Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
pandas / _libs / sparse_op_helper.pxi.in
Size: Mime:
"""
Template for each `dtype` helper function for sparse ops

WARNING: DO NOT edit .pxi FILE directly, .pxi is generated from .pxi.in
"""

# ----------------------------------------------------------------------
# Sparse op
# ----------------------------------------------------------------------

ctypedef fused sparse_t:
    float64_t
    int64_t


cdef float64_t __div__(sparse_t a, sparse_t b):
    if b == 0:
        if a > 0:
            return INF
        elif a < 0:
            return -INF
        else:
            return NaN
    else:
        return float(a) / b


cdef float64_t __truediv__(sparse_t a, sparse_t b):
    return __div__(a, b)


cdef sparse_t __mod__(sparse_t a, sparse_t b):
    if b == 0:
        if sparse_t is float64_t:
            return NaN
        else:
            return 0
    else:
        return a % b


cdef sparse_t __floordiv__(sparse_t a, sparse_t b):
    if b == 0:
        if sparse_t is float64_t:
            # Match non-sparse Series behavior implemented in mask_zero_div_zero
            if a > 0:
                return INF
            elif a < 0:
                return -INF
            return NaN
        else:
            return 0
    else:
        return a // b


# ----------------------------------------------------------------------
# sparse array op
# ----------------------------------------------------------------------

{{py:

# dtype, arith_comp_group, logical_group
dtypes = [('float64', True, False),
          ('int64', True, True),
          ('uint8', False, True)]
# do not generate arithmetic / comparison template for uint8,
# it should be done in fused types

def get_op(tup):
    assert isinstance(tup, tuple)
    assert len(tup) == 4

    opname, lval, rval, dtype = tup

    ops_dict = {'add': '{0} + {1}',
                'sub': '{0} - {1}',
                'mul': '{0} * {1}',
                'div': '__div__({0}, {1})',
                'mod': '__mod__({0}, {1})',
                'truediv': '__truediv__({0}, {1})',
                'floordiv': '__floordiv__({0}, {1})',
                'pow': '{0} ** {1}',
                'eq': '{0} == {1}',
                'ne': '{0} != {1}',
                'lt': '{0} < {1}',
                'gt': '{0} > {1}',
                'le': '{0} <= {1}',
                'ge': '{0} >= {1}',

                'and': '{0} & {1}',     # logical op
                'or': '{0} | {1}',
                'xor': '{0} ^ {1}'}

    return ops_dict[opname].format(lval, rval)


def get_dispatch(dtypes):

    ops_list = ['add', 'sub', 'mul', 'div', 'mod', 'truediv',
                'floordiv', 'pow',
                'eq', 'ne', 'lt', 'gt', 'le', 'ge',
                'and', 'or', 'xor']

    for opname in ops_list:
        for dtype, arith_comp_group, logical_group in dtypes:

            if opname in ('div', 'truediv'):
                rdtype = 'float64'
            elif opname in ('eq', 'ne', 'lt', 'gt', 'le', 'ge'):
                # comparison op
                rdtype = 'uint8'
            elif opname in ('and', 'or', 'xor'):
                # logical op
                rdtype = 'uint8'
            else:
                rdtype = dtype

            if opname in ('and', 'or', 'xor'):
                if logical_group:
                    yield opname, dtype, rdtype
            else:
                if arith_comp_group:
                    yield opname, dtype, rdtype

}}


{{for opname, dtype, rdtype in get_dispatch(dtypes)}}

{{if opname == "pow"}}
@cython.cpow(True) # Cython 3 matches Python pow, which isn't what we want here
{{endif}}
@cython.wraparound(False)
@cython.boundscheck(False)
cdef tuple block_op_{{opname}}_{{dtype}}({{dtype}}_t[:] x_,
                                                BlockIndex xindex,
                                                {{dtype}}_t xfill,
                                                {{dtype}}_t[:] y_,
                                                BlockIndex yindex,
                                                {{dtype}}_t yfill):
    """
    Binary operator on BlockIndex objects with fill values
    """

    cdef:
        BlockIndex out_index
        Py_ssize_t xi = 0, yi = 0, out_i = 0  # fp buf indices
        int32_t xbp = 0, ybp = 0  # block positions
        int32_t xloc, yloc
        Py_ssize_t xblock = 0, yblock = 0  # block numbers

        {{dtype}}_t[:] x, y
        ndarray[{{rdtype}}_t, ndim=1] out

    # to suppress Cython warning
    x = x_
    y = y_

    out_index = xindex.make_union(yindex)
    out = np.empty(out_index.npoints, dtype=np.{{rdtype}})

    # Wow, what a hack job. Need to do something about this

    # walk the two SparseVectors, adding matched locations...
    for out_i in range(out_index.npoints):
        if yblock == yindex.nblocks:
            # use y fill value
            out[out_i] = {{(opname, 'x[xi]', 'yfill', dtype) | get_op}}
            xi += 1

            # advance x location
            xbp += 1
            if xbp == xindex.lenbuf[xblock]:
                xblock += 1
                xbp = 0
            continue

        if xblock == xindex.nblocks:
            # use x fill value
            out[out_i] = {{(opname, 'xfill', 'y[yi]', dtype) | get_op}}
            yi += 1

            # advance y location
            ybp += 1
            if ybp == yindex.lenbuf[yblock]:
                yblock += 1
                ybp = 0
            continue

        yloc = yindex.locbuf[yblock] + ybp
        xloc = xindex.locbuf[xblock] + xbp

        # each index in the out_index had to come from either x, y, or both
        if xloc == yloc:
            out[out_i] = {{(opname, 'x[xi]', 'y[yi]', dtype) | get_op}}
            xi += 1
            yi += 1

            # advance both locations
            xbp += 1
            if xbp == xindex.lenbuf[xblock]:
                xblock += 1
                xbp = 0

            ybp += 1
            if ybp == yindex.lenbuf[yblock]:
                yblock += 1
                ybp = 0

        elif xloc < yloc:
            # use y fill value
            out[out_i] = {{(opname, 'x[xi]', 'yfill', dtype) | get_op}}
            xi += 1

            # advance x location
            xbp += 1
            if xbp == xindex.lenbuf[xblock]:
                xblock += 1
                xbp = 0
        else:
            # use x fill value
            out[out_i] = {{(opname, 'xfill', 'y[yi]', dtype) | get_op}}
            yi += 1

            # advance y location
            ybp += 1
            if ybp == yindex.lenbuf[yblock]:
                yblock += 1
                ybp = 0

    return out, out_index, {{(opname, 'xfill', 'yfill', dtype) | get_op}}

{{if opname == "pow"}}
@cython.cpow(True) # Cython 3 matches Python pow, which isn't what we want here
{{endif}}
@cython.wraparound(False)
@cython.boundscheck(False)
cdef tuple int_op_{{opname}}_{{dtype}}({{dtype}}_t[:] x_,
                                              IntIndex xindex,
                                              {{dtype}}_t xfill,
                                              {{dtype}}_t[:] y_,
                                              IntIndex yindex,
                                              {{dtype}}_t yfill):
    cdef:
        IntIndex out_index
        Py_ssize_t xi = 0, yi = 0, out_i = 0  # fp buf indices
        int32_t xloc, yloc
        int32_t[:] xindices, yindices, out_indices
        {{dtype}}_t[:] x, y
        ndarray[{{rdtype}}_t, ndim=1] out

    # suppress Cython compiler warnings due to inlining
    x = x_
    y = y_

    # need to do this first to know size of result array
    out_index = xindex.make_union(yindex)
    out = np.empty(out_index.npoints, dtype=np.{{rdtype}})

    xindices = xindex.indices
    yindices = yindex.indices
    out_indices = out_index.indices

    # walk the two SparseVectors, adding matched locations...
    for out_i in range(out_index.npoints):
        if xi == xindex.npoints:
            # use x fill value
            out[out_i] = {{(opname, 'xfill', 'y[yi]', dtype) | get_op}}
            yi += 1
            continue

        if yi == yindex.npoints:
            # use y fill value
            out[out_i] = {{(opname, 'x[xi]', 'yfill', dtype) | get_op}}
            xi += 1
            continue

        xloc = xindices[xi]
        yloc = yindices[yi]

        # each index in the out_index had to come from either x, y, or both
        if xloc == yloc:
            out[out_i] = {{(opname, 'x[xi]', 'y[yi]', dtype) | get_op}}
            xi += 1
            yi += 1
        elif xloc < yloc:
            # use y fill value
            out[out_i] = {{(opname, 'x[xi]', 'yfill', dtype) | get_op}}
            xi += 1
        else:
            # use x fill value
            out[out_i] = {{(opname, 'xfill', 'y[yi]', dtype) | get_op}}
            yi += 1

    return out, out_index, {{(opname, 'xfill', 'yfill', dtype) | get_op}}


cpdef sparse_{{opname}}_{{dtype}}({{dtype}}_t[:] x,
                                  SparseIndex xindex, {{dtype}}_t xfill,
                                  {{dtype}}_t[:] y,
                                  SparseIndex yindex, {{dtype}}_t yfill):

    if isinstance(xindex, BlockIndex):
        return block_op_{{opname}}_{{dtype}}(x, xindex.to_block_index(), xfill,
                                             y, yindex.to_block_index(), yfill)
    elif isinstance(xindex, IntIndex):
        return int_op_{{opname}}_{{dtype}}(x, xindex.to_int_index(), xfill,
                                           y, yindex.to_int_index(), yfill)
    else:
        raise NotImplementedError

{{endfor}}