`ÇD$1ÒÇD$HÇD$8ëO‰D$‰$èç‰D$,½ó…À…SÃÿÿÇD$(Æ<ÇD$`ÇD$1ÒÇD$HÇD$8‹D$x‰D$ÇD$4ÇD$<ëJÇD$<ÇD$(Ú<ÇD$`ÇD$1ÒÇD$$‹D$x‰D$ÇD$HÇD$8ÇD$4ÇD$@ÇD$D1öÇD$0銉D$‰$èéÃÿÿÇD$(è<ÇD$`é†ÊÿÿÇD$(ê<éuÊÿÿÇD$(ï<éhÊÿÿÇD$`ÇD$(o=éÏ
ÇD$(p=éÂ
‹‹Y‹“„WÇ$èxýÿ‰D$,½ü…À„€‰Áèyýÿ‹D$,‹ùÿÿÿ?t
I‰u‰$èÜÇD$,ÇD$(=éb
ÇD$(‘=éU
ÇD$(’=éH
‹‹Y‹“ˆWÇ$èxýÿ‰D$,½ÿ…À„‰Áèxýÿ‹D$,‹ùÿÿÿ?t
I‰u‰$èbÇD$,ÇD$(¡=éè;“`ÿÿÿ„‰L$‰$ÇD$è]‰Áè…À‰ÇD$8ÇD$(c9ÇD$`ÇD$1ÒÇD$$ÇD$HÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$TÇD$X½Ãé™
1Éò*Áf.@›Á” Ê¶ò鸞ÿÿ;“`ÿÿÿ„؉L$‰$ÇD$草ÁèF…À‰UÇD$8ÇD$(’9ÇD$`ÇD$1ÒÇD$$ÇD$HÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$TÇD$XÇD$|½ÅéÁÇD$(š:ÇD$`ÇD$ÇD$$ÇD$HÇD$8‹D$‰D$Xé›ïÿÿ‰T$‰$è‰D$ …À…lÿÿÇD$(œ:ÇD$`ÇD$$ÇD$HÇD$8ÇD$4‹D$‰D$Xé†ÇD$(Ÿ:ë‰L$‰$踉ƅÀ…¼¬ÿÿÇD$(¡:ÇD$`ë$‰D$‰<$萉D$,…À…ެÿÿÇD$(¤:‰t$`ÇD$ÇD$$ÇD$HÇD$8‹D$‰D$XÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$T1Òéh‹~…ÿ„ø‹N‹=ÿÿÿ?…ª‹=ÿÿÿ?…­‹½=ÿÿÿ?…°‰Îé3¬ÿÿÇD$4ÇD$(¹:‰t$`ÇD$1ÒÇD$$‹D$‰D$XÇD$HëH‰D$‰$è‚
‰ƅÀ…‘¬ÿÿÇD$4ÇD$(½:ÇD$`1ÒÇD$$ÇD$H‹D$‰D$XÇD$8ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$T½Ò‹¼$ÈéT
‹x…ÿ„ë‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$ ‰D$ ‹½=ÿÿÿ?„þ«ÿÿH‰…õ«ÿÿ‰$èéè«ÿÿÇD$4ÇD$(Ó:ÇD$`ÇD$1ÒÇD$$‰l$XÇD$HÇD$8ë<ÇD$(Ù:ÇD$`ÇD$ÇD$$ÇD$HÇD$8‰l$XÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$T½Òé<	ÇD$(Ú:ÇD$`ÇD$$ÇD$HÇD$8ÇD$4‰l$XÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$T½Ò1ÒéÂ1ö1ÿéÀÄÿÿÇD$(ò<éÊÃÿÿÇD$(=éAÚÿÿ‰L$‰$è2‰D$,…À…â½ÿÿÇD$(=éÚÿÿ‹H‰L$ …É„þ½ÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹¿=ÿÿÿ?t
H‰u‰$è*½÷鴽ÿÿÇD$@ÇD$(=ÇD$`ÇD$1ÒÇD$$‹D$x‰D$ÇD$HÇD$8ÇD$4ÇD$<ÇD$D‹¼$€é»‰L$‰$èN‰D$,ÇD$$…À…޽ÿÿÇD$(=é0ÙÿÿÇD$(=é#Ùÿÿ‰L$‰$è‰D$ …À…¾ÿÿÇD$(!=éþØÿÿÇD$($=éñØÿÿÇD$()=éäØÿÿ‰D$‰$èÕél·ÿÿÇD$(F=ÇD$`éÙÿÿÇD$(H=éÙÿÿÇD$(P=éûØÿÿÇD$(½=鏉L$‰$舉D$ …À…ÀÿÿÇD$(¿=éjÇD$(Â=é]‹p…ö„c‹@‹ùÿÿÿ?tA‰‹ùÿÿÿ?tA‰‹L$ ‰D$ ‹¿=ÿÿÿ?t
H‰u‰$èw½éÀÿÿÇD$@ÇD$(Ö=éÇD$(Ú=éæÇD$(Ü=éÙ‹‹Y‹“ŒWÇ$è¦oýÿ‰D$ …À„ωÁè3pýÿ‹D$ ‹ùÿÿÿ?t
I‰u‰$èøÇD$ ÇD$(ë=ÇD$1ÒÇD$$ÇD$HÇD$8ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$½‹¼$€é„‰D$‰<$è‰D$,½…À…ÄÿÿÇD$(>éôÇD$@ÇD$(>ÇD$`ÇD$1ÒÇD$$ÇD$HÇD$8ÇD$4ÇD$<éf×ÿÿÇD$()>鯉L$‰$葉D$,…À…VÅÿÿÇD$(+>éŠÇD$(.>é}ÇD$(3>épÇD$(5>éc‰D$‰<$èE‰ƅÀ…¬ÅÿÿÇD$(7>‰|$`éD1ö1ÿéˆÂÿÿè…À…6‰ñèfýÿ‰D$ …À…z½ÉÇD$(É9ÇD$`1ÒÇD$$ÇD$HÇD$8ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$TÇD$X‹¼$Èé݉L$‰$èp‰D$,½É…À…] ÿÿÇD$(Ë9ÇD$`é#íÿÿ‹H‰L$ …É„q ÿÿ‹@‹úÿÿÿ?tB‰‹ùÿÿÿ?tA‰‹L$,‰D$,‹¾=ÿÿÿ?t
H‰u‰$è[½É‹¼$Èé  ÿÿÇD$8ÇD$(à9ÇD$`ÇD$1ÒÇD$$ÇD$Hé¦ìÿÿ‰$‰T$è‹L$é=ÿÿÇD$(,=ÇD$`ÇD$1ÒÇD$HÇD$8‹D$x‰D$ÇD$4ÇD$<ÇD$@ÇD$D½÷é£@‰‹=ÿÿÿ?„S÷ÿÿ@‰‹½=ÿÿÿ?„P÷ÿÿ‰L$H‰u‰4$èl‹t$ép£ÿÿÇD$(S=éPÔÿÿÇD$(<>ÇD$`ÇD$égÔÿÿ‰D$‰$è͉D$L½…À…=ÄÿÿÇD$(K>ÇD$`ÇD$1ÒÇD$$ÇD$8‹|$\ÇD$4ÇD$<ÇD$@é5ÔÿÿÇD$@ÇD$(_>ÇD$`ÇD$1ÒÇD$$‹|$\ÇD$HÇD$8ÇD$4ÇD$<éâÓÿÿ‰D$‰$èéý¼ÿÿÇD$(Ð?ÇD$1ÒÇD$$ÇD$HéVÓÿÿÇD$@ÇD$(ä?ÇD$`ÇD$1ÒÇD$$ÇD$HÇD$8ÇD$4ÇD$<ëJÇD$8ÇD$(è?ÇD$`ÇD$1ÒÇD$$ÇD$HÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$‹¼$€é‹‹L$P‰L$‰D$‰4$è–ÿ‹»ÿÿÿ1ɅÀ‰}½ÿÿÇD$8½ÇD$(õ?ÇD$`ÇD$1ÒÇD$$ÇD$HÇD$4ÇD$<ÇD$@ÇD$DÇD$0ÇD$‹D$L…Àt1‹ùÿÿÿ?t'I‰u"‰$‰´$€‰þ‰ï‰ÕèÓý‰ê‰ý‰÷‹´$€‹D$,…Àt1‹ùÿÿÿ?t'I‰u"‰$‰´$€‰þ‰ï‰Õèšý‰ê‰ý‰÷‹´$€‹D$ …Àt1‹ùÿÿÿ?t'I‰u"‰$‰´$€‰þ‰ï‰Õèaý‰ê‰ý‰÷‹´$€…Òt‹=ÿÿÿ?t
H‰u‰$è:ý‹L$…Ét‹=ÿÿÿ?t
H‰u‰$èý‹L$`…Ét‹=ÿÿÿ?t
H‰u‰$èþüƒ%õÿ‰D$‰,$‹Ù~ùÿ‹T$(èr¦üÿ1í‹L$|…Ét‹=ÿÿÿ?t
H‰u‰$èÂü‹L$X…Ét‹=ÿÿÿ?t
H‰u‰$è¤ü‹L$T…Ét‹=ÿÿÿ?t
H‰u‰$è†ü‹L$P…Ét‹=ÿÿÿ?t
H‰u‰$èhü‹L$…Ét‹=ÿÿÿ?t
H‰u‰$èJü‹L$0…Ét‹=ÿÿÿ?t
H‰u‰$è,ü…öt‹=ÿÿÿ?t
H‰u‰4$èü‹„$”…Àt‹ùÿÿÿ?t
I‰u‰$èðû‹L$D…ɋ´$t‹=ÿÿÿ?t
H‰u‰$èËû‹L$@…Ét‹=ÿÿÿ?t
H‰u‰$è­û‹L$<…Ét‹=ÿÿÿ?t
H‰u‰$èû‹L$4…Ét‹=ÿÿÿ?t
H‰u‰$èqû‹L$8…Ét‹=ÿÿÿ?t
H‰u‰$èSû‹L$H…Ét‹=ÿÿÿ?t
H‰u‰$è5û‹L$$…Ét‹=ÿÿÿ?t
H‰u‰$èû…öt‹=ÿÿÿ?t
H‰u‰4$èýú‹„$À…Àt‹ùÿÿÿ?t
I‰u‰$èÛú…ÿt‹=ÿÿÿ?t
H‰u‰<$èÁú‰èĬ^_[]Ã1Éò*Áf.@šÁ•ÂʶòéƓÿÿ¹WÀò*Áf.@šÁ•ÂʶÒé6”ÿÿ;“`ÿÿÿ„‰L$‰$ÇD$舉ÁèA…À‰nÇD$4ÇD$(ä9ÇD$`ÇD$1ÒÇD$$ÇD$HÇD$8ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$TÇD$X½É‹¼$Èé½ûÿÿ‰D$‰,$èPû‰D$ …À…J¹ÿÿÇD$(@ÇD$`ÇD$1҉î‹D$x‰D$ÇD$$½éoûÿÿÇD$((@ÇD$`ÇD$1҉î‹D$x‰D$ÇD$$½‹¼$€é2ûÿÿ‰D$‰4$èÅú‰D$,½!…À…ÔÎÿÿÇD$(h@éÆéÿÿÇD$(j@é¹éÿÿ½+ÇD$(²@ÇD$`ÇD$1ҋD$x‰D$ÇD$$éÇúÿÿÇD$(w@éxéÿÿ‰L$‰$èMú‰D$ …À…õÎÿÿÇD$(y@éSéÿÿÇD$(|@éFéÿÿ‰D$‰$èú‰ŅÀ…'ÏÿÿÇD$(~@ë81Éò*Áf.@šÁ•Âʶò‹¼$ȋùÿÿÿ?…þ—ÿÿé˜ÿÿÇD$(‚@ÇD$`ÇD$éÄÐÿÿÇD$(@ÇD$`ÇD$ëÇD$(’@ÇD$`‰|$1҉l$$‹D$x‰D$½(‹¼$€éÎùÿÿ‹‰€9ы¼$Ètd…Éuë1À;“Pÿÿÿ”Àë?1öÇD$(B?‹D$$‰D$‰l$4½‹|$\ÇD$`éþÏÿÿ‰T$‰$èÃúëè¼^ýÿ…=À‹¼$È„⍃%õÿ‰D$Ç$À‹Ù~ùÿ‹T$(èȠüÿD$ ‰D$D$,‰$T$L‹L$èì„ÿÿ…Àˆ‘‹³Y‹»`W‹F‹h@…í„cƒ½‡ùÿ‰$èìûÇD$(!9…À…‰|$‰4$ÇD$ÿՉÅèÔû…í„R‰éèÕbýÿ‹EÇD$(%9=ÿÿÿ?‹¼$ȋt$tH‰Eu‰,$èŠö½Âë½ÁÇD$(9‹t$‹D$‹H@‹‹T$4‰…Àt‹ùÿÿÿ?t
I‰u‰$èHö…öt‹=ÿÿÿ?t
H‰u‰4$è.ö‹L$|…Ét‹=ÿÿÿ?t
H‰u‰$èöÇD$1ÒÇD$$ÇD$HÇD$8ÇD$4ÇD$<ÇD$@ÇD$D1öÇD$0ÇD$ÇD$PÇD$TÇD$XÇD$|é˜÷ÿÿ‰|$‰4$ÇD$è£ú‰ŅÀ…½þÿÿ½ÂÇD$(!9ëèõö…À„,½Â‹¼$ÈéÖþÿÿÇD$,é‘ÎÿÿÇD$(p9é£àÿÿÇD$ é‡Óÿÿ1ÿ1í魊ÿÿÇD$,é°Õÿÿ1ÿéE‘ÿÿÇD$(*;éíÙÿÿÇD$(O;éàÙÿÿÇD$ é‰Úÿÿ1í1ÿérÿÿÇD$(—;ÇD$é½ÙÿÿÇD$(Ø;ÇD$é¨ÙÿÿÇD$(ý;éæÞÿÿÇD$(ñ9éàÿÿ1ÿëÇD$(:?éñÐÿÿ¿‹D$L‹ùÿÿÿ?t
I‰u‰$ècôÇD$Lè¦ÇD$(J?…ÀtcÇD$`‹D$$‰D$é‘ÇD$,ÇD$(H9é‘ßÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èÖóé¹àÿÿÇD$(9éäýÿÿÇD$ é“âÿÿ‹t$$…ö‹ƒìÿÿÿ‹‹ÍUùÿ“õÿDщT$‰|$‹Oeùÿ‰L$‰$èôÇD$`‰t$1҉l$4½‹|$\ÇD$$ÇD$01öéõÿÿÇD$({=éôÿÿÇD$(=éÿóÿÿ1ÿéh–ÿÿ1ÿ1íéA—ÿÿ1ö1ÿéÔîÿÿÇD$(ç=éVïÿÿÇD$ éÐðÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èçòéµýÿÿ‰Çé<„ÿÿ‰Æé(¡ÿÿ‰ƋD$ é&Œÿÿ‰‹D$ ‹´$饌ÿÿ‹¼$ÈéK‘ÿÿ‰ƋD$LéúÿÿSVPè[ÃD=9Ñt/‹D$‹q;³ÿÿÿu6‹Q…Àt$ƒâú1úu	1y”Ä^[øƒÄ^[Ãâ‰ЃÄ^[Ã;³`ÿÿÿtƒìjRQè”øƒÄ‰CÄ^[éEò*Àf.A›À”Á Á¶CÄ^[АSVPè[ä<9Ñt2‹D$‹q;³ÿÿÿu8‹Q…Àt$ƒâú¸ƒúu	1y•Ä^[Ã1Ä^[Ã÷҃â‰ЃÄ^[Ã;³`ÿÿÿtƒìjRQèò÷ƒÄ‰CÄ^[é£ò*Àf.AšÀ•ÁÁ¶CÄ^[АWVè^Æ<¸9Ñt&‹¹¬…ÿt.‹O…É~1��9T·tF9ñuõ1À^_Ã1À^_ˉ€9Ñtî…Éuò1À;–Pÿÿÿ”À^_АUSWVƒìè[Ð;…Òt[‹I¸9ÑtG‹±¬…öt^‹~…ÿ~1퐐9T®t$E9ïuõ‹ƒÿÿÿ³‰ùÿÿrÿqVÿ0è›ñƒÄ1Ä^_[]˃Hÿÿÿƒì‹ˆ`ùÿQÿ0ègðëډ΅öt‹¶€9ÖuòëÍ;“PÿÿÿtÅ뤐SVƒìè[Ãâ:…ÉuèFó‰ƋH<1Ét‹I…ÉuIƒÄ^[Ë=ÿÿÿ?tH‰u‰$‰Öè&ð‰ò‹ƒìÿÿÿ‹‰T$‹±cùÿ‰L$‰$èæð¸ÿÿÿÿƒÄ^[˃,ÿÿÿ‹è^˜üÿ…Àtä‹N<ÇF<…ɸt“‹úÿÿÿ?t‰J‰u„‰$èÀï1Ä^[АSVPè[Ã$:èŒò‰ƋH<1Ét‹I…ÉuƒÄ^[˃,ÿÿÿ‹èç—üÿ…Àt2‹N<ÇF<…ɸt֋úÿÿÿ?tÌJ‰ulj$èIï1Ä^[øÿÿÿÿƒÄ^[АUSWVƒìè[à9‹A‹x8…ÿtqƒtk‰ΉT$‹T$$‹l$ ‹‹ÿÿÿ‰ȅít‹E‰ͅÒt‹*ƒìQUPè½ðƒÄ…Àt`‰Ńìÿt$PVÿWƒÄ‹Mùÿÿÿ?tII‰MuCƒìU‰Æè©î‰ðƒÄë1‹‹ÿÿÿ…ҍ“µ~ùÿ³DiùÿDò“:€ùÿVÿpRÿ1èYïƒÄ¸ÿÿÿÿƒÄ^_[]АSVPè[ÃÔ8‹q‹F4‹v8…öt‹v…öt
ƒìRQÿփÄ^[ÅÀtƒxt葃Ä^[Ãè–ƒÄ^[ÃSVPè[Ä8…Ét^‰Î;‹4ÿÿÿt(;³8ÿÿÿt ;³ÿÿÿt‰4$èkð‹ùÿÿÿ?uƒÄ^[Ã1À;³4ÿÿÿ”ùÿÿÿ?tåI‰uà‰4$‰Æè§í‰ðƒÄ^[øÿÿÿÿƒÄ^[АUSWVƒì‰Öè[Ãþ7‹B;ƒÿÿÿuM‹Fƒø‡Ãƒàº)¯Vƒúÿu‰ÏèÚî‰ùºÿÿÿÿ…ÀuVÇD$Ç$èKwÿÿƒÄ^_[]É4$‰ÍèYô‰é…Àt‰lj$èYô‰‹=ÿÿÿ?tH‰u‰<$‰×èïì‰ú‰é듋‹ôÿÿÿ‹	‰L$‰$è%ð…Àt)‹F‹pè틃üÿÿÿ‹‰t$‹°iùÿ‰L$‰$èˆí1Àévÿÿÿ‰4$‰Ïèçó‰ù‰Âé8ÿÿÿUSWVƒì‰Îè[Ãî6‹IƒyT‰‰׋ƒ¸P‹IH;‹ÿÿÿuYjjPVèíƒÄ‰ŅÀt^ÇD$T$‰|$ƒì‰éh€èÈiýÿƒÄ‹Mùÿÿÿ?tXI‰MuRƒìU‰Æèùë‰ðƒÄë@ƒì…ÉtAPVÿуĉŅÀu§è	Qýÿèì‹N‹ƒÿÿÿƒì“%‰ùÿÿqRÿ0è—ìƒÄ1Ä^_[]ÃPVèCíƒÄ‰ŅÀ…_ÿÿÿ붐USWVƒì‰Ïè[Ãþ5‹³ÌS‹ƒLM‹N‰L$‰t$‰$èŒî…À„ɉŋ=ÿÿÿ?t@‰E‹ƒ8R‹M‹IH…Ʉ҉D$‰,$ÿщƋE…ö„Õ=ÿÿÿ?tH‰Eu‰,$èë‰|$‹F1í;ƒTÿÿÿ„È1ÿ‰|$‹D$‰D$­÷؍ƒÂE‰,$‰ñèyhýÿ‰Ņÿt‹=ÿÿÿ?t
H‰u‰<$è­ê…í„»‹=ÿÿÿ?tH‰t9;«4ÿÿÿ‹t$tA;«8ÿÿÿt9;«ÿÿÿt1‰,$èí…Àˆ ‹Mùÿÿÿ?u,ë0‰4$èVê;«4ÿÿÿ‹t$u¿1À;«4ÿÿÿ”Mùÿÿÿ?tI‰Mt9…ÀtE‰ñ胉Æ!ƒúÿu
è¥ë…À…í‰4$èë…À„FƒÄ^_[]É,$‰Çèë鉸…Àu»‹ƒ,P‹N‹IH…É„}‰D$‰4$ÿщŅÀ„€èYìÇD$v…À„}‰ƋƒŒP‹‹V‰L$‰D$‰4$èëê…Àˆ–‹‹$W‹E‹x@…ÿ„a‰L$ƒ½‡ùÿ‰$è]îº%…Àul‰t$‹D$‰D$‰,$ÿ׉ÇèLî‰ø…ÿ„>‹Mùÿÿÿ?tI‰Mu‰,$‰Çè鉸‹ùÿÿÿ?„
ÿÿÿI‰…ÿÿÿ‰4$‰Æèôè‰ðéðþÿÿº%‹E=ÿÿÿ?tH‰Eu‰,$‰×èÎè‰ú…öt‹=ÿÿÿ?tH‰u‰4$‰Öè°è‰òƒ%õÿ‰D$‹D$‰$‹g€ùÿè"’üÿ1ÀéŽþÿÿèêÇD$s…À…¤‰ñèŸLýÿ…:È$t¸‰Åéýÿÿ‰D$‰,$èóé‰ƋE…ö…+ýÿÿºÊ$=ÿÿÿ?…‘ÇD$sé{ÿÿÿ‹~…ÿ„V‹N‹=ÿÿÿ?…‹=ÿÿÿ?…‹½=ÿÿÿ?…éÇD$sºß$‹=ÿÿÿ?…ÿÿÿéÿÿÿ1öÇD$sºã$éÏþÿÿÇD$uºù$é÷þÿÿÇD$sH‰E…åþÿÿ‰,$è‹çºÊ$éÓþÿÿ@‰‹=ÿÿÿ?„pÿÿÿ@‰‹½=ÿÿÿ?tH‰tz‰Îéeüÿÿ‰D$‰4$èèè‰ŅÀ…€ýÿÿÇD$vº%é~þÿÿ1öº%é8þÿÿÇD$tºî$é`þÿÿ‰t$‰L$‰,$èì…À…Äýÿÿë	èè…Àt*º%éùýÿÿ‰4$‰Îè׿éãûÿÿºÈ$éþÿÿ1íéÐûÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èwæ뺐SWVƒìè[Ã1‹Aö@Wtn‹Qƒúv2‰Ѓà¾)ÆÁê¯փút0ƒúþu;‹A‰ÆÁîÁàA1Ò÷Øòë-ƒâ¸)ЯA‰ÂÁúë‹A‰ÂÁêÁàAë‰$è~íƒÄ^_[Ãè2rÿÿ…Àt*‰ƉÁèeÿÿÿ‹ùÿÿÿ?tÝI‰u؉4$‰Ɖ×èêå‰ú‰ðëƸÿÿÿÿºÿÿÿÿ뺐SVPè[ÃD0‹Aö@Wt*‹Qƒúv‰$è˜ìƒÄ^[Ãâ¸)ЯAƒÄ^[Ãè©qÿÿ…Àt*‰ƉÁè¬ÿÿÿ‹ùÿÿÿ?tÊI‰uʼn4$‰Æècå‰ðƒÄ^[øÿÿÿÿƒÄ^[ÃUSWVƒìl‰ՉÎè[ü/ÇD$,ÇD$ÇD$ ÇD$ÇD$@ÇD$DÇD$H‰$è¹êÇD$‰D$LƒøÿtH‰t$0‹E‹‹€M9ȉl$$tb‹¬…Òt:‹r…öŽ@1ÿ9Lºt9G9þuõé"ºƒl¿1öéÄ'‰…Òt‹’€9Êuòë;‹Pÿÿÿ…ó‹‹dQ‹@H…À„c‰L$‰,$ÿЉʼnD$,…À„f‹ƒÔV‹M‹IH…É„a‰D$‰,$ÿщƉD$¿…À„V‹E=ÿÿÿ?tH‰Eu‰,$èäÇD$,;³4ÿÿÿt0;³8ÿÿÿt(;³ÿÿÿt ‰4$èiæ…l$$ˆ‹ùÿÿÿ?uë*1À;³4ÿÿÿ”l$$‹ùÿÿÿ?tI‰u‰4$‰Æè™ã‰ðÇD$…À„'‹E‹‹€M9È„‘‹‹€M9È„&‹¬…Ò„«‹r…ö~1ÿ9Lº„G9þu񋻈O‹ƒLM‹O‰L$‰|$‰$èRæ…À„ø‰Ƌ=ÿÿÿ?t@‰‰t$‹|$0‰t$‰,$è˜èƒøÿ„ô‹ùÿÿÿ?t	I‰„¬ÇD$…À…‹»ÄV‹ƒLM‹O‰L$‰|$‰$èÝå…À„b‰Ƌ=ÿÿÿ?t@‰‰t$‹ƒ¼V‹N‹IH…É„f‰D$‰4$ÿщD$¿<‰D$X…À„Y‹=ÿÿÿ?t
H‰u‰4$èKâÇ$èÏâ‰D$…À„7‰ƋƒäV‹ùÿÿÿ?t	A‰‹ƒäV‰F‹E‹‹hS‹P‹RH…Ò„	‰L$‰$ÿ҉D$ …À„‹H;‹xÿÿÿ‰t$(…
‹¹ÿÿÿ?úÿÿÿ?tB‰‰щD$,‰Ɓùÿÿÿ?t
I‰u‰$è§áÇD$ ‹F¿¨@u"Áèƒà1Ƀø•ÁÁáÉÿÿƒø¿ÿEù‹F‹L$(‰q‰΋‹øS‹úÿÿÿ?t	B‰‹‹øS։N‰|$‰$è¨è…À„Î
1Ɂÿ“AÿL	ºCэJÿ‰T$4ƒúºEщT$P‹Pö ‰D$8…Þ‹@é䋃tS‹IH…É„‰
‰D$‰,$ÿщD$¿
…À„Œ
‹‹W9Èt'‹P;“ÿÿÿ…P‹Hƒáú1҃ùu1҃x”Â뺋ùÿÿÿ?tI‰u‰$‰Öèkà‰òÇD$‹E…Ò„àüÿÿ‹‹¨U‹@H…À„1‰L$‰,$ÿЉƉD$…À„4;³4ÿÿÿt,;³8ÿÿÿt$;³ÿÿÿt‰4$èžâ…Àˆ‹ùÿÿÿ?uë&1À;³4ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰ÆèÖ߉ðÇD$…À„Œ;«ÿÿÿ„	‹ƒ€M…À„6‹M9Á„‹‘¬…Ò„ß‹r…ö~1ÿ9Dº„rG9þuñ‹I‹@‹“ÿÿÿ‹‰D$‰L$ƒ‰ùÿ‰D$‰$è)àºÚl¿1öém"‹Eéºûÿÿ‰4$‰Æè&߉ðÇD$…À…IéCüÿÿ1ÉöÂ@”MȃÀ‰D$<ºÿÿÿ‹L$PÓê‹F‹h…턆9êˆF‰׋P‰ÑÁéƒáö u3‹P;L$4‹t$(tA‰l$‰D$‹D$8‰$ÇD$ÇD$èæë7öÂ@º”ЃÂ;L$4‹t$(u¿‰è‹L$PÓà‰T$‹L$<‰$‰D$èPã‰ú‹F‹x…ÿ„Œ‰Ñ)ù9錮
‰T$T‹P‰ÑÁéƒáö u+‹P;L$4t9‰|$‰D$‰l$‹D$8‰$ÇD$è‡åë7öÂ@º”ЃÂ;L$4uljè‹L$PÓàD$<‰þÓæ‰T$‰t$‰$è¾â‹t$(ý‹T$T‹~‹w…ötu)ò9êŒ
‹G‰ÂÁêƒâ¨ u+‹G;T$4t5‰t$‰|$‰l$‹D$8‰$ÇD$èøäë11ɨ@”MσÀ;T$4uˋL$PÓå‹T$<êÓæ‰D$‰t$‰$è5â‹D$8‰D$,‹L$(‹=ÿÿÿ?t
H‰u‰$è#ÝÇ$è§Ý‰D$…l$X„r‰ƋD$8‰F‹ƒ¨Y‹ùÿÿÿ?tA‰‰Fèƒß‰D$,…À„S‹“¼U‹‹W‰L$‰T$‰D$(‰$èޅÀˆ‹E‹x@…ÿ„jƒ½‡ùÿ‰$è“á…À…‡‹D$(‰D$‰t$‰,$ÿ׉Çèƒá…ÿ„Z‰ø‰|$ ‹|$0‹Uúÿÿÿ?‹L$(tJ‰Uu‰,$‰ÅèB܉è‹L$(ÇD$‹úÿÿÿ?tJ‰u‰4$‰Æè܉ð‹L$(ÇD$‹úÿÿÿ?tJ‰u‰$‰ÆèôۉðÇD$,‹ùÿÿÿ?t
I‰u‰$èÓÛÇD$ ‹·°‹«@Q‹~‰l$‰<$è á…À„¾‹H‹‰ˆ…Ét‰|$‰t$‰$ÿщD$(…D$0ué§‹ùÿÿÿ?‰D$(tA‰‹D$0‹¸°‹ƒ4Q‹o‰D$8‰D$‰,$è9á…À„|‰Ƌ@‹ˆˆ…Ét3‰l$‰|$‰4$ÿщD$,…À„t‰Ƌ@ÇD$;ƒTÿÿÿt*éù‹ùÿÿÿ?tA‰‰t$,ÇD$;ƒTÿÿÿ…Ô‹~‰|$…ÿ„Å‹n‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‰l$,‹¹=ÿÿÿ?tH‰u
‰4$èÚ¹‰î‰|$\ÇD$`÷؍ƒÂ`‰$‰ñèXýÿ‰D$ …ÿt‹ùÿÿÿ?tI‰u‰<$‰ÇèBډøÇD$…À„’‹ùÿÿÿ?tI‰u‰4$‰ÆèډðÇD$,‹ùÿÿÿ?‹|$0t
I‰u‰$èòÙèÝ܉D$T‹@@‹‹ÿÿÿ‹t$L됐‹@…Àt?‹…Òtó9Êtï‰T$D‹=ÿÿÿ?t@‰‹J‰L$@‹=ÿÿÿ?t@‰‰L$4‰T$8‰$èŒÜë"ÇD$DÇD$@ÇD$8ÇD$41	D$‰D$HN…öŽÂƒÇ‰t$‰<$ÇD$耚ÇD$Ç$‹l$$‰é‰D$<‰Âè@cÿÿ1ɉD$P…À„0ÇD$Ç$‰é‰òècÿÿ‰D$X…À„‹l$P‰,$‹L$$‰òèL'…Àˆ‹E=ÿÿÿ?‹t$XtH‰Eu‰,$è¸Ø‰4$‹L$$‹T$<è'…Àˆ‹=ÿÿÿ?t
H‰u‰4$èŠØ‹t$LƒÆþ„è‰|$0됐uÿƒý‹|$0ŽË‰t$‰<$ÇD$茙ÇD$Ç$‹l$$‰é‰D$L‰ÂèLbÿÿ…À„¬‰ÇÇD$Ç$‰é‰òè*bÿÿ…À„•‰ò‰Ɖ<$‰é‰Õèb&…Àˆˆ‹=ÿÿÿ?tH‰u‰<$èÔא‰4$‹L$$‹T$Lè0&…Àˆ7‹=ÿÿÿ?„;ÿÿÿH‰…2ÿÿÿ‰4$èš×é%ÿÿÿÇD$ ÇD$,‹L$4…Ét‹=ÿÿÿ?t
H‰u‰$èg×ÇD$@‹L$8…ɋt$t‹=ÿÿÿ?t
H‰u‰$è=×ÇD$D…öt‹=ÿÿÿ?t
H‰u‰4$è׋“PWÇ$‹t$(‰ñèƒBýÿ‰D$H‹ùÿÿÿ?tI‰u‰4$‰ÆèæÖ‰ð…À„u‹ùÿÿÿ?t
I‰u‰$èÅÖÇD$H1틃ÿÿÿ‹ùÿÿÿ?…¤!é¨!‹E阺´o¿BÇD$1öé¶¿p1Éë1ö¿p1Éë1ö‰ù¿pë‰ù¿p‰L$ 1ÉèP üÿÇD$‰ñèA üÿÇD$,‹L$è0 üÿÇD$‹L$ è üÿÇD$ ƒ%õÿ‰D$Ç$G‹
jùÿ‰úè‰üÿD$‰D$D$ ‰$T$,‹L$Tè­cÿÿ…Àˆ°‹l$,‹L$ ‹D$‰D$$‰D$‰L$0‰L$‰l$Ç$èy׉D$…À„º!‰ÇÇ$‹t$(‰ñ‰ÂèAýÿ‰ñ‰Ƌ=ÿÿÿ?t
H‰u‰$èmՋ=ÿÿÿ?t
H‰u‰<$èWÕÇD$…ö„n!;³4ÿÿÿt$;³8ÿÿÿt;³ÿÿÿt‰4$è·×ë½2péŠ1À;³4ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æè÷ԉð…Àx[„!‰éèäüÿÇD$,‹L$0èÓüÿÇD$ ‹L$$èÂüÿÇD$‹T$@‹D$D‹L$T‹I@‹t$‰t$‰$èdÿÿéÙýÿÿ½?p‹T$@‹D$D‹t$H‹L$T‹I@‰t$‰$èòcÿÿ¿DÇD$ét
‹‹Y‹“ÌWÇ$èÈ?ýÿ‰D$¿…À„ú ‰ƉÁèN@ýÿ‹=ÿÿÿ?t
H‰u‰4$èÔÇD$ºªlévýÿÿ1ÿ1Ééuùÿÿ‰L$‰,$è‘Õ‰ʼnD$,…À…šïÿÿ¿º“l鶉D$‰,$èhÕé—ïÿÿº•lé)ýÿÿº˜léýÿÿ‰…Ò„W‹’€9ÊuîéT‹ƒôÿÿÿ‹‹¿Šùÿ‰L$‰$èLӋL$8‹=ÿÿÿ?t
H‰u‰$èbÓÇD$,¿=º—oé-‰D$‰,$èßԉD$¿
…À…tòÿÿºÂl1öéWè­Ô…À…î‰ùè>7ýÿ‰D$…À…ç ºfoëºho¿:1ö鋃ÿÿÿ‹‰l$‰$èغÕo¿D1öéú‹ƒÿÿÿ‹‹L$8‰L$‰$èÝ×ÇD$,º×oëºëo‹L$(‹¿D=ÿÿÿ?„hH‰…_‰$‰Öèp҉ò1öéœ1öºap¿DÇD$éƒ;‹Pÿÿÿ…ïÿÿ‹‹¨U‹@H…À„N‰L$‰,$ÿЉD$ ¿ …À„Q‹‹W9Èt‹P;“ÿÿÿ…k‹pƒæë¾‹ùÿÿÿ?tI‰t&…öt.‹ƒÿÿÿ‹ùÿÿÿ?„ñA‹ƒÿÿÿ‰éã‰$è´Ñ…öuҋƒtS‹M‹IH…É„æ‰D$‰,$ÿщD$ ¿$…À„é‹‹W9Èt'‹P;“ÿÿÿ…‹Hƒáú1҃ùu1҃x”Â뺋ùÿÿÿ?tI‰u‰$‰Öè3щòÇD$ …Ò„¦‹ƒQ‹M‹IH…É„ø
‰D$‰,$ÿщƉD$ …À„û
‹ƒ\V‹N‹IH…É„ó
‰D$‰4$ÿщD$‰D$(…À„ö
‹=ÿÿÿ?t
H‰u‰4$è³Ð‹»ÌS‹ƒLM‹O‰L$‰|$‰$èÄӅÀ„Å
‰Ƌ=ÿÿÿ?t@‰‰t$ ‹ƒôS‹N‹IH…É„Ð
‰D$‰4$ÿщʼnD$…L$(„Æ
‹=ÿÿÿ?tH‰u‰4$è5ЋL$(ÇD$ ‹=ÿÿÿ?tH‰u‰$èЋL$(ÇD$‹E=ÿÿÿ?tH‰Eu‰,$èïϋL$(9é‹l$$…d‹»ÄV‹ƒLM‹O‰L$‰|$‰$èð҅À„L‰Ƌ=ÿÿÿ?t@‰‰t$‹ƒ¼V‹N‹IH…É„W‰D$‰4$ÿщʼnD$¿%…À„L‹=ÿÿÿ?t
H‰u‰4$è`ÏèûщD$…À„1‰Ƌƒ¼U‹‹W‰L$‰D$‰4$è‘Ð…Àˆ‹»ÐW‰l$(‹E‹h@…턍ƒ½‡ùÿ‰$èԅÀ…!‰t$‰|$‹D$(‰$ÿՉÅèóӅí„ô‰l$ ‹L$(‹=ÿÿÿ?t
H‰u‰$è½ÎÇD$‹=ÿÿÿ?t
H‰u‰4$èŸÎ‹E=ÿÿÿ?tH‰Eu‰,$è‡ÎÇD$ ‹l$$‹»ÌS‹ƒLM‹O‰L$‰|$‰$èŒÑ…À„ljƋ=ÿÿÿ?t@‰‰t$‹ƒ(Q‹N‹IH…Ʉ҉D$‰4$ÿщD$¿/‰D$(…À„Å‹=ÿÿÿ?t
H‰u‰4$èú͋“ÔW‹M‹A4‹I8…É„)‹I…É„‰T$‰,$ÿщƉD$…L$(„~ÇD$,‹A1ÿ;ƒTÿÿÿ„q1í‰|$\‰t$`­÷؍ƒÂ`E‰,$‰Íè0Kýÿ‰D$‰D$ …ÿt‹=ÿÿÿ?t
H‰u‰<$è^ÍÇD$,‹=ÿÿÿ?‰étH‰u
‰4$è>͉éÇD$ƒ|$‹t$0„=‹=ÿÿÿ?t
H‰u‰$èÍÇD$ÇD$ ‹¶°‹«@Q‹~‰l$‰<$èÔ҅À„
‹H‹‰ˆ…Ét‰|$‰t$‰$ÿщD$8…D$0uéö‹ùÿÿÿ?‰D$8tA‰‹D$0‹¸°‹ƒ4Q‹o‰D$(‰D$‰,$èm҅À„ˉƋ@‹ˆˆ…Ét3‰l$‰|$‰4$ÿщD$…À„ÉƋ@ÇD$;ƒTÿÿÿt*é—‹ùÿÿÿ?tA‰‰t$ÇD$;ƒTÿÿÿ…r‹~‰|$…ÿ„c‹n‹=ÿÿÿ?t@‰‹E=ÿÿÿ?t@‰E‰l$‹¹=ÿÿÿ?tH‰u
‰4$èÃ˹‰î‰|$\ÇD$`÷؍ƒÂ`‰$‰ñèGIýÿ‰D$ …ÿt‹ùÿÿÿ?tI‰u‰<$‰ÇèvˉøÇD$…À„዁ùÿÿÿ?‹|$0tI‰u‰4$‰ÆèGˉðÇD$‹ùÿÿÿ?t
I‰u‰$è&ËèΉD$4‹H@D$@‰D$D$D‰$T$HèBXÿÿ‹t$L‰ðH…ÀŽ"ƒÇ‹ƒ0ÿÿÿ‰D$(‰|$0ë+‹D$‰$‹L$$‹t$L‰òè:…|$0ˆâƒþŽäN‰t$‰<$ÇD$èà‹9Ætމʼnt$LÇD$Ç$‹L$$‰ÂèœTÿÿ1ÿ…À„`‰ƉD$‹D$(‰D$‹D$‰$èЅÀˆJ‹=ÿÿÿ?tH‰u‰4$è:ʐÇD$Ç$‹|$$‰ù‹T$Lè2Tÿÿ…À„‰Ɖ$‰ù‰êèl…Àˆ
‹=ÿÿÿ?„ÿÿÿH‰…þþÿÿ‰4$èÖÉéñþÿÿÇD$ ‹L$HèÀüÿÇD$H‹L$Dè¯üÿÇD$D‹L$@èžüÿ‹“PWÇ$‹t$8‰ñè5ýÿ‰D$@‹ùÿÿÿ?tI‰u‰4$‰Æèiɉð…À„‹ùÿÿÿ?t
I‰u‰$èHÉÇD$@‹l$‹ƒÿÿÿ‹ùÿÿÿ?…%é)ºCn¿-1öéG½æn¾5ë6½èn‰÷¾5ë(½òn1ÿ¾6ë½ôn‰÷¾6ë½þn¾71ÿ1ÉèÉüÿÇD$‹L$,è¸üÿÇD$,1Éè©üÿÇD$‰ùèšüÿÇD$ ƒ%õÿ‰D$‰4$‹
jùÿ‰êèrüÿD$‰D$D$‰$T$ ‹L$4è,Vÿÿ…Àˆ°‹l$ ‹L$‹D$‰D$$‰D$‰L$0‰L$‰l$Ç$èøÉ‰D$,…À„Œ‰ÇÇ$‹t$8‰ñ‰Âè†3ýÿ‰ñ‰Ƌ=ÿÿÿ?t
H‰u‰$èìNj=ÿÿÿ?t
H‰u‰<$èÖÇÇD$,…ö„@;³4ÿÿÿt$;³8ÿÿÿt;³ÿÿÿt‰4$è6Êë½oéŠ1À;³4ÿÿÿ”ùÿÿÿ?tI‰u‰4$‰Æèvljð…Àx[„î‰éècüÿÇD$ ‹L$0èRüÿÇD$‹L$$èAüÿÇD$‹T$H‹D$D‹t$@‹L$4‹I@‰t$‰$èšVÿÿéÕýÿÿ½#o‹T$H‹D$D‹t$@‹L$4‹I@‰t$‰$èqVÿÿ¿01ö‰êé
‰L$‰,$èwȉD$ ¿ …À…¯ôÿÿºòm1öéï	…À„ƒx„u‰éèÙÿÿéÍøÿÿ1ÿ1Éé×úÿÿ;“`ÿÿÿ„‰L$‰lj$ÇD$è¡Ì‰ÁèZØÿÿºôm…À‰I1ö¿ é†	;“`ÿÿÿ„ð‰L$‰Ɖ$ÇD$è_̉ÁèØÿÿºÄl…À‰1öéI	‰L$‰,$è¨Ç‰ƉD$…À…ÌåÿÿºËl1öé#	ºÍl1öé	1ö¿pé{ïÿÿ1ö‹L$P¿pékïÿÿ‰é¿p‹t$Xé[ïÿÿ‰D$‰,$èJljD$ ¿$…À…ôÿÿºn1öéÂèDžÀ…f‰ùè©)ýÿ‰D$…À…fºbn¿/1ö鑉D$‰4$èðÆé&÷ÿÿºdn1öétºgn1öéh‹y‰|$,…ÿ„‹Q‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰T$‹L$(‹½=ÿÿÿ?…‰ÑéF÷ÿÿ1öº|nÇD$¿/鋃ÿÿÿ‹‰l$‰$èëÉ1öº‹n¿0éß‹ƒÿÿÿ‹‹L$(‰L$‰$èÂÉÇD$ºn뺡n‹L$8‹1ö¿0=ÿÿÿ?„›‰ÕH‰„–‰êé‰1öºEo¿0éxèÎŅÀ…0‰ùè_(ýÿ‰D$…À…6ºtoé*‰D$‰4$è­Åé’áÿÿºvo1öé1ºoë‰L$‰$è‰Å‰D$ …À…ôáÿÿº‰o¿=1öé;‹ÿÿÿ…Ç‹‹ÿÿÿ‰lj$ÿQ,‰ƉD$,…À…¿=º‹oéwº¢o1ö¿<鹿Bº²oéW1ÉWÀò*Áf.@›Á” Ê¶òéfñÿÿ‰Æ;“`ÿÿÿ„¶‰L$‰4$ÇD$èeɉÁèÕÿÿ…À‰n1ö¿$ºnéJ‰D$‰,$è©Ä‰ƉD$ …À…òÿÿºn1öé$‰D$‰4$èƒÄ‰D$‰D$(…À…
òÿÿºn1öéüèRąÀ…à‰ùèã&ýÿ‰D$ …À…Ú1ö¿$º!néˉD$‰4$è*Äé(òÿÿº#n1ö¿$é©‹ƒHÿÿÿ‹‹ˆ`ùÿ‰L$‰$è*Âéãÿÿ¹ò*Áf.@›Á” Ê¶Òé³áÿÿ‹D$(‰D$‰t$‰,$èCljD$ …|$0…²åÿÿëèœÃ…À„IÇD$ º½oÇD$¿<1öé‰T$H‰u‹D$(‰$èÎÁ‹L$é#ôÿÿ‹D$8‰$è¹Á‰êéç‰ʅÒ„”‹’€9Âuî‰ȋl$$鑸WÀò*	ðf.F›Á” Ê¶ҋl$$é ðÿÿè÷…À…‰ùèˆ%ýÿ‰D$…À…¦º4n¿%1öép‰D$‰4$èÏÂé¡ñÿÿº6n1öéSºAnéö÷ÿÿ;ƒPÿÿÿ‹l$$…“áÿÿ‰ȋM‰L$(‹‹V‹@H…À„ü‰L$‰,$ÿЉljD$…À„ÿÇD$Ç$‰ù1ÒèÛJÿÿ‰D$,…À„ì‰Ƌ=ÿÿÿ?t
H‰u‰<$è—ÀÇD$‰ñèˆPÿÿ‰ǃøÿu
è…À…F‹=ÿÿÿ?t
H‰u‰4$è^À‹ƒQ‹M‹IH…É„“‰D$‰,$ÿщʼnD$,…À„–‹ƒHR‹M‹IH…ɉ|$8„‘‰D$‰,$ÿщƉD$¿…À„†‹E=ÿÿÿ?tH‰Eu‰,$èç¿ÇD$,‰ñèØOÿÿ‰D$Pƒøÿu
èZÁ…À…­‹=ÿÿÿ?t
H‰u‰4$謿‹»ÌS‹ƒLM‹O‰L$‰|$‰$è½Â…À„‰Ƌ=ÿÿÿ?t@‰‰t$‹ƒ$Q‹N‹IH…É„‰D$‰4$ÿщD$,…À„"‰D$4‹=ÿÿÿ?t
H‰u‰4$è0¿‹D$P‰$è$À‰D$ÇD$¿…À„ö‰ÆÇ$荿‰D$ …À„è‰ʼnpè‡Á‰D$‰D$$…À„Ú‹³ÌS‹ƒLM‹N‰L$‰t$‰$èèÁ…À„¿‹ùÿÿÿ?‰ÂtA‰
‹ƒR‹J‹IH…ɄʼnD$‰׉$ÿщƉD$…À„È‹=ÿÿÿ?t
H‰u‰<$è^¾‹ƒQ‰t$‰D$‹D$$‰$褿…Àˆe‹=ÿÿÿ?¿t
H‰u‰4$è!¾‹D$4‹@‹p@…ö„oƒ½‡ùÿ‰$èÅÀ…˜‹D$$‰D$‰l$‹D$4‰$ÿ։Æèí…ö„g‰t$<‰t$‹L$4‹=ÿÿÿ?‹t$$t
H‰u‰$诽ÇD$,‹E=ÿÿÿ?tH‰Eu‰,$菽ÇD$ ‹=ÿÿÿ?t
H‰u‰4$èq½ÇD$ÇD$‹l$<;«ÿÿÿ„®‹ƒ€M…À„ö‹M9Á„•‹‘¬…Ò„i‹r…ö~1ÿ9Dº„sG9þuñ‹I‹@‹“ÿÿÿ‹‰D$‰L$ƒ‰ùÿ‰D$‰$èɽº(m¿1ö‰l$ëºm1ö¿‹D$,…Àt‹ùÿÿÿ?tI‰u‰$‰Õ誼‰ê‹l$‹D$…Àt#‹ùÿÿÿ?tI‰u‰$‰t$$‰Ö載ò‹t$$‹D$ …Àt#‹ùÿÿÿ?tI‰u‰$‰t$$‰ÖèT¼‰ò‹t$$…öt‹=ÿÿÿ?tH‰u‰4$‰Öè2¼‰ò‹D$…Àt‹ùÿÿÿ?tI‰u‰$‰Ö載òƒ%õÿ‰D$‰<$‹
jùÿè…eüÿ1Àéô‰L$‰,$肽‰ljD$…À…ûÿÿºäl¿1öéøþÿÿ¿ºælë$‰D$‰,$èK½‰ʼnD$,…À…jûÿÿ¿ºôl1ö1íéæþÿÿ‰D$‰,$è½égûÿÿºöléßäÿÿèú¼…À…š‰ùè‹ýÿ‰D$…À…‰	ºm¿é°äÿÿ‰D$‰4$èԼ‰D$,…À…Þûÿÿ¿ºm1í1öéqþÿÿº	m1öé>þÿÿºm1öé2þÿÿºm1öé&þÿÿè|¼…Àu‰ñèýÿ…À…	1ö¿ºméýýÿÿ‰D$‰׉$èZ¼‰ƉD$…À…8üÿÿºm‰þéÐýÿÿ‹D$$‰D$‰l$‹D$4‰$訿‰D$‰D$<…À…«üÿÿºméœýÿÿèù»…À„ÅÇD$ºm1öé‚ýÿÿ‹ƒHÿÿÿ‹‹ˆ`ùÿ‰L$‰$èºéEýÿÿ1öºél¿ÇD$éJýÿÿºùlé{ãÿÿ‰t$‰|$‹D$(‰$迉ʼnD$ …À…ëÿÿëèr»…À„‰ÇD$ ºLn1ö¿%éöüÿÿ‰ʅÒt‹’€9Âuòë;ƒPÿÿÿ…’üÿÿ‹E‰D$$‹D$0‹°°‹«@Q‹~‰l$‰<$èm¿…À„­‹H‹‰ˆ…Ét‰|$‰t$‰$ÿщD$4…D$0ué–‹ùÿÿÿ?‰D$4tA‰‹D$0‹°°‹ƒ4Q‹~‰D$‰D$‰<$è¿…À„s‰ŋ@‹ˆˆ…Ét ‰|$‰t$‰,$ÿщD$…À„k‰ŋ@ë‹Mùÿÿÿ?tA‰M‰l$ÇD$ ;ƒTÿÿÿ…ç‹}‰|$ …ÿ„Ø‹u‹=ÿÿÿ?t@‰‹=ÿÿÿ?t@‰‰t$‹E¹=ÿÿÿ?tH‰Eu
‰,$èm¸¹‰õ‰|$\ÇD$`÷؍ƒÂ`‰$‰éèñ5ýÿ‰ƉD$…ÿt‹=ÿÿÿ?t
H‰u‰<$è!¸ÇD$ …ö„‹E=ÿÿÿ?tH‰Eu‰,$èù·ÇD$‹=ÿÿÿ?t
H‰u‰4$è۷ÇD$辺‹@@‹“ÿÿÿ‹t$L‰T$d됐‹@…Àt?‹…Étó9Ñtï‰L$D‹=ÿÿÿ?t@‰‹Q‰T$@‹=ÿÿÿ?t@‰‰T$T‰L$X‰$èlºë"ÇD$DÇD$@ÇD$XÇD$T1	D$h‰D$H‰÷O‹l$Pƒýud…ÿ‹D$(‹l$$ŽáƒD$0‹L$8¯ùÇ÷ىL$N‰t$‹D$0‰$ÇD$è7x‹T$(¯D$8‹‰M‹‰‹E‰|$ƒþwÅ鍅ÿŽ…ƒD$0‹D$8¯ø|$(÷؉D$N‰t$L‰t$‹D$0‰$ÇD$èÓw‰Æ¯t$8t$(‰l$‰t$‹D$$‰$èd»‰l$‰|$‰4$‹t$LèP»‰l$‹D$$‰D$‰<$è<»|$ƒþw“‹T$d‹=ÿÿÿ?tH‰
ùÿÿÿ?t‰…Àu‰$è¶ÇD$‹L$T…ɋl$<t‹=ÿÿÿ?t
H‰u‰$èñµÇD$@‹L$X…Ét‹=ÿÿÿ?t
H‰u‰$è˵ÇD$D‹L$h…Ét‹=ÿÿÿ?t
H‰u‰$襵‹»PW‹D$4‹@‹p@…ö„Vƒ½‡ùÿ‰$躅À…t‰|$‹|$4‰<$ÇD$ÿ։Æèkº…ö„T‰t$H‹=ÿÿÿ?t
H‰u‰<$è9µ…ö„‹=ÿÿÿ?t
H‰u‰4$èµÇD$H‹ƒÿÿÿ‹ùÿÿÿ?t	A‹ƒÿÿÿ‰…ít‹Mùÿÿÿ?tI‰Mu‰,$‰Æè۴‰ðƒÄl^_[]Ã1ÿ1Éébüÿÿ‹ƒÿÿÿ‹‰l$‰$è乺3m¿1ö‹D$<‰D$éÐ÷ÿÿ‹ƒÿÿÿ‹‹L$‰L$‰$賹ÇD$½5më½Im‹D$4‹=ÿÿÿ?tH‹L$4‰u‹D$4‰$èM´1ö‹D$<‰D$¿‰êél÷ÿÿ‰|$‹|$4‰<$ÇD$è?¹‰ÆéÅþÿÿ1öºÈm¿‰l$é8÷ÿÿ1öë芵…À„u1ö‹l$<‹|$4éþÿÿ½6péHßÿÿ½;pé>ßÿÿèz³‹L$$‰L$‹L$0‰$‰IêèRýÿÇD$,ÇD$ ÇD$½GpéÿÞÿÿ½oévìÿÿ½oélìÿÿè'³‹L$$‰L$‹L$0‰$‰IêèÿýÿÇD$ ÇD$ÇD$½+oé-ìÿÿº¦lé£Üÿÿ‰éè¬ÆÿÿéXåÿÿÇD$éàÿÿÇD$é íÿÿ1ÿébåÿÿÇD$éÖîÿÿ‰Ç;‹`ÿÿÿ…¹‹ƒ`ÿÿÿ‰<$ÿP,é(ïÿÿÇD$ º!néHðÿÿÇD$él÷ÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èq²é˜ðÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$èR²éøÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è3²élþÿÿÇD$éñÿÿ‹ƒHÿÿÿ‹‹¬uùÿ‰L$‰$è²éXøÿÿ‹ƒ`M‰D$‰<$谹éiîÿÿ‰ÆéÏÿÿ‰Ɖø‹l$$éàÿÿ‰Ƌl$$éºãÿÿ‰Ið‹l$$‰ÊéiÑÿÿ‰Ƌl$$éOÏÿÿ‰ø‹ùÿÿÿ?…Ðÿÿé&Ðÿÿ‰ÆéLáÿÿ‰ÆéLòÿÿ‰Âéóÿÿ‰‰ð‹l$$¿$éZàÿÿ‰ÆéùáÿÿUSWVƒìè[Ãü‹|$0‹q;³$ÿÿÿto‹F4‹n8…ítKƒ}tE‰L$‰$蒴…À„½‰Ɖ|$‰D$‹D$‰$ÿU‹ùÿÿÿ?tgI‰ub‰4$‰Æè±‰ðëT…ÀtX‹@…ÀtQ‰|$‰T$‰$ÿÐë:‹A‹4‹/ýÿÿÿ?tE‰/‹A‰<‹¸ùÿÿÿ?tI‰u
‰4$èʰ¸ƒÄ^_[]É͉$èó³…Àt"‰Ɖ|$‰D$‰,$èM¶‹ùÿÿÿ?…cÿÿÿëȸÿÿÿÿëP‹L$‹A‹úÿÿÿ?tB‰‹AАSWVƒìè[ÃÑú‹|$$‹t$ …ÿt‹=ÿÿÿ?u‹F‹ùÿÿÿ?u!ë,‹»ÿÿÿ‹=ÿÿÿ?tâ@‰‹F‹ùÿÿÿ?t
I‰u‰$èþ¯‰~1Ä^_[АSWVƒìè[Ãaú‹ƒœT‰D$‰$è²…Àt^‰Ɖ$ÇD$è²…Àu+‰Çè;±‰Iø…Éu‹ƒÿÿÿ‹‹’|ùÿ‰L$‰$èY¯‰ø‹ùÿÿÿ?tI‰u‰4$‰Æèn¯‰ðë1Ä^_[ÐUSWVì̉Õè[ÃËù‹´$àƒìVQ诃ĉÇ1ÿ„™‹GƒxTx‹ƒÿÿÿ‹µ€ùÿVUQÿ0è鯃ÄëY‹Œ$ä‹G‰$‹G…ÀtlƒáºEыŒ$ä9ÐOЋ$Â9ÊsW‹ƒìÿÿÿ‰$ƒìƒªzùÿRQVUP‹D$ÿ0莯ƒÄ ‹=ÿÿÿ?tH‰uƒìW蔮ƒÄ1ÄÌ^_[]Ã1ҋ$Â9Êr©ƒ¼$èu79Èv3ƒì‰ƒ2jùÿRQVUPhȍt$ V輮ƒÄjVj迮ƒÄ…Àx‰ø륐USWVƒì‰׉Îè[ÜøƒìƒõŠùÿPQè魃Ľÿÿÿÿ…À„çƒìW‰D$Pè+¯ƒÄ…ÀtG‰Ńìÿt$,P赲ƒÄ…ÀtY‹t$ ƒìÿt$,Uè
°ƒÄ‰…Àt‹L$‹1í=ÿÿÿ?„1íëz‹ƒÿÿÿ‹(ƒìVèL°ƒÄ‹…ùÿWPQUèZ®ƒÄë@‹ƒÿÿÿ‹‰D$ƒìVè °ƒÄ‰ƃìUèò´ƒÄ‹ªyùÿPÿt$0WVQÿt$$è®ƒÄ ‹L$‹=ÿÿÿ?½ÿÿÿÿtH‰uƒìQ譃ĉèƒÄ^_[]АUSWVƒì‰׉Îè[Ãl÷ƒìƒõŠùÿPQ蹬ƒÄ½ÿÿÿÿ…À„çƒìW‰D$Pèû­ƒÄ…ÀtG‰Ńìÿt$,P腱ƒÄ…ÀtY‹t$ ƒìÿt$,UèݮƒÄ‰…Àt‹L$‹1í=ÿÿÿ?„1íëz‹ƒÿÿÿ‹(ƒìV诃č‹âeùÿWPQUè*­ƒÄë@‹ƒÿÿÿ‹‰D$ƒìVèð®ƒÄ‰ƃìU賃č‹"dùÿPÿt$0WVQÿt$$èè¬ƒÄ ‹L$‹=ÿÿÿ?½ÿÿÿÿtH‰uƒìQè嫃ĉèƒÄ^_[]АUSWVƒìè[Ã@ö‹L$ ‹i‹QHƒâ¾ÿÿÿ#t$(uƒútT‹|$,…ÿu)1ú”À)Æu+ƒÁƒúDL$$ƒìjÿ1ÿUƒÄ^_[]Ãtэ‹­ùÿ닃ÿÿÿ‹OaùÿVÿuQÿ0덋¾~ùÿ‹“ÿÿÿƒìÿuQÿ2謃Ä1Ä봐SWVè[Ôõ‹L$‹y‹QHƒâ¾ÿÿÿ#t$uƒútX‹D$…Àu31ú”À)ƃþu2‹t$ƒÁ1ú”ÀD΃ìÿ4†ÿ1ÿWƒÄ^_[ÃxtǍ‹­ùÿ닃ÿÿÿ‹zùÿV덋¾~ùÿ‹ƒÿÿÿƒìÿ7Qÿ0èc«ƒÄ1À^_[АUSWVƒìè[Ãàô‹L$$‹l$ ‹E¾ÿÿÿ#t$(‹U‹}Hƒçƒÿu
…öt$yNëƒÅ‰ωéƒìÿt$8VWRÿ1ÿPƒÄ,^_[]ˋÿÿÿƒì“¾~ùÿÿ0Rÿ1èڪƒÄ1ÄëØSWVè[Ãdô‹L$‹|$‹G‹wHºÿÿÿ#T$ƒæƒþu
…ÒtqJëƒÇ‰Ήùÿt$RVÿ1ÿPƒÄ^_[ˋÿÿÿƒì“¾~ùÿÿ0Rÿ1èfªƒÄ1À^_[АUSWVƒì<è[Ãàó‹L$\‹l$X‹D$T“\U‰T$0ÇD$4‹»ÿÿÿ‰|$,…Ét¨…턬ƒýu&‹8‰|$,‹Aé;…í„;ƒýu‹8‰|$,é+1í™
‹9fùÿ“ùÿIы‹ÿÿÿ‹	³õÿ»ÍUùÿIþ‰l$‰|$‰D$‰T$ƒâ8÷ÿ‰D$ƒAfùÿ‰D$‰$肩ºåsƒ%õÿ‰D$Ç$ʍ‹‡ùÿèRüÿ1ÀéÌ‹A…ÀŽŸ‰T$ 1ö‹«\U‰D$(9l±t1F9ðuõ1��‰ϋT±Ç$‰éèŒ/ÿÿ…ÀuF9t$(‰ùußë"‰ùx‹D$ ‹<°…ÿt‰|$,‹D$(H‹l$X‹T$ ë#‰Î脩…À…}‹»ÿÿÿ‹l$X‰ñ‹T$ ‹D$(…Àx‰|$(‹³¬T‹ƒLM‹N‰L$‰t$‰$èݪ…À„¼‰ŋ=ÿÿÿ?t@‰E‹ƒ`P‹M‹IH…ɄщD$‰,$ÿщÇÇD$ ÜÇD$8…À„¿‹E=ÿÿÿ?tH‰Eu‰,$èG§‹³ØM‹ƒLM‹N‰L$‰t$‰$èXª…À„Љŋ=ÿÿÿ?t@‰E‰l$‰<$襬ƒøÿ„š‰Ƌ=ÿÿÿ?tH‰t‹E=ÿÿÿ?t"H‰Eu‰,$èԦë‰<$èʦ‹E=ÿÿÿ?uދ«¬T‹ƒLM‹M‰L$‰l$‰$èѩ‰Džö„Ð…ÿ„j‹=ÿÿÿ?t@‰‹ƒ\U‹O‹IH…É„‚‰D$‰<$ÿщƅÀ„…‹=ÿÿÿ?t
H‰u‰<$èF¦‹F1ÿ;ƒTÿÿÿ„z1í‰|$0‹D$(‰D$4­÷؍ƒÂ4E‰,$‰ñè½#ýÿ…ÿt‹ùÿÿÿ?tI‰u‰<$‰Çèð¥‰ø…À„j‹ùÿÿÿ?„*I‰…!‰4$é…ÿ„]‹=ÿÿÿ?t@‰‹l$(‹ƒ`P‹O‹IH…É„q‰D$‰<$ÿхÀ„t‹ùÿÿÿ?tI‰u‰<$‰Æèq¥‰ð‹x‹ùÿÿÿ?tA‰‹x‹ùÿÿÿ?t
I‰u‰$èE¥ÇD$0T$4‰l$4Ç$€‰ùè×"ýÿ…	|$$„#‰ƋƒüU‹N‹IH…É„‰D$‰4$ÿщŅÀ„"‹=ÿÿÿ?t
H‰u‰4$èܤ‹»¬T‹ƒLM‹O‰L$‰|$‰$èí§…À„÷‰Ƌ=ÿÿÿ?t@‰‹ƒ`P‹N‹IH…É„þ‰D$‰4$ÿщÇÇD$ à…À„‹=ÿÿÿ?t
H‰u‰4$èb¤‹ƒüU‹O‹IL…É„ä‰l$‰D$‰<$ÿхÀˆç‹E=ÿÿÿ?tH‰Eu‰,$è!¤‹=ÿÿÿ?t
H‰u‰<$褋ƒÿÿÿ‹ùÿÿÿ?„&A‹ƒÿÿÿ‰éèt¥ÇD$ ÜÇD$$…À…v‰ñèõýÿ…:t„ɉÅéüÿÿ‰D$‰,$èE¥é'üÿÿºtéè!¥ÇD$$…Àu‰ñè®ýÿ…À…E1íÇD$ ܺté9ºtéSƒâ8÷ÿ‰D$‰l$D$,‰D$D$0‰$è'ÿÿ…Àˆµ‹|$,éUûÿÿ谤ÇD$ ÝÇD$$…À…¼‰éè1ýÿ…:)t„‰Çéjüÿÿ‰D$‰<$聤‰ƅÀ…{üÿÿº+tÇD$ Ý1íÇD$$é’‹~…ÿ„n‹N‹=ÿÿÿ?…ú‹=ÿÿÿ?…ý‹½=ÿÿÿ?…üéüÇD$ ݺ@tÇD$$éYèí£ÇD$ ßÇD$$…À…
‰éènýÿ…:Yt„B‰Çéwüÿÿ‰D$‰<$辣…À…Œüÿÿº[tÇD$ ߉ý1ÿÇD$$é«ÇD$ àºité÷‰D$‰4$èz£‰ŅÀ…ÞüÿÿÇD$ àºktéµèI£ÇD$ à…Àu‰ùèÖýÿ…À…t1ÿºntëH‰D$‰4$è)£‰ÇÇD$ à…À…ÿüÿÿºpt1ÿ‰t$8ë‰l$‰D$‰<$èz¢…À‰ýÿÿºst‹E=ÿÿÿ?tH‰Eu‰,$‰Öè3¡‰ò…ÿ‹l$8t‹=ÿÿÿ?tH‰u‰<$‰Ö衉ò‰î…ít‹=ÿÿÿ?tH‰u‰4$‰Öèñ ‰òƒ%õÿ‰D$‹D$ ‰$‹‡ùÿècJüÿ1T$$…Òt‹
ùÿÿÿ?tI‰
u‰$‰Æ谠‰ðƒÄ<^_[]Ã@‰‹=ÿÿÿ?„þÿÿ@‰‹½=ÿÿÿ?tH‰t‰ÎéFúÿÿº×séÒ÷ÿÿºÒséÈ÷ÿÿ‰4$‰Îè[ é#úÿÿºté]ÿÿÿº)téSÿÿÿ1ÿéúÿÿºYtéBÿÿÿ‰Åéùÿÿ‰Æé|ûÿÿUSWVƒìè[Ðꋫ¬TƒìÿuUÿ³LMè%£ƒÄ…ÀtS‰Ƌ=ÿÿÿ?t@‰‹ƒ`P‹N‹IHƒì…ÉtQPVÿуÄ…ÀtT‹ùÿÿÿ?tI‰uƒìV‰Æ訟‰ðƒÄƒÄ^_[]Ãè&¡¿»t1ö…Àu"‰éè´ýÿ…Àt‰ÆëœPV衃ąÀu¬¿½t‰ñèbéûÿƒìƒ%õÿ‹>cùÿ‰úPhúèÖHüÿƒÄ1À뜐USWVƒìè[àé‹L$<‹l$8‹D$4“dP‰T$ÇD$…Ét&¨…턃ý…j‹(‰l$‹A…À~éÛƒý…O‹(‰l$‹»¬TƒìÿwWÿ³LMèޡƒÄ…	l$„Ó‰Ƌ=ÿÿÿ?t@‰;³ÿÿÿ„>‹ƒ¼M…À„Ü‹N9Á„%‹‘¬…Ò„ï‹z…ÿ~1퐐9Dª„ÿE9ïuñ‹“ÿÿÿ»‰ùÿÿpÿqWÿ2蟃ċ=ÿÿÿ?tH‰uƒìVè
žƒÄƒìƒ%õÿ‹}ùÿºTuPh麉T$‹i…í~R‹“dP1��9T±„¨F9õuñ‰T$1��‰ϋT±ƒì‹L$jèü$ÿÿƒÄ…ÀusF9õ‰ùuÞ蟅l$8… ‹ƒÿÿÿƒì‹õÿ“€`ùÿ³žZùÿ»AfùÿUQjRVWÿ0è.žƒÄ º&uƒìƒ%õÿ‹}ùÿPhüè¼FüÿƒÄ1ÀéB‰ùx‰ê‹D$‹,°‰l$…í„{ÿÿÿ‰ÐH‹T$…ÀŽ4þÿÿƒžZùÿt$|$Pÿt$<VWèÀ ÿÿƒÄ…Àˆ-‹l$éþÿÿèWž…Àu‰ùèìýÿ…À…ƒìƒ%õÿ‹}ùÿºRué¥þÿÿ‹ƒHÿÿÿƒì‹ˆ`ùÿQÿ0èTœƒÄ‹=ÿÿÿ?…Yþÿÿéeþÿÿ‰ʅÒt‹’€9Âuòëºué
ÿÿÿ;ƒPÿÿÿ…þÿÿ‹Fƒìÿt$VÿƒÄ…Àt[‹ùÿÿÿ?tI‰uƒìP蜃ċƒÿÿÿ‹ùÿÿÿ?t	A‹ƒÿÿÿ‰‹ùÿÿÿ?tI‰uƒìV‰Æè囉ðƒÄƒÄ^_[]Ã썃%õÿ‹}ùÿº_uPhèIEüÿƒÄ1ùÿÿÿ?uµëȺuéXþÿÿ‰Æ;³ÿÿÿ…ýÿÿéDÿÿÿUSWVƒìè[Ãðå‹|$8…ÿ…ˆèü…À„§‰D$‹L$4‹=ÿÿÿ?t@‰‹³¬T‹ƒLM‹N‰L$‰t$‰$èQž…À„p‰Nj=ÿÿÿ?t@‰‹ƒàT‹O‹IH…É„y‰D$‰<$ÿщŅÀ„|‹=ÿÿÿ?t
H‰u‰<$èΚ‹D$‰$èr¢…À„[‰NjE‹p@…ö„Tƒ½‡ùÿ‰$蜟…À…g‰|$‹D$4‰D$‰,$ÿ։Æ茟…ö„>‹E=ÿÿÿ?tH‰Et‹=ÿÿÿ?u%‹l$4‹E=ÿÿÿ?‹|$u*ëN‰,$è?š‹=ÿÿÿ?tÛH‰‹l$4t‹E=ÿÿÿ?‹|$t&H‰Eu ‰,$èšë‰<$èš‹E=ÿÿÿ?‹|$uڋ=ÿÿÿ?t
H‰u‰<$è㙉ðƒÄ^_[]ÃÇ$“g]ùÿ‰ùèåÿÿ1ö…Àt܉<$èg¡…À…[þÿÿëÊ1öëÆè4›1ÿ…À…¥‰ñèÃýüÿ½…>»ut]‰Çésþÿÿ‰D$‰<$蛉ŅÀ…„þÿÿ¾½u1íë7¾Àu1ÿë.‰|$‹D$4‰D$‰,$èbž‰ƅÀ…Äþÿÿë	èZ…ÀtA¾Âu‰ùè!ãûÿ‰éèãûÿƒ%õÿ‰D$Ç$‹Ùvùÿ‰òèŒBüÿ1öéšþÿÿ1�uëċƒHÿÿÿ‹‹¬uùÿ‰L$‰$袘ë£USWVƒìè[Ã@ã‹|$8…ÿ…ˆèL›…À„§‰D$‹L$4‹=ÿÿÿ?t@‰‹³¬T‹ƒLM‹N‰L$‰t$‰$衛…À„p‰Nj=ÿÿÿ?t@‰‹ƒàT‹O‹IH…É„y‰D$‰<$ÿщŅÀ„|‹=ÿÿÿ?t
H‰u‰<$蘋D$‰$蟅À„[‰NjE‹p@…ö„Tƒ½‡ùÿ‰$è윅À…g‰|$‹D$4‰D$‰,$ÿ։Æèܜ…ö„>‹E=ÿÿÿ?tH‰Et‹=ÿÿÿ?u%‹l$4‹E=ÿÿÿ?‹|$u*ëN‰,$菗‹=ÿÿÿ?tÛH‰‹l$4t‹E=ÿÿÿ?‹|$t&H‰Eu ‰,$èa—ë‰<$èW—‹E=ÿÿÿ?‹|$uڋ=ÿÿÿ?t
H‰u‰<$è3—‰ðƒÄ^_[]ÃÇ$“Ö]ùÿ‰ùè5ÿÿ1ö…Àt܉<$跞…À…[þÿÿëÊ1öëÆ脘1ÿ…À…¥‰ñèûüÿ½…>!vt]‰Çésþÿÿ‰D$‰<$èb˜‰ŅÀ…„þÿÿ¾#v1íë7¾&v1ÿë.‰|$‹D$4‰D$‰,$貛‰ƅÀ…Äþÿÿë	蘅ÀtA¾(v‰ùèqàûÿ‰éèjàûÿƒ%õÿ‰D$Ç$&‹¨`ùÿ‰òèÜ?üÿ1öéšþÿÿ1í¾!vëċƒHÿÿÿ‹‹¬uùÿ‰L$‰$èò•ë£WVè^ƕà¸9Ñt&‹¹¬…ÿt.‹O…É~1��9T·tF9ñuõ1À^_Ã1À^_ˉ€9Ñtî…Éuò1À;–Pÿÿÿ”À^_АUSWVƒìèXÀ à‹r…ö~"1ÿ9LºtzG9þuõ…ö~
1ÿ‹€Pÿÿÿ‰$ë1Àëe‹|$G1À9÷tZ‰|$‹Dº‹xƒTyäö@W@tÞ9Èt:‹©¬‰υít%‹]…Û~Ç1ÿ9D½tG9ûuõ볋¿€9Çt	…ÿuò;$u ¸ƒÄ^_[]АUSWVƒìè[Ãpßèؗ‹x<1ö…ÿ„ö‹‹ÿÿÿ‹‹O9Ñt^‹j‹mT÷Åuo‹qƒ~TyP…íyL¾@#qTtBöBW@t<‹©¬…ítU‹M…ɾŽ¢1��9Tµt\F9ñuõ1öé‰Ç@<ëR‰T$‰$‰Ç觗‰Iø1öë*‰Çè˜ûüÿ‰Iøë1ö…Ét‹‰€9Ñuòë1É;“Pÿÿÿ”EÉt<‹x<Ç@<…ÿt‹=ÿÿÿ?t
H‰u‰<$èý“‹³ÿÿÿ‹=ÿÿÿ?t	@‹³ÿÿÿ‰‰ðƒÄ^_[]ÃÌÌÌÌÌÌÌÌÌÌÌSƒìè[ÃCދD$‹‰$ÿPÁèó*ÀóYƒd‹ùÿóD$ÙD$›ƒÄ[АSƒìè[ÃދD$‹‰$ÿPƒÄ[АUSWVƒìè[ÃÐ݋|$$…ÿ~+‹l$ 1��‹E‰$ÿU‹L$(Ýñ›F9÷uêƒÄ^_[]АUSWVƒìè[À݋|$$…ÿ~<‹l$ 1öóƒd‹ùÿóD$‹E‰$ÿUÁèWÀó*ÀóYD$‹L$(ó±F9÷uكÄ^_[]ÐSWVì€è[Ã݋´$f(ƒtõÿf)D$p‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿ‚…„É„Šò”ÃlÇùÿòŒÃtÇùÿòL$ò\ÑòT$‹‰$f)D$`ÿVÝ\$H›òD$òYD$HòXD$òD$(D$`WD$p$耙Ý\$@›òD$@f/D$f(D$`†#ÿÿÿòD$ ÝD$ ›ëA‹‰$ÿVÝ\$8›òD$8Wƒtõÿ$èC™Ý\$0›òƒü^ùÿò\D$0òD$(ÝD$(›Ā^_[АUSWVƒì|è[ðۃ¼$”ŽY‹¬$1ÿ(ƒtõÿ)D$`òƒü^ùÿòD$ ëZ‹E‰$ÿUÝ\$8›òD$8WD$`$記Ý\$0›òD$ ò\D$0f)D$‹„$˜f(D$òøG;¼$”„ې‹E‰$ÿU‰Ñ¤Á‰ÖÁî¤ÂfnÆfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ´Ãx“ùÿf)D$r„„É„Cÿÿÿò”ÃlÇùÿòŒÃtÇùÿòL$(ò\ÑòT$‹E‰$ÿUÝ\$H›òD$òYD$HòXD$(òD$(D$WD$`$袗Ý\$@›òD$@f/D$†+ÿÿÿéÿÿÿƒÄ|^_[]АSVƒìDè[Ã"ڋt$Póƒd‹ùÿóD$(ƒ¤õÿ)D$0‹‰$ÿV‰ÁÑé‰ÂÁê	WÀó*¶ÉóY„‹t›ùÿ;”‹tŸùÿ‚‹©þ„‘ó”‹pÏùÿóŒ‹tÏùÿóL$ó\ÑóT$‹‰$)D$ ÿVÁèWÀó*ÀóYD$óYD$óXD$óD$(D$ WD$0ó$迖Ù\$›óD$/D$(D$ †DÿÿÿóD$ÙD$›ƒÄD^[ˉ$ÿVÁèWÀó*ÀóYƒd‹ùÿWƒ¤õÿó$èx–Ù\$›óƒl‹ùÿó\D$óD$ÙD$›ƒÄD^[АUSWVƒìLè[ÃÐØ‹t$d…öŽK‹l$`1ÿóƒd‹ùÿóD$(ƒ¤õÿ)D$0óƒl‹ùÿóD$ëa‹E‰$ÿUÁèWÀó*ÀóYD$WD$0ó$èٕÙ\$›óD$ó\D$)D$ ‹D$h(D$ ó¸G9÷„Ɛ‹E‰$ÿU‰ÁÑé‰ÂÁê	WÀó*¶ÉóY„‹t›ùÿ;”‹tŸùÿ)D$ rª©þ„aÿÿÿó”‹pÏùÿóŒ‹tÏùÿóL$ó\ÑóT$‹E‰$ÿUÁèWÀó*ÀóYD$óYD$óXD$óD$(D$ WD$0ó$èñ”Ù\$›óD$/D$†Kÿÿÿé#ÿÿÿƒÄL^_[]АUSWVƒì<è[ÃP׋|$T…ÿ~T‹l$P1ö(ƒtõÿ)D$ ‹E‰$ÿUÝ\$›òD$WD$ $è^”Ý\$›òD$WD$ ‹L$XñF9÷uCÄ<^_[]АUSWVƒìLè[ÃÐ֋|$d…ÿŽ‹l$`1öóƒd‹ùÿóD$(ƒ¤õÿ)D$0(ƒtõÿ)D$ ‹E‰$ÿUÁèWÀó*ÀóYD$WD$0óZÀò$贓Ý\$›òD$WD$ òZL$hó±F9÷u²ƒÄL^_[]АUSWVì¬è[Ã֋´$À(ƒtõÿ)„$òƒ,_ùÿòD$@‹‰$ÿV¶è‰Ñ¤ÂÁé	fnáÿÿfnÉfbÁfք$ˆ߬$ˆݜ$€›ò„$€òY„ët£ùÿ‰ǩt	fW„$;”ët«ùÿŒëx«ùÿf)D$0‚L…턁ò”ël³ùÿòŒët³ùÿòL$(ò\ÑòT$‹‰$ÿVÝ\$x›òD$òYD$xòXD$(òD$f(L$0f(ÁòYD$@òYÁò$èG’Ý\$p›òD$pf/D$†ÿÿÿéÃ(ƒtõÿ)D$òƒ´^ùÿòD$(‹‰$ÿVÝ\$h›òD$hWD$$èÿ‘Ý\$`›òD$`òYD$(f)D$0‹‰$ÿVÝ\$X›òD$XWD$$èǑf(T$0Ý\$P›òD$Pf(ÈfWL$ò\Èf(ÂòYÂf/ȆvÿÿÿòX“œ^ùÿ÷ÇtfW“tõÿf)T$0(D$0òD$HÝD$H›Ĭ^_[]АUSWVƒìè[ÃðӋ|$$…ÿ~*‹l$ 1��‰,$è˜ýÿÿ‹L$(Ýñ›F9÷uëƒÄ^_[]АSWVƒì`è[áӋt$p(ƒ¤õÿ)D$@óƒd‹ùÿóD$òƒ,_ùÿòD$P‹‰$ÿV‰ÁÁé	WÀó*Á¶ÐóY„“t»ùÿ©tWD$@;Œ“t¿ùÿ)D$0‚^…Ò„Œó”“pÃùÿóŒ“tÃùÿóL$ó\ÑóT$ ‹‰$ÿVÁèWÀó*ÀóYD$óYD$ óXD$óZÀòD$(D$0óZÀ(ÈòYL$PòYÈò$èúÝ\$X›òD$Xf/D$†3ÿÿÿéʉÇóƒ`‹ùÿóD$‹‰$ÿVÁèWÀó*ÀóYD$WD$@ó$èɏÙ\$,›óD$,óYD$)D$0‹‰$ÿVÁèWÀó*ÀóYD$WD$@ó$茏(T$0Ù\$(›óD$((ÈWL$@ó\È(ÂóYÂ/ȆpÿÿÿóX“P‹ùÿ÷ÇtW“¤õÿ)T$0(D$0óD$$ÙD$$›ƒÄ`^_[АUSWVƒìè[àы|$$…ÿ~*‹l$ 1��‰,$èÈýÿÿ‹L$(Ù±›F9÷uëƒÄ^_[]АUSWVì|è[ÃMÑò„$”f.ƒì^ùÿ‹´$šÀ•ÁÁ…f(ƒtõÿf)D$P‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈf֌$¸߬$¸ݜ$°›òŒ$°¶ÁòYŒÃt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿ‚¥„É„wò”ÃlÇùÿò„ÃtÇùÿòD$`ò\ÐòT$‹‰$f)L$ ÿVݜ$¨›òD$òY„$¨òXD$`òD$(D$ WD$P$è~f(L$ ݜ$ ›ò„$ f/D$†ÿÿÿëfWÉf.Á›À”DÁtòŒ$€݄$€›Ä|^_[]Ãòƒì^ùÿò”$”f/ÂòD$H†õ¸WÀò*ÀòD$p(ƒtõÿ)D$Pòƒü^ùÿòD$8ëEf(Ãò^ÁòD$ò$èøŒݜ$À›òŒ$Àf(D$ f/ÁƒPÿÿÿ‹‰$ÿVݜ$›ò„$òD$@‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈf֌$߬$ݜ$ø›ò„$ø¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿf)D$ ‚Ú„É„Žò”ÃlÇùÿòŒÃtÇùÿòL$`ò\ÑòT$‹‰$ÿVݜ$ð›òD$òY„$ðòXD$`òD$(D$ WD$P$螋ݜ$è›ò„$èf/D$†ÿÿÿëS‹‰$ÿVݜ$à›ò„$àWD$P$èY‹ݜ$؛òD$8ò\„$Øf)D$ ò\$Hf(ÃòŒ$”ò\ÁòT$@f/ƒ5þÿÿòD$pò\Âò^Áò$è=‹ݜ$țò„$Èf)D$fWD$Pò\$Hf(Ëò”$”ò\ÊòYÂòXÁf(Ëò^ÊòL$ò$èيݜ$ЛòŒ$Ðf(D$ ò\D$f/Á‚Ûýÿÿé&ýÿÿ‹‰$ÿVݜ$˜›ò„$˜Wƒtõÿ$èTŠݜ$›òƒü^ùÿò\„$ò„$ˆ݄$ˆ›éßüÿÿf(Øò^ƒT_ùÿ¸	WÉò*Èò\ÐòT$8òYÊWÀòQÁò^Øò\$P(ƒtõÿ)D$`òƒÔ^ùÿòD$x‹‰$ÿV¶è‰Ñ¤ÂÁé	fnáÿÿfnÉfbÁfք$p߬$pݜ$h›ò”$hòY”ët£ùÿ‰ǩtfWT$`;”ët«ùÿŒëx«ùÿ‚}…í„¥òŒël³ùÿò„ët³ùÿòD$@ò\ÈòL$‹‰$f)T$ ÿVݜ$`›òD$òY„$`òXD$@òD$òƒ,_ùÿòYD$ òYD$ ò$èԈf(T$ ݜ$X›ò„$Xf/D$†ñþÿÿéܐ‹‰$ÿVݜ$P›ò„$P(‹tõÿ)L$WÁ$èˆݜ$H›òƒ´^ùÿòY„$Hf)D$ ‹‰$ÿVݜ$@›ò„$@WD$$è9ˆf(T$ ݜ$8›ò„$8f(L$fWÈò\Èf(ÂòYÂf/ȆRÿÿÿòX“œ^ùÿ÷ÇtfWT$`òD$PòYÂòXD$HfWÉf/ȃòýÿÿf(ÈòYÈòYÈòL$‹‰$f)T$ ÿVf(L$ ݜ$0›ò„$0òYÉf(ÑòYT$xfWT$`òYÑòL$HòXÑf/Ї¨ò$蕇ݜ$ ›òƒ<_ùÿòYD$ òD$@òL$HòD$ò\ÈòL$pò$èY‡ݜ$(›òD$pòX„$(òYD$8f(ÈòD$@òYD$ òXÁf/„$ †	ýÿÿòD$8òYD$ò„$݄$›éqùÿÿòD$8òYD$ò„$݄$›éOùÿÿSWVì°è[Ã.Éó”$Ä.“L‹ùÿ‹´$ÀšÀ•ÁÁ…âóƒd‹ùÿóD$(ƒ¤õÿ)D$P‹‰$ÿV‰ÁÑé‰ÂÁê	WÀó*¶ÉóY„‹t›ùÿ;”‹tŸùÿ)D$ ‚©þ„ó”‹pÏùÿóŒ‹tÏùÿóL$0ó\ÑóT$‹‰$ÿVÁèWÀó*ÀóYD$óYD$óXD$0óD$0(D$ WD$Pó$蟅Ù\$t›óD$t/D$0†Iÿÿÿé‹óZÊfWÀf.ÈšÀ•ÁÁuòZÀóD$xÙD$x›éóƒL‹ùÿ/ÂóD$†­óƒd‹ùÿóD$(ƒ¤õÿ)D$Póƒl‹ùÿóD$Lë>(Ãó^ÁóD$ó$è9…Ù\$|›óL$|(D$0)L$ /Áƒâ‹‰$ÿVÁèWÀó*ÀóYD$óD$‹‰$ÿV‰ÁÑé‰ÂÁê	WÀó*¶ÉóY„‹t›ùÿ;”‹tŸùÿ)D$0‚Í©þ„ó”‹pÏùÿóŒ‹tÏùÿóL$ ó\ÑóT$‹‰$ÿVÁèWÀó*ÀóYD$óYD$óXD$ óD$ (D$0WD$Pó$è„ٜ$Œ›ó„$Œ/D$ †CÿÿÿëD‹‰$ÿVÁèWÀó*ÀóYD$WD$Pó$èكٜ$ˆ›óD$Ló\„$ˆ)D$0ó\$(ÃóŒ$Äó\ÁóT$/ƒxþÿÿ(Ãó\Âó^Áó$èÃٜ$€›ó„$€)D$ WD$Pó\$(Ëó”$Äó\ÊóYÂóXÁ(Ëó^ÊóL$ó$ècƒٜ$„›óŒ$„(D$0ó\D$ )L$ /Á‚þÿÿ(D$ óD$hÙD$h›é‹‰$ÿVÁèWÀó*ÀóYƒd‹ùÿWƒ¤õÿó$èɂÙ\$p›óƒl‹ùÿó\D$póD$lÙD$l›éO(Èó^ƒh‹ùÿó\Ðóƒ\‹ùÿóT$HóYÂóQÀó^ÈóL$(ƒ¤õÿ)D$0óƒd‹ùÿóD$óƒT‹ùÿóD$d‹‰$ÿV‰ÁÁé	WÒó*ѶÐóY”“t»ùÿ©tWT$0;Œ“t¿ùÿ‚w…Ò„ŸóŒ“pÃùÿó„“tÃùÿóD$Pó\ÈóL$‹‰$)T$ ÿVÁèWÀó*ÀóYD$óYD$óXD$PóZÀòD$P(D$ óZÀò‹,_ùÿòYÈòYÈò$èW(T$ ݜ$¨›ò„$¨f/D$P†%ÿÿÿéЉǐ‹‰$ÿVÁèWÀó*ÀóYD$WD$0ó$è)ٜ$¤›óƒ`‹ùÿóY„$¤)D$ ‹‰$ÿVÁèWÀó*ÀóYD$WD$0ó$èä€(T$ ٜ$ ›ó„$ (ÈWL$0ó\È(ÂóYÂ/ȆbÿÿÿóX“P‹ùÿ÷ÇtWT$0óD$óYÂóXD$fWÉ/ȃ3þÿÿ(ÈóYÈóYÈóL$P‹‰$)T$ ÿV(L$ ÁèWÀó*ÀóYD$óYÉ(ÑóYT$dWT$0óYÑóL$óXÑ/Ї£ó$èM€ٜ$˜›óƒX‹ùÿóYD$ óD$óL$óD$Pó\ÈóL$Ló$è€ٜ$œ›óD$LóX„$œóYD$H(ÈóD$óYD$ óXÁ/„$˜†SýÿÿóD$HóYD$Pó„$”ل$”›ëóD$HóYD$Pó„$ل$›İ^_[АSƒìè[ÃÃÁ‹D$‹‰$ÿP¬ÐÑêƒÄ[АSƒìè[ÓÁ‹D$‹‰$ÿPÑèƒÄ[АSƒìè[ÃcÁ‹D$‹‰$ÿPÑè1҃Ä[АSƒìè[Ã3Á‹D$‹‰$ÿP1҃Ä[АSWVƒìPè[ÃÁòL$`f.‹ì^ùÿ›À”ÁfW҄Á…–f.‹„^ùÿ›À”DÁ…€1öòƒD_ùÿòD$(f/Áv¸WÀò*Àò\Áò,ðWÀò*ÆòXÁò‹ì^ùÿòL$0ò^Èf(ÐòYÉòƒL_ùÿòYÁòXƒl_ùÿòYÁòXƒ¬_ùÿòYÁòXƒ`ùÿòYÁòXƒd_ùÿòYÁòXƒd^ùÿòYÁòXƒÌ^ùÿòYÁòXƒ_ùÿòYÁòXƒ´_ùÿòYÁòXƒ¼_ùÿò^Âò‹<_ùÿò›ô_ùÿòYÙòXØò\$ òT$f(Âò\ÁòD$ò$èU}òT$òD$Ý\$H›òYT$HòXT$ ò\ÐòL$(f/L$`vN…ö~J¿òT$ò\D$0òD$ò$èô|òT$òD$Ý\$@›ò\T$@G9÷~ÈòT$8ÝD$8›ƒÄP^_[АSƒìè[Ã#¿‹D$ ‰$èäèÿÿÝ\$›òD$,òYD$òXD$$òD$ÝD$›ƒÄ[АSWVƒìpè[ÃѾ‹´$€f(ƒtõÿf)D$`‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿf)D$‚³„Étsò”ÃlÇùÿòŒÃtÇùÿòL$ ò\ÑòT$‹‰$ÿVÝ\$H›òD$òYD$HòXD$ òD$(D$WD$`$è4{Ý\$@›òD$@f/D$†-ÿÿÿë<‹‰$ÿVÝ\$8›òD$8Wƒtõÿ$è{Ý\$0›òƒü^ùÿò\D$0f)D$ò„$„òYD$òD$(ÝD$(›ƒÄp^_[АSƒìè[Ãc½‹D$ ‹‰$ÿPÝ\$›òD$,òYD$òXD$$òD$ÝD$›ƒÄ[АSƒì(è[Ã½‹D$0òD$4òD$‰$è˜ëÿÿÝ\$ ›òD$<òYD$ òD$ÝD$›ƒÄ([АSƒìè[Ãü‹D$ óD$$óD$‰$èhóÿÿÙ\$›óD$(óYD$óD$ÙD$›ƒÄ[АSVì´è[Ão¼òŒ$̋´$Àòƒì^ùÿf/„$Ä‚ f/Á‚–òD$òƒ_ùÿf/„$Ävbf/Áv\‹‰$ÿVÝ\$H›ò„$ÄòŒ$ÌòXÈòYL$H1Àf/Á—ÀWÀò*ÀòD$@ÝD$@›Ĵ^[А‹‰$ÿVݜ$›ò„$òD$(‹‰$ÿVݜ$ˆ›ò„$ˆòD$0òD$ò^„$ÄòD$òD$(ò$èÝxÝ\$x›òD$xòD$8òD$ò^„$ÌòD$òD$0ò$è§xòl$8ò\$(ݜ$€›òŒ$€f(ÅòXÁòT$f/Ђ2ÿÿÿf(ÓòXT$0fWäf/Ô†ÿÿÿ1ÀWÒò*Ðf/ꆠf/ʆ–ò^èòl$PÝD$P›Ĵ^[Ãò„$ÄòD$‰4$è.éÿÿݜ$¨›ò„$¨òD$ò„$ÌòD$‰4$èéÿÿݜ$ ›ò„$ òL$òXÁò^ÈòŒ$˜݄$˜›Ĵ^[Ãò$òT$(è§wÝ\$h›òD$hò^„$Äf)D$òD$0ò$è}wÝ\$p›òD$pò^„$Ìf(L$ò\Èf(Áf/L$(v=f(‹tõÿf)L$fWÁf$èçvÝ$›èîvÝ\$X›òD$XfWD$f$ë/ò$f)D$è¶vÝ$›è½vÝ\$`›f(D$ò\D$`ò$è’vĴ^[АSƒì(è[Ã3¹‹D$0òD$4ò‹„^ùÿòL$ò^ÁòD$‰$è¦çÿÿÝ\$ ›òD$òYD$ òD$ÝD$›ƒÄ([АSVƒìDè[ÃҸ‹t$PòD$Tò‹„^ùÿòL$ò^ÁòD$‰4$èEçÿÿÝ\$8›òT$8òD$òYÐòL$\òYÑòT$ ò^ÈòL$‰4$èçÿÿÝ\$0›òD$òYD$0òYD$TòL$ ò^ÈòL$(ÝD$(›ƒÄD^[АSVƒì4è[Ã"¸‹t$@‰4$èãáÿÿÝ\$(›òD$(òD$‰4$èÊáÿÿÝ\$ ›òD$ò^D$ òD$ÝD$›ƒÄ4^[АSWVƒìpè[Ãw‹´$€f(ƒtõÿf)D$`‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿf)D$‚³„Étsò”ÃlÇùÿòŒÃtÇùÿòL$(ò\ÑòT$‹‰$ÿVÝ\$H›òD$òYD$HòXD$(òD$(D$WD$`$è$tÝ\$@›òD$@f/D$†-ÿÿÿë<‹‰$ÿVÝ\$8›òD$8Wƒtõÿ$èøsÝ\$0›òƒü^ùÿò\D$0f)D$f(D$ò^„$„ò$è6tƒÄp^_[АSWVì€è[ÃN¶fWÀf.„$”›À”DÁtÙîéU‹´$f(ƒtõÿf)D$p‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$hßl$hÝ\$`›òD$`¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿf)D$ ‚³„Étsò”ÃlÇùÿòŒÃtÇùÿòL$8ò\ÑòT$‹‰$ÿVÝ\$X›òD$òYD$XòXD$8òD$(D$ WD$p$è”rÝ\$P›òD$Pf/D$†-ÿÿÿë<‹‰$ÿVÝ\$H›òD$HWƒtõÿ$èhrÝ\$@›òƒü^ùÿò\D$@f)D$ òƒì^ùÿò^„$”òD$f(D$ ò$èXrĀ^_[АSWVì€è[î´‹´$f(ƒtõÿf)D$p‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$hßl$hÝ\$`›òD$`¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿf)D$ ‚³„Étsò”ÃlÇùÿòŒÃtÇùÿòL$0ò\ÑòT$‹‰$ÿVÝ\$X›òD$òYD$XòXD$0òD$(D$ WD$p$èqÝ\$P›òD$Pf/D$†-ÿÿÿë<‹‰$ÿVÝ\$H›òD$HWƒtõÿ$èèpÝ\$@›òƒü^ùÿò\D$@f)D$ (‹tõÿ)L$(D$ WÁ$è"qÝ\$8›òD$8WD$ò‹ì^ùÿò^Œ$”òL$$è²pĀ^_[АSVƒìDè[Ã³‹t$Pòƒ<_ùÿòD$‹‰$ÿVÝ\$8›òD$8f/D$s@fWÉf/ÁvÛòXÀò$èMpÝ\$(›òD$\òYD$(òXD$TòD$0ÝD$0›ƒÄD^[Ãò‹„^ùÿò\Èò\Èò$èpÝ\$›òD$\fWƒtõÿòYD$òXD$TòD$ ÝD$ ›ƒÄD^[АSVƒìDè[Ã2²‹t$Pòƒì^ùÿòD$‹‰$ÿVÝ\$8›òL$f(Áò\D$8f/ÈvÝò$èsoÝ\$ ›(‹tõÿ)L$òD$ WÁ$èPoÝ\$(›òD$\fWD$òYD$(òXD$TòD$0ÝD$0›ƒÄD^[АSVƒì$è[Â±‹t$0‹‰$ÿVÝ\$›òD$fWÉf/Ávãò‹ì^ùÿò\Èò^Áò$èÉnÝ\$›òD$<òYD$òXD$4òD$ÝD$›ƒÄ$^[ÐSƒìè[Ã±‹D$ ‰$èÄÚÿÿÝ\$›òD$,òYD$òXD$$ò$ènƒÄ[АSWVƒìpè[ñ°‹´$€f(ƒtõÿf)D$`‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$Xßl$XÝ\$P›òD$P¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿf)D$‚³„Étsò”ÃlÇùÿòŒÃtÇùÿòL$ ò\ÑòT$‹‰$ÿVÝ\$H›òD$òYD$HòXD$ òD$(D$WD$`$èmÝ\$@›òD$@f/D$†-ÿÿÿë<‹‰$ÿVÝ\$8›òD$8Wƒtõÿ$èèlÝ\$0›òƒü^ùÿò\D$0f)D$f(D$òYƒ„^ùÿòQÀòŒ$„òYÈòL$(ÝD$(›ƒÄp^_[АSVƒì4è[Ã2¯‹t$@‰4$èóØÿÿÝ\$(›¸ò*ÈòL$òD$Dò^ÁòD$‰4$è—ÝÿÿÝ\$ ›òD$ òL$Dò^L$òQÉòYL$(òQÀò^ÈòL$ÝD$›ƒÄ4^[АUSWVì<è[Ý®òŒ$T‹¼$P¸
ò*Àf/È‚þWÀòQÁòD$8ò$èðkòL$8òY‹Ü^ùÿòX‹Ä^ùÿòƒ`ùÿòYÁòXƒŒ^ùÿòD$Pݜ$ø›f(Áf(Ñò\ƒ¬^ùÿò‹Ä_ùÿò^ÈòX‹`ùÿòŒ$€ò„$øòD$x¸WÉò*ÈòT$8f(ÂòŒ$°ò\Áò‹t_ùÿò^Èòƒ$`ùÿò\Áò„$ˆf(ƒtõÿòŒ$TfWÁf)„$òƒ<_ùÿòD$@(ƒ$õÿ)„$ òƒD^ùÿò„$¨òƒ|_ùÿò„$ òƒ¤^ùÿò„$òƒì^ùÿòD$Hòƒ„^ùÿòD$pë,ò„$˜ò\Ãf/D$‹¼$Pƒþ‹‰$ÿWݜ$ð›ò„$ðò\D$@f)D$ ‹‰$ÿWݜ$è›f(L$ f(ÁfT„$ òT$@ò\ÐòT$ò„$°òYD$Pò^ÂòXD$8òYÁòŒ$èòL$ òŒ$TòXÁòX„$¨ò$èjòT$ òL$ݜ$à›ò,´$àf/Œ$ rò„$ˆf/ƒ…öˆÿÿÿò„$f/Áv
f/чÿÿÿò$èviݜ$țò„$ÈòD$ò„$€ò$èLiݜ$ЛòD$òX„$ÐòD$òL$òYÉòD$Pò^ÁòXD$8ò$èiݜ$؛òD$ò\„$ØòD$WÀò*ÆòYD$xòX„$ò„$˜FWÒò*ÐòL$Hf.Ñ›À”ÁfWۄÁ…	þÿÿf.T$p›À”DÁ…õýÿÿ1íòƒD_ùÿòD$hf/Âv¸WÀò*Àò\Âò,èWÀò*ÅòXÂò^Èf(ØòYÉòƒL_ùÿòYÁòXƒl_ùÿòYÁòXƒ¬_ùÿòYÁòXƒ`ùÿòYÁòXƒd_ùÿòYÁòXƒd^ùÿòYÁòXƒÌ^ùÿòYÁòXƒ_ùÿòYÁòXƒ´_ùÿòYÁòXƒ¼_ùÿò^Ãò£ô_ùÿòL$@òYáòXàòd$`ò\$f(Ãò\ÁòD$ ò$òT$Xèœgò\$ òL$ݜ$À›òYœ$ÀòX\$`ò\ÙòD$hf/D$X†Ãüÿÿ…펻üÿÿ¿òD$Hò\$ ò\ÈòL$ò$è6gò\$ òL$òD$Hݜ$¸›ò\œ$¸G9ï~¾éiüÿÿ1öWÀò*Æf.È›À”DÁupf(ÑfW“tõÿf$èŒfݜ$›òƒì^ùÿ¾ÿÿÿÿòŒ$òL$ òD$‹‰$ÿWòD$ݜ$›òY„$Ff/D$ w҉ðÄ<^_[]АSVƒì$è[ÃҨ‹t$0òD$4òL$<¸ò*Ðò\Ñò^ÑòT$òD$‰4$è:×ÿÿÝ\$›òD$òYD$òD$‰4$èËùÿÿƒÄ$^[АUSWVìlè[Ã]¨‹´$òŒ$ˆ‹”$„ƒ>ò*âòd$pt9Vuf.N›À”DÁ…
‰VòNÇò“ì^ùÿf(Âò\Áf/Áf(Áwf(Âò\ÁòD$(òFf(Êò\ÈòL$ òNòYàòXàòd$òf ò$$òT$è{eݜ$X›ò,¬$X‰n(òD$pòYD$(òT$ òYÂòQÀò‹l^ùÿòYÊòYƒÜ_ùÿò\Áò$è+eݜ$`›ò£<_ùÿòŒ$`WÀò*ÅòXÌf)Œ$€òXàf(Üò\Ùf)œ$°òXƒœ_ùÿò«„_ùÿò^èòT$f(Âò\Ãf(‹tõÿfWËòYL$(òXÊò^Áò»„^ùÿf(ðò^÷òXt$òYðf(ÜòXœ$€f(Óò\T$òX«Œ_ùÿf(ËòD$ òYÈò^Ñf(Âò^ÇòL$òXÁòYÂòYýòXùf(”$€òV,òd$@òf4òd$pf(Œ$°òN<òœ$ ò^DònLòvTòF\òYúò~df(Õòt$Pò^Öò|$hòX×òVlò¬$¨f(Ýòl$(òD$Hò^ØòT$XòXÚò\$`ò^tf(Äòl$(òYÅòYD$ òD$‹´$€‹‰$ÿVݜ$P›ò„$PòYD$`òD$‹‰$ÿVòd$ݜ$H›òœ$Hf(”$€f/â†û‹„$„HU‰T$0‰L$4)é‰L$|)è‰D$x鄐f/ê†øòD$pòYD$(òYD$ òD$‹´$€‹‰$ÿVݜ$›ò„$òYD$`òD$‹‰$ÿVòd$ݜ$ø›òœ$øf(”$€f/â†Qf/d$h†´ò\$ò$òd$èbòD$f/D$Xݜ$8›ò„$8†ûò^D$HòŒ$ ò\Èò$èbݜ$(›ò,¼$(;¼$„òl$òL$þþÿÿfWÀf.è›À”DÁ…èþÿÿò\L$XòYéòYl$Héùò\âò„$¨ò^àòX¤$°òYØòƒì^ùÿòXØWÉò*Íò\ÌòX‹<_ùÿfT‹$õÿò^Êò\Ùf/؇sþÿÿò$$ò\$èYaòl$ݜ$@›ò,¼$@ëpò^D$PòX„$°ò$è'aݜ$0›ò,¼$0…ÿòl$òL$ˆþÿÿfWÀf.èšÀ•ÁÁ„öýÿÿò\L$hòYéòYl$P‰þ)î‰ð÷ØHƃøŒÜWÀò*ÀòL$ò^‹„^ùÿ¸WÒò*Ðò\Êf/Ȇ­f(ÈòT$ò^Êf(Øò^›T_ùÿòX›ä_ùÿòYØòX›,`ùÿò^ÚòX›<_ùÿòYÙò\$‰ð¯Æ÷ØWÉò*ȸWÀò*ÀòYÂò^ÈòL$ò,$è×_ò\$òT$ݜ$ ›òŒ$ f(Ãò\Âf/Á‡êòXÚf/ˇäüÿÿGWÒò*Ðò”$˜Wíò*l$0ò*d$|ò¤$‹D$4)øWÀò*ÀòD$f(ÚòYÚòœ$Øòl$f(ÝòYÝòœ$ÈòYäò¤$ÐòYÀò„$àf(Åò^Âò$òŒ$èèÿ^ݜ$›WÀò*D$xòXƒ<_ùÿòD$ò„$ò^D$ò$èÇ^ݜ$›òL$òYŒ$ò„$òYD$@òXÁòD$8òD$òYD$(òŒ$˜òYL$ ò^ÁWÉò*ÎòL$ò$èa^ݜ$›òD$òY„$òXD$8òD$òƒ¤_ùÿf(Èf(øò„$Èò^Èò£ä^ùÿòd$8ò\áò^àò›ì_ùÿf(Ëò\Ìò^Èò“T^ùÿf(êò\éò^èò‹`ùÿf(ñò\õò^t$òƒÌ_ùÿòD$ò^ðòXt$f(ïò¼$Àò¤$Ðò^üòD$8ò\Çò^Äf(ûò\øò^üf(Âò\Çò^Äf(ùò\øò^¼$ò^|$òXþf(Åò¤$Øò^Äòl$8f(õò\ðò^ôf(Ãò\Æò^Äf(ôf(âò\àò^æf(ñò\ôò^´$˜ò^t$òX÷ò„$àò¼$Àò^øò\ïò^èò\Ýò^Øò\Óò^Ðò\Êò^L$ò^L$òXÎò„$èf/Á‡õùÿÿé萐òD$(ò^D$ WÉò*L$4òYÈ9ï~D‹D$0ò“ì^ùÿ9ø¯ùÿÿWÛò*Øf(áò^ãò\àòYÔ@9ø~äéùÿÿò“ì^ùÿqùÿÿG9èfùÿÿò“ì^ùÿWÛò*Øf(áò^ãò\àò^Ô@9è~äé/ùÿÿfW“tõÿòYÓòXT$@òXÔò$è\ݜ$ð›ò,¼$ð‹„$„)øò„$ˆf/ƒ<_ùÿFǁÄl^_[]ÃònòFòD$ ‹n(òF,)„$€ò^4ò\$@ò^<)œ$°òVDò”$ ò^Lòœ$¨ò^Tò\$PòF\òD$Hò^dò\$hòFlòD$XòFtòD$`é¤÷ÿÿUSWVƒìLè[Ã`‹t$p‹T$d‹|$`ƒ>t9VuòD$hf.F›À”DÁ…†‰VòD$hòFÇò‹ì^ùÿò\ÈòL$òNWÀò*ÂòD$ ò$è|ZÝ\$8›òD$8òYD$ ò$èZò\$Ý\$@›òD$@òD$òFòd$ f(ÄòYD$h¸WÉò*Èf(ÐòYÓòXÑòQÒòY“4_ùÿòFLòXÐf/Ôvf(Ôëf(ÐòYÓòXÑòQÒòY“4_ùÿòXÐò,ê‰n(‹‰$ÿWÝ\$0›òD$01Àf/D$‹t$dvx1ÉòL$ëD‰ò)ÊWÒò*Òò\ÁòYT$hWÛò*ØòYÑòY\$ò^Óf(Êf/IÁv*A9è~ˉ$ÿWÝ\$(›1ÀòD$(òL$f/IÁwփÄL^_[]ÃòFòD$òFòD$‹n(éAÿÿÿSWVƒì@è[Ãq›‹|$`‹t$\‰ð	ø„‡òD$TWÉóZÉf.Á›Á”Å1:„Í…‹L$d‹D$Pò‹<_ùÿf/ÈrTfnÎfn×fbÊfÖL$(ßl$(Ý\$ ›òL$ òYÈò“L^ùÿf/Ñrx‰L$òD$‰t$‰$ègýÿÿëv1À1Òé—ò‹ì^ùÿò\ÈfnÆfn×fbÂfÖD$8ßl$8Ý\$0›òD$0òYÁò“L^ùÿf/Ðr5‰L$òL$‰t$‰$èýÿÿë3‰L$òD$‰t$‰$èïñÿÿ‰ÂÁúë#‰L$òL$‰t$‰$èÒñÿÿ‰ÁÁù)Æωð‰úƒÄ@^_[АSVƒìdè[ÃšòL$|òL$¸ÿÿÿ#D$ƒ|$ð|óƒp‹ùÿóZÀòD$ ÝD$ ›ƒÄd^[ÃòT$t1Àò*Àf.ȋt$pšÀ•ÁÁuBòƒ„^ùÿòD$ò^ÐòT$‰4$è3ÈÿÿÝ\$0›òD$òYD$0òD$(ÝD$(›ƒÄd^[øWÀò*Àf/Ðvsò\Ðòƒ„^ùÿòD$ò^ÐòT$‰4$èÛÇÿÿÝ\$H›òD$òYD$HòD$‰4$èìÂÿÿÝ\$@›òD$|òQÀòXD$@òYÀòXD$òD$8ÝD$8›ƒÄd^[Ãòƒ„^ùÿòD$ò^ÈòL$‰4$èêÿÿÀWÀò*ÀòL$tòXÈò^L$òL$‰4$èEÇÿÿÝ\$X›òD$òYD$XòD$PÝD$P›ƒÄd^[АSVƒìDè[Ãr˜‹t$PòL$TòD$dòD$òL$‰4$è+þÿÿÝ\$8›òL$8òD$\òYÈòL$ ò‹„^ùÿòL$ò^ÁòD$‰4$è°ÆÿÿÝ\$0›òD$òYD$0òYD$Tf(ÈòD$ ò^ÁòD$(ÝD$(›ƒÄD^[АSVƒì4è[Ã—òT$D‹t$@¸ò*ÀòYD$Lò^ÐòT$‰4$èdÁÿÿÝ\$(›òD$(òT$Df(ÚòYØòYظWÀò*ÀòYD$Lf(ËòYËòYÃòXÁòQÀò\ØòY\$òXÚò\$‹‰$ÿVò\$òT$DÝ\$ ›f(ÂòXÃf(Êò^Èf/L$ rò\$ÝD$›ƒÄ4^[ÃòYÒò^ÓòT$ÝD$›ƒÄ4^[АSVìÔè[Ãϖò¤$ìòd$8¸ÿÿÿ#D$<ƒ|$8ð| óƒp‹ùÿóZÀòD$`ÝD$`›ÄÔ^[Ë´$àòƒü_ùÿf/ÄvW¸WÀò*ÀòD$‹‰$ÿV¸WÀò*ÀÝ\$p›òL$òYL$pò\ÈòY‹4`ùÿòL$hÝD$h›ÄÔ^[Ãòƒ”_ùÿf/Ävòƒì^ùÿò^ÄòXÄòD$(ëzòƒÔ_ùÿf/Ä‚„¸WÀò*8ò*ÈòYÌòYÌòXÈòQÉòXȸò*Ðf(ÚòYÙòQÛò\Ëf(ÚòYÜò^Ëf(ÙòYÙòXØòYÊò^Ùò\$(¸WÀò*ÀòD$@¸WÀò*ÀòD$Xòƒ4`ùÿòD$ 1ÀWÀò*ÀòD$0‹‰$ÿVݜ$¸›ò„$¸òYD$ ò$èçRݜ$¨›ò„$¨òL$(f(ÑòYÐòXT$@òXÁò^ÐòT$Pò\ÊòYŒ$ìòL$‹‰$ÿVݜ$°›ò„$°òL$Xò\$ò\ËòYËò\Èf/L$0s;f(Ëò^Èò$èRݜ$ ›ò„$ òXD$@ò\D$f/D$0‚ÿÿÿ‹‰$ÿVݜ$˜›òD$Pò$èRݜ$›òŒ$òƒ<_ùÿf/„$˜vfW‹tõÿ1ÀWÀò*ÀòD$òXŒ$äf)L$@f(ƒ$õÿfTÁòT$ òX¸WÉò*ÈòYÊòL$ò$è­QòD$f/D$@ݜ$ˆ›òŒ$ˆò\L$ †Ì¸ÿÿÿÿWÀò*ÀòYÈòL$xÝD$x›ÄÔ^[Ãòƒì^ùÿò^ÄòQÀòD$‰4$è½ÿÿòL$ݜ$țòYŒ$ÈòXŒ$äòƒ_ùÿf/Áv¸WÀò*ÀòYƒ4`ùÿòXÈf/‹4`ùÿv:¸WÀò*ÀfWƒtõÿòYƒ4`ùÿòXÁò„$À݄$À›ÄÔ^[ÃòŒ$€݄$€›ÄÔ^[АSVì”è[Ã’òŒ$¤‹´$ (ƒtõÿWÁ$è©OÝ\$h›òD$hòD$(‹‰$ÿVÝ\$`›òL$`1Ҹò„$¤f/ȃ)(ƒtõÿ)D$pWÀò*ÀòD$ ë&‹‰$ÿVÝ\$8›òL$8ò„$¤f/ȃòL$‹‰$ÿVÝ\$X›òD$XòYD$(ò$èqOòL$Ý\$P›òT$PfWT$pf(ÂòYÂf/Á‚Ÿò$f)”$€èOÝ\$@›òD$@òD$0(„$€ò$èâNÝ\$H›òD$0ò^D$HòXD$ ò$èOÝ\$ÝD$ÝL$›‹D$‹T$ƒø‰уÙŒÿÿÿfWÀòL$f.ÈšÁ•ÅÍ„òþÿÿĔ^[Ã1Òf/ʸƒÐĔ^[ø1ҁĔ^[АSƒìè[ó‹D$ òƒì^ùÿò\D$$òD$‹‰$ÿPò\$òT$$Ý\$›òD$¸f/Âvf(ʐòYÓòXÊ@f/ÁwñƒÄ[АSWVìè[Ã.‹´$ f(ƒtõÿf)„$€‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$xßl$xÝ\$p›òD$p¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿf)D$ ‚¶„Étvò”ÃlÇùÿòŒÃtÇùÿòL$8ò\ÑòT$‹‰$ÿVÝ\$h›òD$òYD$hòXD$8òD$(D$ W„$€$è‘LÝ\$`›òD$`f/D$†*ÿÿÿë<‹‰$ÿVÝ\$X›òD$XWƒtõÿ$èeLÝ\$P›òƒü^ùÿò\D$Pf)D$ (ƒtõÿ(L$ WÈ)L$ òŒ$¤WÈ$è#LÝ\$H›f(D$ ò^D$Hò$èÈLÝ\$@›òD$@f/ƒ$_ùÿr¸ÿÿÿÿºÿÿÿëòD$ÝD$ÝL$›‹D$‹T$Đ^_[АSWVìè[Ã^Žò„$¤‹´$ f/ƒ¼^ùÿrjò‹ì^ùÿò\ÈòL$‹‰$ÿVò\$ò”$¤Ý\$8›òD$8¸f/Âv!f(ʐòYÓòXÊ@f/Áwñ‰ÂÁúé­f(ƒtõÿf)„$€‹‰$ÿV‰Ñ¤Á‰×Áï¤ÂfnÇfnÊfbÈfÖL$xßl$xÝ\$p›òD$p¶ÁòY„Ãt‹ùÿ;”Ãt“ùÿ¼Ãx“ùÿf)D$ ‚¶„Étvò”ÃlÇùÿòŒÃtÇùÿòL$0ò\ÑòT$‹‰$ÿVÝ\$h›òD$òYD$hòXD$0òD$(D$ W„$€$èAJÝ\$`›òD$`f/D$†*ÿÿÿë<‹‰$ÿVÝ\$X›òD$XWƒtõÿ$èJÝ\$P›òƒü^ùÿò\D$Pf)D$ f(ƒtõÿf(L$ fWÈf)L$ òŒ$¤fWÈf$èÍIÝ\$H›f(D$ ò^D$Hò$èrJÝ\$@›òD$@f/ƒ$_ùÿrºÿÿÿ¸ÿÿÿÿëòD$ÝD$ÝL$›‹D$‹T$Đ^_[ÃSVì”è[ÃŒòŒ$¤¸ò*Àf/Èr¸Ĕ^[Ë´$ ò\‹ì^ùÿf)L$ òL$òƒ„^ùÿò$è9Iݜ$€›ò„$€òD$0¸ÿÿÿWÉò*È(ƒtõÿWD$ òL$Pò$D$èõHݜ$ˆ›ò„$ˆòD$H¸WÀò*ÀòD$@òƒ\^ùÿòD$8òƒì^ùÿòD$‹‰$ÿVÝ\$x›òL$xòD$@ò\ÁòYL$HòXÈòL$‹‰$ÿVÝ\$p›òD$pòD$XòD$8ò^D$ òD$òD$ò$èHHÝ$›èHÝ\$h›òT$hf/T$P‡xÿÿÿòD$f/‡hÿÿÿòL$f(Áò^ÂòXÁ(L$ òL$ò$òT$èëGòd$Ý\$`›òD$`òT$XòYÔf(Èòl$ò\ÍòYÊò\$0f(Óò\Õò^Êò^Ãf/Á‚îþÿÿò,āĔ^[ÐSƒì8è[ÃŠòT$Tò\$D‹D$@òD$Lf(Êò\Ëò\Ðò\Ãf(Øò^Ùò\$òYÁòD$òYÑòT$‹‰$ÿPÝ\$0›òD$0òL$f/Èr$òYD$òQÀòL$DòXÈòL$ ÝD$ ›ƒÄ8[Ãò‹ì^ùÿò\ÈòYL$WÀòQÁòL$Tò\ÈòL$(ÝD$(›ƒÄ8[АUSWVƒìè[Ã0‰‹t$(‹|$$1҉ø	ð„“‰ð¤ø‰ñÑé	ø	ñ‰ÊÁê	ʉΤÆ	ƉÑÁé	Ѥò	ò‰͉ȤÐÁí	Í	ЉîÁî	î¤Å‹|$ 	Å	õ‹D$(…Àu%‹t$$‹‰$ÿW!è9ƋL$(ƒÙrë1Òë#‹‰$ÿW!ò!è9D$$‹L$(Ñrèë1Ä^_[]АUSWVƒì,è[Ã`ˆ‹|$P‹t$L‹l$H‹L$D‰ð	ø„;‹T$T¶D$\‰ñ…ÿu ÷Ñ	ÏuX‹L$@‹‰$ÿQ‹L$DCÕé!ùƒùÿtq„À„‚‹l$@‹E‰$ÿU#T$X#D$T9ƉùÑrç‹L$DKl$HÕé΄À„¢‹|$@‹‰$‰ÕÿW‰ê!è9ðwî‹L$DKl$HƒÕ锋L$@‹‰$ÿQ‹L$DÁÕé{‰õƒÅ‰øƒÐ‰D$‹L$@‹‰$ÿQ‰é‰ʼnT$÷á‰D$‰l$¯l$ê‹l$¯éÕ;t$‰ø‰l$ èsm‹|$‹l$鿉L$~‹L$@‹‰$ÿQ÷ç9ðw9‰KD$‰Õ1Ò÷÷‰Љê‹l$H9Èv!‰þ‰NjL$@‹‰$ÿQ÷æ9ljøwê‹L$DуÕéÄ÷×÷֋l$‰l$‰L$‰4$‰|$‰ÎèÖ:‰ñ9D$T$ ‰ï‹l$sV‰L$‰T$(‰D$$‹t$‹L$@‹‰$ÿQ‰ʼn׉Á¯L$÷æʉù¯ÎыT$(;D$$Ñr҉|$‹L$‹|$‰è÷á‰T$‹t$‰ð÷á‰ӉIè÷ç‰Չú‰ljð÷âD$DT$HL$؃ÒùèƒÒ‰IՉȉêƒÄ,^_[]АUSWVƒìè[Ãà…‹|$(‹t$$…ÿ„–‹l$ ƒÿÿu‹E‰$ÿUÆé}€|$0t$‹t$,‹E‰$ÿU!ð9øwñ‹t$$ÆëRG‰D$‹E‰$ÿU÷d$9øw8‰Á÷׉ø‰Ö1Ò÷t$‰Љò‹t$$9Èv‹|$‰ƋE‰$ÿU÷ç9Ɖðwí‹t$$։ðƒÄ^_[]АUSWVƒìè[Ã…·|$8·l$4…ÿ„‹T$H‹L$Dÿÿÿuƒ9„|·B‰‹H鉀|$@tH·t$<‹ë·B‰‹L$D‹H‰·
f!ñf9ùv:…Àuâ‹L$0‹‰$ÿQ‹T$H‰¸‹L$DëҍG‰D$ƒ9t5·B‰‰΋	IëAé‰Íë}‹L$0‹‰$ÿQ‹L$D‹T$H‰¸‰f*ë[‹T$0‹‰$‰ÎÿR‹T$H‰¹‰‹2·î·D$¯è·ՉD$‰T$9Âs÷׉ø1Òf÷t$·ú‹T$H9|$rDÁí·D$4è‰ʼnèƒÄ^_[]АÁî‰2‹D$D‹I‰‹2·î¯l$·Å9øs¼…Éu݋L$0‹‰$ÿQ‹T$H‰¹‹D$DëÌUSWVƒìè[Àƒ¶T$8¶D$4…Ò„û‹t$H‹|$D‹l$0úÿuƒ?tn‰ÁÁ.‹Hëy€|$@‰T$t;Šl$<‹ëÁ.‹H‰Š é8Ñv3…Àuì‹E‰$ÿUŠl$<‹T$‰¸ë؉Ðþ?ˆD$t.Á.‹/Më;¶D$4Èët‹E‰$ÿU¶L$4‰¸‰‰ÈëW‹E‰$ÿU‰¶D$½‰/‹¶Ê¶	D$¯È¶ID$‹D$9D$s‹D$öжÀöt$¶ĉD$9D$r3l$4ˆèƒÄ^_[]АÁꉋ/M‰/‹¶Ê¯L$¶Á;D$sͅíuߋL$0‹‰$ÿQ‰½ëҐSWVƒìè[Ã‚€|$(t‹t$8‹|$4ƒ?tÑ.‹Hë¶D$$ë‹D$ ‹‰$ÿP‰¸‰¶$ƒÄ^_[АUSWVƒì<è[ð‹t$`‹l$\‹|$X‹T$T‰è	ð‹L$dt[¶D$h‰é…ö…Å÷щL$$	ñ…tƒ|$d‹|$lŽ;‰Õ1��‹L$P‹‰$ÿQè‹L$XƒÑ‰÷‰L÷F9t$duÝé…ɋt$lŽ1ùrU‰È%üÿÿfnÂfnÏfbÁfpÀD1ɐóÎóD΃Á9Èuî‹L$d9ȋ|$X‹T$T„®‰Ɖ|Æ@9Áuôé“!ñƒùÿ„[„D$d„–…ÀŽt‰ð‹L$\¤È‰òÑê	È	ò‰ÑÁé	щÖ¤Æ	ƉÊÁê	ʤñ	ñ‰ÐÁè	ФÊ	ʉƉǤ×Áî	Æ	×	÷1‰D$‹l$P‹E‰$ÿU!ò!ø9D$\‹L$`ÑrçD$TT$X‹L$l‹l$‰é‰è‰Té@;D$du·éÖ„D$d„C…ÀŽÂ‰ð‹L$\¤È‰òÑê	È	ò‰ÑÁé	щÖ¤Æ	ƉÊÁê	ʤñ	ñ‰ÐÁè	ФÊ	ʉƉÁ¤ÑÁî	Æ	Ñ	Î1	D$‹l$P‹|$\‹E‰$ÿU!ð9øwñD$T‹L$XƒÑ‹T$l‹|$‰ú‰ø‰Lú@;D$du¾é-ƒ|$d‹l$lމù1��‹D$P‰ωK‰$ÿQ‰ù‹|$TøʉDõ‰TõF9t$du×éæ…ÀŽÞ‹D$\‰CÁ‰L$‹L$`‰̓Õ÷ЉD$0÷щL$,1	l$$ëb‹t$(‰ø÷á‰T$ ‰ð÷á‰Ål$ ƒÒ‰T$ ‰ø‹L$$÷á‰×è‰̓׉ð÷áD$TT$XD$ ƒÒøƒÒ‹L$l‹t$4‰ñ‰TñF;t$d‰ð„R‰D$4‹L$P‹‰$ÿQ‰ljT$(‹L$÷á‰Ɖø¯Å‹l$(¯éՉt$ 9t$\‹D$`è‚\ÿÿÿ‹D$$‰D$‰L$‹D$,‰D$‹D$0‰$èD2‹L$‰ƉЉò9t$ ‰D$ ŋt$(ƒ"ÿÿÿ‰T$8‹L$P‹‰$ÿQ‰ljՉÁ¯L$$‹t$÷æʉé¯ÎыT$89ÐL$ r΋L$‰îé×þÿÿ…ÀŽ‹D$\h1öëT$T‹D$XƒÐ‹L$l‰ñ‰DñF;t$dtW‹L$P‹‰$ÿQ÷å;D$\wωKD$$‰T$1Ò÷õ‰׋T$9Ïv·‰t$‹t$P‹‰$ÿV÷å9Çwò‹t$댃Ä<^_[]АUSWVƒìè[Ã}‹T$D‹L$<‹D$8‹l$4…Àt6‹t$0ƒøÿ…‰…ÉŽt1ÿ‹‰$ÿVè‹L$D‰¹G9|$<uèéS…ÉŽK‰î1ùrB‰È%øÿÿfnÆfpÀ1ÉóŠóDŠƒÁ9Èuî‹L$<9ȋt$4„‰4‚@9Áuøéó€|$@tt…ÉŽä‹L$8‰ÈÑè	ȉÁÁé	IÈÁè	ȉÁÁé	IÏÁï	Ï1‰D$‹l$8‹‰$ÿV!ø9èwòD$4‹L$D‹T$‰‘‰Ð@;D$<uÊëx…É~th÷ЉD$1É됐‹L$T$4‹D$D‰ˆA;L$<tJ‰L$‹‰$ÿV÷å;D$8w։KD$‰T$1Ò÷õ‰׋T$9ϋL$v¾‹‰$ÿV÷å9Çwò렃Ä^_[]АUSWVƒìèXÀP{‰D$·t$8‹T$D…ötaþÿÿ…Ń|$<Ž)1ö1É1\$ë'ÁèI·T$4‹|$Df‰wF9t$<„ö…ÉuދL$0‹‰$ÿQ¹ëσ|$<ŽÔ1|$<rG‹D$<%ðÿÿ·L$4fnÁòpÀfpÀ1ɐóJóDJƒÁ9Èuî;D$<„ˆ·L$4f‰B@9D$<uðéo€|$@t~ƒ|$<Ž]·ƉÁÑé	IÈÁè	ȉÁÁé	IÏÁï	Ï1í1É1Àë!‹L$0‹‰$‹\$ÿQ¹‰Â!úf9òv…ÉtÞÁèI‰Â!úf9òwï·\$4ڋ\$Df‰kE;l$<uÙéêƒ|$<ŽßF‰D$·Ø÷Ö1Ò1É1	\$ë.‹D$‹\$Áï·T$4׋T$D‹l$f‰<j‰êB;T$<„™‰T$…Ét
ÁèIë ‹L$0‹‰$‹\$ÿQ‹\$¹·ø¯û‰Ú·ß9Ósœ‰D$‰ð1Òf÷t$·ê9ës„‹D$‹\$됐ÁèI·ø¯û·×9êƒcÿÿÿ…Éuç‹L$0‹‰$‹\$ÿQ‹\$¹ëЃÄ^_[]АUSWVƒìèXÀàx‰D$¶D$8‹\$<…ÀtU‰ǁÿÿuu…ÛŽÈ1ÿ1É1À됐ÁèI‰ÂT$4‹t$Dˆ>G9û„¤…Éuâ‹L$0‹‰$‹\$ÿQ‹\$<¹ë˅ÛŽ}‰\$¶D$4‰D$‹D$D‰$‹\$èr6é[€|$@„…ÛŽH‰ø¶	ÁÑé	IÈÁè	ȉÅÁí	Å1Ò1É1Àë%T$4‹t$D‹\$ˆ‰ÚB;T$<„‰T$됐ÁèI‰‰ë ډû8ÚvÉuì‹L$0‹‰$‹\$ÿQ¹ëمÛŽ»‰ù‰ÈþÀ¶øöÑ1Ò¶Áf‰D$1É1Àë"‹D$t$4‹t$D‹\$ˆ4‰ÚB;T$<„~‰T$…ÉtÁèI됐‹L$0‹‰$‹\$ÿQ¹¶Ð¯×¶ò9þs²‰û‰D$·D$öó¶ì9îsš‹D$됐ÁèI¶Љþ¯×¶ò9îs…Éué‹L$0‹‰$‹\$ÿQ¹ëփÄ^_[]АUSWVƒìè[ÃÐv‹t$,…ö~?‹|$4€|$(t91í1É1À됐ÑèI‰€âˆ/E9ît…Éuìƒì‹D$,ÿ0ÿPƒÄ¹ëكÄë¶D$$ƒì¶ÀVPWèŽ4ƒÄ^_[]АUSWVƒì,è[ÃPv‹D$P‹l$DH‰D$…À~s‹t$Lò‹ì^ùÿ1ÿòL$ òþò^IèÁø‹L$T‰L$‰D$‰l$òD$‹D$@‰$èjÚÿÿòL$ ‹L$H‰¹)Ņí~ò\þG9|$u«ë…í~‹D$P‹L$H‰lüƒÄ,^_[]ÃÌSVƒìTè[âu‹t$`ƒ~tÇFÝF›WÀòFƒÄT^[Ãò‹„^ùÿò“\^ùÿòƒì^ùÿòL$òT$òD$(‹‹‰$ÿPÝ\$H›òD$HòYD$òXD$òD$ ‹‹‰$ÿPòT$òL$Ý\$@›òd$@òYáòXâf(ÄòYÄòl$ òYíòXèòD$(f/èsŽfWÛf.ë›À”DÁ…xÿÿÿò,$òd$òl$èB2Ý\$0›òƒ_ùÿòYD$0ò^D$òQÀòL$ òYÈòNÇFòL$òYÈòL$8ÝD$8›ƒÄT^[АSƒì(è[ÃSt‹D$0‹‹‰$ÿPÝ\$ ›òƒì^ùÿò\D$ ò$èµ1Ý\$›òD$WƒtõÿD$ÝD$›ƒÄ([АSVì$è[ÃïsòŒ$4f.‹ì^ùÿ‹´$0šÀ•ÁÁuH‹‹‰$ÿPݜ$˜›òƒì^ùÿò\„$˜ò$è-1ݜ$›ò„$fWƒtõÿëfWÀf.È›À”DÁtò„$ˆ݄$ˆ›Ä$^[Ãò“ì^ùÿf/ÑòT$†(ƒtõÿ)D$P¸WÀò*ÀòD$ëGf(Âò^ÁòD$ò$èx0ݜ$ ›ò„$ f(L$ f/ȃgÿÿÿ‹‹‰$ÿPݜ$țò„$ÈòD$@‹‹‰$ÿPݜ$À›òD$ò\„$Àò$è0ò\$@ݜ$¸›ò„$¸WD$P)D$ òT$f(ÂòŒ$4ò\Áf/Ã9ÿÿÿòD$ò\Ãò^Áò$èÁ/ݜ$¨›ò„$¨f)D$@fWD$Pò\$f(Ëò”$4ò\ÊòYÂòXÁf(Ëò^ÊòL$ò$è]/ݜ$°›ò„$°f(L$ ò\L$@f/È‚ßþÿÿéAþÿÿf(Âò^ƒT_ùÿò\ȸ	WÀò*ÀòYÁòQÀf(Úò^Øòœ$€òƒ„^ùÿòD$@òƒ\^ùÿòD$Pòƒ_ùÿòD$xòƒÔ^ùÿòD$hf(ƒtõÿf)„$òL$`‹FëAò^ÇFfWÀòF1Àò„$€òYÃòXÂfWÉf/È‚ú…ÀuƐ‹‹‰$ÿPݜ$›ò„$òYD$@òXD$PòD$ ‹‹‰$ÿPݜ$›òŒ$òYL$@òXL$Pf(ÁòYÁòT$ òYÒòXÐf/T$sŽfWÀf.ЛÀ”DÁ…xÿÿÿò$òL$òT$8èÂ-ò\$òT$ݜ$ø›ò„$øòYD$xò^D$8òQÀòL$ òYÈòNÇFòYظéèþÿÿf(ÈòYÈòYÈòL$ ‹‹‰$ò\$ÿPòL$ݜ$ð›ò„$ðòYÉf(ÑòYT$hfW”$òYÑòXT$f/Ї°ò$è-ݜ$à›òƒ<_ùÿòYD$òD$8òL$òD$ ò\ÈòL$pò$èÆ,òT$ݜ$è›òD$pòX„$èòL$`òYÁf(ØòD$8òYD$òXÃf/„$à†ÌýÿÿòYL$ òŒ$Ø݄$؛Ä$^[ÃòD$`òYD$ ò„$Ð݄$ЛÄ$^[АSƒì(è[Ón‹D$0òD$4òD$‰$èxúÿÿÝ\$ ›òD$<òYD$ òD$ÝD$›ƒÄ([АSƒì(è[ÃCn‹D$0‹‹‰$ÿPÝ\$ ›òƒì^ùÿò\D$ ò$è¥+Ý\$›òD$fWƒtõÿò^D$4ò$è2+Ý\$›¸WÀò*ÀòL$ò\ÈòL$ÝD$›ƒÄ([АSƒì(è[ómfWÀf.D$4›À”DÁtÙîƒÄ([ËD$0‹‹‰$ÿPÝ\$ ›òƒì^ùÿòD$ò\D$ ò$èô*Ý\$›òD$WƒtõÿòL$ò^L$4òL$$è·*ƒÄ([АSƒì8è[Ã#m‹D$@¹ò*ÁòD$ ‹‹‰$ÿPÝ\$0›òƒì^ùÿòD$ò\D$0ò$èp*Ý$›è*Ý\$(›òD$ ò\D$(òL$ò^L$DòL$ò$è**ƒÄ8[АSƒì(è[Ól‹D$0òD$4ò‹„^ùÿòL$ò^ÁòD$‰$èføÿÿÝ\$ ›òD$òYD$ òD$ÝD$›ƒÄ([АSƒì(è[Ã3l‹D$0‹‰$ÿPÝ\$ ›òD$ Wƒtõÿ$èY)Ý\$›òƒ_ùÿòYD$òQÀòYD$4òD$ÝD$›ƒÄ([АSWVìè[þkòŒ$¬ò”$¤1Àò*Àf.K´$ šÀ•ÁÁuAòƒ„^ùÿòD$ò^ÐòT$‰4$èn÷ÿÿÝ\$H›òD$òYD$HòD$@ÝD$@›éJ¸WÀò*Àf/Ðv]ò\Ðòƒ„^ùÿòD$ò^ÐòT$‰4$è÷ÿÿòD$Ý\$p›òL$pòYȃ~„ÌòVÇFfWÀòFé·‹òL$(òƒ„^ùÿòD$ò^ȋ|$(òL$‰$è¼ÿÿÀWÀò*ÀòŒ$¤òXÈò^L$òL$‰4$èˆöÿÿòD$ݜ$ˆ›òY„$ˆ¸ÿÿÿ#D$,ƒÿð|óƒp‹ùÿóZÀòD$xÝD$x›é?ò„$€݄$€›é)òL$0ò“\^ùÿòƒì^ùÿòT$òD$8‹‹‰$ÿPÝ\$h›òD$hòYD$òXD$òD$ ‹‹‰$ÿPòT$Ý\$`›òL$`òYL$òXÊf(ÁòYÁòd$ òYäòXàòD$8f/às’fWÛf.ã›À”DÁu€ò$$òL$òd$èú&òT$Ý\$X›òƒ_ùÿòYD$Xò^D$òQÀòL$ òYÈòNÇFòYÐòL$0ò„$¬òQÀòXÂòYÀòXÁòD$PÝD$P›Đ^_[АSVƒìDè[Ãâh‹t$PòL$TòD$dòD$òL$‰4$èëüÿÿÝ\$8›òL$8òD$\òYÈòL$ ò‹„^ùÿòL$ò^ÁòD$‰4$è€ôÿÿÝ\$0›òD$òYD$0òYD$Tf(ÈòD$ ò^ÁòD$(ÝD$(›ƒÄD^[АSVƒìdè[Ã2hòT$|òL$t‹t$p¸ò*ÀòYÂf(Ùò^؃~tòfÇFfWÀòFé'ò\$ò“„^ùÿò›\^ùÿòƒì^ùÿòT$ò\$òD$(‹‹‰$ÿPÝ\$X›òD$XòYD$òXD$òD$ ‹‹‰$ÿPò\$òT$Ý\$P›òL$PòYÊòXËf(ÁòYÁòl$ òYíòXèòD$(f/èsŽfWäf.ì›À”DÁ…xÿÿÿò,$òL$òl$è¢$òd$Ý\$H›òƒ_ùÿòYD$Hò^D$òQÀòL$ òYÈòNÇFòYàòL$tò\$òT$|f(ÁòYĸWÉò*ÈòYÄòYÊf(ÐòYÐòYÈòXÊòQÉò\ÁòYØòX\$tò\$‹‹‰$ÿPò\$òT$tÝ\$@›f(ÂòXÃf(Êò^Èf/L$@rò\$0ÝD$0›ƒÄd^[ÃòYÒò^ÓòT$8ÝD$8›ƒÄd^[АSVƒìTè[ÃfòL$lòT$d‹t$`ƒ~tò^ÇFfWÀòFéò“„^ùÿò›\^ùÿòƒì^ùÿòT$ò\$òD$(‹‹‰$ÿPÝ\$H›òD$HòYD$òXD$òD$ ‹‹‰$ÿPò\$òT$Ý\$@›òL$@òYÊòXËf(ÁòYÁòl$ òYíòXèòD$(f/èsŽfWäf.ì›À”DÁ…xÿÿÿò,$òL$òl$è¢"ò\$Ý\$8›òƒ_ùÿòYD$8ò^D$òQÀòL$ òYÈòNÇFòYØòL$lòT$dòYËòXÊòL$0ÝD$0›ƒÄT^[ÃSVƒìDè[âdòL$\òT$T‹t$Pƒ~tò^ÇFfWÀòFéò“„^ùÿò›\^ùÿòƒì^ùÿòT$ò\$òD$ ‹‹‰$ÿPÝ\$8›òD$8òYD$òXD$òD$‹‹‰$ÿPò\$òT$Ý\$0›òL$0òYÊòXËf(ÁòYÁòl$òYíòXèòD$ f/èsŽfWäf.ì›À”DÁ…xÿÿÿò,$òL$òl$è2!ò\$Ý\$(›òƒ_ùÿòYD$(ò^D$òQÀòL$òYÈòNÇFòYØòL$\òT$TòYËòXÊò$è‡ ƒÄD^[ÐSVƒìdè[Ã2còL$t‹t$pƒ~t òFòD$ÇFfWÀòFéò“„^ùÿò›\^ùÿòƒì^ùÿòT$ò\$ òD$0‹‹‰$ÿPÝ\$X›òD$XòYD$òXD$ òD$(‹‹‰$ÿPò\$ òT$Ý\$P›òL$PòYÊòXËf(ÁòYÁòl$(òYíòXèòD$0f/èsŽfWäf.ì›À”DÁ…xÿÿÿò,$òL$òl$ èÂÝ\$H›òƒ_ùÿòYD$Hò^D$ òQÀòL$(òYÈòNÇFòL$òYÈòL$òL$t¸WÒò*ÐòT$(f(Áò^ÂòD$‰4$èÁíÿÿÝ\$@›òD$@òL$tò^L$(òQÉòYL$òQÀò^ÈòL$8ÝD$8›ƒÄd^[АSVƒì$è[Ãra‹t$0òD$4òL$<¸ò*Ðò\Ñò^ÑòT$òD$‰4$è:íÿÿÝ\$›òD$òYD$‹òD$‰$èi²ÿÿ‰ÂÁúƒÄ$^[АSVƒìtè[Ãò`‹´$€ƒ~„4òFòD$(ÇFfWÀòFò“„^ùÿò›\^ùÿò£ì^ùÿòT$ò\$òd$0‹‹‰$ÿPÝ\$h›òD$hòYD$òXD$òD$ ‹‹‰$ÿPòd$0ò\$òT$Ý\$`›òL$`òYÊòXËf(ÁòYÁòl$ òYíòXèf/ìsŽfWÀf.è›À”DÁ…xÿÿÿò,$òL$òl$è‚òT$Ý\$X›òƒ_ùÿòYD$Xò^D$òQÀòL$ òYÈòNÇFòYÐòL$(é	ò›„^ùÿò£\^ùÿòƒì^ùÿò\$ òd$òD$0‹‹‰$ÿPÝ\$P›òD$PòYD$ òXD$òD$‹‹‰$ÿPòd$ò\$ òt$Ý\$H›òL$HòYËòXÌf(ÁòYÁòYöòXðòD$0f/ðsŽfWíf.õ›À”DÁ…xÿÿÿò4$òL$(òt$ èròT$òL$(Ý\$@›òƒ_ùÿòYD$@ò^D$ òQÀòYÐòYÈÇFfWÀòFò^ÊòL$8ÝD$8›ƒÄt^[АSVì¤è[Ão^òŒ$´‹´$°ò“ì^ùÿf/Ñ‚f/”$¼‚òT$‹‹‰$ÿPݜ$€›ò„$€òD$(‹‹‰$ÿPÝ\$x›òD$xòD$ òD$ò^„$´òD$òD$(ò$èOÝ\$h›òD$hòD$0òD$ò^„$¼òD$òD$ ò$èòd$0òT$Ý\$p›òD$pf(ÌòXÈf/Ñ‚@ÿÿÿò\$(f(ÌòXÈ1ÀWÒò*Ðf/ʆ‘òXÄò^àòd$8ÝD$8›Ĥ^[ÃòL$‰4$è%éÿÿݜ$˜›ò„$˜òD$ò„$¼òD$‰4$è÷èÿÿݜ$›ò„$òL$òXÁò^ÈòŒ$ˆ݄$ˆ›Ĥ^[Ãò$èDÝ\$@›òD$@ò^„$´òD$òD$ ò$èÝ\$H›òT$Hò^”$¼òD$f/Âf(Èwf(Âò\ÈòL$ò\ÐòT$ ò$è„Ý\$X›òD$XòD$(òD$ ò$ècÝ\$P›òD$(òXD$Pò$è˜Ý\$`›òD$ò\D$`ò$è-Ĥ^[АSVƒìDè[ÃÒ[‹t$PòD$Tò‹„^ùÿòL$ò^ÁòD$‰4$è¥çÿÿÝ\$8›òT$8òD$òYÐòL$\òYÑòT$ ò^ÈòL$‰4$ènçÿÿÝ\$0›òD$òYD$0òYD$TòL$ ò^ÈòL$(ÝD$(›ƒÄD^[АSƒì(è[Ã#[‹D$0‹‹‰$ÿPÝ\$ ›òƒì^ùÿò\D$ ò$è…Ý\$›òD$fWƒtõÿòYD$4òD$ÝD$›ƒÄ([АSVƒìè[òZ‹T$4òD$$‹D$ ‹L$,ò‹<_ùÿf/Èr1WÉò*ÉòYÈò“L^ùÿf/ÑrW‰T$òD$‰L$‰$èð¼ÿÿëuò‹ì^ùÿò\ÈWÀò*ÁòYÁò“L^ùÿf/Ðr2‰T$òL$‰L$‰$‰Î豼ÿÿë0‰T$òD$‰L$‰$虱ÿÿë‰T$òL$‰L$‰$‰Îè±ÿÿ‰Ið)ȉÂÁúƒÄ^[АUSWVìè[ýY‹¬$ ‹´$$‹¼$,‹Œ$4ƒùŒi9þ‰øLƉ‰D$7O¼$$‰|$$‰Æ)Î9Ήωt$PLþò*Âò*Èò^Áò‹ì^ùÿòL$ò\Èò*×òYÐò£<_ùÿòXÔòT$H)ø‰|$<WÒò*Ðò*ÙòYÚòYØòYًŒ$$‹”$,D
ÿWÀò*Àò^Øòd$xòXÜòQÛò\$@G‰D$0WÀò*
D
WÉò*ȋD$pWÒò*ÖòYÐòƒt^ùÿòYÃòXƒ\_ùÿòD$pò^Ñò$èaݜ$țò,¼$ȍGWÀò*Àò$è\—ÿÿݜ$ð›ò„$ðòD$(‰t$T)þWÀò*Æò$è.—ÿÿݜ$è›òD$(òX„$èòD$(‹D$0)øWÀò*Àò$èú–ÿÿݜ$à›òD$(òX„$àòD$(‹D$$‹t$<)ð‰D$$ø@WÀò*Àò$軖ÿÿݜ$؛òD$(òX„$ØòD$(‹D$9ÆLÆWÒò*иWÉò*ÈòD$òT$0òXÂòD$òL$f(ÁòYD$@òXD$Hò$è,ݜ$Лò„$Ðf/D$†ÙòD$0òXƒì^ùÿéó…ÉŽ9÷‰ðLÇò*Àþ‰ÏòD$f(ȐfWÀf/Èva‹E‰$òL$ÿUݜ$›WÀò*ÆòL$ò^ÈòXŒ$ò$è‹òL$ݜ$ø›ò,„$øWÀò*Àò\ÈNOu•òD$ò\Áò,Œ$4)K”$,;”$$MȉÈé[òD$òYD$@òXD$Hò$èݜ$À›ò„$ÀòD$0ÿD$$òƒ|^ùÿòD$@òƒ”^ùÿòD$h¸WÀò*ÀòD$`òƒ„^ùÿòD$X‹E‰$ÿUݜ$¸›ò„$¸òD$‹E‰$ÿUòL$ݜ$°›ò„$°ò\D$xòYD$pò^ÁòXD$HfWÉf/Èw f/D$0s˜ò$èNݜ$ˆ›ò,¼$ˆGWÀò*Àò$èI”ÿÿݜ$¨›ò„$¨òD$‹D$T)øWÀò*Àò$è”ÿÿݜ$ ›òD$òX„$ òD$‹t$<)þFWÀò*Àò$èä“ÿÿݜ$˜›òD$òX„$˜òD$‹D$$øWÀò*Àò$谓ÿÿòL$ݜ$›òD$òX„$òT$(ò\ÐòD$@ò\ÁòYÁòXD$hf/ÐsOf(Áò\ÂòYÁf/D$`ƒwþÿÿò$òT$èçݜ$€›ò„$€òYD$XòL$f/È‚@þÿÿ‹„$$;„$,Oþ)ø‹L$P;Œ$4MÇë1	ÂÁúÄ^_[]АSƒìè[ÃãS‹D$ òD$$òD$‰$è¥ÿÿ‰ÂÁúƒÄ[АSVƒìtè[âS‹´$€ò„$„ò\ƒì^ùÿòD$ òD$òƒ„^ùÿò$èéÝ\$h›òD$hòD$(òƒì^ùÿòD$òƒ\^ùÿòD$8¸ÿÿÿWÀò*ÀòD$0‹‰$ÿVÝ\$`›òD$ò\D$`òD$‹‰$ÿVÝ\$X›òD$XòD$@òD$8ò^D$ òD$òD$ò$èFÝ$›èÝ\$P›òT$Pf/T$0wŠòD$f/‡zÿÿÿòL$f(Áò^ÂòXÁòL$ òL$ò$òT$èìòd$Ý\$H›òD$HòT$@òYÔf(Èòl$ò\ÍòYÊò\$(f(Óò\Õò^Êò^Ãf/Á‚ÿþÿÿò,ĉÂÁúƒÄt^[ÃSƒì8è[ÃRòD$D‹D$@f/ƒ¼^ùÿròD$‰$èÁÿÿëv‹‰$ÿPÝ\$0›òD$0Wƒtõÿ$è	Ý\$(›òD$(òD$¸WÀò*Àò\D$Dò$èÝ\$›òD$ò^D$ò$èÝ\$ ›ò,D$ ‰ÂÁúƒÄ8[АSƒìè[ÃCQ(D$ ‹D$0‹L$4‰L$‰D$$èÂÚÿÿƒÄ[АSVìÄè[ÃÿPò¤$Üòd$8¸ÿÿÿ#D$<ƒ|$8ð| óƒp‹ùÿóZÀòD$`ÝD$`›ÄÄ^[Ë´$Ðòƒü_ùÿf/ÄvW¸WÀò*ÀòD$‹‰$ÿV¸WÀò*ÀÝ\$p›òL$òYL$pò\ÈòY‹4`ùÿòL$hÝD$h›ÄÄ^[Ãòƒ”_ùÿf/Ävòƒì^ùÿò^ÄòXÄòD$(ëh¸WÀò*8ò*ÈòYÌòYÌòXÈòQÉòXȸò*Ðf(ÚòYÙòQÛò\Ëf(ÚòYÜò^Ëf(ÙòYÙòXØòYÊò^Ùò\$(¸WÀò*ÀòD$@¸WÀò*ÀòD$Xòƒ4`ùÿòD$ 1ÀWÀò*ÀòD$0‹‰$ÿVݜ$¸›ò„$¸òYD$ ò$è'
ݜ$¨›ò„$¨òL$(f(ÑòYÐòXT$@òXÁò^ÐòT$Pò\ÊòYŒ$ÜòL$‹‰$ÿVݜ$°›ò„$°òL$Xò\$ò\ËòYËò\Èf/L$0s;f(Ëò^Èò$èFݜ$ ›ò„$ òXD$@ò\D$f/D$0‚ÿÿÿ‹‰$ÿVݜ$˜›òD$Pò$è]ݜ$›òŒ$òƒ<_ùÿf/„$˜vfW‹tõÿ1ÀWÀò*ÀòD$òXŒ$Ôf)L$@f(ƒ$õÿfTÁòT$ òX¸WÉò*ÈòYÊòL$ò$èíòD$f/D$@ݜ$ˆ›ò„$ˆò\D$ v$¸ÿÿÿÿWÉò*ÈòYÁòD$xÝD$x›ÄÄ^[Ãò„$€݄$€›ÄÄ^[АSWVì€è[ÃnM‹¼$òƒì^ùÿòD$(ò\„$”ò$èÓ
Ý\$p›òD$pòD$ ‹‰$ÿWÝ\$x›òL$x1ö¸f/Œ$”ƒ%WÀò*ÀòD$ë,‹‰$ÿWÝ\$@›òL$@f/Œ$”ƒåòL$‹‰$ÿWÝ\$h›òD$hòYD$ ò$èå	òL$Ý\$`›òT$(ò\T$`f(ÂòYÂf/Á‚ƒò$òT$0èü	Ý\$H›òD$HòD$8òD$0ò$èÛ	Ý\$P›òD$8ò^D$PòXD$ò$èú	Ý\$X›ò,D$X…ÀŽ'ÿÿÿfWÀòL$f.ÈšÁ•ÂÊ„ÿÿÿë1öf/ʸƒÐ븉òĀ^_[ÃS‹\$½Ë„‹‹D$ÓèÑè÷ÑÓã	ËT$‹D$9Ús5÷óW÷ÑÑèÓè‰Ç÷d$‹\$‹L$)ÃыD$¯Ç)Ás\$L$‰؉Ê_[Ã)Ú÷óW÷ÑÑè
€Óè‰Ç÷d$‹\$‹L$)ÃыD$¯Ç)Ás\$L$‰؉Ê_[ËD$‹L$1Ò÷ñ‰ËD$÷ñ‰Ð[1ÒÃÌÿ³ÿ£ÿ£héàÿÿÿÿ£héÐÿÿÿÿ£héÀÿÿÿÿ£hé°ÿÿÿÿ£h é ÿÿÿÿ£ h(éÿÿÿÿ£$h0é€ÿÿÿÿ£(h8épÿÿÿÿ£,h@é`ÿÿÿÿ£0hHéPÿÿÿÿ£4hPé@ÿÿÿÿ£8hXé0ÿÿÿÿ£<h`é ÿÿÿÿ£@hhéÿÿÿÿ£Dhpéÿÿÿÿ£Hhxéðþÿÿÿ£Lh€éàþÿÿÿ£PhˆéÐþÿÿÿ£ThéÀþÿÿÿ£Xh˜é°þÿÿÿ£\h é þÿÿÿ£`h¨éþÿÿÿ£dh°é€þÿÿÿ£hh¸épþÿÿÿ£lhÀé`þÿÿÿ£phÈéPþÿÿÿ£thÐé@þÿÿÿ£xhØé0þÿÿÿ£|hàé þÿÿÿ£€hèéþÿÿÿ£„hðéþÿÿÿ£ˆhøéðýÿÿÿ£Œhéàýÿÿÿ£héÐýÿÿÿ£”héÀýÿÿÿ£˜hé°ýÿÿÿ£œh é ýÿÿÿ£ h(éýÿÿÿ£¤h0é€ýÿÿÿ£¨h8épýÿÿÿ£¬h@é`ýÿÿÿ£°hHéPýÿÿÿ£´hPé@ýÿÿÿ£¸hXé0ýÿÿÿ£¼h`é ýÿÿÿ£Àhhéýÿÿÿ£Ähpéýÿÿÿ£Èhxéðüÿÿÿ£Ìh€éàüÿÿÿ£ÐhˆéÐüÿÿÿ£ÔhéÀüÿÿÿ£Øh˜é°üÿÿÿ£Üh é üÿÿÿ£àh¨éüÿÿÿ£äh°é€üÿÿÿ£èh¸épüÿÿÿ£ìhÀé`üÿÿÿ£ðhÈéPüÿÿÿ£ôhÐé@üÿÿÿ£øhØé0üÿÿÿ£ühàé üÿÿÿ£hèéüÿÿÿ£hðéüÿÿÿ£høéðûÿÿÿ£héàûÿÿÿ£héÐûÿÿÿ£héÀûÿÿÿ£hé°ûÿÿÿ£h é ûÿÿÿ£ h(éûÿÿÿ£$h0é€ûÿÿÿ£(h8épûÿÿÿ£,h@é`ûÿÿÿ£0hHéPûÿÿÿ£4hPé@ûÿÿÿ£8hXé0ûÿÿÿ£<h`é ûÿÿÿ£@hhéûÿÿÿ£Dhpéûÿÿÿ£Hhxéðúÿÿÿ£Lh€éàúÿÿÿ£PhˆéÐúÿÿÿ£ThéÀúÿÿÿ£Xh˜é°úÿÿÿ£\h é úÿÿÿ£`h¨éúÿÿÿ£dh°é€úÿÿÿ£hh¸épúÿÿÿ£lhÀé`úÿÿÿ£phÈéPúÿÿÿ£thÐé@úÿÿÿ£xhØé0úÿÿÿ£|hàé úÿÿÿ£€hèéúÿÿÿ£„hðéúÿÿÿ£ˆhøéðùÿÿÿ£Œhéàùÿÿÿ£héÐùÿÿÿ£”héÀùÿÿÿ£˜hé°ùÿÿÿ£œh é ùÿÿÿ£ h(éùÿÿÿ£¤h0é€ùÿÿÿ£¨h8épùÿÿÿ£¬h@é`ùÿÿÿ£°hHéPùÿÿÿ£´hPé@ùÿÿÿ£¸hXé0ùÿÿÿ£¼h`é ùÿÿÿ£Àhhéùÿÿÿ£Ähpéùÿÿÿ£Èhxéðøÿÿÿ£Ìh€éàøÿÿÿ£ÐhˆéÐøÿÿÿ£ÔhéÀøÿÿÿ£Øh˜é°øÿÿÿ£Üh é øÿÿÿ£àh¨鐸ÿÿÿ£äh°逸ÿÿÿ£èh¸épøÿÿÿ£ìhÀé`øÿÿÿ£ðhÈéPøÿÿÿ£ôhÐé@øÿÿÿ£øhØé0øÿÿÿ£ühàé øÿÿÿ£hèéøÿÿÿ£hðéøÿÿÿ£høéð÷ÿÿÿ£héà÷ÿÿÿ£héÐ÷ÿÿÿ£héÀ÷ÿÿÿ£hé°÷ÿÿÿ£h é ÷ÿÿÿ£ h(é÷ÿÿÿ£$h0é€÷ÿÿÿ£(h8ép÷ÿÿÿ£,h@é`÷ÿÿÿ£0hHéP÷ÿÿÿ£4hPé@÷ÿÿÿ£8hXé0÷ÿÿÿ£<h`é ÷ÿÿÿ£@hhé÷ÿÿÿ£Dhpé÷ÿÿÿ£Hhxéðöÿÿÿ£Lh€éàöÿÿÿ£PhˆéÐöÿÿÿ£ThéÀöÿÿÿ£Xh˜é°öÿÿ –ЕÀÕÍûÿÿo ¨úÿÿoµÈ) l8
æõþÿo¤ðÿÿop
þÿÿoÜÿÿÿo?
ð¾
@Â
©
`
'
P·
p©
Ю
Á
€´
а
 ±
p¼
0º
`Ì
 ¯
°¯
@°
Pj
0k
àk
8
0±
0µ
`“
ð»
ۃ
ÀÉ
`Ë
 Ã
ðÏ
¬fÒ
vÒ
†Ò
–Ò
¦Ò
¶Ò
ÆÒ
ÖÒ
æÒ
öÒ
Ó
Ó
&Ó
6Ó
FÓ
VÓ
fÓ
vÓ
†Ó
–Ó
¦Ó
¶Ó
ÆÓ
ÖÓ
æÓ
öÓ
Ô
Ô
&Ô
6Ô
FÔ
VÔ
fÔ
vÔ
†Ô
–Ô
¦Ô
¶Ô
ÆÔ
ÖÔ
æÔ
öÔ
Õ
Õ
&Õ
6Õ
FÕ
VÕ
fÕ
vÕ
†Õ
–Õ
¦Õ
¶Õ
ÆÕ
ÖÕ
æÕ
öÕ
Ö
Ö
&Ö
6Ö
FÖ
VÖ
fÖ
vÖ
†Ö
–Ö
¦Ö
¶Ö
ÆÖ
ÖÖ
æÖ
öÖ
×
×
&×
6×
F×
V×
f×
v×
†×
–×
¦×
¶×
Æ×
Ö×
æ×
ö×
Ø
Ø
&Ø
6Ø
FØ
VØ
fØ
vØ
†Ø
–Ø
¦Ø
¶Ø
ÆØ
ÖØ
æØ
öØ
Ù
Ù
&Ù
6Ù
FÙ
VÙ
fÙ
vÙ
†Ù
–Ù
¦Ù
¶Ù
ÆÙ
ÖÙ
æÙ
öÙ
Ú
Ú
&Ú
6Ú
FÚ
VÚ
fÚ
vÚ
†Ú
–Ú
¦Ú
¶Ú
ÆÚ
ÖÚ
æÚ
öÚ
Û
Û
&Û
6Û
FÛ
VÛ
fÛ
vÛ
†Û
–Û
̥ jü_Жšÿÿÿÿÿÿÿÿ4VS‚AVðU‚©2pY‚NV°^‚SVÊXàc‚ÔXÄ] q‚Î]Ùd~‚çd›k‚¢k[l„‚`lÕr`‰‚árv}ðŒ‚‹}Ap‚ʁ؇à¡‚à‡ה€Ä‚ݔ{— Í‚‚—[¦0Ò‚c¦Ž´Pç“´¹0ë
¹2Âï‚BÂ^Í ‚nÍèÕ ‚ïÕËåð‚Úåúð°‚ñýP‚ý. ‚;Jà‚TŠ! ‚Ÿ!>-p$‚N-7'‚›7IÀ*‚&I5V/‚<V3fP3‚;f)t7‚/t‚Ð:‚'‚ú?‚"£PD‚+£œ¯I‚¦¯tÁÐM‚}ÁË`Q‚¢Ë
×0V‚פáðq‚­á½ðà˜‚Ïðyÿž‚ÿ§	¢‚¬	¦‚‹ ª‚-གš-9ðÁ‚¤9’O0þ‚žO]	‚#]…iÐ7	‚i=n€9	‚InNV€)
‚gsuÐ2
$u
xÀ3
‚xÓzp7
ÚzB{ :
G{q¡` „`„„L°…@‡€d dÈd ‰ ©2 ´2“ƒ
0Ž£
0Žó“°Ž¿2°Ž„‚°“@œƒ@0‘ý“0‘‰P‘SžP‘"p‘՚p‘=Ÿ°‘’I•°‘’¥ “ʧГ ”È2Ì}´@À@€DD‰pGÐGgtj`HP	”€SD4VS‚AVðU‚©2pY‚NV°^‚SVÊXàc‚ÔXÄ] q‚Î]Ùd~‚çd›k‚¢k[l„‚`lÕr`‰‚árv}ðŒ‚‹}Ap‚ʁ؇à¡‚à‡ה€Ä‚ݔ{— Í‚‚—[¦0Ò‚c¦Ž´Pç“´¹0ë
¹2Âï‚BÂ^Í ‚nÍèÕ ‚ïÕËåð‚Úåúð°‚ñýP‚ý. ‚;Jà‚TŠ! ‚Ÿ!>-p$‚N-7'‚›7IÀ*‚&I5V/‚<V3fP3‚;f)t7‚/t‚Ð:‚'‚ú?‚"£PD‚+£œ¯I‚¦¯tÁÐM‚}ÁË`Q‚¢Ë
×0V‚פáðq‚­á½ðà˜‚Ïðyÿž‚ÿ§	¢‚¬	¦‚‹ ª‚-གš-9ðÁ‚¤9’O0þ‚žO]	‚#]…iÐ7	‚i=n€9	‚In;sp"
"
Linker: LLD 18.0.3Android (12470979, +pgo, +bolt, +lto, +mlgo, based on r522817c) clang version 18.0.3 (https://android.googlesource.com/toolchain/llvm-project d8003a456d14a3deb8054cdaa529ffbf02d9b262).fini_array.text.got.comment.note.android.ident.got.plt.rel.plt.bss.dynstr.eh_frame_hdr.gnu.version_r.data.rel.ro.rel.dyn.gnu.version.dynsym.gnu.hash.relro_padding.eh_frame.note.gnu.build-id.dynamic.shstrtab.rodata.data!TT˜¿ìì$”`‡ÿÿÿop
p
lbþÿÿoÜÜ@œöÿÿoL88æ~	  ¨>	BÈ)È) å2p.p.pÂTàðàðdµDùDùˆœ
ЕЕ|<BPÒ
PÒ
P	q  Û
¤¤Û
Ò¬¬Û
ÀllÜ
5llÝ
\¦ÈÈß
8íÈ_Èß
Ô
Gœjœê

0ϐ
ÌÛhë
ó