Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
numpy / random / mtrand.cpython-37m-darwin.so
Size: Mime:
Ïúíþ…(__TEXT__text__TEXT0)_U0)€__stubs__TEXT~ڐ~€__stub_helper__TEXTlƒ(lƒ€__const__TEXT ‹hN ‹__cstring__TEXTÚ$Ú__unwind_info__TEXTþèþx__DATA€€__nl_symbol_ptr__DATAÏ__got__DATAÐ__la_symbol_ptr__DATAxò__const__DATAÈA__data__DATA`I¨`I__common__DATA^	__bss__DATA^	H__LINKEDIT€	@€	('"€0€	00„	¨؆	xP—	ø ª	ÚÈÎ
`ØP××éñÀÇ
ÁŸ¨¾ól=1‚÷Àgéú´$	

*8d/usr/lib/libSystem.B.dylib&H§	)P©	ÐUH‰åH=% ]éoVf.„DUH‰åAWAVAUATSPI‰þèWH‹xèÿUH‹
Š Hƒùÿt H9Át,H‹ÀÖH‹8H5۰è}Ué;H‰] Hƒøÿ„*L‹%|4	M…ät	Iÿ$éH5F°L‰÷èKVH…À„ýH‰ÃH‰ÇèÝUI‰ÄHÿu
H‹CH‰ßÿP0M…ä„×L‰çè®UH…À„µI‰ÇH5ù¯L‰÷èùUH…À„)H‰ÃH5å¯L‰ÿH‰ÂèTA‰ÅHÿu
H‹CH‰ßÿP0E…íˆjH5ïL‰÷è±UH…À„þH‰ÃH5¯¯L‰ÿH‰ÂèUTA‰ÅHÿu
H‹CH‰ßÿP0E…íˆ"H5‹¯L‰÷èiUH…À„ÓH‰ÃH5w¯L‰ÿH‰Âè
TA‰ÅHÿu
H‹CH‰ßÿP0E…íˆÚH5V¯L‰÷è!UH…À„¨H‰ÃH;êÕt(H5M¯L‰ÿH‰Úè¼SA‰ÆHÿtE…ö‰§éŽE1öHÿuêH‹CH‰ßÿP0E…ö‰‡ëqH‹ÔÔH‹8èŒS…Àt^è}SéêþÿÿH‹·ÔH‹8èoS…ÀtAè`SéÿÿÿH‹šÔH‹8èRS…Àt$èCSé@ÿÿÿH‹}ÔH‹8è5S…Àtè&SëIÿ$uI‹D$L‰çÿP0E1äL‰àHƒÄ[A\A]A^A_]Ã@UH‰åAWAVAUATSHìH‰ûH‹úÔH‹H‰EÐH‹2	H…Àt)H9Ø„ëH‹?ÔH‹8H5‘®èÔR¸ÿÿÿÿédH¯H½Ðþÿÿ¾¹A¸1Àè‰Sè\THä®H½Øþÿÿ¾H‰Á1ÀègSŠ…Ðþÿÿ:…ØþÿÿuŠ…Òþÿÿ:…ÚþÿÿtIH®®L5_LµÿÿÿHÐþÿÿLØþÿÿ¾ÈL‰÷1ÀèSº1ÿL‰öè,R…Àˆ&H‹£ÓH‹@ HƒÀøH‰,1	1ÿèuSH‰&1	A¾H…À„H=°^1öèYQH‰
1	H…À„|H=’^1öèiSH‰ô0	H…À„iH‰Ä0	HÿH‰ßè?RH‰Ú0	H…À„RHÿH=Š­èÀQH‰Ã0	H…À„>HÿH=t­è¡QH‰¬0	H…À„*HÿH‹=a0	H‹Š0	H5V­èpR…Àˆ@HŸÙA½œ\f„¶C!
C t€{"t1H‹{è¬RëVfDH‹{H‹sHÿÎè`Pë>f.„@H‹SH‹{H‹sHÿÎH…Òt	1ÉèKRëè\Rf.„@H‹H‰H‹H‹8H…ÿ„«
è¤QHƒøÿ„œ
Hƒ{(H[(…]ÿÿÿWÀèŸPH‰>9	H…À„u
òÝ\è‚PH‰)9	H…À„X
òÈ\èePH‰9	H…À„;
ò³\èHPH‰ÿ8	H…À„
1ÿèyPH‰ð8	H…À„
¿è_PH‰Þ8	H…À„íH=q¬1ö1ÒèKPH‰Æ8	H…À„ÍHÇÇÿÿÿÿè#PH‰²8	H…À„±ƒ=‚.	t"H‹=¡.	H‹5Ú.	H‹Û.	èªP…Àˆ*
è­OH…À„šH‰ÃH5.\H‰ÇèöNH…ÀuH‹Z.	H5\H‰ßèùN…ÀˆEH‹Ü8	H‹=e.	H‹GH‹€H‰ÞH…À„KÿÐH…À„NH‰Ä>	H‹½:	H‹=..	H‹GH‹€H‰ÞH…À„SÿÐH…À„VH‰•>	H‹V8	H‹=÷-	H‹GH‹€H‰ÞH…À„[ÿÐH…À„^H‰f>	H‹÷7	H‹=À-	H‹GH‹€H‰ÞH…À„cÿÐH…À„fH‰7>	H‹ˆ<	H‹=‰-	H‹GH‹€H‰ÞH…À„kÿÐH…À„>H‰>	H‹17	H‹=R-	H‹GH‹€H‰ÞH…À„GÿÐH…À„JH‰Ù=	H‹27	H‹=-	H‹GH‹€H‰ÞH…À„OÿÐH…À„RH‰ª=	H‹S7	H‹=ä,	H‹GH‹€H‰ÞH…À„WÿÐH…À„ZH‰{=	H‹Ü;	H‹=­,	H‹GH‹€H‰ÞH…À„_ÿÐH…À„bH‰L=	H‹m6	H‹=v,	H‹GH‹€H‰ÞH…À„\ÿÐH…À„_H‰=	H‹.6	H‹=?,	H‹GH‹€H‰ÞH…À„dÿÐH…À„gH‰î<	H‹579	¿1Àè1NH‰Ü<	A½®\H…À„½	H‹5Þ5	¿1ÀèNH‰»<	H…À„š	H‹57	¿1ÀèåMH‰ <	H…À„w	H‹58	H‹9<	¿1Àè»MH‰~<	H…À„M	H‹56;	¿1Àè˜MH‰c<	H…À„*	H‹5;	¿1ÀèuMH‰H<	H…À„	H‹5:	¿1ÀèRMH‰-<	H…À„äH‹5e7	H‹–4	¿1Àè(MH‰<	H…À„ºH‹5[7	H‹Œ4	¿1ÀèþLH‰é;	H…À„H‹
QÍ¿H‰ÎH‰Ê1ÀèÕLH‰È;	H…À„gH‹5¨4	H‹9;	¿1Àè«LH‰¦;	H…À„=H‹54	H‹4	¿1ÀèLH‰„;	H…À„H‹5ô4	¿1Àè^LH‰i;	H…À„ðH‹5Ù4	¿1Àè;LH‰N;	H…À„ÍH‹5¦4	¿1ÀèLH‰3;	H…À„ªH‹5{4	¿1ÀèõKH‰;	H…À„‡H‹5H8	¿1ÀèÒKH‰ý:	H…À„dH‹5-4	¿1Àè¯KH‰â:	H…À„AH‹5"8	¿1ÀèŒKH‰Ç:	H…À„H‹5÷7	¿1ÀèiKH‰¬:	H…À„ûH‹5ä7	¿1ÀèFKH‰‘:	H…À„ØH‹5Ñ2	¿1Àè#KH‰v:	H…À„µH‹5æ2	¿1ÀèKH‰[:	H…À„’H‹5›2	¿1ÀèÝJH‰@:	H…À„oH‹5x(	¿1ÀèºJH‰%:	H…À„LH‹52	¿1Àè—JH‰
:	H…À„)H‹5š5	¿1ÀètJH‰ï9	H…À„H‹56	¿1ÀèQJH‰Ô9	H…À„ãH‹5\5	¿1Àè.JH‰¹9	H…À„ÀH‹5!6	¿1ÀèJH‰ž9	H…À„H‹5Ž5	¿1ÀèèIH‰ƒ9	H…À„zH‹5S3	¿1ÀèÅIH‰h9	H…À„WH‹5@5	¿1Àè¢IH‰M9	H…À„4H‹=õÉH‰þH‰úèhIH‰39	H…À„H‹5³2	¿1Àè]IH‰9	H…À„ïH‹5Ð2	H‹±7	¿1Àè3IH‰ö8	H…À„ÅH‹5¦2	¿1ÀèIH‰Û8	H…À„¢H‹5³8	L‹%\É¿L‰â1ÀèãHH‰¶8	H…À„uH‹5†1	¿1ÀèÀHH‰›8	H…À„RH‹5³0	H‹47	¿1Àè–HH‰y8	H…À„(H‹50	H‹ÒÈ¿1ÀèlHH‰W8	H…À„þH‹5—6	¿1ÀèIHH‰<8	H…À„ÛH‹5d4	¿1Àè&HH‰!8	H…À„¸H‹5I4	¿1ÀèHH‰8	H…À„•H‹5¾0	H‹×2	¿1ÀèÙGH‰ä7	H…À„kL‹
|%	H‹m%	Hƒì1ÿ1öº1ÉA¸AQh6ÿ5ƒ*	ÿ5E3	SSPSSè¯EHƒÄPH‰˜7	H…À„H‹5@0	H‹Y2	¿1Àè[GH‰v7	H…À„íL‹
þ$	H‹ï$	Hƒì1ÿ1öº1ÉA¸AQh=ÿ5
*	ÿ5Ç2	SSPSSè1EHƒÄPH‰*7	H…À„™H"7	H‰+7	H¤’H‰
7	H¶’H‰7	H=€èÍFA½³\…ÀˆUHÇšHƒ=zuH‹áH;ÊÆuH‹ÁÆH‰ÊL‹=;H‹=´6	1ö1Òè‰DH…À„H‰ÃH‹53	L‰ÿH‰Âè•DH‹HÿÉH‰…Àˆ‹H…Éu
H‹CH‰ßÿP0H‹=Æ#	H‹5.	HÐH‰ÚèÌE…Àˆ¨H‰A$	H=… èÇDA½´\H…À„†I‰ÇH5g HƒSA¾¹`H‰ÇA¸è\¶H‰]<	H…À„fIÿu
I‹GL‰ÿÿP0H=! ècDH…À„ÎI‰ÇH5	 H±·¹ H‰ÇA¸è¶H‰
<	H…À„Iÿu
I‹GL‰ÿÿP0H=ɟèDH…À„vI‰ÇH5±ŸH^·¹ H‰ÇA¸謵H‰½;	H…À„¶Iÿu
I‹GL‰ÿÿP0L‰ãH=–Rè°CH…À„I‰ÇH5„RH‰ÇèODH…À„iI‰ÄH‹@ƒ¸¨ˆ
H‹—ÄH‹8H5Ÿ·HARH
@R1ÀèæBé1Àé’A¾A½j\ëA½š\H‹=ù!	H…ÿtHHƒ="	t%H=óžH
°OD‰îD‰òè1ŠH‹=Ê!	H…ÿt9HǺ!	Hÿu)H‹GÿP0ë èBH…ÀuH‹³ÃH‹8H5¡žèpBHƒ=„!	ÀH‹
SÄH‹	H;MÐ…-HÄ[A\A]A^A_]ÃA½¡\éQÿÿÿH…É…HÿÿÿH‹CH‰ßÿP0é9ÿÿÿM‹L$ Iƒù_w`H‹‡ÃH‹8H5ª¶H)QH
(QA¸`1ÀèÈAIÿ$uI‹D$L‰çÿP0HÇæ3	Iÿ…ÝþÿÿI‹GL‰ÿÿP0éÎþÿÿL‰%Ç3	H5gµL‰ÿè¤BH…ÀtÍI‰ÄH‹@ƒ¸¨xmH‹ôÂH‹8H5üµHžPH
+µ1ÀèCAé€A½n\émþÿÿA½o\ébþÿÿA½p\éWþÿÿA½”\éLþÿÿA½–\éAþÿÿA½˜\é6þÿÿM‹L$ IùG
‡ÏH‹}ÂH‹8H5 µHPH
¬´A¸H
1Àè¾@Iÿ$…ÿÿÿI‹D$L‰çÿP0éøþÿÿA½¥\éÓýÿÿè´AH…À…²ñÿÿH‹îÁH‹8H5.¿H‰Ú1Àèp@HÇW0	A½¬\é”ýÿÿèuAH…À…ªñÿÿH‹¯ÁH‹8H5ï¾H‰Ú1Àè1@HÇ 0	A½¬\éUýÿÿè6AH…À…¢ñÿÿH‹pÁH‹8H5°¾H‰Ú1Àèò?HÇé/	A½¬\éýÿÿè÷@H…À…šñÿÿH‹1ÁH‹8H5q¾H‰Ú1Àè³?HDz/	A½¬\é×üÿÿè¸@H…À…’ñÿÿéËè¥@H…À…¶ñÿÿH‹ßÀH‹8H5¾H‰Ú1Àèa?HÇp/	A½¬\é…üÿÿèf@H…À…®ñÿÿH‹ ÀH‹8H5à½H‰Ú1Àè"?HÇ9/	A½¬\éFüÿÿè'@H…À…¦ñÿÿH‹aÀH‹8H5¡½H‰Ú1Àèã>HÇ/	A½¬\éüÿÿèè?H…À…žñÿÿH‹"ÀH‹8H5b½H‰Ú1Àè¤>A½¬\éÓûÿÿè´?H…À…¡ñÿÿH‹î¿H‹8H5.½H‰Ú1Àèp>HÇŸ.	A½¬\é”ûÿÿèu?H…À…™ñÿÿH‹¯¿H‹8H5ï¼H‰Ú1Àè1>HÇh.	A½¬\éUûÿÿL‰%n6	H5÷±L‰ÿè+?H…À„ŽI‰ÄH‹@ƒ¸¨x3H‹w¿H‹8H5²H!MH
·±1ÀèÆ=ëEA½§\éóúÿÿM‹L$ Iù/wMH‹>¿H‹8H5a²HàLH
v±A¸01Àè=Iÿ$uI‹D$L‰çÿP0HÇõ2	é²ûÿÿL‰%é2	H5D±L‰ÿèn>H…À„…I‰ÄH‹@ƒ¸¨x-H‹º¾H‹8H5±HdLH
±1Àè	=ë<è?M‹L$ IƒùWwMH‹оH‹8H5­±H,LH
̰A¸X1ÀèË<Iÿ$uI‹D$L‰çÿP0HÇy0	éþúÿÿL‰%m0	H5éKH‘°¹L‰ÿA¸輮H‰Ý4	H…À„ÆúÿÿH5¸KHh°¹L‰ÿA¸苮H‰´4	H…À„•úÿÿH5‡KH>°¹L‰ÿA¸èZ®H‰ƒ2	H…À„dúÿÿH5VKH°¹L‰ÿA¸è)®H‰Z4	H…À„3úÿÿH5%KHò¯¹L‰ÿA¸èø­H‰14	H…À„úÿÿH5ôJHѯ¹L‰ÿA¸èǭH‰4	H…À„ÑùÿÿH5ÃJH¨¯¹L‰ÿA¸薭H‰7/	H…À„ ùÿÿH5’JH€¯¹L‰ÿA¸èe­H‰®3	H…À„oùÿÿH5aJH_¯¹L‰ÿA¸è4­H‰…3	H…À„>ùÿÿH50JH7¯¹L‰ÿA¸è­H‰\3	H…À„
ùÿÿH5¯L‰ÿèÐ;H…À„õøÿÿI‰ÄH‹@ƒ¸¨x$H‹¼H‹8H5$¯HÆIH
׮é#ùÿÿM‹L$ Iù×w*H‹ò»H‹8H5¯H”IH
¥®A¸ØépùÿÿL‰%Ð2	Iÿu
I‹GL‰ÿÿP0H=ƒ®è:H…À„êI‰ÇH5k®H—­¹`H‰ÇA¸è ¬H‰‰2	H…À„*øÿÿH5:®HN®¹@L‰ÿA¸èï«H‰`2	H…À„ù÷ÿÿH‹¸H‹5á'	è¾:H…À„tI‰ÄH‰Ç1öè(9H‰…ðþÿÿH…Àu è}9H…ÀuH‹ٺH‹8H5ú®èn9Iÿ$uI‹D$L‰çÿP0H‹…ðþÿÿH‰ë1	H…À„|÷ÿÿH5Œ­H­­¹L‰ÿA¸èA«H‰Â1	H…À„K÷ÿÿIÿu
I‹GL‰ÿÿP0H=­®èH9A¾A½µ\H…À„öÿÿI‰ÇH5ž®Hˆ	H
HH‰Ç謅ÀˆóöÿÿH5‰®H[1	H
ãGL‰ÿèܫ…ÀˆÎöÿÿH5{®H>1	H
u®L‰ÿ跫…Àˆ©öÿÿIÿu
I‹GL‰ÿÿP0H=â®è¦8A½¶\H…À„eõÿÿI‰ÇH5ã®HÜ*	H
â®H‰Ç蕬…ÀˆWöÿÿH5¯HÏ*	H
½®L‰ÿèp¬…Àˆ2öÿÿH5¯HÂ*	H
˜®L‰ÿèK¬…Àˆ
öÿÿH5ì®Hµ*	H
s®L‰ÿè&¬…ÀˆèõÿÿH5ӮH¨*	H
N®L‰ÿ謅ÀˆÃõÿÿH5¹®HÛ)	H
)®L‰ÿèܫ…ÀˆžõÿÿH5 ®Hž)	H
®L‰ÿ跫…ÀˆyõÿÿH5‡®H©)	H
߭L‰ÿ蒫…ÀˆTõÿÿH5n®Hœ)	H
º­L‰ÿèm«…Àˆ/õÿÿIÿu
I‹GL‰ÿÿP0H=‘¬è,7H…À„ñóÿÿI‰ÇH5-®HX,	H
0®H‰Çè!«…ÀˆãôÿÿH5c®Hû+	H
l®L‰ÿèüª…Àˆ¾ôÿÿH5¨®Hf*	H
¤®L‰ÿèת…Àˆ™ôÿÿH5©®H9(	H
§®L‰ÿ貪…ÀˆtôÿÿH5ӮH¼+	H
ۮL‰ÿ荪…ÀˆOôÿÿH5ì®H÷'	H
ã®L‰ÿèhª…Àˆ*ôÿÿH5ë¯H’+	H
â¯L‰ÿèCª…ÀˆôÿÿH5ã°H+	H
æ°L‰ÿ誅ÀˆàóÿÿH5ì±HÀ+	H
pL‰ÿèù©…Àˆ»óÿÿIÿu
I‹GL‰ÿÿP0H‹=Û	1ö1Òè|H‰…ðþÿÿH…À„TH‹=“	H‹5´	H‹•ðþÿÿè5…ÀˆH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=‡	1ö1Òè¶{H‰…ðþÿÿH…À„9H‹=7	H‹5`	H‹•ðþÿÿè¤4…ÀˆÃH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0¿è 5H‰…ðþÿÿH…À„ôH‹	HÿH‹	H‹ðþÿÿH‹IH‰H‹	H‰…øþÿÿH‹=Œ	è
5A¾A½à\H…À„MI‰Çè4H…À„<I‰ÄH‹½øþÿÿL‰þH‰ÂH‹ðþÿÿE1Àèz4H‰…øþÿÿIÿ$uI‹D$L‰çÿP0Hƒ½øþÿÿ„÷H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0L‹%[	H‹…øþÿÿH‹@H‹€H…À„YH‹½øþÿÿL‰æÿÐH‰…ðþÿÿHƒ½ðþÿÿ„\H‹=à	H‹5	H‹•ðþÿÿèM3…Àˆ
H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=Ò	1ö1ÒèéyH‰ÁH‰…øþÿÿH…À„&H‹=g	H‹5°	H‹•øþÿÿèÔ2…ÀˆŸH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0¿èP3H‰ÁH‰…øþÿÿH…À„ÞH‹f	HÿH‹\	H‹øþÿÿH‹IH‰H‹O	H‰…ðþÿÿH‹=¹	è:3A¾A½]H…À„«I‰Çè32H…À„šI‰ÄH‹½ðþÿÿL‰þH‰ÂH‹øþÿÿA¸è¤2H‰…ðþÿÿIÿ$uI‹D$L‰çÿP0Hƒ½ðþÿÿ„RH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0L‹%¥	H‹…ðþÿÿH‹@H‹€H…À„H‹½ðþÿÿL‰æÿÐH‰…øþÿÿHƒ½øþÿÿ„H‹=
	H‹5k	H‹•øþÿÿèw1…ÀˆPH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0HDžÿÿÿHDžÐþÿÿHDžØþÿÿè%3H‰…ðþÿÿH‹ˆé’A¾éOîÿÿHÇÄ)	éYïÿÿA¾A½Å\ëA¾A½Ñ\1ÀH‰…øþÿÿH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0Hƒ½øþÿÿ„ôíÿÿH‹…øþÿÿHÿ…äíÿÿH‹½øþÿÿH‹GÿP0éÑíÿÿH‹HH…ÉtbH‰ÈL‹1M…ötìI9ÞtçH‹HH‰èþÿÿH‹@H‰…øþÿÿIÿE1íHƒ½èþÿÿu[ëcA½å\éiÿÿÿA¾A½ò\ëƒA¾A½]éJÿÿÿH‹HH‰èþÿÿH‹@H‰…øþÿÿM…ö„‡IÿE1íHƒ½èþÿÿt
H‹…èþÿÿHÿHƒ½øþÿÿt
H‹…øþÿÿHÿH=ü¬è?0H…ÀtwI‰ÇH5­H‰Çèâ0H‰ÃIÿu
I‹GL‰ÿÿP0H…Ût8H‹CH;İ„$H‹±H‹8H5ä¬èœ/Hÿu"H‹CH‰ßÿP0ëH‹ °H‹8H5¨¬èu/H‹š°L‹8H‹…ðþÿÿL‹hXM9ýt<Džäþÿÿ¯»ÛSM…턾I‹Gö€«…·L‰ïL‰þèã…À„šH=¬H
«‹¾ÛSº¯è~vHµÿÿÿH•ÐþÿÿHØþÿÿH‹½ðþÿÿèmg…ÀxIH‹=ú	H‹5K 	1ÒèĔDžäþÿÿ±H…À„I‰ÇH‰ÇèaIÿ»TuI‹GL‰ÿÿP0ëDžäþÿÿ°»õSH‹…ðþÿÿH‹€H‹8L‹`L‹xL‰0H‹èþÿÿH‰HH‹øþÿÿH‰HH…ÿtHÿuH‹GÿP0M…ätIÿ$uI‹D$L‰çÿP0M…ÿtIÿu
I‹GL‰ÿÿP0H‹½ÿÿÿH…ÿtHÿuH‹GÿP0H‹½ÐþÿÿH…ÿtHÿuH‹GÿP0H‹½ØþÿÿH…ÿtHÿuH‹GÿP0H=¼ªH
\Љދ•äþÿÿè1uA¾iA½]éÀêÿÿAµHƒ½èþÿÿ…xýÿÿé}ýÿÿH‰ß1öè-H‰ÁH‰Ž	HÿuH‹CH‰ßÿP0H‹
x	H…ÉtGÿ=	ueH‹c	ÿ˜ƒø
‡¡H‹•®H‹H‹C	ÿ˜H5îªH‰ߺëIH‹m®H‹8H5mªéˆýÿÿA¾A½Ã\é
êÿÿH‹F®H‹H‹ô	ÿH5XªH‰ߺ	‰Á1Àè¨,éLýÿÿA¾A½Ï\éÌéÿÿA¾A½Û\é»éÿÿH‹¬	ÿƒø„n…À…kH‹֭H‹8H5‡ªéfH‹½øþÿÿL‰æè^-H‰…ðþÿÿHƒ½ðþÿÿ…¤øÿÿH‹\­H‹8è,A¾A½ã\…À„LûÿÿH‹Q­H‹8H5ð¨L‰â1Àèë+é,ûÿÿA¾A½ð\ééÿÿA¾A½ü\éþèÿÿH‹½ðþÿÿL‰æèÕ,H‰…øþÿÿHƒ½øþÿÿ…ñùÿÿH‹ӬH‹8è‹+A¾A½]…À„’úÿÿH‹ȬH‹8H5g¨L‰â1Àèb+érúÿÿI‹GH‰…ÈþÿÿH…ÀŽâüÿÿ1ÀM9lÇ„;üÿÿHÿÀH9…ÈþÿÿuéE1äK‹tçL‰ïèú…À…üÿÿIÿÄL9¥Èþÿÿußé üÿÿ»Té–üÿÿE„íuIÿu
I‹FL‰÷ÿP0Hƒ½èþÿÿtH‹…èþÿÿHÿuH‹½èþÿÿH‹GÿP0Hƒ½øþÿÿtH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹l
	òèå*H‰…ðþÿÿH…À„¦H‹=ÔöH‹5U
	H‹•ðþÿÿèI*…Àˆ•H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=
	è×+H‹ô«HÿH‰
	H‹=û		H‹GH;ȫt[H;/«u]H‹Gö@tS1öèDëXH‹k«H‹8H5E¨1Àèà)é„úÿÿA¾²A½]éçÿÿA¾²A½]éÎøÿÿ1ö1Òè*ŒëH‹5ñ	1Ò躏H‰…ðþÿÿHƒ½ðþÿÿt{H‹=ê	H‹5s		H‹•ðþÿÿèW)…ÀxnH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹J		H‹=«	H;GuQH‹>		H…À„‚HÿH‹+		H‰…ðþÿÿH…À…!éñA¾A½2]é=æÿÿA¾A½4]éøÿÿL‹%Ý	I‹T$L‰æè¾*H‹
9	H‹IH‰
Æ	H‰Ç	H…Àt4HÿH‰…ðþÿÿé¹H‹œ	H‹=
	H‹GH‹€H‰ÞH…Àt<ÿÐë=è™(A¾A½>]H…À…¬åÿÿH‹=Õ	H‹GH‹€L‰æH…ÀtFÿÐëGèo)H‰…ðþÿÿHƒ½ðþÿÿuFH‹¡©H‹8H5á¦H‰Ú1Àè#(A¾A½>]éLåÿÿè-)H‰…ðþÿÿHƒ½ðþÿÿ„Ñ\H‹5û	H‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèã(H‰…øþÿÿHƒ½øþÿÿ„˜H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=ï	H‹5	H‹•øþÿÿè\'…ÀxqH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹g	H‹=°	H;GuTH‹[	H…À„„HÿH‹H	H‰ÁH‰…øþÿÿH…À… éðA¾A½@]éöÿÿA¾A½C]é:öÿÿL‹=ß	I‹WL‰þèÁ(H‹
<	H‹IH‰
á	H‰â	H…Àt4HÿH‰…øþÿÿé¹H‹Ÿ	H‹=	H‹GH‹€H‰ÞH…Àt<ÿÐë=èœ&A¾A½M]H…À…¯ãÿÿH‹=Ø	H‹GH‹€L‰þH…ÀtFÿÐëGèr'H‰…øþÿÿHƒ½øþÿÿuFH‹¤§H‹8H5ä¤H‰Ú1Àè&&A¾A½M]éOãÿÿè0'H‰…øþÿÿHƒ½øþÿÿ„î\H‹5	H‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèæ&H‰…ðþÿÿHƒ½ðþÿÿ„•H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=ò	H‹5«	H‹•ðþÿÿè_%…ÀxnH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹‚	H‹=³	H;GuQH‹v	H…À„‚HÿH‹c	H‰…ðþÿÿH…À…!éñA¾A½O]éQôÿÿA¾A½R]éôÿÿL‹%å	I‹T$L‰æèÆ&H‹
A	H‹IH‰
þ	H‰ÿ	H…Àt4HÿH‰…ðþÿÿé¹H‹¤	H‹=	H‹GH‹€H‰ÞH…Àt<ÿÐë=è¡$A¾A½\]H…À…´áÿÿH‹=Ý	H‹GH‹€L‰æH…ÀtFÿÐëGèw%H‰…ðþÿÿHƒ½ðþÿÿuFH‹©¥H‹8H5é¢H‰Ú1Àè+$A¾A½\]éTáÿÿè5%H‰…ðþÿÿHƒ½ðþÿÿ„ÙXH‹53	H‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèë$H‰…øþÿÿHƒ½øþÿÿ„˜H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=÷	H‹5È	H‹•øþÿÿèd#…ÀxqH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹Ÿ	H‹=¸	H;GuTH‹“	H…À„„HÿH‹€	H‰ÁH‰…øþÿÿH…À… éðA¾A½^]é"òÿÿA¾A½a]éBòÿÿL‹=ç	I‹WL‰þèÉ$H‹
D	H‹IH‰
	H‰	H…Àt4HÿH‰…øþÿÿé¹H‹§	H‹=	H‹GH‹€H‰ÞH…Àt<ÿÐë=è¤"A¾A½k]H…À…·ßÿÿH‹=à	H‹GH‹€L‰þH…ÀtFÿÐëGèz#H‰…øþÿÿHƒ½øþÿÿuFH‹¬£H‹8H5ì H‰Ú1Àè."A¾A½k]éWßÿÿè8#H‰…øþÿÿHƒ½øþÿÿ„öXH‹5N	H‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèî"H‰…ðþÿÿHƒ½ðþÿÿ„•H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=ú	H‹5ã	H‹•ðþÿÿèg!…ÀxnH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹º	H‹=»	H;GuQH‹®	H…À„‚HÿH‹›	H‰…ðþÿÿH…À…!éñA¾A½m]éYðÿÿA¾A½p]éðÿÿL‹%í	I‹T$L‰æèÎ"H‹
I	H‹IH‰
6	H‰7	H…Àt4HÿH‰…ðþÿÿé¹H‹¬	H‹=	H‹GH‹€H‰ÞH…Àt<ÿÐë=è© A¾A½z]H…À…¼ÝÿÿH‹=åÿH‹GH‹€L‰æH…ÀtFÿÐëGè!H‰…ðþÿÿHƒ½ðþÿÿuFH‹±¡H‹8H5ñžH‰Ú1Àè3 A¾A½z]é\Ýÿÿè=!H‰…ðþÿÿHƒ½ðþÿÿ„áTH‹5k	H‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèó H‰…øþÿÿHƒ½øþÿÿ„˜H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=ÿþH‹5	H‹•øþÿÿèl…ÀxqH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹×ÿH‹=ÀþH;GuTH‹ËÿH…À„„HÿH‹¸ÿH‰ÁH‰…øþÿÿH…À… éðA¾A½|]é*îÿÿA¾A½]éJîÿÿL‹=ïþI‹WL‰þèÑ H‹
LþH‹IH‰
QÿH‰RÿH…Àt4HÿH‰…øþÿÿé¹H‹¯þH‹= þH‹GH‹€H‰ÞH…Àt<ÿÐë=è¬A¾	A½‰]H…À…¿ÛÿÿH‹=èýH‹GH‹€L‰þH…ÀtFÿÐëGè‚H‰…øþÿÿHƒ½øþÿÿuFH‹´ŸH‹8H5ôœH‰Ú1Àè6A¾	A½‰]é_Ûÿÿè@H‰…øþÿÿHƒ½øþÿÿ„þTH‹5†þH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèöH‰…ðþÿÿHƒ½ðþÿÿ„•H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=ýH‹5þH‹•ðþÿÿèo…ÀxnH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹òýH‹=ÃüH;GuQH‹æýH…À„‚HÿH‹ÓýH‰…ðþÿÿH…À…!éñA¾	A½‹]éaìÿÿA½Ž]A¾	éìÿÿL‹%õüI‹T$L‰æèÖH‹
QüH‹IH‰
nýH‰oýH…Àt4HÿH‰…ðþÿÿé¹H‹´üH‹=%üH‹GH‹€H‰ÞH…Àt<ÿÐë=è±A¾
A½˜]H…À…ÄÙÿÿH‹=íûH‹GH‹€L‰æH…ÀtFÿÐëGè‡H‰…ðþÿÿHƒ½ðþÿÿuFH‹¹H‹8H5ùšH‰Ú1Àè;A½˜]A¾
édÙÿÿèEH‰…ðþÿÿHƒ½ðþÿÿ„éPH‹5£üH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèûH‰…øþÿÿHƒ½øþÿÿ„˜H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=ûH‹58üH‹•øþÿÿèt…ÀxqH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹üH‹=ÈúH;GuTH‹üH…À„„HÿH‹ðûH‰ÁH‰…øþÿÿH…À… éðA½š]A¾
é2êÿÿA½]A¾
éRêÿÿL‹=÷úI‹WL‰þèÙH‹
TúH‹IH‰
‰ûH‰ŠûH…Àt4HÿH‰…øþÿÿé¹H‹·úH‹=(úH‹GH‹€H‰ÞH…Àt<ÿÐë=è´A¾A½§]H…À…Ç×ÿÿH‹=ðùH‹GH‹€L‰þH…ÀtFÿÐëGèŠH‰…øþÿÿHƒ½øþÿÿuFH‹¼›H‹8H5ü˜H‰Ú1Àè>A½§]A¾ég×ÿÿèHH‰…øþÿÿHƒ½øþÿÿ„QH‹5¾úH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèþH‰…ðþÿÿHƒ½ðþÿÿ„•H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=
ùH‹5SúH‹•ðþÿÿèw…ÀxnH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹*úH‹=ËøH;GuQH‹úH…À„‚HÿH‹úH‰…ðþÿÿH…À…!éñA½©]A¾éièÿÿA½¬]A¾é'èÿÿL‹%ýøI‹T$L‰æèÞH‹
YøH‹IH‰
¦ùH‰§ùH…Àt4HÿH‰…ðþÿÿé¹H‹¼øH‹=-øH‹GH‹€H‰ÞH…Àt<ÿÐë=è¹A¾A½¶]H…À…ÌÕÿÿH‹=õ÷H‹GH‹€L‰æH…ÀtFÿÐëGèH‰…ðþÿÿHƒ½ðþÿÿuFH‹YH‹8H5—H‰Ú1ÀèCA½¶]A¾élÕÿÿèMH‰…ðþÿÿHƒ½ðþÿÿ„ñLH‹5ÛøH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèH‰…øþÿÿHƒ½øþÿÿ„˜H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=÷H‹5pøH‹•øþÿÿè|…ÀxqH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹GøH‹=ÐöH;GuTH‹;øH…À„„HÿH‹(øH‰ÁH‰…øþÿÿH…À… éðA½¸]A¾é:æÿÿA½»]A¾éZæÿÿL‹=ÿöI‹WL‰þèáH‹
\öH‹IH‰
Á÷H‰Â÷H…Àt4HÿH‰…øþÿÿé¹H‹¿öH‹=0öH‹GH‹€H‰ÞH…Àt<ÿÐë=è¼A¾
A½Å]H…À…ÏÓÿÿH‹=øõH‹GH‹€L‰þH…ÀtFÿÐëGè’H‰…øþÿÿHƒ½øþÿÿuFH‹ėH‹8H5•H‰Ú1ÀèFA½Å]A¾
éoÓÿÿèPH‰…øþÿÿHƒ½øþÿÿ„MH‹5ööH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèH‰…ðþÿÿHƒ½ðþÿÿ„•H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=õH‹5‹öH‹•ðþÿÿè…ÀxnH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹böH‹=ÓôH;GuQH‹VöH…À„‚HÿH‹CöH‰…ðþÿÿH…À…!éñA½Ç]A¾
éqäÿÿA½Ê]A¾
é/äÿÿL‹%õI‹T$L‰æèæH‹
aôH‹IH‰
ÞõH‰ßõH…Àt4HÿH‰…ðþÿÿé¹H‹ÄôH‹=5ôH‹GH‹€H‰ÞH…Àt<ÿÐë=èÁA¾A½Ô]H…À…ÔÑÿÿH‹=ýóH‹GH‹€L‰æH…ÀtFÿÐëGè—H‰…ðþÿÿHƒ½ðþÿÿuFH‹ɕH‹8H5	“H‰Ú1ÀèKA½Ô]A¾étÑÿÿèUH‰…ðþÿÿHƒ½ðþÿÿ„ùHH‹5õH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèH‰…øþÿÿHƒ½øþÿÿ„˜H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=óH‹5¨ôH‹•øþÿÿè„…ÀxqH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹ôH‹=ØòH;GuTH‹sôH…À„„HÿH‹`ôH‰ÁH‰…øþÿÿH…À… éðA½Ö]A¾éBâÿÿA½Ù]A¾ébâÿÿL‹=óI‹WL‰þèéH‹
dòH‹IH‰
ùóH‰úóH…Àt4HÿH‰…øþÿÿé¹H‹ÇòH‹=8òH‹GH‹€H‰ÞH…Àt<ÿÐë=èÄA¾A½ã]H…À…×ÏÿÿH‹=òH‹GH‹€L‰þH…ÀtFÿÐëGèšH‰…øþÿÿHƒ½øþÿÿuFH‹̓H‹8H5‘H‰Ú1ÀèNA½ã]A¾éwÏÿÿèXH‰…øþÿÿHƒ½øþÿÿ„IH‹5.óH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèH‰…ðþÿÿHƒ½ðþÿÿ„•H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=ñH‹5ÃòH‹•ðþÿÿ臅ÀxnH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹šòH‹=ÛðH;GuQH‹ŽòH…À„‚HÿH‹{òH‰…ðþÿÿH…À…!éñA½å]A¾éyàÿÿA½è]A¾é7àÿÿL‹%
ñI‹T$L‰æèîH‹
iðH‹IH‰
òH‰òH…Àt4HÿH‰…ðþÿÿé¹H‹ÌðH‹==ðH‹GH‹€H‰ÞH…Àt<ÿÐë=èÉA¾A½ò]H…À…ÜÍÿÿH‹=ðH‹GH‹€L‰æH…ÀtFÿÐëGèŸH‰…ðþÿÿHƒ½ðþÿÿuFH‹ёH‹8H5H‰Ú1ÀèSA½ò]A¾é|Íÿÿè]H‰…ðþÿÿHƒ½ðþÿÿ„EH‹5KñH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèH‰…øþÿÿHƒ½øþÿÿ„˜H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=ïH‹5àðH‹•øþÿÿ茅ÀxqH‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹·ðH‹=àîH;GuTH‹«ðH…À„„HÿH‹˜ðH‰ÁH‰…øþÿÿH…À… éðA½ô]A¾éJÞÿÿA½÷]A¾éjÞÿÿL‹=ïI‹WL‰þèñH‹
lîH‹IH‰
1ðH‰2ðH…Àt4HÿH‰…øþÿÿé¹H‹ÏîH‹=@îH‹GH‹€H‰ÞH…Àt<ÿÐë=èÌA¾A½^H…À…ßËÿÿH‹=îH‹GH‹€L‰þH…ÀtFÿÐëGè¢H‰…øþÿÿHƒ½øþÿÿuFH‹ԏH‹8H5H‰Ú1ÀèVA½^A¾éËÿÿè`H‰…øþÿÿHƒ½øþÿÿ„EH‹5fïH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹="íH‹5ûîH‹•ðþÿÿè
…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹ÒîH‹=ãìH;Gu]H‹ÆîH…À„ŽHÿH‹³îH‰…ðþÿÿH…À…-A½^A¾ézÊÿÿA½^A¾éuÜÿÿA½^A¾é3ÜÿÿL‹%	íI‹T$L‰æèêH‹
eìH‹IH‰
BîH‰CîH…Àt4HÿH‰…ðþÿÿé¹H‹ÈìH‹=9ìH‹GH‹€H‰ÞH…Àt<ÿÐë=èÅA¾A½^H…À…ØÉÿÿH‹=ìH‹GH‹€L‰æH…ÀtFÿÐëGè›
H‰…ðþÿÿHƒ½ðþÿÿuFH‹͍H‹8H5
‹H‰Ú1ÀèOA½^A¾éxÉÿÿèY
H‰…ðþÿÿHƒ½ðþÿÿ„ý@H‹5wíH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿè
H‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=ëH‹5íH‹•øþÿÿ舅Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹ãìH‹=ÜêH;Gu`H‹×ìH…À„HÿH‹ÄìH‰ÁH‰…øþÿÿH…À…,A½^A¾épÈÿÿA½^A¾é:ÚÿÿA½^A¾éZÚÿÿL‹=ÿêI‹WL‰þèáH‹
\êH‹IH‰
QìH‰RìH…Àt4HÿH‰…øþÿÿé¹H‹¿êH‹=0êH‹GH‹€H‰ÞH…Àt<ÿÐë=è¼
A¾A½^H…À…ÏÇÿÿH‹=øéH‹GH‹€L‰þH…ÀtFÿÐëGè’H‰…øþÿÿHƒ½øþÿÿuFH‹ċH‹8H5‰H‰Ú1ÀèF
A½^A¾éoÇÿÿèPH‰…øþÿÿHƒ½øþÿÿ„AH‹5†ëH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=éH‹5ëH‹•ðþÿÿè	…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹òêH‹=ÓèH;Gu]H‹æêH…À„ŽHÿH‹ÓêH‰…ðþÿÿH…À…-A½.^A¾éjÆÿÿA½!^A¾éeØÿÿA½$^A¾é#ØÿÿL‹%ùèI‹T$L‰æèÚ
H‹
UèH‹IH‰
bêH‰cêH…Àt4HÿH‰…ðþÿÿé¹H‹¸èH‹=)èH‹GH‹€H‰ÞH…Àt<ÿÐë=èµA¾A½.^H…À…ÈÅÿÿH‹=ñçH‹GH‹€L‰æH…ÀtFÿÐëGè‹	H‰…ðþÿÿHƒ½ðþÿÿuFH‹½‰H‹8H5ý†H‰Ú1Àè?A½.^A¾éhÅÿÿèI	H‰…ðþÿÿHƒ½ðþÿÿ„í<H‹5—éH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèÿH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=çH‹5,éH‹•øþÿÿèx…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹éH‹=ÌæH;Gu`H‹÷èH…À„HÿH‹äèH‰ÁH‰…øþÿÿH…À…,A½=^A¾é`ÄÿÿA½0^A¾é*ÖÿÿA½3^A¾éJÖÿÿL‹=ïæI‹WL‰þèÑH‹
LæH‹IH‰
qèH‰rèH…Àt4HÿH‰…øþÿÿé¹H‹¯æH‹= æH‹GH‹€H‰ÞH…Àt<ÿÐë=è¬A¾A½=^H…À…¿ÃÿÿH‹=èåH‹GH‹€L‰þH…ÀtFÿÐëGè‚H‰…øþÿÿHƒ½øþÿÿuFH‹´‡H‹8H5ô„H‰Ú1Àè6A½=^A¾é_Ãÿÿè@H‰…øþÿÿHƒ½øþÿÿ„þ<H‹5¦çH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèöH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=åH‹5;çH‹•ðþÿÿèo…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹çH‹=ÃäH;Gu]H‹çH…À„ŽHÿH‹óæH‰…ðþÿÿH…À…-A½L^A¾éZÂÿÿA½?^A¾éUÔÿÿA½B^A¾éÔÿÿL‹%éäI‹T$L‰æèÊH‹
EäH‹IH‰
‚æH‰ƒæH…Àt4HÿH‰…ðþÿÿé¹H‹¨äH‹=äH‹GH‹€H‰ÞH…Àt<ÿÐë=è¥A¾A½L^H…À…¸ÁÿÿH‹=áãH‹GH‹€L‰æH…ÀtFÿÐëGè{H‰…ðþÿÿHƒ½ðþÿÿuFH‹­…H‹8H5í‚H‰Ú1Àè/A½L^A¾éXÁÿÿè9H‰…ðþÿÿHƒ½ðþÿÿ„Ý8H‹5·åH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèïH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=ûâH‹5LåH‹•øþÿÿèh…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹#åH‹=¼âH;Gu`H‹åH…À„HÿH‹åH‰ÁH‰…øþÿÿH…À…,A½[^A¾éPÀÿÿA½N^A¾éÒÿÿA½Q^A¾é:ÒÿÿL‹=ßâI‹WL‰þèÁH‹
<âH‹IH‰
‘äH‰’äH…Àt4HÿH‰…øþÿÿé¹H‹ŸâH‹=âH‹GH‹€H‰ÞH…Àt<ÿÐë=èœA¾A½[^H…À…¯¿ÿÿH‹=ØáH‹GH‹€L‰þH…ÀtFÿÐëGèrH‰…øþÿÿHƒ½øþÿÿuFH‹¤ƒH‹8H5ä€H‰Ú1Àè&A½[^A¾éO¿ÿÿè0H‰…øþÿÿHƒ½øþÿÿ„î8H‹5ÆãH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèæH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=òàH‹5[ãH‹•ðþÿÿè_…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹2ãH‹=³àH;Gu]H‹&ãH…À„ŽHÿH‹ãH‰…ðþÿÿH…À…-A½j^A¾éJ¾ÿÿA½]^A¾éEÐÿÿA½`^A¾éÐÿÿL‹%ÙàI‹T$L‰æèºH‹
5àH‹IH‰
¢âH‰£âH…Àt4HÿH‰…ðþÿÿé¹H‹˜àH‹=	àH‹GH‹€H‰ÞH…Àt<ÿÐë=è•A¾A½j^H…À…¨½ÿÿH‹=ÑßH‹GH‹€L‰æH…ÀtFÿÐëGèkH‰…ðþÿÿHƒ½ðþÿÿuFH‹H‹8H5Ý~H‰Ú1ÀèA½j^A¾éH½ÿÿè)H‰…ðþÿÿHƒ½ðþÿÿ„Í4H‹5×áH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèßH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=ëÞH‹5láH‹•øþÿÿèXÿ…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹CáH‹=¬ÞH;Gu`H‹7áH…À„HÿH‹$áH‰ÁH‰…øþÿÿH…À…,A½y^A¾é@¼ÿÿA½l^A¾é
ÎÿÿA½o^A¾é*ÎÿÿL‹=ÏÞI‹WL‰þè±H‹
,ÞH‹IH‰
±àH‰²àH…Àt4HÿH‰…øþÿÿé¹H‹ÞH‹=ÞH‹GH‹€H‰ÞH…Àt<ÿÐë=èŒþA¾A½y^H…À…Ÿ»ÿÿH‹=ÈÝH‹GH‹€L‰þH…ÀtFÿÐëGèbÿH‰…øþÿÿHƒ½øþÿÿuFH‹”H‹8H5Ô|H‰Ú1ÀèþA½y^A¾é?»ÿÿè ÿH‰…øþÿÿHƒ½øþÿÿ„Þ4H‹5æßH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèÖþH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=âÜH‹5{ßH‹•ðþÿÿèOý…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹RßH‹=£ÜH;Gu]H‹FßH…À„ŽHÿH‹3ßH‰…ðþÿÿH…À…-A½ˆ^A¾é:ºÿÿA½{^A¾é5ÌÿÿA½~^A¾éóËÿÿL‹%ÉÜI‹T$L‰æèªþH‹
%ÜH‹IH‰
ÂÞH‰ÃÞH…Àt4HÿH‰…ðþÿÿé¹H‹ˆÜH‹=ùÛH‹GH‹€H‰ÞH…Àt<ÿÐë=è…üA¾A½ˆ^H…À…˜¹ÿÿH‹=ÁÛH‹GH‹€L‰æH…ÀtFÿÐëGè[ýH‰…ðþÿÿHƒ½ðþÿÿuFH‹}H‹8H5ÍzH‰Ú1ÀèüA½ˆ^A¾é8¹ÿÿèýH‰…ðþÿÿHƒ½ðþÿÿ„½0H‹5÷ÝH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèÏüH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=ÛÚH‹5ŒÝH‹•øþÿÿèHû…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹cÝH‹=œÚH;Gu`H‹WÝH…À„HÿH‹DÝH‰ÁH‰…øþÿÿH…À…,A½—^A¾é0¸ÿÿA½Š^A¾éúÉÿÿA½^A¾éÊÿÿL‹=¿ÚI‹WL‰þè¡üH‹
ÚH‹IH‰
ÑÜH‰ÒÜH…Àt4HÿH‰…øþÿÿé¹H‹ÚH‹=ðÙH‹GH‹€H‰ÞH…Àt<ÿÐë=è|úA¾A½—^H…À…·ÿÿH‹=¸ÙH‹GH‹€L‰þH…ÀtFÿÐëGèRûH‰…øþÿÿHƒ½øþÿÿuFH‹„{H‹8H5ÄxH‰Ú1ÀèúA½—^A¾é/·ÿÿèûH‰…øþÿÿHƒ½øþÿÿ„Î0H‹5ÜH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèÆúH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=ÒØH‹5›ÛH‹•ðþÿÿè?ù…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹rÛH‹=“ØH;Gu]H‹fÛH…À„ŽHÿH‹SÛH‰…ðþÿÿH…À…-A½¦^A¾é*¶ÿÿA½™^A¾é%ÈÿÿA½œ^A¾éãÇÿÿL‹%¹ØI‹T$L‰æèšúH‹
ØH‹IH‰
âÚH‰ãÚH…Àt4HÿH‰…ðþÿÿé¹H‹xØH‹=é×H‹GH‹€H‰ÞH…Àt<ÿÐë=èuøA¾A½¦^H…À…ˆµÿÿH‹=±×H‹GH‹€L‰æH…ÀtFÿÐëGèKùH‰…ðþÿÿHƒ½ðþÿÿuFH‹}yH‹8H5½vH‰Ú1Àèÿ÷A½¦^A¾é(µÿÿè	ùH‰…ðþÿÿHƒ½ðþÿÿ„­,H‹5ÚH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿè¿øH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=ËÖH‹5¬ÙH‹•øþÿÿè8÷…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹ƒÙH‹=ŒÖH;Gu`H‹wÙH…À„HÿH‹dÙH‰ÁH‰…øþÿÿH…À…,A½µ^A¾é ´ÿÿA½¨^A¾éêÅÿÿA½«^A¾é
ÆÿÿL‹=¯ÖI‹WL‰þè‘øH‹
ÖH‹IH‰
ñØH‰òØH…Àt4HÿH‰…øþÿÿé¹H‹oÖH‹=àÕH‹GH‹€H‰ÞH…Àt<ÿÐë=èlöA¾A½µ^H…À…³ÿÿH‹=¨ÕH‹GH‹€L‰þH…ÀtFÿÐëGèB÷H‰…øþÿÿHƒ½øþÿÿuFH‹twH‹8H5´tH‰Ú1ÀèöõA½µ^A¾é³ÿÿè÷H‰…øþÿÿHƒ½øþÿÿ„¾,H‹5&ØH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿè¶öH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=ÂÔH‹5»×H‹•ðþÿÿè/õ…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹’×H‹=ƒÔH;Gu]H‹†×H…À„ŽHÿH‹s×H‰…ðþÿÿH…À…-A½Ä^A¾é²ÿÿA½·^A¾éÄÿÿA½º^A¾éÓÃÿÿL‹%©ÔI‹T$L‰æèŠöH‹
ÔH‹IH‰
×H‰×H…Àt4HÿH‰…ðþÿÿé¹H‹hÔH‹=ÙÓH‹GH‹€H‰ÞH…Àt<ÿÐë=èeôA¾A½Ä^H…À…x±ÿÿH‹=¡ÓH‹GH‹€L‰æH…ÀtFÿÐëGè;õH‰…ðþÿÿHƒ½ðþÿÿuFH‹muH‹8H5­rH‰Ú1ÀèïóA½Ä^A¾é±ÿÿèùôH‰…ðþÿÿHƒ½ðþÿÿ„(H‹57ÖH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿè¯ôH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=»ÒH‹5ÌÕH‹•øþÿÿè(ó…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹£ÕH‹=|ÒH;Gu`H‹—ÕH…À„HÿH‹„ÕH‰ÁH‰…øþÿÿH…À…,A½Ó^A¾é°ÿÿA½Æ^A¾éÚÁÿÿA½É^A¾éúÁÿÿL‹=ŸÒI‹WL‰þèôH‹
üÑH‹IH‰
ÕH‰ÕH…Àt4HÿH‰…øþÿÿé¹H‹_ÒH‹=ÐÑH‹GH‹€H‰ÞH…Àt<ÿÐë=è\òA¾A½Ó^H…À…o¯ÿÿH‹=˜ÑH‹GH‹€L‰þH…ÀtFÿÐëGè2óH‰…øþÿÿHƒ½øþÿÿuFH‹dsH‹8H5¤pH‰Ú1ÀèæñA½Ó^A¾é¯ÿÿèðòH‰…øþÿÿHƒ½øþÿÿ„®(H‹5FÔH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿè¦òH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=²ÐH‹5ÛÓH‹•ðþÿÿèñ…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹²ÓH‹=sÐH;Gu]H‹¦ÓH…À„ŽHÿH‹“ÓH‰…ðþÿÿH…À…-A½â^A¾ é
®ÿÿA½Õ^A¾éÀÿÿA½Ø^A¾éÿÿÿL‹%™ÐI‹T$L‰æèzòH‹
õÏH‹IH‰
"ÓH‰#ÓH…Àt4HÿH‰…ðþÿÿé¹H‹XÐH‹=ÉÏH‹GH‹€H‰ÞH…Àt<ÿÐë=èUðA¾ A½â^H…À…h­ÿÿH‹=‘ÏH‹GH‹€L‰æH…ÀtFÿÐëGè+ñH‰…ðþÿÿHƒ½ðþÿÿuFH‹]qH‹8H5nH‰Ú1ÀèßïA½â^A¾ é­ÿÿèéðH‰…ðþÿÿHƒ½ðþÿÿ„$H‹5WÒH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèŸðH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=«ÎH‹5ìÑH‹•øþÿÿèï…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹ÃÑH‹=lÎH;Gu`H‹·ÑH…À„HÿH‹¤ÑH‰ÁH‰…øþÿÿH…À…,A½ñ^A¾!é¬ÿÿA½ä^A¾ éʽÿÿA½ç^A¾ éê½ÿÿL‹=ÎI‹WL‰þèqðH‹
ìÍH‹IH‰
1ÑH‰2ÑH…Àt4HÿH‰…øþÿÿé¹H‹OÎH‹=ÀÍH‹GH‹€H‰ÞH…Àt<ÿÐë=èLîA¾!A½ñ^H…À…_«ÿÿH‹=ˆÍH‹GH‹€L‰þH…ÀtFÿÐëGè"ïH‰…øþÿÿHƒ½øþÿÿuFH‹ToH‹8H5”lH‰Ú1ÀèÖíA½ñ^A¾!éÿªÿÿèàîH‰…øþÿÿHƒ½øþÿÿ„ž$H‹5fÐH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿè–îH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=¢ÌH‹5ûÏH‹•ðþÿÿèí…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹ÒÏH‹=cÌH;Gu]H‹ÆÏH…À„ŽHÿH‹³ÏH‰…ðþÿÿH…À…-A½_A¾"éú©ÿÿA½ó^A¾!éõ»ÿÿA½ö^A¾!鳻ÿÿL‹%‰ÌI‹T$L‰æèjîH‹
åËH‹IH‰
BÏH‰CÏH…Àt4HÿH‰…ðþÿÿé¹H‹HÌH‹=¹ËH‹GH‹€H‰ÞH…Àt<ÿÐë=èEìA¾"A½_H…À…X©ÿÿH‹=ËH‹GH‹€L‰æH…ÀtFÿÐëGèíH‰…ðþÿÿHƒ½ðþÿÿuFH‹MmH‹8H5jH‰Ú1ÀèÏëA½_A¾"éø¨ÿÿèÙìH‰…ðþÿÿHƒ½ðþÿÿ„} H‹5wÎH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèìH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=›ÊH‹5ÎH‹•øþÿÿèë…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹ãÍH‹=\ÊH;Gu`H‹×ÍH…À„HÿH‹ÄÍH‰ÁH‰…øþÿÿH…À…,A½_A¾#éð§ÿÿA½_A¾"麹ÿÿA½_A¾"éڹÿÿL‹=ÊI‹WL‰þèaìH‹
ÜÉH‹IH‰
QÍH‰RÍH…Àt4HÿH‰…øþÿÿé¹H‹?ÊH‹=°ÉH‹GH‹€H‰ÞH…Àt<ÿÐë=è<êA¾#A½_H…À…O§ÿÿH‹=xÉH‹GH‹€L‰þH…ÀtFÿÐëGèëH‰…øþÿÿHƒ½øþÿÿuFH‹DkH‹8H5„hH‰Ú1ÀèÆéA½_A¾#éï¦ÿÿèÐêH‰…øþÿÿHƒ½øþÿÿ„Ž H‹5†ÌH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿè†êH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=’ÈH‹5ÌH‹•ðþÿÿèÿè…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹òËH‹=SÈH;Gu]H‹æËH…À„ŽHÿH‹ÓËH‰…ðþÿÿH…À…-A½_A¾$éê¥ÿÿA½_A¾#éå·ÿÿA½_A¾#飷ÿÿL‹%yÈI‹T$L‰æèZêH‹
ÕÇH‹IH‰
bËH‰cËH…Àt4HÿH‰…ðþÿÿé¹H‹8ÈH‹=©ÇH‹GH‹€H‰ÞH…Àt<ÿÐë=è5èA¾$A½_H…À…H¥ÿÿH‹=qÇH‹GH‹€L‰æH…ÀtFÿÐëGèéH‰…ðþÿÿHƒ½ðþÿÿuFH‹=iH‹8H5}fH‰Ú1Àè¿çA½_A¾$éè¤ÿÿèÉèH‰…ðþÿÿHƒ½ðþÿÿ„mH‹5—ÊH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèèH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=‹ÆH‹5,ÊH‹•øþÿÿèøæ…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹ÊH‹=LÆH;Gu`H‹÷ÉH…À„HÿH‹äÉH‰ÁH‰…øþÿÿH…À…,A½-_A¾%éà£ÿÿA½ _A¾$骵ÿÿA½#_A¾$éʵÿÿL‹=oÆI‹WL‰þèQèH‹
ÌÅH‹IH‰
qÉH‰rÉH…Àt4HÿH‰…øþÿÿé¹H‹/ÆH‹= ÅH‹GH‹€H‰ÞH…Àt<ÿÐë=è,æA¾%A½-_H…À…?£ÿÿH‹=hÅH‹GH‹€L‰þH…ÀtFÿÐëGèçH‰…øþÿÿHƒ½øþÿÿuFH‹4gH‹8H5tdH‰Ú1Àè¶åA½-_A¾%éߢÿÿèÀæH‰…øþÿÿHƒ½øþÿÿ„~H‹5¦ÈH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèvæH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=‚ÄH‹5;ÈH‹•ðþÿÿèïä…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹ÈH‹=CÄH;Gu]H‹ÈH…À„ŽHÿH‹óÇH‰…ðþÿÿH…À…-A½<_A¾&éڡÿÿA½/_A¾%éճÿÿA½2_A¾%铳ÿÿL‹%iÄI‹T$L‰æèJæH‹
ÅÃH‹IH‰
‚ÇH‰ƒÇH…Àt4HÿH‰…ðþÿÿé¹H‹(ÄH‹=™ÃH‹GH‹€H‰ÞH…Àt<ÿÐë=è%äA¾&A½<_H…À…8¡ÿÿH‹=aÃH‹GH‹€L‰æH…ÀtFÿÐëGèûäH‰…ðþÿÿHƒ½ðþÿÿuFH‹-eH‹8H5mbH‰Ú1Àè¯ãA½<_A¾&éؠÿÿè¹äH‰…ðþÿÿHƒ½ðþÿÿ„]H‹5·ÆH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèoäH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹={ÂH‹5LÆH‹•øþÿÿèèâ…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹#ÆH‹=<ÂH;Gu`H‹ÆH…À„HÿH‹ÆH‰ÁH‰…øþÿÿH…À…,A½K_A¾'éПÿÿA½>_A¾&隱ÿÿA½A_A¾&麱ÿÿL‹=_ÂI‹WL‰þèAäH‹
¼ÁH‹IH‰
‘ÅH‰’ÅH…Àt4HÿH‰…øþÿÿé¹H‹ÂH‹=ÁH‹GH‹€H‰ÞH…Àt<ÿÐë=èâA¾'A½K_H…À…/ŸÿÿH‹=XÁH‹GH‹€L‰þH…ÀtFÿÐëGèòâH‰…øþÿÿHƒ½øþÿÿuFH‹$cH‹8H5d`H‰Ú1Àè¦áA½K_A¾'éϞÿÿè°âH‰…øþÿÿHƒ½øþÿÿ„nH‹5ÆÄH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèfâH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=rÀH‹5[ÄH‹•ðþÿÿèßà…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹2ÄH‹=3ÀH;Gu]H‹&ÄH…À„ŽHÿH‹ÄH‰…ðþÿÿH…À…-A½Z_A¾(éʝÿÿA½M_A¾'éůÿÿA½P_A¾'郯ÿÿL‹%YÀI‹T$L‰æè:âH‹
µ¿H‹IH‰
¢ÃH‰£ÃH…Àt4HÿH‰…ðþÿÿé¹H‹ÀH‹=‰¿H‹GH‹€H‰ÞH…Àt<ÿÐë=èàA¾(A½Z_H…À…(ÿÿH‹=Q¿H‹GH‹€L‰æH…ÀtFÿÐëGèëàH‰…ðþÿÿHƒ½ðþÿÿuFH‹aH‹8H5]^H‰Ú1ÀèŸßA½Z_A¾(éȜÿÿè©àH‰…ðþÿÿHƒ½ðþÿÿ„MH‹5×ÂH‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿè_àH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=k¾H‹5lÂH‹•øþÿÿèØÞ…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹CÂH‹=,¾H;Gu`H‹7ÂH…À„HÿH‹$ÂH‰ÁH‰…øþÿÿH…À…,A½i_A¾)éÿÿA½\_A¾(銭ÿÿA½__A¾(骭ÿÿL‹=O¾I‹WL‰þè1àH‹
¬½H‹IH‰
±ÁH‰²ÁH…Àt4HÿH‰…øþÿÿé¹H‹¾H‹=€½H‹GH‹€H‰ÞH…Àt<ÿÐë=èÞA¾)A½i_H…À…›ÿÿH‹=H½H‹GH‹€L‰þH…ÀtFÿÐëGèâÞH‰…øþÿÿHƒ½øþÿÿuFH‹_H‹8H5T\H‰Ú1Àè–ÝA½i_A¾)鿚ÿÿè ÞH‰…øþÿÿHƒ½øþÿÿ„^H‹5æÀH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèVÞH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=b¼H‹5{ÀH‹•ðþÿÿèÏÜ…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹RÀH‹=#¼H;Gu]H‹FÀH…À„ŽHÿH‹3ÀH‰…ðþÿÿH…À…-A½x_A¾*麙ÿÿA½k_A¾)鵫ÿÿA½n_A¾)és«ÿÿL‹%I¼I‹T$L‰æè*ÞH‹
¥»H‹IH‰
¿H‰ÿH…Àt4HÿH‰…ðþÿÿé¹H‹¼H‹=y»H‹GH‹€H‰ÞH…Àt<ÿÐë=èÜA¾*A½x_H…À…™ÿÿH‹=A»H‹GH‹€L‰æH…ÀtFÿÐëGèÛÜH‰…ðþÿÿHƒ½ðþÿÿuFH‹
]H‹8H5MZH‰Ú1ÀèÛA½x_A¾*鸘ÿÿè™ÜH‰…ðþÿÿHƒ½ðþÿÿ„=H‹5÷¾H‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèOÜH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=[ºH‹5Œ¾H‹•øþÿÿèÈÚ…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹c¾H‹=ºH;Gu`H‹W¾H…À„HÿH‹D¾H‰ÁH‰…øþÿÿH…À…,A½‡_A¾+鰗ÿÿA½z_A¾*éz©ÿÿA½}_A¾*隩ÿÿL‹=?ºI‹WL‰þè!ÜH‹
œ¹H‹IH‰
ѽH‰ҽH…Àt4HÿH‰…øþÿÿé¹H‹ÿ¹H‹=p¹H‹GH‹€H‰ÞH…Àt<ÿÐë=èüÙA¾+A½‡_H…À…—ÿÿH‹=8¹H‹GH‹€L‰þH…ÀtFÿÐëGèÒÚH‰…øþÿÿHƒ½øþÿÿuFH‹[H‹8H5DXH‰Ú1Àè†ÙA½‡_A¾+鯖ÿÿèÚH‰…øþÿÿHƒ½øþÿÿ„NH‹5½H‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿèFÚH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=R¸H‹5›¼H‹•ðþÿÿè¿Ø…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹r¼H‹=¸H;Gu]H‹f¼H…À„ŽHÿH‹S¼H‰…ðþÿÿH…À…#A½–_A¾,骕ÿÿA½‰_A¾+饧ÿÿA½Œ_A¾+éc§ÿÿL‹%9¸I‹T$L‰æèÚH‹
•·H‹IH‰
â»H‰ã»H…Àt4HÿH‰…ðþÿÿé¯H‹ø·H‹=i·H‹GH‹€H‰ÞH…Àt<ÿÐë=èõ×A¾,A½–_H…À…•ÿÿH‹=1·H‹GH‹€L‰æH…ÀtAÿÐëBèËØH‰…ðþÿÿH…ÀuAH‹YH‹8H5BVH‰Ú1Àè„×A½–_A¾,魔ÿÿèŽØH‰…ðþÿÿH…À„7H‹5!»H‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèIØH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=U¶H‹5¶ºH‹•øþÿÿèÂÖ…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹ºH‹=¶H;Gu`H‹ºH…À„HÿH‹nºH‰ÁH‰…øþÿÿH…À…,A½¥_A¾-骓ÿÿA½˜_A¾,ét¥ÿÿA½›_A¾,锥ÿÿL‹=9¶I‹WL‰þèØH‹
–µH‹IH‰
û¹H‰ü¹H…Àt4HÿH‰…øþÿÿé¹H‹ùµH‹=jµH‹GH‹€H‰ÞH…Àt<ÿÐë=èöÕA¾-A½¥_H…À…	“ÿÿH‹=2µH‹GH‹€L‰þH…ÀtFÿÐëGèÌÖH‰…øþÿÿHƒ½øþÿÿuFH‹þVH‹8H5>TH‰Ú1Àè€ÕA½¥_A¾-驒ÿÿèŠÖH‰…øþÿÿHƒ½øþÿÿ„HH‹50¹H‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿè@ÖH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=L´H‹5ŸH‹•ðþÿÿè¹Ô…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹œ¸H‹=
´H;Gu]H‹¸H…À„ŽHÿH‹}¸H‰…ðþÿÿH…À…#A½´_A¾.餑ÿÿA½§_A¾-韣ÿÿA½ª_A¾-é]£ÿÿL‹%3´I‹T$L‰æèÖH‹
³H‹IH‰
¸H‰
¸H…Àt4HÿH‰…ðþÿÿé¯H‹ò³H‹=c³H‹GH‹€H‰ÞH…Àt<ÿÐë=èïÓA¾.A½´_H…À…‘ÿÿH‹=+³H‹GH‹€L‰æH…ÀtAÿÐëBèÅÔH‰…ðþÿÿH…ÀuAH‹üTH‹8H5<RH‰Ú1Àè~ÓA½´_A¾.駐ÿÿèˆÔH‰…ðþÿÿH…À„1H‹5K·H‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿèCÔH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=O²H‹5à¶H‹•øþÿÿè¼Ò…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹·¶H‹=²H;Gu`H‹«¶H…À„HÿH‹˜¶H‰ÁH‰…øþÿÿH…À…,A½Ã_A¾/餏ÿÿA½¶_A¾.én¡ÿÿA½¹_A¾.鎡ÿÿL‹=3²I‹WL‰þèÔH‹
±H‹IH‰
%¶H‰&¶H…Àt4HÿH‰…øþÿÿé¹H‹ó±H‹=d±H‹GH‹€H‰ÞH…Àt<ÿÐë=èðÑA¾/A½Ã_H…À…ÿÿH‹=,±H‹GH‹€L‰þH…ÀtFÿÐëGèÆÒH‰…øþÿÿHƒ½øþÿÿuFH‹øRH‹8H58PH‰Ú1ÀèzÑA½Ã_A¾/风ÿÿè„ÒH‰…øþÿÿHƒ½øþÿÿ„BH‹5ZµH‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿè:ÒH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=F°H‹5ï´H‹•ðþÿÿè³Ð…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹ƴH‹=°H;Gu]H‹º´H…À„ŽHÿH‹§´H‰…ðþÿÿH…À…#A½Ò_A¾0鞍ÿÿA½Å_A¾/陟ÿÿA½È_A¾/éWŸÿÿL‹%-°I‹T$L‰æèÒH‹
‰¯H‹IH‰
6´H‰7´H…Àt4HÿH‰…ðþÿÿé¯H‹ì¯H‹=]¯H‹GH‹€H‰ÞH…Àt<ÿÐë=èéÏA¾0A½Ò_H…À…üŒÿÿH‹=%¯H‹GH‹€L‰æH…ÀtAÿÐëBè¿ÐH‰…ðþÿÿH…ÀuAH‹öPH‹8H56NH‰Ú1ÀèxÏA½Ò_A¾0題ÿÿè‚ÐH‰…ðþÿÿH…À„+H‹5u³H‹…ðþÿÿH‹@H‹€H…ÀtH‹½ðþÿÿÿÐëH‹½ðþÿÿè=ÐH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=I®H‹5
³H‹•øþÿÿè¶Î…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹á²H‹=
®H;Gu`H‹ղH…À„HÿH‹²H‰ÁH‰…øþÿÿH…À…,A½á_A¾1鞋ÿÿA½Ô_A¾0éhÿÿA½×_A¾0鈝ÿÿL‹=-®I‹WL‰þèÐH‹
Š­H‹IH‰
O²H‰P²H…Àt4HÿH‰…øþÿÿé¹H‹í­H‹=^­H‹GH‹€H‰ÞH…Àt<ÿÐë=èêÍA¾1A½á_H…À…ýŠÿÿH‹=&­H‹GH‹€L‰þH…ÀtFÿÐëGèÀÎH‰…øþÿÿHƒ½øþÿÿuFH‹òNH‹8H52LH‰Ú1ÀètÍA½á_A¾1靊ÿÿè~ÎH‰…øþÿÿHƒ½øþÿÿ„<H‹5„±H‹…øþÿÿH‹@H‹€H…ÀtH‹½øþÿÿÿÐëH‹½øþÿÿè4ÎH‰…ðþÿÿHƒ½ðþÿÿ„¡H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=@¬H‹5±H‹•ðþÿÿè­Ì…ÀxzH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹ð°H‹=¬H;Gu]H‹ä°H…À„ŽHÿH‹ѰH‰…ðþÿÿH…À…A½ð_A¾2阉ÿÿA½ã_A¾1铛ÿÿA½æ_A¾1éQ›ÿÿL‹%'¬I‹T$L‰æèÎH‹
ƒ«H‹IH‰
`°H‰a°H…Àt4HÿH‰…ðþÿÿé«H‹æ«H‹=W«H‹GH‹€H‰ÞH…Àt<ÿÐë=èãËA¾2A½ð_H…À…öˆÿÿH‹=«H‹GH‹€L‰æH…ÀtAÿÐëBè¹ÌH‰…ðþÿÿH…Àu=H‹ðLH‹8H50JH‰Ú1ÀèrËA½ð_A¾2雈ÿÿè|ÌH‰…ðþÿÿH…Àt)H‹5£¯H‹…ðþÿÿH‹@H‹€H…Àt$H‹½ðþÿÿÿÐë%H‹ŠLH‹8H5ÊIL‰âéH‹½ðþÿÿè"ÌH‰…øþÿÿHƒ½øþÿÿ„¤H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹=.ªH‹5¯H‹•øþÿÿè›Ê…Àx}H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹ö®H‹=ï©H;Gu`H‹ê®H…À„HÿH‹׮H‰ÁH‰…øþÿÿH…À…$A½ÿ_A¾3郇ÿÿA½ò_A¾2éM™ÿÿA½õ_A¾2ém™ÿÿL‹=ªI‹WL‰þèôËH‹
o©H‹IH‰
d®H‰e®H…Àt4HÿH‰…øþÿÿé±H‹ҩH‹=C©H‹GH‹€H‰ÞH…Àt<ÿÐë=èÏÉA¾3A½ÿ_H…À…â†ÿÿH‹=©H‹GH‹€L‰þH…ÀtDÿÐëEè¥ÊH‰ÁH‰…øþÿÿH…Àu@H‹ÙJH‹8H5HH‰Ú1Àè[ÉA½ÿ_A¾3鄆ÿÿèeÊH‰ÁH‰…øþÿÿH…Àt)H‹5¡­H‹…øþÿÿH‹@H‹€H…Àt+H‹½øþÿÿÿÐë,H‹pJH‹8H5°GL‰ú1ÀèòÈé'†ÿÿH‹½øþÿÿèÊH‰…ðþÿÿHƒ½ðþÿÿ„
H‹…øþÿÿHÿuH‹½øþÿÿH‹GÿP0H‹=
¨H‹5­H‹•ðþÿÿèzÈ…ÀˆÜH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹é¬H=z“1öèÈH‰…ðþÿÿH…À„®H‹=¬§H‹5ŬH‹•ðþÿÿèÈ…ÀˆH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0H‹ˆ¬H=9“1öè ÇH‰…ðþÿÿH…À„oH‹=K§H‹5l¬H‹•ðþÿÿè¸Ç…Àˆ^H‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0¿3è4ÈH‰…ðþÿÿH…À„;H‹%¬HÿH‹¬H‹•ðþÿÿH‹JH‰H‹¬HÿH‹¬H‹JH‰AH‹ý«HÿH‹ó«H‹JH‰AH‹ì«HÿH‹â«H‹JH‰AH‹۫HÿH‹ѫH‹JH‰A H‹ʫHÿH‹+H‹JH‰A(H‹¹«HÿH‹¯«H‹JH‰A0H‹¨«HÿH‹ž«H‹JH‰A8H‹—«HÿH‹«H‹JH‰A@H‹†«HÿH‹|«H‹JH‰AHH‹u«HÿH‹k«H‹JH‰APH‹d«HÿH‹Z«H‹JH‰AXH‹S«HÿH‹I«H‹JH‰A`H‹B«HÿH‹8«H‹JH‰AhH‹1«HÿH‹'«H‹JH‰ApH‹ «HÿH‹«H‹JH‰AxH‹«HÿH‹«H‹JH‰€H‹ûªHÿH‹ñªH‹JH‰ˆH‹çªHÿH‹ݪH‹JH‰H‹ӪHÿH‹ɪH‹JH‰˜H‹¿ªHÿH‹µªH‹JH‰ H‹«ªHÿH‹¡ªH‹JH‰¨H‹—ªHÿH‹ªH‹JH‰°H‹ƒªHÿH‹yªH‹JH‰¸H‹oªHÿH‹eªH‹JH‰ÀH‹[ªHÿH‹QªH‹JH‰ÈH‹GªHÿH‹=ªH‹JH‰ÐH‹3ªHÿH‹)ªH‹JH‰ØH‹ªHÿH‹ªH‹JH‰àH‹ªHÿH‹ªH‹JH‰èH‹÷©HÿH‹í©H‹JH‰ðH‹ã©HÿH‹٩H‹JH‰øH‹ϩHÿH‹ũH‹JH‰H‹»©HÿH‹±©H‹JH‰H‹§©HÿH‹©H‹JH‰H‹“©HÿH‹‰©H‹JH‰H‹©HÿH‹u©H‹JH‰ H‹k©HÿH‹a©H‹JH‰(H‹W©HÿH‹M©H‹JH‰0H‹C©HÿH‹9©H‹JH‰8H‹/©HÿH‹%©H‹JH‰@H‹©HÿH‹©H‹JH‰HH‹©HÿH‹ý¨H‹JH‰PH‹ó¨HÿH‹é¨H‹JH‰XH‹ߨHÿH‹ըH‹JH‰`H‹˨HÿH‹hH‹JH‰hH‹·¨HÿH‹­¨H‹JH‰pH‹£¨HÿH‹™¨H‹JH‰xH‹¨HÿH‹…¨H‹JH‰€H‹{¨HÿH‹q¨H‹JH‰ˆH‹g¨HÿH‹]¨H‹JH‰H‹=‹¡H‹5L¨èÿÁ…ÀˆÇH‹…ðþÿÿHÿuH‹½ðþÿÿH‹GÿP0¿,è×ÃH‰…ðþÿÿH…À„¤H‹5¨H‹
¨H‹½ðþÿÿè©ÁA¾…ÀˆH‹5ô§H‹õ§H‹½ðþÿÿèÁ…ÀˆvH‹5â§H‹ã§H‹½ðþÿÿè_Á…Àˆ_H‹5ЧH‹ѧH‹½ðþÿÿè=Á…ÀˆHH‹5¾§H‹¿§H‹½ðþÿÿèÁ…Àˆ1H‹5¬§H‹­§H‹½ðþÿÿèùÀ…ÀˆH‹5š§H‹›§H‹½ðþÿÿè×À…ÀˆH‹5ˆ§H‹‰§H‹½ðþÿÿèµÀ…ÀˆìH‹5v§H‹w§H‹½ðþÿÿè“À…ÀˆÕH‹5d§H‹e§H‹½ðþÿÿèqÀ…Àˆ¾H‹5R§H‹S§H‹½ðþÿÿèOÀ…Àˆ§H‹5@§H‹A§H‹½ðþÿÿè-À…ÀˆH‹5.§H‹/§H‹½ðþÿÿèÀ…ÀˆyH‹5§H‹§H‹½ðþÿÿèé¿…ÀˆbH‹5
§H‹§H‹½ðþÿÿèǿ…ÀˆKH‹5ø¦H‹ù¦H‹½ðþÿÿ西…Àˆ4H‹5æ¦H‹ç¦H‹½ðþÿÿ胿…ÀˆH‹5ԦH‹զH‹½ðþÿÿèa¿…ÀˆH‹5¦H‹æH‹½ðþÿÿè?¿…ÀˆïH‹5°¦H‹±¦H‹½ðþÿÿè¿…ÀˆØH‹5ž¦H‹Ÿ¦H‹½ðþÿÿèû¾…ÀˆÁH‹5Œ¦H‹¦H‹½ðþÿÿèپ…ÀˆªH‹5z¦H‹{¦H‹½ðþÿÿ跾…Àˆ“H‹5h¦H‹i¦H‹½ðþÿÿ蕾…Àˆ|H‹5V¦H‹W¦H‹½ðþÿÿès¾…ÀˆeH‹5D¦H‹E¦H‹½ðþÿÿèQ¾…ÀˆNH‹52¦H‹3¦H‹½ðþÿÿè/¾…Àˆ7H‹5 ¦H‹!¦H‹½ðþÿÿè
¾…Àˆ H‹5¦H‹¦H‹½ðþÿÿèë½…Àˆ	H‹5ü¥H‹ý¥H‹½ðþÿÿèɽ…ÀˆòH‹5ê¥H‹ë¥H‹½ðþÿÿ觽…ÀˆÛH‹5إH‹٥H‹½ðþÿÿ腽…ÀˆÄH‹5ƥH‹ǥH‹½ðþÿÿèc½…Àˆ­H‹5´¥H‹µ¥H‹½ðþÿÿèA½…Àˆ–H‹5¢¥H‹£¥H‹½ðþÿÿè½…ÀˆH‹5¥H‹‘¥H‹½ðþÿÿèý¼…ÀˆhH‹5~¥H‹¥H‹½ðþÿÿèۼ…ÀˆQH‹5l¥H‹m¥H‹½ðþÿÿ蹼…Àˆ:H‹5Z¥H‹[¥H‹½ðþÿÿ藼…Àˆ#H‹5H¥H‹I¥H‹½ðþÿÿèu¼…ÀˆH‹56¥H‹7¥H‹½ðþÿÿèS¼…ÀˆõH‹5$¥H‹%¥H‹½ðþÿÿè1¼…ÀˆÞH‹5¥H‹¥H‹½ðþÿÿè¼…ÀˆÇH‹5¥H‹¥H‹½ðþÿÿèí»…Àˆ°H‹=^›H‹5ç¤H‹•ðþÿÿè˻…Àˆ™H‹…ðþÿÿHÿ…yÿÿH‹½ðþÿÿéJyÿÿA½`A¾3éúŠÿÿA½`A¾3鸊ÿÿA½`A¾6éÌxÿÿA½`A¾6閊ÿÿA½`A¾=éªxÿÿA½`A¾=étŠÿÿA½&`A¾DéˆxÿÿA½Á`A¾DéRŠÿÿA½É`A¾éfxÿÿA½Ë`é6ŠÿÿA½Ì`é+ŠÿÿA½Í`é ŠÿÿA½Î`éŠÿÿA½Ï`é
ŠÿÿA½Ð`éÿ‰ÿÿA½Ñ`éô‰ÿÿA½Ò`éé‰ÿÿA½Ó`éމÿÿA½Ô`éӉÿÿA½Õ`éȉÿÿA½Ö`齉ÿÿA½×`鲉ÿÿA½Ø`駉ÿÿA½Ù`霉ÿÿA½Ú`鑉ÿÿA½Û`醉ÿÿA½Ü`é{‰ÿÿA½Ý`ép‰ÿÿA½Þ`ée‰ÿÿA½ß`éZ‰ÿÿA½à`éO‰ÿÿA½á`éD‰ÿÿA½â`é9‰ÿÿA½ã`é.‰ÿÿA½ä`é#‰ÿÿA½å`é‰ÿÿA½æ`é
‰ÿÿA½ç`é‰ÿÿA½è`é÷ˆÿÿA½é`éìˆÿÿA½ê`éáˆÿÿA½ë`éֈÿÿA½ì`éˈÿÿA½í`éÿÿA½î`鵈ÿÿA½ï`骈ÿÿA½ð`韈ÿÿA½ñ`锈ÿÿA½ò`鉈ÿÿA½ó`é~ˆÿÿA½ô`ésˆÿÿA½õ`éhˆÿÿA½ö`é]ˆÿÿA½÷`éRˆÿÿ€UH‰åAWAVAUATSPA‰ÕH‰ûH…ötI‰÷E1äëE1ö1ÿ蕹I‰ÇI‰ÄH…ÀtI‰ÞH‹=0˜豹H…Àt3H‰ÃD‰mÔ趸H…Àt"I‰ÅL‰÷H‰ÞH‰ÂL‰ùD‹EÔè5¹I‰ÆM…äu
ëE1íE1öM…ätIÿ$tM…ít"IÿMuI‹EL‰ïÿP0ëI‹D$L‰çÿP0M…íuÞL‰ðHƒÄ[A\A]A^A_]Ãf„UH‰åAWAVAUATSHƒì(H‰MÀH‰UÐA‰õI‰þè4ºI‰ÄE…íL‰uÈ„šH‹=—H…ÿ„§AD$X)E°M‹|$hIÇD$XIÇD$`IÇD$hè߹H…Àt^H‰ÃH‹8H‹GH;װ…„L‹5ҰM…ö„ØL;5º9„åL;5½9„ÛL‰÷è︅À…ÈéÆE1íéH‹=û–H‹5t¢H‹GH‹€H…ÀtqÿÐH‰ÃH…ÀttH‰ß誸…Àu<L‹5_9ë:H‹5>¢H‹Vè#¹I‰ÆH‰;°H‹H‹@H‰%°M…ö…[ÿÿÿë1L‹59Hÿ…IÿÿÿH‹CH‰ßÿP0é:ÿÿÿè¸H‰ÃH…ÀuŒèã¶H‹=Z–H‹5ӡH‹Ô8è+¸E1íI‹|$XI‹\$`M‹t$h(E°AD$XM‰|$hH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ötIÿu
I‹FL‰÷ÿP0E‰ïA÷ßDC}ÐE…ÿ„¥H‹z¯H…À„•D‹Z¯D‰ÁÿÉxS‰ÊHÁâD9||z…É~B1ÿëf.„@z‰Ήñ9þ~*‰Î)þ‰òÁêòÑúúHcòHÁæ‹\0‰ÖD9ûÙ|Òë‹X1Ò1ÉD9ûœÁщÊD9Â}HcÊHÁáD9|uL‹4IÿM…ö…GH‹}Àè{·H…À„tH‰ÃE…ít)H=¢4H¦4H‹uÈD‰é1ÀèH·I‰ÅH…Àué>H‹}Èè8·I‰ÅH…À„)L‹
µ”H‹¦”Hƒì1ÿ1ö1Ò1ÉE1ÀAQÿuÐAUSPPPPPèù´HƒÄPI‰ÆHÿtIÿMtM…öu(éãH‹CH‰ßÿP0IÿMuæI‹EL‰ïÿP0M…ö„ÀE…ÿ„xH‹®H…À„ßD‹-æ­D‰éÿÉxO‰ÊHÁâD‰ëD9||g…É~;1Òë
€‰ù9×~/‰Î)։óÁëóÑûÓHcóHÁæ‹t0‰ßD9þÙ}S‰ÏëЋp1Û1ÉD9þœÁىËD9ë}HcËHÁáD9|„”D;-i­u1AƒÅ@IcõHÁæH‰Çèö´H…À„¾H‰L­D‰-=­D‹-.­D‰î)ÞށMcÅHcËH‰ÏH÷×L‰Â@öÆt$L‰ÆHÁæIPÿH‰ÓHÁãL‹H‹\H‰\0L‰0LÇtFH‰ÖHÁæHÆf.„H‹~øH‰~H‹~ðH‰>HƒÂþH‹~àH‹^èH‰~ðH‰^øHƒÆàH9ÊÔëHcËHÁáD‰|L‰4AÿÅD‰-ˆ¬IÿH‹֒L‰çL‰ö1ÉèsH‰ÃH…ÀtH‹EЉClH‰ßèܴM…ötIÿt1H…ÛtHÿtHƒÄ([A\A]A^A_]ÃH‹CH‰ßHƒÄ([A\A]A^A_]ÿ`0I‹FL‰÷ÿP0H…ÛuÅëȿ訳H…À„vÿÿÿH‰¬Çò«@Çà«D‰xL‰0éLÿÿÿH‹<L‰4Hÿ…>ÿÿÿH‹GÿP0é2ÿÿÿ€UH‰åÇGPHÇGXH‹Ž4Hÿ]ÐUH‰åAWAVAUATSHƒì(L‰EÀH‰MÈH‰}ÐL~ÿM…ÿ~yM‰ÌI‰ÕH‰óHƒEÐ H‹EÈL¯øL}ÀH÷ØH‰E¸f„HÿËH‹}ÐH‰Þè€I‰ÆL¯uÈLuÀL‰çL‰öL‰êèٵL‰÷L‰þL‰êè˵L‰ÿL‰æL‰ê轵L}¸Hƒû±H‹â3HÿHƒÄ([A\A]A^A_]ÄUH‰åSPH‰ûH‹Gö€¨t
Hƒ¸ˆu[H‰ß踲H‹{H…ÿtHÇCHÿuH‹GÿP0H‹»èH…ÿtHǃèHÿuH‹GÿP0H‹CH‰ßHƒÄ[]ÿ @öCðuŸH‰ßèK²…Àt“HƒÄ[]Ãf.„fUH‰åAWAVAUATSPI‰ÿH‹5H H‹GH‹€H…À„ÆÿÐI‰ÅH…À„ÉI‹EH;«2…ÃI‹]H…Û„(M‹uHÿIÿIÿMu
I‹EL‰ïÿP0L‰÷H‰ÞèÃI‰ÄHÿu
H‹CH‰ßÿP0M‰õM…ä„IÿMu
I‹EL‰ïÿP0L‰eÐH‹=úšH‹5#œH‹GH‹€H…À„eÿÐI‰ÄH…À„hH‹=: L‰þèRH…À„[I‰ÇI‹D$H;ê1…ÊM‹t$M…ö„¼I‹\$IÿHÿIÿ$uI‹D$L‰çÿP0H‰ßL‰öL‰úèìI‰ÅIÿu
I‹FL‰÷ÿP0I‰ÜIÿu
I‹GL‰ÿÿP0M…í„éIÿ$uI‹D$L‰çÿP0H‹]ÐH‰ßL‰îèg°H…À„ËI‰ÆHÿtIÿMuëH‹CH‰ßÿP0IÿMu
I‹EL‰ïÿP0L‰ðHƒÄ[A\A]A^A_]ÃL‰çL‰þè_I‰ÅIÿ…{ÿÿÿélÿÿÿèO°I‰ÅH…À…7þÿÿA¿aéÑH;Ã0t|H;*0u`I‹Eö@tVL‰ï1öè<ëiè°I‰ÄH…À…˜þÿÿA¿rE1äëA¿tëA¿ƒE1íë	A¿†E1äH‹}ÐHÿu=H‹GÿP0ë4H‹5éL‰ï1Òè¯ëL‰ï1ö1ÒèI‰ÄM…ä…ðýÿÿA¿oE1äM…ítIÿMu
I‹EL‰ïÿP0M…ätIÿ$uI‹D$L‰çÿP0H=,H
G»D‰þºÉèÆõÿÿE1öéÂþÿÿf.„@UH‰åAWAVATSI‰ÿH‹5ë˜H‹GH‹€H…À„hÿÐH‰ÃH…À„kH‹5RH‹CH‹€H‰ßH…À„oÿÐI‰ÆH…À„rHÿu
H‹CH‰ßÿP0I‹H‹5ƒ˜H‹GH‹€H…À„UÿÐI‰ÇH…À„XH‹5êŒI‹GH‹€L‰ÿH…À„OÿÐH‰ÃH…À„RIÿu
I‹GL‰ÿÿP0H‹=—H‰Þèÿ­A¼ÍH…À„,I‰ÇHÿu
H‹CH‰ßÿP0H‹5÷–L‰ÿèϭH…À„
H‰ÃIÿu
I‹GL‰ÿÿP0L‰÷H‰Þ语H…À„I‰ÇHÿt&Iÿt0IÿM‰þIÿu
I‹FL‰÷ÿP0L‰ø[A\A^A_]ÃH‹CH‰ßÿP0IÿuÐI‹FL‰÷ÿP0ëÄ蠭H‰ÃH…À…•þÿÿH=ÌH
t¹¾ÌºÌèñóÿÿE1ÿë¦èm­I‰ÆH…À…ŽþÿÿA¼ÌA¿Îé‚èK­I‰ÇH…À…¨þÿÿH=wH
¹¾ÛëDè%­H‰ÃH…À…®þÿÿ»Ýë
A¿àë<»ãIÿu
I‹GL‰ÿÿP0H=.H
ָ‰޺ÍèVóÿÿE1ÿéùþÿÿA¿æHÿu
H‹CH‰ßÿP0H=÷H
Ÿ¸D‰þD‰âè óÿÿE1ÿM…ö…¿þÿÿéÉþÿÿf.„DUH‰åAWAVSPI‰ÖI‰÷H‰ûH‹H…ÿt
L‰öAÿׅÀuH‹»èH…ÿt
L‰öAÿׅÀu1ÀHƒÄ[A^A_]ÀUH‰åAVSH‰ûH‹L‹5-L‰sIÿH…ÿtHÿuH‹GÿP0H‹»èL‰³èIÿH…ÿtHÿuH‹GÿP01À[A^]Ãf.„UH‰åAWAVAUATSHƒì(I‰þH‹­,H‹H‰EÐL‹-,L‰mÈH‹^H…Ò…Hƒû„„H…Û„ïI‰ØI÷ÐIÁè?H…ÛH6H
8HHÈH‹Õ+H‹8HgL
·LHÈH‰$H5Hˆ1À誾
H=~H
·º´è’ñÿÿ»ÿÿÿÿé`L‹nL‰mÈL;-á+tcH‹5 ”H‹Fö€«„I‹EH‹€L‰ïH…À„.ÿÐH…À„1Hÿu
H‹HH‰ÇÿQ0IÿEIÿEI‹~Hÿ…Çé»H‹•¡H‹=ΈH;G…&H‹…¡H…À„HÿL‹=r¡M…ÿ„LI‹GH;þ*„2H;Ù*t2H;@*…jI‹Gö@„\L‰ÿ1öèJI‰ÅM…íuébL‰ÿ1ö1ÒèaI‰ÅM…í„JIÿu
I‹GL‰ÿÿP0IÿEI‹~HÿuH‹GÿP0M‰nH‹5o“I‹EH‹€L‰ïH…À„µÿÐI‰ÄH…À„¸H5L‰çè+¨…À„µH5L‰çè¨H‰ÃH…Àuèg¨H…À…fIF H‹K I‰N@H‹KI‰N8H‹KI‰N0H‹H‹SI‰V(I‰N I‰FHI‹FL‰÷ÿH…À„œHÿu
H‹HH‰ÇÿQ0H‹5ç”I‹EH‹€L‰ïH…À„€ÿÐH‰ÃH…À„ƒI‹¾èHÿuH‹GÿP0I‰žè1ÛIÿMu
I‹EL‰ïÿP0M…ätIÿ$uI‹D$L‰çÿP0H‹™)H‹H;EÐ…}‰ØHƒÄ([A\A]A^A_]ÃI‰×H…ÛtHƒû…îüÿÿL‹nL‰mÈL‰ÿè5§I‰ÄH…Ûu'M…ä~"H‹5mŠH‹VL‰ÿè©H…ÀtI‰ÅH‰EÈIÿÌM…äŽ)ýÿÿH52…LmHUÈL‰ÿH‰ÙèL×…ÀˆòL‹mÈéûüÿÿèü§I‰ÄH…À…HþÿÿA¿Ä
A¾¾E1äéâH‹=§–H‹5—1ÒèÁA¾ÁH…À„ H‰ÃH‰ÇèÙHÿA¿ç
…¤H‹CH‰ßÿP0é•A¿A¾Åé„èy§H‰ÃH…À…}þÿÿA¿A¾ÆébH‹ÿ…H‹SH‰Þè	¨I‰ÇH‹…H‹@H‰6žL‰=7žM…ÿ„Iÿé½üÿÿI‹_H…ÛtEM‹gHÿIÿ$Iÿu
I‹GL‰ÿÿP0L‰çH‰ÞèèI‰ÅHÿu
H‹CH‰ßÿP0M‰çM…í…ÕüÿÿëH‹5ñ„L‰ÿ1Òè·I‰ÅM…í…¶üÿÿA¾¶»I
E1íM…ÿtIÿu
I‹GL‰ÿÿP0H=ÝH
o²‰ÞD‰òèñìÿÿ»ÿÿÿÿM…í„»ýÿÿE1äéýÿÿH‹…H‹=„H‹GH‹€H‰ÞH…À„”ÿÐI‰ÇH…À…ÏûÿÿH‹q&H‹8H5±#H‰Ú1Àèó¤¾;
A¼¶ëPA¿ù
A¾ÃH=HH
ڱD‰þD‰òè[ìÿÿ»ÿÿÿÿéýÿÿH‹B&H‹8H5Q迤¾`
A¼·H=H
–±D‰âéƒúÿÿ蛥H…À…Ïúÿÿèa¤H‹˜œH‹=CH;G…H‹ˆœH…À„ÆHÿL‹=uœM…ÿ„I‹GH;ñ%„#H;Ì%t'H;3%…ZI‹Gö@„LL‰ÿ1öè=	ëL‰ÿ1ö1Òè_H‰EÀH…À„=Iÿu
I‹GL‰ÿÿP0H‹5ŒH‹}ÀH‹GH‹€H…À„‰ÿÐI‰ÇH…À„ŒI‹GH;[%…M‹gM…ä„I‹_Iÿ$HÿIÿu
I‹GL‰ÿÿP0H‰ßL‰æL‰êè`I‰ÅIÿ$uI‹D$L‰çÿP0I‰ßM…í„ÛIÿu
I‹GL‰ÿÿP0IÿMu
I‹EL‰ïÿP0L‹mÀIÿEI‹~Hÿ…Júÿÿé>úÿÿè¥A¿ã
éþÿÿèú¢A¼¶H…À…ëH‹=<‚H‹GH‹€H‰ÞH…À„×ÿÐI‰ÇH…À…nùÿÿH‹$H‹8H5P!H‰Ú1À蒢¾;
éòýÿÿ裣I‰ÇH…À…8ùÿÿédýÿÿL‰ÿL‰îèI‰ÅM…í…%ÿÿÿA¾¹»”
L‹mÀM…ÿ…ÅüÿÿéÏüÿÿH‹‚H‹SH‰Þè¤I‰ÇH‹ƒH‹@H‰HšL‰=IšM…ÿ„8IÿéÌýÿÿI‹_H…ÛtDM‹gHÿIÿ$Iÿu
I‹GL‰ÿÿP0L‰çH‰ÞèêH‰EÀHÿu
H‹CH‰ßÿP0M‰çH‹EÀéÌýÿÿH‹5ô€L‰ÿ1Òèºé¶ýÿÿA¾¸»y
E1íM…ÿ…üÿÿéüÿÿH‹BH‹=ۀH‹GH‹€H‰ÞH…À„éÿÐI‰ÇH…À…ýÿÿH‹¯"H‹8H5ïH‰Ú1Àè1¡¾k
A¼¸é‹üÿÿè<¢I‰ÇH…À…týÿÿA¿†
A¾¹E1äL‹mÀéüÿÿ¾ýéÞöÿÿ¾;
éNüÿÿèÿ¡I‰ÇH…À…”÷ÿÿé!þÿÿè۠A¼¸H…ÀuCH‹=!€H‹GH‹€H‰ÞH…ÀtIÿÐI‰ÇH…À…düÿÿH‹ù!H‹8H59H‰Ú1Àè{ ¾k
éÛûÿÿ茡I‰ÇH…À….üÿÿéÿÿÿèv¡I‰ÇH…À…üÿÿë²fUH‰åö‡ªu61öÿ—0H…Àt'H‹
ÿ‘H‰HH‹
"H‰HH‹H‰ˆèHƒÂH‰]ÃH‹!H‹5?1Òÿ8H…Àu¼ëáUH‰åAWAVSPH‰ûH‰uàH‹GH;|!t-I‰öH;à u_H‹C‹HöÁt7H‰ßL‰öHƒÄ[A^A_]éåHuàºH‰ßèH‰ÃH‰ØHƒÄ[A^A_]Éʃ⍁ú€uH‹@öÁ u@H‹{ë<¿èå H…Àt?I‰ÇIÿL‰pH‰ßH‰Æ1ÒèQH‰ÃIÿu¨I‹GL‰ÿÿP0ëœ1ÿHuàºöÁuÿÐë…1Ûë„1ÉÿÐéxÿÿÿf.„fUH‰åAWAVATSHƒì I‰ÖI‰÷I‰üH‹é H‹H‰EØH‹GH;w „ H;Úu4I‹D$‹H‰ʃ⍁ú€uL‰}ÀL‰uÈH‹@öÁ …µI‹|$é­¿è
 H…À„ÂH‰ÃIÿL‰xIÿL‰p Iÿ$L‰çH‰Æ1ÒègI‰ÆHÿtAIÿ$tKH‹J H‹H;EØu}L‰ðHƒÄ [A\A^A_]ÃL‰}ÀL‰uÈHu:L‰çè€ë?H‹CH‰ßÿP0Iÿ$uµI‹D$L‰çÿP0H‹ôH‹H;EØtªë%1ÿHu:öÁu3ÿÐI‰ÆH‹ÍH‹H;EØtƒ轟E1öH‹µH‹H;EØ„gÿÿÿëâ1ÉÿÐëÉ„UH‰åAWAVAUATSHƒìI‰ÕI‰ôH‰ûL‹wH‹GH‰EÐL‹ èݞ‹H ÿIH H‹2;~H=RèBŸ…ÀtE1íékAƒ~uwAƒ~ CupM…ÿ„ŒM…íu}IcFI9GusH‰EÈèïžE1íI‰ÄH‰ÇL‰öH‹UÐ1Éè@H…À„æH‰ÃH‹MȅÉŽæL‹	|IƒÇ‰ȃàƒù…1Òé®L‹S(H‹[0M…ÿt{H‹uÐA‹GIƒÇëvL‹S(H‹[0ëèIcFL9èuRL‰mÈèižE1íI‰ÇH‰ÇL‰öH‹UÐ1É躜H…ÀtdH‰ÃH‹MÈH…ÉŽîL‹†{‰ȃàHƒù…†1Òé·L‹S(H‹[0E1ÿ1ÀH‹uÐHƒìL‰÷1ÒL‰áE‰èE1ÉSARPAWjè.œHƒÄ0I‰Åèx‹H ÿɉH H‹Í‹PΉÆÁþ=ȍvOÂ9Á}	èKÆ@$L‰èHƒÄ[A\A]A^A_]ÃH)ÁIt1ÒI‹<$HÿI‹<$H‰|ÖøI‹|$HÿI‹|$IƒÄH‰<ÖHƒÂH9ÑuÒH…ÀtI‹$HÿH‰ÙLÁI‹$H‰ÑH‰ß1ö艛AÿG I‰ÅHÿu
H‹CH‰ßÿP0AÿO é=ÿÿÿItH)Á1ÒI‹?HÿI‹?H‰|ÖøI‹HÿI‹IƒÇH‰<ÖHƒÂH9ÑuÖH…ÀtI‹HÿH‰ÙLÁI‹H‰ÑH‰ß1öè›AÿD$ I‰ÅHÿu
H‹CH‰ßÿP0AÿL$ éÆþÿÿ€UH‰åAWAVATSI‰öH‹GL‹xö@ uH‹_ë1Û蜋H ÿIH L‹%hA;$~H=†èvœ…ÀuXH‰ßL‰öAÿ×H‰Ãèݛ‹H ÿɉH A‹$PΉÆÁþ=ȍvOÂ9Á}	赛Æ@$H…ÛtH‰Ø[A\A^A_]Ãè'šH…Àt1ÛëæH‹H‹8H5/èšëäf.„@UH‰åAWAVAUATSPI‰ÖI‰÷H‰ûH‹GL‹ €M…䄁è<›‹H ÿIH L‹-‘A;M~H=¯ÿ蟛…Àu}H‰ßL‰þL‰òAÿÔH‰Ã蛋H ÿɉH A‹EPΉÆÁþ=ȍvOÂ9Á}	èۚÆ@$H…Ût.H‰ØHƒÄ[A\A]A^A_]ÃH‰ßL‰þL‰òHƒÄ[A\A]A^A_]é&šè+™H…Àt1ÛëÄH‹“H‹8H53ÿè™ëäfUH‰åAWAVSPH‹5ÇyH‹GH‹€H…À„ÓÿÐI‰ÆH…À„Ö蔘H‰ÃH…À„ÍH‹5m…H‹žH‰ßè~˜…Àx*H‹5ÛwL‰÷H‰Úè þÿÿH…À„£I‰ÇIÿtPHÿudëXA¿9Iÿu
I‹FL‰÷ÿP0H…ÛtHÿu
H‹CH‰ßÿP0H=óþH
E¥D‰þºÒèÄßÿÿE1ÿëI‹FL‰÷ÿP0Hÿu
H‹CH‰ßÿP0L‰øHƒÄ[A^A_]Ãè™I‰ÆH…À…*ÿÿÿA¿5ë A¿7érÿÿÿA¿:égÿÿÿf„UH‰åAWAVATSI‰öH‹5{H‹GH‹€H…À„ÓÿÐH‰ÃH…À„ÖH‹CH;N……L‹cM…ät|L‹{Iÿ$IÿHÿu
H‹CH‰ßÿP0L‰ÿL‰æL‰òèWøÿÿI‰ÆIÿ$uI‹D$L‰çÿP0L‰ûM…ötKHÿtIÿt"H‹"Hÿ[A\A^A_]ÃH‹CH‰ßÿP0IÿuÞI‹FL‰÷ÿP0ëÒH‰ßL‰öè÷ÿÿI‰ÆM…öuµA¾ŒH…Ût(Hÿu#H‹CH‰ßÿP0ëèå—H‰ÃH…À…*ÿÿÿA¾~H=ŽýH
³£D‰öºÕè2Þÿÿ1Àétÿÿÿf.„UH‰åAWAVAUATSPH‹5SwH‹GH‹€H…À„CÿÐH‰ÃH…À„Fè –I‰ÅH…À„JH‹5ù‚H‹*L‰ïè
–…ÀˆœH‹5cuH‰ßL‰êè(üÿÿH…À„I‰ÆHÿ„ÐIÿM„Ú¿èo–H…À„äI‰ÄH‹,„HÿH‹"„I‹L$H‰L‹=ÃH‹=ìtèm–A½éºÙH…À„±H‰ÃL‰uÐèc•H…À„§I‰ÆL‰ÿH‰ÞH‰ÂL‰áA¸èܕI‰ÅIÿu
I‹FL‰÷ÿP0M…íL‹uЄmIÿ$uI‹D$L‰çÿP0H‹ƒI‹EH‹€L‰ïH‰ÞH…À„XÿÐI‰ÇH…À„[Iƒ?„ÄIÿM„ÎI‹FH‹5–L‰÷H;…eè¡ÄI‰ÅH…À„e¿èS–H…À„bI‰ÄL‰h¿è9–H…À„XH‰ÃIÿL‰xL‰` IÿL‰p(éàA¼ÕHÿ„öM…í„»ØE1ÿE1öIÿMu
I‹EL‰ïÿP0H=YûH
Q¡D‰æ‰ÚèÓÛÿÿ1ÛM…ö…Šé”H‹CH‰ßÿP0IÿM…&þÿÿI‹EL‰ïÿP0¿苔H…À…þÿÿA½äºÙE1ÿë,E1ÿIÿ$u#ëE1ÿL‹uкÙIÿ$uI‹D$L‰ç‰ÓÿP0‰ÚH=ÄúH
¼ D‰îè@Ûÿÿ1ÛIÿu
I‹FL‰÷ÿP0M…ÿtAIÿu<I‹GL‰ÿÿP0ë0H‹CH‰ßÿP0M…í…ÿÿÿH=túH
l D‰æºØèëÚÿÿ1ÛH‰ØHƒÄ[A\A]A^A_]ÃI‹GL‰ÿÿP0IÿM…2þÿÿI‹EL‰ïÿP0é#þÿÿè5”H‰ÃH…À…ºüÿÿH=úH
	 ¾Ñë™A¼ÓékþÿÿA¼Öé`þÿÿE1ÿA½éºÙIÿ$…
ÿÿÿéöþÿÿèܓI‰ÇH…À…¥ýÿÿH‹ãH‹8蛒A¼ì…ÀtkH‹âH‹8H5E1ÿH‰Ú1Àèy’ëN螓I‰ÅH…À…›ýÿÿA½ûºÚéšþÿÿ»ÚA¼ýéåýÿÿA½ºÚIÿ$…uþÿÿéaþÿÿE1ÿ»Ùé¾ýÿÿf„UH‰åAWAVAUATSHƒìI‰þH‹
H‹H‰EÐL‹=ïL‰}ÈH‹^H…Ò…FH…ÛtHƒû…»L‹~L‰}ÈëL‹=¾M‹nIÿEH‹ƒH‹=qH;G…H‹ƒH…À„UHÿL‹%lƒM…ä„¡L‰ïL‰æ謒ƒøÿ„ ‰ÃIÿM„Iÿ$„…Û„I‹~H‹5~H‹GH‹€H…À„ŒÿÐI‰ÅH…À„I‹EH;Ù…KI‹]H…Û„>M‹eHÿIÿ$IÿMu
I‹EL‰ïÿP0L‰çH‰ÞL‰úèÝñÿÿI‰ÇHÿu
H‹CH‰ßÿP0M‰åM…ÿ„IÿM„ËIÿ„ÕI‹FL‰÷ÿH…À„Hÿu
H‹HH‰ÇÿQ0H‹|HÿH‹
‚H‹	H;MÐ…ØHƒÄ[A\A]A^A_]ÃI‹EL‰ïÿP0Iÿ$…ñþÿÿI‹D$L‰çÿP0…Û…æþÿÿH‹=(€H‹5y€1Òè2öÿÿA¾õH…À„ÝH‰ÃH‰ÇèxÂHÿA¿Ã…~H‹CH‰ßÿP0éoI‹EL‰ïÿP0Iÿ…+ÿÿÿI‹GL‰ÿÿP0éÿÿÿL‰ïL‰þèÍïÿÿI‰ÇM…ÿ…òþÿÿA¾öA¿ãéÊI‰ÔH…ÛtHƒûuvL‹~L‰}ÈL‰çèfI‰ÅH…Ûu'M…í~"H‹5žrH‹VL‰çè8‘H…ÀtI‰ÇH‰EÈIÿÍM…펄ýÿÿH5#hLkœHUÈL‰çH‰Ùè}¿…Àˆ÷L‹}ÈéVýÿÿI‰ØI÷ÐIÁè?H…ÛHßöH
áöHHÈH‹~H‹8H÷L
śLHÈH‰$H5¾öHþ›1À辎¾H=ìõH
¹›ºàè;Öÿÿ1ÀH‹
ªH‹	H;MЄ(þÿÿ薐H‹InH‹SH‰ÞèSI‰ÄH‹ËmH‹@H‰@€L‰%A€M…ä„öIÿ$éÌüÿÿA¾ôA¿²ënH‹úmH‹=“mH‹GH‹€H‰ÞH…À„ÐÿÐI‰ÄH…À…‹üÿÿH‹gH‹8H5§E1äH‰Ú1ÀèæA¾ôA¿°ëA¾ôA¿°E1äM…ítIÿMu
I‹EL‰ïÿP0M…ät>Iÿ$u8I‹D$L‰çÿP0ë+跎I‰ÅH…À…qüÿÿA¾öA¿ÕëA¾÷A¿ïH=¤ôH
qšD‰þD‰òé²þÿÿèeH…À„ÿÿÿE1äé\ÿÿÿè]ŽI‰ÄH…À…¸ûÿÿé(ÿÿÿA¿¿볾éaþÿÿ@UH‰åAWAVAUATSHƒì8I‰ýH‹
H‹H‰EÐL‹=÷L‰}ÈH‹^H…Ò…±H…ÛtHƒû…&L‹~L‰}ÈëL‹=ÆIÿI‹}H‹5È{H‹GH‹€H…À„ÿÐH‰ÃH…À„H‹CH‹5+wH‰ßH;©
…Ÿè6¼I‰ÄH…À„ŸI‰ÞH‹5ÀuL‰çº賿…ÀˆŠ‰ÃIÿ$t;…ÛtFL;=0L‰ótBL;=,t9L;=t0L‰ÿèS…Àˆo…Àu0éþI‹D$L‰çÿP0…ÛuºL‰óéç1ÀL;=è
”À„ÓH‹¾}H‹='kH;GL‰m¸…“H‹ª}H…À„‹HÿL‹%—}M…䄯H‹5W{I‹D$H‹€L‰çH…À„’ÿÐI‰ÅH…À„•Iÿ$uI‹D$L‰çÿP0H‹5±{L‰ï1Òè_ñÿÿH…À„{H‰ÃIÿM„âHÿ„ìH‹
I‰ÄHÿIÿL‹m¸u
I‹GL‰ÿÿP0L‰óM‰çIc}P蓋H…À„YI‰ÄH‹5ÆvH‰ßH‰Âè;Œ…ÀˆLIÿ$uI‹D$L‰çÿP0òAEXè	‹H…À„9I‰ÄH‹5dvH‰ßH‰Âèù‹…Àˆ,Iÿ$tL;=„ué
I‹D$L‰çÿP0L;=k„õL;=f„èL;=I„ÛL‰ÿ腋…Àˆ…À„×H‹CH‹5ÐtH‰ßH;N…Åè۹I‰ÄH…À„ÅH‹CH‹5yH‰ßH;"…º诹I‰ÅA¾)H…À„ºI‹EH‹5JvL‰ïH;ð
…«è}¹H…À„«H‰E°IÿMu
I‹EL‰ïÿP0H‹CH‹5­xH‰ßH;³
…’è@¹I‰ÅH…À„’I‹EH‹5qwL‰ïH;‡
…’è¹H…À„’H‰E¨IÿMu
I‹EL‰ïÿP0H‹CH‹5uH‰ßH;J
…{è׸I‰ÅH…À„{H‹CH‹5¸tH‰ßH;
…x諸H…À„xH‰E¸¿è\ŠH…À„vI‰ÆL‰`H‹E°I‰F H‹E¨I‰F(M‰n0H‹E¸I‰F8Hÿu
H‹CH‰ßÿP0M…ÿ„SIÿ…JI‹GL‰ÿÿP0é;1ÀL;=o
”À…)þÿÿHÿI‰ÞHÿuÀë´I‹EL‰ïÿP0Hÿ…ýÿÿH‹CH‰ßÿP0éýÿÿI‰ÖH…ÛtHƒûuvL‹~L‰}ÈL‰÷èû‡I‰ÄH…Ûu'M…ä~"H‹5»tH‹VL‰÷è͉H…ÀtI‰ÇH‰EÈIÿÌM…äŽûÿÿH5È`L•HUÈL‰÷H‰Ù踅ÀˆÃL‹}ÈéëúÿÿI‰ØI÷ÐIÁè?H…ÛHtïH
vïHHÈH‹	H‹8H¥ïL
Z”LHÈH‰$H5SïH˜”1ÀèS‡¾AH=÷ïH
N”ºùèÐÎÿÿE1öH‹>	H‹H;EÐ…¹L‰ðHƒÄ8[A\A]A^A_]Ãè(ˆH‰ÃH…À…púÿÿH=¥ïH
ü“¾gº èyÎÿÿE1öIÿu¤éUþÿÿèù‡I‰ÄH…À…aúÿÿ¾sé$ÇEÄu1ÀH‰E¸1Ò1ÉE1íL‰óA¾!éݾ´A½&éøA¾&ÇEĶ鮾ÀA½'éÖA¾'ÇEÄÂéŒèx‡I‰ÄH…À…;üÿÿ¾×A½)é£èW‡I‰ÅA¾)H…À…FüÿÿÇEÄÙéHè4‡H…À…UüÿÿÇEÄÛ1ÀH‰E¸1Ò1Éé1è‡I‰ÅH…À…nüÿÿÇEÄÞ1ÀH‰E¸1ÒE1íH‹M°éèä†H…À…nüÿÿÇEÄà1ÀH‰E¸1ÒH‹M°éß辆I‰ÅH…À……üÿÿÇEÄë1ÀH‰E¸A¾*E1íë0蕆H…À…ˆüÿÿÇEÄí1ÀH‰E¸A¾*ë
ÇEÄ÷A¾)H‹M°H‹U¨ë|¾ÌA½(é—L‹-¯dI‹UL‰îèñ†I‰ÄH‹idH‹@H‰îvL‰%ïvM…ä„‹Iÿ$éOùÿÿèþ…I‰ÅH…À…kùÿÿA¾"ÇEĊ1ÀH‰E¸1Ò1ÉE1íIÿ$uI‹D$L‰çH‰M°I‰ÔÿP0L‰âH‹M°M…ítIÿMuI‹EL‰ïI‰ÌI‰ÕÿP0L‰êL‰áH…ÉtHÿ	uH‹AH‰ÏI‰ÔÿP0L‰âH…ÒtHÿ
u
H‹BH‰×ÿP0H‹}¸H…ÿtHÿuH‹GÿP0H=ÞìH
5‘‹uÄD‰òé L‹-§cH‹=xcH‹GH‹€L‰îH…À„ôÿÐI‰ÄH…À…UøÿÿH‹LH‹8H5ŒL‰ê1Àè΃¾ˆA½"ë41ÀH‰E¸ÇEĕ1Ò1ÉL‰óA¾"IÿM…%ÿÿÿé
ÿÿÿ¾|A½!H=6ìH
D‰êèËÿÿE1öHÿ…ÜúÿÿéÍúÿÿèq…L‰m°èjƒA½"H…ÀujH‹=°bH‹GH‹€H…Àt`H‹u°ÿÐI‰ÄH…ÀL‰ó…÷ÿÿH‹„H‹8H5ÄH‹U°1Àèƒë#è„I‰ÄH…À…^÷ÿÿéÿÿÿ¾3é•ûÿÿL‰ó¾ˆéIÿÿÿH‹u°èíƒI‰ÄH…ÀL‰ó…*÷ÿÿë›fDUH‰åAWAVAUATSHƒìI‰ôH‰}ÈH‹FH‹ˆ¨÷Á uf‰ʁâH‰ÖHÁîÁéƒáH…ÒDñ…ö„H;„}H;.„²H‹@hH…À„»H‹@H…À„®L‰ç1öÿÐI‰Çé‘H‹5ÈlL‰ç脃A¿b…Àˆ÷„ÀH‹5qL‰çèaƒ…Àˆ…À„¡E1íIÿ$L‰èM‰åH‰EÐH‹5•mI‹EH‹€H…ÀL‹eÈL‰ï„¬ÿÐI‰ÇH…À„¯H‹5rE1öL‰ÿ1Òè¨çÿÿH…À„¢H‰ÃIÿ„¨H‹CH;„²H‰ß讁f.ŽòEÀ…À‹§éµH‹=-qH‹5žq1ÒèGçÿÿA¿cH…À„=H‰ÃH‰Ç荳HÿA¾Žu
H‹CH‰ßÿP0H=ÑéH
þD‰öD‰úèÈÿÿ1ÛéI‹D$L‹8é:I‹GL‰ÿÿP0H‹CH;^…NÿÿÿòCf.kòEÀuz譀òEÀH…À…“HÿuH‹CH‰ßÿP0òEÀòAD$XH‹55lI‹EH‹€L‰ïH…À„ƒÿÐH‰ÃH…À„†H‹5ÉpE1öH‰ß1ÒèLæÿÿH…À„yI‰ÇHÿu
H‹CH‰ßÿP0L‰ÿèٶ‰Ãøÿuè€H…À……Iÿu
I‹GL‰ÿÿP0A‰\$PI‹|$H‹5ônH‹GH‹€˜L‰êH…À„)ÿÐL‹}ЅÀˆ,H‹°HÿIÿM…<é-M‹|$IÿM…ÿ„:H‹5îhL‰ÿºèá²…Àˆi‰ÃIÿu
I‹GL‰ÿÿP0…Û…gè'H…À„œI‰ÅI‹D$H;ót/H;
t0H‹@hH…À„áH‹@H…À„ÔL‰ç1öÿÐH‰ÃëI‹D$H‹ëI‹\$HÿH…Û„RH‹5iL‰ïH‰Úè½~…Àx`Hÿu
H‹CH‰ßÿP0è™~H…À„jH‰ÃI‹D$H;etPH;|tRH‹@hH…À„XH‹@H…À„K¾L‰çÿÐI‰Æë1A¼kÇEÈE1öM‰ï1ÀH‰EÐé†I‹D$L‹pëM‹t$ IÿM…ö„:H‹5¸jH‰ßL‰òè
~…ÀxEIÿtLI‹D$H;ÐÿtVH;çÿtXH‹@hH…À„(H‹@H…À„¾L‰çÿÐI‰Æë7ÇEÈéôI‹FL‰÷ÿP0I‹D$H;zÿuªI‹D$L‹pëM‹t$(IÿM…ö„H‹5­kH‰ßL‰òèr}…ÀˆŸIÿu
I‹FL‰÷ÿP0H‹5”lL‰ïH‰ÚèI}…Àˆ Hÿu
H‹CH‰ßÿP0L‰çè°~Hƒøÿ„àHƒøŒI‹D$H;âþ„üH;õþ„úH‹@hH…À„åH‹@H…À„ؾL‰çÿÐI‰ÇéÖÇEÈ1ÀH‰EÐA¼lM‰ïE1íIÿu
I‹GL‰ÿÿP0H…ÛL‹}ÐtHÿu
H‹CH‰ßÿP0M…ötIÿu
I‹FL‰÷ÿP0H=håH
•‰‹uÈD‰âèÄÿÿ1ÛM…ítIÿMu
I‹EL‰ïÿP0M…ÿtIÿu
I‹GL‰ÿÿP0H‰ØHƒÄ[A\A]A^A_]ÃA¼kÇEÈéÃýÿÿ1ÀéPúÿÿI‹D$L‹xëM‹|$0IÿM…ÿ„H‹5ågL‰ïL‰úèZ}…Àˆ¡Iÿu
I‹GL‰ÿÿP0I‹D$H;ýt2H;¦ýt4H‹@hH…À„ÞH‹@H…À„ѾL‰çÿÐI‰ÇëI‹D$L‹x ëM‹|$8IÿM…ÿ„ÞH‹5@gL‰ïL‰úèÕ|…Àˆ+Iÿu
I‹GL‰ÿÿP0M‰ìétùÿÿH‹=OkH‹5¸k1ÒèYáÿÿA¿gH…À„›H‰ÃH‰Ç蟭HÿA¾Î…úÿÿé	úÿÿA¾véúÿÿA¼hÇEÈâE1ö1Ûé‹üÿÿH‹=ÚjH‹5[k1ÒèôàÿÿA¿iH…À„AH‰ÃH‰Çè:­HÿA¾ñ…³ùÿÿé¤ùÿÿA¾A¿kéùÿÿA¼kÇEÈE1öé
1ÿè!{H…Àt)H‰ÃL‰çH‰Æè˜{I‰ÇHÿ…ÌúÿÿH‹CH‰ßÿP0é½úÿÿA¾àA¿héBùÿÿE1ö1ÿèØzH…À„¤I‰ÇL‰çH‰ÆèK{H‰ÃIÿ…ûÿÿI‹GL‰ÿÿP0éûÿÿè{I‰ÇH…À…Qøÿÿ¾_ºrL‹}ÐëdA¼rÇEÈaélèìzH‰ÃH…À…zùÿÿ¾oºsL‹}Ðë1A¼sÇEÈqL‹}ÐéâüÿÿèëzL‹}ЅÀ‰Ôùÿÿ¾ºtH=RâH
†èÁÿÿ1ÛIÿM…ûüÿÿéìüÿÿA¾}éRøÿÿÇEÈE1öA¼lé¿¿èÓyH…Àt)I‰ÇL‰çH‰ÆèJzI‰ÆIÿ…ÌúÿÿI‹GL‰ÿÿP0é½úÿÿÇEÈëcA¼rÇEÈdE1öL‹}Ðé)üÿÿA¾ŠéØ÷ÿÿ¿ènyH…Àt)I‰ÇL‰çH‰ÆèåyI‰ÆIÿ…ûÿÿI‹GL‰ÿÿP0éóúÿÿÇEÈE1öA¼lé"úÿÿA¼kÇEÈ1ÛéúÿÿA¼sÇEÈtE1ö1ÛéŽûÿÿ¾'ºmé²A¼nÇEÈ4ë
A¼oÇEÈ@E1ö1Û1ÀH‰EÐéSûÿÿ¿è»xH…Àt)H‰ÃL‰çH‰Æè2yI‰ÇHÿ…çûÿÿH‹CH‰ßÿP0éØûÿÿ¾2ºnëB¿èwxH…Àt)H‰ÃL‰çH‰ÆèîxI‰ÇHÿ…(üÿÿH‹CH‰ßÿP0éüÿÿ¾>ºoE1ÿéþÿÿA¾ÊéŒöÿÿA¾íéöÿÿf„UH‰åAWAVAUATSHƒìI‰þH‹mùH‹H‰EÐL‹-OùL‰mÈL‹fH…ÒuoM…ätIƒü…äL‹nL‰mÈëL‹-"ùI‹žèHÿIƒÆ H=eL‹ùL‰öL‰êH‰Ùÿ÷hH…À„5I‰ÆHÿ…H‹CH‰ßÿP0éøI‰×M…ätIƒüuvL‹nL‰mÈL‰ÿè¡vH‰ÃM…äu'H…Û~"H‹5™eH‹VL‰ÿèsxH…ÀtI‰ÅH‰EÈHÿËH…ÛŽ[ÿÿÿH5~OL¿ƒHUÈL‰ÿL‰á踦…ÀˆÒL‹mÈé-ÿÿÿM‰àI÷ÐIÁè?M…äHÞH
ÞHHÈH‹¹÷H‹8HKÞL
ƒLHÈL‰$$H5ùÝHRƒ1Àèùu¾ÑH=ÿßH
ô‚ºvèv½ÿÿE1öH‹ä÷H‹H;EÐu@L‰ðHƒÄ[A\A]A^A_]ÃH…ÛtHÿu
H‹CH‰ßÿP0H=®ßH
£‚¾òº©ë¨è”w¾Ã뉀UH‰åAWAVAUATSHƒìI‰þH‹m÷H‹H‰EÐL‹=O÷L‰}ÈH‹^H…Ò…3H…ÛtHƒû…¨L‹~L‰}ÈëL‹=÷H‹5XI‹FH‹€L‰÷H…À„ÿÐI‰ÆH…À„	èÁtH‰ÃH…À„H‹5ÒcH‰ßL‰úè¯t…ÀxNH‹5TL‰÷H‰ÚèÑÚÿÿH…À„ÝI‰ÇIÿtoHÿtyH‹¬öH‹H;EÐ…L‰øHƒÄ[A\A]A^A_]ÃA¿hIÿu
I‹FL‰÷ÿP0H…ÛtHÿu
H‹CH‰ßÿP0H=‹ÞH
RD‰þº²éI‹FL‰÷ÿP0Hÿu‡H‹CH‰ßÿP0H‹)öH‹H;EÐtéI‰ÔH…ÛtHƒûuvL‹~L‰}ÈL‰çèÙsI‰ÅH…Ûu'M…í~"H‹5ÑbH‹VL‰çè«uH…ÀtI‰ÇH‰EÈIÿÍM…펗þÿÿH5ÆLLHUÈL‰çH‰Ùèð£…ÀˆÈL‹}ÈéiþÿÿI‰ØI÷ÐIÁè?H…ÛHRÛH
TÛHHÈH‹ñôH‹8HƒÛL
8€LHÈH‰$H51ÛH˜€1Àè1s¾DH=eÝH
,€º«论ÿÿE1ÿH‹õH‹H;EЄpþÿÿèuètI‰ÆH…À…÷ýÿÿA¿déŠþÿÿA¿fé\þÿÿA¿iéQþÿÿ¾6ë“f„UH‰åAWAVAUATSHƒìHI‰ôI‰ýH‹ªôH‹H‰EÐWÀ)E°H‹…ôH‰EÀL‹vH…Ò…ªIƒþtIƒþ…¡M‹|$(L‰}ÀëL‹=RôM‹T$ L‰U¸I‹\$H‰]°M‹µèIÿIƒÅHHƒìH=ßüL‰îL‰úL‰ñA¸I‰ÙPjÿ5ì[ÿ5þZjÿ5ž\ARjÿ5ô[ÿöcHƒÄPH…ÀtlH‰ÃIÿ…†I‹FL‰÷ÿP0éwIƒþ‡ýH‰ÓH’Jc°HÁÿáH‰ßè‘qI‰ÇH‹5“[H‹VH‰ßèmsH‰E°H‰E H…À„¶IÿÏëIM…ötIÿu
I‹FL‰÷ÿP0H=ÃÛH
c~¾úºáéîI‹D$H‰E H‰E°H‰ßèqI‰ÇH‹5Á[H‹VH‰ßèûrH‰E¸H…À„H‰E¨IÿÏë%I‹D$ H‰E¨H‰E¸I‹D$H‰E H‰E°H‰ßèÑpI‰ÇM…ÿ~:M‰üH‹5Ë_H‹VH‰]˜H‰ßè¡rI‰ÇH…ÀH‹¶òH‹] L‹U¨tbL‰}ÀIÿÌëPH‹œòI‰ÇH‹] L‹U¨éLþÿÿH‰ßM‹|$(L‰}ÀI‹D$ H‰E¨H‰E¸I‹\$H‰]°H‰}˜èMpL‹U¨I‰ÄH‹SòM…äŽ
þÿÿH5kIL¡}HU°H‹}˜L‰ñ脠…ÀˆøH‹]°L‹U¸L‹}ÀH‹òéÌýÿÿH‹•ñH‹8HƒìH5ç×HU}H
È×L
ØA¸1ÀjèÑoHƒÄ¾µë[M‹t$E1ÀIƒþH”×H
–×HLÈAœÀIƒðH‹+ñH‹8HƒìH5}×Hë|L
«×1ÀAVètoHƒÄ¾ÑH=ËÙH
k|º´èí¶ÿÿ1ÛH‹\ñH‹H;EÐuH‰ØHƒÄH[A\A]A^A_]Ãè:q¾¿븐wýÿÿÜýÿÿþÿÿ˜þÿÿf.„fUH‰åAWAVAUATSHƒì(I‰þH‹ýðH‹H‰EÐL‹%ßWL‰eÀL‹ÔðL‰UÈL‹~H…Ò…ÂL‹-¼ðM…ÿt IƒÿtIƒÿ…æL‹n L‰mÈL‹fL‰eÀM‹¾èIÿIƒÆHH‹zWH‹[XHƒìH=(ûL‰öL‰êL‰ùA¸M‰áARjSPjSPjÿ5]ÿN`HƒÄPH…À„I‰ÆIÿu
I‹GL‰ÿÿP0H‹0ðH‹H;EÐ…ÙL‰ðHƒÄ([A\A]A^A_]ÃH‰ÓM…ÿ„îIƒÿ„ Iƒÿu$L‹n L‰mÈL‹fL‰eÀH‰ßè¹mL‹ÆïéTM‰øIÁè>A÷ÐAƒàM…ÿHˆÕH
ŠÕHHÈH‹'ïH‹8HƒìH5yÕHìzL
§Õ1ÀAWèpmHƒÄ¾YH=ì×H
gzºæèé´ÿÿE1öH‹WïH‹H;EЄ'ÿÿÿèCoM…ÿtIÿu
I‹GL‰ÿÿP0H=¤×H
z¾‚ºë±M‰ÕH‰ßèèlH‰E¸H…À~OH‹5œ[H‹VH‰ßè¾nH…Àt?H‰EÀH‹M¸HÿÉI‰ÄëM‰ÕL‹fL‰eÀH‰ßè¤lH‰ÁM‰êH‰M¸H…Éé
þÿÿM‰êéþÿÿM‰êH‹5Š[H‹VH‰ßM‰ÕèanH…ÀtM‰êI‰ÅH‰EÈH‹E¸HÿÈH…ÀŽÍýÿÿH5¥ELÀyHUÀH‰ßL‰ù蟜…ÀxL‹eÀL‹mÈL‹4îé˜ýÿÿ¾Hé¼þÿÿf.„UH‰åAWAVAUATSHƒìI‰þH‹
îH‹H‰EÐL‹-ïíL‰mÈL‹fH…Ò…M…ätIƒü…L‹nL‰mÈëL‹-¾íM‹¾èIÿIƒÆHHƒìL‹
¥íH=ÆèL‰öL‰êL‰ùA¸AQjAQAQjAQAQjAQÿ]HƒÄPH…À„:H‰ÃIÿ…I‹GL‰ÿÿP0éýI‰×M…ätIƒüuvL‹nL‰mÈL‰ÿèkH‰ÃM…äu'H…Û~"H‹5ZH‹VL‰ÿèïlH…ÀtI‰ÅH‰EÈHÿËH…ÛŽ;ÿÿÿH5ZDLcxHUÈL‰ÿL‰áè4›…Àˆ×L‹mÈé
ÿÿÿM‰àI÷ÐIÁè?M…äH–ÒH
˜ÒHHÈH‹5ìH‹8HÇÒL
|wLHÈHƒìH5uÒHöw1ÀATèsjHƒÄ¾ÔH=ÕH
jwº"èì±ÿÿ1ÛH‹[ìH‹H;EÐu@H‰ØHƒÄ[A\A]A^A_]ÃM…ÿtIÿu
I‹GL‰ÿÿP0H=ËÔH
w¾ýºFë©èl¾ÆëŠf.„@UH‰åAWAVAUATSHƒìhH‰} H‹ÜëH‹H‰EÐL‹5¾ëL‰uÈH‹^H…Ò…J
H…ÛtHƒû…¿
L‹vL‰uÈëL‹5ëHÇEÈHÇE¨HÇE°L;5në„
H‹q[H‹=ºHH;G…H‹a[H…À„[HÿH‹N[H‰]°H…Û„›H‹5šTH‹CH‹€H‰ßH…À„ÿÐH‰E¨A¼}H…À„Hÿu
H‹CH‰ßÿP0¿èmjH‰E°H…À„'IÿL‰pè˜hH‰EÈH…À„H‹ÐZH‹=	HH;G…'H‹ÀZH…À„€HÿH‹­ZH…Û„ÏH‹5•TH‹CH‹€H‰ßH…À„&ÿÐI‰ÅH…À„)Hÿu
H‹CH‰ßÿP0L‹uÈH‹5¦SL‰÷L‰êèhA¼}…Àˆ*IÿMu
I‹EL‰ïÿP0H‹]¨H‹u°L‹uÈH‰ßL‰òèÎÿÿH‰ÁH‰E¸H…À„uHÿu
H‹CH‰ßÿP0HÇE¨H‹}°HÿL‹e H‹]¸„rHÇE°H‹}ÈHÿ„yH‰]ÈHƒ;„€HÇEÈH‹CH‰EˆH‹°YH‹{ ‹sÿðH‰EH…ÀŽdID$ H‰E€1ÀH‰EÀ1Ûëf.„HÿÃH9]„9H‰]˜M‹¬$èL‹=ÈRI‹]H‰ßL‰þèiH…À„-I‰ÆH‹@H‹ˆH…Ét%L‰÷L‰îH‰ÚÿÑI‰ÆH…Àuénf.„IÿM‹¬$èL‹%NRM‹}L‰ÿL‰æè­hH…À„îH‰ÃH‹@H‹ˆH…É„ŸH‰ßL‰îL‰úÿÑH…ÀL‹e „ÑH‰ÃH‹@HÇE°H;1è…‡H‹CH‰E°H…À„ÀL‹kHÿIÿEHÿtzH‹]°H…Û„„L‰ïH‰ÞèBÆÿÿH‰EÈHÿu
H‹CH‰ßÿP0H‹EÈHÇE°H…À…ºé”DHÿL‹e HÇE°H;ªç„yÿÿÿI‰Ýë*f.„DH‹CH‰ßÿP0H‹]°H…Û…|ÿÿÿI‹EH;Vçt;H;½æ…I‹Eö@„ôL‰ï1öèÇÊÿÿH‰EÈHÇE°H…Àu&éL‰ï1ö1ÒèÕÇÿÿH‰EÈHÇE°H…À„ßIÿM„†H‹}ÈHÿ„HÇEÈèdeI‰ÇH‹}€è€H‹MˆH‹]˜H‰ÙL‰ÿè>eH‹5UL‰÷1ÒèËÿÿI‰ÇIÿu
I‹FL‰÷ÿP0M…ÿ„SIÿ…‡ýÿÿI‹GL‰ÿÿP0éxýÿÿ„I‹EL‰ïÿP0H‹}ÈHÿ…pÿÿÿH‹GÿP0édÿÿÿL‰ëH‹5ÓCH‰ß1Òè™ÊÿÿH‰EÈI‰ÝHÇE°H…À…!ÿÿÿA¿yé¹H‹E L‹ èL‹-ìOI‹\$H‰ßL‰îè2fH…À„ÐH‰ÇH‹@H‹ˆH…É„L‰æH‰ÚÿÑH‰E˜H…À…é±H‹]¸HÿI‰ÝéCA¿61ÀH‰EÀ1ÀH‰E¸M…ötIÿu
I‹FL‰÷ÿP0H‹]¸L‹uÀH‹}¨H…ÿtHÿuH‹GÿP0H‹}°H…ÿtHÿuH‹GÿP0M…ötIÿu
I‹FL‰÷ÿP0M…ítIÿMu
I‹EL‰ïÿP0H=VÎH
ppD‰þD‰âèñªÿÿE1íH…Û…éÝH‹GÿP0HÇE°H‹}ÈHÿ…‡ûÿÿH‹GÿP0H‰]ÈHƒ;…€ûÿÿH‹CH‰ßÿP0éqûÿÿH‰}˜HÿH‹E L‹ èL‹-wNM‹|$L‰ÿL‰îèÕdH…À„–H‹HH‹™H…Ût6H‰ÇL‰æL‰úÿÓH‰E¨H…À„ˆH‹HHÇE°H;
cäL‹}˜t%é<HÿH‰E¨HÇE°H;
BäL‹}˜…H‹HH‰M°H…É„ÃH‹@HÿHÿH‹}¨H‰E¨Hÿ„ÔH‹]°H‹E¨H…Û„ÛH‰ÇH‰Þè@ÂÿÿH‰EÈHÿu
H‹CH‰ßÿP0H‹EÈHÇE°H…À„ïH‹}¨Hÿ„[HÇE¨H‹}ÈHÿ„bHÇEÈèÁcH‰ÃH‹H‹
ÀãëfDH‹PH…ÒtH‰ÐL‹"M…ätìI9ÌtçH‹HH‹@ë
H‹HH‹@M…ätIÿ$H…ÉtHÿH‰MH…ÀtHÿH‰EˆH‹E Hx èÇH‰ÇèñaHÇEÈH…À„HI‰ÅH‹ƒH‹8H‹XL‹pL‰ H‹MH‰HH‹MˆH‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ötIÿu
I‹FL‰÷ÿP0M…ÿ„qH‹5eQL‰ÿ1ÒèãÆÿÿH‰ÃIÿu
I‹GL‰ÿÿP0H…Û„¢Hÿ…<H‹CH‰ßÿP0é-H‹GÿP0HÇE¨H‹}ÈHÿ…žþÿÿH‹GÿP0é’þÿÿH‹GÿP0H‹]°H‹E¨H…Û…%þÿÿH‹HH;
ýátEH;
dá…¢H‹HöA„”H‰Ç1öènÅÿÿH‰EÈHÇE°H…À…þÿÿA¿šéæH‰Ç1ö1ÒèrÂÿÿH‰EÈHÇE°H…À…åýÿÿëÒH‹áH‹8L‰þèç_A¼‚A¿iE1íë0H‹ñàH‹8L‰æèÄ_A¿kE1íIÿA¼‚u
I‹FL‰÷ÿP01ÀH‰EÀéA¼‚A¿­ëA¼‚A¿iE1íéðI‰×H…ÛtHƒûuvL‹vL‰uÈL‰ÿè1_I‰ÄH…Ûu'M…ä~"H‹5)NH‹VL‰ÿèaH…ÀtI‰ÆH‰EÈIÿÌM…䎀õÿÿH5~8L©ÅHUÈL‰ÿH‰ÙèH…ÀˆL‹uÈéRõÿÿI‰ØI÷ÐIÁè?H…ÛHªÆH
¬ÆHHÈH‹IàH‹8HÛÆL
kLHÈH‰$H5‰ÆH<Å1Àè‰^¾OH=jÉH
„kºLè¦ÿÿE1íH‹tàH‹H;EÐ…€L‰èHƒÄh[A\A]A^A_]ÃL‹=î=I‹WL‰þè`H‰ÃH‹ˆ=H‹@H‰-PH‰.PH…Û„;HÿëVè!_H‰E¨A¼}H…À…úôÿÿA¿'écL‹=Ž=H‹=?=H‹GH‹€L‰þH…À„þÿÐH‰ÃH…À„H‰]°é€ôÿÿA¿*éA¿/A¼}1ÛE1öE1íH‹}¨H…ÿ…ÁùÿÿéÈùÿÿL‹5!=I‹VL‰öèC_H‰ÃH‹»<H‹@H‰pOH‰qOH…Û„ßHÿé¼ôÿÿèQ^I‰ÅH…À…×ôÿÿH‰]ÀA¼}A¿3E1íé–L‹5¸<H‹=i<H‹GH‹€L‰öH…À„çÿÐH‰ÃH…À…`ôÿÿH‹=ÞH‹8H5}ÛE1íL‰ò1Àè¼\A¼}A¿1é.A¼}A¿1éH‹5Ý;H‰Ç1Òè£ÂÿÿH‰EÈHÇE°H…À…vúÿÿé`üÿÿA¿8E1íévøÿÿH‹”ÝH‹8L‰îèg\A¼zA¿Šé¾H‹qÝH‹8L‰îèD\HÇE¨A¿ŒE1íH‹}˜HÿA¼z…‹H‹GÿP0é|H‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹}°H…ÿtHÿuH‹GÿP0HÇE°H=¨ÆH
Âh¾°º{è?£ÿÿHuÈHU¨HM°H‰ßè;”…ÀˆŽH‹uÈH‹U¨H‹M°¿1Àè	]H…À„}I‰ÅL‰ÿH‰Æ1ÒèrÁÿÿH‰E€Iÿ„KIÿM„VL‹m€M…í„`L;-/Ýt;L;-.Ýt2L;-Ýt)L‰ïèU\A‰Çë*A¼zA¿é{A¿Äé²E1ÿL;-ðÜA”ÇIÿMuH‹}€H‹GÿP0E…ÿˆÿ„H‹}ÈH…ÿtHÿuH‹GÿP0HÇEÈH‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹}°H…ÿtHÿuH‹GÿP0HÇE°H‹ƒH‹8H‹XL‹xL‰ H‹MH‰HH‹MˆH‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ÿ„²ðÿÿIÿ…©ðÿÿI‹GL‰ÿÿP0éšðÿÿH‹}˜H‹GÿP0IÿM…ªþÿÿI‹EL‰ïÿP0L‹m€M…í… þÿÿA¿Íé‹A¿Ñé€è?[H‹MÈH‹U¨H‹u°H‹xXL‹x`L‹phH‰HXH‰P`H‰phH…ÿtHÿuH‹GÿP0M…ÿtIÿu
I‹GL‰ÿÿP0M…ötIÿu
I‹FL‰÷ÿP0HÇEÈHÇE¨HÇE°A¿ÙH‹ƒH‹8H‹XL‹pL‰ H‹MH‰HH‹MˆH‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0A¼zM…ötiE1íIÿudI‹FL‰÷éÑüÿÿèàZèÝXH…À„æúÿÿë,èÛYH‰ÃH…À…ÿúÿÿH‹ÚH‹8H5R×L‰ú1Àè”XHÇE°A¼}A¿%E1í1ÀH‰EÀ1ÀH‰E¸L‹uÈM…ö…Šôÿÿé”ôÿÿèlXA¼}A¿1H…ÀuÉH‹=¬7H‹GH‹€L‰öH…ÀtYÿÐH‰ÃH…À…§ïÿÿH‹„ÙH‹8H5ÄÖE1íL‰ò1ÀèXë„èYH‰ÃH…À…vïÿÿéûÿÿA¿Èé¢þÿÿ¾AéRùÿÿèñXH‰ÃH…À…Kïÿÿë¢f.„UH‰åAWAVAUATSHƒìhI‰×H‰óH‹ªÙH‹H‰EÐWÀ)E°)EÀH‹ÙH‰U¸H‰UÀH‹5Z7H‰uÈL‹sM…ÿ…\IFÿHƒø‡)H‰} H‹HÙH
y/HcHÈH‰ÑÿàH‹s0H‰uÈH‹S(H‰UÀH‹K H‰M¸H‰U€H‰MˆL‹kL‰m°IÿEH‹EˆHÿH;ûØH‰u„ªM‰îH‹=Ièú¶ÿÿH…À„ÌI‰ÄH‹5CH‹@H‹€L‰çH…À„ˆÿÐI‰ÇH…À„‹L;=£ØL‰u˜t5L;=žØt,L;=…Øt#L‰ÿèÅW‰ÅÀˆeIÿt…Ût'M‰çér1ÛL;=gØ”ÃIÿuãI‹GL‰ÿÿP0…ÛuÙH‹‚HH‹=›5H;G…ÛH‹rHH…À„<HÿL‹=_HM…ÿ„šH‹5ÏEI‹GH‹€L‰ÿH…À„ÚÿÐI‰ÅH…À„ÝIÿu
I‹GL‰ÿÿP0H‹5dFE1öL‰ï1Òè׻ÿÿH…À„1H‰ÃIÿML‹u˜„ìHÿ„öH‹5CI‹D$H‹€L‰çH…À„ÿÐI‰ÅH…À„I‹EH;,×…=I‹]H…Û„_M‹uHÿIÿIÿMu
I‹EL‰ïÿP0L‰÷H‰ÞèDµÿÿI‰ÇHÿu
H‹CH‰ßÿP0M‰õL‹u˜M…ÿ„pIÿM„iIÿ$„sL‹eˆL‰}¨H‹7GH‹=@4H;G…ÆH‹'GH…À„HÿL‹=GM…ÿ„rH‹5Ä@I‹GH‹€L‰ÿH…À„ÅÿÐI‰ÅH…À„ÈIÿu
I‹GL‰ÿÿP0H‹}¨L‰îºèµUH…À„I‰ÇIÿMtqL;=NÖuéIÿEHÿ„HL‹5K=IÿIÿM„ZL‰mˆH‹=SFè.´ÿÿH…À…4ýÿÿH=¿H
a¾‹º×舛ÿÿE1íL‹eˆé•
I‹EL‰ïÿP0L;=ÓÕ„¤L;=ÎÕ„—L;=±Õ„ŠL‰ÿèíT‰ÅÀL‹m€ˆŸIÿ„€…Û„ŠL‹M M‹¹èIÿIƒÁ L‰<$L‰÷L‰æL‰ê¹E1Àÿ¿EH…À„(H‰E Iÿu
I‹GL‰ÿÿP0L‹}¨H‹}L;-4Õ…¯	é1ÛL;=(Õ”ÃL‹m€Iÿu€I‹GL‰ÿÿP0…Û…vÿÿÿH‹cEH‹=T2H;G…H‹SEH…ÀH‹]¨„[HÿL‹-<EM…턽H‹5Ü>I‹EH‹€L‰ïH…À„
ÿÐI‰ÇH…À„
IÿMu
I‹EL‰ïÿP0H‹}¨L‰þºèÄSH…À„XI‰ÅIÿu
I‹GL‰ÿÿP0L;-TÔ„¶L;-OÔ„©L;-2Ô„œL‰ïènS‰ÅÀL‹}¨ˆ¯IÿM„–…Û„ L‹M M‹©èIÿEIƒÁ L‰,$L‰÷E1öL‰æH‹U€¹E1ÀÿRDH‰ÁH‰E H…À„ðIÿMH‹}uI‹EL‰ïÿP0H‹}L‹u˜L‹m€L;-£Ó…é‚1ÛL;-—Ó”ÃL‹}¨IÿM…jÿÿÿI‹EL‰ïÿP0…Û…`ÿÿÿH‹åCH‹=¾0H;G…ÎH‹ÕCH…À„&HÿL‹=ÂCM…ÿ„¥H‹5:=I‹GH‹€L‰ÿH…À„ÕÿÐI‰ÅH…À„ØIÿu
I‹GL‰ÿÿP0H‹}¨L‰îºè3RH…À„AI‰ÇIÿMu
I‹EL‰ïÿP0L;=ÂÒ„§L;=½Ò„šL;= Ò„L‰ÿèÜQ‰ÅÀL‹m€ˆ:Iÿ„‡…Û„‘L‹M M‹¹èIÿIƒÁ L‰<$L‰÷L‰æL‰ê¹E1ÀÿÞBH‰ÁH‰E H…À„ºIÿH‹}uI‹GL‰ÿÿP0H‹}L‹}¨L;-Ò…—HÿH‹5$ѺèPQ»þH…À„I‰ÅH;êÑt>L;-éÑt5L;-ÐÑt,L‰ïèQ‰ÅÀH‹MˆhIÿMt&A¿…Û…Ÿë.1ÛL;-©Ñ”ÃH‹MIÿMuÚI‹EL‰ïÿP0H‹MA¿…ÛuoH‹55ÑH‰Ϻè¶PH…À„¬I‰ÅH;UÑ„ÜL;-PÑ„ÏL;-3Ñ„ÂL‰ïèoP‰ÅÀH‹Mˆ¹IÿM„¼…Û„ÊHÿ	„¤E…ÿL‹}¨…®ésH‹=ëÐH‹GÿP0H‹uL‹5ñ7IÿIÿM…¦úÿÿI‹EL‰ïÿP0H‹ué“úÿÿI‹EL‰ïÿP0Hÿ…
ùÿÿH‹CH‰ßÿP0éûøÿÿI‹EL‰ïÿP0Iÿ$…ùÿÿI‹D$L‰çÿP0é}ùÿÿ1ÛL;-rДÃH‹MIÿM…DÿÿÿI‹EL‰ïÿP0H‹M…Û…6ÿÿÿH‹dAH‹=•-H;G…÷H‹TAH…À„HÿL‹-AAM…턘H‹5ù8I‹EH‹€L‰ïH…À„DÿÐI‰ÆH…À„GIÿMu
I‹EL‰ïÿP0H‹5Å:I‹FH‹€L‰÷H…À„ÿÐI‰ÅH…ÀH‹}„IÿuI‹FL‰÷ÿP0H‹}L‰îºèÊNH…À„5I‰ÆIÿMu
I‹EL‰ïÿP0L;5YÏ„ÁL;5TÏ„´L;57Ï„§L‰÷èsNA‰DžÀH‹M‰¢¾­E1íé·1ÛL;=Ï”ÃL‹m€Iÿ…yüÿÿI‹GL‰ÿÿP0…Û…oüÿÿH‹{?H‹=<,H;G…ãH‹k?H…À„ÁHÿL‹-X?M…í„bH‹5Ð8I‹EH‹€L‰ïH…À„pÿÐI‰ÇH…À„sIÿMu
I‹EL‰ïÿP0H‹}¨L‰þºè°MH…À„ýI‰ÅIÿu
I‹GL‰ÿÿP0L;-@Ît3L;-?Ît*L;-&Ît!L‰ïèfM‰ÅÀL‹}¨y¾|»ïé¦1ÛL;-
ΔÃL‹}¨IÿMu
I‹EL‰ïÿP0…Û„ËL‹M M‹©èIÿEIƒÁ L‰,$L‰÷E1öL‰æH‹U€¹E1ÀÿY>H‰ÁH‰E H…À…×ùÿÿ¾‰»ðéÂ
E1ÿL;5ÍA”ÇH‹MIÿuI‹FL‰÷ÿP0H‹ML‹u˜Hÿ	…\üÿÿH‹AH‰ÏÿP0E…ÿL‹}¨„ÊH‹z>H‹=›*H;G…k
H‹j>H…À„»
HÿL‹5W>M…ö„þ
H‹5w5I‹FH‹€L‰÷H…À„j
ÿÐI‰ÅH…À„m
Iÿu
I‹FL‰÷ÿP0I‹EH;Ì„È
L‰ïH‹u èΪÿÿI‰ÇM…ÿL‹u˜„IÿMu
I‹EL‰ïÿP0H‹5_9I‹GH‹€L‰ÿH…À„ô
ÿÐI‰ÅH…À„÷
Iÿu
I‹GL‰ÿÿP0H‹5œ)L‰ïºè•KH…À„ñ
I‰ÇIÿMu
I‹EL‰ïÿP0L;=$ÌtxL;=#ÌtoL;=
ÌtfL‰ÿèJK‰ÅÀH‹}ˆ}Iÿt`…ÛL‹}¨tnHÿH‹GH;§Ë„©H‹u èè©ÿÿI‰ÅM…íL‹}¨„ñH‹}HÿuH‹GÿP0H‹} ë51ÛL;=©Ë”ÃH‹}Iÿu I‹GL‰ÿÿP0H‹}…ÛL‹}¨u’H‹} HÿI‰ýIÿuI‹GH‰ûL‰ÿÿP0H‰ßH…ÿtHÿuH‹GÿP0M…ötIÿu
I‹FL‰÷ÿP0M…ä„kIÿ$…aI‹D$L‰çÿP0éQH‹Á;H‹=j(H;G…éH‹±;H…À„AHÿL‹=ž;M…ÿ„¨H‹5~8I‹GH‹€L‰ÿH…À„ðÿÐI‰ÅH…À„óIÿu
I‹GL‰ÿÿP0H‹}¨L‰îºèßIH…À„DI‰ÇIÿMu
I‹EL‰ïÿP0L;=nÊtBL;=mÊt9L;=TÊt0L‰ÿè”I‰ÅÀL‹m€y.»ñ¾§1ÉL‹e¨M…ÿ…JéÈ1ÛL;=)Ê”ÃL‹m€Iÿu
I‹GL‰ÿÿP0…Ût[L‹M M‹¹èIÿIƒÁ L‰<$L‰÷L‰æL‰ê¹E1Àÿš:H‰ÁH‰E H…À…Œ÷ÿÿ»ò¾´1ÉL‹e¨M…ÿ…ÌéJH‹m:H‹=þ&H;G…nH‹]:H…À„ÇHÿL‹-J:M…í„.H‹5
7I‹EH‹€L‰ïH…À„vÿÐI‰ÇH…À„yIÿMu
I‹EL‰ïÿP0H‹}¨L‰þºèrHH…À„ÉI‰ÅIÿu
I‹GL‰ÿÿP0L;-Ét3L;-Ét*L;-èÈt!L‰ïè(H‰ÅÀL‹}¨y¾Ò»óéh1ÛL;-ÌÈ”ÃL‹}¨IÿMu
I‹EL‰ïÿP0…ÛtQL‹M M‹©èIÿEIƒÁ L‰,$L‰÷E1öL‰æH‹U€¹E1ÀÿO9H‰ÁH‰E H…À…ôÿÿ¾ß»ôéˆH‹19H‹=ª%H;G…H‹!9H…À„dHÿL‹=9M…ÿ„ËH‹5®5I‹GH‹€L‰ÿH…À„ÿÐI‰ÅH…À„Iÿu
I‹GL‰ÿÿP0H‹}¨L‰îºèGH…À„gI‰ÇIÿMu
I‹EL‰ïÿP0L;=®ÇtBL;=­Çt9L;=”Çt0L‰ÿèÔF‰ÅÀL‹m€y.»õ¾ý1ÉL‹e¨M…ÿ…Šé1ÛL;=iÇ”ÃL‹m€Iÿu
I‹GL‰ÿÿP0…Ût[L‹M M‹¹èIÿIƒÁ L‰<$L‰÷L‰æL‰ê¹E1Àÿ
8H‰ÁH‰E H…À…Ìôÿÿ»ö¾
1ÉL‹e¨M…ÿ…éŠH‹Ý7H‹=>$H;G…‘H‹Í7H…À„êHÿL‹-º7M…턇H‹5Z4I‹EH‹€L‰ïH…À„™ÿÐI‰ÇH…À„œIÿMu
I‹EL‰ïÿP0H‹}¨L‰þºè²EH…À„ìI‰ÅIÿu
I‹GL‰ÿÿP0L;-BÆ„“L;-=Æ„†L;- Æt}L‰ïè`E‰ÅÀL‹}¨y{¾(»÷é Iƒþ‡ÀH‰} H‰uHJc°HÁÿáH‰U€L‰ÿèÃCI‰ÄH‹5Õ0H‹VL‰ÿèŸEH‰E°H…À„uI‰ÅIÿÌéü1ÛL;-¨Å”ÃL‹}¨IÿMu
I‹EL‰ïÿP0…Û„YL‹M M‹©èIÿEIƒÁ L‰,$L‰÷E1öL‰æH‹U€¹E1ÀÿW6H‰ÁH‰E H…À…uñÿÿ¾5»øé`èIDI‰ÇH…À…uìÿÿºÙ¾—éÃH‹¹"H‹SH‰ÞèÛDI‰ÇH‹S"H‹@H‰85L‰=95M…ÿ„½IÿéîÿÿèéCI‰ÅH…À…8îÿÿ¾ö»ééKH‹Y"H‹=
"H‹GH‹€H‰ÞH…À„ÜÿÐI‰ÇH…À…ÊíÿÿH‹ÞÃH‹8H5Á1ÀH‰E H‰Ú1ÀèZBºé¾ôë»é¾ù锺é¾ô1ÀH‰E L‹e¨éáH‹15H‹=z!H;G…wH‹!5H…À„äHÿL‹=5M…ÿ„'H‹5–,I‹GH‹€L‰ÿH…À„~ÿÐI‰ÅH…À„Iÿu
I‹GL‰ÿÿP0H‹}¨L‰îºèïBH…À„áI‰ÇIÿMu
I‹EL‰ïÿP0L;=~ħL;=yÄšL;=\čL‰ÿè˜B‰ÅÀL‹m€‰‡»ù¾S1ÉL‹e¨M…ÿuNéÌ»ê¾1ÉL‹e¨M…ÿu4é²»Ù¾™1ÉM…ÿu霻é¾û1ÉL‹e¨M…ÿ„ƒE1íE1öIÿ…žé}1ÛL;=ДÃL‹m€Iÿu
I‹GL‰ÿÿP0…Û„pL‹M M‹¹èIÿIƒÁ L‰<$L‰÷L‰æL‰ê¹E1Àÿ3H…À…íÿÿ»ú¾`1ÉL‹e¨M…ÿ…vÿÿÿéôH‹ßH‹SH‰Þè!BI‰ÇH‹™H‹@H‰n2L‰=o2M…ÿ„’Iÿéêÿÿè/AI‰ÅH…À…#êÿÿ¾§»Û1ÉE1íE1öIÿ…²
é‘
H‹nH‹=?H‹GH‹€H‰ÞH…À„wÿÐI‰ÇH…À…¤éÿÿH‹ÁH‹8H5S¾1ÀH‰E H‰Ú1Àè?ºÛ¾¥ë>»Û¾²1Ééк۾¥ëè@I‰ÅH…À…èéÿÿºà¾¾1ÀH‰E M‰çH=QªH
BLèɆÿÿE1íL‹eˆH‹} é¬õÿÿH;ÊÀ„bH;-ÀuI‹Eö@tL‰ï1öè?¤ÿÿéLH‹53L‰ï1Òèù¤ÿÿé6H‹…H‹SH‰Þè§@I‰ÅH‹H‹@H‰1L‰-1M…í„qIÿEéØëÿÿè´?I‰ÇH…À…óëÿÿ»ë¾!éÎ
L‹=$H‹=ÕH‹GH‹€L‰þH…À„’ÿÐI‰ÅH…À……ëÿÿH‹©¿H‹8H5é¼1ÀH‰E L‰ú1Àè%>ºë¾I‰ÜéÎþÿÿ¾$»ë顺ë¾1ÀH‰E I‰Üé§þÿÿ¾“E1íM‰üL‹}éx¾3»ìM‰ü1ÉéŽH‹oH‹SH‰Þè‘?I‰ÆH‹	H‹@H‰Ö0L‰5×0M…ö„àIÿéxòÿÿèŸ>I‰ÅH…À…“òÿÿ¾À»ÿéòH‹H‹=ÀH‹GH‹€H‰ÞH…À„øÿÐI‰ÆH…ÀL‹eˆL‹}¨…òÿÿH‹Œ¾H‹8H5̻H‰Ú1Àè=ºÿ¾¾M‰üL‹u˜é³ýÿÿI‹]H…Û„+òÿÿM‹uHÿIÿIÿMu
I‹EL‰ïÿP0L‰÷H‰ÞH‹U è̝ÿÿI‰ÇHÿu
H‹CH‰ßÿP0M‰õL‹eˆM…ÿL‹u˜…øñÿÿ¾Ï»ÿE1öL‹e¨H‹M éL
è=I‰ÅH…À…	òÿÿ¾Ò»ÿE1íL‹e¨E1öH‹M Iÿ…
éù	»ÿ¾ÕE1öL‹e¨H‹M éH‹C0H‰EH‰EÈH‹C(H‰E€H‰EÀH‹C H‰EˆH‰E¸L‹kL‰m°L‰ÿèë;I‰ÄIƒþH‹u„èéH‰U€H‹C H‰EˆH‰E¸L‹kL‰m°L‰ÿèµ;I‰ÄëCH‰U€L‹kL‰m°L‰ÿèœ;I‰ÄM…ä~`H‹5‰'H‹VL‰ÿès=H…À„TH‰EˆH‰E¸IÿÌM…äKH‹uébäÿÿ¾&»ë1ÉM‰üE1öé 	¾”E1öM‰üéîH‹A½H‰E€H‰EˆH‹ué#äÿÿL‹M…ÿ„JñÿÿL‹wIÿIÿHÿuH‹}H‹GÿP0L‰÷L‰þH‹U èœÿÿI‰ÅIÿu
I‹GL‰ÿÿP0L‰uL‹eˆL‹u˜M…íL‹}¨…ñÿÿ¾ð»E1öM‰üL‹mH‹M ézL‰ï1ö1ÒèÿÿI‰ÇM…ÿ…åÿÿ¾Ì»à1ÉE1öéNH‹/H‹SH‰ÞèQ<I‰ÇH‹ÉH‹@H‰Þ,L‰=ß,M…ÿ„µIÿL‹eˆL‹u˜é
éÿÿèW;I‰ÅH…À…(éÿÿ¾L»íé¹H‹ÇH‹=xH‹GH‹€H‰ÞH…À„ÌÿÐI‰ÇH…ÀL‹eˆL‹u˜…²èÿÿH‹D»H‹8H5„¸1ÀH‰E H‰Ú1ÀèÀ9ºí¾Jé‚÷ÿÿ¾›E1íL‹e¨L‹}E1öém»í¾Oéߺí¾JéF÷ÿÿ»ÿ¾×L‹e¨H‹M M…ÿ…}øÿÿ‰ÚH‰ËH=j¤H
[Fèâ€ÿÿH‰ßE1íM‰çL‹eˆéÃïÿÿH‹1»H‰EˆH‹5(H‹VL‰ÿèø:H…ÀtH‰E€H‰EÀIÿÌH‹uM…äéïáÿÿH‹õºH‰E€H‹5Z$H‹VL‰ÿè¼:H…ÀtH‰ÆH‰EÈIÿÌM…ä޹áÿÿH5GLEFHU°L‰ÿL‰ñèi…ÀˆL‹m°H‹E¸H‰EˆH‹EÀH‰E€H‹uÈéwáÿÿ»î¾^1ÉL‹e¨M…ÿ…†÷ÿÿéÿÿÿ¾œE1öL‹e¨I‰Ïé$»í¾Q1ÉL‹e¨M…ÿ…T÷ÿÿéÒþÿÿH‹ÝH‹SH‰Þèÿ9I‰ÅH‹wH‹@H‰4+L‰-5+M…í„Ù
IÿEL‹eˆéçéÿÿH‹˜H‹SH‰Þèº9I‰ÅH‹2H‹@H‰_*L‰-`*M…í„ý
IÿEL‹eˆL‹u˜é÷êÿÿè¿8I‰ÆH…À…¹éÿÿ¾¥éRH‹4H‹=åH‹GH‹€H‰ÞH…À„ÿÐI‰ÅH…ÀL‹eˆL‹}…HéÿÿH‹±¸H‹8H5ñµE1íH‰Ú1Àè07¾£L‹e¨E1öéóè:8I‰ÇH…À…êÿÿ»ï¾wéTH‹ªH‹=[H‹GH‹€H‰ÞH…À„˜
ÿÐI‰ÅH…ÀL‹eˆL‹u˜…êÿÿH‹'¸H‹8H5gµ1ÀH‰E H‰Ú1Àè£6ºï¾uéeôÿÿè¯7I‰ÅH…ÀH‹}…åèÿÿ¾¨E1íL‹e¨I‰ÿëB¾£E1íL‹e¨I‰ÏE1öë.¾z»ïéèºï¾uéôÿÿ¾«E1öL‹e¨L‹}H‹M »þIÿ…äéÃH‹ÀH‹SH‰Þèâ7I‰ÇH‹ZH‹@H‰Ÿ(L‰= (M…ÿ„¥	IÿL‹eˆL‹u˜éòìÿÿèè6I‰ÅH…À…
íÿÿ¾¢»ñéJH‹XH‹=	H‹GH‹€H‰ÞH…À„¼	ÿÐI‰ÇH…ÀL‹eˆL‹u˜…—ìÿÿH‹նH‹8H5´1ÀH‰E H‰Ú1ÀèQ5ºñ¾ éóÿÿ»ñ¾¥éˆºñ¾ éïòÿÿH‹ÏH‹SH‰Þèñ6I‰ÅH‹iH‹@H‰Æ'L‰-Ç'M…í„*	IÿEL‹eˆL‹u˜élíÿÿèö5I‰ÇH…À…‡íÿÿ»ó¾ÍéH‹fH‹=H‹GH‹€H‰ÞH…À„@	ÿÐI‰ÅH…ÀL‹eˆL‹u˜…íÿÿH‹ãµH‹8H5#³1ÀH‰E H‰Ú1Àè_4ºó¾Ëé!òÿÿ¾Ð»óéÞºó¾ËéýñÿÿH‹ÝH‹SH‰Þèÿ5I‰ÇH‹wH‹@H‰ì&L‰=í&M…ÿ„®IÿL‹eˆL‹u˜éÏíÿÿè5I‰ÅH…À…êíÿÿ¾ø»õégH‹uH‹=&H‹GH‹€H‰ÞH…À„ÅÿÐI‰ÇH…ÀL‹eˆL‹u˜…tíÿÿH‹ò´H‹8H52²1ÀH‰E H‰Ú1Àèn3ºõ¾öé0ñÿÿ»õ¾û饺õ¾öéñÿÿH‹ìH‹SH‰Þè5I‰ÅH‹†H‹@H‰&L‰-&M…í„3IÿEL‹eˆL‹u˜éIîÿÿè4I‰ÇH…À…dîÿÿ»÷¾#é-H‹ƒH‹=4H‹GH‹€H‰ÞH…À„IÿÐI‰ÅH…ÀL‹eˆL‹u˜…îíÿÿH‹´H‹8H5@±1ÀH‰E H‰Ú1Àè|2º÷¾!é>ðÿÿ¾&»÷1ÉL‹e¨E1íE1öIÿuI‹G‰]¨H‰M L‰ÿ‰óÿP0‰ÞH‹M ‹]¨M…텋馺÷¾!éäïÿÿè&2H…À…ÝH‹=nH‹GH‹€H‰ÞH…À„ÜÿÐI‰ÇH…ÀL‹eˆL‹u˜…&ÝÿÿH‹:³H‹8H5z°1ÀH‰E H‰Ú1Àè¶1L‹e¨éèÈ2I‰ÇH…À…ëÜÿÿéïÿÿH‹BH‹SH‰Þèd3I‰ÇH‹ÜH‹@H‰$L‰=‚$M…ÿ„XIÿL‹eˆL‹u˜édïÿÿèj2I‰ÅH…À…ïÿÿ¾N»ùE1íL‹e¨1ÉE1öIÿ…éþÿÿéÈþÿÿH‹ÅH‹=vH‹GH‹€H‰ÞH…À„ZÿÐI‰ÇH…ÀL‹eˆL‹u˜…ôîÿÿH‹B²H‹8H5‚¯H‰Ú1ÀèÄ0ºù¾Lé€îÿÿ»ù¾QE1ö1ÉL‹e¨IÿMuI‹E‰]¨I‰ÏL‰ï‰óÿP0‰ÞL‰ù‹]¨H‰M M‰çM…öL‹eˆtIÿuI‹FL‰÷A‰öÿP0D‰öH=l›H
]=‰ÚèâwÿÿE1íL‹u˜H‹} éÅæÿÿH‹=ûH;=,²„ÄH‹E¨H‹@H;÷±tH‹€¨%H…À…žH‹u¨è«1I‰ÅH…À„žH‹=äL‰îèôÿÿH…À„@H‰ÃIÿMu
I‹EL‰ïÿP0H‰ßè0bHÿu
H‹CH‰ßÿP01ÀH‰E L‹e¨L‹u˜ºü¾éEðÿÿè—/H…À…úH‹=ßH‹GH‹€H‰ÞH…À„ëÿÐI‰ÇH…ÀL‹u˜…@Ùÿÿé—ïÿÿèb0I‰ÇH…À…*Ùÿÿéïÿÿè>/H…À…ºH‹=†H‹GH‹€H‰ÞH…À„¹ÿÐI‰ÅH…ÀL‹eˆL‹u˜L‹}¨…*ÜÿÿH‹N°H‹8H5Ž­1ÀH‰E H‰Ú1ÀèÊ.M‰üégèÝ/I‰ÅH…À…ðÛÿÿéfðÿÿè¹.H…À…\H‹=H‹GH‹€H‰ÞH…À„UÿÐI‰ÆH…ÀL‹eˆL‹}¨…^ãÿÿH‹ͯH‹8H5
­H‰Ú1ÀèO.M‰üé	èb/éñÿÿL‹s1ÀM…öŸÀLD@H–H
–HNÈH‹¥¯H‹8Hó:L
0–LNÈL‰4$H5å•H{;1Àèå-¾;H=ï˜H
à:º†èbuÿÿE1íH‹ЯH‹H;EÐuL‰èHƒÄh[A\A]A^A_]Ãè®/¾%ë·è¤-H…À…hH‹=ìH‹GH‹€H‰ÞH…À„gÿÐI‰ÇH…ÀL‹eˆL‹u˜…&ÜÿÿH‹¸®H‹8H5ø«1ÀH‰E H‰Ú1Àè4-L‹e¨éèF.é,óÿÿè.-H…À…H‹=vH‹GH‹€H‰ÞH…À„%ÿÐI‰ÅH…ÀL‹eˆL‹}…ÙÞÿÿH‹B®H‹8H5‚«E1íH‰Ú1ÀèÁ,L‹e¨éÉèÅ,H…À…äH‹=
H‹GH‹€H‰ÞH…À„ãÿÐI‰ÅH…ÀL‹eˆL‹u˜…ÉßÿÿH‹٭H‹8H5«1ÀH‰E H‰Ú1ÀèU,L‹e¨é”èg-éàôÿÿè]-é`õÿÿèE,H…À…‹H‹=H‹GH‹€H‰ÞH…À„ŠÿÐI‰ÇH…ÀL‹eˆL‹u˜…ãÿÿH‹Y­H‹8H5™ª1ÀH‰E H‰Ú1ÀèÕ+L‹e¨é;èç,é<öÿÿèÏ+H…À…<H‹=H‹GH‹€H‰ÞH…À„;ÿÐI‰ÅH…ÀL‹eˆL‹u˜…äÿÿH‹ã¬H‹8H5#ª1ÀH‰E H‰Ú1Àè_+L‹e¨éìèq,é¸öÿÿèY+H…À…íH‹=¡
H‹GH‹€H‰ÞH…À„ìÿÐI‰ÇH…ÀL‹eˆL‹u˜…ïäÿÿH‹m¬H‹8H5­©1ÀH‰E H‰Ú1Àèé*L‹e¨éèû+é3÷ÿÿèã*H…À…žH‹=+
H‹GH‹€H‰ÞH…À„ÿÐI‰ÅH…ÀL‹eˆL‹u˜…ååÿÿH‹÷«H‹8H57©1ÀH‰E H‰Ú1Àès*L‹e¨éNè…+é¯÷ÿÿH‹u¨èM+I‰ÅH…À…búÿÿºü¾x1ÀH‰E L‹e¨L‹u˜ééêÿÿ1ÀH‰E L‹e¨L‹u˜ºé¾ôéÌêÿÿè,+éøÿÿè*H…À…öH‹=\	H‹GH‹€H‰ÞH…À„õÿÐI‰ÇH…ÀL‹eˆL‹u˜…ÚçÿÿH‹(«H‹8H5h¨H‰Ú1Àèª)1ÀH‰E L‹e¨é¦è¶*éžøÿÿ»ü¾zé×øÿÿ1ÀH‰E L‹u˜éäéÿÿèŽ*é
úÿÿ1ÀH‰E L‹e¨L‹u˜ºë¾éêÿÿèg*é?úÿÿL‹e¨L‹u˜ºÿ¾¾éæéÿÿèF*é£úÿÿ1ÀH‰E L‹e¨L‹u˜ºí¾Jé¿éÿÿè*é‘ûÿÿE1íL‹e¨L‹}E1öH‹M »þ¾£Iÿ…Ÿöÿÿé~öÿÿèë)éÓûÿÿ1ÀH‰E L‹e¨L‹u˜ºï¾uédéÿÿèÄ)éüÿÿ1ÀH‰E L‹e¨L‹u˜ºñ¾ é=éÿÿè)énüÿÿ1ÀH‰E L‹e¨L‹u˜ºó¾Ëééÿÿèv)é½üÿÿ1ÀH‰E L‹e¨L‹u˜ºõ¾öéïèÿÿèO)éýÿÿ1ÀH‰E L‹e¨L‹u˜º÷¾!éÈèÿÿè()é[ýÿÿ1ÀH‰E L‹e¨L‹u˜ºù¾Lé¡èÿÿè)éþÿÿfùãÿÿìÿÿóëÿÿµëÿÿ©ëÿÿ«Ðÿÿ£Ðÿÿ›Ðÿÿ“ÐÿÿUH‰åAWAVAUATSHƒìI‰þH‰÷èÔaI‰ÅHƒøÿuèž'H…À…ºIEÿI]H…ÀHIØH‹5
I‹FH‹€L‰÷H…À„òÿÐI‰ÄH…À„õè'I‰ÇH…À„õHÁûHÿÃH‰ßèÊ'H…À„þI‰ÆH‹5L‰ÿH‰Âèì&…Àˆ³Iÿu
I‹FL‰÷ÿP0H‹6H‹=GH;G…nH‹&H…À„ÍHÿL‹5M…ö„)L‰mÈÇEÐ#H‹5HI‹FH‹€L‰÷H…À„bÿÐI‰ÅH…À„eIÿu
I‹FL‰÷ÿP0H‹5ÝL‰ÿL‰êèB&…Àˆ IÿMu
I‹EL‰ïÿP0H‹5ãL‰çL‰úèPŒÿÿH…À„¿I‰ÅIÿ$„HIÿ„SH‹5’I‹EH‹€L‰ïH…À„¥ÿÐI‰ÇH…À„¨IÿMu
I‹EL‰ïÿP0I‹GH;š§…ÊI‹_H…Û„½M‹gHÿIÿ$IÿL‹mÈu
I‹GL‰ÿÿP0H‹*L‰çH‰Þ藆ÿÿI‰ÆHÿu
H‹CH‰ßÿP0M‰çM…ö„ŽIÿu
I‹GL‰ÿÿP0H‹5ÓI‹FH‹€L‰÷H…À„ÿÐI‰ÇI‹HÿÈI‰M…ÿ„
H…Àu
I‹FL‰÷ÿP0I‹GH;ۦ…I‹_H…Û„"M‹gHÿIÿ$Iÿu
I‹GL‰ÿÿP0L‰çH‰Þèó„ÿÿI‰ÆHÿu
H‹CH‰ßÿP0M‰çM…ö„'Iÿu
I‹GL‰ÿÿP0I‹FL‹`pM…ä„ËIƒ|$„¿L‰ïè)%H…À„ÊH‰ÃH‹=v¦H‰ÆH‰úèé%I‰ÇHÿ„¨M…ÿ…²é›ÇEÐ#»‡E1íIÿ$uë»–E1öIÿ$uI‹D$L‰çÿP0M…ÿtIÿu
I‹GL‰ÿÿP0M…ötIÿu
I‹FL‰÷ÿP0M…í„UIÿM…KI‹EL‰ïé<I‹D$L‰çÿP0Iÿ…­ýÿÿI‹GL‰ÿÿP0éžýÿÿH‹CH‰ßÿP0M…ÿ„îL‰÷L‰þAÿT$H‰ÃIÿu
I‹GL‰ÿÿP0H…Û„ÈIÿ…ôI‹FL‰÷ÿP0éåè$I‰ÄH…À…üÿÿÇEÐ#»yé©ÇEÐ#»ƒE1íE1öIÿ$…ÿÿÿé÷þÿÿÇEÐ#»…E1íE1öIÿ$…æþÿÿéÖþÿÿH‹5‹L‰ÿèƒÿÿI‰ÆL‹mÈM…ö…rýÿÿÇEÐ$»»éHH‹
[¤H‹9H‹PH5Ž1Àè´"IÿÇEÐ$»Ðu
I‹FL‰÷ÿP0H=ЍH
™/‰ދUÐèjÿÿ1ÛH‰ØHƒÄ[A\A]A^A_]ÃH‹H‹SH‰Þè:$I‰ÆH‹²H‹@H‰L‰5M…ö„¸IÿéuûÿÿèH#I‰ÅH…À…›ûÿÿÇEÐ$»“E1íIÿ$…äýÿÿéÔýÿÿH‹©H‹=ZH‹GH‹€H‰ÞH…À„ÐÿÐI‰ÆH…À…ûÿÿH‹.£H‹8H5n E1íH‰Ú1Àè­!ÇEÐ$»‘E1öIÿ$…uýÿÿéeýÿÿÇEÐ$»‘E1íE1öIÿ$…TýÿÿéDýÿÿ» E1íE1öIÿ$…:ýÿÿé*ýÿÿèo"I‰ÇH…À…XûÿÿÇEÐ$»¬IÿM…”þÿÿéDýÿÿèC"éÞûÿÿÇEÐ$»¾H…À…pþÿÿéaþÿÿH;¯¢tOH;¢uI‹Gö@tL‰ÿ1öè(†ÿÿë<H‹5L‰ÿ1Òèå†ÿÿë)H=ŒH
É-¾Bºé&þÿÿL‰ÿ1ö1ÒèƒÿÿI‰ÆM…ö…ÙûÿÿÇEÐ$»ÍE1öE1íé^üÿÿH‰]Ðè† »‘H…ÀuwH‹=ÍÿH‹GH‹€H…Àt|H‹uÐÿÐI‰ÆH…À…‰ùÿÿH‹¤¡H‹8H5äžE1íH‹UÐ1Àè" ÇEÐ$E1öIÿ$…ïûÿÿéßûÿÿè$!I‰ÆH…À…@ùÿÿé(þÿÿE1íÇEÐ$E1öIÿ$…½ûÿÿé­ûÿÿH‹uÐèî I‰ÆH…À…
ùÿÿé|ÿÿÿ€UH‰åAWAVAUATSHƒìHI‰÷H‹­¡H‹H‰EÐWÀ)E°)EÀL‹5„¡L‰u¸H‹¡H‰]ÀL‰uÈH‹vH…Ò…‚HFÿHƒø‡AH‹W¡L‹5H¡H
áHcHÈM‰ôÿàM‹w0L‰uÈI‹_(H‰]ÀM‹g L‰e¸M‹oL‰m°H‹¡H‹H;EÐ…~L‰îL‰âH‰ÙM‰ðHƒÄH[A\A]A^A_]éÚYHƒþ‡ÃH‰}¨HYHc°HÁH‰U H‰u˜ÿáH‰×I‰ÖèI‰ÄH‹5ŸH‹VL‰÷èy H‰E°H…À„uI‰ÅIÿÌM‰çëM‹oL‰m°H‰×è_I‰ÇM…ÿމH‹5X
H‹VH‹} è1 H…ÀtI‰ÄH‰E¸IÿÏëM‹g L‰e¸M‹oL‰m°H‰×èI‰ÇM…ÿZL‹5 éôM‹w0L‰uÈI‹_(H‰]ÀM‹g L‰e¸M‹oL‰m°H‰×èÚI‰ÇHƒ}˜H‹}¨tFë|L‹5ןM‰ôé­L‹%ȟH‹} H‹55H‹Vè’H…ÀtH‰ÃH‰EÀIÿÏL‹5žŸH‹}¨M…ÿé{þÿÿH‹‘ŸH‹5rH‹VH‹} èSH‹}¨H…ÀtI‰ÆH‰EÈIÿÏM…ÿŽDþÿÿH5
÷Læ*HU°H‹} H‹M˜è’M…Àˆ´L‹m°L‹e¸H‹]ÀL‹uÈH‹}¨éþÿÿI‹w1ÀH…öŸÀLD@Hà„H
â„HNÈH‹žH‹8HÍ)L
…LNÈH‰4$H5¿„Hc*1À迾IH=6ˆH
º)º'è<dÿÿH‹­žH‹H;EÐu1ÀHƒÄH[A\A]A^A_]Ã茾3뻸ýÿÿñýÿÿ2þÿÿfþÿÿ^þÿÿCýÿÿ;ýÿÿ3ýÿÿ+ýÿÿ„UH‰åAWAVAUATSHƒìhH‰}ˆH‹<žH‹H‰EÐL‹=L‰}°L‹5L‰u¸H‹žH‰EÀH‹^H…Ò…”Hƒû‡âH‹æHÿHc˜HÁÿáH‹V(H‰UÀL‹v L‰u¸L‹~L‰}°H‰•xÿÿÿH‹à
H‹˜(¿ÿhL‰ÿH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„ìI‰ÅHƒ8u
I‹EL‰ïÿP0H‹–
H‹˜(¿ÿhL‰÷H‰Æ1Ò1ÉA¸E1ÉÿÓH…À„¼H‰ÃHƒ8u
H‹CH‰ßÿP0‹C…ÀL‰mH‰]€…EA9E…;L‰ÿèJòE˜f.±'uzèøH…À…kL‰÷è#òE f.Š'uzèÑH…À…RH‹aH‹=
úH;G…+H‹QH…À„Â
HÿL‹=>M…ÿ„1H‹5®I‹GH‹€L‰ÿH…À„X
ÿÐI‰ÆH…ÀòE „[
ò\E˜IÿòE uI‹GL‰ÿÿP0òE è{H…À„·
H‰ÃI‹FH;ڛ„â
L‰÷H‰ÞèzÿÿI‰ÅHÿu
H‹CH‰ßÿP0M…í„Iÿ„jL;-֛…té€H‹„H‹=ùH;G…sH‹tH…À„ÉHÿL‹=aM…ÿ„x	H‹5ÑI‹GH‹€L‰ÿH…À„rÿÐI‰ÆH…ÀH‹]€„uIÿu
I‹GL‰ÿÿP0I‹FH;›„E1äE1ÿI‹FH;ߚ„8H;BšuHI‹F‹@ƒà=€u7L‰}°H‰]¸L‰mÀD‰áHÁáH÷ÙAƒÌI‹VH‹B‹Rö …QI‹~éJA|$è^H…À„
I‰ÅM…ÿtM‰}HÿD‰àI‰\ÅH‹MHÿI‰LÅ L‰÷L‰î1Òè­~ÿÿH…À„`
H‰ÃIÿM…ØI‹EL‰ïéÉI‹FL‰÷ÿP0L;-bš„L;-]š„L;-@š„÷L‰ïè|‰ÅÀˆ&IÿM„ñ…Û„ûH‹EˆL‹¨èIÿEòE˜èWH…À„
I‰ÆòE èAH…À„I‰ÇH‹uˆHƒÆ H‹´HƒìH‹əH=
ÁH‹•xÿÿÿL‰éA¸M‰ñSjPÿ5jPAWjPÿŸ	HƒÄPH…À„wI‰ÄIÿM„´Iÿ„¾IÿL‹m„ÈE1ÿ1ÀH‰E H‹]€IÿM…ZéK1ÛL;-J™”ÃIÿM…ÿÿÿI‹EL‰ïÿP0…Û…ÿÿÿH‹=<H‹5%E1ÿ1Òè#}ÿÿA¾\H…À„H‰ÃH‰ÇèiI1ÀH‰E HÿA¼g%L‹m…„H‹CH‰ßÿP0éoI‹EL‰ïÿP0Iÿ…BÿÿÿI‹FL‰÷ÿP0IÿL‹m…8ÿÿÿI‹GL‰ÿÿP0é)ÿÿÿ1ÿHt
¸öÂ…^
L‰âÿÐH‰ÃH…À…´ÇEˆÍ%é´HƒûwRI‰ÔHcHc˜HÁÿáL‰çè.H…ÀŽwI‰ÅH‹57H‹VL‰çèH…À„8H‰E°IÿÍI‰Çé H‰ØH÷ÐHÁè?H…ÛL@HÒ}H
Ô}HHÈH‹q—H‹8HƒìH5Ã}Hn#L
ñ}1ÀSè»HƒÄ¾À$H=f‚H
²"ºöè4]ÿÿE1äéÞH=F‚H
’"¾ö$ºTëÙH=,‚H
x"¾%ºUèõ\ÿÿ1ÛE1ÿ1ÀH‰E E1äIÿM…Oé@H‹éôH‹SH‰ÞèI‰ÇH‹ƒôH‹@H‰Ø	L‰=Ù	M…ÿ„IÿépûÿÿèI‰ÆH…ÀH‹]€…‹ûÿÿÇE¬d»³%éõH‹ƒôH‹=4ôH‹GH‹€H‰ÞH…À„ÿÐI‰ÇH…À…ûÿÿH‹–H‹8H5H“1ÀH‰E H‰Ú1Àè„A¾dA¼±%é!	H‹ôH‹SH‰Þè@I‰ÇH‹¸óH‹@H‰ýL‰=þM…ÿ„»Iÿé¸ùÿÿM‹~M…ÿ„I‹^IÿHÿIÿA¼u
I‹FL‰÷ÿP0I‰ÞH‹]€I‹FH;§•…ÈúÿÿL‰}°H‰]¸L‰mÀD‰àHÁàH÷ØHt¸AƒÌL‰÷L‰âè?vÿÿH…À„
H‰ÃM…ÿtIÿu
I‹GL‰ÿÿP0Iÿu
I‹FL‰÷ÿP0HÿH‹¾H‰] H‰ßÿ0H…ÀL‹m„9H‰ÃHƒ8u
H‹CH‰ßÿP0H‹*H‹=³òH;GH‰]˜…™H‹H…À„HÿL‹5M…ö„PH‹5SýI‹FH‹€L‰÷H…À„˜ÿÐI‰ÅH‹]€L‹}˜I‹HÿÈI‰M…턃H…Àu
I‹FL‰÷ÿP0H‹¯H‹=(òH;G…H‹ŸH…À„zHÿL‹=ŒM…ÿ„^H‹5ÌþI‹GH‹€L‰ÿH…À„ÿÐI‰ÄH…À„Iÿu
I‹GL‰ÿÿP0I‹D$H;”„L‰çL‹}˜L‰þèWrÿÿH‰ÃH…Û„ÏIÿ$uI‹D$L‰çÿP0I‹EH;ߓ„L‰ïH‰ÞèrÿÿI‰ÆHÿu
H‹CH‰ßÿP0M…ö„HIÿMtL;5ޓuéGI‹EL‰ïÿP0L;5Ɠ„0L;5S„#L;5¤“„L‰÷èà‰ÅÀL‹mˆ½Iÿ„…Û„H‹uˆL‹¶èIÿHƒÆ H‹FûHƒìH‹[“H=œºH‹•xÿÿÿL‰ñA¸M‰éSjPÿ5/újPAWjPÿ1HƒÄPH…À„”I‰ÄIÿu
I‹FL‰÷ÿP0H‹]€IÿMu
I‹EL‰ïÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ÿH‹] tIÿu
I‹GL‰ÿÿP0H…ÛtHÿu
H‹CH‰ßÿP0H‹¿’H‹H;EÐ…˜L‰àHƒÄh[A\A]A^A_]Ã1ÛL;5’”ÃL‹mIÿ…ðþÿÿI‹FL‰÷ÿP0…Û…æþÿÿH‹=~H‹5g1ÒèhvÿÿA¾jH…À„q	H‰ÃH‰Çè®BHÿA¼>&…ÖH‹CH‰ßÿP0éÇA¾dA¼±%é­è I‰ÆH…ÀòE …¥õÿÿÇE¬[»B%E1äE1ö1ÀH‰E 1ÀH‰E˜éAH‹wïH‹=(ïH‹GH‹€H‰ÞH…À„ºÿÐI‰ÇH…À…õÿÿH‹üH‹8H5<Ž1ÀH‰E H‰Ú1ÀèxA¾[A¼@%é»E%ÇE¬[E1ÿ1ÀH‰E E1äé×A¾[A¼@%éáA¾hA¼ö%éÖM‹fM…ä„õÿÿM‹~Iÿ$IÿIÿu
I‹FL‰÷ÿP0L‰ÿL‰æH‰ÚèýoÿÿI‰ÅIÿ$uI‹D$L‰çÿP0M‰þHÿ…æôÿÿé×ôÿÿÇE¬[»T%E1ä1ÀH‰E 1ÀH‰E˜L‹mé.L‹=UîI‹WL‰þèwI‰ÆH‹ïíH‹@H‰TL‰5UM…ö„›IÿéJûÿÿè…é`ûÿÿH…Àu
I‹FL‰÷ÿP0H={H
Q¾&ºièÎUÿÿE1äL‹mIÿM…/ýÿÿé ýÿÿH‹ÉíH‹=zíH‹GH‹€H‰ÞH…À„†ÿÐI‰ÆH…À…ËúÿÿH‹NH‹8H5ŽŒH‰Ú1ÀèÐ
A¾iA¼&L‹}˜élH‹fíH‹SH‰ÞèˆI‰ÇH‹íH‹@H‰uL‰=vM…ÿ„;IÿéâúÿÿÇE¬_¹„%énè…I‰ÄH…À…ìúÿÿÇE¬iÇEˆ&E1öH‹] E1äIÿM…œéUH‹ÝìH‹=ŽìH‹GH‹€H‰ÞH…À„)ÿÐI‰ÇH…À…fúÿÿH‹bŽH‹8H5¢‹E1ÿH‰Ú1ÀèáÇEˆ
&ÇE¬ié¤ÇE¬`¹Ž%éÄM‹|$M…ÿ„cúÿÿM‹t$IÿIÿIÿ$uI‹D$L‰çÿP0L‰÷L‰þH‹U˜èŽmÿÿH‰ÃIÿu
I‹GL‰ÿÿP0M‰ôL‹}˜H…Û…1úÿÿÇE¬iÇEˆ&E1ÿH‹] E1öIÿM…¥é^ÇEˆ
&ÇE¬iE1ÿH‹] E1öE1äIÿM…{é4ÇE¬^¹˜%é
M‹eM…ä„äùÿÿM‹}Iÿ$IÿIÿMu
I‹EL‰ïÿP0L‰ÿL‰æH‰ÚèÔlÿÿI‰ÆIÿ$uI‹D$L‰çÿP0M‰ýL‹}˜Hÿ…´ùÿÿé¥ùÿÿÇE¬i¹+&E1öE1ÿH‹] é˜ÇE¬k»[&E1äéöA¾XA¼#%ëA¾YA¼-%1ÀH‰E E1ÿH=xH
OD‰æD‰òéûÇEˆÓ%é}1ÛÇEˆÞ%ÇE¬d1ÀH‰E˜A¿E1äIÿM…féL‹~L‰}°L‰çèÚ
I‰ÅM…íŽ H‹5ÃöH‹VL‰çè­H…Àt7H‰E¸IÿÍI‰ÆëL‹v L‰u¸L‹~L‰}°L‰çè’
I‰ÅM…íH‹™ŒŽÕîÿÿH‹5„ùH‹VL‰çè^H…Àt;H‰ÂH‰EÀIÿÍë&L‹n(L‰mÀL‹v L‰u¸L‹~L‰}°L‰çè;
L‰êI‰ÅM…펂îÿÿH5!äLÔHU°L‰çH‰Ùè{:…ÀˆVL‹}°L‹u¸H‹UÀéLîÿÿÇE¬[¹W%E1öE1ÿ1Û1ÀH‰E˜‰MˆE1äM…ítHIÿMuBI‹EL‰ïÿP0ë6ÇE¬i».&E1äëDH‹»‹éøíÿÿÇEˆÅ%ÇE¬d1ÀH‰E˜1ÛE1äH‰] M…ÿL‹m‹]ˆtIÿu
I‹GL‰ÿÿP0M…öL‹}˜tIÿu
I‹FL‰÷ÿP0M…ätIÿ$uI‹D$L‰çÿP0H=vH
N‰ދU¬èÐPÿÿE1äH‹]€IÿM…1øÿÿé"øÿÿL‰â1ÉÿÐH‰ÃH…À…Tõÿÿé›òÿÿèè	A¼±%H…À…6H‹=RèH‹GH‹€H‰ÞH…À„0ÿÐI‰ÇH…ÀL‹m…1ïÿÿH‹"ŠH‹8H5b‡1ÀH‰E H‰Ú1ÀèžE1ÿéêè±	I‰ÇH…À…÷îÿÿéÛóÿÿèA¼@%H…À…åH‹=ÏçH‹GH‹€H‰ÞH…À„ßÿÐI‰ÇH…ÀL‹m…ÁíÿÿH‹Ÿ‰H‹8H5߆1ÀH‰E H‰Ú1ÀèE1ÿA¾[é¾üÿÿE1äE1ÿH‹]€I‹FH;ª‰…Ëîÿÿéþóÿÿè	I‰ÇH…À…aíÿÿé>øÿÿèäA¼&H…À…nH‹=&çH‹GH‹€L‰þH…À„cÿÐI‰ÆH…ÀL‹m…sôÿÿH‹öˆH‹8H56†L‰ú1Àèxé"èŽI‰ÆH…À…BôÿÿérùÿÿA¼c%1ÀH‰E L‹méùûÿÿèUÇE¬iH…À…H‹=–æH‹GH‹€H‰ÞH…À„ÿÐI‰ÇH…À…nôÿÿH‹jˆH‹8H5ª…E1ÿH‰Ú1Àèéé¿èÿI‰ÇH…À…:ôÿÿéÏùÿÿA¼:&étûÿÿ¾¬$éñÿÿ1ÀH‰E E1ÿL‹mA¾déRûÿÿè¼I‰ÇH…ÀL‹m…þìÿÿéÈýÿÿ1ÀH‰E E1ÿL‹mA¾[é ûÿÿèŠI‰ÇH…ÀL‹m…ßëÿÿéþÿÿL‹mL‹}˜A¾iéóúÿÿè]I‰ÆH…ÀL‹m…
óÿÿé•þÿÿE1ÿH‹] E1öE1äÇEˆ
&IÿM…oüÿÿé(üÿÿè I‰ÇH…À…[óÿÿéèþÿÿ¦ïÿÿòúÿÿ2ûÿÿûÿÿ"êÿÿêÿÿêÿÿ
êÿÿ„UH‰åAWAVAUATSHƒìI‰öI‰ÿH…Ò…ÌIÿI‹FH…À„˜Hƒøÿ„¥H‹5èI‹GH‹€L‰ÿH…À„ÿÐI‰ÅH…À„è1I‰ÄH…À„3H‹5BôL‰çL‰òè…ÀˆëH‹5xäL‰ïL‰âè=kÿÿH…À„EI‰ÇIÿM…¡I‹EL‰ïÿP0é’H‹5èI‹GH‹€L‰ÿH…À„£ÿÐI‰ÄH…À„¦I‹D$H;†…¯I‹\$H…Û„ÊM‹l$HÿIÿEIÿ$uI‹D$L‰çÿP0L‰ïH‰Þè¤dÿÿI‰ÇHÿu
H‹CH‰ßÿP0M‰ìM…ÿ„ºIÿ$uI‹D$L‰çÿP0Iÿu]I‹FL‰÷ÿP0ëQA¿ã&IÿM»›u
I‹EL‰ïÿP0M…ätIÿ$uI‹D$L‰çÿP0H=õpH
D‰þ‰Úè›KÿÿE1ÿIÿt£L‰øHƒÄ[A\A]A^A_]û˜A¿¬&ëÁH‰ÓH‰×è½H…ÀŽ þÿÿHÇEÐHÇEÈLeÈLmÐH‰ßL‰æL‰ê1ÉèzH‹MЅÀ„ùH‹Aö€«u×H‹…H‹8H5ÓjH1ÀèfE1ÿéeÿÿÿèyI‰ÅH…À…íýÿÿ»›A¿ß&é$ÿÿÿèXI‰ÄH…À…Zþÿÿ»™A¿¸&éÿÿÿA¿á&éÍþÿÿH;¼„t>H;#„uI‹D$ö@tL‰ç1öè4hÿÿë*H‹5+âL‰ç1ÒèñhÿÿëA¿ä&é†þÿÿL‰ç1ö1Òè8eÿÿI‰ÇM…ÿ…FþÿÿA¿Æ&»™M…ä…tþÿÿé€þÿÿH…É„êüÿÿH‹„H‹8H5jH$1ÀèqéÿÿÿfDUH‰åAWAVAUATSHƒìI‰öI‰ÿH…Ò…ÌIÿI‹FH…À„˜Hƒøÿ„¥H‹5ïåI‹GH‹€L‰ÿH…À„ÿÐI‰ÅH…À„èÑI‰ÄH…À„3H‹5âðL‰çL‰òè¿…ÀˆëH‹5áL‰ïL‰âèÝgÿÿH…À„EI‰ÇIÿM…¡I‹EL‰ïÿP0é’H‹5aåI‹GH‹€L‰ÿH…À„£ÿÐI‰ÄH…À„¦I‹D$H;0ƒ…¯I‹\$H…Û„ÊM‹l$HÿIÿEIÿ$uI‹D$L‰çÿP0L‰ïH‰ÞèDaÿÿI‰ÇHÿu
H‹CH‰ßÿP0M‰ìM…ÿ„ºIÿ$uI‹D$L‰çÿP0Iÿu]I‹FL‰÷ÿP0ëQA¿h'IÿM»Ûu
I‹EL‰ïÿP0M…ätIÿ$uI‹D$L‰çÿP0H=ºmH
¹
D‰þ‰Úè;HÿÿE1ÿIÿt£L‰øHƒÄ[A\A]A^A_]ûØA¿1'ëÁH‰ÓH‰×è]H…ÀŽ þÿÿHÇEÐHÇEÈLeÈLmÐH‰ßL‰æL‰ê1ÉèH‹MЅÀ„ùH‹Aö€«u×H‹°H‹8H5sgH¾
1ÀèE1ÿéeÿÿÿèI‰ÅH…À…íýÿÿ»ÛA¿d'é$ÿÿÿèøI‰ÄH…À…Zþÿÿ»ÙA¿='éÿÿÿA¿f'éÍþÿÿH;\t>H;ÀuI‹D$ö@tL‰ç1öèÔdÿÿë*H‹5ËÞL‰ç1Òè‘eÿÿëA¿i'é†þÿÿL‰ç1ö1ÒèØaÿÿI‰ÇM…ÿ…FþÿÿA¿K'»ÙM…ä…tþÿÿé€þÿÿH…É„êüÿÿH‹»€H‹8H5 fHÉ1ÀèÿéÿÿÿfDUH‰åAWAVAUATSHƒìXI‰ÖH‰óH‰} H‹ö€H‹H‰EÐfWÀf)E°H‹πH‰U¸H‰UÀL‹fM…ö…çL‹-³€Iƒüt&IƒütIƒü…6L‹k(L‰mÀL‰mˆL‹k L‰m¸ëL‰mˆH‹[H‰]°H‰]HÿIÿEL;-i€L‰m˜„DH‹XóH‹=±ÝH;G…ÉH‹HóH…À„6HÿL‹%5óM…ä„qH‹5åíI‹D$H‹€L‰çH…À„ÈÿÐI‰ÅH…ÀH‹]„ËIÿ$uI‹D$L‰çÿP0H‹=“çH‹5ŒéH‹GH‹€H…À„ÿÐI‰ÄH…À„!èýH…À„3I‰ÇH‹5¢êH‰ÇH‰Úèoý…ÀˆÇE¬7H‹5aéL‰ÿH‹]˜H‰ÚèJý…ÀˆýH‹5£ÜL‰çL‰úèhcÿÿH…À„àI‰ÆIÿ$„¬Iÿ„·I‹EH;î~…ÁéÀH‹òH‹=mÜH;G…¨H‹ôñH…À„
HÿL‹-áñM…í„HH‹5¡ìI‹EH‹€L‰ïH…À„¨ÿÐI‰ÄH…À„«IÿMu
I‹EL‰ïÿP0H‹=MæH‹5NèH‹GH‹€H…À„ÿÐI‰ÅH…À„!èCüH‹h~ÇE¬/H…À„/I‰ÆH‹5VéH‰ÇH‹Uè"ü…ÀˆäH‹5{ÛL‰ïL‰òè@bÿÿH…À„×I‰ÇIÿM„Iÿ„—I‹D$H;Å}L‹m˜„¡1ÛE1öI‹D$H;’}„ÓH;õ|…ˆI‹D$‹@ƒà=€uvL‰u°L‰}¸H‹ÆëH‰E	ÙHÁáH÷كËI‹T$H‹B‹Rö …8I‹|$é0ÇE¬7ÇE ‹(E1öH‹]˜é›	ÇE Œ(E1öéŒ	ÇE (E1ÿé}	{èÏüH…À„àI‰ÅM…ötM‰u‰ØM‰|ÅH‹
4ëHÿI‰LÅ E1ÿL‰çL‰î1ÒèaÿÿH…À„¿H‰ÇIÿMH‹]L‹u uI‹EI‰ÿL‰ïÿP0L‰ÿL‹m˜Iÿ$uI‹D$I‰ÿL‰çÿP0L‰ÿHÿ„íHÿIÿM„ôL‹=ÂãIÿHÿ„I‰ÝéýI‹D$L‰çÿP0Iÿ…IýÿÿI‹GL‰ÿÿP0I‹EH;-|„1ÛE1ÿI‹EH;ÿ{„/H;b{uMI‹E‹@ƒà=€u<L‰}°L‰u¸H‹8êH‰E	ÙHÁáH÷كËI‹UH‹B‹Rö …wI‹}ép{è{ûÇE¬5H…À„`
I‰ÄM…ÿtM‰|$‰ØM‰tÄH‹
ØéHÿI‰LÄ E1öL‰ïL‰æ1ÒèÀ_ÿÿH…À„-
H‰ÃIÿ$…ÖI‹D$L‰çéÆI‹EL‰ïÿP0Iÿ…iýÿÿI‹FL‰÷ÿP0I‹D$H;${L‹m˜…_ýÿÿM‹t$M…ö„wM‹l$IÿIÿEIÿ$»uI‹D$L‰çÿP0M‰ìL‹m˜I‹D$H;¿z…-ýÿÿL‰u°L‰}¸H‹éH‰E	ØHÁàH÷ØHt¸ƒËL‰çH‰ÚèR[ÿÿH…À„í	H‰Çé™H‹GÿP0HÿIÿM…þÿÿH‹=®zH‹GÿP0L‹=ÀáIÿHÿ…þýÿÿH‹CH‰ßÿP0éïýÿÿ1ÿHt
¸öÂ…«	H‰ÚÿÐH‰ÃH…À……ÇE¬5ÇE ±(éÔ1ÿHt
¸öÂ…	H‰ÚÿÐH‰ÇH…À„‘	M…ötIÿuI‹FH‰ûL‰÷ÿP0H‰ßIÿtH‹]L‹u Iÿ$…@ýÿÿé*ýÿÿI‹GH‰ûL‰ÿÿP0H‰ßH‹]L‹u Iÿ$…ýÿÿéýÿÿIƒü‡b
HNJc HÁÿáH‰UˆL‰÷è™÷I‰ÇH‹5«äH‹VL‰÷èuùH‰E°H‰EH…À„
IÿÏé‚H‹×H‹SH‰ÞèIùI‰ÄH‹ÁÖH‹@H‰VìL‰%WìM…ä„ßIÿ$éùÿÿèVøI‰ÅH…ÀH‹]…5ùÿÿÇE |(ÇE¬5E1öE1ÿL‹m˜Iÿ$…^éH‹ŠÖH‹=[ÖH‹GH‹€H‰ÞH…À„ßÿÐI‰ÄH…À…ªøÿÿH‹/xH‹8H5ouH‰Ú1Àè±öA¾z(A¿5éè»÷I‰ÄH…À…ßøÿÿÇE¬7ÇE ‡(E1ÿE1öE1äH‹]˜é§ÇE¬7ÇE ‰(E1ÿéêúÿÿH‹äÕH‹SH‰Þè&øI‰ÅH‹žÕH‹@H‰#ëL‰-$ëM…í„<IÿEé:ùÿÿè3÷I‰ÄH…À…UùÿÿH‹xÇE¬.ÇE (E1ÿE1öE1äéH‹oÕH‹=@ÕH‹GH‹€H‰ÞH…À„@ÿÐI‰ÅH…À…ÓøÿÿH‹wH‹8H5TtH‰Ú1Àè–õA¾(A¿.L‹m˜H=­bH
†D‰öD‰úè=ÿÿ1ÛH‹}é)è}öI‰ÅH…À…ßøÿÿÇE (ÇE¬/L‹->wE1öE1ÿIÿ$…†é©ÇE (E1ÿE1öéMH‰UˆH‹CH‰EH‰E°L‰÷èëôI‰ÇM…ÿŽºH‹5ÔàH‹VL‰÷è¾öH…À„çI‰ÅH‰E¸IÿÏë#H‰UˆL‹k L‰m¸H‹CH‰EH‰E°L‰÷è—ôI‰ÇM…ÿH‹]¶éöÿÿH‹C(H‰EˆH‰EÀL‹k L‰m¸H‹CH‰ÃH‰E°L‰÷è[ôI‰Çé©ÇE (éêøÿÿM‹}M…ÿ„ïùÿÿM‹eIÿIÿ$IÿM»u
I‹EL‰ïÿP0M‰åI‹EH;Ðu…ÑùÿÿL‰}°L‰u¸H‹#äH‰E	ØHÁàH÷ØHt¸ƒËL‰ïH‰ÚècVÿÿH…À„ÛH‰ÃM…ÿtIÿu
I‹GL‰ÿÿP0Iÿu
I‹FL‰÷ÿP0L‹}L‹u IÿMu
I‹EL‰ïÿP0Hÿu
H‹CH‰ßÿP0L‹m˜H‹52ÖI‹FH‹€L‰÷H…À„žÿÐI‰ÆH…À„¡I‹EH;uL‰m˜tFL‰ïè4ôH…À„éI‰ÅH‰ÃHƒÃH‹@H‹5NÜH;çtt&H;¾t„ùL‰ïèàóëJI]IÿEH‹5ÜI‹EH‰ÁH÷ÙHLÈHƒùCH…À„nA‹MH‰ÏH÷ßHƒøÿHEùHÿÇè^óI‰ÄH…À„IÿMu	H‹L‰ïÿP0¿è/ôH…À„I‰ÅIÿL‰xL‰` èWòH…À„I‰ÄH‹5háH‰ÇH‹UˆèDò…Àx]H‹5ÉÝH‹âÞL‰çè*ò…ÀxLL‰÷L‰îL‰âèPXÿÿH…À„
H‰ÃIÿ„IÿM„ Iÿ$„*L‰ÿL‹m˜éÈÇE å(ëÇE æ(IÿÇE¬:u
I‹FL‰÷ÿP0E1öL‰}E1ÿH‹]˜M…ítIÿMu
I‹EL‰ïÿP0I‰ÝM…ät
Iÿ$„(M…ötIÿt%M…ÿD‹e t/IÿH‹]D‹u¬u
I‹GL‰ÿÿP0I‰ßëI‹FL‰÷ÿP0M…ÿD‹e uÑL‹}D‹u¬H=ƒ^H
\þD‰æD‰òèÝ8ÿÿ1ÛL‰ÿM…ÿtHÿuH‹GÿP0M…í„2IÿM…(I‹EL‰ïÿP0éI‹FL‰÷ÿP0IÿM…àþÿÿI‹EL‰ïÿP0Iÿ$…ÖþÿÿI‹D$L‰çÿP0éÆþÿÿèîñI‰ÆH…À…_ýÿÿA¼Ô(A¾:éUÿÿÿÇE Ø(E1äé±þÿÿHƒø„Hƒøþ…‹A‹}A‹EHÁàH	ÇH÷ßé­ýÿÿÇE Û(ë 1ÉéýÿÿÇE ã(E1äégþÿÿÇE Ö(E1äE1íéUþÿÿÇE (E1ÿéoþÿÿL‹-2rL‰mˆH‹]éªñÿÿÇE ç(é&þÿÿA‹}A‹EHÁàH	Çé9ýÿÿH‹¾qH‹@`L‰ïÿé,ýÿÿL‹-éqH‹]H‹5ÖÞH‹VL‰÷è°ñH‰EˆH…ÀtH‹EˆH‰EÀIÿÏM…ÿŽ:ñÿÿH5¶ÉL_ýHU°L‰÷L‰áèð…ÀˆãH‹]°L‹m¸H‹EÀH‰EˆéñÿÿÇE ¸(ëyÇE Ã(E1ÿH‹]˜M…í…‘ýÿÿéœýÿÿH‹OqÇE¬.ÇE B(é‚ýÿÿH‹5qÇE¬.ÇE M(E1öéUýÿÿòAEòX¹ûè^ïéCüÿÿÇE ¨(ÇE¬5E1äH‹]˜M…í…ýÿÿé*ýÿÿH‹ÝpÇE¬.ÇE 2(éýÿÿH‰Ú1ÉÿÐH‰ÃH…À…ØúÿÿéNöÿÿH‰Ú1ÉÿÐH‰ÇH…À…oöÿÿÇE ;(ÇE¬.L‹-ŠpIÿ$…ØüÿÿI‹D$L‰çÿP0M…ö…ÉüÿÿéÉüÿÿèrîA¾z(A¿5H…À…ÁøÿÿH‹=®ÍH‹GH‹€H‰ÞH…À„‰ÿÐI‰ÄH…ÀL‹m˜…ùïÿÿH‹~oH‹8H5¾lH‰Ú1ÀèîéuøÿÿèïI‰ÄH…À…Èïÿÿé÷ÿÿèòíA¾(A¿.H…À…AøÿÿH‹=.ÍH‹GH‹€H‰ÞH…À„#ÿÐI‰ÅH…À…ÁðÿÿH‹oH‹8H5BlH‰Ú1Àè„íéõ÷ÿÿèšîI‰ÅH…À…ðÿÿé¸÷ÿÿL‹c1ÀM…äŸÀLDH2UH
4UHNÈH‹ÑnH‹8HúL
\ULNÈL‰$$H5UHÒú1Àèí¾Ô'H=3ZH
úºÝèŽ4ÿÿ1ÛH‹ýnH‹H;EÐuH‰ØHƒÄX[A\A]A^A_]ÃèÛî1ÛE1öL‹m˜I‹D$H;hn…Öðÿÿé¤óÿÿ¾Á'ë˜è¿íI‰ÄH…ÀL‹m˜…mîÿÿéoþÿÿè¥íI‰ÅH…À…›ïÿÿéÕþÿÿf»ôÿÿ]÷ÿÿ©÷ÿÿÞ÷ÿÿf.„fUH‰åAWAVAUATSHƒìI‰þH‹MnH‹H‰EÐL‹-/nL‰mÈL‹fH…Ò…M…ätIƒü…L‹nL‰mÈëL‹-þmM‹¾èIÿIƒÆHHƒìL‹
åmH=6hL‰öL‰êL‰ùA¸AQjAQAQjAQAQjAQÿ¿ÝHƒÄPH…À„:H‰ÃIÿ…I‹GL‰ÿÿP0éýI‰×M…ätIƒüuvL‹nL‰mÈL‰ÿè]ëH‰ÃM…äu'H…Û~"H‹5UÚH‹VL‰ÿè/íH…ÀtI‰ÅH‰EÈHÿËH…ÛŽ;ÿÿÿH5ZÅLóøHUÈL‰ÿL‰áèt…Àˆ×L‹mÈé
ÿÿÿM‰àI÷ÐIÁè?M…äHÖRH
ØRHHÈH‹ulH‹8HSL
¼÷LHÈHƒìH5µRH†ø1ÀATè³êHƒÄ¾@)H=XH
ª÷º=è,2ÿÿ1ÛH‹›lH‹H;EÐu@H‰ØHƒÄ[A\A]A^A_]ÃM…ÿtIÿu
I‹GL‰ÿÿP0H=±WH
Z÷¾i)ºxë©èKì¾2)ëŠf.„@UH‰åAWAVAUATSHƒì8I‰þH‹lH‹H‰EÐL‹%÷ÒL‰e°L‹ôÒL‰]¸L‹ékL‰UÀL‹~H…Ò…ÎIƒÿ‡%L‹-ÇkH0Jc¸HÁÿáL‹n(L‰mÀL‹^ L‰]¸L‹fL‰e°I‹žèHÿIƒÆHH‹jÓHƒìH=GoL‰öL‰êH‰ÙA¸M‰áARjPÿ5ZÒjÿ5ØASjPÿWÛHƒÄPH…À„%I‰ÆHÿu
H‹CH‰ßÿP0H‹9kH‹H;EÐ…úL‰ðHƒÄ8[A\A]A^A_]ÃIƒÿw[H‰ÓHZJc¸HÁÿáL‰]¨H‰ßèÑèH‰E H…ÀŽ H‹5±ÕH‹VH‰ßè£êH…À„ñH‰E°H‹M HÿÉI‰ÄéÑL‰øH÷ÐHÁè?M…ÿL@HpPH
rPHHÈH‹jH‹8HƒìH5aPHBöL
P1ÀAWèXèHƒÄ¾Õ)H=ÖUH
Oõº~èÑ/ÿÿE1öH‹?jH‹H;EЄÿÿÿè+êH…ÛtHÿu
H‹CH‰ßÿP0H=ŽUH
õ¾þ)ºãë±L‰]¨L‹fL‰e°H‰ßèÇçH‰ÁH…ÉŽ—H‰M H‹5tÖH‹VH‰ßè–éH…À„ŠH‰E¸H‹M HÿÉI‰ÃëL‹n L‰m¸L‹fL‰e°H‰ßèsçM‰ëH‰ÁL‹ziM‰ÕH‰M H…ÉMéÊýÿÿL‹n(L‰mÀH‹F H‰E¨H‰E¸L‹fL‰e°H‰ßè1çL‹]¨L‹:iëJL‹1iM‰ÕL‹]¨é†ýÿÿL‹]¨H‹5ÖH‹VH‰ßM‰ÝèéèL‹iH…ÀtM‰ëI‰ÅH‰EÀH‹E HÿÈH…ÀŽFýÿÿH5ÁL¯ôHU°H‰ßL‰ùè …ÀxL‹e°L‹]¸L‹mÀL‹±hé
ýÿÿ¾Á)éQþÿÿf¯ýÿÿ±þÿÿÿÿÿ7ÿÿÿñüÿÿéüÿÿáüÿÿÙüÿÿ„UH‰åAWAVAUATSHƒì(I‰÷I‰üH‹jhH‹H‰EÐWÀ)EÀL‹EhL‰UÈL‹vH…Ò…œIƒþtIƒþ…äM‹o L‰mÈëL‹-hM‹OL‰MÀM‹´$èIÿIƒÄHH‹íÎH‹ÎÏHƒìH=;cL‰æL‰êL‰ñA¸ARjSPjSPjÿ5šÔÿÄ×HƒÄPH…ÀtbH‰ÃIÿ…äI‹FL‰÷ÿP0éÕH‰ÓM…ötpIƒþ„Iƒþ…<H‰ßM‹o L‰mÈI‹_H‰]ÀH‰}°èLåI‰ÙL‹Vgé¸M…ötIÿu
I‹FL‰÷ÿP0H=éRH
;ò¾‚*º3éVH‰ßèåI‰ÅH‹5ÞÓH‹VH‰ßèàæH‰EÀH‰E¸H…À„­IÿÍL‰èëI‹GH‰E¸H‰EÀH‰ßèÁäH…À~yI‰ÇH‹5¾ÓH‹VH‰]°H‰ßè”æH…ÀL‹¬fL‹M¸tI‰ÅH‰EÈL‰øHÿÈH…ÀŽ…þÿÿL‰ÓH5޾L^òHUÀH‹}°L‰ñèÇ…ÀˆËL‹MÀL‹mÈI‰ÚéLþÿÿL‹PfM‰ÕL‹M¸é9þÿÿM‹w1ÀM…öžÀHLH
LHNÊH‹¯eH‹:HýðL
:LLNÊA¸I)ÀHƒìH5æKHÎñ1ÀAVèäãHƒÄ¾Y*H=‰QH
Ûðºéè]+ÿÿ1ÛH‹ÌeH‹H;EÐuH‰ØHƒÄ([A\A]A^A_]Ãèªå¾I*ë¸f.„UH‰åAWAVAUATSHƒìHI‰÷H‰þH‹zeH‹H‰EÐWÀ)E°L‹%UÌL‰e¸L‹JeL‰UÀM‹wH…Ò…ÇL‹-2eIƒþt IƒþtIƒþ…™M‹o(L‰mÀM‹g L‰e¸M‹OL‰M°H‹žèHÿHƒÆHHƒìH=ƒcL‰êH‰ÙA¸ARjÿ5µÌÿ5ÇËjÿ5ÑATjÿ5•Ñÿ¿ÔHƒÄPH…À„I‰ÆHÿu
H‹CH‰ßÿP0H‹¡dH‹H;EÐ…L‰ðHƒÄH[A\A]A^A_]ÃIƒþ‡åH‰ÓH‰u HrJc°HÁÿáH‰ßè5âI‰ÅH‹5ÑH‹VH‰ßèäH‰E°H‰E¨H…À„›IÿÍL‰èëEH…ÛtHÿu
H‹CH‰ßÿP0H=áOH
ï¾+º‡éØI‹GH‰E¨H‰E°H‰ßèÁáH…ÀލI‰ÇH‹5rÐH‹VH‰]˜H‰ßèãH…À„œH‰E¸L‰ùHÿÉI‰Äë#M‹g L‰e¸I‹GH‰E¨H‰E°H‰]˜H‰ßèfáH‰ÁL‹pcM‰ÕI‰ÏH…ÉH‹u L‹M¨TéTþÿÿH‰ßM‹o(L‰mÀM‹g L‰e¸I‹_H‰]°H‰}˜è áI‰ÙL‹*cH‹u ëRL‹cM‰ÕH‹u L‹M¨é	þÿÿL‹M¨H‹5úÏH‹VH‹}˜L‰ËèÐâH‹u L‹çbH…ÀtI‰ÙI‰ÅH‰EÀL‰øHÿÈH…ÀŽÅýÿÿH5:»L©îHU°H‹}˜L‰ñè…Àˆ³L‹M°L‹e¸L‹mÀL‹bH‹u éƒýÿÿM‹w1ÀM…öŸÀLDHNHH
PHHNÈH‹íaH‹8H;íL
xHLNÈHƒìH5-HH$î1ÀAVè+àHƒÄ¾ê*H=ÿMH
"íº9è¤'ÿÿE1öH‹bH‹H;EЄqýÿÿèþá¾×*ë՗ýÿÿÿýÿÿNþÿÿþÿÿUH‰åAWAVAUATSHƒìHI‰ôI‰ýH‹ÊaH‹H‰EÐWÀ)E°H‹¥aH‰EÀL‹vH…Ò…ªIƒþtIƒþ…¡M‹|$(L‰}ÀëL‹=raM‹T$ L‰U¸I‹\$H‰]°M‹µèIÿIƒÅHHƒìH=kL‰îL‰úL‰ñA¸I‰ÙPjÿ5Éÿ5Èjÿ5fÊARjÿ5lÊÿÑHƒÄPH…ÀtlH‰ÃIÿ…†I‹FL‰÷ÿP0éwIƒþ‡ýH‰ÓH’Jc°HÁÿáH‰ßè±ÞI‰ÇH‹5ÊH‹VH‰ßèàH‰E°H‰E H…À„¶IÿÏëIM…ötIÿu
I‹FL‰÷ÿP0H=†LH
ƒë¾¢+ºäéîI‹D$H‰E H‰E°H‰ßè?ÞI‰ÇH‹5‰ÉH‹VH‰ßèàH‰E¸H…À„H‰E¨IÿÏë%I‹D$ H‰E¨H‰E¸I‹D$H‰E H‰E°H‰ßèñÝI‰ÇM…ÿ~:M‰üH‹5ëÌH‹VH‰]˜H‰ßèÁßI‰ÇH…ÀH‹Ö_H‹] L‹U¨tbL‰}ÀIÿÌëPH‹¼_I‰ÇH‹] L‹U¨éLþÿÿH‰ßM‹|$(L‰}ÀI‹D$ H‰E¨H‰E¸I‹\$H‰]°H‰}˜èmÝL‹U¨I‰ÄH‹s_M…äŽ
þÿÿH5û·LPëHU°H‹}˜L‰ñè¤
…ÀˆøH‹]°L‹U¸L‹}ÀH‹1_éÌýÿÿH‹µ^H‹8HƒìH5EHëH
èDL
.EA¸1ÀjèñÜHƒÄ¾]+ë[M‹t$E1ÀIƒþH´DH
¶DHLÈAœÀIƒðH‹K^H‹8HƒìH5DHšêL
ËD1ÀAVè”ÜHƒÄ¾y+H=ŽJH
‹éºŒè
$ÿÿ1ÛH‹|^H‹H;EÐuH‰ØHƒÄH[A\A]A^A_]ÃèZÞ¾g+븐wýÿÿÜýÿÿþÿÿ˜þÿÿf.„fUH‰åAWAVAUATSHƒìHI‰õI‰þH‹^H‹H‰EÐWÀ)EÀ)E°L‹=ñ]L‰}ÈH‹^H…Ò…¸HƒûtHƒû…ÌM‹}0L‰}ÈëL‹=¿]M‹e(L‰eÀI‹] H‰]¸I‹EH‰E¨H‰E°M‹®èIÿEIƒÆHHƒìH‹‰]H=j_L‰öL‰úL‰éA¸L‹M¨Pjÿ5ÉATjÿ5¤ÆSjÿ5«ÆÿUÍHƒÄPH…ÀtxH‰ÃIÿM…§I‹EL‰ïÿP0é˜Hƒû‡I‰ÔH´Hc˜HÁH‰] H‰U˜ÿáL‰çèçÚH‰ÃH‹5AÆH‹VL‰çèÃÜH‰E°H‰E¨H…À„ÌHÿËI‰ÝëIM…ítIÿMu
I‹EL‰ïÿP0H=ÚHH
µç¾<,º9éI‹EH‰E¨H‰E°L‰çèrÚI‰ÅH‹5¼ÅH‹VL‰çèNÜH‰E¸H…À„H‰ÃIÿÍë"I‹E H‰ÃH‰E¸I‹EH‰E¨H‰E°L‰çè(ÚI‰ÅH‹5ÚÇH‹VL‰çèÜH‰EÀH…À„ºI‰ÄIÿÍL‹=\ë6M‹}0L‰}ÈL‰çM‹e(L‰eÀI‹] H‰]¸I‹EH‰E¨H‰E°èÊÙI‰ÅHƒ} u,M…íŽ(þÿÿH‹5¼ÈH‹VH‹}˜è•ÛH…ÀtI‰ÇH‰EÈIÿÍM…íŽüýÿÿH5P´L‡çHU°H‹}˜H‹M èØ	…ÀˆH‹E°H‰E¨H‹]¸L‹eÀL‹}Èé¼ýÿÿ»õ+Aºë»ï+AºH‹ÐZH‹8HƒìH5"AH!çH
AL
IAA¸1ÀARèÙHƒÄë\I‹]1ÀHƒûœÀHÓ@H
Õ@HLÊA¸I)ÀH‹iZH‹8HƒìH5»@HºæL
é@1ÀSè³ØHƒÄ»,H=ÏFH
ªå‰޺éè* ÿÿ1ÛH‹™ZH‹H;EÐuH‰ØHƒÄH[A\A]A^A_]ÃèwÚ»ÿ+ë¶f]ýÿÿÆýÿÿþÿÿ^þÿÿVþÿÿ@UH‰åAWAVAUATSHƒì(I‰÷I‰üH‹:ZH‹H‰EÐWÀ)EÀL‹ZL‰UÈL‹vH…Ò…œIƒþtIƒþ…äM‹o L‰mÈëL‹-ãYM‹OL‰MÀM‹´$èIÿIƒÄHH‹½ÀH‹žÁHƒìH={YL‰æL‰êL‰ñA¸ARjSPjSPjÿ5ÊÂÿ”ÉHƒÄPH…ÀtbH‰ÃIÿ…äI‹FL‰÷ÿP0éÕH‰ÓM…ötpIƒþ„Iƒþ…<H‰ßM‹o L‰mÈI‹_H‰]ÀH‰}°è×I‰ÙL‹&Yé¸M…ötIÿu
I‹FL‰÷ÿP0H=]EH
ä¾À,º„éVH‰ßèÔÖI‰ÅH‹5ÂH‹VH‰ßè°ØH‰EÀH‰E¸H…À„­IÿÍL‰èëI‹GH‰E¸H‰EÀH‰ßè‘ÖH…À~yI‰ÇH‹5ŽÅH‹VH‰]°H‰ßèdØH…ÀL‹|XL‹M¸tI‰ÅH‰EÈL‰øHÿÈH…ÀŽ…þÿÿL‰ÓH5>±LRäHUÀH‹}°L‰ñè—…ÀˆËL‹MÀL‹mÈI‰ÚéLþÿÿL‹ XM‰ÕL‹M¸é9þÿÿM‹w1ÀM…öžÀHà=H
â=HNÊH‹WH‹:HÍâL
>LNÊA¸I)ÀHƒìH5¶=HÂã1ÀAVè´ÕHƒÄ¾—,H=ýCH
«âº>è-ÿÿ1ÛH‹œWH‹H;EÐuH‰ØHƒÄ([A\A]A^A_]Ãèz×¾‡,ë¸f.„UH‰åAWAVAUATSHƒìHI‰ôI‰ýH‹JWH‹H‰EÐWÀ)E°H‹%WH‰EÀL‹vH…Ò…ªIƒþtIƒþ…¡M‹|$(L‰}ÀëL‹=òVM‹T$ L‰U¸I‹\$H‰]°M‹µèIÿIƒÅHHƒìH=ïVL‰îL‰úL‰ñA¸I‰ÙPjÿ5Œ¾ÿ5ž½jÿ5NÂARjÿ5̿ÿ–ÆHƒÄPH…ÀtlH‰ÃIÿ…†I‹FL‰÷ÿP0éwIƒþ‡ýH‰ÓH’Jc°HÁÿáH‰ßè1ÔI‰ÇH‹5k¿H‹VH‰ßè
ÖH‰E°H‰E H…À„¶IÿÏëIM…ötIÿu
I‹FL‰÷ÿP0H=BH
á¾O-ºÛéîI‹D$H‰E H‰E°H‰ßè¿ÓI‰ÇH‹5qÁH‹VH‰ßè›ÕH‰E¸H…À„H‰E¨IÿÏë%I‹D$ H‰E¨H‰E¸I‹D$H‰E H‰E°H‰ßèqÓI‰ÇM…ÿ~:M‰üH‹5kÂH‹VH‰]˜H‰ßèAÕI‰ÇH…ÀH‹VUH‹] L‹U¨tbL‰}ÀIÿÌëPH‹<UI‰ÇH‹] L‹U¨éLþÿÿH‰ßM‹|$(L‰}ÀI‹D$ H‰E¨H‰E¸I‹\$H‰]°H‰}˜èíÒL‹U¨I‰ÄH‹óTM…äŽ
þÿÿH5ë­LôàHU°H‹}˜L‰ñè$…ÀˆøH‹]°L‹U¸L‹}ÀH‹±TéÌýÿÿH‹5TH‹8HƒìH5‡:H¨àH
h:L
®:A¸1ÀjèqÒHƒÄ¾
-ë[M‹t$E1ÀIƒþH4:H
6:HLÈAœÀIƒðH‹ËSH‹8HƒìH5:H>àL
K:1ÀAVèÒHƒÄ¾&-H=‡@H
ߺ‰èÿÿ1ÛH‹üSH‹H;EÐuH‰ØHƒÄH[A\A]A^A_]ÃèÚÓ¾-븐wýÿÿÜýÿÿþÿÿ˜þÿÿf.„fUH‰åAWAVAUATSHƒìI‰þH‹SH‹H‰EÐL‹-SL‰mÈL‹fH…Ò…™M…ätIƒü…L‹nL‰mÈëL‹-NSM‹¾èIÿIƒÆHL‹
1ºH‹»HƒìH‹'SH=HZL‰öL‰êL‰ùA¸SjPAQjPAQjPÿÃHƒÄPH…À„:H‰ÃIÿ…I‹GL‰ÿÿP0éýI‰×M…ätIƒüuvL‹nL‰mÈL‰ÿè£ÐH‰ÃM…äu'H…Û~"H‹5›¿H‹VL‰ÿèuÒH…ÀtI‰ÅH‰EÈHÿËH…ÛŽ1ÿÿÿH5 «L©ÞHUÈL‰ÿL‰á躅Àˆ×L‹mÈéÿÿÿM‰àI÷ÐIÁè?M…äH8H
8HHÈH‹»QH‹8HM8L
ÝLHÈHƒìH5û7H<Þ1ÀATèùÏHƒÄ¾¡-H=¡>H
ðܺàèrÿÿ1ÛH‹áQH‹H;EÐu@H‰ØHƒÄ[A\A]A^A_]ÃM…ÿtIÿu
I‹GL‰ÿÿP0H=Q>H
 Ü¾Ê-º&ë©è‘Ѿ“-ëŠ@UH‰åAWAVAUATSHƒì(I‰÷I‰üH‹jQH‹H‰EÐWÀ)EÀL‹EQL‰UÈL‹vH…Ò…œIƒþtIƒþ…äM‹o L‰mÈëL‹-QM‹OL‰MÀM‹´$èIÿIƒÄHH‹
¸H‹θHƒìH=«VL‰æL‰êL‰ñA¸ARjSPjSPjÿ5ú¹ÿÄÀHƒÄPH…ÀtbH‰ÃIÿ…äI‹FL‰÷ÿP0éÕH‰ÓM…ötpIƒþ„Iƒþ…<H‰ßM‹o L‰mÈI‹_H‰]ÀH‰}°èLÎI‰ÙL‹VPé¸M…ötIÿu
I‹FL‰÷ÿP0H==H
;Û¾N.º•éVH‰ßèÎI‰ÅH‹5>¹H‹VH‰ßèàÏH‰EÀH‰E¸H…À„­IÿÍL‰èëI‹GH‰E¸H‰EÀH‰ßèÁÍH…À~yI‰ÇH‹5¾¼H‹VH‰]°H‰ßè”ÏH…ÀL‹¬OL‹M¸tI‰ÅH‰EÈL‰øHÿÈH…ÀŽ…þÿÿL‰ÓH5¾¨LÇÛHUÀH‹}°L‰ñèÇý…ÀˆËL‹MÀL‹mÈI‰ÚéLþÿÿL‹POM‰ÕL‹M¸é9þÿÿM‹w1ÀM…öžÀH5H
5HNÊH‹¯NH‹:HýÙL
:5LNÊA¸I)ÀHƒìH5æ4H7Û1ÀAVèäÌHƒÄ¾%.H=¼;H
ÛÙº)è]ÿÿ1ÛH‹ÌNH‹H;EÐuH‰ØHƒÄ([A\A]A^A_]ÃèªÎ¾.ë¸f.„UH‰åAWAVAUATSHƒìHI‰ôI‰ýH‹zNH‹H‰EÐWÀ)E°H‹UNH‰EÀL‹vH…Ò…ªIƒþtIƒþ…¡M‹|$(L‰}ÀëL‹="NM‹T$ L‰U¸I‹\$H‰]°M‹µèIÿIƒÅ HƒìH=ÿ]L‰îL‰úL‰ñA¸I‰ÙPjÿ5¼µÿ5δjÿ5F¸ARjÿ5¹ÿƽHƒÄPH…ÀtlH‰ÃIÿ…†I‹FL‰÷ÿP0éwIƒþ‡ýH‰ÓH’Jc°HÁÿáH‰ßèaËI‰ÇH‹5»¸H‹VH‰ßè=ÍH‰E°H‰E H…À„¶IÿÏëIM…ötIÿu
I‹FL‰÷ÿP0H=?:H
3ؾÝ.ºîéîI‹D$H‰E H‰E°H‰ßèïÊI‰ÇH‹5i·H‹VH‰ßèËÌH‰E¸H…À„H‰E¨IÿÏë%I‹D$ H‰E¨H‰E¸I‹D$H‰E H‰E°H‰ßè¡ÊI‰ÇM…ÿ~:M‰üH‹5›¹H‹VH‰]˜H‰ßèqÌI‰ÇH…ÀH‹†LH‹] L‹U¨tbL‰}ÀIÿÌëPH‹lLI‰ÇH‹] L‹U¨éLþÿÿH‰ßM‹|$(L‰}ÀI‹D$ H‰E¨H‰E¸I‹\$H‰]°H‰}˜èÊL‹U¨I‰ÄH‹#LM…äŽ
þÿÿH5k¥L_ØHU°H‹}˜L‰ñèTú…ÀˆøH‹]°L‹U¸L‹}ÀH‹áKéÌýÿÿH‹eKH‹8HƒìH5·1HØH
˜1L
Þ1A¸1Àjè¡ÉHƒÄ¾˜.ë[M‹t$E1ÀIƒþHd1H
f1HLÈAœÀIƒðH‹ûJH‹8HƒìH5M1H©×L
{11ÀAVèDÉHƒÄ¾´.H=G8H
;Öº›è½ÿÿ1ÛH‹,KH‹H;EÐuH‰ØHƒÄH[A\A]A^A_]Ãè
˾¢.븐wýÿÿÜýÿÿþÿÿ˜þÿÿf.„fUH‰åAWAVAUATSHƒì(I‰÷I‰üH‹ÊJH‹H‰EÐWÀ)EÀL‹¥JL‰UÈL‹vH…Ò…œIƒþtIƒþ…äM‹o L‰mÈëL‹-sJM‹OL‰MÀM‹´$èIÿIƒÄHH‹M±H‹.²HƒìH=ûHL‰æL‰êL‰ñA¸ARjSPjSPjÿ5"²ÿ$ºHƒÄPH…ÀtbH‰ÃIÿ…äI‹FL‰÷ÿP0éÕH‰ÓM…ötpIƒþ„Iƒþ…<H‰ßM‹o L‰mÈI‹_H‰]ÀH‰}°è¬ÇI‰ÙL‹¶Ié¸M…ötIÿu
I‹FL‰÷ÿP0H=Ð6H
›Ô¾a/ºT	éVH‰ßèdÇI‰ÅH‹5f±H‹VH‰ßè@ÉH‰EÀH‰E¸H…À„­IÿÍL‰èëI‹GH‰E¸H‰EÀH‰ßè!ÇH…À~yI‰ÇH‹5¶H‹VH‰]°H‰ßèôÈH…ÀL‹IL‹M¸tI‰ÅH‰EÈL‰øHÿÈH…ÀŽ…þÿÿL‰ÓH5^¢L;ÕHUÀH‹}°L‰ñè'÷…ÀˆËL‹MÀL‹mÈI‰ÚéLþÿÿL‹°HM‰ÕL‹M¸é9þÿÿM‹w1ÀM…öžÀHp.H
r.HNÊH‹HH‹:H]ÓL
š.LNÊA¸I)ÀHƒìH5F.H«Ô1ÀAVèDÆHƒÄ¾8/H=p5H
;Óºóè½
ÿÿ1ÛH‹,HH‹H;EÐuH‰ØHƒÄ([A\A]A^A_]Ãè
Ⱦ(/ë¸f.„UH‰åAWAVAUATSHƒì(I‰÷I‰üH‹ÚGH‹H‰EÐWÀ)EÀL‹µGL‰UÈL‹vH…Ò…œIƒþtIƒþ…äM‹o L‰mÈëL‹-ƒGM‹OL‰MÀM‹´$èIÿIƒÄHH‹]®H‹>¯HƒìH=[FL‰æL‰êL‰ñA¸ARjSPjSPjÿ52¯ÿ4·HƒÄPH…ÀtbH‰ÃIÿ…äI‹FL‰÷ÿP0éÕH‰ÓM…ötpIƒþ„Iƒþ…<H‰ßM‹o L‰mÈI‹_H‰]ÀH‰}°è¼ÄI‰ÙL‹ÆFé¸M…ötIÿu
I‹FL‰÷ÿP0H=4H
«Ñ¾å/º»	éVH‰ßètÄI‰ÅH‹5v®H‹VH‰ßèPÆH‰EÀH‰E¸H…À„­IÿÍL‰èëI‹GH‰E¸H‰EÀH‰ßè1ÄH…À~yI‰ÇH‹5.³H‹VH‰]°H‰ßèÆH…ÀL‹FL‹M¸tI‰ÅH‰EÈL‰øHÿÈH…ÀŽ…þÿÿL‰ÓH5ŽŸLRÒHUÀH‹}°L‰ñè7ô…ÀˆËL‹MÀL‹mÈI‰ÚéLþÿÿL‹ÀEM‰ÕL‹M¸é9þÿÿM‹w1ÀM…öžÀH€+H
‚+HNÊH‹EH‹:HmÐL
ª+LNÊA¸I)ÀHƒìH5V+HÂÑ1ÀAVèTÃHƒÄ¾¼/H=§2H
KкY	èÍ
ÿÿ1ÛH‹<EH‹H;EÐuH‰ØHƒÄ([A\A]A^A_]Ã螬/ë¸f.„UH‰åAWAVAUATSHƒì(I‰÷I‰üH‹êDH‹H‰EÐWÀ)EÀL‹ÅDL‰UÈL‹vH…Ò…œIƒþtIƒþ…äM‹o L‰mÈëL‹-“DM‹OL‰MÀM‹´$èIÿIƒÄHH‹m«H‹N¬HƒìH=ËCL‰æL‰êL‰ñA¸ARjSPjSPjÿ5B¬ÿD´HƒÄPH…ÀtbH‰ÃIÿ…äI‹FL‰÷ÿP0éÕH‰ÓM…ötpIƒþ„Iƒþ…<H‰ßM‹o L‰mÈI‹_H‰]ÀH‰}°èÌÁI‰ÙL‹ÖCé¸M…ötIÿu
I‹FL‰÷ÿP0H=?1H
»Î¾i0º'
éVH‰ßè„ÁI‰ÅH‹5†«H‹VH‰ßè`ÃH‰EÀH‰E¸H…À„­IÿÍL‰èëI‹GH‰E¸H‰EÀH‰ßèAÁH…À~yI‰ÇH‹5>°H‹VH‰]°H‰ßèÃH…ÀL‹,CL‹M¸tI‰ÅH‰EÈL‰øHÿÈH…ÀŽ…þÿÿL‰ÓH5¾œLjÏHUÀH‹}°L‰ñèGñ…ÀˆËL‹MÀL‹mÈI‰ÚéLþÿÿL‹ÐBM‰ÕL‹M¸é9þÿÿM‹w1ÀM…öžÀH(H
’(HNÊH‹/BH‹:H}ÍL
º(LNÊA¸I)ÀHƒìH5f(HÚÎ1ÀAVèdÀHƒÄ¾@0H=ß/H
[ͺÀ	èÝÿÿ1ÛH‹LBH‹H;EÐuH‰ØHƒÄ([A\A]A^A_]Ãè*¾00ë¸f.„UH‰åAWAVAUATSHƒì8I‰þH‹ýAH‹H‰EÐL‹%רL‰e°L‹ԨL‰]¸L‹ÉAL‰UÀL‹~H…Ò…ÑIƒÿ‡(L‹-§AH4Jc¸HÁÿáL‹n(L‰mÀL‹^ L‰]¸L‹fL‰e°I‹žèHÿIƒÆ HƒìH=þmL‰öL‰êH‰ÙA¸M‰áARjÿ5*©ÿ5<¨jÿ5ô­ASjÿ5¬ÿ4±HƒÄPH…À„%I‰ÆHÿu
H‹CH‰ßÿP0H‹AH‹H;EÐ…úL‰ðHƒÄ8[A\A]A^A_]ÃIƒÿw[H‰ÓH[Jc¸HÁÿáL‰]¨H‰ß设H‰E H…ÀŽ H‹5Ž«H‹VH‰ßè€ÀH…À„ñH‰E°H‹M HÿÉI‰ÄéÑL‰øH÷ÐHÁè?M…ÿL@HM&H
O&HHÈH‹ì?H‹8HƒìH5>&H¸ÌL
l&1ÀAWè5¾HƒÄ¾Õ0H=Ö-H
,˺,
è®ÿÿE1öH‹@H‹H;EЄÿÿÿèÀH…ÛtHÿu
H‹CH‰ßÿP0H=Ž-H
äʾþ0º„
ë±L‰]¨L‹fL‰e°H‰ß褽H‰ÁH…ÉŽ—H‰M H‹5Q¬H‹VH‰ßès¿H…À„ŠH‰E¸H‹M HÿÉI‰ÃëL‹n L‰m¸L‹fL‰e°H‰ßèP½M‰ëH‰ÁL‹W?M‰ÕH‰M H…ÉMéÇýÿÿL‹n(L‰mÀH‹F H‰E¨H‰E¸L‹fL‰e°H‰ßè½L‹]¨L‹?ëJL‹?M‰ÕL‹]¨éƒýÿÿL‹]¨H‹5ï«H‹VH‰ßM‰ÝèƾL‹á>H…ÀtM‰ëI‰ÅH‰EÀH‹E HÿÈH…ÀŽCýÿÿH5“˜L%ËHU°H‰ßL‰ùèýì…ÀxL‹e°L‹]¸L‹mÀL‹Ž>é
ýÿÿ¾Á0éQþÿÿ®ýÿÿ°þÿÿÿÿÿ6ÿÿÿíüÿÿåüÿÿÝüÿÿÕüÿÿ@UH‰åAWAVAUATSHƒì8I‰þH‹M>H‹H‰EÐL‹%'¥L‰e°L‹$¥L‰]¸L‹>L‰UÀL‹~H…Ò…ÑIƒÿ‡(L‹-÷=H4Jc¸HÁÿáL‹n(L‰mÀL‹^ L‰]¸L‹fL‰e°I‹žèHÿIƒÆ HƒìH=ÞjL‰öL‰êH‰ÙA¸M‰áARjÿ5z¥ÿ5Œ¤jÿ5DªASjÿ5j¨ÿ„­HƒÄPH…À„%I‰ÆHÿu
H‹CH‰ßÿP0H‹f=H‹H;EÐ…úL‰ðHƒÄ8[A\A]A^A_]ÃIƒÿw[H‰ÓH[Jc¸HÁÿáL‰]¨H‰ßèþºH‰E H…ÀŽ H‹5ާH‹VH‰ßèмH…À„ñH‰E°H‹M HÿÉI‰ÄéÑL‰øH÷ÐHÁè?M…ÿL@H"H
Ÿ"HHÈH‹<<H‹8HƒìH5Ž"HÉL
¼"1ÀAW腺HƒÄ¾j1H=N*H
|Ǻ‰
èþÿÿE1öH‹l<H‹H;EЄÿÿÿèX¼H…ÛtHÿu
H‹CH‰ßÿP0H=*H
4Ǿ“1ºÿ
ë±L‰]¨L‹fL‰e°H‰ßèô¹H‰ÁH…ÉŽ—H‰M H‹5¡¨H‹VH‰ßèûH…À„ŠH‰E¸H‹M HÿÉI‰ÃëL‹n L‰m¸L‹fL‰e°H‰ß蠹M‰ëH‰ÁL‹§;M‰ÕH‰M H…ÉMéÇýÿÿL‹n(L‰mÀH‹F H‰E¨H‰E¸L‹fL‰e°H‰ßè^¹L‹]¨L‹g;ëJL‹^;M‰ÕL‹]¨éƒýÿÿL‹]¨H‹5?¨H‹VH‰ßM‰Ýè»L‹1;H…ÀtM‰ëI‰ÅH‰EÀH‹E HÿÈH…ÀŽCýÿÿH5•L}ÇHU°H‰ßL‰ùèMé…ÀxL‹e°L‹]¸L‹mÀL‹Þ:é
ýÿÿ¾V1éQþÿÿ®ýÿÿ°þÿÿÿÿÿ6ÿÿÿíüÿÿåüÿÿÝüÿÿÕüÿÿ@UH‰åAWAVAUATSHƒì8I‰þH‹:H‹H‰EÐL‹%w¡L‰e°L‹t¡L‰]¸L‹i:L‰UÀL‹~H…Ò…ÑIƒÿ‡(L‹-G:H4Jc¸HÁÿáL‹n(L‰mÀL‹^ L‰]¸L‹fL‰e°I‹žèHÿIƒÆ HƒìH=žgL‰öL‰êH‰ÙA¸M‰áARjÿ5ʡÿ5ܠjÿ5”¦ASjÿ5º¤ÿԩHƒÄPH…À„%I‰ÆHÿu
H‹CH‰ßÿP0H‹¶9H‹H;EÐ…úL‰ðHƒÄ8[A\A]A^A_]ÃIƒÿw[H‰ÓH[Jc¸HÁÿáL‰]¨H‰ßèN·H‰E H…ÀŽ H‹5.¤H‹VH‰ßè ¹H…À„ñH‰E°H‹M HÿÉI‰ÄéÑL‰øH÷ÐHÁè?M…ÿL@HíH
ïHHÈH‹Œ8H‹8HƒìH5ÞHgÅL
1ÀAWèնHƒÄ¾ÿ1H=Å&H
ÌúèNþþÿE1öH‹¼8H‹H;EЄÿÿÿ訸H…ÛtHÿu
H‹CH‰ßÿP0H=}&H
„þ(2ºTë±L‰]¨L‹fL‰e°H‰ßèD¶H‰ÁH…ÉŽ—H‰M H‹5ñ¤H‹VH‰ßè¸H…À„ŠH‰E¸H‹M HÿÉI‰ÃëL‹n L‰m¸L‹fL‰e°H‰ßèðµM‰ëH‰ÁL‹÷7M‰ÕH‰M H…ÉMéÇýÿÿL‹n(L‰mÀH‹F H‰E¨H‰E¸L‹fL‰e°H‰ß讵L‹]¨L‹·7ëJL‹®7M‰ÕL‹]¨éƒýÿÿL‹]¨H‹5¤H‹VH‰ßM‰Ýèf·L‹7H…ÀtM‰ëI‰ÅH‰EÀH‹E HÿÈH…ÀŽCýÿÿH5s‘LÔÃHU°H‰ßL‰ùèå…ÀxL‹e°L‹]¸L‹mÀL‹.7é
ýÿÿ¾ë1éQþÿÿ®ýÿÿ°þÿÿÿÿÿ6ÿÿÿíüÿÿåüÿÿÝüÿÿÕüÿÿ@UH‰åAWAVAUATSHƒì8I‰þH‹í6H‹H‰EÐL‹%ǝL‰e°L‹ĝL‰]¸L‹¹6L‰UÀL‹~H…Ò…ÑIƒÿ‡(L‹-—6H4Jc¸HÁÿáL‹n(L‰mÀL‹^ L‰]¸L‹fL‰e°I‹žèHÿIƒÆHHƒìH=;L‰öL‰êH‰ÙA¸M‰áARjÿ5žÿ5,jÿ5£ASjÿ5B¡ÿ$¦HƒÄPH…À„%I‰ÆHÿu
H‹CH‰ßÿP0H‹6H‹H;EÐ…úL‰ðHƒÄ8[A\A]A^A_]ÃIƒÿw[H‰ÓH[Jc¸HÁÿáL‰]¨H‰ß螳H‰E H…ÀŽ H‹5¶ H‹VH‰ßèpµH…À„ñH‰E°H‹M HÿÉI‰ÄéÑL‰øH÷ÐHÁè?M…ÿL@H=H
?HHÈH‹Ü4H‹8HƒìH5.HÀÁL
\1ÀAWè%³HƒÄ¾”2H=>#H
ÀºYèžúþÿE1öH‹5H‹H;EЄÿÿÿèø´H…ÛtHÿu
H‹CH‰ßÿP0H=ö"H
Կ¾½2ºÇë±L‰]¨L‹fL‰e°H‰ß蔲H‰ÁH…ÉŽ—H‰M H‹5y¡H‹VH‰ßèc´H…À„ŠH‰E¸H‹M HÿÉI‰ÃëL‹n L‰m¸L‹fL‰e°H‰ßè@²M‰ëH‰ÁL‹G4M‰ÕH‰M H…ÉMéÇýÿÿL‹n(L‰mÀH‹F H‰E¨H‰E¸L‹fL‰e°H‰ßèþ±L‹]¨L‹4ëJL‹þ3M‰ÕL‹]¨éƒýÿÿL‹]¨H‹5ߠH‹VH‰ßM‰Ý足L‹Ñ3H…ÀtM‰ëI‰ÅH‰EÀH‹E HÿÈH…ÀŽCýÿÿH5ãL-ÀHU°H‰ßL‰ùèíá…ÀxL‹e°L‹]¸L‹mÀL‹~3é
ýÿÿ¾€2éQþÿÿ®ýÿÿ°þÿÿÿÿÿ6ÿÿÿíüÿÿåüÿÿÝüÿÿÕüÿÿ@UH‰åAWAVAUATSHƒì(I‰þH‹=3H‹H‰EÐL‹%šL‰eÀL‹3L‰UÈL‹~H…Ò…ÂL‹-ü2M…ÿt IƒÿtIƒÿ…æL‹n L‰mÈL‹fL‰eÀM‹¾èIÿIƒÆ H‹º™H‹›šHƒìH=˜2L‰öL‰êL‰ùA¸M‰áARjSPjSPjÿ5DŸÿŽ¢HƒÄPH…À„I‰ÆIÿu
I‹GL‰ÿÿP0H‹p2H‹H;EÐ…ÙL‰ðHƒÄ([A\A]A^A_]ÃH‰ÓM…ÿ„îIƒÿ„ Iƒÿu$L‹n L‰mÈL‹fL‰eÀH‰ßèù¯L‹2éTM‰øIÁè>A÷ÐAƒàM…ÿHÈH
ÊHHÈH‹g1H‹8HƒìH5¹HU¾L
ç1ÀAW谯HƒÄ¾3H=óH
§¼ºÌè)÷þÿE1öH‹—1H‹H;EЄ'ÿÿÿ胱M…ÿtIÿu
I‹GL‰ÿÿP0H=«H
_¼¾E3ºë±M‰ÕH‰ßè(¯H‰E¸H…À~OH‹5ܝH‹VH‰ßèþ°H…Àt?H‰EÀH‹M¸HÿÉI‰ÄëM‰ÕL‹fL‰eÀH‰ßèä®H‰ÁM‰êH‰M¸H…Éé
þÿÿM‰êéþÿÿM‰êH‹5ʝH‹VH‰ßM‰Õ衰H…ÀtM‰êI‰ÅH‰EÈH‹E¸HÿÈH…ÀŽÍýÿÿH5õŠL)½HUÀH‰ßL‰ùèßޅÀxL‹eÀL‹mÈL‹t0é˜ýÿÿ¾3é¼þÿÿf.„UH‰åAWAVAUATSHƒìHI‰ôI‰ýH‹J0H‹H‰EÐWÀ)E°H‹%0H‰EÀL‹vH…Ò…ªIƒþtIƒþ…¡M‹|$(L‰}ÀëL‹=ò/M‹T$ L‰U¸I‹\$H‰]°M‹µèIÿIƒÅHHƒìH=2L‰îL‰úL‰ñA¸I‰ÙPjÿ5Œ—ÿ5ž–jÿ5VœARjÿ5´šÿ–ŸHƒÄPH…ÀtlH‰ÃIÿ…†I‹FL‰÷ÿP0éwIƒþ‡ýH‰ÓH’Jc°HÁÿáH‰ßè1­I‰ÇH‹5SšH‹VH‰ßè
¯H‰E°H‰E H…À„¶IÿÏëIM…ötIÿu
I‹FL‰÷ÿP0H=xH
º¾Ô3º_éîI‹D$H‰E H‰E°H‰ß迬I‰ÇH‹5y›H‹VH‰ß蛮H‰E¸H…À„H‰E¨IÿÏë%I‹D$ H‰E¨H‰E¸I‹D$H‰E H‰E°H‰ßèq¬I‰ÇM…ÿ~:M‰üH‹5k›H‹VH‰]˜H‰ßèA®I‰ÇH…ÀH‹V.H‹] L‹U¨tbL‰}ÀIÿÌëPH‹<.I‰ÇH‹] L‹U¨éLþÿÿH‰ßM‹|$(L‰}ÀI‹D$ H‰E¨H‰E¸I‹\$H‰]°H‰}˜èí«L‹U¨I‰ÄH‹ó-M…äŽ
þÿÿH5[ˆLxºHU°H‹}˜L‰ñè$܅ÀˆøH‹]°L‹U¸L‹}ÀH‹±-éÌýÿÿH‹5-H‹8HƒìH5‡H,ºH
hL
®A¸1Àjèq«HƒÄ¾3ë[M‹t$E1ÀIƒþH4H
6HLÈAœÀIƒðH‹Ë,H‹8HƒìH5H¹L
K1ÀAVè«HƒÄ¾«3H=€H
¸ºèòþÿ1ÛH‹ü,H‹H;EÐuH‰ØHƒÄH[A\A]A^A_]Ãèڬ¾™3븐wýÿÿÜýÿÿþÿÿ˜þÿÿf.„fUH‰åAWAVAUATSHƒìhI‰ÕI‰öH‹š,H‹H‰EÐfWÀf)EÀf)E°H‹n,H‰UÈH‹^M…í…‰HƒûtHƒû…}H‰}€I‹N0H‰MÈëH‰}€H‹
4,M‹f(L‰eÀI‹F H‰E¨H‰E¸M‹~L‰}°H‰xÿÿÿH‹:œH‹˜(¿ÿhL‰ÿH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„]I‰ÅHƒ8u
I‹EL‰ïÿP0H‹ð›H‹˜(¿ÿhE1öH‹}¨H‰Æ1Ò1ÉA¸E1ÉÿÓH…À„,H‰EHƒ8uH‹}H‹GÿP0H‹ ›H‹˜(¿ÿhL‰çH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„ðH‰ÃHƒ8u
H‹CH‰ßÿP0H‹E‹@A9EL‰m H‰ÙH‰]ˆ…¥‹K9È…š…É…’L‰ÿèB©ò…pÿÿÿf.¦µuzèí¨H…À…L‰çè©òE˜f.µuzèƨH…À…kH‹}¨èð¨f(Ðf.XµL‹u€òE¨uz薨òU¨H…À…Gò…pÿÿÿf.ÂòM˜‡Âf.чøf.Áu‹(M‹¾èIÿ莨H…À„qI‰ÅòE¨èx¨H…À„zI‰ÄòE˜èb¨H…ÀL‰e¨„sIƒÆ L‹ؑHƒìL‹í)H=.uL‰öH‹•xÿÿÿL‰ùA¸M‰éARjASH‰ÃH‰E˜PjASATjASÿº™HƒÄPH…À„8I‰ÆIÿ„IÿM„)H‹}¨HÿH‹]˜„3HÿL‹m …UéaH‹uœH‹=¾†H;G…9H‹eœH…À„“HÿH‹RœH…À„ËH‹5‚‘H‹HH‹‰H…ÉI‰ÇH‰Ç„2ÿÑI‰ÆH…À„5Iÿu
I‹GL‰ÿÿP0H‹œH‹=E†H;G…†H‹ü›H…À„ßHÿL‹-é›M…í„åH‹5‰’I‹EH‹€L‰ïH…À„†ÿÐI‰ÇH…À„‰IÿMu
I‹EL‰ïÿP0I‹GH;9(„àE1äE1íI‹GH;
(„
H;m'uPI‹G‹@ƒà=€u?L‰m°H‹E H‰E¸H‹EH‰EÀD‰áHÁáH÷ÙAƒÌI‹WH‹B‹Rö …ÒI‹éËL‰u¨A|$è}§H…À„I‰ÆM…ítM‰nL‹m IÿED‰àM‰lÆH‹MHÿI‰LÆ L‰ÿL‰ö1ÒèÇÿÿH…À„íI‰ÄIÿu
I‹FL‰÷ÿP0L‹u¨Iÿu
I‹GL‰ÿÿP0I‹FH;>'„ºL‰÷L‰æè}ÿÿH‰ÃIÿ$tH…Ût#Iÿt2H;K'u@é]I‹D$L‰çÿP0H…ÛuÝL‰u¨A¼Ã»Á5é=I‹FL‰÷ÿP0H;'„"H;
'„H;í&„H‰ßè)¦A‰ƅÀˆ€Hÿ„E…ö…
H‹ó™H‹=„H;G…KH‹ã™H…À„¥HÿH‹
ЙH…É„àH‹5àŽH‹AH‹€H…ÀH‰ËH‰Ï„GÿÐI‰ÆH…À„JHÿu
H‹CH‰ßÿP0H‹Š™H‹=£ƒH;GL‰u˜…—H‹v™H…À„ñHÿL‹=c™M…ÿ„"H‹5ãI‹GH‹€L‰ÿH…À„–ÿÐI‰ÆH…À„™Iÿu
I‹GL‰ÿÿP0I‹FH;”%„E1äE1ÿI‹FH;e%„)H;È$uPI‹F‹@ƒà=€u?L‰}°H‹EH‰E¸H‹EˆH‰EÀD‰áHÁáH÷ÙAƒÌI‹VH‹B‹Rö …\I‹~éUA|$èܤH…À„ I‰ÅM…ÿtM‰}H‹MHÿD‰àI‰LÅH‹MˆHÿI‰LÅ E1ÿL‰÷L‰î1Òè$	ÿÿH…À„jI‰ÄIÿMu
I‹EL‰ïÿP0L‹m é³E1öH;å$A”ÆHÿ…ýýÿÿH‹CH‰ßÿP0E…ö„óýÿÿH‹=¦’H‹5Ǔ1ÒèÀÿÿA¾ÄH…À„ŠH‰ÃH‰ÇèÕHÿA¼Ó5…¤é(I‹GL‰ÿÿP0IÿM…×úÿÿI‹EL‰ïÿP0H‹}¨HÿH‹]˜…ÍúÿÿH‹GÿP0HÿL‹m …
é'
1ÿHt
¸öÂ…L‰âÿÐI‰ÄH…À„M…í…é1ÿHt
¸öÂ…L‰âÿÐI‰ÄH…À„M…ÿ…–é Hƒû‡úH›Hc˜HÁH‰}€ÿáL‰ï蚡I‰ÄH‹5LŽH‹VL‰ïèv£H‰E°H…À„·I‰ÇIÿÌM‰æéºH=H
{®¾|4º¯éý¾‹4º°L‰uë
¾š4º±H=ÞH
D®èËèþÿ1ÀH‰EˆE1öIÿM…
é L‹=ĀI‹WL‰þèæ¢H‹
a€H‹IH‰
–H‰–H…À„õHÿé­ùÿÿè÷¡I‰ÆH…À…ËùÿÿA¼Ã»5E1öIÿ…Aé2H‹Z€H‹=€H‹GH‹€H‰ÞH…À„çÿÐH…À…PùÿÿH‹â!H‹8H5"H‰Ú1Àèd A¼}5A¾ÃézH‹þH‹SH‰Þè ¢I‰ÅH‹˜H‹@H‰M•L‰-N•M…í„‹IÿEé\ùÿÿè-¡I‰ÇH…À…wùÿÿL‰u¨»„5A¼ÃE1ÿégH‹•H‹=FH‹GH‹€H‰ÞH…À„¢ÿÐI‰ÅH…À…ùÿÿH‹!H‹8H5ZE1ÿH‰Ú1À號»‚5A¼ÃéÆM‹oM…í„ùÿÿI‹_IÿEHÿIÿA¼u
I‹GL‰ÿÿP0I‰ßI‹GH;!…öøÿÿL‰m°H‹E H‰E¸H‹EH‰EÀD‰àHÁàH÷ØHt¸AƒÌL‰ÿL‰âèÿÿH…À„I‰ÄM…ítIÿMtL‹m Iÿ…sùÿÿédùÿÿI‹EL‰ïÿP0L‹m Iÿ…WùÿÿéHùÿÿ»‚5A¼ÃE1ÿL‰÷E1öL‹m é!M‹~M…ÿ„9ùÿÿL‰÷M‹vIÿIÿHÿuH‹GÿP0L‰÷L‰þL‰âèŠÿþÿH‰ÃIÿ…ùÿÿI‹GL‰ÿÿP0éùÿÿL‹=~I‹WL‰þè2 H‹
­}H‹IH‰
r“H‰s“H…À„.HÿH‰Áé˜ùÿÿè@ŸI‰ÆH…À…¶ùÿÿA¼ÅE1ÿH‰߻ç5E1öéhH‹¦}H‹=W}H‹GH‹€H‰ÞH…À„#ÿÐH…ÀH‰Á…;ùÿÿH‹+H‹8H5kH‰Ú1À譝A¼å5A¾ÅéÃH‹G}H‹SH‰ÞèiŸI‰ÇH‹á|H‹@H‰¶’L‰=·’M…ÿ„ÇIÿéLùÿÿèwžI‰ÆH…À…gùÿÿA¼Å»ì5E1ö1ÀH‰E¨é
H‹Ý|H‹=Ž|H‹GH‹€H‰ÞH…À„ÑÿÐI‰ÇH…À…ïøÿÿH‹bH‹8H5¢E1öH‰Ú1ÀèáœA¼Å»ê5L‹}˜Iÿ…V
éG
M‹~M…ÿ„óøÿÿI‹^IÿHÿIÿA¼u
I‹FL‰÷ÿP0I‰ÞI‹FH;<…×øÿÿL‰}°H‹EH‰E¸H‹EˆH‰EÀD‰àHÁàH÷ØHt¸AƒÌL‰÷L‰âèÌþþÿH…À„X	I‰ÄM…ÿtIÿu
I‹GL‰ÿÿP0L‹}˜Iÿu
I‹FL‰÷ÿP0I‹GH;Þ„@L‰ÿL‰æèüþÿH‰ÃIÿ$tH…Ût#Iÿt1H;ëu?éXI‹D$L‰çÿP0H…Ûuݻ)6A¼ÅE1öé8I‹GL‰ÿÿP0H;°„H;«„H;Ž„H‰ßèʜA‰ƅÀˆ/Hÿ„ÿE…ö…	H‹´H‹=½zH;G…ÕH‹¤H…À„/HÿH‹‘H…À„gH‹5…H‹HH‹‰H…ÉI‰ÇH‰Ç„ÎÿÑH‰ÃH…À„ÑIÿu
I‹GL‰ÿÿP0H‹KH‹=DzH;GH‰]¨…H‹7H…À„zHÿL‹5$M…ö„pH‹5D†I‹FH‹€L‰÷H…À„ÿÐI‰ÅH…À„ Iÿu
I‹FL‰÷ÿP0I‹EH;5„|E1ö1ÛI‹EH;„¦H;juNI‹E‹@ƒà=€u=L‰u°H‹E H‰E¸H‹EˆH‰E	ÙHÁáH÷كËI‹UH‹B‹Rö …äI‹}éݍ{肛A¼ÇH…À„jI‰ÇM…ötM‰wH‹M Hÿ‰ØI‰LÇH‹MˆHÿI‰LÇ E1öL‰ïL‰þ1ÒèÅÿþÿH…À„8I‰ÄIÿ…=I‹GL‰ÿé.E1öH;ŠA”ÆHÿ…þÿÿH‹CH‰ßÿP0E…ö„÷ýÿÿH‹=K‰H‹5tŠ1ÒèeÿþÿA¾ÆH…À„H‰ÃH‰Çè«ËHÿA¼;6…IéÍ1ÿHt
¸öÂ…Ø	H‰ÚÿÐI‰ÄH…À„Ú	M…ö…‹é•A¼Å»ê5E1öL‹}˜Iÿ…`	éQ	M‹wM…ö„³üÿÿI‹_IÿHÿIÿu
I‹GL‰ÿÿP0H‰ßL‰öL‰âè¤ùþÿI‰ßH‰ÃIÿ…‹üÿÿI‹FL‰÷ÿP0é|üÿÿL‹='xI‹WL‰þèIšH‹
ÄwH‹IH‰
©H‰ªH…À„,HÿéýÿÿèZ™H‰ÃH…À…/ýÿÿA¼Ç»O6E1öIÿ…¤é•H‹½wH‹=nwH‹GH‹€H‰ÞH…À„9ÿÐH…À…´üÿÿH‹EH‹8H5…H‰Ú1ÀèǗA¼M6A¾ÇéÝH‹awH‹SH‰Þ胙I‰ÆH‹ûvH‹@H‰ðŒL‰5ñŒM…ö„Ý
IÿéÅüÿÿ葘I‰ÅH…À…àüÿÿ»T6A¼ÇE1ÿL‹m H‹}¨é·H‹õvH‹=¦vH‹GH‹€H‰ÞH…À„è
ÿÐI‰ÆH…À…füÿÿH‹zH‹8H5ºE1ÿH‰Ú1Àèù–»R6A¼Çé¶M‹uM…ö„wüÿÿM‹}IÿIÿIÿM»u
I‹EL‰ïÿP0M‰ýI‹EH;a…ZüÿÿL‰u°H‹E H‰E¸H‹EˆH‰E	ØHÁàH÷ØHt¸ƒËL‰ïH‰ÚèóøþÿH…À„‰I‰ÄM…ötIÿu
I‹FL‰÷ÿP0L‹u¨IÿMu
I‹EL‰ïÿP0I‹FH;„
L‰÷L‰æèCöþÿH‰ÃIÿ$t H…Ût+IÿtCH;L‹m L‹}€uQéHI‹D$L‰çÿP0H…ÛuÕL‰u¨A¼Ç»‘6E1ö1ÀH‰E˜é/I‹FL‰÷ÿP0H;ÄL‹m L‹}€„üH;·„ïH;š„âH‰ßè֖A‰ƅÀˆIHÿ„ÝE…ö…çI‹ŸèHÿIƒÇ L‹
BHƒìH=ŸbL‰þH‹•xÿÿÿH‰ÙM‰èjAQÿuˆjAQÿujÿ¡ŠHƒÄ@H…À„JI‰ÆHÿtIÿMtH‹}H…ÿu%ë/H‹CH‰ßÿP0IÿMuåI‹EL‰ïÿP0H‹}H…ÿtHÿuH‹GÿP0H‹}ˆH…ÿ„t	Hÿ…k	H‹GÿP0é_	E1öH;¸A”ÆHÿ…#ÿÿÿH‹CH‰ßÿP0E…ö„ÿÿÿH‹=y„H‹5ª…1Òè“úþÿA¾ÈH…À„CH‰ÃH‰ÇèÙÆHÿA¼£6…wH‹CH‰ßÿP0éh»R6A¼ÇE1ÿE1öH‹}¨é”M‹~M…ÿ„æýÿÿL‰÷M‹vIÿIÿHÿuH‹GÿP0L‰÷L‰þL‰âèýôþÿH‰ÃIÿ…ÁýÿÿI‹GL‰ÿÿP0é²ýÿÿA¾À6A¿Êé•A¼Ã»¤5é»1ÀH‰E˜»¯5A¼Ãéé»6éÓ»6A¼Å1ÀH‰E¨IÿM…Ä鏻t6E1ÿéq»6A¼ÇéaA¾Ä5A¿ÃëA¾,6A¿ÅëA¾”6A¿ÇH…ÛtHÿu
H‹CH‰ßÿP0H=¸H
 D‰öD‰úé¹L‰u¨A¼Ã»–5éõ»þ5é#A¼Ç»f6E1ÿéÛM‹~L‰}°L‰ï貒I‰ÆH‹5ôH‹VL‰ï莔H‰E¸H‰E¨H…À„IÿÎëI‹F H‰E¨H‰E¸M‹~L‰}°L‰ïèj’I‰ÆH‹5H‹VL‰ïèF”H‰EÀH…À„ZI‰ÄIÿÎH‹
Në;I‹V0H‰UÈM‹f(L‰eÀI‹F H‰E¨H‰E¸M‹~L‰}°L‰ïI‰Öè	’L‰ñI‰ÆHƒûu+M…öŽðçÿÿH‹5ù€H‹VL‰ïèӓH…ÀtH‰ÁH‰EÈIÿÎM…öŽÅçÿÿH5nnLp HU°L‰ïH‰Ùè…Àˆ¥L‹}°H‹E¸H‰E¨L‹eÀH‹MÈé‡çÿÿH‹=ˆH‹5©‚1Òè¢÷þÿA¾¹H…À„GI‰ÇH‰ÇèèÃIÿA¼è4…‚ëvH‹=HH‹5q‚1Òèb÷þÿA¾»H…À„I‰ÇH‰Çè¨ÃIÿA¼5uFë:H‹=H‹5=‚1Òè&÷þÿA¾½H…À„áI‰ÇH‰ÇèlÃIÿA¼(5u
I‹GL‰ÿÿP0L‹m H=sH
ٝD‰æD‰òét»E5A¼¿1ÀH‰E¨1ÀH‰E˜E1öéé»O5A¼À1ÀH‰E¨ë»Y5A¼Á1ÀH‰E˜E1öIÿM…¸éƒ»c5A¼¾E1öIÿM…›ëiA¼¼4A¾´égÿÿÿA¼Æ4A¾µéVÿÿÿA¼Ð4A¾¶éEÿÿÿL‰â1ÉÿÐI‰ÄH…À…üíÿÿL‰u¨A¼Ã»ž5E1ö1ÀH‰E˜M…ít6IÿMu0I‹EL‰ïÿP0ë$L‰â1ÉÿÐI‰ÄH…À…éíÿÿ»6A¼Å1ÀH‰E¨M…ÿtIÿu
I‹GL‰ÿÿP0H‹}¨H…ÿL‹m L‹}˜tHÿuH‹GÿP0M…ÿtIÿu
I‹GL‰ÿÿP0M…ötIÿu
I‹FL‰÷ÿP0H=ùÿH
_œ‰ÞD‰âèáÖþÿE1öIÿM…&úÿÿé<úÿÿH‰Ú1ÉÿÐI‰ÄH…À…&öÿÿ»n6A¼ÇE1ÿ1ÀH‰E˜IÿM…Lÿÿÿéÿÿÿ»'4AºéÞèüŽA¼}5A¾ÃH…À…øýÿÿH‹=8nH‹GH‹€L‰þH…À„­ÿÐH…ÀL‹m …yçÿÿéÏ辏H…À…fçÿÿéîÿÿM‰÷蚎H…À…ŒH‹=âmH‹GH‹€H‰ÞH…À„‹ÿÐI‰ÅH…ÀM‰þ…šçÿÿH‹³H‹8H5óE1ÿH‰Ú1Àè2ŽL‰÷E1öL‹m é=è>I‰ÅH…À…\çÿÿéVîÿÿA¼Ï5é)ýÿÿèŽA¼å5A¾ÅH…À…ýÿÿH‹=KmH‹GH‹€L‰þH…À„
ÿÐH‰ÁH…ÀL‹m …+éÿÿéßèΎH…ÀH‰Á…éÿÿéÕïÿÿ認H…À…ÜH‹=òlH‹GH‹€H‰ÞH…À„âÿÐI‰ÇH…ÀL‹m …OéÿÿH‹ÂH‹8H5E1öH‰Ú1ÀèAéèWŽI‰ÇH…À…éÿÿé'ðÿÿA¼76éBüÿÿè(A¼M6A¾ÇH…À…$üÿÿH‹=dlH‹GH‹€L‰þH…À„nÿÐH…ÀL‹m …¦ñÿÿH‹7H‹8H5wL‰ú1À蹌éÛûÿÿèύH…À…xñÿÿé¿ôÿÿ讌H…À…5H‹=ökH‹GH‹€H‰ÞH…À„5ÿÐI‰ÆH…ÀL‹m …²ñÿÿH‹Æ
H‹8H5E1ÿH‰Ú1ÀèEŒE1öééèXI‰ÆH…À…{ñÿÿéõÿÿA¼Ÿ6éCûÿÿ»!4AºH‹œ
H‹8HƒìH5îóH˜šH
ÏóL
ôA¸1ÀARè؋HƒÄë\I‹^1ÀHƒûœÀHŸóH
¡óHLÊA¸I)ÀH‹5
H‹8HƒìH5‡óH1šL
µó1ÀSè‹HƒÄ»E4H=üH
v˜‰޺dèöÒþÿE1öH‹d
H‹H;EÐuL‰ðHƒÄh[A\A]A^A_]ÃèBA¼ä4éJúÿÿA¼5é?úÿÿA¼$5é4úÿÿ»14ë”è%ŒH…ÀL‹m …ÉãÿÿéþÿÿE1öL‹m L‰ÿE1ÿA¼Ã»‚5éCûÿÿèñ‹I‰ÅH…ÀM‰þ…äÿÿémüÿÿè؋éëüÿÿE1öL‹m L‹}˜A¼Å»ê5Iÿ…!ûÿÿéûÿÿ誋I‰ÇH…ÀL‹m …jæÿÿéýÿÿ萋H…ÀL‹m …5ïÿÿéŠýÿÿE1ÿE1öL‹m H‹}¨A¼Ç»R6é­úÿÿè[‹I‰ÆH…ÀL‹m …zïÿÿéÃýÿÿrèÿÿR÷ÿÿŽ÷ÿÿä÷ÿÿÜ÷ÿÿf.„fUH‰åAWAVAUATSHì˜I‰÷H‹úH‹H‰EÐfWÀf)E°H‹ÓH‰EÀH‹^H…ÒH‰½hÿÿÿ…èHƒûtHƒû…D$I‹G(H‰E˜H‰EÀëH‹–H‰E˜M‹g L‰e¸M‹oL‰m°HÇE HÇE¨HÇEH‹“{H‹˜(¿ÿhE1öL‰çH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„·H‰ÃHƒ8u
H‹CH‰ßÿP0H‰]ˆD‹{H‹>{H‹˜(¿ÿhE1öL‰ïH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„Hƒ8I‰ÆtE…ÿL‰µXÿÿÿu#ëI‹FL‰÷ÿP0E…ÿL‰µXÿÿÿuAƒ~„ÙH‹5”vL‹}ˆL‰ÿºÿ~ƒøÿ„@H‹5âuL‰÷ºÿä}ƒøÿ„5L‹m˜L;-X
„H‹Ë}H‹=¤gH;GL‹¥hÿÿÿ…H‹´}H…À„mHÿL‹=¡}M…ÿ„ôH‹5sI‹GH‹€L‰ÿH…À„ÿÐH‰E H…À„Iÿu
I‹GL‰ÿÿP0H‹E H‹HH;
	„j1ÛE1ÿH‹} H‹GH;[	„žH;¾…H‹G‹@ƒà=€…L‰}°L‰m¸H‹4	H‰E	ÙHÁáH÷كËH‹WH‹B‹Rö …jH‹écH‹
py¿L‰þL‰ò1Àÿ‘H…ÀL‹¥hÿÿÿ„I‰ÆH‰E H;	„§H‹’|H…À„R
I‹NH9Á„ŠH‹‘XH…Ò„
H‹rH…ö~1ÿf„H9Dú„[HÿÇH9þuíH‹>H‹:H‹QH‹HH5XòE1ö1À萆º?
A½581Ééê{èˆH‰E¨H…À„¤M…ÿtL‰xIÿE‰ÙL‰lÈH‹HÿH‹U¨H‰DÊ L‹} L‹u¨L‰ÿL‰ö1ÒèGìþÿH…À„jH‰ÃIÿu
I‹FL‰÷ÿP0HÇE¨éVL‰}°L‰m¸H‹¸H‰E	ØHÁàH÷ØHt¸ƒËH‰ÚèSèþÿH…À„TH‰ÃéL‰çè†ò…xÿÿÿf.r’uz蹅H…À…pL‰ïèÀnI‰ÅHƒøÿL‹¥hÿÿÿu蓅H…À…‘H‹=ksò…xÿÿÿ¾ÿ{ƒøÿL‹}˜„àWÀòI*ÅH‹=¬r¾ÿézƒøÿ„ÐL;=)„H‹ÔzH‹=udH;G…îH‹ÄzH…À„HHÿH‹±zH‰]¨H…Û„à H‹5UpH‹CH‹€H‰ßH…À„æÿÐH‰E H…À„éHÿu
H‹CH‰ßÿP0HÇE¨H‹E H‹H1ÛH;
W„H‹} H‹GH;*L‰­Pÿÿÿ„7H;†…­H‹G‹@ƒà=€…˜H‹E¨H‰E°L‰}¸H‹øH‰E	ÙHÁáH÷كËH‹WH‹B‹Rö …ŽH‹é‡M‹´$èL‹=œoI‹^H‰ßL‰þèã…H…À„H‰ÇH‹@H‹ˆH…É„dL‰öH‰ÚÿÑH‰E€H…À…Véï{è;…H…À„<I‰ÅH‹E¨H…ÀtI‰EHÇE¨H‹M˜Hÿ‰ØI‰LÅH‹
5HÿI‰LÅ H‹} E1öL‰î1ÒètéþÿH‰EH…À„üIÿM…þI‹EL‰ïÿP0éïH‹E¨H‰E°L‰}¸H‹ãH‰E	ØHÁàH÷ØHt¸ƒËH‰Úè~åþÿH‰EH…À…•º\
A½,:E1öé_üÿÿ1ÿHt
¸öÂ…ÇH‰ÚÿÐH‰ÃH…À„ÉM…ÿtIÿu
I‹GL‰ÿÿP0L‹}ˆH‹} HÿtH‰] Hƒ;t!HÇE E1öé
H‹GÿP0H‰] Hƒ;ußH‹CH‰ßÿP0H‹] ëÏH‰}€HÿM‹´$èL‹=ÛmM‹fL‰çL‰þè:„H…À„ŠH‹HH‹™H…ÛtH‰ÇL‰öL‰âÿÓH‰E¨H…À„|H‹HëHÿH‰E¨HÇEH;
¿…úH‹HH‰MH…É„F
H‹@HÿHÿH‹}¨H‰E¨HÿuH‹GÿP0H‹]H‹E¨H…Û„¶H‰ÇH‰Þè¾áþÿH‰E Hÿu
H‹CH‰ßÿP0H‹E HÇEH…À„ÊH‹}¨HÿuH‹GÿP0HÇE¨H‹} HÿuH‹GÿP0HÇE è9ƒI‰ÆH‹H‹
8ò…xÿÿÿëfDH‹PH…ÒtH‰ÐL‹"M…ätìI9ÌtçH‹HH‹Xë
H‹HH‹XM…ätIÿ$H…ÉtHÿH‰pÿÿÿH…ÛtHÿH‹…hÿÿÿHx HP`L‰îè¾
H‰ÇèXHÇE H…À„9I‰ÅI‹†H‹8L‹xL‹pL‰ H‹pÿÿÿH‰HH‰XH…ÿtHÿuH‹GÿP0M…ÿtIÿu
I‹GL‰ÿÿP0M…ötIÿu
I‹FL‰÷ÿP0Hƒ}€L‹}ˆ„ŽH‹5ÇpH‹}€1ÒèDæþÿH‹}€I‰ÆHÿuH‹GÿP0M…ö„ÍIÿ…WI‹FL‰÷éHH‹HH;
 tEH;
…GH‹HöA„9H‰Ç1öèåþÿH‰E HÇEH…À…6þÿÿA½ƒ9éH‰Ç1ö1ÒèâþÿH‰E HÇEH…À…
þÿÿëÒ1ÿHt
¸öÂ…3H‰ÚÿÐH‰EH…À„5H‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹} HÿuH‹GÿP0H‹EH‰E HÿH‹}HÿuH‹GÿP0HÇEH‹] HÇE H‹1qH‹{ ‹sÿðH‰E€H‰]˜L‹{M‹¤$èL‹-yjI‹\$H‰ßL‰î迀H…À„ŠH‰ÇH‹@H‹ˆH…ÉtL‰æH‰ÚÿÑH‰…pÿÿÿH…ÀuépH‰½pÿÿÿHÿH‹…hÿÿÿL‹ èH‹ýiM‹l$L‰ïH‰Þè[€H…À„EH‹HH‹™H…ÛtH‰ÇL‰æL‰êÿÓH‰EH…À„7H‹HëHÿH‰EH;
èÿ…(H‹XH…Û„JH‹@HÿHÿH‹}H‰EHÿuH‹GÿP0H‹}H‰ÞèûÝþÿH‰E Hÿu
H‹CH‰ßÿP0H‹E H…À„¬H‹}HÿuH‹GÿP0HÇEH‹} HÿuH‹GÿP0HÇE èÎ}H‰…`ÿÿÿHƒ}€L‹¥hÿÿÿL‹µPÿÿÿ~=Ml$ IƒÄ`1Ûf.„DL‰ïò…xÿÿÿL‰öL‰âè:
I‰ßHÿÃH9]€uÝH‹½`ÿÿÿèc}H‹5²mH‹pÿÿÿH‰ß1Òè)ãþÿI‰ÆHÿu
H‹CH‰ßÿP0M…öL‹}ˆ„EIÿH‹}˜uI‹FL‰÷ÿP0H‹}˜E1íéöHƒû‡bI‰ÖH‰E˜HHc˜HÁÿáL‰÷è–|I‰ÄH‹5jH‹VL‰÷èr~H‰E°H…À„I‰ÅIÿÌM‰çéÓº4
A½€71ÀH‰…Xÿÿÿ1ÀH‰EˆéÓõÿÿº6
A½¡71ÀH‰…Xÿÿÿéºõÿÿº:
A½Ì7E1öé§õÿÿº;
A½Õ7E1öé”õÿÿH‹Ä[H‹SH‰Þèæ}I‰ÇH‹^[H‹@H‰sqL‰=tqM…ÿ„IÿéËóÿÿèô|H‰E H…À…æóÿÿº=
A½ë7E1öéH‹_[H‹=[H‹GH‹€H‰ÞH…À„ÿÐI‰ÇH…À…sóÿÿH‹äüH‹8H5$úE1öH‰Ú1Àèc{º=
A½é7éÎôÿÿL‹xM…ÿ„‰óÿÿH‹@IÿHÿH‹} H‰E Hÿ»…nóÿÿH‹GÿP0ébóÿÿº=
A½é7E1öé‚ôÿÿH=õëH
±×¾8Rºãè„ÂþÿHÇE A½38º?
1É1ÀH‰…xÿÿÿI‰ÎL‹e¨M…ä…aéqM‹oL‰m°L‰÷è•zI‰ÇH‹5hH‹VL‰÷èq|H‰E¸H…À„_I‰ÄIÿÏëM‹g L‰e¸M‹oL‰m°L‰÷èRzI‰ÇM…ÿŽØðÿÿH‹5KiH‹VL‰÷è%|H‰E˜H…Àt=H‹E˜H‰EÀIÿÏë'I‹G(H‰E˜H‰EÀM‹g L‰e¸M‹oL‰m°L‰÷èùyI‰ÇM…ÿŽðÿÿH5ÂVLŸˆHU°L‰÷H‰Ùè<ª…ÀˆŠL‹m°L‹e¸H‹EÀH‰E˜éEðÿÿA½8éÆº=
A½8E1ö1ÉéH‹(ûH‹8H5>åè­yº?
A½58E1öé÷òÿÿA½ý7é}ºT
A½U9E1öéÙòÿÿºU
A½^9E1öéÆòÿÿH‰ÊH…Ò„ÒH‹’H9ÂuëéκR
A½A9E1öé–òÿÿL‹5ÆXI‹VL‰öèèzH‰ÃH‹`XH‹@H‰­nH‰®nH…Û„Hÿë`èùyH‰E H…À…ôÿÿA½:º\
1É1ÀH‰…xÿÿÿéFL‹5\XH‹=
XH‹GH‹€L‰öH…À„VÿÐH‰ÃH…À„YH‰]¨L‹}˜éóÿÿH‹HH‰M¨H…É„ÙóÿÿH‹@HÿHÿH‹} H‰E Hÿ»uH‹GÿP0L‹}˜é­óÿÿH‹gùH‹8L‰îè:xº`
A½j:ëuH‹HùH‹8H‰ÞèxHÇEA½l:éáH;
›ù„µH;
þøuH‹HöAtH‰Ç1öèÝþÿéŸH‹5WH‰Ç1ÒèÊÝþÿ鉺`
A½»:E1öéH‹5ÛVH‰Ç1Òè¡ÝþÿH‰E HÇEH…À…öõÿÿé»÷ÿÿH;xø…­ðÿÿHÇE H‹ëlH‹=¬VH;G…]H‹ÛlH…À„³HÿL‹-ÈlM…í„#H‹5bI‹EH‹€L‰ïH…À„]ÿÐH‰E¨H…À„`IÿMu
I‹EL‰ïÿP0H‹5«eI‹FH‹€L‰÷H…À„¥ÿÐI‰Å1ÉH…À„¨1ÛH‹E¨H‹HH;
kø„±E1ÿH‹}¨H‹GH;;ø„•H;ž÷uPH‹G‹@ƒà=€u?L‰}°L‰m¸H‹øH‰E	ÙHÁáH÷كËH‰ÚH‹wH‹F‹^öà …ŠH‹éƒ{è´wH‰EH…À„Ñ
M…ÿtL‰x‰ÙL‰lÈH‹À÷HÿH‹UH‰DÊ L‹e¨L‹}L‰çL‰þ1Òè÷ÛþÿH‰E H…À„œ
Iÿu
I‹GL‰ÿÿP0HÇEL‹}ˆL‹¥hÿÿÿH‹}¨HÿuH‹GÿP0H‹E H‰E¨HÿH‹} HÿuH‹GÿP0HÇE H‹]¨HÇE¨H‹šgH‹{ ‹sÿðH‰…xÿÿÿL‹g¿H‰]˜H‰ÞL‰úH‹Xÿÿÿ1ÀAÿH…À„ÕI‰ÅH‰E¨H;÷„mH‹œjH…À„æI‹MH9Á„PH‹‘XH…Ò„äH‹rH…ö~1ÿH9Dú„'HÿÇH9þuíH‹NöH‹:H‹QH‹HH5hà1Àè£tºD
A½8H‹M˜L‹} M…ÿL‰µxÿÿÿtIÿuI‹GI‰ÎL‰ÿ‰ÓÿP0‰ÚL‰ñL‹}ˆI‰ÎL‹e¨M…ätIÿ$uI‹D$L‰ç‰ÓÿP0‰ÚH‹}H…ÿtHÿuH‹G‰ÓÿP0‰ÚH=òäH
-D‰î豻þÿE1íL‰÷M…öH‹xÿÿÿt	Hÿ„3H…Û…6é@L‰}°L‰m¸H‹¡õH‰E	ØHÁàH÷ØHt¸ƒËH‰Úè<ÖþÿH‰E H…Àu/º@
A¼V8éá
1ÿHt
¸öÃ…µ
ÿÐH‰E H…À„·
M…ÿtIÿu
I‹GL‰ÿÿP0IÿMu
I‹EL‰ïÿP0L‹}ˆH‹}¨Hÿ…·ýÿÿé«ýÿÿH=ZäH
úϾjRºæèͺþÿHÇE¨ºD
A½Ž8éƒþÿÿH‹žôH‹8H5´Þè#sé]þÿÿH‰ÊH…Ò„CH‹’H9Âuëé?H‹ŽRH‹SH‰Þè°tI‰ÅH‹(RH‹@H‰UhL‰-VhM…í„Û
IÿEé…ûÿÿè½sH‰E¨H…À… ûÿÿº@
A¼B8E1ÿéµ	H‹(RH‹=ÙQH‹GH‹€H‰ÞH…À„ë
ÿÐI‰ÅH…À…-ûÿÿH‹­óH‹8H5íðH‰Ú1Àè/r1ɺ@
A½@8é‰ýÿÿè8sI‰Å1ÉH…À…Xûÿÿº@
A½E8éfýÿÿº@
A½@8éeëÿÿL‹xM…ÿ„†
H‹@IÿHÿH‹}¨H‰E¨Hÿ»…%ûÿÿH‹GÿP0éûÿÿH;¼ò…áüÿÿM…ötIÿu
I‹FL‰÷ÿP0HÇE¨H‹5S`I‹EH‹€L‰ïH…À„GÿÐH‰E¨H…À„JH‰ÇH‹u˜ÿøfH‰E H…À„CH‹}¨HÿtiHÇE¨H‹} HÿtpHÇE M‹¼$èL‹5²\I‹_H‰ßL‰öèùrH…À„)H‰ÇH‹@H‹ˆH…Ét7L‰þH‰ÚÿÑH‰E€H…Àu-éH‹GÿP0HÇE¨H‹} HÿuH‹GÿP0ë‡H‰}€HÿM‹¼$èL‹5"\M‹gL‰çL‰öèrH…À„ÖH‹HH‹™H…Ût/H‰ÇL‰þL‰âÿÓH‰E¨H…À„ÈH‹HHÇEH;
òtë|HÿH‰E¨HÇEH;
õñudH‹HH‰MH…É„ÎH‹@HÿHÿH‹}¨H‰E¨Hÿt$H‹uH‹E¨H…öt+H‰ÇèÐþÿH‰E H‹}H…ÿupë~H‹GÿP0H‹uH‹E¨H…öuÕH‹HH;
pñt4H;
×ð…eH‹HöA„WH‰Ç1öèáÔþÿH‰E H‹}H…ÿuë)H‰Ç1ö1ÒèöÑþÿH‰E H‹}H…ÿtHÿuH‹GÿP0H‹E HÇEH…À„ÅH‹}¨Hÿ„ÏHÇE¨H‹} Hÿ„ÖHÇE èaoH‰…pÿÿÿHƒ½xÿÿÿŽØL‹µhÿÿÿM~ IƒÆ`E1äëIÿÄL;¥xÿÿÿ„´I‹…8I‹@H‹€0òH‹0H‹0L‰ÿL‰òè²ûI‹0H‹‰0H‰IÿE Aƒ}~¦1Àë,fH‹Š(HŠ0I‹ŒÅ0HÿA(HÿÀIcMH9ȍvÿÿÿI‹ŒÅ0HÿAI‹”Å0‹JH…Étº€º8t!H‹Š(H‹I8HcI HŠ0ë³f„ƒùu,H‹J0H;Š0¨HÿÁH‰J0I‹ŒÅ0H‹‘0鷅ɈqÿÿÿHtÊ(H‹|Ê(H;¼Ê(|OHÇI‹”Å0H‹´Ê(H)²0H…ÉŽ3ÿÿÿ‰ÊHÿÉÿÊI‹œÅ0HtÓ(H‹|Ó(H;¼Ó(}¶‰ÉHÿÇH‰>I‹”Å0H‹ŒÊ(HŠ0éìþÿÿHÇB0I‹ŒÅ0HÿA(I‹ŒÅ0H‹‘(H+‘0H‘0é¶þÿÿH‹½pÿÿÿèbmH‹5±]H‹]€H‰ß1Òè+ÓþÿH‰ßH‰ÃHÿuH‹GÿP0H…Û„ŸHÿH‹}˜uH‹CH‰ßÿP0H‹}˜L‹}ˆHÿL‰ëI‰ýHÿ…ÍøÿÿH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ÿH‹XÿÿÿtIÿu
I‹GL‰ÿÿP0H…Û„Hÿ…‡H‹CH‰ßÿP0éxH‹GÿP0HÇE¨H‹} Hÿ…*ýÿÿH‹GÿP0éýÿÿH‹5KH‰Ç1ÒèSÒþÿH‰E H‹}H…ÿ…¹üÿÿéÄüÿÿè>mH‰E¨H…À…¶úÿÿºE
M‰îA½›8éf÷ÿÿºE
L‰­xÿÿÿA½8L‹}ˆH‹M˜I‰ÎL‹e¨M…ä…y÷ÿÿé‰÷ÿÿH‹íH‹8L‰öèÕkºF
M‰îA½ª8é÷ÿÿH‹ÝìH‹8L‰öè°kHÇE¨»¬8뻺8H‹}€HÿºF
H‹M˜uH‹GÿP0ºF
H‹M˜M‰îA‰ÝéÃöÿÿºF
M‰îA½9é¬öÿÿº@
A¼f8élL‰µxÿÿÿE1öA½q8º@
L‹}ˆM…ä…·öÿÿéÇöÿÿH‰Ú1ÉÿÐH‰ÃH…À…7èÿÿA½8º=
E1öé6ºS
A½K9E1öéOäÿÿH‹ìH‹8L‰þèÚjºX
A½s9E1öé*äÿÿH‹âëH‹8L‰þèµjHÇE¨A½u9H‹E€Hÿ…BH‹}€H‹GÿP0é2L‰éH‰`ÿÿÿL‰­PÿÿÿH‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹}H…ÿtHÿuH‹GÿP0HÇEH=ìÚH
'w¾¡9ºY
褱þÿHu HU¨HML‰÷蠢…ÀˆbH‹u H‹U¨H‹M¿1ÀènkH…À„ÞH‰ÃL‹m€L‰ïH‰Æ1ÒèÓÏþÿI‰ÇIÿM„.Hÿ„9M…ÿ„CL;=•ë„L;=ë„ÿL;=së„òL‰ÿè¯j‰Ãéïº\
A½::E1öéÌâÿÿº\
A¼E:E1ÿëyºX
A½÷9E1öé©âÿÿH‰Ç1ö1ÒèœËþÿH‰E H…À…TëÿÿA½z:H‹…pÿÿÿHÿuH‹½pÿÿÿH‹GÿP0E1öH‹M˜º`
éPôÿÿ1ÉÿÐH‰E H…À…Iõÿÿº@
A¼_8IÿMuI‹EL‰ï‰ÓÿP0‰ÚE‰åM…ÿ„#âÿÿIÿ…âÿÿI‹GL‰ÿ‰ÓÿP0‰ÚéâÿÿA½·9éç1ÛL;=‚ê”ÃIÿu
I‹GL‰ÿÿP0…Ûˆ„>H‹} H…ÿtHÿuH‹GÿP0HÇE H‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹}H…ÿtHÿuH‹GÿP0HÇEI‹†H‹8H‹XL‹pL‰ H‹pÿÿÿH‰HH‹`ÿÿÿH‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…öL‹¥hÿÿÿL‹}˜L‹­Pÿÿÿ„uâÿÿIÿ…lâÿÿI‹FL‰÷ÿP0é]âÿÿH‹}€H‹GÿP0Hÿ…ÇýÿÿH‹CH‰ßÿP0M…ÿ…½ýÿÿA½À9é²A½Ä9é§H‰Ú1ÉÿÐH‰EH…À…Ëçÿÿº\
A½4:E1öé•àÿÿè›hH‹M H‹U¨H‹uH‹xXH‹X`L‹xhH‰HXH‰P`H‰phH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ÿtIÿu
I‹GL‰ÿÿP0HÇE HÇE¨HÇEA½Ì9I‹†H‹8H‹XL‹pL‰ H‹pÿÿÿH‰HH‹`ÿÿÿH‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ötIÿtE1ö1ɺX
éñÿÿI‹FL‰÷é«ûÿÿH‹°çH‹8HÇ$H5þÍH³tH
ßÍL
%ÎA¸1Àèêe¾7éËèíeH…À…îH‹=5EH‹GH‹€H‰ÞH…À„åÿÐI‰ÇH…ÀL‹m˜…”ÝÿÿH‹çH‹8H5EäE1öH‰Ú1Àè„eéžèšfI‰ÇH…À…`ÝÿÿéèéÿÿI‹_E1ÀHƒûH8ÍH
:ÍHLÈAœÀIƒðH‹ÏæH‹8H‰$H5!ÍHÖsL
OÍ1Àèe¾-7H=ÚÕH
rºÐ藬þÿE1íH‹çH‹H;EÐuL‰èHĘ[A\A]A^A_]ÃèàfèÝdH…ÀuGH‹=)DH‹GH‹€H‰ÞH…À„óÿÐI‰ÅH…À…}íÿÿH‹ýåH‹8H5=ãH‰Ú1Àèd1ÉA½@8º@
éÙïÿÿèˆeI‰ÅH…À…?íÿÿé
òÿÿ1Ûéµíÿÿ¾7é1ÿÿÿèSdH…À„Žëÿÿë,èQeH‰ÃH…À…§ëÿÿH‹ˆåH‹8H5ÈâL‰ò1Àè
dHÇE¨º\
A½:E1öéjÝÿÿA½»9éJýÿÿE1ö1ÉA½é7º=
é;ïÿÿèêdI‰ÇH…ÀL‹m˜…¬ÛÿÿéþÿÿèÐdI‰ÅH…À…‡ìÿÿéÿÿÿîæÿÿçèÿÿ"éÿÿoéÿÿ„UH‰åAWAVAUATSHƒì8I‰õI‰ÿH‹zåH‹H‰EÐWÀ)E°L‹%UåL‰eÀL‹vH…Ò…çIƒþtIƒþ…óM‹e(L‰eÀëL‹%#åI‹E H‰E¸I‹]H‰]°M‹·èIÿIƒÇHHƒìH=âëL‰þL‰âL‰ñA¸A¹jÿ5½Lÿ5ÏKjÿ5ÇPPjÿ5.PSÿ‡XHƒÄPH…À„±H‰ÃIÿu
I‹FL‰÷ÿP0H‰ßè€LI‰ÆH…À„¼Hÿ„ÙH‹ŒäH‹H;EÐ…³L‰ðHƒÄ8[A\A]A^A_]ÃIƒþ‡HœJc°HÁH‰U ÿáH‰×H‰Óè bH‰E¨H‹5‰OH‹VH‰ßèûcH‰E°H…À„ËH‰ÃL‹m¨IÿÍéM…ötIÿu
I‹FL‰÷ÿP0H=ÓH
ën¾e;º¶
éøH=ôÒH
În¾s;º»
èK©þÿHÿ…'ÿÿÿH‹CH‰ßÿP0H‹©ãH‹H;EЄÿÿÿéËI‹]H‰]°H‰×ècaI‰ÅH‹5]OH‹VH‹} è>cH‰E¸H…À„ÊH‰E¨IÿÍëI‹E H‰E¨H‰E¸I‹]H‰]°H‰×èaI‰ÅM…í~)H‹5PH‹VH‹} èðbI‰ÄH…ÀH‹E¨tFL‰eÀIÿÍë4H‹E¨éáýÿÿM‹e(L‰eÀI‹E H‰E¨H‰E¸I‹]H‰]°H‰×è¼`I‰ÅH‹E¨M…펭ýÿÿH5¡=LjoHU°H‹} L‰ñèú…ÀˆãH‹]°H‹E¸L‹eÀévýÿÿH‹âH‹8HƒìH5dÈH%oH
EÈL
‹ÈA¸1ÀjèN`HƒÄ¾ ;ëZM‹uE1ÀIƒþHÈH
ÈHLÈAœÀIƒðH‹©áH‹8HƒìH5ûÇH¼nL
)È1ÀAVèò_HƒÄ¾<;H=ÑH
élºg
èk§þÿE1öH‹ÙáH‹H;EЄMýÿÿèÅa¾*;ëÅqýÿÿ)þÿÿfþÿÿ¼þÿÿ„UH‰åAWAVAUATSHƒì(I‰þH‹áH‹H‰EÐL‹%oHL‰eÀL‹-dáL‰mÈL‹~H…Ò…âL‹-LáM…ÿt IƒÿtIƒÿ…ÿL‹n L‰mÈL‹fL‰eÀM‹¾èIÿIƒÆ H‹
HH‹ëHHƒìH=hðL‰öL‰êL‰ùA¸A¹jSPjSPj
ÿ5{KATÿ›THƒÄPH…À„H‰ÃIÿu
I‹GL‰ÿÿP0H‰ßè”HI‰ÆH…À„Hÿ„<H‹ àH‹H;EÐ…FL‰ðHƒÄ([A\A]A^A_]ÃH‰ÓM…ÿ„-Iƒÿ„`IƒÿuL‹n L‰mÈL‹fL‰eÀH‰ßè)^éƒM‰øIÁè>A÷ÐAƒàM…ÿHÿÅH
ÆHHÈH‹žßH‹8HƒìH5ðÅHÃlL
Æ1ÀAWèç]HƒÄ¾Ò;H=XÏH
Þjº½
è`¥þÿE1öH‹ÎßH‹H;EЄ.ÿÿÿërM…ÿtIÿu
I‹GL‰ÿÿP0H=ÏH
™j¾û;ºë´H=ùÎH
j¾	<º
èü¤þÿHÿ…ÄþÿÿH‹CH‰ßÿP0H‹ZßH‹H;EЄºþÿÿèF_H‰ßè]H‰E¸H…ÀŽüýÿÿH‹5´IH‹VH‰ßèî^H…Àt0H‰EÀH‹M¸HÿÉI‰ÄëL‹fL‰eÀH‰ßè×\H‰ÁH‰M¸H…ÉŽ´ýÿÿH‹5ÌKH‹VH‰ßè¦^H…ÀtI‰ÅH‰EÈH‹E¸HÿÈH…ÀŽ…ýÿÿH5­9LhkHUÀH‰ßL‰ùè猅Àx
L‹eÀL‹mÈéWýÿÿ¾Á;é”þÿÿf.„fUH‰åAWAVAUATSHƒì(I‰ôI‰ÿH‹ZÞH‹H‰EÐWÀ)EÀL‹-5ÞL‰mÈL‹vH…Ò…áIƒþtIƒþ…IM‹l$ L‰mÈëL‹-ÞM‹d$L‰eÀM‹·èIÿIƒÇ H‹ÜDH‹½EHƒìH=JíL‰þL‰êL‰ñA¸A¹jSPjSPjÿ5­EATÿmQHƒÄPH…À„”H‰ÃIÿu
I‹FL‰÷ÿP0H‰ßèfEI‰ÆH…À„ŸHÿ„¼H‹rÝH‹H;EÐ…L‰ðHƒÄ([A\A]A^A_]ÃH‰ÓM…ö„­Iƒþ„ÞIƒþ…XM‹l$ L‰mÈM‹d$L‰eÀH‰ßèõZéùM…ötIÿu
I‹FL‰÷ÿP0H=ÌH
îg¾<º^é~H=sÌH
Ñg¾›<ºcèN¢þÿHÿ…DÿÿÿH‹CH‰ßÿP0H‹¬ÜH‹H;EЄ:ÿÿÿéQH‰ßènZH‰E¸H‹5oDH‹VH‰ßèI\H‰EÀH…À„ŽH‰ÁH‹E¸HÿÈI‰ÌëM‹d$L‰eÀH‰ßè*ZH‰E¸H…ÀŽ8þÿÿH‹5"IH‹VH‰ßèü[H…ÀtI‰ÅH‰EÈH‹E¸HÿÈH…ÀŽ	þÿÿH5#7LÆhHUÀH‰ßL‰ñè=Š…Àˆ©L‹eÀL‹mÈé×ýÿÿM‹t$1ÀM…öžÀH›ÁH
ÁHNÊH‹:ÛH‹:HˆfL
ÅÁLNÊA¸I)ÀHƒìH5qÁHLh1ÀAVèoYHƒÄ¾d<H=ËH
ffºèè þÿE1öH‹VÛH‹H;EЄäýÿÿèB[¾T<ëÅDUH‰åAWAVAUATSHƒì(I‰ôI‰ÿH‹ÛH‹H‰EÐWÀ)EÀL‹-õÚL‰mÈL‹vH…Ò…áIƒþtIƒþ…IM‹l$ L‰mÈëL‹-ÂÚM‹d$L‰eÀM‹·èIÿIƒÇ H‹œAH‹}BHƒìH=êL‰þL‰êL‰ñA¸A¹jSPjSPjÿ5eFATÿ-NHƒÄPH…À„”H‰ÃIÿu
I‹FL‰÷ÿP0H‰ßè&BI‰ÆH…À„ŸHÿ„¼H‹2ÚH‹H;EÐ…L‰ðHƒÄ([A\A]A^A_]ÃH‰ÓM…ö„­Iƒþ„ÞIƒþ…XM‹l$ L‰mÈM‹d$L‰eÀH‰ßèµWéùM…ötIÿu
I‹FL‰÷ÿP0H=uÉH
®d¾=º›é~H=XÉH
‘d¾-=º èŸþÿHÿ…DÿÿÿH‹CH‰ßÿP0H‹lÙH‹H;EЄ:ÿÿÿéQH‰ßè.WH‰E¸H‹5'EH‹VH‰ßè	YH‰EÀH…À„ŽH‰ÁH‹E¸HÿÈI‰ÌëM‹d$L‰eÀH‰ßèêVH‰E¸H…ÀŽ8þÿÿH‹5âEH‹VH‰ßè¼XH…ÀtI‰ÅH‰EÈH‹E¸HÿÈH…ÀŽ	þÿÿH54L‹eHUÀH‰ßL‰ñèý†…Àˆ©L‹eÀL‹mÈé×ýÿÿM‹t$1ÀM…öžÀH[¾H
]¾HNÊH‹ú×H‹:HHcL
…¾LNÊA¸I)ÀHƒìH51¾He1ÀAVè/VHƒÄ¾ö<H=íÇH
&cºe訝þÿE1öH‹ØH‹H;EЄäýÿÿèX¾æ<ëÅDUH‰åAWAVAUATSHƒìxI‰ÕI‰öH‹Ú×H‹H‰EÐWÀ)EÀ)E°H‹±×H‰UÈH‹^M…í…UHƒûtHƒû…#H‰½pÿÿÿI‹N0H‰MÈëH‰½pÿÿÿH‹
q×M‹f(L‰eÀM‹~ L‰}¸M‹vL‰u°H‰hÿÿÿH‹{GH‹˜(¿ÿhE1íL‰u L‰÷H‰Æ1Ò1ÉA¸E1ÉÿÓH…À„'I‰ÆHƒ8u
I‹FL‰÷ÿP0H‹*GH‹˜(¿ÿhE1íL‰ÿH‰Æ1Ò1ÉA¸E1ÉÿÓH…ÀL‰ñL‰u„ïH‰E€Hƒ8uH‹}€H‹GÿP0H‹ÔFH‹˜(¿ÿhE1íL‰çH‰Æ1Ò1ÉA¸E1ÉÿÓH…À„¶Hƒ8I‰Åu
I‹EL‰ïÿP0H‹E€‹@A9FL‰m˜…zA‹M9È…n…É…fH‹} èÄBI‰ÆHƒøÿuè.TH…À…”L‰ÿè¥BI‰ÇHƒøÿuèTH…À……L‰çè†BH‰ÃHƒøÿuèðSH…À…vK7H9ØŒ¹H‹…pÿÿÿH‹€èH‰E HÿL‰÷èGTH…À„éI‰ÅL‰ÿè3TH…À„þI‰ÇH‰ßèTH…À„I‰ÄH‹µpÿÿÿHƒÆ HƒìH=ëàH‹•hÿÿÿH‹] H‰ÙA¸A¹jÿ5APjÿ5°@AWjÿ5Æ@AUÿîHHƒÄPH…À„¾I‰ÆHÿ„­IÿM„·Iÿ„ÁIÿ$L‹m˜„ËL‰÷èÌ<H…À„ÖI‰ÇL‹e€é•H‹¨HH‹=!2H;G…H‹˜HH…À„fHÿL‹%…HM…ä„ýH‹5å<I‹D$H‹€L‰çH…À„ÿÐI‰ÇH…À„Iÿ$uI‹D$L‰çÿP0H‹?HH‹=¨1H;GL‰½xÿÿÿ…[H‹(HH…ÀL‹e€„ÉHÿL‹-HM…í„YH‹5Ù>I‹EH‹€L‰ïH…À„rÿÐH…À„uH‰E IÿMu
I‹EL‰ïÿP0H‹ÌGH‹=%1H;G…ÀH‹¼GH…ÀL‹m˜„EHÿL‹=¥GM…ÿ„\H‹5½;I‹GH‹€L‰ÿH…À„áÿкH…ÀH‹} „äIÿuI‹OL‰ÿH‰ÃÿQ0H‰ØH‹HH;
Ó„;E1ÿ1ÛH‹HH;
ÜÒH‰Eˆ„hH;
;ÒuGH‹H‹Iƒፁù€u5L‰}°L‰u¸L‰e	ÙHÁáH÷كËH‹PL‹B‹Rö …êH‹xéã{èZRH…À„sH‰ÂM…ÿH‹}ˆtL‰zH‹MHÿ‰ØH‰LÂIÿ$L‰d E1ÿH‰ÓH‰Ö1Ò袶þÿH…À„DI‰ÅHÿu
H‹CH‰ßÿP0L‹uL‹½xÿÿÿH‹} H‹MˆHÿ	uH‹AH‰ÏÿP0H‹} H‹GH;Ò„(1É1ÛH‹GH;ÙÑH‰} „`H;8ÑuJH‹G‹@ƒà=€u9H‰M°L‰m¸H‹E˜H‰E	ÞHÁæH÷ރËH‹WH‹B‹Rö …H‹éM‰þI‰ύ{èNQH…À„¤M…ÿH‹} tL‰x‰ÙL‰lÈL‹m˜IÿEL‰lÈ H‰ÃH‰Æ1Ò蟵þÿH…À„‹I‰ÄHÿM‰÷u
H‹CH‰ßÿP0L‹uéýH‹CH‰ßÿP0IÿM…IüÿÿI‹EL‰ïÿP0Iÿ…?üÿÿI‹GL‰ÿÿP0Iÿ$L‹m˜…5üÿÿI‹D$L‰çÿP0L‰÷èö8H…À…*üÿÿºA¿>L‹e€éR1ÿHt
¸öÂ…H‰ÚAÿÐI‰ÅH…ÀH‹} „’M…ÿH‹Mˆ…EéE1ÿH‰MˆHt5¸öÂ…ŒH‰ÚÿÐI‰ÄH…ÀH‹} H‹Mˆ„H…ÉtHÿ	uH‹AH‰ÏÿP0H‹} IÿM„ýHÿ„I‹GH;Ð…énHƒû‡±H‰½pÿÿÿHoHc˜HÁÿáL‰ïèNI‰ÇH‹5¨;H‹VL‰ïèêOH‰E°H…À„kH‰ÁIÿÏL‰} I‰Æé²
ºA¿Ø=E1öE1ä1ÀH‰Eé2ºA¿ç=E1öE1äéº	A¿ö=éH‹T-H‹SH‰ÞèvOI‰ÄH‹î,H‹@H‰cCL‰%dCM…ä„äIÿ$éÖúÿÿèƒNI‰ÇH…À…òúÿÿºÇE¬§>1ö1ÉE1ÿéÇH‹ê,H‹=›,H‹GH‹€H‰ÞH…À„òÿÐI‰ÄH…À…zúÿÿH‹oÎH‹8H5¯ËE1öH‰Ú1ÀèîLºA¿¥>L‹e€é=H‹…,H‹SH‰Þè§NI‰ÅH‹,H‹@H‰¤BL‰-¥BM…íL‹e€„ŒIÿEé‡úÿÿºA¿¥>E1öL‹e€éáè™MH…À…‹úÿÿºÇE¬¬>1ÉE1ä1ÿé\H‹,H‹=´+H‹GH‹€H‰ÞH…À„§ÿÐI‰ÅH…À…úÿÿH‹ˆÍH‹8H5ÈÊE1äH‰Ú1ÀèLÇE¬ª>ºëSH‹¤+H‹SH‰ÞèÆMI‰ÇH‹>+H‹@H‰ÓAL‰=ÔAM…ÿL‹m˜„GIÿé#úÿÿÇE¬ª>ºE1äL‰ÿE1ÿ1É1öL‹m˜éøè®LºH…ÀH‹} …úÿÿÇE¬±>1ö1ÉE1äHÿ…¾é H‹+H‹=¼*H‹GH‹€H‰ÞH…À„<ÿÐI‰ÇH…À…›ùÿÿH‹ÌH‹8H5ÐÉH‰Ú1ÀèK1öºÇE¬¯>é×L‹xM…ÿ„	L‹pIÿIÿHÿ»u
H‹HH‰ÇÿQ0L‰ðL‹uH‹HH;
tÌH‰Eˆ…˜ùÿÿL‰}°L‰u¸L‰e	ÙHÁáH÷ÙHt
¸ƒËH‰ÇH‰Úè
­þÿH…À„ôI‰ÅM…ÿH‹} H‹MˆtIÿtL‹½xÿÿÿHÿ	…úÿÿéúÿÿI‹GL‰ÿÿP0H‹MˆH‹} L‹½xÿÿÿHÿ	…ôùÿÿéáùÿÿºÇE¬¯>1ö1ÉE1ÿE1äH‹} Hÿ…léNH‹OH…É„"L‹wHÿIÿHÿ»uH‹GI‰ÏÿP0L‰ùL‹½xÿÿÿL‰÷L‹uH‹GH;yËH‰} … ùÿÿH‰M°L‰m¸H‹E˜H‰E	ØHÁàH÷ØHt¸ƒËH‰ÚH‰Ëè¬þÿH…À„ I‰ÄH…ÛtH‰ßHÿuH‹GÿP0IÿMu
I‹EL‰ïÿP0H‹} Hÿ…õúÿÿH‹GÿP0I‹GH;Ë„aL‰ÿL‰æèK©þÿI‰ÅIÿ$uI‹D$L‰çÿP0M…í„•IÿtL;-
ËL‹e€u éI‹GL‰ÿÿP0L;-îÊL‹e€„tL;-åÊ„gL;-ÈÊ„ZL‰ïèJ‰ÅÀˆâIÿM„T…Û…^H‹53I‹FH‹€H…ÀL‹m˜L‰÷„)ÿÐI‰ÇH…À„,H‹>H‹=È'H;G…$H‹o>H…À„wHÿL‹%\>M…䄾H‹5T4I‹D$H‹€L‰çH…À„#ÿÐI‰ÆH…À„&Iÿ$uI‹D$L‰çÿP0I‹GH;ºÉ…ñI‹_H…Û„äL‰ÿM‹HÿIÿHÿL‹e€uH‹GÿP0L‰ÿH‰ÞL‰ò輨þÿH‰E Hÿ„bIÿ„lHƒ} „vIÿ„”H‹] H;ÉL‹u…žé81ÛL;-oÉ”ÃIÿM…¬þÿÿI‹EL‰ïÿP0…Û„¢þÿÿH‹=17H‹5j8E1ö1ÒèH­þÿH…ÀL‹m˜„KI‰ÇH‰ÇèyIÿu
I‹GL‰ÿÿP0E1öºA¿/?éWI‹GL‰ÿÿP0H‹] H;áÈL‹u„ŸH‹˜:H…À„^H‹KH9Á„‚H‹‘XH…Ò„øH‹rH…ö~1ÿ€H9Dú„UHÿÇH9þuíH‹ÈH‹:H‹QH‹HH5(²1ÀècFH‰ßA¿X?ºH…ÿL‰u…˜
é£
H‹CH‰ßÿP0Iÿ…”þÿÿI‹FL‰÷ÿP0Hƒ} …ŠþÿÿL‰½xÿÿÿºÇE¬U?1ö1ÉE1ÿE1äéR
L‰ÿL‰öè¦þÿH‰E L‹e€Iÿ…Aþÿÿë«I‹_H…Û„’üÿÿM‹wHÿIÿIÿu
I‹GL‰ÿÿP0L‰÷H‰ÞL‰â豦þÿI‰ÅHÿu
H‹CH‰ßÿP0M‰÷L‹uIÿ$…güÿÿéWüÿÿL‰½xÿÿÿºÇE¬?1ö1ÉE1ÿE1äL‹m˜é²ètFI‰ÇH…À…ÔüÿÿºA¿A?é˜	H‹ã$H‹SH‰ÞèGI‰ÄH‹}$H‹@H‰";L‰%#;M…ä„:Iÿ$é¾üÿÿèFI‰ÆH…À…ÚüÿÿÇE¬E?ºéH‹€$H‹=1$H‹GH‹€H‰ÞH…À„oÿÐI‰ÄH…À…iüÿÿH‹ÆH‹8H5EÃE1äH‰Ú1Àè„DÇE¬C?ëœÇE¬C?ºE1äé¡
H‹êÅH‹8H5°èoDééýÿÿÇE¬Ñ>1öE1äé¸ÇE¬Ü>E1äL‹m˜ºH‹} H‹MˆH‰ÞHÿ…méOºÇE¬?E1äH‹} L‰ùM‰÷éõ
ÇE¬?º1ÉH‹} E1äH‰ÞéL‰ïA¿ ?ºL‹m˜H…ÿL‰u…éH‰ÊH…Ò„aH‹’H9Âuëé]ÇE¬Ã>1öE1äL‹m˜ºH‹} H‹MˆHÿ…Æ
é¨
ºÇE¬ð>E1äH‹} H‰ÙéQ
M‹vL‰u°L‰ïè+CH‰E H‹5¤0H‹VL‰ïèEH‰E¸H…À„I‰ÇHÿM ëM‹~ L‰}¸M‹vL‰u°L‰ïèæBH‰E H‹5§0H‹VL‰ïèÁDH‰EÀH…À„7I‰ÄH‹E HÿÈH‹
ÅÄë<I‹V0H‰UÈH‰•hÿÿÿM‹f(L‰eÀM‹~ L‰}¸M‹vL‰u°L‰ïè€BH‹hÿÿÿHƒûu3H…ÀŽ%íÿÿH‰E H‹5k1H‹VL‰ïèEDH…ÀtH‰ÁH‰EÈH‹E HÿÈH…ÀŽòìÿÿH5¬LQHU°L‰ïH‰Ùè†r…ÀˆJL‹u°L‹}¸L‹eÀH‹MÈé¸ìÿÿH‹=ú1H‹533E1ö1Òè¨þÿH…À„üI‰ÇH‰Çè]tIÿu
I‹GL‰ÿÿP0E1öL‹m˜L‹e€ºA¿D>éÇE¬`>º1ÀH‰…xÿÿÿE1ä1É1öL‹m˜H‹} éúÇE¬j>1ÉE1äE1ÿH‹} éwºÇE¬t>1ÉE1äH‹} é]ºÇE¬~>H‰ß1ÉéGH;NÂ…³úÿÿIÿu
I‹FL‰÷ÿP0H‹5¢+I‹D$H‹€L‰çH…À„ÿÐI‰ÇH…À„H‹7H‹=N H;G…H‹7H…À„†HÿH‹ò6H…À„ÚH‹5Ú,H‹HH‹‰H‰ÃH‰ÇH…É„ÿÑI‰ÆH…À„Hÿu
H‰ßH‹CÿP0I‹GH;@Â…eI‹_H…Û„XL‰ÿM‹HÿIÿHÿuH‹GÿP0L‰ÿH‰ÞL‰òèF¡þÿH‰EˆHÿ„ÐIÿ„ÚH‹]ˆH…Û„äIÿtH;Âué{I‹GL‰ÿÿP0H;÷Á„dH‹²3H…À„H‹KH9Á„GH‹‘XH…Ò„H‹rH…ö~1ÿH9Dú„ HÿÇH9þuíH‹.ÁH‹:H‹QH‹HH5H«1Àèƒ?A¿z?ºH‰ßL‹u H…ÿL‰u…´é¿H‹CH‰ßÿP0Iÿ…&ÿÿÿI‹FL‰÷ÿP0H‹]ˆH…Û…ÿÿÿL‰½xÿÿÿºÇE¬w?1ö1ÉE1ÿE1äH‹E H‰EédL‰ÿL‰öèŸþÿH‰EˆIÿ…Íþÿÿë¥è@I‰ÇH…À…æýÿÿºA¿c?éòH‹{H‹SH‰Þè@H‹
H‹IH‰
Í4H‰Î4H…À„p
HÿéÔýÿÿè®?I‰ÆH…À…òýÿÿL‰½xÿÿÿºÇE¬g?1ö1ÉE1ÿE1äH‹E H‰EH‰ßHÿ…ªéŒH‹÷H‹=¨H‹GH‹€H‰ÞH…À„Š
ÿÐH…À…]ýÿÿH‹¿H‹8H5¿¼E1äH‰Ú1Àèþ=ÇE¬e?ºH‹E H‰EéùÇE¬e?ºE1äH‹E H‰EéH‹L¿H‹8H5b©èÑ=é+þÿÿH‰ÊH…ÒtH‹’H9Âuïë
H;£¾…èýÿÿIÿ$uI‹D$L‰çÿP0H‹5õ'I‹EH‹€L‰ïH…À„_ÿÐI‰ÇH…À„bH‹y3H‹=¢H;G…hH‹i3H…À„ÑHÿL‹%V3M…ä„2H‹5.)I‹D$H‹€L‰çH…À„gÿÐI‰ÆH…À„jIÿ$uI‹D$L‰çÿP0I‹GH;”¾…®I‹_H…Û„¡L‰ÿM‹HÿIÿHÿuH‹GÿP0L‰ÿH‰ÞL‰ò蚝þÿI‰ÅHÿ„Iÿ„M…í„&IÿtL;-h¾uéI‹GL‰ÿÿP0L;-P¾„hH‹0H…À„I‹MH9Á„KH‹‘XH…Ò„H‹rH…ö~1ÿf.„H9Dú„HÿÇH9þuíH‹~½H‹:H‹QH‹HH5˜§1ÀèÓ;A¿œ?ºL‹u L‹eˆL‰ïL‹m˜H…ÿL‰utHÿuH‹G‰ÓÿP0‰ÚE1öH=Ž­H
HD‰þè!ƒþÿE1ÿH‹]H…Û…?éJH‹CH‰ßÿP0Iÿ…äþÿÿI‹FL‰÷ÿP0M…í…ÚþÿÿL‰½xÿÿÿºÇE¬™?1ö1ÉE1ÿE1äH‹EˆH‰E€H‹E H‰EL‹m˜éoL‰ÿL‰öè%›þÿI‰ÅIÿ…„þÿÿëžè<I‰ÇH…À…žýÿÿºA¿…?I‰ÜE1öH‹E H‰Eé1ÿÿÿH‹yH‹SH‰Þè›<I‰ÄH‹H‹@H‰Ø0L‰%Ù0M…ä„YIÿ$ézýÿÿè¨;I‰ÆH…À…–ýÿÿÇE¬‰?ºL‰ÿE1ÿH‹E H‰EH‹EˆH‰E€é•L‹5H‹=±H‹GH‹€L‰öH…À„ˆÿÐI‰ÄH…À…ýÿÿH‹…»H‹8H5ŸE1äL‰ò1Àè:ÇE¬‡?ºH‹E H‰EH‰]€L‰ÿA¿ë!ÇE¬‡?ºE1äH‹E H‰EH‰]€L‰ÿE1ÿ1É1öéH‹:»H‹8H5P¥è¿9éÉýÿÿH‰ÊH…Ò„£H‹’H9Âuë韺
A¿>éåìÿÿºA¿">éÕìÿÿºA¿,>éÅìÿÿH‰Ú1ÉAÿÐI‰ÅH…ÀH‹} …nêÿÿÇE¬Ë>1öE1äL‹m˜ºH‹MˆHÿurëWH‰Ú1ÉÿÐémêÿÿºÇE¬ù>E1äIÿML‰½xÿÿÿuI‹EI‰þL‰ïH‰ËA‰×ÿP0D‰úH‰ÙL‰÷1öL‹m˜E1ÿH…ÿtHÿuH‹GH‰Mˆ‰ÓI‰öÿP0L‰ö‰ÚH‹MˆH‹½xÿÿÿH…ÿtHÿuH‹GH‰Mˆ‰ÓI‰öÿP0L‰ö‰ÚH‹MˆM…ät!Iÿ$uI‹D$L‰çI‰̉ÓI‰öÿP0L‰ö‰ÚL‰áM…ÿtIÿuI‹GL‰ÿI‰ωÓI‰öÿP0L‰ö‰ÚL‰ùH…ÉL‹e€tHÿ	uH‹AH‰ÏA‰ÖH‰óÿP0H‰ÞD‰òH…öD‹}¬„büÿÿHÿ…YüÿÿH‹FH‰÷éFüÿÿH;ø¸…íûÿÿH‹}˜HÿuH‹GÿP0H‹µpÿÿÿL‹¾èIÿHƒÆ L‹
N%HƒìH=3ÅH‹•hÿÿÿL‰ùH‹] I‰Øjÿ5R%AUjÿ5%ÿuˆjÿ½-HƒÄ@H…À„’I‰ÆIÿu
I‹GL‰ÿÿP0L‰÷è>!H…À„–I‰ÇH‰ØH‰]L‹eˆH…ÛtH‹}HÿuH‹GÿP0M…ätIÿ$uI‹D$L‰çÿP0M…ítIÿMu
I‹EL‰ïÿP0M…ö„ÛIÿ…ÒI‹FL‰÷ÿP0éÃI‰ÞL‹eˆL‰ÿA¿±?º H…ÿL‰u…
ûÿÿéûÿÿº%A¿¿?L‹eˆH‰]éûÿÿ»€=Aºéèš6H…À…¬H‹=âH‹GH‹€H‰ÞH…À„©ÿÐI‰ÄH…ÀL‹m˜L‹u…¹ãÿÿH‹®·H‹8H5î´E1öH‰Ú1Àè-6é\èC7I‰ÄH…À……ãÿÿééÿÿè6ÇE¬ª>H…À…OH‹=`H‹GH‹€H‰ÞH…À„PÿÐI‰ÅH…ÀL‹e€L‹uL‹½xÿÿÿ…´ãÿÿH‹%·H‹8H5e´E1äH‰Ú1Àè¤5L‰ÿE1ÿ1É1öL‹m˜ºéñüÿÿè§6I‰ÅH…À…mãÿÿéQéÿÿèƒ5ÇE¬¯>H…À…ÜH‹=ÄH‹GH‹€H‰ÞH…À„ãÿÐI‰ÇH…ÀL‹m˜L‹e€L‹u…—ãÿÿH‹Œ¶H‹8H5̳H‰Ú1Àè51ö1ÉE1ÿE1äéˆè6I‰ÇH…À…\ãÿÿé¼éÿÿE1ÿ1Ûéêÿÿ1É1ÛéëÿÿA¿+?ºé)ùÿÿL‰½xÿÿÿèÌ4ÇE¬C?H…À…TH‹=
H‹GH‹€H‰ÞH…À„UÿÐI‰ÄH…ÀL‹m˜L‹½xÿÿÿ…:ìÿÿH‹ֵH‹8H5³E1äH‰Ú1ÀèU4L‰ÿE1ÿ1É1öºé¦ûÿÿè\5I‰ÄH…À…÷ëÿÿé‰ïÿÿL‰½xÿÿÿè14ÇE¬e?H…À…âH‹=rH‹GH‹€H‰ÞH…À„ëÿÐH…ÀL‹m˜L‹e€L‹½xÿÿÿ…óÿÿH‹:µH‹8H5z²E1äH‰Ú1Àè¹3H‹E H‰EL‰ÿE1ÿ1É1öºéûÿÿè¸4H…À…Ðòÿÿénõÿÿ»z=AºH‹
µH‹8HƒìH5\›HFBH
=›L
ƒ›A¸1ÀARèF3HƒÄéL‰½xÿÿÿèC3ÇE¬‡?H…À…%H‹=„H‹GH‹€H‰ÞH…À„6ÿÐI‰ÄH…ÀL‹m˜L‹½xÿÿÿL‹uˆ…ÓõÿÿH‹I´H‹8H5‰±E1äH‰Ú1ÀèÈ2H‹E H‰EL‰u€L‰ÿE1ÿ1É1öºé
úÿÿèÃ3I‰ÄH…À…„õÿÿépøÿÿI‹^1ÀHƒûœÀH_šH
ašHLÊA¸I)ÀH‹õ³H‹8HƒìH5GšH1AL
uš1ÀSè?2HƒÄ»ž=H='¤H
6?‰޺¢è¶yþÿE1ÿH‹$´H‹H;EÐuL‰øHƒÄx[A\A]A^A_]Ãè4A¿@>L‹m˜L‹e€ºé=öÿÿ»Š=ëE1öL‹m˜L‹e€ºA¿¥>éöÿÿèÓ2éOûÿÿE1äE1ÿ1É1öL‹m˜H‹½xÿÿÿºéôøÿÿèª2é¨ûÿÿ1ö1ÉE1ÿE1äL‹m˜ºH‹} Hÿ…¾øÿÿé øÿÿè{2éüÿÿE1äE1ÿ1É1öL‹m˜H‹½xÿÿÿº霸ÿÿèR2é£üÿÿE1äH‹E H‰EE1ÿ1É1öL‹m˜H‹½xÿÿÿºékøÿÿè!2é
ýÿÿE1äH‹E H‰EH‹EˆH‰E€E1ÿ1É1öL‹m˜H‹½xÿÿÿºé2øÿÿèè1éÂýÿÿšâÿÿuíÿÿ²íÿÿ	îÿÿîÿÿ„UH‰åAWAVAUATSHƒì(I‰ôI‰ÿH‹š²H‹H‰EÐWÀ)EÀL‹-u²L‰mÈL‹vH…Ò…áIƒþtIƒþ…IM‹l$ L‰mÈëL‹-B²M‹d$L‰eÀM‹·èIÿIƒÇ H‹H‹ýHƒìH=:ÄL‰þL‰êL‰ñA¸A¹jSPjSPjÿ5åATÿ­%HƒÄPH…À„”H‰ÃIÿu
I‹FL‰÷ÿP0H‰ßè¦I‰ÆH…À„ŸHÿ„¼H‹²±H‹H;EÐ…L‰ðHƒÄ([A\A]A^A_]ÃH‰ÓM…ö„­Iƒþ„ÞIƒþ…XM‹l$ L‰mÈM‹d$L‰eÀH‰ßè5/éùM…ötIÿu
I‹FL‰÷ÿP0H=N¡H
.<¾L@ºwé~H=1¡H
<¾Z@º|èŽvþÿHÿ…DÿÿÿH‹CH‰ßÿP0H‹ì°H‹H;EЄ:ÿÿÿéQH‰ßè®.H‰E¸H‹5§H‹VH‰ßè‰0H‰EÀH…À„ŽH‰ÁH‹E¸HÿÈI‰ÌëM‹d$L‰eÀH‰ßèj.H‰E¸H…ÀŽ8þÿÿH‹5bH‹VH‰ßè<0H…ÀtI‰ÅH‰EÈH‹E¸HÿÈH…ÀŽ	þÿÿH5ÓL$=HUÀH‰ßL‰ñè}^…Àˆ©L‹eÀL‹mÈé×ýÿÿM‹t$1ÀM…öžÀHەH
ݕHNÊH‹z¯H‹:HÈ:L
–LNÊA¸I)ÀHƒìH5±•Hª<1ÀAVè¯-HƒÄ¾#@H=ƟH
¦:º'è(uþÿE1öH‹–¯H‹H;EЄäýÿÿè‚/¾@ëÅDUH‰åAWAVAUATSHƒìhI‰öH‹]¯H‹H‰EÐWÀ)E H‹8¯H‰]°L‹%ýL‰e¸L‹=*L‰}ÀH‹vH…Ò…ƒHFþHƒø‡½H‹ü®H
aHcHÈÿàM‹~8L‰}ÀM‹f0L‰e¸I‹^(H‰]°M‹n L‰m¨M‹vL‰u H‹ͮH‹H;EÐ…öL‰öL‰êH‰ÙM‰àM‰ùHƒÄh[A\A]A^A_]éæHƒþ‡>H‰}HÍHc°HÁH‰UˆH‰u€ÿáH‰×èL,I‰ÅH‹5nH‹VH‹}ˆè'.H‰E H…À„òH‰ÁIÿÍL‰m˜I‰ÆëM‹vL‰u H‰×è	,H‰E˜H‹5"H‹VH‹}ˆèã-H‰E¨H…À„lI‰ÅH‹E˜HÿÈëM‹n L‰m¨M‹vL‰u H‰×èÀ+H‰E˜H…ÀH‹}ˆŽ.H‹5´H‹Vè‘-H…ÀtkH‰ÃH‰E°H‹M˜HÿÉëIM‹~8L‰}ÀM‹f0L‰e¸I‹^(H‰]°M‹n L‰m¨M‹vL‰u H‰×èZ+H‹U€H‰ÁHƒútHƒúH‹}tFë|H‹}H‰M˜H…ÉéþÿÿH‹<­H‹5
H‹VH‹}ˆè-H…ÀtH‰E¸H‹M˜HÿÉI‰ÄH‹}H‰M˜H…ÉŽ@þÿÿH‹5}H‹VH‹}ˆèÎ,H‹}H…ÀtI‰ÇH‰EÀH‹M˜HÿÉH…ÉŽþÿÿH5LÊ9HU H‹}ˆH‹M€è	[…ÀˆôL‹u L‹m¨H‹]°L‹e¸L‹}ÀH‹}éÈýÿÿH‹¬H‹8HÇ$H5c’Ht9H
D’L
Š’A¸1ÀèO*¾¬@ëWI‹v1ÀHƒþŸÀHƒþLD@H’H
’HLÈH‹««H‹8H‰4$H5ý‘H9L
+’1Àèö)¾Ú@H=;œH
ñ6ºèsqþÿH‹ä«H‹H;EÐu1ÀHƒÄh[A\A]A^A_]ÃèÃ+¾Â@ë»fDýÿÿýÿÿÀýÿÿþÿÿþÿÿþÿÿÀüÿÿ¸üÿÿ°üÿÿ¨üÿÿf.„fUH‰åAWAVAUATSHì¨H‰óH‹j«H‹H‰EÐfïÀfE°H‹C«H‰EÀL‹nH…Ò…ÇIƒýtIƒý…AH‹C(H‰EÀH‰½XÿÿÿóoCfE°fI~ÇL‰ÿè4cI‰ÅHƒøÿuèþ(H…À…þL‹e¸H‹]ÀHÇE¨HÇE HDžpÿÿÿL‰çè *Hƒøÿ„ŸH‰xÿÿÿH‰E€H‹ÎH‹˜(¿ÿhE1öL‰çH‰ƺ¹A¸E1ÉÿÓH…À„nI‰ÇH‰E¨Hƒ8u
I‹GL‰ÿÿP0HÇE¨I‹_H‹5{L‰ÿºÿ¥ƒøÿL‹u€L‰½Pÿÿÿ„NIvÿH‰ßÿf.Ì4vRI‹T$H‹¾H9„úH‹ŠXH…É„ØH‹QH…ÒŽ£
1öfDH9Dñ„ÊHÿÆH9òuíéƒ
H‹…xÿÿÿH;¢©H‰8ÿÿÿL‰­HÿÿÿtYè})H‰…`ÿÿÿH‹ˆH‹x©ëf.„@H‹HH…ÉtqH‰ÈL‹!M…ätìI9ÔtçH‹PH‹HIÿ$E1ÿH…ÒujëkL‰÷èË'H‰E¨H…À„†H‰ÿè§(H‰E H…À„}I‰ÅH‰XHÇE¨HÇE é°H‹PH‹HM…ä„™Iÿ$E1ÿH…ÒtHÿH‰U˜H…ÉtHÿH‹›H‹=H;GH‰hÿÿÿ…ÆH‹„H…À„HÿH‹qH‰]¨H…Û„8H‹5}H‹CH‹€H‰ßH…À„¾ÿÐH‰…pÿÿÿH…À„ÁHÿu
H‹CH‰ßÿP0HÇE¨H‹½pÿÿÿH‹GH;ë§„àH‹]€H‹µxÿÿÿè%†þÿH‰E HÇE¨H…À„?H‹½pÿÿÿHÿuH‹GÿP0H‰ßèw&H‰…pÿÿÿH…À„H‰ÿèP'H‰E¨H…À„H‹M H‰HH‰X HÇE HDžpÿÿÿL‹m¨HÇE¨E„ÿH‹}˜uIÿ$uI‹D$L‰çÿP0H‹}˜H…ÿH‹hÿÿÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0H‹'H‹=H;GL‰m˜…h
H‹H…À„¼
HÿH‹H‰] H…Û„bH‹5ÜH‹CH‹€H‰ßH…À„a
ÿÐH‰…pÿÿÿH…À„d
Hÿu
H‹CH‰ßÿP0¿èB&H‰E H…À„‹
IÿEL‹u M‰nèh$H‰E¨H…À„
H‰ÃH‹5íH‹6¦H‰ÇèN$…Àˆ
L‹¥pÿÿÿL‰çL‰öH‰ÚèiŠþÿH‰…hÿÿÿH…À„°Iÿ$„òHDžpÿÿÿH‹} Hÿ„ýHÇE H‹}¨Hÿ„HÇE¨H‹hÿÿÿHÿL‹iH‹H‹y ‹qÿðH‰…xÿÿÿòH*…HÿÿÿH‹=1¾ÿnƒøÿ„5H‹…XÿÿÿL‹°èL‹%@I‹^H‰ßL‰æè‡%H…À„H‰ÇH‹@H‹ˆH…Ét{L‰öH‰ÚÿÑH‰…`ÿÿÿH…Àuqéü
ÇE€¤»æFE1íE1öéy	I‹D$L‰çÿP0HDžpÿÿÿH‹} Hÿ…ÿÿÿH‹GÿP0HÇE H‹}¨Hÿ…üþÿÿH‹GÿP0éðþÿÿH‰½`ÿÿÿHÿH‹…XÿÿÿL‹°èL‹%cM‹~L‰ÿL‰æèÂ$H…À„
H‹HH‹™H…Ût2H‰ÇL‰öL‰úÿÓH‰E¨H…À„s
H‹HHÇE H;
P¤t!éíHÿH‰E¨HÇE H;
3¤…ÑH‹HH‰M H…É„]
H‹@HÿHÿH‹}¨H‰E¨Hÿ„‰H‹] H‹E¨H…Û„H‰ÇH‰Þè5‚þÿI‰ÆHÿu
H‹CH‰ßÿP0H‹]€HÇE M…ö„¨H‹}¨Hÿ„M‰ïHÇE¨Iÿ„è"H‰…@ÿÿÿH‹…xÿÿÿH™H÷ûH…ÀL‹µXÿÿÿL‹¥HÿÿÿL‹­8ÿÿÿ~SH‰ÃIF H‰…xÿÿÿIƒÆ`H‹E€HÁàH‰…Xÿÿÿf.„H‹½xÿÿÿL‰æL‰úL‰éL‹E€M‰ñèT³L½XÿÿÿHÿËuØH‹½@ÿÿÿè~!H‹5ÍH‹`ÿÿÿH‰ß1ÒèD‡þÿI‰ÆHÿu
H‹CH‰ßÿP0M…öH‹PÿÿÿL‹½hÿÿÿ„:Iÿu
I‹FL‰÷ÿP0IÿE1öM‰üM‰ýH…Û…éH‹GÿP0M‰ïHÇE¨Iÿ…êþÿÿI‹FL‰÷ÿP0éÛþÿÿH‹GÿP0H‹] H‹E¨H…Û…pþÿÿH‹HH;
=¢H‹]€tTH;
 ¡…‡H‹HöA„yH‰Ç1ö誅þÿI‰ÆHÇE M…ö…Xþÿÿ»@Gé!A·H…Ò…gùÿÿéeùÿÿH‰Ç1ö1Ò蟂þÿI‰ÆHÇE M…ö…þÿÿëÃH‹’H9ÂtH…ÒuïH;	¡…ÆH‹¼H‹=EÿH;G…H‹¬H…À„jHÿH‹™H…Û„ÍH‹5	H‹CH‹€H‰ßH…À„ÿÐH‰E H…À„Hÿu
H‹CH‰ßÿP0H‹5å
I‹D$H‹€L‰çH…À„^ÿÐH‰ÃÇE€E1íH…À„PH‹E H‹HH;
þ „V1öH‹} H‹GH;Ϡ„H;2 uRH‹G‹@ƒà=€uAH‰u°H‰]¸H‹ÐH‰EÀD‰éHÁáH÷ÙAƒÍH‹WH‹B‹RI‰öö …H‹éI‰öA}èB H‰…pÿÿÿH…À„„M…ötL‰pD‰éH‰\ÈH‹jHÿH‹•pÿÿÿH‰DÊ H‹} H‹pÿÿÿE1öH‰Þ1Òè{„þÿH‰E¨H…À„DHÿu
H‹CH‰ßÿP0HDžpÿÿÿH‹} Hÿ…ÅH‹GÿP0HÇE H‹}¨H;= …ºéáH‰u°H‰]¸H‹ÛH‰EÀD‰èHÁàH÷ØI‰öHt¸AƒÍL‰êèQ€þÿH‰E¨H…À„M…ötGL‰÷Iÿu?H‹Gë61ÿHt
¸öÂ…L‰êÿÐH‰E¨H…ÀL‰ò„H…ÒtHÿ
u
H‹BH‰×ÿP0Hÿ„ëH‹} Hÿ„;ÿÿÿHÇE H‹}¨H;=WŸt,H;=VŸt#H;==Ÿt者Àˆ5‰ÃH‹}¨Hÿuë1ÛH;=(Ÿ”ÃHÿuH‹GÿP0HÇE¨…Û„ÔH‹5jI‹D$H‹€L‰çH…À„f
ÿÐH‰E¨H…À„i
H‹5lžH‰Ǻè
H‰E H…À„Y
H‹}¨HÿuH‹GÿP0HÇE¨H‹} H;=žt,H;=Žžt#H;=užt踅ÀˆÃ
‰ÃH‹} Hÿuë1ÛH;=`ž”ÃHÿuH‹GÿP0HÇE …Û„H‹5‚I‹D$H‹€L‰çH…À„ 
ÿÐH‰E¨H…À„#
HDžpÿÿÿH‹HH;
½…ƒH‹HH‰pÿÿÿH…É„“	H‹@HÿHÿH‹}¨H‰E¨HÿuH‹GÿP0H‹µpÿÿÿH‹E¨H…öt=H‰Çè½{þÿH‰E H‹½pÿÿÿH…ÿ…éŒH‹CH‰ßÿP0H‹} Hÿ…þÿÿéAýÿÿH‹HH;
t7H;
|œ…	H‹HöA„	H‰Ç1ö膀þÿH‰E H‹½pÿÿÿH…ÿuë,H‰Ç1ö1Òè˜}þÿH‰E H‹½pÿÿÿH…ÿtHÿuH‹GÿP0H‹E HDžpÿÿÿH…À„	ÇE€’H‹}¨HÿuH‹GÿP0HÇE¨H‹} H‹5ÒE1í1ÒèH‰E¨H…À„ßH‹} HÿuH‹GÿP0HÇE H‹}¨H;=ˆœt,H;=‡œt#H;=nœtè±…ÀˆÊ‰ÃH‹}¨Hÿuë1ÛH;=Yœ”ÃHÿuH‹GÿP0HÇE¨…Ût	H	ëH~	H‹HÿL‹0H‹=
L‰öè&zþÿH‰E¨H…À„øÇE€šH‰ÇèjLH‹}¨HÿuH‹GÿP0HÇE¨»FE1í1ÀH‰E˜E1ä1ÒE1ÿH‹}¨H…ÿt8Hÿu3H‹GL‰µxÿÿÿM‰æM‰ìM‰ýA‰ßH‰ÓÿP0H‰ÚD‰ûM‰ïM‰åM‰ôL‹µxÿÿÿH‹} H…ÿt8Hÿu3H‹GL‰µxÿÿÿM‰æM‰ìM‰ýA‰ßH‰ÓÿP0H‰ÚD‰ûM‰ïM‰åM‰ôL‹µxÿÿÿH…ÒtHÿ
u
H‹BH‰×ÿP0H‹½pÿÿÿH…ÿtHÿuH‹GÿP0M…ÿtIÿu
I‹GL‰ÿÿP0H=~‹H
&‰ދU€è‚`þÿE1ÿH‹PÿÿÿH…ÛtHÿu
H‹CH‰ßÿP0M…ítIÿMu
I‹EL‰ïÿP0M…ötIÿu
I‹FL‰÷ÿP0H‹}˜H…ÿtHÿuH‹GÿP0M…ä„Iÿ$…I‹D$L‰çÿP0éõIƒý‡€I‰ÖH‰½XÿÿÿHàJc¨HÁÿáL‰÷è+I‰ÄH‹5•H‹VL‰÷èH‰E°H…À„7I‰ÇIÿÌéu»,EÇE€‡1ÀH‰…Pÿÿÿé_»6EÇE€ˆ1ÀH‰…PÿÿÿE1í¸H‰E˜A¼éþÿÿ»NEÇE€‹é"L‹%c÷I‹T$L‰æè„H‰ÃH‹üöH‹@H‰H‰‚H…Û„dHÿëYè•H‰…pÿÿÿH…À…œòÿÿÇE€¤»ÜFéôÿÿL‹5ÿöH‹=°öH‹GH‹€L‰öH…À„dÿÐH‰ÃH…À„gH‰] éòÿÿÇE€¤»ßFé¹óÿÿÇE€š»Fé#ýÿÿÇE€¤»äFé—óÿÿ¾ìDéL
L‹-^öI‹UL‰îè¨H‰ÃH‹ öH‹@H‰•
H‰–
H…Û„HÿëZè¹H‰…pÿÿÿH…À…?ðÿÿA¿`FL‹µxÿÿÿéZL‹-úõH‹=ÓõH‹GH‹€L‰îH…À„ÜÿÐH‰ÃH…À„ßH‰]¨éÁïÿÿH‹GH‰E¨H…À„ðÿÿH‹OHÿHÿH‹½pÿÿÿH‰pÿÿÿHÿuH‹GÿP0H‹]¨H‹½pÿÿÿH…Û„×ïÿÿH‰ÞH‹•xÿÿÿèívþÿH‰E Hÿu
H‹CH‰ßÿP0H‹E H‹]€HÇE¨H…À…ÁïÿÿA¿oFépA¿rFL‹µxÿÿÿé}A¿tFéSÇE€¤»çFé0òÿÿ»GÇE€©ëH‹£–H‹8L‰æèv»0GÇE€«E1öL‹¥hÿÿÿM‰åéyûÿÿH‹s–H‹8L‰æèFHÇE¨»2GL‹¥hÿÿÿH‹½`ÿÿÿHÿÇE€«uH‹GÿP0E1öM‰åé.ûÿÿH‹]€H‹54ôH‰Ç1ÒèúzþÿI‰ÆHÇE M…ö…Øòÿÿé{ôÿÿ»ŠGÇE€«E1öM‰ýM‰üéæúÿÿL‹{L‰}°L‰÷è‹I‰ÄH‹5ÍH‹VL‰÷ègH‰E¸H…À„IÿÌë!C)E€)E°L‰÷èOI‰ÄfoE€fI~ÇM…äŽIëÿÿH‹5>H‹VL‰÷èH…Àt;H‰EÀIÿÌë)H‹C(H‰EÀC)E€)E°L‰÷èüI‰ÄfoE€fI~ÇM…äŽöêÿÿH5ÛñL#HU°L‰÷L‰éè5D…Àˆ
L‹}°éÈêÿÿL‹5uóI‹VL‰öè—H‰ÃH‹óH‹@H‰t
H‰u
H…Û„HHÿéÔóÿÿè¥H‰E H…À…ïóÿÿDžxÿÿÿrE¸1ÒE1ÿéÝL‹5
óH‹=»òH‹GH‹€L‰öH…À„QÿÐH‰ÃH…À…vóÿÿH‹”H‹8H5ϑE1íL‰ò1Àè»pEÇE€éjèéšóÿÿ»uEéV»pEÇE€éBH‹HH…É„øH‹@I‰ÎHÿHÿH‹} H‰E HÿA½uH‹GÿP0L‰öépóÿÿÇE€»2FéõÇE€»4Féäè•H‰E¨H…À…—õÿÿÇE€‘»µEéÁÇE€‘»·Eé°H‹5‰ñH‰Ç1ÒèOxþÿH‰E H‹½pÿÿÿH…ÿ…÷ÿÿé÷ÿÿDžxÿÿÿ–EëW»¡EÇE€éúÿÿ»¦EëbèH‰E¨H…À…ÝõÿÿÇE€’»ÈEëBÇE€’»ÖEë4»ÙEë0Džxÿÿÿ†E¸E1ÿL‰òé'ÇE€‘»¹Eë»ÛEE1íE1öé»÷ÿÿL‰ê1ÉÿÐH‰E¨H…ÀL‰ò…âóÿÿDžxÿÿÿE¸éùýÿÿH‹ë’H‹8HÇ$H59yH^ H
yL
`yA¸1Àè%¾ÖDéŒè(H…ÀurH‹=tðH‹GH‹€L‰æH…À„4ÿÐH‰ÃH…ÀL‹m˜…ÀùÿÿH‹D’H‹8H5„L‰âë%èæH‰ÃH…À…™ùÿÿH‹’H‹8H5]L‰ò1ÀèŸHÇE »ÚFÇE€¤é8íÿÿè“H…À„úÿÿë,è‘H‰ÃH…À…!úÿÿH‹ȑH‹8H5L‰ê1ÀèJHÇE¨A¿^FH‹½pÿÿÿH…ÿL‹µxÿÿÿtHÿuH‹GÿP0HDžpÿÿÿH‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹} H…ÿtHÿuH‹GÿP0HÇE H=V‚H
ØD‰þº èWWþÿHu¨H•pÿÿÿHM H‹½`ÿÿÿèLH…Àx~I‹FH;m‘…)IÿH‹}€èH…À„BH‰ÿèýH…À„EI‰ÇH‰XL‰÷H‰Æè"H…À„II‰ÅIÿ„ëIÿ„õH‹}¨H…ÿ…ûéÇE€¡Džxÿÿÿ›FE1ÿ1ÒE1íH‹…`ÿÿÿH‹€H‹8H‹XL‹pL‰ H‹M˜H‰HH‹hÿÿÿH‰HH…ÿtHÿu
H‹GI‰ÔÿP0L‰âH…ÛtHÿuH‹CH‰ßH‰ÓÿP0H‰ÚM…ötIÿuI‹FL‰÷H‰ÓÿP0H‰ÚM…ítL‰ë‹E€‰E€HÿuH‹CH‰ßH‰ÓÿP0H‰ÚE1íE1ö1ÀH‰E˜E1䋝xÿÿÿéŽôÿÿI‹FL‰÷ÿP0Iÿ…ÿÿÿI‹GL‰ÿÿP0H‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹½pÿÿÿH…ÿtHÿuH‹GÿP0HDžpÿÿÿH‹} H…ÿtHÿuH‹GÿP0HÇE H‹…`ÿÿÿH‹€H‹8H‹XL‹pL‰ H‹M˜H‰HH‹hÿÿÿH‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ö„=èÿÿIÿ…4èÿÿI‹FL‰÷é%èÿÿL‰÷èÖI‰ÆH…ÀH‹}€…ÆýÿÿÇE€¢Džxÿÿÿ§Fé'þÿÿM‰õÇE€¢Džxÿÿÿ©FE1ÿë3M‰õÇE€¢Džxÿÿÿ«FE1ÿH‰Úé÷ýÿÿM‰õÇE€¢Džxÿÿÿ°F1ÒéÜýÿÿL‹kE1ÀIƒýH²tH
´tHLÈAœÀIƒðH‹IŽH‹8L‰,$H5›tHÀL
Ét1Àè”¾òDH=
H
º-èTþÿE1ÿH‹ŽH‹H;EÐuL‰øHĨ[A\A]A^A_]ÃèZèWÇE€H…À…H‹=˜ëH‹GH‹€L‰öH…À„ÿÐH‰ÃH…À…SìÿÿH‹lH‹8H5¬ŠE1íL‰ò1ÀèëëGè
H‰ÃH…À…"ìÿÿé§øÿÿ1öE1íéìÿÿ¾àDé0ÿÿÿèÚH‰ÃH…ÀL‹m˜…‰ôÿÿéÄúÿÿE1íE1ö1ÀH‰E˜E1ä1ÒE1ÿ»pEéÅñÿÿè¢H‰ÃH…À…Àëÿÿéhÿÿÿ)óÿÿÁöÿÿùöÿÿD÷ÿÿ„UH‰åAWAVAUATSHìÈH‰óH‹JH‹H‰EÐfWÀf)E°L‹=#L‰}¸L‹nH…Ò…¦Iƒýt"Iƒý…RH‰½hÿÿÿH‹C H‰…`ÿÿÿH‰E¸ëH‰½hÿÿÿH‹܌H‰…`ÿÿÿL‹cL‰e°HÇE˜HÇE HÇE€L‰çèHƒøÿ„ŒH‰ÃH‹ÉüL‹°(¿ÿhL‰çH‰ƺ¹A¸E1ÉAÿÖH‰E˜H…À„sH‰E HÿH‹}˜HÿuH‹GÿP0HÇE˜L‹m HÇE H‹,H‹=…éH;GL‰­pÿÿÿ…[H‹H…À„¬HÿL‹5L‰u˜M…ö„H‹5>ôI‹FH‹€L‰÷H…À„TÿÐH‰E€H…À„WIÿu
I‹FL‰÷ÿP0HÇE˜H‹²H‹=ûèH;G…uH‹¢H…À„âHÿL‹=M…ÿ„_H‹5?öI‹GH‹€L‰ÿH…À„…ÿÐI‰ÆH…À„ˆIÿu
I‹GL‰ÿÿP0I‹FH;ðŠ„åE1äE1ÿI‹FH;J„ÝH;$ŠuOI‹F‹@ƒà=€u>L‰}°L‰m¸H‹úñH‰EÀD‰áHÁáH÷ÙAƒÌI‹VH‹B‹Rö …ØI‹~éÑL‰}¨A|$è5
H…À„TI‰ÇH‹E¨H…ÀtI‰GIÿED‰àM‰lÇH‹
‘ñHÿI‰LÇ L‰÷L‰þ1Òè|nþÿH‰E˜H…À…š1ÀH‰EˆÇE†H1ÀH‰E¨E1ä1ÀH‰…xÿÿÿ»%éqL‰}°L‰m¸H‹7ñH‰EÀD‰àHÁàH÷ØHt¸AƒÌL‰÷L‰âèujþÿH‰E˜H…Àu2L‰}¨ÇEmHé£1ÿHt
¸öÂ…ŠL‰âÿÐH‰E˜H…À„ŒM…ÿt	Iÿ„°Iÿu
I‹FL‰÷ÿP0H‹}€H‹GH;^‰„’
H‹u˜èŸgþÿH‰E H‹}˜Hÿt/HÇE˜Hƒ} t6H‹}€Hÿt>HÇE€H‹} H;=O‰uEëpH‹GÿP0HÇE˜Hƒ} uʻ%ÇE˜HéFH‹GÿP0HÇE€H‹} H;=
‰t-H;=	‰t$H;=ðˆtè3…ÀˆÿA‰ÆH‹} HÿuëE1öH;=وA”ÆHÿuH‹GÿP0HÇE E…ö…	
I‹EH‰EL‹­`ÿÿÿL;-šˆtOèƒH‰…@ÿÿÿH‹H‹
~ˆë
@H‹PH…ÒtrH‰ÐL‹"M…ätìI9ÌtçH‹HL‹xIÿ$E1öH…ÉukëlH‰ßèÛH‰E H…À„\¿èºH‰E€H…À„SI‰ÅH‹E I‰EHÇE HÇE€é´H‹HL‹xM…ä„Iÿ$E1öH…ÉtHÿH‰HÿÿÿM…ÿtIÿH‹çüH‹= åH;G…mH‹×üH…À„·HÿH‹=ÄüH‰} H…ÿ„RH‹5ñH‹GH‹€H…À„hÿÐH‰E˜H…À„kH‹} HÿuH‹GÿP0HÇE H‹}˜H‹GH;‡„ŒL‰îèHeþÿH‰E€H‹} H…ÿtHÿuH‹GÿP0H‹E€HÇE H…À„´H‹}˜HÿuH‹GÿP0HÇE˜H‰ßè|H‰E˜H…À„©¿è[H‰E H…À„šH‹M€H‰HH‹M˜H‰H HÇE€HÇE˜L‹m HÇE E„öH‹½HÿÿÿuIÿ$uI‹D$L‰çÿP0H‹½HÿÿÿH…ÿtHÿuH‹GÿP0M…ÿtIÿu
I‹GL‰ÿÿP0H‹rûH‹=›ãH;GL‰­xÿÿÿ…Ö
H‹[ûH…À„&HÿH‹=HûH‰}˜H…ÿ„H‹5äóH‹GH‹€H…À„Ñ
ÿÐH‰E H…À„Ô
H‹}˜HÿuH‹GÿP0HÇE˜H‹úúH‹=ãH;G…ñ
H‹êúH…À„@HÿH‹=×úH‰}˜H…ÿ„£H‹5+ïH‹GH‹€H…À„ì
ÿÐI‰ÇH…À„ï
H‹}˜HÿuH‹GÿP0HÇE˜H‹E H‹HE1öH;
÷„„H‹} H‹GH;ʄ„ËH;-„uLH‹G‹@ƒà=€u;H‹E˜H‰E°L‰m¸L‰}ÀD‰ñHÁáH÷ÙAƒÎH‹WH‹B‹Rö …íH‹éæA~èFH‰ÁH‰E¨H…À„„H‹E˜H…ÀL‹e¨t
I‰D$HÇE˜IÿED‰ðM‰lÄM‰|Ä H‹} L‰æ1Òè…hþÿH‰E€H…À„OIÿ$…ÆI‹D$L‰çé¶H‹E˜H‰E°L‰m¸L‰}ÀD‰ðHÁàH÷ØHt¸AƒÎL‰òè–dþÿH‰E€H…Àu\»1ÇE’Ié.I‹GL‰ÿÿP0Iÿ…Lúÿÿé=úÿÿA¶H…É…üÿÿéþûÿÿ1ÿHt
¸öÂ…­L‰òÿÐH‰E€H…À„¯H‹}˜H…ÿt	Hÿ„HÇE˜Iÿu
I‹GL‰ÿÿP0H‹} HÿuH‹GÿP0HÇE H‹E€H‰…PÿÿÿHÿH‹U€HÇE€H‹BH‰…0ÿÿÿH‹|óH‹z H‰Uˆ‹rÿðI‰ÇH‹…hÿÿÿL‹ èH‹5ÃìM‹t$L‰÷H‰u¨èH…À„;	H‰ÇH‹@H‹ˆH…ÉtL‰æL‰òÿÑH‰ÇH…Àué&	HÿH‰½8ÿÿÿH‹…hÿÿÿL‹ èH‹5JìM‹t$L‰÷H‰u¨è§H…À„	H‹PH‹ŠH…É„ÇH‰ÇL‰æL‰òÿÑH‰E H…À„	H‹PH;9‚…²L‹`M…ä„îH‹@Iÿ$HÿH‹} H‰E HÿuH‹GÿP0H‹} L‰æèK`þÿH‰E€Iÿ$uI‹D$L‰çÿP0H‹E€H…À„‰H‹} Hÿ„‚HÇE H‹}€Hÿ„‰HÇE€è"H‰…(ÿÿÿM…ÿL‹­hÿÿÿŽ{H…ÛŽhIƒÅHHCüHÁèH‰…@ÿÿÿHÿÀH‰ÙHƒáüH‰Xÿÿÿ‰CáH‰ÿÿÿHƒàþH‰… ÿÿÿHÝH‰…Hÿÿÿ1ÒL‹¥0ÿÿÿL‰½`ÿÿÿë!f.„@HÚL¥HÿÿÿL9úõH‰U¨WÉE1ÿI‰ÞH‹]f.„fòhÿÿÿòBûL‰ïèj|òhÿÿÿòCüòXÈIÿÇM9þuÐò˜ò^ÁIƒþL‰ów1ÀL‹½`ÿÿÿH‹U¨éÙf„òÈHƒ½@ÿÿÿL‹½`ÿÿÿH‹U¨„Ð1ÀH‹ ÿÿÿf.„fAÄfA\ÄfAdÄ fAlÄ0fYÑfYÙfAÄfA\ÄfYáfYéfAdÄ fAlÄ0HƒÀHƒÁþu°Hƒ½ÿÿÿt(HÐH‹0ÿÿÿfÁf\ÁfYÑfYÙfÁf\ÁH‹XÿÿÿH‰ÈH9Ë„«þÿÿf.„òAÄòYÈòAÄHÿÀH9Ãuèéƒþÿÿ1ÀHƒ½ÿÿÿu‘ë·HÿH‰E H;‡„NýÿÿH;b„H;Å~…/H‹HöA„!H‰Ç1öèÏbþÿéíH‹GÿP0HÇE H‹}€Hÿ…wýÿÿH‹GÿP0ékýÿÿ1ÀHØL9ø|øH‹½(ÿÿÿè~ýH‹5ÍíH‹8ÿÿÿH‰ß1ÒèDcþÿH‰ßH‰ÃHÿuH‹GÿP0H…ÛL‹­pÿÿÿ„°Hÿu
H‹CH‰ßÿP0H‹PÿÿÿHÿI‰ÜM…ítIÿMu
I‹EL‰ïÿP0H‹}ˆH…ÿtHÿuH‹GÿP0H‹½xÿÿÿH…ÿtHÿuH‹GÿP0M…ä„jIÿ$…`I‹D$L‰çÿP0éPH‹GÿP0HÇE˜Iÿ…áúÿÿéÒúÿÿI‰ÖL‰½`ÿÿÿM…턞	Iƒý„Î	Iƒý…•H‰½hÿÿÿH‹C H‰…`ÿÿÿH‰E¸L‹cL‰e°L‰÷èüI‰Çéæ	»!ÇE;HE1ÿE1ö1ÀH‰E¨E1ä1ÀH‰…xÿÿÿ1ÀH‰Eˆë*1ÀH‰Eˆ»"ÇEEHE1ÿE1ö1ÀH‰E¨E1ä1ÀH‰…xÿÿÿE1íéüL‹%bÛI‹T$L‰æèƒýI‰ÆH‹ûÚH‹@H‰òL‰5‘òM…ö„û
IÿëVè”üH‰E€H…À…©ñÿÿ»%ÇEVHézL‹%ÛH‹=²ÚH‹GH‹€L‰æH…À„í
ÿÐI‰ÆH…À„ð
L‰u˜é/ñÿÿL‹5ÅÚI‹VL‰öèçüI‰ÇH‹_ÚH‹@H‰òL‰=òM…ÿ„ã
Iÿénñÿÿ»%ÇETHéíèäûI‰ÆH…À…xñÿÿ»%L‰}¨ÇE[HE1ÿE1öéÍL‹5HÚH‹=ùÙH‹GH‹€L‰öH…À„â
ÿÐI‰ÇH…À…þðÿÿ»%H‹È{H‹8H5yE1ÿL‰ò1ÀèGúÇEYHébM‹~M…ÿ„ñÿÿI‹FIÿHÿIÿA¼„(I‰Æéóðÿÿ»%ÇEYHé L‹wM…ö„aòÿÿH‹GIÿHÿH‹}€H‰E€HÿuH‹GÿP0H‹}€H‹U˜L‰öèËZþÿH‰E Iÿ…3òÿÿI‹FL‰÷ÿP0é$òÿÿH‹=éH‹5ë1Òèª_þÿH‰E »&H…À„þ	H‰Çèð+H‹} HÿuH‹GÿP0HÇE ÇEªHévL‹5ýØI‹VL‰öèûH‰ÇH‹—ØH‹@H‰\ðH‰=]ðH…ÿ„Ä	HÿëVè0úH‰E H…À…,õÿÿ»1ÇE{Ié
L‹5ØH‹=NØH‹GH‹€L‰öH…À„¶	ÿÐH‰ÇH…À„¹	H‰}˜éµôÿÿL‹5aØI‹VL‰öèƒúH‰ÇH‹û×H‹@H‰ÐïH‰=ÑïH…ÿ„g
HÿëUè”ùI‰ÇH…À…õÿÿ»1ÇE€Ié€	L‹5ØH‹=³×H‹GH‹€L‰öH…À„Z
ÿÐH‰ÇH…À„]
H‰}˜é›ôÿÿH‹HH‰M˜H…É„ãôÿÿH‹@HÿHÿH‹} H‰E HÿA¾…ÂôÿÿH‹GÿP0é¶ôÿÿ»1ÇE~IéõH‹ÿxH‹8H‹u¨èÑ÷»7ÇEäIE1ÿE1ö1ÀH‰E¨L‹¥PÿÿÿéÓH‹ÈxH‹8H‹u¨èš÷HÇE ÇEæIéïH‹5±ÖH‰Ç1Òèw]þÿéÅ»7ÇE{JéçL‹-ÊÖI‹UL‰îèùH‰ÇH‹ŒÖH‹@H‰AîH‰=BîH…ÿ„Œ	HÿëPè%øH‰E˜H…À…•ñÿÿA¾þHéæL‹-pÖH‹=IÖH‹GH‹€L‰îH…À„¯	ÿÐH‰ÇH…À„²	H‰} L‹­`ÿÿÿéñÿÿH‹GH‰E H…À„cñÿÿH‹OHÿHÿH‹}˜H‰M˜HÿuH‹GÿP0H‹u H‹}˜H…ö„4ñÿÿL‰êèlWþÿH‰E€H‹} H…ÿ…0ñÿÿé;ñÿÿA¾
IH‹}˜H…ÿu*ë4A¾üHH‹}˜H…ÿuë#A¾IëA¾IH‹}˜H…ÿtHÿuH‹GÿP0HÇE˜H‹} H…ÿtHÿuH‹GÿP0HÇE H‹}€H…ÿtHÿuH‹GÿP0HÇE€H=ohH
ÅD‰öº-èD=þÿHu HU˜HM€H‹½@ÿÿÿè<.…ÀL‰½Xÿÿÿˆ‹I‹EH;Rw…{IÿEH‰ßèöDž`ÿÿÿ/H…À„†I‰ƿèØöH…À„ˆI‰ÇL‰pL‰ïH‰ÆèýõL‰ïH…À„€I‰ÅHÿ„ÛIÿ„âH‹} H…ÿ…èéïDž`ÿÿÿ.ÇE:I1ÀH‰…hÿÿÿE1ÿ1ÀH‰E¨H‹…@ÿÿÿH‹€H‹8H‹XL‹pL‰ H‹HÿÿÿH‰HH‹XÿÿÿH‰HH…ÿL‹­pÿÿÿtHÿuH‹GÿP0H…ÛD‹¥`ÿÿÿtHÿu
H‹CH‰ßÿP0D‰ãM…ötIÿu
I‹FL‰÷ÿP0E1äM‰þ1ÀH‰…xÿÿÿ1ÀH‰EˆL‹½hÿÿÿé}H‹GÿP0Iÿ…ÿÿÿI‹GL‰ÿÿP0H‹} H…ÿtHÿuH‹GÿP0HÇE H‹}˜H…ÿL‹½XÿÿÿtHÿuH‹GÿP0HÇE˜H‹}€H…ÿtHÿuH‹GÿP0HÇE€H‹…@ÿÿÿH‹€H‹8L‹pH‹PL‰ H‹HÿÿÿH‰HL‰xH…ÿtHÿu
H‹GI‰×ÿP0L‰úM…ötIÿuI‹FL‰÷I‰ÖÿP0L‰òH…Ò„ïÿÿHÿ
…ïÿÿH‹BH‰×éüîÿÿÇE{HE1ÿE1ä1ÀH‰…xÿÿÿ1ÀH‰Eˆ»%ée»1ÇE¢Ié;1ÀH‰EˆÇE­IE1ÿE1öE1äL‹­pÿÿÿ»1é-»%ÇE›HE1ÿE1ö1ÀH‰E¨E1ä1ÀH‰…xÿÿÿ1ÀH‰EˆéþH‰½hÿÿÿL‰÷è˜òI‰ÇH‹5êÜH‹VL‰÷ètôH‰E°H…À„ÕI‰ÄIÿÏëH‰½hÿÿÿL‹cL‰e°L‰÷èVòI‰ÇM…ÿŽ‘çÿÿH‹5OáH‹VL‰÷è)ôH‰…`ÿÿÿH…ÀtH‹…`ÿÿÿH‰E¸IÿÏM…ÿŽ[çÿÿH5)ÐLBHU°L‰÷L‰éèc"…ÀˆôL‹e°H‹E¸H‰…`ÿÿÿé"çÿÿH‰E¨I‹FL‰÷ÿP0L‹u¨é¼èÿÿ»*ÇEÐHë»*ÇEÒHE1ÿE1ö1ÀH‰E¨E1ä1ÀH‰…xÿÿÿé×H‰Ç1ö1Òè
TþÿH‰E€H…À…wñÿÿÇEôIH‹½8ÿÿÿHÿ»7L‹­pÿÿÿuH‹GÿP0E1ÿE1ö1ÀH‰E¨L‹¥PÿÿÿéL‰â1ÉÿÐH‰E˜H…À…téÿÿ»%L‰}¨ÇEuHE1ÿéLþÿÿL‰ò1ÉÿÐH‰E€H…À…Qïÿÿ»1ÇE›Ié#L‰ïèiòI‰ÅH…À…uûÿÿDž`ÿÿÿ/ÇEFIéæûÿÿM‰ïÇEHI1ÀH‰…hÿÿÿéÚûÿÿL‰µhÿÿÿM‰ïÇEJIéÄûÿÿL‰}¨I‰ÿÇEOI1ÀH‰…hÿÿÿé®ûÿÿèðH…ÀuaH‹=ÜÏH‹GH‹€L‰æH…À„UÿÐI‰ÆH…ÀL‹­pÿÿÿ…#õÿÿëè_ñI‰ÆH…À…õÿÿH‹–qH‹8H5ÖnL‰â1ÀèðHÇE˜»%ÇETHéCþÿÿèðÇEYHH…À…H‹=MÏH‹GH‹€L‰öH…À„ôÿÐI‰ÇH…À…Ræÿÿ»%H‹qH‹8H5\nE1ÿL‰ò1Àè›ïé½üÿÿè±ðI‰ÇH…À…æÿÿéõÿÿ1ÀH‰EˆÇE¦HE1ÿE1ö1ÀH‰E¨E1ä1ÀH‰…xÿÿÿé›ècïH…ÀuaH‹=¯ÎH‹GH‹€L‰öH…À„lÿÐH‰ÇH…ÀL‹­xÿÿÿ…Zöÿÿëè2ðH‰ÇH…À…GöÿÿH‹ipH‹8H5©mL‰ò1ÀèëîHÇE˜»1ÇEyIE1ÿE1ö1ÀH‰E¨E1ä1ÀH‰EˆL‹­pÿÿÿH‹}˜H…ÿtHÿuH‹GÿP0H‹} H…ÿtHÿuH‹GÿP0H‹}€H…ÿtHÿuH‹GÿP0H‹}¨H…ÿtHÿuH‹GÿP0M…ötIÿu
I‹FL‰÷ÿP0M…ÿtIÿu
I‹GL‰ÿÿP0H=é`H
?û‹u‰ÚèÁ5þÿ1ÛM…í…5ñÿÿé@ñÿÿè$îH…ÀuaH‹=pÍH‹GH‹€L‰öH…À„JÿÐH‰ÇH…ÀL‹­xÿÿÿ…¶õÿÿëèóîH‰ÇH…À…£õÿÿH‹*oH‹8H5jlL‰ò1Àè¬íHÇE˜ÇE~IE1ÿE1ö1ÀH‰E¨E1ä1ÀH‰EˆéŠúÿÿL‰m¨L‰½XÿÿÿI‰Ýè‚íH…À…„H‹=ÊÌH‹GH‹€H…À„ÄH‹u¨ÿÐH‰ÇH…ÀL‰ëL‹½Xÿÿÿ…vöÿÿH‹“nH‹8H5ÓkH‹U¨ë/è4îH‰ÇH…À…NöÿÿL‰½XÿÿÿL‰êI‰ÝH‹^nH‹8H5žk1ÀèãìHÇE A¾üHL‰ëL‹­`ÿÿÿL‹½XÿÿÿH‹}˜H…ÿ…¤öÿÿé«öÿÿL‹k1ÀM…ížÀH€TH
‚THNÊH‹nH‹:HmùL
ªTLNÊA¸I)ÀL‰,$H5VTH‡û1ÀèVì¾HH=û^H
Qùº²èÓ3þÿ1ÛH‹BnH‹H;EÐuH‰ØHÄÈ[A\A]A^A_]Ãèî¾òGëµè!íI‰ÆH…ÀL‹­pÿÿÿ…Ëðÿÿé¶ûÿÿE1ÿE1ö1ÀH‰E¨éœøÿÿèóìI‰ÇH…À…[âÿÿéüÿÿèÝìH‰ÇH…ÀL‹­xÿÿÿ…ëòÿÿéŸüÿÿèÀìH‰ÇH…ÀL‹­xÿÿÿ…ióÿÿéÁýÿÿH‹u¨èŸìé4þÿÿ@UH‰å]é¦fDUH‰åAWAVAUATSHƒìHH‰ûH‹]mH‹H‰EÐH‰u˜H‹NºH#‘¨uLH‹‘áH9ÁtLH‹‘XH…Ò„ÅH‹JH…ÉŽÑ1öf.„H9DòtHÿÆH9ñuñé®HÁê…Ò„¢H‹‘âH‹=*ÊH;G….
H‹âH…À„
HÿL‹5nâM…ö„Ë
H‹5öÔI‹FH‹€L‰÷H…À„.
ÿÐI‰ÄH…À„1
Iÿu
I‹FL‰÷ÿP0I‹D$H;l„
L‰çH‹u˜è\JþÿI‰ÅM…í„Î
Iÿ$uI‹D$L‰çÿP0H‹5ˆÍH‹CH‹€H‰ßH…À„¿
ÿÐI‰ÄH…À„Â
I‹D$H;·k…%	I‹\$H…Û„	M‹|$HÿIÿIÿ$uI‹D$L‰çÿP0L‰ÿH‰ÞL‰êè¹JþÿI‰ÆHÿu
H‹CH‰ßÿP0M‰üM…ö„æIÿ$tIÿ…‹ëI‹D$L‰çÿP0Iÿ…uI‹FL‰÷ÿP0éfH‹‰H9Á„wþÿÿH…Éuë1ÒH;Qj”…Ò…^þÿÿH‹ÿàH‹=ˆÈH;G…ý	H‹ïàH…À„W
HÿL‹%ÜàM…ä„’
H‹5lÓI‹D$H‹€L‰çH…À„ü	ÿÐI‰ÆH…À„ÿ	Iÿ$uI‹D$L‰çÿP0I‹FH;zj„o
L‰÷H‹u˜è¸HþÿI‰ÅM…íL‰èL‰m „­
Iÿu
I‹FL‰÷ÿP0H‹5÷ÕI‹EH‹€L‰ïH…À„’
ÿÐI‰ÇH…À„•
H‹5kÑE1äL‰ÿ1ÒèŒéH…À„Œ
I‰ÆIÿtH‰]L;5"ju éÏI‹GL‰ÿÿP0H‰]L;5j„´L;5j„§L;5äi„šL‰÷è é‰ÅÀˆ­Iÿ„”…Û…žH‹5<ÕI‹EH‹€L‰ïH…À„
ÿÐI‰ÆH…À„
H‹5°ÐI9ö„±I‹FH;<i…
I‹FH…À~HƒøuL‹=hiAƒ~„†L‹=Fië}1ÛL;5Ki”ÃIÿ…lÿÿÿI‹FL‰÷ÿP0…Û„bÿÿÿH‹=V×H‹5§ØE1ö1Òè%MþÿA½óH…À„H‰ÃH‰ÇèkHÿA¿ÊOu
H‹CH‰ßÿP0E1öéŸL‹=×hIÿIÿtL;=ÀhuéXI‹FL‰÷ÿP0L;=¨h„AL;=£h„4L;=†h„'L‰ÿèÂç‰ÅÀˆr
Iÿ„!…Û„+H‹>ÞH‹=·ÅH;G…	H‹.ÞH…À„v	HÿL‹5ÞM…ö„ÊH‹53ÓI‹FH‹€L‰÷H…À„	ÿÐI‰ÄL‹m H…À„	Iÿu
I‹FL‰÷ÿP0I‹D$H;§g„t	E1ÿE1öI‹D$H;wg„¡	H;Úf…aI‹D$‹@ƒà=€…KL‰u°L‰m¸H‹E˜H‰EÀD‰ùHÁáH÷ÙAƒÏI‹T$H‹B‹Rö …tI‹|$él1ÛL;=`g”ÃIÿ…ßþÿÿI‹GL‰ÿÿP0…Û…ÕþÿÿH‹3ÝH‹=ŒÄH;G…»
H‹#ÝH…À„HÿL‹=ÝM…ÿ„H‹5XÏI‹GH‹€L‰ÿH…À„º
ÿÐI‰ÅH…À„½
Iÿu
I‹GL‰ÿÿP0H‹5ÓH‹} H‹GH‹€H…À„ÿÐI‰ÇH…À„I‹GH;Df„ H;Wf„œH‹@hH…À„yH‹@H…À„lL‰ÿ1öÿÐI‰Äë~AèÚåH…À„çI‰ÅM…ötM‰uH‹M HÿD‰øI‰LÅH‹M˜HÿI‰LÅ 1ÛL‰çL‰î1Òè#JþÿH…À„ºI‰ÇIÿMu
I‹EL‰ïÿP0L‹m éI‹GL‹ ëM‹gIÿ$M…ä„p
Iÿu
I‹GL‰ÿÿP0¿èCåH…À„^
I‰ÇL‰`èrãÇE˜þH…À„Y
I‰ÄH‹”ÛH‹=ÝÂH;G…P
H‹„ÛH…À„
HÿL‹5qÛM…ö„ç
H‹5yÏI‹FH‹€L‰÷H…À„O
ÿÐH‰ÃH…À„R
Iÿu
I‹FL‰÷ÿP0H‹5~ÎL‰çH‰Úèãâ…Àˆ)Hÿu
H‹CH‰ßÿP0L‰ïL‰þL‰âèöHþÿH…À„YI‰ÆIÿMH‹]„–Iÿ„ Iÿ$„ªH‹5ÆH‹CH‹€H‰ßH…À„1ÿÐI‰ÄH…À„4I‹D$H;Ad…€	I‹\$H…Û„r	M‹l$HÿIÿEIÿ$uI‹D$L‰çÿP0L‰ïH‰ÞL‰òèBCþÿI‰ÇHÿu
H‹CH‰ßÿP0M‰ìM…ÿL‹m „@	Iÿ$uI‹D$L‰çÿP0Iÿu
I‹GL‰ÿÿP0L‰ïL‰öè%ÈH…À„¡
H‰ÃIÿM…øééÇE¬•PE1öIÿu
I‹GL‰ÿÿP0D‹}˜M…ötIÿu
I‹FL‰÷ÿP0E1öM…ätIÿ$uI‹D$L‰çÿP0M…íD‹e¬tIÿMu
I‹EL‰ïÿP0H…ÛtHÿu
H‹CH‰ßÿP0H=ƒTH
YîD‰æD‰úèÚ(þÿ1ÛL‹m M…í…DéOI‹EL‰ïÿP0Iÿ…`þÿÿI‹GL‰ÿÿP0Iÿ$…VþÿÿI‹D$L‰çÿP0éFþÿÿ1ÿHt
¸öÂ…ñL‰úÿÐI‰ÇH…À…ðÇE¬PA¿øé­L‰çL‰îèÑ@þÿI‰ÆM…ö…÷ÿÿL‰m A¿îÇE¬xO1ÛE1íéñþÿÿL‹%;ÀI‹T$L‰æè\âI‰ÆH‹ԿH‹@H‰)ØL‰5*ØM…ö„€Iÿé´õÿÿèjáI‰ÄH…À…ÏõÿÿA¿íÇE¬NO1ÛE1íE1ä1ÀH‰E épþÿÿL‹=ɿH‹=z¿H‹GH‹€L‰þH…À„~ÿÐI‰ÆH…À…PõÿÿH‹NaH‹8H5Ž^L‰ú1ÀèÐßA¿LOA½íédM‹|$M…ÿ„cõÿÿM‹t$IÿIÿIÿ$uI‹D$L‰çÿP0L‰÷L‰þH‹U˜è@þÿI‰ÅIÿu
I‹GL‰ÿÿP0M‰ôM…í…2õÿÿA¿íÇE¬]O1ÛE1íE1ö1ÀH‰E é¬ýÿÿècàI‰ÄH…À…>õÿÿL‰m A¿jOA½îE1öéê
L‹5ʾI‹VL‰öèìàI‰ÄH‹d¾H‹@H‰ÉÖL‰%ÊÖM…ä„‚Iÿ$éåõÿÿèùßI‰ÆH…À…öÿÿÇE¬›OA¿ñ1ÀH‰E éUL‹5`¾H‹=¾H‹GH‹€L‰öH…À„‘ÿÐI‰ÄH…À…‰õÿÿH‹å_H‹8H5%]L‰ò1ÀègÞA¿™OA½ñH=…QH
[ëD‰þD‰êèÜ%þÿ1ÛérM‹fM…ä„„õÿÿM‹~Iÿ$IÿIÿu
I‹FL‰÷ÿP0L‰ÿL‰æH‹U˜è?þÿI‰ÅIÿ$uI‹D$L‰çÿP0M‰þM…íL‰èL‰m …SõÿÿÇE¬ªOA¿ñé´èçÞI‰ÇH…À…kõÿÿA¿·OA½òE1öér	ÇE¬¹OÇE˜òE1öE1íé	è©ÞI‰ÆH…À…èõÿÿA¿ÜOA½öE1öé4	H;_„§L‰÷ºèŸÞI‰ÇH…À…yöÿÿA¿öÇE¬ÞOëbL‹=߼I‹WL‰þèßI‰ÆH‹y¼H‹@H‰îÔL‰5ïÔM…ö„
IÿéÌöÿÿèÞI‰ÄL‹m H…À…çöÿÿA¿øÇE¬îO1ÛE1íE1äéûÿÿL‹=p¼H‹=!¼H‹GH‹€L‰þH…À„%
ÿÐI‰ÆH…À…jöÿÿH‹õ]H‹8H55[E1öL‰ú1ÀètÜA¿ìOA½øé.M‹t$M…ö„~öÿÿI‹\$IÿHÿIÿ$A¿uI‹D$L‰çÿP0I‰ÜI‹D$H;Ö]…_öÿÿL‰u°L‰m¸H‹E˜H‰EÀD‰øHÁàH÷ØHt¸AƒÏL‰çL‰úèj>þÿH…À„[I‰ÇM…ötIÿu
I‹FL‰÷ÿP0Iÿ$uI‹D$L‰çÿP0L;=º]t2L;=¹]t)L;= ]t L‰ÿèà܉ÅÀˆ^Iÿt…Ûu(éè1ÛL;=…]”ÃIÿuæI‹GL‰ÿÿP0…Û„ÅH‹LÓH‹=µºH;G…ŠH‹<ÓH…À„æHÿL‹%)ÓM…ä„­H‹5‘ÅI‹D$H‹€L‰çH…À„‰ÿÐI‰ÅH…À„ŒIÿ$uI‹D$L‰çÿP0I‹EH;§\„æL‰ïH‹u èå:þÿH‰ÃH…Û„"IÿMu
I‹EL‰ïÿP0H‹} HÿuH‹GÿP0I‰ÝH‹}L‰m H‹5÷½H‹GH‹€H…À„/ÿÐI‰ÅH…À„2I‹EH;*\…ÒI‹]H…Û„ÅM‹}HÿIÿIÿMu
I‹EL‰ïÿP0L‰ÿH‰ÞH‹U è.;þÿI‰ÆHÿu
H‹CH‰ßÿP0M‰ýM…ö„–IÿMt]IÿtgL‹m IÿEE1öL‰ëIÿMu
I‹EL‰ïÿP0M…ötIÿu
I‹FL‰÷ÿP0H‹Ô[H‹H;EÐ…ÙH‰ØHƒÄH[A\A]A^A_]ÃI‹EL‰ïÿP0Iÿu™I‹FL‰÷ÿP0ëL‰ïH‹u è–9þÿI‰ÆM…ö…jÿÿÿÇE¬^PA¿úéÎA¿ìOA½øE1öéèeÚI‰ÅH…À…ÎþÿÿA¿PPA½úE1öéðÇE¬»OA¿òE1äE1í1ÛM…ö…Y÷ÿÿéc÷ÿÿÇE˜ö¸áOéÉL‰çL‰öè9þÿI‰ÇM…ÿL‹m …ÀöÿÿA¿ÿÇE¬´P1ÛE1íé#÷ÿÿL‹=j¸I‹WL‰þèŒÚI‰ÄH‹¸H‹@H‰‰ÐL‰%ŠÐM…ä„"Iÿ$éXýÿÿè™ÙI‰ÅH…À…týÿÿÇE¬+PA¿ùE1öE1í1Ûé¼öÿÿH‹þ·H‹=¯·H‹GH‹€H‰ÞH…À„2ÿÐI‰ÄH…À…úüÿÿH‹ƒYH‹8H5ÃVE1öH‰Ú1ÀèØA¿)PA½ùé¼M‹}M…ÿ„
ýÿÿM‹uIÿIÿIÿMu
I‹EL‰ïÿP0L‰÷L‰þH‹U èÅ8þÿH‰ÃIÿu
I‹GL‰ÿÿP0M‰õH…Û…ÞüÿÿÇE¬:PA¿ùE1ö1ÛM…íD‹e¬…öÿÿéöÿÿA¿)PA½ùE1öé0H‹·H‹SH‰Þè2ÙI‰ÇH‹ª¶H‹@H‰?ÏL‰=@ÏM…ÿ„GIÿé(òÿÿè@ØI‰ÅH…À…CòÿÿÇE¬PÇE˜þéáH‹¬¶H‹=]¶H‹GH‹€H‰ÞH…À„_ÿÐI‰ÇH…À…ÑñÿÿH‹1XH‹8H5qUE1öH‰Ú1Àè°ÖA¿PA½þéjèº×I‰ÇH…À…ùñÿÿA¿þA¼„P1ÛE1öIÿM…õÿÿé÷ôÿÿA¿PA½þE1öé%ÇE¬†PÇE˜þëÇE¬‰PA¿þE1ö1ÛéœôÿÿÇE¬ŽPE1öE1äé±H‹̵H‹SH‰Þèî×I‰ÆH‹fµH‹@H‰ÎL‰5ÎM…ö„‚Iÿé“òÿÿèüÖH‰ÃH…À…®òÿÿÇE¬’PéTH‹oµH‹= µH‹GH‹€H‰ÞH…À„œÿÐI‰ÆH…À…CòÿÿH‹ôVH‹8H54TE1öH‰Ú1ÀèsÕÇE¬Pé÷ÇE¬PE1öéèÇE¬PA¿øé1üÿÿA¿øÇE¬Pé•óÿÿÇE˜ø¸P‰E¬M…ÿtE1öE1äE1íé¢H=<HH
â‹u¬‹U˜è“þÿE1öéÕE1ö1ÿè‰ÕH…À„×H‰ÃL‰ÿH‰ÆèüÕI‰ÄHÿ…ñðÿÿH‹CH‰ßÿP0éâðÿÿòAFf.QáH‹šVL‹=£VLEøLJøé¿íÿÿÇE¬PA¿øéeûÿÿÇE¬—PE1ö1ÛIÿ…®òÿÿéŸòÿÿè{ÕI‰ÄH…À…ÌñÿÿA¿¦PA½ÿëA¿ÁPA½H=_GH
5áD‰þD‰êè¶þÿ1ÛL‹m IÿM…/úÿÿé úÿÿÇE¬†PÇE˜þéËýÿÿL‰ú1ÉÿÐI‰ÇH…À…ý÷ÿÿéóÿÿèçÕèäÓA¿LOA½íH…À…bõÿÿH‹= ³H‹GH‹€L‰æH…À„²ÿÐI‰ÆH…À…öèÿÿH‹ôTH‹8H54RL‰âëpè–ÔI‰ÆH…À…ÏèÿÿézóÿÿèrÓA¿™OA½ñH…À…ðôÿÿH‹=®²H‹GH‹€L‰öH…À„VÿÐI‰ÄH…À…&êÿÿH‹‚TH‹8H5ÂQL‰ò1ÀèÓé¤ôÿÿèÔI‰ÄH…À…õéÿÿégôÿÿA¿ÆOé©þÿÿèëÒA½øH…À…	H‹=-²H‹GH‹€L‰þH…À„ùÿÐI‰ÆH…À…vìÿÿH‹TH‹8H5AQE1öL‰ú1Àè€Òé½è–ÓI‰ÆH…À…BìÿÿéÓõÿÿèrÒA½ùH…À…´H‹=´±H‹GH‹€L‰þH…À„¤ÿÐI‰ÄH…À…ÿöÿÿH‹ˆSH‹8H5ÈPE1öL‰ú1ÀèÒA¿)PéÇýÿÿèÓI‰ÄH…À…ÅöÿÿéÆùÿÿèóÑA½þH…À…YH‹=5±H‹GH‹€H‰ÞH…À„IÿÐI‰ÇH…À…©ìÿÿH‹	SH‹8H5IPE1öH‰Ú1ÀèˆÑA¿PéHýÿÿè˜ÒI‰ÇH…À…oìÿÿé™úÿÿètÑÇE¬PH…À…ýH‹=µ°H‹GH‹€H‰ÞH…À„çÿÐI‰ÆH…À…ØíÿÿH‹‰RH‹8H5ÉOE1öH‰Ú1ÀèÑé“üÿÿèÒI‰ÆH…À…¤íÿÿé\ûÿÿèÒI‰ÆH…À…AæÿÿéFýÿÿèòÑI‰ÄH…À…Íçÿÿé¢ýÿÿE1öA¿ìOé~üÿÿèÎÑI‰ÆH…À…zêÿÿéÿýÿÿE1öA¿)PéZüÿÿèªÑI‰ÄH…À…XõÿÿéTþÿÿE1öA¿Pé6üÿÿè†ÑI‰ÇH…À…]ëÿÿé¯þÿÿE1öéÝûÿÿèhÑI‰ÆH…À…îìÿÿéÿÿÿUH‰åAVSI‰öè÷ÏH‰ÃH…ÀtHÿH‰Ø[A^]Ãè!ÐH…ÀuîI‹Fö€«uH‹XQH‹8L‰öèÐëͿL‰ö1ÀèrÑH…Àt¹I‰ÆH‹-QH‹8L‰öèØÏIÿuŸI‹FL‰÷ÿP0ë“f„UH‰åAWAVAUATSHƒì(L‰ÃI‰ÏI‰ÔI‰öHÇEÐHÇEÈHÇE¸Hu¸HUÐHMÈH‰}°è8Ï1ɅÀ„˜H‰]ÀO,þL‰ãëEf.„DH‹EÈL‰áL)ñH‰Iƒ<$„×H‹}°Hu¸HUÐHMÈèäÎ…À„WI‹EH‹uÐH…Àt#H‰ÂL‰é€H92„‡H‹QHƒÁH…ÒuêH‹Nö«„H…ÀttH‹8M‰ìH9÷„uÿÿÿM‰ìfH‹GH;Fu&èAÐ…ÀxuéVÿÿÿè™ÎH…À…¿„I‹D$H…Àt&IƒÄH‹uÐH‹8H9÷u¶é!ÿÿÿH‹EÈL)ñH‰é)ÿÿÿM9õL‹eÀt_IÁç1ÛëèBÎH…ÀulDHƒÃI9ßt?I‹H‹H‹uÐH9ñtH‹AH;FuÝH‰Ïè¥Ï…ÀxÂuÏH‹MÐH‹|OH‹8H5Ž5ëH‹iOH‹8H‹MÐH5J5L‰â1Àè¿Í¹ÿÿÿÿ‰ÈHƒÄ([A\A]A^A_]Ã1ÉëëH‹0OH‹8H5ó4H‹UÀ1Àè‰ÍëȐUH‰åAWAVSPH‰ûH‹H‹‡¨©@u-…Ày	öƒ«@u2H‹åNH‹8H5¾5HƒÄ[A^A_]éXÍH‰ÞHƒÄ[A^A_]é@Í1ÿè³ÎH…ÀtaI‰ÇH‰ßH‰Æ1ÒèÎI‰ÆIÿu
I‹GL‰ÿÿP0M…öt:I‹Nö«@uH‹sNH‹8H55H‰Ú1ÀèÍÌëH‰ßL‰öèØÌIÿtHƒÄ[A^A_]ÃI‹FL‰÷HƒÄ[A^A_]ÿ`0fDUH‰åAWAVSPA‰ÖH9÷„‚I‰÷H‰ûH‹GH‹NH;MNu{H;
DNur€{ ‰A€ ‰¤H‹SI;W…GI‹GHƒøÿtH‹KHƒùÿt	H9Á…*‹s ‰ðÁèƒàA‹O ‰ÏÁïƒç9ø…@öÆ …¤H‹[Hé«H‹ÉMH1ÑH1ÐH‹ÜMH‰ÞH1ÖH	ΔÁL1úH	„̄ɅÄH‰ßL‰þD‰òèüÌH…À„I‰ÆH;›Mt'L;5šMtL;5MtL‰÷èÁ̉ÃIÿ……ë1ÛL;5qM”ÃIÿurI‹FL‰÷ÿP0ëfH{0HƒÃH@öÆ@HEßöÁ uM‹HëIw0IƒÇHöÁ@LEþƒøtƒøu¶A¶7ë·A·7ë‹A‹79ñuHƒúu1ÛAƒþë1ÛAƒþ”ÉØHƒÄ[A^A_]ÃH¯ÐH‰ßL‰þè—Î1É1҅À”Á•ÂAƒþDѶÚëÌH‰ßèµÌ…À‰SþÿÿëL‰ÿè£Ì…À‰Lþÿÿ»ÿÿÿÿë£f.„UH‰åAWAVSPI‰öH‰ûH‹GH;%LtDH;<LtZL‹xhM…ÿ„®Iƒ„£M…öy…Ò…ÅI‹GH‰ßL‰öHƒÄ[A^A_]ÿà1Ò”ÀL‰òH÷ÒHÁê?H	ÂL‰ðt%…Éu,ë01Ò”ÀL‰òH÷ÒHÁê?H	ÂL‰ðt!…Éu(ë,H‹CLð…ÉtH;Cs1H‹KH‹ÁëH‹CLð…ÉtH;CsH‹\ÃHÿH‰ØHƒÄ[A^A_]ÃL‰÷è?ÊH…Àt]I‰ÆH‰ßH‰Æè¶ÊH‰ÃIÿuÏI‹FL‰÷ÿP0ëÃI‹H…À„/ÿÿÿH‰ßÿÐH…ÀxIÆéÿÿÿH‹ÃJH‹8èCÉ…Àt
è4Ééÿÿÿ1Û널UH‰åAVSH‹Gö€«„•H‹GHƒÀHƒøw11ÛH
©HcHÈÿà‹_‹GHÁàH	ø€H)ØHÁè u8÷ÛëOèjÉH‰ÃHcÃH9Øt?ë"1Û+_ë6‹_ë1‹_‹GHÁàH	ÃHûÿÿÿvH‹JH‹8H5ž1è³È»ÿÿÿÿ‰Ø[A^]Ãè>H…ÀtêI‰ÆH‰Çè>ÿÿÿ‰ÃIÿuÝI‹FL‰÷ÿP0ëÑ`ÿÿÿ‘ÿÿÿÎÿÿÿ˜ÿÿÿÿÿÿ@UH‰åSPH‰ûH‹Gö€«t
HÿH‰ØHƒÄ[]ÃH‹@`H…ÀtWH‹€€H…ÀtKH‰ßÿÐH…ÀtAH‰ÃH‹@H;¸ItÇö€«uJH‹
vIH‹9L‹@H5¿1H
õ0H‰Ê1ÀèÅÇëKèÐÇH…ÀuPH‹DIH‹8H5Ò0èÁÇë8H‹
ÜHH‹9H‹HHÍ0¾1ÀèªÇ…À„KÿÿÿHÿu
H‹CH‰ßÿP01Ûé5ÿÿÿf.„fUH‰åAWAVATSHƒì I‰ÎI‰×I‰ôH‰ûH‹GXH‰EÈH‹G`H‰EÐH‹GhH‰EØHÇGhHÇG`HÇGXH}ÈHuÐHUØèÇHƒ{X…ÅH‹uØH…ötH‹}Ðè%Ç…Àˆ«H‹EØH…ÀtHÿH‹EÈH…ÀtHÿH‹EÐH…ÀtHÿH‹EÐH‹MÈI‰$I‰H‹EØI‰H‹ƒH‹8H‹XL‹xH‰H‹MÐH‰HH‹MØH‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0E1öM…ÿtIÿu
I‹GL‰ÿÿP0D‰ðHƒÄ [A\A^A_]ÃIÇ$IÇIÇH‹}ÈH…ÿtHÿuH‹GÿP0H‹}ÐH…ÿtHÿuH‹GÿP0H‹}ØA¾ÿÿÿÿH…ÿt¡HÿuœH‹Gë“f.„UH‰åAVSH‹Gö€«t]H‹_HCHƒøw"H
{HcHÈÿà‹_‹GHÁàH	ÃH÷Ûë%[A^]é	Æ1À+GHcØë‹_ë
‹_‹GHÁàH	ÃH‰Ø[A^]Ãè
ýÿÿH…ÀtI‰ÆH‰ÇèzÿÿÿH‰ÃIÿuÛI‹FL‰÷ÿP0ëÏHÇÃÿÿÿÿëƐŽÿÿÿ©ÿÿÿÅÿÿÿ³ÿÿÿ¸ÿÿÿ„UH‰åAWAVAUATSHìøI‰öH‹úFH‹H‰EÐHDž(ÿÿÿHÇE€HDžhÿÿÿHÿI‰ÕHÿH‰½xÿÿÿL‰…ðþÿÿIÿH‹ü·H‹=ý£H;GH‰ÐH‰UˆH‰Pÿÿÿ…ÙH‹޷H…À„}HÿH‹˷H‰(ÿÿÿH…Û„àH‹5ĮH‹CH‹€H‰ßH…À„ÑÿÐI‰ÇÇE¬…H…À„ÔHÿu
H‹CH‰ßÿP0¿èŸÅH‰…(ÿÿÿH…ÀL‰½pÿÿÿ„?I‰ÄIÿL‰pè½ÃH‰E€H…À„»H‰ÃH‹5ҮL‹=ÃEH‰ÇL‰úè Ã…Àˆ+L‰µÿÿÿM‰îL‹­pÿÿÿL‰ïL‰æH‰Úè±)þÿH‰…hÿÿÿH…À„rIÿM„‡H‹½(ÿÿÿHÿ„‘HDž(ÿÿÿH‹}€HÿM‰õuH‹GÿP0HÇE€L‹¥hÿÿÿH‹½ÿÿÿHÿuH‹GÿP0HDžhÿÿÿH‹5°I‹D$H‹€L‰çH…À„NÿÐH‰ÃH‰…hÿÿÿÇE¬†H…À„<H‹5ú«H9ótH‹CH;’D…)Hƒ{uL‹=ÆDIÿL‰}€Hÿ„ÜHDžhÿÿÿH‹]€H;˜D…æé»•1ÀH‰EL‰­ ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿM‰ô1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿé§PI‹EL‰ïÿP0H‹½(ÿÿÿHÿ…oþÿÿH‹GÿP0écþÿÿH‹CH‰ßÿP0HDžhÿÿÿH‹]€H;²C„®H;­C„¡H;C„”H‰ßèÌÂA‰ƅÀˆ"Hÿ„HÇE€E…öL‰¥ÿÿÿ„™èIÃH‰…ÿÿÿH‹H‹
DCëf.„H‹PH…Ò„?H‰ÐL‹*M…ítèI9ÍtãL‹`H‹@IÿEE1ÿM…ä…4é3E1öH;üBA”ÆHÿ…qÿÿÿH‹CH‰ßÿP0HÇE€E…öL‰¥ÿÿÿ…gÿÿÿH‹5>®I‹D$H‹€L‰çH…À„Q#ÿÐH‰ÃH‰E€ÇE¬ŽH…À„B#H‹5¦©H9ót,H‹CH;6B…&H‹qBHƒ{uH‹cBƒ{uH‹FBHÿH‰…hÿÿÿHÿu
H‹CH‰ßÿP0HÇE€H‹hÿÿÿH;B„nH;B„aH;ýA„TH‰ßè9ÁA‰ƅÀˆg-Hÿ„OHDžhÿÿÿE…ö…YH‹5˜®I‹D$H‹€L‰çH…À„v"ÿÐH‰ÃH‰…hÿÿÿÇE¬‘H…À„d"H‹CH;AA„H;TA„‘H‹@hH…À„/$H‹@H…À„"$H‰ß1öÿÐH‰ÃH‰]€H…Û„ÝH‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿL‹m€HÇE€L;-,¨…-H‹²H‹=`žH;G…Ì-H‹²H…À„8.HÿH‹l²H‰hÿÿÿH…Û„/H‹5õ¬H‹CH‹€H‰ßH…À„È-ÿÐH‰…(ÿÿÿÇE¬’H…À„Ë-Hÿu
H‹CH‰ßÿP0HDžhÿÿÿH‹½(ÿÿÿH‹GH;1@„	.H‹uˆèrþÿH‰E€HDžhÿÿÿH…À„u.H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿH‹]€H‹51§H9ótH‹CH;É?…UHƒ{…,H‹é?é'L‹`H‹@M…í„åIÿEE1ÿM…ätIÿ$H…ÀtHÿH‰EH‹ ±H‹=H;GL‰¥pÿÿÿ….H‹	±H…À„…HÿH‹ö°H‰hÿÿÿH…Û„ÂH‹5w©H‹CH‹€H‰ßH…À„#ÿÐH‰…(ÿÿÿH…À„&Hÿu
H‹CH‰ßÿP0HDžhÿÿÿH‹5…©H‹½ÿÿÿH‹GH‹€H…À„>ÿÐI‰ÆH…À„AE‰üI‹FH;¶>…AM‹~M…ÿ„cI‹^IÿHÿIÿu
I‹FL‰÷ÿP0H‰ßL‰þèÏþÿH‰…hÿÿÿIÿu
I‹GL‰ÿÿP0H‹…hÿÿÿI‰ÞH…À„x"Iÿu
I‹FL‰÷ÿP0H‹½(ÿÿÿH‹GH;5>„H‹µhÿÿÿèsþÿH‰E€H‹½hÿÿÿHÿ„rHDžhÿÿÿHƒ}€„yH‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿH‹E€H‰…ÿÿÿHÇE€E„äuIÿMu
I‹EL‰ïÿP0H‹½pÿÿÿH…ÿtHÿuH‹GÿP0H‹}H…ÿL‹­ÿÿÿtHÿuH‹GÿP0H‹5ȤL‰ïºèñ¼H‰…hÿÿÿÇE¬ŒH…ÀL‹¥ÿÿÿ„†H‰ÃH;{=„_H;v=„RH;Y=„EH‰ß蕼A‰ƅÀˆxHÿ„@HDžhÿÿÿE…ö„JH‹œ®H‹=}šH;G…ËH‹Œ®H…À„HÿH‹y®H‰(ÿÿÿH…Û„õH‹5©H‹CH‹€H‰ßH…À„ÀÿÐH‰E€H…À„ÃHÿu
H‹CH‰ßÿP0HDž(ÿÿÿH‹}€H‹GH;[<„öH‹uˆèœþÿH‰…hÿÿÿHDž(ÿÿÿH…À„cH‹}€HÿuH‹GÿP0HÇE€H‹hÿÿÿH‹5[£H9ótH‹CH;ó;…@Hƒ{…"H‹<éE1öH;<A”ÆHÿ…ÀþÿÿH‹CH‰ßÿP0HDžhÿÿÿE…ö…¶þÿÿH‹½ðþÿÿé–H‹GÿP0HDžhÿÿÿHƒ}€…‡ýÿÿ»èE1öéšE1öH;©;A”ÆHÿ…±ùÿÿH‹CH‰ßÿP0HDžhÿÿÿE…ö„§ùÿÿH‹=_©H‹5 ª1ÒèyþÿH‰…hÿÿÿÇE¬H…À„‰‘H‰ÃH‰Çè·ëÿÿHÿu
H‹CH‰ßÿP0HDžhÿÿÿ»–1ÀH‰E H‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿL‹¥ÿÿÿé.GH‹CH‹HÿH‰]€H…Û…#ùÿÿL‰­ ÿÿÿ»«1ÀH‰E˜1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿéÐõÿÿH‹:HÿH‰E€Hÿu
H‹CH‰ßÿP0HDžhÿÿÿH‹]€H;Í9tDH;Ì9t;H;³9t2H‰ßèó¸A‰ƅÀH‹½ðþÿÿˆ´$Hÿt-HÇE€E…ö„Jë<E1öH;…9A”ÆH‹½ðþÿÿHÿuÓH‹CH‰ßÿP0H‹½ðþÿÿHÇE€E…ö„H‹=4§H‹5í§1ÒèNþÿH‰E€ÇE¬H…À„LH‰ÃH‰ÇèéÿÿHÿu
H‹CH‰ßÿP0HÇE€»fé±A·M…ä…ùÿÿéùÿÿH‹[HÿH‰]€H…Û…Œ÷ÿÿédþÿÿH‹Í8HÿH‰…(ÿÿÿHÿu
H‹CH‰ßÿP0HÇE€H‹(ÿÿÿH;–8„«H;‘8„žH;t8„‘H‰ß谷A‰ƅÀH‹½ðþÿÿˆˆzHÿ„ŒHDž(ÿÿÿE…ö…L‹=88L9ÿL‰èL‰­ÿÿÿ„膷Hƒøÿ„!I‰ÆH‹¤©H‹=e•H;GL‹mˆ…H‹©H…À„xHÿH‹}©H‰]€H…Û„ÝH‹5ѤH‹CH‹€H‰ßH…À„ÿÐH‰…hÿÿÿÇE¬˜H…À„Hÿu
H‹CH‰ßÿP0HÇE€H‹#©H‹=ԔH;G…7H‹©H…À„$HÿH‹©H‰ÃH…À„¶H‹5å H‹CH‹€H‰ßH…À„«ÿÐI‰ÅH…À„®Hÿu
H‹CH‰ßÿP0H‹º¨H‹=[”H;G…#H‹ª¨H…À„¾HÿH‹—¨H‰ÃH…À„ŸH‹5t H‹CH‹€H‰ßH…À„HÿÐI‰ÇH…À„KHÿu
H‹CH‰ßÿP0I‹EH;M6„ÈL‰ïL‰þèŒþÿH‰E€Iÿu
I‹GL‰ÿÿP0Hƒ}€„IÿMu
I‹EL‰ïÿP0H‹]€H‹5˟H‹CH‹€H‰ßH…À„sÿÐI‰ÇL‹­ÿÿÿH…À„vHÿu
H‹CH‰ßÿP0HÇE€H‹½hÿÿÿH‹GH;®5„ÔL‰þèðþÿH‰…(ÿÿÿHÇE€Iÿ„®Hƒ½(ÿÿÿ„¸H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿH‹…(ÿÿÿH‰…ÿÿÿHDž(ÿÿÿH‹…ðþÿÿH‹PH‹1§H9„ÑH‹ŠXH…É„¯H‹QH…ÒŽZ1öf„H9Dñ„žHÿÆH9òuíé71ÀH‰…ÿÿÿé*I‹GL‰ÿÿP0Hƒ½(ÿÿÿ…HÿÿÿH‹EˆH‰… ÿÿÿ»?é\E1öH;ã4A”ÆH‹½ðþÿÿHÿ…tüÿÿH‹CH‰ßÿP0H‹½ðþÿÿHDž(ÿÿÿE…ö„cüÿÿL‰­ÿÿÿH‹=„¢H‹5M£1ÒèžþÿH‰…(ÿÿÿÇE¬“H…À„e’H‰ÃH‰ÇèÜäÿÿHÿu
H‹CH‰ßÿP0HDž(ÿÿÿ»ç1ÀH‰E H‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿL‹¥ÿÿÿé\@H‹’H9ÂtH…ÒuïH;¥2…¦H‹X¥H‹=áH;G…XH‹H¥H…À„¤HÿH‹5¥H‰hÿÿÿH…Û„H‹5žH‹CH‹€H‰ßH…À„MÿÐI‰ÅÇE¬šH…ÀH‹½ðþÿÿ„;HÿuH‹CH‰ßÿP0H‹½ðþÿÿHDžhÿÿÿH‹5[œH‹GH‹€H…À„ZÿÐH‰…hÿÿÿ1ÒH…À„]L‰uHÇE€I‹EH;t2„•M‰îI‹FH;H2L‹­ÿÿÿ„ýH;¤1uXI‹F‹@ƒà=€uGH‹E€H‰E°H‹…hÿÿÿH‰E¸H‹7¤H‰E	ÑHÁáH÷كÊI‹vH‹F‹^öà …$I‹~éH‰Ӎz诱H…À„¢I‰ÇH‹E€H…ÀtI‰GHÇE€H‹…hÿÿÿ‰ÙI‰DÏH‹ɣHÿI‰DÏ HDžhÿÿÿL‰÷L‰þ1ÒèáþÿH‰…(ÿÿÿH…À„rIÿ„ŒIÿ„þH‹½(ÿÿÿH;=™1…é2H‹E€H‰E°H‹…hÿÿÿH‰E¸H‹T£H‰E	ÐHÁàH÷ØHt¸ƒÊL‰÷èÏþÿH‰…(ÿÿÿH…Àu^H‹EˆH‰… ÿÿÿ»m1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿéÒI‹GL‰ÿÿP0Iÿ…jÿÿÿëf1ÿHt
¸öÃ…ÖsÿÐH‰…(ÿÿÿH…À„ØsH‹}€H…ÿtHÿuH‹GÿP0HÇE€H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿIÿ…ÿÿÿI‹FL‰÷ÿP0H‹½(ÿÿÿH;=‘0t3H;=0t*H;=w0t!躯…ÀL‹uˆ¢‰ÃH‹½(ÿÿÿHÿuë1ÛH;=[0”ÃL‹uHÿuH‹GÿP0HDž(ÿÿÿ…Û„DH‹¢H‹=H;G…2H‹þ¡H…À„¡HÿH‹ë¡I‰ÅH…À„AH‹5ðœI‹EH‹€L‰ïH…À„.ÿÐI‰ÇÇE¬›H…À„1IÿMu
I‹EL‰ïÿP0H‹¡H‹=þŒH;G…¦H‹¡H…À„@HÿH‹=z¡H‰½hÿÿÿH…ÿ„µH‹5™H‹GH‹€H…À„ÏÿÐH‰E€H…À„ÒH‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿH‹5‹˜H‹½ðþÿÿH‹GH‹€H…À„ÿÐH‰…hÿÿÿH…À„H‹}€H‹OH;
§.„NH‰ÆèéþÿI‰ÅH‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿM…턌H‹}€HÿuH‹GÿP0HÇE€H‹5˜I‹EH‹€L‰ïH…À„€ÿÐH‰E€H…À„ƒIÿMu
I‹EL‰ïÿP0I‹GH;.„‰H‹u€L‰ÿèMþÿH‰…(ÿÿÿH‹ÿÿÿH‹}€HÿuH‹GÿP0HÇE€Hƒ½(ÿÿÿ„»Iÿu
I‹GL‰ÿÿP0HÿH‹½(ÿÿÿH‰޺è)­H…À„¶I‰ÅH;È-„ÈL;-Ã-„»L;-¦-„®L‰ïè⬉ÅÀˆlIÿM„¨…Û„²H‹…(ÿÿÿHÿH‹…(ÿÿÿL‹­ÿÿÿH‹ÿÿÿH‰E€Hÿ	uH‹½ÿÿÿH‹GÿP0H‹½(ÿÿÿHÿuH‹GÿP0H‹E€H‰…(ÿÿÿHÿH‹}€HÿuH‹GÿP0HÇE€H‹(ÿÿÿH‹½ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿH‰ÿÿÿH‹H‹˜(¿ÿhE1ÿH‹½ðþÿÿH‰Æ1Ò1ÉA¸E1ÉÿÓH‰…(ÿÿÿH…À„H‰E€HÿH‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿL‹}€H‹½ðþÿÿHÿ„EHÇE€L;=\,„LH‹žH…À„pI‹OH9Á„ H‹‘XH…Ò„xH‹rH…ö~1ÿfDH9Dú„ñHÿÇH9þuíH‹Ž+H‹:H‹QH‹HH5¨1ÀH‰…pÿÿÿ1ÀèکÇE¬Ÿ»H‹EˆH‰… ÿÿÿ¸H‰…@ÿÿÿA½¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…Pÿÿÿ¸H‰…HÿÿÿL‰½ðþÿÿA¿¸H‰…8ÿÿÿ¸H‰E˜¸H‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿéÕ7H‹GÿP0HÇE€L;=+…´þÿÿH‹+H‹@éá1ÛL;-ù*”ÃIÿM…XýÿÿI‹EL‰ïÿP0…Û…NýÿÿH‹ÿÿÿHÿH‰ÈL‹­ÿÿÿH‰E€Hÿ	…cýÿÿéPýÿÿL‹=UˆI‹WL‰þèwªH‰ÃH‹ï‡H‹@H‰ܛH‰ݛH…Û„6vHÿé§腩I‰ÇÇE¬…H…À…,äÿÿ»‹1ÀH‰…XÿÿÿL‰­ ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿM‰ôé
L‹=¡‡H‹=R‡H‹GH‹€L‰þH…À„×uÿÐH‰ÃH…À„ÚuH‰(ÿÿÿé^ãÿÿ»Ž1ÀH‰…XÿÿÿL‰­ ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰Eé'åÿÿÇE¬…»‰1ÀH‰…XÿÿÿL‰­ ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰E1ÀH‰…PÿÿÿM‰ôé-»“éäÿÿ»–1ÀH‰EL‰µ ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‹¥ÿÿÿéäÿÿèЧéªãÿÿ»¥éFH;<(„H‰ߺèקH‰E€H…À…Åãÿÿ»§éL‹5ó…I‹VL‰öè=¨H‰ÃH‹µ…H‹@H‰²™H‰³™H…Û„âtHÿë]èN§H‰…(ÿÿÿH…À…ÚèÿÿHDž(ÿÿÿ»Çé8L‹5Œ…H‹=e…H‹GH‹€L‰öH…À„ÍtÿÐH‰ÃH…À„ÐtH‰hÿÿÿéVèÿÿèå¦I‰ÆH…À…¿èÿÿ»Êë»ÅE1öéH;P'„hH;³&uI‹Fö@tL‰÷1öèÅ
þÿéRH‹5¹„L‰÷1Òèþÿé<H‹_H…Û„îèÿÿH‹GHÿHÿH‹½(ÿÿÿH‰…(ÿÿÿHÿuH‹GÿP0H‹½(ÿÿÿH‹•hÿÿÿH‰Þè#þÿH‰E€Hÿ…·èÿÿH‹CH‰ßÿP0é¨èÿÿ»6é*	H‹EˆH‰… ÿÿÿÇE¬–»éùL‹=‚„I‹WL‰þ褦H‰ÃH‹„H‹@H‰I˜H‰J˜H…Û„ÉsHÿë`赥H‰…hÿÿÿÇE¬˜H…À…çîÿÿL‰­ ÿÿÿ»éL‹=„H‹=ɃH‹GH‹€L‰þH…À„çsÿÐH‰ÃH…À„¥sH‰]€écîÿÿL‹=܃I‹WL‰þèþ¥H‹
yƒH‹IH‰
¶—H‰·—H…À„®sHÿH‰Ãé¯îÿÿL‰­ ÿÿÿÇE¬˜»1ÀH‰…xÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜é蔤I‰ÅH…À…RîÿÿH‰pÿÿÿH‹EˆH‰… ÿÿÿ»1ÀH‰…0ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1íé8L‹=߂H‹=‚H‹GH‹€L‰þH…À„³sÿÐH‰ÃH…À…¿íÿÿL‰­ ÿÿÿH‹]$H‹8H5!1ÀH‰…xÿÿÿL‰ú1Àè֢»é÷þÿÿL‹=w‚I‹WL‰þ虤H‹
‚H‹IH‰
a–H‰b–H…À„QsHÿH‰ÃéÃíÿÿL‰­ ÿÿÿ»1ÀH‰…0ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1íé^è~£I‰ÇH…À…µíÿÿH‰pÿÿÿH‹EˆH‰… ÿÿÿ»1ÀH‰…0ÿÿÿ1ÀH‰…@ÿÿÿE1ÿé%L‹=́H‹=}H‹GH‹€L‰þH…À„¥sÿÐH‰ÃH…À…%íÿÿH‹EˆH‰… ÿÿÿH‹F#H‹8H5† 1ÀH‰…0ÿÿÿL‰ú1À迡»é¤I‹]H…Û„+íÿÿM‹eHÿIÿ$IÿMu
I‹EL‰ïÿP0L‰çH‰ÞL‰úè‰þÿH‰E€Hÿu
H‹CH‰ßÿP0M‰åL‹¥ÿÿÿIÿ…úìÿÿéëìÿÿH‹EˆH‰… ÿÿÿ»,1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿE1ÿé»H‹EˆH‰… ÿÿÿ»1ÀH‰…0ÿÿÿ1ÀH‰…@ÿÿÿE1ÿ1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿéZèʡI‰ÇL‹­ÿÿÿH…À…ŠìÿÿH‹EˆH‰… ÿÿÿ»/1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰EˆéÄH‹GH‰E€H…À„ìÿÿH‹OHÿHÿH‹½hÿÿÿH‰hÿÿÿHÿuH‹GÿP0H‹]€H‹½hÿÿÿH…Û„ãëÿÿH‰ÞL‰úèÀþÿH‰…(ÿÿÿHÿ…×ëÿÿH‹CH‰ßÿP0éÈëÿÿH‹EˆH‰… ÿÿÿÇE¬1ÀH‰…@ÿÿÿ»ôA½¸H‰…pÿÿÿé@
»ª1ÀH‰…PÿÿÿL‰­ ÿÿÿéL‹5ñ~I‹VL‰öè¡H‰ÃH‹‹~H‹@H‰˜’H‰™’H…Û„ðvHÿëhè$ H‰E€H…À…=äÿÿH‹EˆH‰… ÿÿÿ»@éL‹5~H‹=>~H‹GH‹€L‰öH…À„¯vÿÐH‰ÃH…ÀL‹¥ÿÿÿL‹­ÿÿÿ„vH‰(ÿÿÿé®ãÿÿH‹GH‰…(ÿÿÿH…À„F
H‹OHÿHÿH‹}€H‰M€HÿuH‹GÿP0H‹(ÿÿÿH‹}€H…Û„
H‰ÞH‹UˆèMÿýÿH‰…hÿÿÿHÿu
H‹CH‰ßÿP0H‹…hÿÿÿL‹¥ÿÿÿL‹­ÿÿÿHDž(ÿÿÿH…À…ãÿÿH‹EˆH‰… ÿÿÿ»OëH‹EˆH‰… ÿÿÿ»>1ÀH‰…HÿÿÿéH‹EˆH‰… ÿÿÿH‹LH‹8H5b	èѝÇE¬Ÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…PÿÿÿL‰½ðþÿÿE1ÿéãènžé§ÜÿÿL‰­ ÿÿÿ»‚éë]èSžé‚ÝÿÿL‰­ ÿÿÿ»©éÐ]L‹=È|I‹WL‰þèêžH‰ÃH‹b|H‹@H‰ǐH‰ȐH…Û„æuHÿëYèûé«ëÿÿH‹EˆH‰… ÿÿÿ»Yé›L‹=l|H‹=|H‹GH‹€L‰þH…À„­uÿÐH‰ÃH…ÀL‹¥ÿÿÿ„°uH‰hÿÿÿé0ëÿÿ薝H‰…hÿÿÿ1ÒH…À…£ëÿÿ1ÀH‰…ÿÿÿH‹EˆH‰… ÿÿÿ»\1ÀH‰…@ÿÿÿéð	H‹EˆH‰… ÿÿÿÇE¬š»W1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿéi
I‹EH‰E€H…À„èuM‹uHÿIÿIÿMºuI‹EL‰ïÿP0ºL‹¥ÿÿÿé-ëÿÿ»71ÀH‰…HÿÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿéé)1ÿèӛH…À„Ç[I‰ÆH‰ßH‰ÆèFœH‰ÃIÿu
I‹FL‰÷ÿP0L‹¥ÿÿÿL‹mˆH‰]€H…Û…­Ûÿÿé…âÿÿH;†„Ï\H‰ߺè!œH‰E€H…À…ÔâÿÿH‹EˆH‰… ÿÿÿ»RéÍüÿÿH‰ÊH…Ò„nH‹’H9ÂuëH‰ÈL‹­ÿÿÿéqfWÀf.CH‹‚IEÇLKøé¯×ÿÿH;„Š]H‰ߺ衛H‰…hÿÿÿH…À…ÿÙÿÿL‰­ ÿÿÿ»„éãZL‰÷1ö1ÒèžüýÿH‰…hÿÿÿH…À…ˆÝÿÿ»ØL‹¥pÿÿÿH‹½(ÿÿÿH…ÿtHÿuH‹GÿP0HDž(ÿÿÿM…ötIÿu
I‹FL‰÷ÿP0H‹}€H…ÿtHÿuH‹GÿP0‰èþÿÿHÇE€H‹½hÿÿÿH…ÿtHÿuH‹GÿP0HDžhÿÿÿL‹5†‰H‹…ÿÿÿH‹XXL9ót4ÇE¬‰H…Û„ÀI‹Fö€«…°fH‰ßL‰öè"…À„œH=¼H
@¦‹µèþÿÿº‰è¼àýÿHu€H•(ÿÿÿHhÿÿÿH‹½ÿÿÿè®Ñÿÿ…ÀxKH‹=ëˆH‹5œ‰1ÒèÿýÿÇE¬‹H…À„vgH‰ÃH‰ÇèJËÿÿHÿDžèþÿÿuH‹CH‰ßÿP0ëÇE¬ŠDžèþÿÿH‹…ÿÿÿH‹€H‹8H‹XL‹pL‰(L‰`H‹MH‰HH…ÿtHÿuH‹GÿP0H…ÛL‹¥ÿÿÿL‹}ˆtHÿu
H‹CH‰ßÿP0M…ötlIÿ‹èþÿÿ„ù1ÀH‰…PÿÿÿL‰½ ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿé§Õÿÿ1ÀH‰…PÿÿÿL‰½ ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿ‹èþÿÿéð%I‹FL‰÷ÿP01ÀH‰…HÿÿÿL‰½ ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…PÿÿÿéøþÿÿH‹ŒvH‹SH‰Þ讘H‹
)vH‹IH‰
¦ŠH‰§ŠH…À„ÆqHÿI‰Åé´èÿÿ輗I‰ÇÇE¬›H…À…ÏèÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»šéH‹
vH‹=¾uH‹GH‹€H‰ÞH…À„KrÿÐI‰ÅH…ÀL‹¥ÿÿÿL‹u…7èÿÿH‹EˆH‰… ÿÿÿH‹|H‹8H5¼1ÀH‰…ÿÿÿH‰Ú1Àèõ•ÇE¬›ë[H‹—uH‹SH‰Þ蹗H‰ÇH‹1uH‹@H‰¾‰H‰=¿‰H…ÿ„ÌqHÿéªH‹EˆH‰… ÿÿÿÇE¬›1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»˜éØ虖H‰E€H…À….èÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»ŸE1íé¢M‰þH‹êtH‹=›tH‹GH‹€H‰ÞH…À„EqÿÐH‰ÇH…ÀL‹¥ÿÿÿM‰÷„7qH‰½hÿÿÿL‹uéŠçÿÿè
–H‰…hÿÿÿH…À…ñçÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»¢E1íéH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»E1íééH‹_H…Û„¥çÿÿH‹GHÿHÿH‹}€H‰E€HÿuH‹GÿP0H‹}€H‹•hÿÿÿH‰ÞèUõýÿI‰ÅHÿu
H‹CH‰ßÿP0L‹¥ÿÿÿL‹uH‹½hÿÿÿHÿ…eçÿÿéYçÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»±E1íéOè
•H‰E€H…À…}çÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»´éI‹_H…Û„jçÿÿL‰øM‹HÿIÿHÿu
H‰ÇH‹@ÿP0H‹U€L‰ÿH‰ÞèˆôýÿH‰…(ÿÿÿHÿu
H‹CH‰ßÿP0L‹¥ÿÿÿH‹ÿÿÿL‹uH‹}€Hÿ…4çÿÿé(çÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»ÄE1íézH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»ÉL‹½ÿÿÿE1íéIH‹EˆH‰… ÿÿÿ»U1ÀH‰…8ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿé÷ÿÿL‰­ ÿÿÿ»‡é%SH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»}M‰õE1ÿé¥1ÀH‰…pÿÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»ˆM‰õ¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…Pÿÿÿ¸H‰…Hÿÿÿ¸H‰…8ÿÿÿ¸éãJH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»E1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰EˆéìL‹¥ÿÿÿL‹­ÿÿÿéÖÿÿL‰­ÿÿÿL‹5ÌpI‹VL‰öèî’H‰ÃH‹fpH‹@H‰ƒ„H‰„„H…Û„`pHÿërèÿ‘H‰…(ÿÿÿÇE¬’H…À…5ÒÿÿL‰­ÿÿÿH‹EˆH‰… ÿÿÿ»ÁéL‰­ÿÿÿL‹5PpH‹=pH‹GH‹€L‰öH…À„pÿÐH‰ÃH…À„
pH‰hÿÿÿL‹¥ÿÿÿL‹­ÿÿÿéŽÑÿÿH‹GH‰…hÿÿÿH…À„UH‹OHÿHÿH‹½(ÿÿÿH‰(ÿÿÿHÿuH‹GÿP0H‹hÿÿÿH‹½(ÿÿÿH…Û„ÖTH‰ÞH‹UˆèñýÿH‰E€Hÿu
H‹CH‰ßÿP0H‹E€L‹¥ÿÿÿHDžhÿÿÿH…À…‹ÑÿÿL‰­ÿÿÿH‹EˆH‰… ÿÿÿ»ÐéÑëÿÿL‰­ÿÿÿH‹EˆH‰… ÿÿÿÇE¬’»¿1ÀH‰E˜1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿéÎóÿÿH;@L‹¥ÿÿÿL‹­ÿÿÿ…åÿÿH‰ÈM‹gH‹5Ž|H‹€L‰ÿH…À„‚9ÿÐH‰E€ÇE¬¡H…À„…9H‹5þwH9ðtDH‹HH;
Ž…BH‹
ÉHƒxu,H‹
»ƒxuH‹
žHÿH‰(ÿÿÿHÿu"ëH‹
†HÿH‰(ÿÿÿHÿu
H‹HH‰ÇÿQ0HÇE€H‹½(ÿÿÿH;=_t/H;=^t&H;=Et舏…ÀˆcE‰ÃH‹½(ÿÿÿHÿuë1ÛH;=-”ÃHÿuH‹GÿP0HDž(ÿÿÿ…Û…Ê8H‹5ô|I‹GH‹€L‰ÿH…À„59ÿÐH‰…(ÿÿÿÇE¬£H…À„89H‰ÇL‰îºè
H‰E€H…À„B9H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿH‹}€H;=†t,H;=…t#H;=lt诎…Àˆ®D‰ÃH‹}€Hÿuë1ÛH;=W”ÃHÿuH‹GÿP0HÇE€…Û…û8L‰çL‰öÿ,f)…ðþÿÿH‹%H‹=nlH;G…u9H‹H…ÀL‹¥ÿÿÿ„é9HÿH‹=û€H‰½(ÿÿÿH…ÿ„@:H‹5yH‹GH‹€H…À„~9ÿÐH‰ÃÇE¬¦H…À„9H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿf(…ðþÿÿèʌH‰…(ÿÿÿH…À„´9H‹KH;
%„7:H‰ßH‰ÆèdìýÿH‰E€H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿHƒ}€„j:Hÿu
H‹CH‰ßÿP0H‹}€H;=t,H;=t#H;=ë
tè.…ÀˆD‰ÃH‹}€Hÿuë1ÛH;=Ö
”ÃHÿuH‹GÿP0HÇE€…Û…^:H‹ÈH‹=kH;G…­:H‹¸H…À„;HÿH‹¥H…Û„
<H‹5exH‹CH‹€H‰ßH…À„¬:ÿÐH‰…(ÿÿÿÇE¬¨H…À„¯:Hÿu
H‹CH‰ßÿP0H‹½(ÿÿÿH‹5yH‹GH‹€H…À„v;ÿÐI‰ÆH…À„y;H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿH‹5ñsL‰ÿ1ÒèŒH‰…(ÿÿÿH…À„Ã;I‹NH;
|…÷/I‹^H…Û„ê/M‹fHÿIÿ$Iÿu
I‹FL‰÷ÿP0H‹•(ÿÿÿL‰çH‰Þè}ëýÿH‰E€Hÿu
H‹CH‰ßÿP0M‰æL‹¥ÿÿÿH‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿHƒ}€„N;Iÿu
I‹FL‰÷ÿP0H‹}€H;=t,H;=t#H;=ûtè>‹…Àˆ?B‰ÃH‹}€Hÿuë1ÛH;=æ”ÃHÿuH‹GÿP0HÇE€…Û…B;f(…ðþÿÿòXo–fT–èô‰H‰E€ÇE¬ªH…À„–;H‰ÇH‹µÿÿÿºèȊH…À„—;H‰ÃH‹}€HÿuH‹GÿP0HÇE€H;O„Ã	H;J„¶	H;-„©	H‰ßèiŠA‰ƅÀˆÈAHÿ„¤	E…ö…®	H‹MˆH;
ÿ
„CH‹ê
H‰ÐH‰•ÿÿÿHÿHÿH‹}H‹=4hH;GI‰Í…€.H‹ø|H…À„é.HÿH‹å|H…Û„Î/H‹5ÍvH‹CH‹€H‰ßH…À„.ÿÐH‰E€ÇE¬²H…À„‚.Hÿu
H‹CH‰ßÿP0¿èç‰H…À„[/H‰ÃIÿEL‰hèˆH‰…(ÿÿÿH…À„¹/H‹g|H‹=€gH;G…Á/H‹W|H…À„s0HÿH‹D|I‰ÅH…À„¿0H‹5tI‹EH‹€L‰ïH…À„½/ÿÐH‰…hÿÿÿH…À„À/IÿMu
I‹EL‰ïÿP0H‹½(ÿÿÿH‹5sH‹•hÿÿÿèv‡…Àˆ~H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿH‹}€H‹•(ÿÿÿH‰ÞèuíýÿH‰…hÿÿÿH…ÀL‹­ÿÿÿ„:H‹}€Hÿ„í	HÇE€Hÿ„ô	H‹½(ÿÿÿHÿ„þ	HDž(ÿÿÿH‹…hÿÿÿH‰… ÿÿÿH‹EˆHÿH‹PÿÿÿuH‹}ˆH‹GÿP0HDžhÿÿÿH‹ÊÇE H;ÄH‰•ÿÿÿuié£H‹·HÿH‹íeHÿH‹»oH‰… ÿÿÿHÿHÿ	ÇE uI‰ÖH‹={H‹GÿP0L‰òH‰]ˆH‹PÿÿÿH;_H‰•ÿÿÿ„?H;S„2H;6„%H‰ßèr‡…Àˆ9…À„!L;=„jH‹54qI‹GH‹€L‰ÿH…À„À9ÿÐH‰…(ÿÿÿÇE¬ºH…À„Ã9H‹HH;
™…Å9H‹XH…Û„ç9H‹@HÿHÿH‹½(ÿÿÿH‰…(ÿÿÿHÿuH‹GÿP0H‹½(ÿÿÿH‰Þè£åýÿH‰…hÿÿÿHÿu
H‹CH‰ßÿP0H‹…hÿÿÿH…À„.GH‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿH‹hÿÿÿHDžhÿÿÿH‰ßHÇÆÿÿÿÿº1É藺ÿÿH‰…hÿÿÿÇE¬»H…À„G9H‰ßH‰ÆèمH‰…(ÿÿÿH…À„9H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿH‹…(ÿÿÿH‰…0ÿÿÿHÿu
H‹CH‰ßÿP0HDž(ÿÿÿH‹5¨gH‹½xÿÿÿH‹GH‹€H…À„€9ÿÐH‰…hÿÿÿÇE¬¼H…À„ƒ9H‹HH;
)… -H‹XH…Û„“-H‹@HÿHÿH‹½hÿÿÿH‰…hÿÿÿHÿuH‹GÿP0H‹½hÿÿÿH‰ÞH‹UˆèåýÿH‰…(ÿÿÿHÿu
H‹CH‰ßÿP0H‹…(ÿÿÿH…À„R-H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿH‹…(ÿÿÿH‰…xÿÿÿHDž(ÿÿÿH‹5srH‹½0ÿÿÿH‹GH‹€H…À„9ÿÐH‰…(ÿÿÿÇE¬½H…À„9¿è…H‰…hÿÿÿH…À„
9H‹xÿÿÿHÿH‹…hÿÿÿH‰HèƒH…À„÷8H‰ÃH‹5rH‹ÑqH‰Çè	ƒ…Àˆ‰H‹½(ÿÿÿH‹µhÿÿÿH‰Úè#éýÿH‰E€H…À„¶=H‹½(ÿÿÿHÿ„§HDž(ÿÿÿH‹½hÿÿÿHÿ„®HDžhÿÿÿHÿ„µH‹E€H‰E˜HÇE€H‹øvH‹=bH;G…e=H‹èvH…À„½=HÿH‹=ÕvH‰}€H…ÿ„>H‹5ÙlH‹GH‹€H…À„`=ÿÐH‰ÃÇE¬ÀH…À„c=H‹}€HÿuH‹GÿP0HÇE€¿讃H‰E€H…À„‘=H‹M˜HÿH‹E€H‰HèсH‰…hÿÿÿH…À„ì=H‹5ælH‹×H‰Ç跁…ÀˆÔ
H‹u€H‹•hÿÿÿH‰ßèÔçýÿH‰…(ÿÿÿH…À„õBHÿ„©H‹}€Hÿ„³HÇE€H‹½hÿÿÿHÿ„ºHDžhÿÿÿH‹½(ÿÿÿH‹5åkH‹GH‹€H…À„°BÿÐH‰…hÿÿÿH…À„³BH‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿ¿观H‰…(ÿÿÿH…À„ŽBH‹
ÀHÿH‰HèȀH‰E€H…À„BH‹5°kH‹™pH‰Ç豀…ÀˆH‹½hÿÿÿH‹µ(ÿÿÿH‹U€èÊæýÿH…À„ñDI‰ÆH‹½hÿÿÿHÿ„‚HDžhÿÿÿH‹½(ÿÿÿHÿ„‰HDž(ÿÿÿH‹}€Hÿ„HÇE€1ÀH‰…@ÿÿÿH‹}˜HÿuH‹GÿP01ÀH‰…@ÿÿÿ1Ò1ÿ1ÀH‰E1ö1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰øé$1ÀH;”À…ßùÿÿH‹½ ÿÿÿL‰îºè9H‰…hÿÿÿÇE¬ÄH…À„ë5H;Í„¹H;È„¬H;«„ŸH‰Çè瀅Àˆæ?‰ÃH‹…hÿÿÿHÿ…˜é‰E1öH;„A”ÆHÿ…\öÿÿH‹CH‰ßÿP0E…ö„RöÿÿH‹=EoH‹56pE1í1Òè\åýÿÇE¬«H…À„VH‰ÃH‰Ç衱ÿÿHÿ„:9H‹EˆH‰… ÿÿÿé?9H‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻ4 E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿL‰½ðþÿÿI‰Ïé7
H‹5JaH‹½xÿÿÿH‹GH‹€H…À„œ:ÿÐI‰ÇH‹{H‰…ðþÿÿÇE¬ÂM…ÿ„ƒ:¿èêH‰E€H…À„:H‹^gHÿH‹M€H‰AIÿEH‹E€L‰h èþ}H‰…(ÿÿÿH…À„_:H‹5mH‰ÇH‹Uˆèç}…ÀˆiH‹u€H‹•(ÿÿÿL‰ÿèäýÿH‰…hÿÿÿH…À„¸?Iÿ„}H‹}€Hÿ„‡HÇE€H‹½(ÿÿÿHÿ„ŽHDž(ÿÿÿL‹µhÿÿÿHDžhÿÿÿH‹Šÿ1Ò1ÉH‰@ÿÿÿ1ÿ1ÉH‰M1ö1ÉH‰Hÿÿÿ1ÉH‰8ÿÿÿ1ÉH‰xÿÿÿ1ÉH‰0ÿÿÿé>!H‹GÿP0HÇE€Hÿ…öÿÿH‹CH‰ßÿP0H‹½(ÿÿÿHÿ…öÿÿH‹GÿP0éöõÿÿ1ÛH;
ÿ”ÃHÿu
H‹HH‰ÇÿQ0HDžhÿÿÿ…Û…
3H‹5ñeH‹½ ÿÿÿ1Òè~H‰…hÿÿÿÇE¬ÇH…À„:3H;­þt2H;¬þt)H;“þt H‰ÇèÓ}…Àˆå<‰ÃH‹…hÿÿÿHÿuë1ÛH;xþ”ÃHÿu
H‹HH‰ÇÿQ0HDžhÿÿÿ…Û…ä2L;=Dþ„H‹—pH‹=[H;G…~8H‹‡pH…ÀL‹uˆL‹­ ÿÿÿ„Ì8HÿH‹=ipH‰½(ÿÿÿH…ÿ„9H‹5òfH‹GH‹€H…À„k8ÿÐH‰E€H…À„n8H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿH‹5ºdL‰ÿºèã|H‰…(ÿÿÿH…À„—8H‹}€H‹OH;
>ý„ü8H‰Æè€ÛýÿH‰…hÿÿÿH‹½(ÿÿÿHÿ„ÎHDž(ÿÿÿHƒ½hÿÿÿ„ÕH‹}€HÿuH‹GÿP0HÇE€H‹½hÿÿÿL‰î1Òè]|H‰E€H…À„ý8H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿH‹}€H;=Ùü„žH;=Ôü„‘H;=·ü„„èö{…Àˆo>‰ÃH‹}€Hÿ…€ét1ÀH‰…@ÿÿÿH‰ٻÉ E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿI‰Ï1ÀH‰E˜éÜH‹5n\H‹½xÿÿÿH‹GH‹€H…À„=ÿÐH‰…hÿÿÿH‹
ûûÇE¬ßH…ÀH‰ðþÿÿ„û<H‹HH;
¡û…!3H‹XH…Û„3H‹@HÿHÿH‹½hÿÿÿH‰…hÿÿÿHÿuH‹GÿP0H‹½hÿÿÿH‰ÞL‰êè˜ÚýÿH‰E€Hÿu
H‹CH‰ßÿP0H‹E€H…À„Ö2H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿL‹}€I‹GL‹`pM…ä„¶2Iƒ|$„ª2L‹5*ûL‰÷H‹µ ÿÿÿL‰òè–zH…À„¤2H‰ÃL‰ÿH‰ÆAÿT$I‰ÇHÿu
H‹CH‰ßÿP0L‰½hÿÿÿM…ÿ„:=H‹}€HÿL‹¥ÿÿÿuH‹GÿP0HÇE€H‹½hÿÿÿHDžhÿÿÿH‹5wgH‹GH‹€˜H…ÀH‰}˜„L=H‹UˆÿÐH‹
‚ú1ÒH‰•@ÿÿÿ…Àˆª1Ò1ÿ1ÀH‰E1ö1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‹u˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿH‰Èé'1ÛH;=4ú”ÃHÿuH‹GÿP0HÇE€…Û…"6H‹aHÿH‹5übI‹GH‹€L‰ÿH…À„¨6ÿÐH‰…hÿÿÿH…À„«6HDž(ÿÿÿH‹HH;
…ù…rH‹HH‰(ÿÿÿH…É„Ç0H‹@HÿHÿH‹½hÿÿÿH‰…hÿÿÿHÿuH‹GÿP0H‹µ(ÿÿÿH‹…hÿÿÿH…ö„H‰Çèx×ýÿH‰E€H‹½(ÿÿÿH…ÿ…é*H‹GÿP0HDž(ÿÿÿH‹½hÿÿÿHÿ…RôÿÿH‹GÿP0HDžhÿÿÿHÿ…KôÿÿH‹CH‰ßÿP0é<ôÿÿ1ÀH‰…@ÿÿÿH‰ٻå E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿI‰ÏéE1ÀH‰…@ÿÿÿ»!éÕH‹GÿP0HDž(ÿÿÿHƒ½hÿÿÿ…+ûÿÿÇE¬Ë1ÀH‰…@ÿÿÿ»›!é!:H‹HH;
î÷„ïH;
Q÷…O/H‹HöA„A/H‰Ç1öè[ÛýÿH‰E€H‹½(ÿÿÿH…ÿ…ÒéÝH‹CH‰ßÿP0H‹}€Hÿ…MôÿÿH‹GÿP0HÇE€H‹½hÿÿÿHÿ…FôÿÿH‹GÿP0é:ôÿÿ1ÀH‰…@ÿÿÿ»õ E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿéI‹GL‰ÿÿP0H‹}€Hÿ…y÷ÿÿH‹GÿP0HÇE€H‹½(ÿÿÿHÿ…r÷ÿÿH‹GÿP0éf÷ÿÿH‹GÿP0HDžhÿÿÿH‹½(ÿÿÿHÿ…wôÿÿH‹GÿP0HDž(ÿÿÿH‹}€Hÿ…pôÿÿH‹GÿP0édôÿÿÇE¬à»‚#A¿A½¸H‰…pÿÿÿ¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…Pÿÿÿ¸H‰…Hÿÿÿ¸H‰…8ÿÿÿH‰ðþÿÿéæH‰Ç1ö1ÒèµÖýÿH‰E€H‹½(ÿÿÿH…ÿtHÿuH‹GÿP0H‹E€HDž(ÿÿÿH…À„ù2H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿH‹E€H‰…ðþÿÿIÿu
I‹GL‰ÿÿP0HÇE€H‹2hH‹=SH;G…¹2H‹"hH…À„3HÿH‹=hH‰}€H…ÿ„k3H‹5kcH‹GH‹€H…À„·2ÿÐH‰…hÿÿÿH…À„º2H‹}€HÿuH‹GÿP0HÇE€¿èËtH‰E€H…À„÷2IÿH‹E€L‰pèòrH‰…(ÿÿÿH…À„3H‹5w^H‹ÀôH‰ÇèØr…Àˆ,H‹½hÿÿÿH‹u€H‹•(ÿÿÿèñØýÿH‰ÁH‰…8ÿÿÿH…À„Ù4H‹½hÿÿÿHÿ„âHDžhÿÿÿH‹}€Hÿ„éHÇE€H‹½(ÿÿÿHÿ„ðHDž(ÿÿÿH‹5Ü`H‹½8ÿÿÿH‹GH‹€H…À„„4ÿÐH‰…(ÿÿÿH…À„‡4HÇE€H‹HH;
üó…¨H‹HH‰M€H…É„.2H‹@HÿHÿH‹½(ÿÿÿH‰…(ÿÿÿHÿuH‹GÿP0H‹u€H‹…(ÿÿÿH…ö„[H‰ÇèõÑýÿH‰…HÿÿÿH‹}€H…ÿ…Ÿé¦ÇE¬ÏH‰@ÿÿÿ»ò!E1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿH‹½(ÿÿÿH…ÿtHÿuH‹GÿP0H‹½pÿÿÿH…ÿtHÿuH‹GÿP0H‹}€H…ÿtHÿuH‹GÿP0H‹½hÿÿÿH…ÿtHÿuH‹GÿP0M…ítIÿMu
I‹EL‰ïÿP0M…ÿtIÿu
I‹GL‰ÿÿP0H=EÜH
É}‰ދU¬èK¸ýÿE1ÿL‹­ÿÿÿM…ítIÿMu
I‹EL‰ïÿP0H‹½ÿÿÿH…ÿtHÿuH‹GÿP0H‹½ÿÿÿH…ÿH‹]ˆL‹µ ÿÿÿL‹­@ÿÿÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0H‹½0ÿÿÿH…ÿtHÿuH‹GÿP0H‹½xÿÿÿH…ÿH‹`ÿÿÿtHÿuH‹GÿP0H‹}˜H…ÿtHÿuH‹GÿP0M…ítIÿMu
I‹EL‰ïÿP0H‹½8ÿÿÿH…ÿtHÿuH‹GÿP0H‹½HÿÿÿH…ÿtHÿuH‹GÿP0H‹½PÿÿÿH…ÿtHÿuH‹GÿP0H‹}H…ÿtHÿuH‹GÿP0H‹½XÿÿÿH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0H‹} H…ÿtHÿuH‹GÿP0M…ätIÿ$uI‹D$L‰çÿP0M…ötIÿu
I‹FL‰÷ÿP0H‹½ðþÿÿH…ÿtHÿuH‹GÿP0H‹ñH‹H;EÐ…?<L‰øHÄø[A\A]A^A_]ÃH‹GÿP0HDžhÿÿÿH‹}€Hÿ…üÿÿH‹GÿP0HÇE€H‹½(ÿÿÿHÿ…üÿÿH‹GÿP0éüÿÿH‹HH;
/ðt7H;
–.H‹HöA„s.H‰Ç1öè ÓýÿH‰…HÿÿÿH‹}€H…ÿuë(H‰Ç1ö1Òè²ÐýÿH‰…HÿÿÿH‹}€H…ÿtHÿuH‹GÿP0HÇE€Hƒ½Hÿÿÿ„]0H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿH‰ßL‰î1Òè+oH…À„€0I‰Å1ÀH‰…pÿÿÿ¸H‰…0ÿÿÿE1äE1ÿ1ÿ1ÉH‰ØH‰@ÿÿÿëMf.„@HÇE€H‰ßL‰î1ÒèÑnI‰ÅH‰ØH‰@ÿÿÿL‹¥PÿÿÿH‹…èþÿÿH‰ÇL‰ñM…í„ÚH‰]˜H‰`ÿÿÿL;-GïH‰½Xÿÿÿt:L;-?ït1L;-&ït(L‰ïèfnH‹½Xÿÿÿ‰ÅÀˆŸ IÿMt…Ûu0éÀ1ÛL;-ï”ÃIÿMuåI‹EL‰ïÿP0H‹½Xÿÿÿ…Û„•H‹5bOH‹½xÿÿÿH‹GH‹€H…À„|ÿÐL‹­ ÿÿÿH‹]˜H‰…(ÿÿÿH…À„ŠL‰ïH‰Þè‰mH‰E€H…À„€HDžhÿÿÿH‹½(ÿÿÿH‹
1îH9OuhH‹OH‰hÿÿÿH…ÉtXH‹GHÿHÿH‹½(ÿÿÿH‰…(ÿÿÿHÿuH‹GÿP0H‹µhÿÿÿH‹½(ÿÿÿH‹E€H…ötH‰ÂèÍýÿH‰…PÿÿÿH‹½hÿÿÿH…ÿuë$H‰ÆèÌýÿH‰…PÿÿÿH‹½hÿÿÿH…ÿt	Hÿ„W
HDžhÿÿÿH‹}€HÿuH‹GÿP0HÇE€Hƒ½Pÿÿÿ„²H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿM…ätIÿ$uI‹D$L‰çÿP0H‹5ƒTH‰ߺè¬lH…À„‰H‰ÃH;KíL‹¥ÿÿÿt4H;Cít+H;*ít"H‰ßèjlA‰ƅÀˆÔHÿtE…öu+ééE1öH;íA”ÆHÿuãH‹CH‰ßÿP0E…ö„ÃH‹…HÿÿÿH‹@L‹ppM…ö„=Iƒ~„21ÿè^kH…À„¼H‰ÃH‰ÇH‹u˜H‹¤ìèlI‰ÄHÿu
H‹CH‰ßÿP0M…ä„1H‹½HÿÿÿL‰æAÿVI‰ÆIÿ$uI‹D$L‰çÿP0M…ö„H‹jSH‹½ðþÿÿL‰öè£k…ÀL‹¥ÿÿÿˆ\Iÿu
I‹FL‰÷ÿP0H‹ž^H‹=wIH;G…ÜH‹Ž^H…À„ 	HÿH‹={^H‰½(ÿÿÿH…ÿ„yH‹5UH‹GH‹€H…À„ÔÿÐH‰E€H…À„-H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿH‹}€H‹XëH9G„èH‹µðþÿÿè’ÉýÿI‰ÆH‹½(ÿÿÿH…ÿtHÿuH‹GÿP0HDž(ÿÿÿM…ö„ÐH‹}€HÿuH‹GÿP0HÇE€H‹½0ÿÿÿH…ÿtHÿuH‹GÿP0L‰÷HÇÆÿÿÿÿº1Éè}žÿÿH…À„£H‰ÃL‰÷H‰ÆèÊiH‰E€H…À„¦Hÿ„‡H‹}€Iÿ„‘HÇE€H‹5|WH‹GH‹€H…ÀH‰½0ÿÿÿ„mÿÐH‰E€H…À„‘¿èjH…À„H‰ÃH‹…PÿÿÿHÿH‰Cè=hH‰…(ÿÿÿH…À„zH‹52WH‹ëVH‰Çè#h…ÀˆžH‹}€H‹•(ÿÿÿH‰Þè@ÎýÿH‰…hÿÿÿH…À„MH‹}€Hÿ„æHÇE€Hÿ„íH‹½(ÿÿÿHÿ„÷HDž(ÿÿÿH‹…hÿÿÿH‰EM…ÿtIÿu
I‹GL‰ÿÿP0HDžhÿÿÿH‹>\H‹=GH;G…€H‹.\H…À„ÇHÿH‹=\H‰½hÿÿÿH…ÿ„ØH‹5$WH‹GH‹€H…À„xÿÐH‰…(ÿÿÿH…À„H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿ¿è®hH‰…hÿÿÿH…À„eH‹MHÿH‹…hÿÿÿH‰HèËfH…À„aI‰ÇH‹5lUH‰ÇH‹âèèµf…ÀˆQH‹½(ÿÿÿH‹µhÿÿÿL‰úèÏÌýÿH‰E€H…À„dH‹½(ÿÿÿHÿ„³HDž(ÿÿÿH‹½hÿÿÿHÿ„ºHDžhÿÿÿIÿ„ÁH‹}€H‹GH;4è…ÇéÏH‹CH‰ßÿP0H‹}€Iÿ…oýÿÿI‹FH‰ûL‰÷ÿP0H‰ßéZýÿÿH‹GÿP0HÇE€Hÿ…þÿÿH‹CH‰ßÿP0H‹½(ÿÿÿHÿ…	þÿÿH‹GÿP0éýýÿÿH‹GÿP0HDž(ÿÿÿH‹½hÿÿÿHÿ…FÿÿÿH‹GÿP0HDžhÿÿÿIÿ…?ÿÿÿI‹GL‰ÿÿP0H‹}€H‹GH;içt
H;@ç…±H‹WHƒúH‹`ÿÿÿ…¦HƒÇH;:ç…ïH‰øHƒÀH‹H‹H‰…hÿÿÿH‰èþÿÿHÿH‹…hÿÿÿHÿH‹}€HÿuH‹GÿP0HÇE€H‹½XÿÿÿH…ÿtHÿuH‹GÿP0L‹µhÿÿÿH…ÛtHÿu
H‹CH‰ßÿP0HDžhÿÿÿH‹5×SI‹FH‹€L‰÷H…À„9ÿÐH‰…hÿÿÿH…À„cH‹HH;
kæ…<H‹XH…Û„^H‹@HÿHÿH‹½hÿÿÿH‰…hÿÿÿHÿuH‹GÿP0H‹½hÿÿÿH‰ÞèuÄýÿH‰E€Hÿu
H‹CH‰ßÿP0H‹E€H…À„xH‹½hÿÿÿHÿ„‚HDžhÿÿÿH‹}€Hÿ„‰HÇE€H‹5vSH‹}H‹GH‹€H…À„ÒÿÐH‰…hÿÿÿH…À„«H‹
åH9H…oH‹XH…Û„bH‹@HÿHÿH‹½hÿÿÿH‰…hÿÿÿHÿuH‹GÿP0H‹½hÿÿÿH‰ÞL‰òèÄýÿH‰E€Hÿu
H‹CH‰ßÿP0H‹E€H…ÀH‹]˜„ÐH‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿL‹}€H‹}HÿuH‹GÿP0HÇE€H‹5RI‹GH‹€L‰ÿH…À„
ÿÐH‰E€H…À„›H‰ßH‰ÆèÂcH‰…hÿÿÿH…À„çH‹}€HÿuH‹GÿP0HÇE€H‹…HÿÿÿH‹@L‹`pM…ä„–Iƒ|$„ŠH‹µhÿÿÿH‰ßH‹•äèdH…À„H‰ÃH‹½HÿÿÿH‰ÆL‰úAÿT$A‰ÄHÿu
H‹CH‰ßÿP0E…äˆäH‹½hÿÿÿHÿL‹¥ÿÿÿuH‹GÿP0HDžhÿÿÿH‹5#QI‹GH‹€H…ÀH‹]˜L‰ÿ„%ÿÐH‰…hÿÿÿH…À„BH‰ßH‰ÆèÉbH‰E€H…À„8H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿH‹]€H‹}˜Hÿ…ôÿÿH‹GÿP0éôÿÿH‹GÿP0HDžhÿÿÿH‹}€Hÿ…wýÿÿH‹GÿP0ékýÿÿH‹GÿP0HDžhÿÿÿH‹}€Hÿ…¥õÿÿé™õÿÿH‰ÇL‰öèiÁýÿH‰E€H…ÀH‹]˜…Üýÿÿé§èTbé|ôÿÿH‹Ú@H‹SH‰ÞèübH‰ÇH‹t@H‹@H‰‰UH‰=ŠUH…ÿ„#HÿëJè
bH‰E€H…À…)÷ÿÿéQ
H‹†@H‹=7@H‹GH‹€H‰ÞH…À„/ÿÐH‰ÇH…À„f4H‰½(ÿÿÿé»öÿÿH‹GH‰…(ÿÿÿH…À„÷ÿÿH‹OHÿHÿH‹}€H‰M€HÿuH‹GÿP0H‹µ(ÿÿÿH‹}€H…ö„ÒöÿÿH‹•ðþÿÿèTÁýÿI‰ÆH‹½(ÿÿÿH…ÿ…ÎöÿÿéÕöÿÿèMaH‰E€H…À…÷ÿÿé
H‹Æ?H‹SH‰ÞèèaH‰ÇH‹`?H‹@H‰…TH‰=†TH…ÿ„rHÿëMèù`H‰…(ÿÿÿH…À……øÿÿé
H‹o?H‹= ?H‹GH‹€H‰ÞH…À„{ÿÐH‰ÇH…À„˜3H‰½hÿÿÿéøÿÿè `H‰…hÿÿÿH…À…Äúÿÿé"H‹?HGéúÿÿH;
á„`H;
màuH‹HöAtH‰Ç1öèÄýÿéJH‹5s>H‰Ç1Òè9Åýÿé4è5`H‰…hÿÿÿH…À…+ûÿÿéÑè`H‰E€H…À…óûÿÿé‰
è`H‰…hÿÿÿH…À…ØüÿÿéÇE¬Øèõ_H‰…(ÿÿÿH…À„Ô8H‹}€HÿuH‹GÿP0HÇE€H‹½(ÿÿÿH‹GH‹˜àÿÓH‰…èþÿÿH…À„¶8H‹½(ÿÿÿÿÓH‰…hÿÿÿH…À„•8H‹½(ÿÿÿÿÓH…À…9è9`L‹`XM…ä…,H‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿL‹¥ÿÿÿL‹­ ÿÿÿH‹`ÿÿÿH‹½XÿÿÿH…ÿ…éøÿÿéðøÿÿH‰Ç1ö1Òè`ÀýÿH‰E€H…À…žùÿÿéèá]H…À…Ÿ1H‹=)=H‹GH‹€H‰ÞH…À„#ÿÐH‰ÇH…ÀL‹¥ÿÿÿL‹­ ÿÿÿ…äüÿÿéE1è¢^H‰ÇH…À…Îüÿÿé/1è~]H…À……1H‹=Æ<H‹GH‹€H‰ÞH…À„ÊÿÐH‰ÇH…ÀL‹¥ÿÿÿL‹­ ÿÿÿ…˜ýÿÿé+1è?^H‰ÇH…À…‚ýÿÿé1H‰ÃH‹†ÞH‹0L‰çèÓD…À„Ú?H‰ØHƒÀXL‹{`L‹shHÇ@HÇ@HÇIÿ$uI‹D$L‰çÿP0M…ÿtIÿu
I‹GL‰ÿÿP0M…ö„cþÿÿIÿ…ZþÿÿI‹FL‰÷ÿP0éKþÿÿè ]éÕþÿÿè–]é.ÿÿÿÇE¬Û»5#E1í1ÀH‰E L‰µ`ÿÿÿH‹…èþÿÿH‰…XÿÿÿéL‹µ8ÿÿÿIÿL‰}L‰æ1ÀH‰…xÿÿÿL‹¥ÿÿÿL‹­ÿÿÿH‹…ðþÿÿH‹•`ÿÿÿH‰½XÿÿÿH‰µPÿÿÿH‰•`ÿÿÿH‰…ðþÿÿƒ} tGI‹FH‹
©OH9È„÷ H‹XH…Ò„nH‹rH…ö~1ÿDH9Lú„Ì HÿÇH9þuíL‰ñé !ÇE¬×H‰ػŸ"E1í1ÉH‰M L‰}I‰ÇëÇE¬Ø»»"E1í1ÀH‰E 1ÀH‰E˜1ÀH‰…xÿÿÿéêÿÿÇE¬Ô»T"E1í1ÀH‰E L‰}E1ÿ1ÀH‰E˜1ÀH‰…xÿÿÿL‹¥ÿÿÿéËéÿÿÇE¬ÛH‹
žÜH‹9H‹PH5,ÇH
RÇ1ÀH‰E˜1ÀèêZ»5#E1í1ÀH‰…pÿÿÿ1ÀH‰E L‰µ`ÿÿÿH‹…èþÿÿH‰…XÿÿÿL‰}E1ÿë†L‰÷H‰ÆèĺýÿH‰E€H‹½(ÿÿÿHÿ…SÐÿÿéGÐÿÿH‹
ÜH‹9H‹PH5àÅ1ÀH‰E˜1ÀèoZÇE¬Ô»T"E1í1ÀH‰…pÿÿÿ1ÀH‰E L‰}E1ÿéæþÿÿL‹5ð9I‹VL‰öè\H‰ÃH‹Š9H‹@H‰ONH‰PNH…Û„Ì+HÿécÑÿÿè [H‰E€ÇE¬²H…À…~ÑÿÿL‰èL‰­ ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻ% éÚÚÿÿL‹5w9H‹=(9H‹GH‹€L‰öH…À„Q,ÿÐH‰ÃH…À…÷ÐÿÿL‰ëH‹ùÚH‹8H59ØL‰ò1Àè{YÇE¬²L‰­ ÿÿÿ¸H‰…@ÿÿÿ»# A½¸H‰…pÿÿÿ¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…PÿÿÿL‰½ðþÿÿA¿¸H‰…Hÿÿÿ¸éƒçÿÿL‰èL‰­ ÿÿÿ1ÀH‰…@ÿÿÿ»( éL‰èÇE¬²L‰­ ÿÿÿ1ÀH‰…@ÿÿÿ»# E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…PÿÿÿL‰½ðþÿÿE1ÿéúæÿÿL‰èL‰­ ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻ- éaÙÿÿL‹5þ7I‹VL‰öè ZH‹
›7H‹IH‰
pLH‰qLH…À„Þ*HÿI‰Åé%Ðÿÿè.YH‰…hÿÿÿH…À…@ÐÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻ1 1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿI‰Ïé*æÿÿL‹5<7H‹=í6H‹GH‹€L‰öH…À„+ÿÐI‰ÅH…À…pÏÿÿL‹eˆH‹½ØH‹8H5ýÕL‰ò1Àè?WL‰¥ ÿÿÿL‹¥ÿÿÿëH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻ/ éØÿÿÇE¬Ò»*"ëÇE¬Ò»,"ëÇE¬Ò»;"E1í1ÀH‰E L‰}E1ÿL‰¥Pÿÿÿé•ûÿÿÇE¬Ó»H"étûÿÿH‰ÇH‹uˆèǶýÿH‰…(ÿÿÿH…À…®Òÿÿ1ÀH‰…@ÿÿÿ»³ é±ÇE¬Õ»k"éŽ	ÇE¬Õ»z"é}	ÇE¬Õ»i"él	ÇE¬Ö»‡"E1í1ÀH‰E L‰}E1ÿëÇE¬ÖH‰ػ‰"E1í1ÉH‰M L‰}I‰Ç1ÀH‰E˜1ÀH‰…xÿÿÿL‰µ0ÿÿÿé°äÿÿÇE¬×»–"é	ÇE¬×»˜"éòÇE¬×H‰ػ"é=úÿÿÇE¬×H‰ػ "é)úÿÿÇE¬Ø»±"ë(ÇE¬Ø»´"ëÇE¬Ø»¯"ëÇE¬Ø»¹"E1ÿé	úÿÿè’VH‰E€ÇE¬¡H…À…{ÆÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»
é¤H‹="EH‹5óE1Òè<»ýÿH‰…(ÿÿÿH…À„e)ÇE¬¢H‰Çè}‡ÿÿH‹½(ÿÿÿHÿL‹¥ÿÿÿH‹]ˆuH‹GÿP0HDž(ÿÿÿ1ÀH‰E H‰ ÿÿÿ»!1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿé&
èÉUH‰…(ÿÿÿÇE¬£H…À…ÈÆÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»3éØH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»5é±ÇE¬Ø»¼"éÅøÿÿH‹=DH‹5÷D1Òè8ºýÿH‰E€H…À„†(ÇE¬¤H‰Çè|†ÿÿH‹}€HÿL‹¥ÿÿÿH‹]ˆuH‹GÿP0HÇE€1ÀH‰…`ÿÿÿH‰ ÿÿÿ»Fé¯ÇE¬ØHƒúŒšH‹GÕH‹8H5¿º1Àè—S»Ç"é«H‹83H‹SH‰ÞèZUH‰ÇH‹Ò2H‹@H‰wGH‰=xGH…ÿL‹¥ÿÿÿ„|(HÿëzÇE¬Ù»û"é²èSTH‰ÃÇE¬¦H…À…ÆÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»céhH‹­2H‹=^2H‹GH‹€H‰ÞH…À„×(ÿÐH‰ÇH…À„A(H‰½(ÿÿÿéòÅÿÿÇE¬Ù»	#é,H‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻfé[H‹EˆÇE¬¦1ÉH‰ÿÿÿH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»aE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰EL‰½ðþÿÿE1ÿé¶ÀÿÿÇE¬Ú»#é˜L‹sM…ö„¼ÅÿÿL‹cIÿIÿ$Hÿu
H‹CH‰ßÿP0H‹•(ÿÿÿL‰çL‰öèï²ýÿH‰E€Iÿu
I‹FL‰÷ÿP0L‰ãL‹¥ÿÿÿH‹½(ÿÿÿHÿ……ÅÿÿéyÅÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻué\
ÇE¬Ú»##E1ÿE1í1ÀH‰E L‰µ`ÿÿÿH‹…èþÿÿH‰…XÿÿÿéûõÿÿÇE¬Û»0#é¯H‹=:AH‹5BE1í1ÒèQ·ýÿH‰E€ÇE¬§H…À„3'H‰Ç蕃ÿÿH‹}€HÿuH‹GÿP0HÇE€»‡éÏÇE¬Û»2#éHL‹5“0I‹VL‰öèµRH‰ÃH‹-0H‹@H‰âDH‰ãDH…Û„Þ&Hÿé6ÅÿÿèÃQH‰…(ÿÿÿÇE¬¨H…À…QÅÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻ›é5	L‹50H‹=Ç/H‹GH‹€L‰öH…À„r'ÿÐH‰ÃH…À…ÆÄÿÿH‹]ˆH‹—ÑH‹8H5×ÎL‰ò1ÀèPÇE¬¨H‰ ÿÿÿ¸H‰…@ÿÿÿ»™A½¸H‰…pÿÿÿ¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…PÿÿÿL‰½ðþÿÿA¿¸H‰…Hÿÿÿé2¦ÿÿè¯PI‰ÆH…À…‡ÄÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»žéËH‹EˆÇE¬¨H‰… ÿÿÿ1ÀH‰…@ÿÿÿ»™E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…PÿÿÿL‰½ðþÿÿE1ÿ1ÀH‰…Hÿÿÿé
H‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»¡ëH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»¯E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿL‰½ðþÿÿM‰÷é‹H‹=f>H‹5O?E1í1Òè}´ýÿH‰E€ÇE¬©H…À„‘%H‰Çè@ÿÿH‹}€HÿuH‹GÿP0HÇE€»Á1ÀH‰…`ÿÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E éwH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»Óé>H‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»Õé ÇE¬Ü»?#ëÇE¬Ü»A#E1í1ÀH‰E L‰µ`ÿÿÿH‹…èþÿÿH‰…Xÿÿÿé›ÇE¬ÑE1íH‰Á1ÀH‰E L‰µ`ÿÿÿH‰ÈH‰XÿÿÿL‰}E1ÿ1ÀH‰E˜1ÀH‰…xÿÿÿL‹¥ÿÿÿ»"éãÛÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻ6 éÎÿÿÇE¬¸1ÀH‰…@ÿÿÿ»f é:
ÇE¬Ô»T"E1í1ÀH‰E L‰}E1ÿéqñÿÿÇE¬Ô»V"E1í1ÀH‰E L‰}M‰÷éPñÿÿH;
P΄±
H‰ǺèëMH‰…(ÿÿÿH…À„z)H‹E€L‹­ÿÿÿHÿ…¾ÿÿéõ½ÿÿ»"ÇE¬ÑL‰èE1í1ÉH‰M L‰}I‰ÇL‰¥PÿÿÿéñÿÿÇE¬ÓH‰ػI"é§ðÿÿèNMH‰…(ÿÿÿÇE¬ºH…À…=Æÿÿ1ÀH‰…@ÿÿÿ»{ éÞH;
¯Í„¦
H;
ÍuH‹HöAtH‰Ç1öè$±ýÿé
H‹5+H‰Ç1Òèޱýÿéz
1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿH‰0ÿÿÿ»– ëQ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿH‰0ÿÿÿ»˜ L‰½ðþÿÿE1ÿ1ÀH‰…8ÿÿÿéžïÿÿèLH‰…hÿÿÿÇE¬¼H…À…}Æÿÿ1ÀH‰…@ÿÿÿ»¥ E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿé ïÿÿè KH‰…(ÿÿÿÇE¬½H…À…ìÆÿÿ1ÀH‰…@ÿÿÿ»À ë1ÀH‰…@ÿÿÿ»Â ë1ÀH‰…@ÿÿÿ»Ç E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿé±Ïÿÿ1ÀH‰…@ÿÿÿ»9!é®
H‹=¿9H‹5¸:E1í1Òè֯ýÿH‰…hÿÿÿÇE¬ÅH…À„ #H‰Çè|ÿÿH‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿ»I!ëm1ÀH‰…@ÿÿÿ»[!é?
H‹=P9H‹5Q:E1í1Òèg¯ýÿH‰…hÿÿÿÇE¬ÈH…À„D#H‰Çè¨{ÿÿH‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿ»k!1ÀH‰…`ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…XÿÿÿénH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»ë"H‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»7E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…PÿÿÿL‰½ðþÿÿE1ÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰EˆL‹¥ÿÿÿéËÖÿÿ»Ç"H…Òx.H‹£ÉH‹8HƒúHåTH
"°HDÈH5ð³1ÀèâGE1ÿE1í1ÀH‰…pÿÿÿécìÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»xëH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»²E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿL‰½ðþÿÿE1ÿëbH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿH‰ٻ×E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿL‰½ðþÿÿI‰Ï1ÀH‰…8ÿÿÿ1ÀH‰E˜1À钝ÿÿH‹5&H‰Ç1Òèã¬ýÿH‰E€H‹½(ÿÿÿH…ÿ…ŠÒÿÿé•ÒÿÿH‰ÇL‰î迦ýÿH‰E€H…À…*Íÿÿ1ÀH‰…@ÿÿÿ»r#éÖÔÿÿH‹
ÈH‹9H‹PH5Ա1ÀèiFHDžhÿÿÿ»u#1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿL‹¥ÿÿÿé•ÔÿÿL‹uˆH‹CH‰ßÿP0L‰µ ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ»æé÷Óÿÿ1ÀH‰…@ÿÿÿH‰ٻÊ é«ÊÿÿH‹Û$H‹SH‰ÞèýFH‰ÇH‹u$H‹@H‰Z9H‰=[9H…ÿ„"Hÿë^èFH‰ÃÇE¬ÀH…À…Âÿÿ1ÀH‰…@ÿÿÿ»Û é ÏÿÿH‹s$H‹=$$H‹GH‹€H‰ÞH…À„É!ÿÐH‰ÇH…À„Ì!H‰}€L‹¥ÿÿÿL‹­ÿÿÿéÂÿÿ1ÀH‰…@ÿÿÿH‰ٻÞ é€ÍÿÿÇE¬À1ÀH‰…@ÿÿÿ»Ù E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿL‰½ðþÿÿE1ÿ1ÀH‰…8ÿÿÿé°Òÿÿ1ÀH‰…@ÿÿÿH‰ٻã éÍÿÿèEé\Åÿÿ1ÀH‰…@ÿÿÿ»!éÒÿÿ1ÀH‰…@ÿÿÿ»!é
Òÿÿ1ÀH‰…@ÿÿÿ»!éúÑÿÿH‹Q#H‹SH‰ÞèsEH‰ÇH‹ë"H‹@H‰à7H‰=á7H…ÿ„8!Hÿë_è„DH‰E€H…À…’ÇÿÿÇE¬Ë1ÀH‰…@ÿÿÿ»Š!éH‹è"H‹=™"H‹GH‹€H‰ÞH…À„ò ÿÐH‰ÇH…À„õ H‰½(ÿÿÿL‹¥ÿÿÿL‹uˆL‹­ ÿÿÿéýÆÿÿÇE¬Ë1ÀH‰…@ÿÿÿ»!é¬ÇE¬Ë1ÀH‰…@ÿÿÿ»ˆ!E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿL‰½ðþÿÿE1ÿéÑÿÿH‹_H…Û„÷ÆÿÿH‹GHÿHÿH‹}€H‰E€HÿuH‹GÿP0H‹}€H‹•(ÿÿÿH‰Þè>£ýÿH‰…hÿÿÿHÿL‹¥ÿÿÿL‹uˆL‹­ ÿÿÿ…³ÆÿÿH‹CH‰ßÿP0餯ÿÿÇE¬Ë1ÀH‰…@ÿÿÿ»ž!éÃH‹=Ô1H‹5Ý2E1í1Òèë§ýÿH‰E€ÇE¬ÌH…À„. H‰Çè/tÿÿH‹}€HÿuH‹GÿP0HÇE€»¯!1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿé3ûÿÿèVBH‰…hÿÿÿH…À…UÉÿÿÇE¬ÎH‰@ÿÿÿ»Ë!éèÇE¬ÎH‰@ÿÿÿ»Ù!éÐI‰ßH‹ž H‹SH‰ÞèÀBH‰ÇH‹8 H‹@H‰=5H‰=>5H…ÿ„¬HÿëcèÑAH‰…hÿÿÿH…À…FÍÿÿÇE¬ÏH‰@ÿÿÿ»è!éÚÎÿÿI‰ßH‹1 H‹=âH‹GH‹€H‰ÞH…À„bÿÐH‰ÇH…À„eH‰}€L‹¥ÿÿÿL‹uˆL‹­ ÿÿÿL‰ûé­ÌÿÿÇE¬ÏH‰@ÿÿÿ»ë!énÎÿÿÇE¬ÏH‰@ÿÿÿ»æ!éVÎÿÿÇE¬ÏH‰@ÿÿÿ»ð!é>ÎÿÿH‹50H‰Ç1Òèö¥ýÿH‰…HÿÿÿL‹¥ÿÿÿL‹­ ÿÿÿH‹}€H…ÿ…’Ñÿÿé™Ñÿÿ1ÀH‰…@ÿÿÿ»:!é|1ÀH‰…@ÿÿÿ»\!éiH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»ÊL‹½ÿÿÿémÿÿL‰­ ÿÿÿHÇE€»«1ÀH‰…8ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿéÃ|ÿÿò@f.”KH‹íÀH‹
ÖÀHEÊHJÊL‹­ÿÿÿHÿH‰(ÿÿÿHÿ…G°ÿÿé8°ÿÿ1ÀH‰…@ÿÿÿH‰ٻæ é·Çÿÿèº?H‰…hÿÿÿH…À…M½ÿÿ1ÀH‰…@ÿÿÿ»ë éÏÈÿÿ1ÀH‰…@ÿÿÿ»î é¼Èÿÿ1ÀH‰…@ÿÿÿ»ó é©ÈÿÿH‰Ç1ö1Ò迠ýÿH‰…hÿÿÿH…À…Ҹÿÿ1ÀH‰…@ÿÿÿ»‰ éü1ÀH‰…@ÿÿÿ»!écÌÿÿfWÀf.CH‹
	ÀH‹ò¿HEÁHJÁéô…ÿÿÇE¬ÏH‰@ÿÿÿ»ó!é$Ìÿÿèî>H‰…(ÿÿÿH…À…yËÿÿÇE¬ÐH‰@ÿÿÿ»"ëÇE¬ÐH‰@ÿÿÿ»"E1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿéëËÿÿH‰@ÿÿÿÇE¬ÑE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿé®ïÿÿè>éàÂÿÿ1ÀH‰…@ÿÿÿ»d#é%ËÿÿòCf.qIH‹
ʾH‹³¾HEÁHJÁé`|ÿÿL‰­ÿÿÿH;@¾„äH‰ߺèÛ=H‰…(ÿÿÿH…ÀL‹¥ÿÿÿL‹­ÿÿÿ…´…ÿÿH‹EˆH‰… ÿÿÿ»Óéz˜ÿÿH‰ÂH…Ò„`H‹’H9Êuëé\ÇE¬Ë1ÀH‰…@ÿÿÿ» !E1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿékÊÿÿL‰­ÿÿÿH‹EˆH‰… ÿÿÿ»Öéؗÿÿ1ÀH‰…@ÿÿÿ»ö éûÅÿÿ1ÀH‰…@ÿÿÿ»u#E1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰µðþÿÿé9õÿÿH‹UˆèŽ<é¬ÂÿÿL‹¥ÿÿÿéÆ|ÿÿ1ÉÿÐH‰…(ÿÿÿH…À…(ŒÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»v霨ÿÿH;
÷»…<ßÿÿH‹5:'H‹€L‰÷H…À„ÿÐH‰E€ÇE¬äH…À„‚H‹HH;
n¼…ÞH‹XH…Û„ÑH‹@HÿHÿH‹}€H‰E€HÿuH‹GÿP0H‹}€H‹‚#H‰Þèj›ýÿH‰…hÿÿÿHÿu
H‹CH‰ßÿP0H‹…hÿÿÿH…À„™H‹}€HÿuH‹GÿP0HÇE€H‹hÿÿÿIÿuI‹FH‰ËL‰÷ÿP0H‰ÙHDžhÿÿÿH‰M˜H‹5r'I‹D$H‹€L‰çH…À„òÿÐH‰…hÿÿÿÇE¬çH…À„õH‹5Ò"H9ðtH‹HH;
j»…Hƒx…ÃH‹
š»HÿH‰M€Hÿu
H‹HH‰ÇÿQ0HDžhÿÿÿH‹}€H;=f»t,H;=e»t#H;=L»tè:…Àˆó‰ÃH‹}€Hÿuë1ÛH;=7»”ÃHÿuH‹GÿP0HÇE€…ÛtL‹}˜Iÿ1ÀH‰E éYÈÿÿƒ} tBL‰çH‹u˜è(E1íH…À„ØI‰Ç1ÀH‰E é&ÈÿÿH‹
ǺHÿH‰M€Hÿ…Cÿÿÿé4ÿÿÿH‹53&H‹}˜H‹GH‹€H…À„ÿÐH‰E€ÇE¬êH…À„H‹5–!H9ðtH‹HH;
.º…Hƒx…:H‹
^ºHÿH‰hÿÿÿHÿu
H‹HH‰ÇÿQ0HÇE€H‹½hÿÿÿH;='ºt*H;=&ºt!H;=
ºtèP9…ÀˆÉ‰ÃH‹½hÿÿÿë1ÛH;=ú¹”ÃHÿuH‹GÿP0HDžhÿÿÿ…Û„ÔþÿÿH‹i,H‹="H;G…¡H‹Y,H…À„ñHÿH‹=F,H‰½hÿÿÿH…ÿ„+H‹5ÿ"H‹GH‹€H…À„™ÿÐH‰E€ÇE¬ðH…À„œH‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿè7H‰…hÿÿÿH…À„ÀH‹5“"I‹D$H‹€L‰çH…À„¶ÿÐI‰ÇH…À„¹H‹½hÿÿÿH‹5_"L‰úèÇ6…ÀˆÛIÿu
I‹GL‰ÿÿP0H‹}€H‹5Í'H‹•hÿÿÿèќýÿH…À„zI‰ÇH‹}€HÿuH‹GÿP0HÇE€H‹½hÿÿÿHÿuH‹GÿP0HDžhÿÿÿL‰çH‹u˜è£ÇE¬ñH…À„2I‰ÆH‹5™L‰ÿH‰Âè¦7…Àˆ2Iÿu
I‹FL‰÷ÿP0IÿL‰} ézÅÿÿH‹
¸HÿH‰hÿÿÿHÿ…Ìýÿÿé½ýÿÿ»
$E1í1ÀH‰…pÿÿÿ1ÀH‰E é—Äÿÿè7H‰…hÿÿÿÇE¬çH…À…üÿÿ»Æ#é‘H‹5ÓH‰Çè˕ýÿH‰…hÿÿÿH…À…gûÿÿ»°#ërH;
5·„—H‰ǺèÐ6H‰E€H…À„)H‹…hÿÿÿL‹¥ÿÿÿL‹­ÿÿÿHÿ…ÛûÿÿéÌûÿÿ»Ë#éèa6H‰E€ÇE¬äH…À…~úÿÿ»¢#E1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E L‰u˜é»Ãÿÿ»?$ÇE¬ôE1ÿéüþÿÿfWÀf.@H‹à¶H‹
é¶HEÊHJÊL‹¥ÿÿÿL‹­ÿÿÿHÿH‰M€Hÿ…?ûÿÿé0ûÿÿfWÀf.CH‹
®¶H‹—¶HEÁHJÁL‹¥ÿÿÿL‹­ÿÿÿé¿}ÿÿè5H‰E€ÇE¬êH…À…æûÿÿ»ò#é0H;
úµ„eH‰Ǻè•5H‰…hÿÿÿH…À„…H‹E€L‹¥ÿÿÿL‹­ÿÿÿHÿ…ßûÿÿéÐûÿÿH‹ÀH‹SH‰Þèâ5H‰ÇH‹ZH‹@H‰(H‰=(H…ÿ„¹HÿëVèó4H‰E€ÇE¬ðH…À…düÿÿ»$é†H‹`H‹=H‹GH‹€H‰ÞH…À„|ÿÐH‰ÇH…À„H‰½hÿÿÿL‹¥ÿÿÿL‹­ÿÿÿéÜûÿÿ»	$ë2ÇE¬ð»$ë$èn4I‰ÇH…À…Güÿÿ»$ë»÷#ë»$E1ÿé*ýÿÿ»$E1í1ÀH‰…pÿÿÿL‰} E1ÿé»Áÿÿ»$E1í1ÀH‰…pÿÿÿL‰} M‰÷éžÁÿÿfWÀf.@H‹״H‹
à´HEÊHJÊL‹¥ÿÿÿL‹­ÿÿÿHÿH‰hÿÿÿHÿ…rúÿÿécúÿÿè³4I‹FH‰…PÿÿÿH…À~K1ÀL‹¥pÿÿÿI9\Æ„?™ÿÿHÿÀH9…PÿÿÿuéE1ÿL‹¥pÿÿÿK‹tþH‰ßè6…À…™ÿÿIÿÇL9½PÿÿÿußL‹¥pÿÿÿ阙ÿÿM‰ôèF2H…ÀudH‹=’H‹GH‹€L‰þH…À„kÿÐH‰ÃH…ÀL‹mˆM‰æ…9Šÿÿëè3H‰ÃH…À…&ŠÿÿM‰ôH‹I³H‹8H5‰°L‰ú1ÀèË1HDž(ÿÿÿÇE¬…»‰1ÀH‰…@ÿÿÿH‹EˆH‰… ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿés™ÿÿDžèþÿÿ鲘ÿÿèc1H…ÀuaH‹=¯H‹GH‹€L‰öH…À„’ÿÐH‰ÃH…ÀL‹¥pÿÿÿ…C‹ÿÿëè22H‰ÃH…À…0‹ÿÿH‹i²H‹8H5©¯L‰ò1Àèë0HDžhÿÿÿ»Åé%wÿÿèã0H…ÀuRH‹=/H‹GH‹€L‰þH…À„/ÿÐH‰ÃH…ÀL‹¥ÿÿÿL‹mˆ…[ŒÿÿH‹ø±H‹8H58¯L‰ú1Àèz0HÇE€ÇE¬˜»é+è|1H‰ÃH…À…Œÿÿë¹è[0H…À…ËH‹=£H‹GH‹€L‰þH…À„JÿÐH‰ÃH…ÀL‹¥ÿÿÿH‹Eˆ…ÇzÿÿH‰… ÿÿÿH‹e±H‹8H5¥®1ÀH‰…0ÿÿÿL‰ú1ÀèÞ/1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿ»é
¾ÿÿèw0H‰ÃH…À…	zÿÿéEŒÿÿèS/H…À…jH‹=›H‹GH‹€L‰þH…À„æÿÐH‰ÃH…ÀL‹¥ÿÿÿ…<zÿÿH‹EˆH‰… ÿÿÿH‹]°H‹8H5­1ÀH‰…0ÿÿÿL‰ú1ÀèÖ.1ÀH‰…@ÿÿÿE1ÿ1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿ»é½ÿÿèr/H‰ÃH…À…}yÿÿéSŒÿÿèN.ÇE¬²H…À…&H‹=
H‹GH‹€L‰öH…À„”ÿÐH‰ÃH…ÀL‹¥ÿÿÿL‹mˆ…S¥ÿÿL‰ëH‹U¯H‹8H5•¬L‰ò1Àè×-L‰­ ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ»# é¼ÿÿèq.H‰ÃH…À…£¤ÿÿé§ÓÿÿèM-H…À…ÂH‹=•H‹GH‹€L‰öH…À„0ÿÐI‰ÅH…ÀL‹¥ÿÿÿ…¥ÿÿL‹eˆH‹^®H‹8H5ž«L‰ò1Àèà,L‰¥ ÿÿÿL‹¥ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿI‰ß1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ»/ é	»ÿÿès-I‰ÅH…À…Y¤ÿÿéäÔÿÿH‹¥­H‹8H5åªH‰Ú1Àè',HDž(ÿÿÿÇE¬Õ»i"1ÀH‰E E1í1ÀH‰…pÿÿÿé½ÐÿÿH‹\­H‹8H5œªH‰Ú1ÀèÞ+HDžhÿÿÿÇE¬Ø»¯"1ÀH‰E E1ÿE1í1ÀH‰…pÿÿÿéxÐÿÿÇE¬¢H‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»ë ÇE¬¤H‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»BA½¸H‰…pÿÿÿ¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…Pÿÿÿ¸H‰…Hÿÿÿ¸H‰…8ÿÿÿL‰½ðþÿÿ¸H‰E˜¸H‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿéyèß*H…ÀuUH‹=+
H‹GH‹€H‰ÞH…À„mÿÐH‰ÇH…ÀL‹¥ÿÿÿL‹­ÿÿÿ…¿×ÿÿH‹ñ«H‹8H51©H‰Ú1Àès*HDž(ÿÿÿÇE¬¦»a1ÀH‰…pÿÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…PÿÿÿL‰½ðþÿÿE1ÿé«è!+H‰ÇH…À…&×ÿÿébÿÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»ƒéHèß)ÇE¬¨H…À…ŠH‹= 	H‹GH‹€L‰öH…À„ÿÐH‰ÃH…ÀL‹¥ÿÿÿL‹­ÿÿÿ…žÿÿH‹]ˆH‹âªH‹8H5"¨L‰ò1Àèd)H‰ ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ»™酷ÿÿèï)H‰ÃH…À…Qÿÿ醨ÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»½ëH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿ»â¸H‰…pÿÿÿ¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…Pÿÿÿ¸H‰…Hÿÿÿ¸H‰…8ÿÿÿL‰½ðþÿÿA¿éÈ~ÿÿè+(H…À„5‰ÿÿë%è))éI‰ÿÿH‹g©H‹8H5§¦L‰ò1Àèé'HDž(ÿÿÿ»>éžH‹EˆH‰… ÿÿÿ»béÇH‹EˆH‰… ÿÿÿ»’1ÀH‰…@ÿÿÿA½¸H‰…pÿÿÿ¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…Pÿÿÿ¸H‰…Hÿÿÿ¸H‰…8ÿÿÿ¸H‰E˜¸H‰…xÿÿÿ¸H‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿé¦è'H…À„7Šÿÿë3è
(H‰ÃH…ÀL‹¥ÿÿÿ…PŠÿÿH‹:¨H‹8H5z¥L‰ú1Àè¼&HDžhÿÿÿÇE¬š»W1ÀH‰…@ÿÿÿH‹EˆH‰… ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿL‹¥ÿÿÿéǴÿÿM‰îL‹¥ÿÿÿ1Òéduÿÿ1ÀH‰…@ÿÿÿ»E!éq1ÀH‰…@ÿÿÿ»g!é^»Ü"E1ÿE1í1ÀH‰E é”ÊÿÿA¿ëE1ÿH‹½(ÿÿÿHÿuH‹GÿP0HDž(ÿÿÿè'L‹hXM…í…Ç	H‹!§H‹8M…ÿHd2H
¡HEÈH5o‘1ÀH‰…pÿÿÿL‰ú1ÀèU%»ì"L‹½èþÿÿE1í1ÀH‰E éÊÿÿHÿu
H‹HH‰ÇÿQ0H‹¿¦H‹8H5ù1ÀH‰E˜º1Àè	%»ä"L‹½èþÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E é·Éÿÿèó$ÇE¬›H…À…C
H‹=4H‹GH‹€H‰ÞH…À„¹
ÿÐI‰ÅH…ÀL‹¥ÿÿÿL‹u…­vÿÿH‹EˆH‰… ÿÿÿH‹ò¥H‹8H52£1ÀH‰…ÿÿÿH‰Ú1Àèk$1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ»˜飲ÿÿè
%魍ÿÿM‰þèò#H…À„ŸŽÿÿë%èð$鳎ÿÿH‹.¥H‹8H5n¢H‰Ú1Àè°#HDžhÿÿÿ»1ÀH‰…pÿÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿL‹¥ÿÿÿM‰÷é±ÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿ»éWÚÿÿè÷"H…À„Þÿÿë,èõ#H‰ÇH…À…4ÞÿÿH‹,¤H‹8H5l¡H‰Ú1Àè®"HÇE€ÇE¬À»Ù 1ÀH‰…pÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿL‰½ðþÿÿE1ÿ1ÀH‰…8ÿÿÿL‹¥ÿÿÿéç°ÿÿèC"H…À„òÞÿÿë,èA#H‰ÇH…À…ßÿÿH‹x£H‹8H5¸ H‰Ú1Àèú!HDž(ÿÿÿÇE¬Ë»ˆ!1ÀH‰…pÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…HÿÿÿL‰½ðþÿÿE1ÿé~Ûÿÿ1ÀH‰…@ÿÿÿ»«!¸H‰…pÿÿÿ¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…Pÿÿÿ¸H‰…Hÿÿÿ¸H‰…8ÿÿÿ1ÀH‰E˜L‰½ðþÿÿA¿é
Ûÿÿè!H…À„‚àÿÿë,è"H‰ÇH…À…›àÿÿH‹Q¢H‹8H5‘ŸH‰Ú1ÀèÓ HÇE€ÇE¬Ï»æ!1ÀH‰E L‰øL‰½@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿé`Úÿÿè– H…À„ݏÿÿë,è”!H‰ÃH…À…öÿÿH‹ˡH‹8H5ŸL‰ò1ÀèM HDžhÿÿÿÇE¬’»¿1ÀH‰…@ÿÿÿH‹EˆH‰… ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E éîmÿÿH‹EˆH‰… ÿÿÿ»ã1ÀH‰…@ÿÿÿA½¸H‰…pÿÿÿ¸H‰E ¸H‰…`ÿÿÿ¸H‰…Xÿÿÿ¸H‰E¸H‰…Pÿÿÿ¸H‰…Hÿÿÿ¸H‰…8ÿÿÿ¸H‰E˜¸H‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿL‹¥ÿÿÿE1ÿéû­ÿÿ»È#E1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E L‹¥ÿÿÿéխÿÿè1H…À„hëÿÿë,è/ H‰ÇH…À…ëÿÿH‹f H‹8H5¦H‰Ú1ÀèèHDžhÿÿÿÇE¬ð»$1ÀH‰E E1ÿE1í1ÀH‰…pÿÿÿL‹¥ÿÿÿéa­ÿÿ»ô#éaÿÿÿèÁéìÿÿè·H‰ÃH…ÀL‹¥pÿÿÿ…®xÿÿéyíÿÿèšéÉíÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿL‹¥ÿÿÿ»鉬ÿÿèóé®íÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰…@ÿÿÿE1ÿ1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿ1ÀH‰…ÿÿÿL‹¥ÿÿÿ»éå«ÿÿèOH‰ÃH…ÀL‹¥ÿÿÿ…Shÿÿéîÿÿ»ä"L‹½èþÿÿé/÷ÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿL‹¥ÿÿÿ»# é+«ÿÿè•édîÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿI‰ß1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿL‹¥ÿÿÿ»/ 镪ÿÿèÿI‰ÅH…ÀL‹¥ÿÿÿ…ޓÿÿéÈîÿÿH‰ÃH‹?H‹0L‰ï茅À„ºH‰ØHƒÀXL‹c`L‹shHÇ@HÇ@HÇIÿMu
I‹EL‰ïÿP0M…ätIÿ$uI‹D$L‰çÿP0M…ö„ÇõÿÿIÿ…¾õÿÿI‹FL‰÷ÿP0é¯õÿÿèXé‹ðÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…@ÿÿÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿL‰½ðþÿÿE1ÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰Eˆ1ÀH‰…ÿÿÿL‹¥ÿÿÿ»™éI©ÿÿè³éñðÿÿH‹EˆH‰… ÿÿÿ1ÀH‰…ÿÿÿ1ÀH‰…@ÿÿÿE1ÿE1í1ÀH‰…pÿÿÿ1ÀH‰E 1ÀH‰…`ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰E1ÀH‰…Pÿÿÿ1ÀH‰…Hÿÿÿ1ÀH‰…8ÿÿÿ1ÀH‰E˜1ÀH‰…xÿÿÿ1ÀH‰…0ÿÿÿ1ÀH‰EˆL‹¥ÿÿÿ»˜髨ÿÿèé?õÿÿ»ì"L‹½èþÿÿE1í1ÀH‰…pÿÿÿéÿóÿÿf.„UH‰åAWAVATSI‰öH‰ûH‹GH‹HpH…ÉtH‹IH…ÉtH‰ßL‰ö[A\A^A_]ÿáH‹HhH…Ét~HƒytwI‹FH;6›…I‹FH‰ÁH÷ÙHLÈHƒù¦H…À„½E‹~HƒøÿuI÷ßIƒÿÿuèGIÇÇÿÿÿÿH…À…ÁH‰ßL‰þº¹[A\A^A_]é‚NÿÿH‹
“šH‹9H‹PH5Y…1Àèì1À[A\A^A_]ÃL‰÷è½H…ÀtšI‰ÄH‰Çè_I‰ÇIÿ$u€I‹D$L‰çÿP0épÿÿÿHƒøþt"Hƒøu0E‹~A‹FHÁàI	ÇékÿÿÿE1ÿécÿÿÿE‹~A‹FHÁàI	Çé1ÿÿÿL‰÷èI‰Çé$ÿÿÿH‹
ϙH‹1H‰ÇèX…À„^ÿÿÿè9H‹˜™H‹8I‹FH‹PH5·„é4ÿÿÿUH‰åH9÷u¸]ÃH‹Gƒ¸¨‰£ö‡«@„–H‹FH‹€¨…ÀyRö†«@tIH‹XH…Ét*H‹QH…Ò~e1ÿ1ÀH9tùt£HÿÇH9úuñ]ÃH‹¿H9÷tH…ÿuï1ÀH;5®˜”À]ét.L‹VM…Ò~!1ÀH9|Æ„]ÿÿÿHÿÀI9ÂuíE1ÉL‹z˜ë1À]Ã]ébM9ÃttIÿÁ1ÀM9Ñt•N‹\ÎI‹Cƒ¸¨yäAöƒ«@tÚI9û„ÿÿÿH‹—XH…Òt H‹JH…É~¼1ÀL9\„éþÿÿHÿÀH9Áuíë¥H‰øH…Àt˜H‹€L9ØuïéÆþÿÿ¸]ÃfDUH‰åAVSH‹Gö€«t]H‹_HCHƒøw"H
{HcHÈÿà‹_‹GHÁàH	ÃH÷Ûë%[A^]é1À+GHcØë‹_ë
‹_‹GHÁàH	ÃH‰Ø[A^]ÃèNÿÿH…ÀtI‰ÆH‰ÇèzÿÿÿH‰ÃIÿuÛI‹FL‰÷ÿP0ëÏHÇÃÿÿÿÿëƐŽÿÿÿ©ÿÿÿÅÿÿÿ³ÿÿÿ¸ÿÿÿ„UH‰åAWAVAUATSPI‰ÿH‹ÐH‹=YõH;G…HH‹ÀH…À„£HÿH‹­H…Û„ÞH‹5H‹CH‹€H‰ßH…À„GÿÐI‰ÅH‹HÿÈH‰M…í„:H…Àu
H‹CH‰ßÿP0I‹EH;E—„šL‰ïL‰þè„uýÿI‰ÄM…ä„ÖIÿMtL;%S—ué†I‹EL‰ïÿP0L;%;—tsL;%:—tjL;%!—taL‰çèa‰ÅÀˆ¶Iÿ$t[…ÛtfL‰ÿè›H‰ÃHƒøÿuèH…À…ËH‰ßè~I‰ÇH…À„hL‰øHƒÄ[A\A]A^A_]Ã1ÛL;%Ŗ”ÃIÿ$u¥I‹D$L‰çÿP0…ÛušH‹5ÿI‹GH‹€L‰ÿH…À„6ÿÐI‰ÄH…À„9èHA¾uH…À„6I‰ÅH‹5+ÿH‹H‰Çè,…Àx0H‹5‰L‰çL‰êèNzýÿH…À„I‰ÇIÿ$tYIÿM…BÿÿÿëbA¿·Iÿ$uI‹D$L‰çÿP0M…ítIÿMu
I‹EL‰ïÿP0H=B…H
ê D‰þD‰òèk[ýÿE1ÿéóþÿÿI‹D$L‰çÿP0IÿM…ÞþÿÿI‹EL‰ïÿP0éÏþÿÿL‹-PóI‹UL‰îèrH‰ÃH‹êòH‹@H‰O	H‰P	H…Û„jHÿé›ýÿÿè€é±ýÿÿA¿tA¾rH…À…\ÿÿÿH‹CH‰ßéMÿÿÿL‹5åòH‹=–òH‹GH‹€L‰öH…À„pÿÐH‰ÃH…À…=ýÿÿH‹j”H‹8H5ª‘L‰ò1ÀèìA¿rA¾réñþÿÿI‹]H…Û„YýÿÿM‹uHÿIÿIÿMu
I‹EL‰ïÿP0L‰÷H‰ÞL‰úè°sýÿI‰ÄHÿu
H‹CH‰ßÿP0M‰õM…ä…*ýÿÿA¾rA¿ƒM…í…yþÿÿé„þÿÿA¿œA¾tésþÿÿA¿†A¾rë(èjI‰ÄH…À…ÇýÿÿA¿³A¾uéCþÿÿA¿µE1íéþÿÿA¿‘A¾sé$þÿÿA¿¸éóýÿÿèA¾rH…ÀudH‹=VñH‹GH‹€L‰îH…ÀtUÿÐH‰ÃH…À…üÿÿH‹.“H‹8H5nL‰ê1Àè°A¿ré»ýÿÿèÀH‰ÃH…À…ÊûÿÿéˆþÿÿA¿réšýÿÿèŸH‰ÃH…À…©ûÿÿë¦f.„UH‰åAVSH‹Gö€«t]H‹_HCHƒøw"H
{HcHÈÿà‹_‹GHÁàH	ÃH÷Ûë%[A^]é©1À+GHcØë‹_ë
‹_‹GHÁàH	ÃH‰Ø[A^]ÃèªHÿÿH…ÀtI‰ÆH‰ÇèzÿÿÿH‰ÃIÿuÛI‹FL‰÷ÿP0ëÏHÇÃÿÿÿÿëƐŽÿÿÿ©ÿÿÿÅÿÿÿ³ÿÿÿ¸ÿÿÿ„UH‰åAWAVAUATSHì¨I‰ôH‹š’H‹H‰EÐHÿL‰M M‰ÇI‰ÎH‰ûH‰•hÿÿÿHÿ¿èçH…À„I‰ÅH‰]˜L‰µ@ÿÿÿH‹©ÿHÿH‹ŸÿI‹MH‰L‹5þH‹=ZïèÛDždÿÿÿAÇE¬íH…À„£H‰ÃL‰½8ÿÿÿèÈH…À„‹I‰ÇL‰÷H‰ÞH‰ÂL‰éE1ÀèDI‰ÆIÿu
I‹GL‰ÿÿP0M…ö„YIÿMu
I‹EL‰ïÿP0H‹
ÿI‹FH‹€L‰÷H‰ÞH…À„gÿÐI‰ÇH…À„jIƒ?„•Iÿ„ŸH‹¨H‹=¹îH;GL‰øL‰½Pÿÿÿ…¸H‹ŽH…ÀL‹µ@ÿÿÿ„HÿL‹-tM…í„H‹5„ùI‹EH‹€L‰ïH…À„¸ÿÐI‰ÇH…À„»IÿMu
I‹EL‰ïÿP0I‹GH;œ„!L‰ÿL‰æèÛnýÿH‰ÃH…Û„eIÿ„õIÿ$„ÿH‹õH‹=öíH;GH‰]…ÄH‹áH…À„2HÿL‹=ÎM…ÿ„FH‹5ÎøI‹GH‹€L‰ÿH…À„ÃÿÐI‰ÅH…À„ÆIÿu
I‹GL‰ÿÿP0I‹EH;珄7L‰ïL‹¥hÿÿÿL‰æènýÿH‰ÃL‹½PÿÿÿH…Û„IÿM„UH‰xÿÿÿIÿ$„_L;5ҏL‹m„jI‹NºH#‘¨…ÄH‹H9Á„¼H‹‘XH…Ò„ÚH‹JH…ÉŽâ1öf.„H9Dò„‡HÿÆH9ñuíé½1ÀH‰…PÿÿÿL‰e1ÀH‰…@ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…pÿÿÿ1ÀH‰E€1ÀH‰Eˆ1Û1ÀH‰E E1öE1ÿ1ÀH‰…Hÿÿÿ1ÀH‰E˜L‹¥hÿÿÿIÿMu
I‹EL‰ïÿP0L‰¥xÿÿÿM…ötGH‹U˜H‰]˜H‹…xÿÿÿH‰…hÿÿÿL‹eD‹­dÿÿÿH‹HÿÿÿIÿuI‹FL‰÷I‰ÞH‰ÓÿP0H‰ÚL‰ó1Éë*1ÉH‹U˜H‰]˜H‹…xÿÿÿH‰…hÿÿÿL‹eD‹­dÿÿÿH‹HÿÿÿM…ÿt'Iÿu"I‹GL‰ÿM‰æI‰×I‰ÜH‰ËÿP0H‰ÙL‰ãL‰úM‰ôH…ÛL‹½Pÿÿÿt!HÿuH‹CH‰ßM‰æI‰ÔH‰ËÿP0H‰ÙL‰âM‰ôH…ÒtHÿ
uH‹BH‰×H‰ËÿP0H‰ÙM‰æL‹¥hÿÿÿL‰ãH…É„!Hÿ	u
H‹AH‰ÏÿP0I‰Üé
I‹GL‰ÿÿP0Iÿ…aüÿÿI‹FL‰÷ÿP0éRüÿÿI‹GL‰ÿÿP0Iÿ$…ýÿÿI‹D$L‰çÿP0éñüÿÿI‹EL‰ïÿP0H‰xÿÿÿIÿ$…¡ýÿÿI‹D$L‰çÿP0L;5hL‹m…–ýÿÿ1ÿèßI‰ÆH…À…«1ÀH‰E A¾ó¾jA¸H‰E˜¸H‰Eˆ¸H‰E€¸H‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿH‹…xÿÿÿH‰…hÿÿÿéf.HÁê…ÒtC¿èdH…À„'IÿH‹HL‰1I‰Æë$H‹‰H9ÁtÒH…Éuï1ÒH;º‹”…Òu½IÿL‰µ@ÿÿÿH‹5bùI‹EH‹€L‰ïH…À„¢ÿÐI‰ÆH…À„¥L‰÷èËHƒøÿ„®H‰ÃIÿu
I‹FL‰÷ÿP0Hƒû…æH‹5ùH‹½xÿÿÿH‹GH‹€H…À„BÿÐI‰ÆH…À„EL‰÷èmHƒøÿ„yH‰ÃIÿtHƒûté I‹FL‰÷ÿP0Hƒû…ŒH‹5ŸøL‹¥xÿÿÿI‹D$H‹€L‰çH…À„?ÿÐI‰ÆH…À„BI‹FH;O‹„H;b‹„H‹@hH…À„&$H‹@H…À„$L‰÷1öÿÐI‰ÅM…í„ùIÿu
I‹FL‰÷ÿP0H‹5øI‹D$H‹€L‰çH…À„ÿÐI‰ÆÇE¬ûH…À„I‹FH;J„íH;Ԋ„¢H‹@hH…À„Ý#H‹@H…À„Ð#¾L‰÷ÿÐI‰ÇM…ÿ„ÄIÿu
I‹FL‰÷ÿP0L‰ïL‰þºèõ	H…À„¶I‰ÆIÿM„§Iÿ„±L;5ŠL‹m…»éúI‹FL‹(IÿEM…í…ÿÿÿÇE¬ûA½ëA1ÒE1ÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿL‰¥hÿÿÿéŽ*I‹FL‹xIÿM…ÿ…<ÿÿÿDždÿÿÿðA1ÀH‰…Xÿÿÿéa/I‹EL‰ïÿP0Iÿ…OÿÿÿI‹GL‰ÿÿP0L;5ƉL‹m„DL;5½‰„7L;5 ‰„*L‰÷è܉ÅÀL‹½Pÿÿÿˆ²+Iÿ„$…Û….H‹5AöM‰ìI‹EH‹€L‰ïH…À„‡ÿÐI‰ÆH…À„ŠI‹FH;öˆ„ H;	‰„ìH‹@hH…À„Z"H‹@H…À„M"L‰÷1öÿÐI‰ÇM…ÿ„yIÿu
I‹FL‰÷ÿP0H‹5¸õH‹½xÿÿÿH‹GH‹€H…À„#ÿÐI‰ÆH…À„&I‹FH;lˆ„;H;ˆ„tH‹@hH…À„"H‹@H…À„"L‰÷1öÿÐI‰ÅéS1ÛL;5wˆ”ÃL‹½PÿÿÿIÿ…ÜþÿÿI‹FL‰÷ÿP0…Û„ÒþÿÿH‹=3öH‹5|÷1ÒèMlýÿH…À„uH‰ÃÇE¬üH‰Çè’8ÿÿHÿu
H‹CH‰ßÿP01ÀH‰E˜1ÀH‰E 1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿM‰îL‹¥xÿÿÿA½BH=xH
ÏD‰î‹U¬èPMýÿE1íL‰¥hÿÿÿM‰ôM…ÿtIÿu
I‹GL‰ÿÿP0M‰ôH‹½@ÿÿÿH…ÿtHÿuH‹GÿP0H‹½XÿÿÿH…ÿL‹}ˆtHÿuH‹GÿP0H‹½pÿÿÿH…ÿL‹u˜H‹]€tHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ÿtIÿu
I‹GL‰ÿÿP0M…ötIÿu
I‹FL‰÷ÿP0H‹} H…ÿtHÿuH‹GÿP0M…ätIÿ$uI‹D$L‰çÿP0H‹½hÿÿÿH…ÿtHÿuH‹GÿP0H‹ʆH‹H;EÐ…s/L‰èHĨ[A\A]A^A_]ÃI‹FL‹8IÿM…ÿ…‡ýÿÿÇE¬ýA½BéìI‹FL‹(ëAM‹nIÿEM…í…ûÿÿéöûÿÿM‹~ IÿM…ÿ…~ûÿÿé=üÿÿM‹~IÿM…ÿ…1ýÿÿë¨M‹nIÿEM…í„ÓIÿu
I‹FL‰÷ÿP0L‰ÿL‰îºèKH…À„ëI‰ÆIÿtIÿMt%L;5߅L‹½Pÿÿÿu3éGI‹GL‰ÿÿP0IÿMuÛI‹EL‰ïÿP0L;5°…L‹½Pÿÿÿ„L;5¤…„L;5‡…„ÿL‰÷èÉÅÀL‹eˆ¯'Iÿ„ù…Û…H‹½@ÿÿÿH‹GH‹HpH…É„H‹IH…É„
H‹5†ôÿÑH…À„QI‰ÆH‰Çè’H‰ÁH‰…XÿÿÿH…À„yIÿu
I‹FL‰÷ÿP0H‹5ÇñI‹D$H‹€L‰çH…À„œÿÐI‰ÅH…À„ŸI‹EH;~„„íH;‘„„éH‹@hH…À„]H‹@H…À„PL‰ï1öÿÐI‰ÆéÇ1ÛL;5‰„”ÃL‹eIÿ…ÿÿÿI‹FL‰÷ÿP0…Û„ýþÿÿH‹=HòH‹5™ó1ÀH‰E 1Òè\hýÿH…À„«.H‰ÃH‰Çè¨4ÿÿHÿA½5Bu
H‹CH‰ßÿP01ÀH‰E˜1ÀH‰E 1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿL‹½PÿÿÿL‹uÇE¬þL‹¥xÿÿÿéüÿÿI‹EL‹0ëM‹uIÿM…ö„¸IÿMu
I‹EL‰ïÿP0L‹¥XÿÿÿI‹D$I‹L$ H9Á~HÑùH9È~IÿI‹L$L‰4ÁHÿÀI‰D$ëL‰çL‰öèçƒøÿ„ì%Iÿu
I‹FL‰÷ÿP0H‹5åH‹}˜H‹GH‹€H…À„EÿÐI‰ÇH…À„HI‹GH;ã‚…"	I‹_H…Û„	M‹wHÿIÿIÿu
I‹GL‰ÿÿP0L‰÷H‰ÞL‰âèéaýÿI‰ÅHÿu
H‹CH‰ßÿP0M‰÷M…í„çIÿu
I‹GL‰ÿÿP0H‹5-ïI‹EH‹€L‰ïH…À„ýÿÐI‰ÇH…À„IÿMu
I‹EL‰ïÿP0H‹5AïH‹}H‹GH‹€H…À„ÿÐI‰ÅH…À„I‹EH;ø„rH;‚„—H‹@hH…À„H‹@H…À„L‰ï1öÿÐH‰ÃH…Û„KIÿMu
I‹EL‰ïÿP0I‹GH;­H‰ØH‰Hÿÿÿ…2M‹oM…í„%I‹_IÿEHÿIÿA¾u
I‹GL‰ÿÿP0I‰ßL‹¥xÿÿÿH‹HÿÿÿI‹GH;<„H;Ÿ€uOI‹G‹@ƒà=€u>L‰m°H‹‘èH‰E¸H‰]ÀD‰ñHÁáH÷ÙAƒÎI‹WH‹B‹Rö …³I‹é¬A~èµH…À„Á"H‰ÆM…ítL‰nH‹9èHÿD‰ñH‰DÎH‰\Î L‰ÿ1ÒH‰óèeýÿH…À„¾"I‰ÅHÿ…ÁH‰ßH‹CÿP0é²I‹EH‹HÿH…Û…µþÿÿDždÿÿÿ{BÇE¬1ÀH‰…pÿÿÿéÔ&I‹]HÿH…Û…†þÿÿëÏ1ÿHt
¸öÂ…>'L‰òÿÐH…À…ÇE¬Dždÿÿÿ–Béì$H=˜pH
N¾
AºíèËEýÿE1íIÿ$…Mùÿÿé=ùÿÿè:ÿI‰ÇH…À…–îÿÿH‹AH‹8èùýÇE¬íA½A…ÀtH‹9H‹8H5ØzH‰Ú1ÀèÓý1Ò1ÛE1ÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿ1ÀH‰…PÿÿÿéÉðÿÿH‹6ÝH‹SH‰ÞèXÿI‰ÅH‹ÐÜH‹@H‰­óL‰-®óM…íL‹µ@ÿÿÿ„(IÿEé*îÿÿè^þI‰ÇH…À…EîÿÿDždÿÿÿ%AÇE¬ð1ÀH‰…@ÿÿÿL‰eéÇïÿÿH‹ºÜH‹=kÜH‹GH‹€H‰ÞH…À„R(ÿÐI‰ÅH…À…ÃíÿÿH‹?~H‹8H5{1ÀH‰E H‰Ú1Àè»üA¾ð¾#Aé·M‹oM…í„ÒíÿÿM‹wIÿEIÿIÿu
I‹GL‰ÿÿP0L‰÷L‰îL‰âè€]ýÿH‰ÃIÿMu
I‹EL‰ïÿP0M‰÷L‹µ@ÿÿÿH…Û…›íÿÿÇE¬ðA½4A1É1Ò1Û1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿéŒïÿÿA¾ð¾#A1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿéÒ!H‹mÛH‹SH‰ÞèýI‰ÇH‹ÛH‹@H‰ôñL‰=õñM…ÿ„'IÿéíÿÿèüI‰ÅH…À…:íÿÿA½CAÇE¬ñ1ÀH‰…@ÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…pÿÿÿé0L‹%ïÚH‹= ÚH‹GH‹€L‰æH…À„5'ÿÐI‰ÇH…À…®ìÿÿH‹t|H‹8H5´y1ÀH‰E L‰â1ÀèðúA¾ñ¾AAéÔM‹eM…䄼ìÿÿM‹uIÿ$IÿIÿML‹½Pÿÿÿu
I‹EL‰ïÿP0L‰÷L‰æH‹•hÿÿÿè©[ýÿH‰ÃIÿ$uI‹D$L‰çÿP0M‰õL‹µ@ÿÿÿL‹¥hÿÿÿH…Û…ìÿÿÇE¬ñDždÿÿÿRA1ÀH‰…HÿÿÿE1ÿE1ö1ÀH‰E 1Û1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿéÇ$A¾ñ¾AA1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿI‰ÜéàèòúI‰ÆH…À…[ïÿÿM‰îÇE¬ùA½»A1ÀH‰E é¯ÇE¬ù1Ò1ÛE1ÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿH‹…xÿÿÿH‰…hÿÿÿM‰ìA½½Aé•ìÿÿH‹=BéH‹5ƒê1Òè\_ýÿH…À„e%H‰ÃÇE¬úH‰Çè¡+ÿÿHÿu
H‹CH‰ßÿP01ÀH‰E˜1ÀH‰E 1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿM‰îL‹¥xÿÿÿA½ÍAé
óÿÿèôùI‰ÆH…À…»îÿÿÇE¬û1ÀH‰E˜1ÀH‰E 1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿM‰îA½ßAL‹¥xÿÿÿé³òÿÿÇE¬û1Ò1ÛE1ÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿH‹…xÿÿÿH‰…hÿÿÿM‰ìA½áAélëÿÿM‰æH‹
¶yH‹9H‹PH5zc1ÀH‰E 1Àè	øÇE¬A½GB1ÀH‰E˜é5L‰ÿL‰æèXýÿI‰ÅM…í…÷ÿÿÇE¬A½sB1É1Ò1Û1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿé£E1öE1íL‹¥xÿÿÿI‹GH;;y…ÿ÷ÿÿL‰m°H‹ªàH‰E¸H‰]ÀD‰ðHÁàH÷ØHt¸AƒÎL‰ÿL‰òèÌYýÿH…À„ÖH‰ÃM…ítIÿMu
I‹EL‰ïÿP0H‹½HÿÿÿHÿuH‹GÿP0I‰ÝL‹¥xÿÿÿIÿu
I‹GL‰ÿÿP0H‹5€áI‹D$H‹€L‰çH…À„ÝÿÐI‰ÇH…ÀL‰­pÿÿÿ„àH‹<íH‹=%ÖH;G…ýH‹,íH…À„vHÿH‹=íH…ÿ„ôH‹5ùáH‹GH‹€H‰ûH…À„üÿÐI‰ÆH…À„ÿHÿu
H‰ßH‹CÿP0I‹GH;x…y
I‹_H…Û„l
M‹gHÿIÿ$Iÿu
I‹GL‰ÿÿP0L‰çH‰ÞL‰òèWýÿI‰ÅHÿ„´M‰çL‰ëIÿ„¾H…Û„ÈIÿtnH‰hÿÿÿH‹½xÿÿÿHÿtxH‹PÿÿÿHÿH‹CH;Žw„^H‰ßL‹¥hÿÿÿL‰æèÆUýÿI‰ÆI‰ßM…ö„žIÿ„­I‹NH;
cw…³é»I‹GL‰ÿÿP0H‰hÿÿÿH‹½xÿÿÿHÿuˆH‹GÿP0é|ÿÿÿH‹CH‰ßÿP0M‰çL‰ëIÿ…BÿÿÿI‹FL‰÷ÿP0H…Û…8ÿÿÿÇE¬A½ËB1É1Ò1Û1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€H‹…xÿÿÿH‰…hÿÿÿL‹eénèÿÿI‹GL‰ÿÿP0I‹NH;
¬vt
H;
ƒv…›I‹VHƒúL‹½8ÿÿÿ…ãIFH;
}v…>HHH‰ÂHƒÂH‹0H‹H‹
H‰ðH‰u€HÿHÿH‰ÈH‰M˜HÿIÿu
I‹FL‰÷ÿP0H‰]ˆH‹5RàL‰ÿºèµ'ÿÿ…ÀˆÔ…À„H‹5äL‰ÿºè‘'ÿÿA¾…Àˆ­t"H‹5bâL‰ÿºèm'ÿÿ…Àˆõ…&H‹pêH‹=IÓH;G…{H‹`êH…À„æHÿL‹5MêM…ö„(H‹5õÝI‹FH‹€L‰÷H…À„ÿÐH‰ÂH…À„„IÿH‰•xÿÿÿuI‹FL‰÷ÿP0H‹•xÿÿÿH‹üéH‹=ÅÒH;G…×H‹ìéH…ÀL‹u˜„THÿH‹
ÕéH…É„ÕH‹5ÞH‹AH‹€H…ÀH‰ËH‰Ï„ÚÿÐI‰ÇH…À„ÝHÿu
H‹CH‰ßÿP0H‹5—ÜI‹FH‹€L‰÷H…À„VÿÐH‰ÃH…À„YH‰ßH‹uˆè¬óH…À„{I‰ÅHÿu
H‹CH‰ßÿP0I‹GH;`t„}1Û1ÀH‰…HÿÿÿI‹GH;,t„¼H;suTI‹G‹@ƒà=€uCH‹…HÿÿÿH‰E°L‰m¸L‰u	ÙHÁáH÷كËI‹WH‹B‹Rö …ßI‹éØ1Û鳍{è¡óH…À„ÐH‰ÆH‹…HÿÿÿH…ÀtH‰F‰ØL‰lÆIÿL‰tÆ 1ÛL‰ÿ1ÒI‰õèïWýÿH…À„ÃI‰ÆIÿMH‹] „âIÿ„o¿è:óH…À„yI‰ÇL‰pIÿ$L‰` èañH…À„sI‰ÆH‹5"àH‰ÇH‰ÚèOñÇE¬…ÀxcH‹5íÛL‰÷H‰Úè2ñ…ÀxUH‹xÿÿÿH‰ßL‰þL‰òèQWýÿH‰ÁH‰E H…À„™HÿtaIÿtkIÿtuH‹] H;sL‹µ8ÿÿÿué¨A½¥CëA½¦C1Û1ÀH‰E L‹eH‹•xÿÿÿéäÿÿL‰ïI‹EÿP0Iÿ…ÿÿÿé~H‹CH‰ßÿP0Iÿu•I‹GL‰ÿÿP0Iÿu‹I‹FL‰÷ÿP0H‹] H;rL‹µ8ÿÿÿt.H;ˆrt%H;ortH‰ßè¯ñ…ÀyA¾ ¾¶Cé\1ÀH;Xr”À…ßH‹5àL‰÷ºè™#ÿÿ…Àˆ„H‹¼æH‹=uÏH;G…MH‹¬æH…À„¼HÿH‹=™æH…ÿ„þH‹5©ßH‹GH‹€H…ÀH‰½xÿÿÿ„OÿÐI‰ÆH…À„RH‹½xÿÿÿHÿuH‹GÿP0H‹5þàL‰÷1Òè¬UýÿH…À„±H‰ÃIÿu
I‹FL‰÷ÿP0Hÿu
H‹CH‰ßÿP0H‹] H‹æH‹=¸ÎH;GH‰] …`H‹ûåH…À„ÅHÿL‹5èåM…ö„H‹5€ÚI‹FH‹€L‰÷H…À„fÿÐI‰ÇH…À„iIÿu
I‹FL‰÷ÿP0H‹¥åH‹=>ÎH;G…ÄH‹•åH…À„)HÿH‹=‚åH…ÿ„H‹5²ÝH‹GH‹€H‰ûH…À„ÊÿÐI‰ÅH…À„ÍHÿu
H‰ßH‹CÿP0I‹EH;3p„>L‰ïH‹uˆèqNýÿI‰ÆM…ö„‚IÿMu
I‹EL‰ïÿP0H‹5¦ßL‰÷èfÔÿÿH…À„ŽI‰ÅIÿu
I‹FL‰÷ÿP0L‰ïH‹u˜èõîH…À„I‰ÆIÿMu
I‹EL‰ïÿP0I‹GH;¨o„z1ÛE1íI‹GH;zo„¬H;ÝnuMI‹G‹@ƒà=€u<L‰m°H‹…pÿÿÿH‰E¸L‰u	ÙHÁáH÷كËI‹WH‹B‹Rö …uI‹én{èöîH…À„xH‰ÆM…ítL‰nH‹•pÿÿÿHÿ‰ØH‰TÆL‰tÆ L‰ÿ1ÒI‰öèFSýÿH…À„VH‰ÃIÿL‹mu
I‹FL‰÷ÿP0L‹¥hÿÿÿIÿu
I‹GL‰ÿÿP0H‹½pÿÿÿHÿuH‹GÿP0H‰ßL‰îè±íH‰ÁH‰…pÿÿÿH…ÀL‹½Pÿÿÿ„Hÿu
H‹CH‰ßÿP0H‹½Xÿÿÿè(íH…À„
H‰ÂH‹5cÛH‹pÿÿÿH‹CH‹€˜H…ÀM‰îH‰ßI‰Õ„ïÿЅÀˆòIÿMu
I‹EL‰ïÿP0HÿI‰Ý餿ÿÿ1ÿHt
¸öÂ…zH‰ÚÿÐI‰ÆH…ÀH‹½Hÿÿÿ„|H…ÿtHÿuH‹GÿP0IÿM…µé¦1ÿHt
¸öÂ…iH‰ÚÿÐH‰ÃH…À„kM…í…éL‰ÿL‰öèàKýÿH‰ÃIÿ…ÀõÿÿéyöÿÿÇE¬ü1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿM‰îA½BL‹¥xÿÿÿé åÿÿèŠìI‰ÆH…À…¾áÿÿÇE¬û1ÀH‰E˜1ÀH‰E 1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿM‰îA½éAéPåÿÿè:ìI‰ÆÇE¬ûH…À…õáÿÿDždÿÿÿîA1ÀH‰…Xÿÿÿ1ÀH‰…pÿÿÿéDždÿÿÿóA1ÀH‰…XÿÿÿéèèéëI‰ÆH…À…vãÿÿM‰æÇE¬ýA½BéàèÃëI‰ÆH…À…ÚãÿÿA½BÇE¬ý1ÀH‰…XÿÿÿH‹…xÿÿÿH‰…hÿÿÿ1ÀH‰…pÿÿÿ1ÀH‰E€1ÀH‰Eˆ1ÀH‰E˜1ÀH‰E 1Û1Ò1ÉéÓÝÿÿÇE¬ýA½ B1Ò1Û1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿéÈDždÿÿÿ#BÇE¬ý1ÀH‰…XÿÿÿL‹¥xÿÿÿ1ÀH‰…pÿÿÿéM‰æÇE¬A½GB1ÀH‰E˜1ÀH‰E 1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿL‹¥xÿÿÿéÃãÿÿÇE¬A½IB1Ò1ÛE1ÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿH‹…xÿÿÿH‰…hÿÿÿéÜÿÿè\êI‰ÅH…À…aæÿÿÇE¬A½VB1ÀH‰E˜1ÀH‰E 1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿëYDždÿÿÿXBÇE¬ëxèêI‰ÇH…À…¸çÿÿÇE¬A½eB1ÀH‰Eˆ1ÀH‰E 1ÀH‰E˜1ÀH‰E€1ÀH‰…pÿÿÿL‹½PÿÿÿL‹uL‹¥xÿÿÿéÈâÿÿè²éI‰ÇH…À…èÿÿDždÿÿÿvBÇE¬1ÀH‰…pÿÿÿL‹¥xÿÿÿ1ÀH‰E€1ÀH‰Eˆ1Û1ÀH‰E E1öéßèdéI‰ÅH…À…ïçÿÿA½yBÇE¬1ÀH‰…pÿÿÿH‹…xÿÿÿH‰…hÿÿÿ1ÀH‰E€éˆè$éI‰ÇH…ÀL‰­pÿÿÿ… ñÿÿÇE¬A½·B1ÀH‰Eˆ1ÀH‰E 1ÀH‰E˜1ÀH‰E€L‹½PÿÿÿL‹uéíáÿÿH‹gÇH‹SH‰Þè‰éH‰ÇH‹ÇH‹@H‰ÞH‰=ÞH…ÿ„Hÿéæðÿÿè—èI‰ÆH…À…ñÿÿA½»BÇE¬1ÀH‰E€H‹…xÿÿÿH‰…hÿÿÿ1ÀH‰Eˆ1ÀH‰E˜1ÀH‰E éŠH‹ÞÆH‹=ÆH‹GH‹€H‰ÞH…À„ñÿÐH‰ÇH…À…jðÿÿH‹chH‹8H5£e1ÀH‰E€H‰Ú1ÀèßæA½¹BÇE¬H‹…xÿÿÿH‰…hÿÿÿ¸H‰Eˆ¸H‰E˜¸H‰E »ë5A½¹BÇE¬1ÀH‰E€H‹…xÿÿÿH‰…hÿÿÿ1ÀH‰Eˆ1ÀH‰E˜1ÀH‰E 1Û1Ò1ÉL‹eéìÙÿÿL‹cM…ä„•ðÿÿL‹{Iÿ$IÿHÿuH‹½PÿÿÿH‹GÿP0L‰ÿL‰æH‹•hÿÿÿè-GýÿI‰ÆIÿ$uI‹D$L‰çÿP0L‹¥hÿÿÿM…ö…bðÿÿÇE¬A½åB1É1Ò1Û1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€L‹eéRÙÿÿHƒúŒSH‹TgH‹8H5ŽQº1Àè¤å1ÒÇE¬A½îB1ÛE1ÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€L‹eé­ØÿÿA¾¾+Cé^H‹HHHPé½ðÿÿ1ÿèêåH…À„H‰ÃL‰÷H‰Æè]æI‰ÅHÿu
H‹CH‰ßÿP0L‹¥xÿÿÿM…í…ºÛÿÿé®Üÿÿ¿è¢åH…À„VH‰ÃL‰÷H‰ÆèæI‰ÇHÿu
H‹CH‰ßÿP0L‹¥xÿÿÿM…ÿ…ÜÿÿéÂÜÿÿ1ÿè]åH…À„PH‰ÃL‰÷H‰ÆèÐåI‰ÇHÿu
H‹CH‰ßÿP0L‹eM…ÿ…‰Ýÿÿéýßÿÿ1ÿèåH…À„(H‰ÃL‰÷H‰ÆèŽåI‰ÅHÿ…3àÿÿH‹CH‰ßÿP0é$àÿÿ1ÀH‰…pÿÿÿ1ÿèÙäH…À„GH‰ÃL‰ïH‰ÆèLåI‰ÆHÿ…SâÿÿH‹CH‰ßÿP0éDâÿÿ1ÀH‰…pÿÿÿ1ÿè—äH…À„H‰ÃL‰ïH‰Æè
åI‰ÆHÿu
H‹CH‰ßÿP0L‰óH…Û…ÂãÿÿéåÿÿM‰îÇE¬õA½•A1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿL‹¥xÿÿÿéÝÿÿ¾5Céa	H‹
ÃH‹SH‰Þè/åI‰ÆH‹§ÂH‹@H‰¼ÙL‰5½ÙM…ö„#IÿL‹¥hÿÿÿéaïÿÿè6äH‰ÂH…À…|ïÿÿÇE¬A½_C1Ò1ÛE1ÿ1ÀH‰E L‹eé%ÖÿÿH‹’ÂH‹=CÂH‹GH‹€H‰ÞH…À„4ÿÐI‰ÆH…ÀL‹¥hÿÿÿ…óîÿÿH‹dH‹8H5PaH‰Ú1Àè’âA¾¾]CéH‹-ÂH‹SH‰ÞèOäH‹
ÊÁH‹IH‰
ïØH‰ðØH…À„ÜH‰ÁHÿL‹¥hÿÿÿL‹u˜éïÿÿèRãI‰ÇH…À…#ïÿÿÇE¬A½dC1É1ÀH‰E L‹½PÿÿÿL‹eH‹•xÿÿÿHÿ…ÖÕÿÿéµÕÿÿH‹œÁH‹=MÁH‹GH‹€H‰ÞH…À„çÿÐH‰ÁH…ÀL‹¥hÿÿÿL‹u˜…îÿÿH‹cH‹8H5V`H‰Ú1Àè˜á1ÉH‹•xÿÿÿA½bCÇE¬ë2è›âH‰ÃH…À…§îÿÿA½gC1Û1ÀH‰E 1Éë3A½bCÇE¬1É1ÀH‰E L‹½PÿÿÿL‹eéÕÿÿA½iC1É1ÀH‰E L‹eÇE¬H‹•xÿÿÿéŸÔÿÿI‹OH‰ÈH‰HÿÿÿH…É„!M‹wH‹…HÿÿÿHÿIÿIÿ»u
I‹GL‰ÿÿP0M‰÷L‹¥hÿÿÿL‹u˜I‹GH;pb…DîÿÿL‹¥HÿÿÿL‰e°L‰m¸L‰u	ØHÁàH÷ØHt¸ƒËL‰ÿH‰ÚèCýÿH…À„	I‰ÆM…ätIÿ$uI‹D$L‰çÿP0IÿML‹¥hÿÿÿu
I‹EL‰ïÿP0H‹] Iÿ…‘îÿÿI‹GL‰ÿÿP0¿èÁáH…À…‡îÿÿÇE¬A½›C1ÛE1ÿé ïÿÿA½£CÇE¬1Û1ÀH‰E 1ÉL‹eH‹•xÿÿÿétÓÿÿH‹“¿H‹SH‰ÞèµáI‰ÆH‹-¿H‹@H‰rÖL‰5sÖM…ö„å
IÿL‹¥hÿÿÿé|ðÿÿè¼àI‰ÇH…À…—ðÿÿÇE¬(A½D1Ò1ÛE1ÿL‹eé±ÒÿÿH‹¿H‹=ϾH‹GH‹€H‰ÞH…À„ö
ÿÐI‰ÆH…ÀL‹¥hÿÿÿ…ðÿÿH‹œ`H‹8H5Ü]H‰Ú1ÀèßA¾(¾DéH‹¹¾H‹SH‰ÞèÛàH‹
V¾H‹IH‰
«ÕH‰¬ÕH…À„ž
H‰ÇHÿL‹¥hÿÿÿéðÿÿèâßI‰ÅH…À…3ðÿÿA½DÇE¬(1ÉL‹eH‰Ú1Ûé%ÒÿÿH‹D¾H‹=õ½H‹GH‹€H‰ÞH…À„§
ÿÐH‰ÇH…ÀL‹mL‹¥hÿÿÿ…¬ïÿÿH‹¾_H‹8H5þ\H‰Ú1Û1Àè>Þ1Ò1ÉM‰ìA½DÇE¬(é±ÑÿÿI‹]H…Û„µïÿÿM‹eHÿIÿ$IÿMu
I‹EL‰ïÿP0L‰çH‰ÞH‹Uˆèø>ýÿI‰ÆHÿu
H‹CH‰ßÿP0M‰åL‹¥hÿÿÿM…ö…~ïÿÿÇE¬(Dždÿÿÿ&D1ÀH‰…HÿÿÿE1öéMA½DÇE¬(é&÷ÿÿÇE¬(A½)D1Ò1ÛL‹eé¹ÐÿÿDždÿÿÿ,DÇE¬(E1öH‹]˜é¼M‹oM…턎M‹gIÿEIÿ$Iÿ»u
I‹GL‰ÿÿP0M‰çL‹¥hÿÿÿI‹GH;Î^…TïÿÿL‰m°H‹…pÿÿÿH‰E¸L‰u	ØHÁàH÷ØHt¸ƒËL‰ÿH‰Úèa?ýÿH…À„”H‰ÃM…ítIÿMu
I‹EL‰ïÿP0Iÿu
I‹FL‰÷ÿP0L‹mIÿ…³ïÿÿé¤ïÿÿA¾)¾hDH‰pÿÿÿëA¾*¾tDM‰ìéŽèÏ݅À‰ðÿÿL‰ãÇE¬*L‰éA½vDéiÐÿÿÇE¬DždÿÿÿBE1ö1ÀH‰E 1Û1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿéÍÇE¬A½¨B¸H‰E ¸H‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿL‰¥hÿÿÿL‹eH‰ڻ1Éé\ÏÿÿDždÿÿÿöAÇE¬ûëDždÿÿÿ&BÇE¬ý1ÀH‰…Xÿÿÿ1ÀH‰…pÿÿÿ1ÀH‰E€1ÀH‰Eˆ1Û1ÀH‰E E1ÿ1ÀH‰…Hÿÿÿ1ÀH‰E˜é…ÎÿÿÇE¬A½[B1Ò1ÛE1ÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿH‹…xÿÿÿH‰…hÿÿÿL‹eéfÎÿÿL‰÷èRÜH…À„v
I‰ÅIÿu
I‹FL‰÷ÿP0I‹EH‹˜àL‰ïÿÓI‰ÇH…À„\
L‰ïÿÓH‰ÁH‰…HÿÿÿH…À„I
L‰ïÿÓH‰ÁH‰E˜H…À„E
L‰ïÿÓH…À…Â
è›ÜL‹pXM…ö…	IÿMu
I‹EL‰ïÿP0H‹HÿÿÿL‰}€L‹¥hÿÿÿL‹½8ÿÿÿéæÿÿH…Òx.H‹ü[H‹8HƒúH>çH
{BHDÈH5IF1Àè;Ú1Ò1ÛE1ÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€L‹eÇE¬A½îBéDÍÿÿ¾;C1ÀH‰E L‹eL‹½PÿÿÿH=:LH
ðæD‰òèt!ýÿE1íM‰æé+ÔÿÿH‹=ºÉH‹5Ë1ÀH‰E 1ÒèÎ?ýÿH…À„¡
H‰ÃH‰ÇèÿÿHÿu
H‹CH‰ßÿP01ÀH‰E L‹eL‹½PÿÿÿA¾¾KCëƒÇE¬DždÿÿÿBE1ö1ÀH‰E 1Û1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿL‹¥xÿÿÿéàDždÿÿÿ‹CÇE¬L‰óE1ö1ÀH‰E H‹…xÿÿÿH‰E˜éÌÿÿÇE¬1ÀH‰E L‹eH‹•xÿÿÿL‰éA½–CéjÌÿÿÇE¬(DždÿÿÿNDéjÇE¬(A½YD1ÛL‹eL‰ò1Éé7ÌÿÿÇE¬ûA½ëAëLDždÿÿÿðA1ÀH‰…XÿÿÿL‹¥xÿÿÿ1ÀH‰…pÿÿÿ1ÀH‰E€1ÀH‰Eˆ1Û1ÀH‰E E1ÿéÀÇE¬ýA½B»A¿ëÇE¬ýA½ B»¸H‰E ¸H‰E˜¸H‰Eˆ¸H‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿH‹…xÿÿÿH‰…hÿÿÿL‹e1Òé%ËÿÿDždÿÿÿXBÇE¬éeïÿÿDždÿÿÿ{BÇE¬L‹¥xÿÿÿ1ÀH‰E€1ÀH‰Eˆ1Û1ÀH‰E E1ö1ÀH‰…Hÿÿÿ1ÀH‰E˜éˆÊÿÿA½§C1ÀH‰E L‹eH‰Ú1Ûé²ÊÿÿDždÿÿÿ{CÇE¬E1öH‹]˜1ÀH‰E H‹…xÿÿÿé9ÊÿÿÇE¬(Dždÿÿÿ>DéÑL‰ò1ÉÿÐH…À…Ûßÿÿ黨ÿÿA¾!¾ÁCéýÿÿH‹=úÆH‹5kÈ1Òè=ýÿH…À„H‰ÃH‰Çè`	ÿÿHÿu
H‹CH‰ßÿP0L‹eL‹½PÿÿÿA¾%¾óCéÌüÿÿH‹G¶H‹SH‰Þè‰ØH‹
¶H‹IH‰
9ÍH‰:ÍH…À„³H‰ÇHÿL‹¥hÿÿÿéæÿÿè×I‰ÆH…À…®æÿÿL‰ãÇE¬"A½ÍCL‹½PÿÿÿL‹uH‹xÿÿÿéMÊÿÿH‹ȵH‹=™µH‹GH‹€H‰ÞH…À„·ÿÐH‰ÇH…ÀL‹¥hÿÿÿ…æÿÿH‹fWH‹8H5¦TH‰Ú1ÀèèÕA¾"¾ËCéÝûÿÿÇE¬"A½ØC»E1ÿéÌýÿÿH‰Ú1ÉÿÐI‰ÆH…ÀH‹½Hÿÿÿ…„éÿÿDždÿÿÿ„CÇE¬E1öH‹]˜éhüÿÿH‰Ú1ÉÿÐH‰ÃH…À…•éÿÿÇE¬(DždÿÿÿGD1ÀH‰…HÿÿÿH‹]˜¸H‰E˜L‰¥xÿÿÿM…í…7ÈÿÿéIÈÿÿèC×è@ÕH…À…áH‹=ˆ´H‹GH‹€H‰ÞH…À„
ÿÐI‰ÅH…ÀL‹½PÿÿÿL‹µ@ÿÿÿ…ÒÅÿÿH‹NVH‹8H5ŽS1ÀH‰E H‰Ú1ÀèÊÔ1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿéŽè³ÕI‰ÅH…À…nÅÿÿé¦×ÿÿèÔH…À…„H‹=׳H‹GH‹€H‰ÞH…À„´ÿÐI‰ÇH…ÀL‹µ@ÿÿÿL‹e…ÚÅÿÿH‹ UH‹8H5àR1ÀH‰E H‰Ú1ÀèÔ1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿé1èÕI‰ÇH…À…vÅÿÿéÃØÿÿÇE¬ú1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…XÿÿÿM‰îA½ÉAL‹¥xÿÿÿé¿ÍÿÿA½1B1ÀH‰E˜épÑÿÿèŠÓH…À…_H‹=ҲH‹GH‹€H‰ÞH…À„ƒÿÐH‰ÇH…À…­ÜÿÿH‹¦TH‹8H5æQ1ÀH‰E€H‰Ú1Àè"Óéè8ÔH‰ÇH…À…vÜÿÿéìÿÿèÓH…ÀuNH‹=`²H‹GH‹€H‰ÞH…À„'ÿÐI‰ÆH…ÀL‹¥hÿÿÿ…ßÿÿH‹-TH‹8H5mQH‰Ú1Àè¯Ò1ÀH‰E L‹eL‹½PÿÿÿA¾¾]Céžøÿÿè©ÓI‰ÆH…ÀL‹¥hÿÿÿ…¼ÞÿÿéÄïÿÿè~ÒH…À…ÈH‹=ƱH‹GH‹€H‰ÞH…À„ÖÿÐH‰ÁH…ÀL‹¥hÿÿÿL‹u˜…úÞÿÿH‹SH‹8H5ÏPH‰Ú1ÀèÒ1ÉH‹•xÿÿÿ1ÀH‰E L‹½PÿÿÿL‹eÇE¬A½bCéÊÅÿÿèÓéðÿÿ1Û1ÀH‰…Hÿÿÿé÷ðÿÿèØÑH…ÀuNH‹=$±H‹GH‹€H‰ÞH…À„>ÿÐI‰ÆH…ÀL‹¥hÿÿÿ…iâÿÿH‹ñRH‹8H51PH‰Ú1ÀèsÑL‹eL‹½PÿÿÿA¾(¾Déh÷ÿÿèsÒI‰ÆH…ÀL‹¥hÿÿÿ…âÿÿéòÿÿèHÑH…À…åH‹=°H‹GH‹€H‰ÞH…À„ãÿÐH‰ÇH…ÀL‹mL‹¥hÿÿÿ…GâÿÿH‹YRH‹8H5™OH‰Ú1Û1ÀèÙÐ1Ò1ÉM‰ìéèèÑéQòÿÿ1ÛE1íL‹¥hÿÿÿI‹GH;^R…äâÿÿé‹óÿÿÇE¬A½C1ÒéøêÿÿE1äëA¼1ÀH‰…HÿÿÿëA¼IÿMu
I‹EL‰ïÿP0èNÒL‹pXM…ö…·H‹âQH‹8IƒüH$ÝH
a8HDÈH5/<L‰â1ÀèÐ1ÉÇE¬A½C1Ò1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€L‹eélÃÿÿHÿu
H‹HH‰ÇÿQ0H‹pQH‹8H5ª;1ÀH‰E€º1ÀèºÏDždÿÿÿCÇE¬1ÀH‰Eˆ1Û1ÀH‰E E1öé†ÂÿÿH‰ÃH‹QH‹0L‰÷èX·ÿÿ…À„TH‰ØHƒÀXL‹c`H‹[hHÇ@HÇ@HÇIÿu
I‹FL‰÷ÿP0M…ätIÿ$uI‹D$L‰çÿP0H…Û„†ôÿÿHÿ…}ôÿÿH‹CH‰ßÿP0énôÿÿ¾GCL‹eL‹½PÿÿÿA¾éÿôÿÿ¾ïCL‹eL‹½PÿÿÿA¾%éäôÿÿèáÎH…ÀuNH‹=-®H‹GH‹€H‰ÞH…À„¬ÿÐH‰ÇH…ÀL‹¥hÿÿÿ…±ÞÿÿH‹úOH‹8H5:MH‰Ú1Àè|ÎL‹eL‹½PÿÿÿA¾"¾ËCéqôÿÿè|ÏH‰ÇH…ÀL‹¥hÿÿÿ…cÞÿÿéAøÿÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿL‹½PÿÿÿA¾ð¾#Aé
ôÿÿèÏéëøÿÿ1ÀH‰E 1ÀH‰E˜1ÀH‰Eˆ1ÀH‰E€1ÀH‰…pÿÿÿ1ÀH‰…Xÿÿÿ1ÀH‰…@ÿÿÿL‹eL‹½PÿÿÿA¾ñ¾AAé²óÿÿè½ÎéDùÿÿH‰ÃH‹OH‹0L‰÷è]µÿÿ…À„˜H‰ØHƒÀXL‹k`H‹[hHÇ@HÇ@HÇIÿu
I‹FL‰÷ÿP0M…ítIÿMu
I‹EL‰ïÿP0H…Û„ÙüÿÿHÿ…ÐüÿÿH‹CH‰ßÿP0éÁüÿÿ1ÀH‰E€H‹…xÿÿÿH‰…hÿÿÿ1ÀH‰Eˆ1ÀH‰E˜1ÀH‰E 1Û1Ò1ÉL‹eÇE¬A½¹BéZÀÿÿèéÍH‰ÇH…À…'ÖÿÿéuùÿÿèÓÍI‰ÆH…ÀL‹¥hÿÿÿ…æØÿÿéÑùÿÿ1É1ÀH‰E L‹½PÿÿÿL‹eÇE¬A½bCH‹•xÿÿÿéTÀÿÿèŠÍé"úÿÿè€ÍI‰ÆH…ÀL‹¥hÿÿÿ…(Ýÿÿéºúÿÿ1Û1Ò1ÉL‹eÇE¬(A½D鸿ÿÿèGÍéûÿÿDždÿÿÿCÇE¬1ÀH‰Eˆ1ÀH‰E€é]üÿÿèÍH‰ÇH…ÀL‹¥hÿÿÿ…ÜÿÿéLýÿÿÇE¬A½C1ÉéÀûÿÿf„UH‰åAWAVAUATSHìˆH‰óI‰üHÇE¨HÇE¸HÇEÈHÇEÀH‰÷èìÌHƒøÿ„æI‰ÅH‹KH‹6¿H9ÁI‰ØH‰]°tI‹HH9Á…¢é|H‹5ɸH‹L‰ÇH…À„;ÿÐH‰ÃH‰E¨H…À„>H‹5=´H9ót6H‹CH;ÍL…H‹CH…À~Hƒøu
H‹ùLƒ{tH‹ÜLëH‹ãLHÿH‰E¸HÿtHÇE¨H‹]¸H;¼Lu!ë_H‹CH‰ßÿP0HÇE¨H‹]¸H;›Lt@H;šLt7H;Lt.H‰ßèÁËA‰ƅÀL‹E°ˆhHÿt)HÇE¸E…öu;é’E1öH;WLA”ÆL‹E°Hÿu×H‹CH‰ßÿP0L‹E°HÇE¸E…ö„\H‹5¹I‹@H‹€L‰ÇH…À„ÄÿÐH‰ÃH‰E¸H…À„ÇH;ìK„åH;çK„ØH;ÊK„ËH‰ßèËA‰ƅÀL‹E°ˆ2%Hÿ„ÆHÇE¸E…ö„ÔL;”K„
H‹O½H…À„„&I‹HH9Á„ƒ+H‹‘XH…Ò„Â&H‹rH…ö~#1ÿf.„@H9Dú„L+HÿÇH9þuíH‹¾JH‹:H‹QH‹HH5Ø41Û1ÀèÉÇEÐ{A¼Ké/E1öH;ÿJA”ÆL‹E°Hÿ…:ÿÿÿH‹CH‰ßÿP0L‹E°HÇE¸E…ö…,ÿÿÿH‹ˆ¼I‹HH9Á„ßH‹‘XH…Ò„!
H‹rH…ö~1ÿH9Dú„¹HÿÇH9þuíH‹ÀH‹=קH;G…˜
H‹ÀH…À„Û
HÿL‹=û¿L‰}ÀM…ÿ„„7L‰ÇL‰þèwɃøÿ„ž
‰ÃIÿtHÇEÀ…ÛL‰eˆ…™ëI‹GL‰ÿÿP0HÇEÀ…ÛL‰eˆ…yH‹ ¿H‹=I§H;G…é!H‹¿H…À„:"HÿH‹}¿H‰]ÀH…Û„¢7H‹5y·H‹CH‹€H‰ßH…À„á!ÿÐH‰E¸H…À„ä!Hÿu
H‹CH‰ßÿP0¿èÉH‰EÀH…À„"H‹>·HÿH‹4·H‹MÀH‰AH‹E°H‹xH‹5µ¦H‹GH‹€H…À„Ø!ÿÐH‰ÃH‰EÈH…À„Û!H‹CH;ìH…Þ!HÿH‹]ÈH‰ØH‰E¨A¾ªH…À„ã!Hÿu
H‹CH‰ßÿP0HÇEÈH‹E¨‹H »öÁ@u!Áéƒá»ÿƒùt1ۃù•ÃÁãËÿÿÇEЩH‹M?ÖHxH‰A HÇE¨H‹a´HÿH‹W´H‹MÀH‰A(H‹EÀH‰E ‰Þè*ÈH…À„AH‰Á1ûÿÿ—ûDA¿DCø‹A ¨ H‰M˜u
H‹AHH‰E€ëHQ0HƒÁH¨@HDÑH‰U€H‹} H‹_€{ ‰ù D‰øH‰EL‹sM…ötaˆ¤
‹K ‰ÈÁèƒàöÁ uH‹sHH‹}˜D9øt)1öH‰Ú1ÉM‰ðè®Çë)Hs0HSHöÁ@HDòH‹}˜D9øu×L‰òH¯UH‹}€èQÉH‹} H‹_ €{ ‰“ L‹CM…À„Ÿ M‰ÄMôˆ"
‹K ‰ÈÁèƒàöÁ u-H‹sHD9øt8H‹}˜L‰öH‰Ú1Éè.ÇH‹} H‹_(€{ xFég Hs0HSHöÁ@HDòD9øuÈH‹EL¯ðLu€L¯ÀL‰÷L‰ÂèºÈH‹} H‹_(€{ ‰& L‹CM…ÀtkL‰ÀLàˆ	‹K ‰ÈÁèƒàöÁ uH‹sHD9øt'H‹}˜L‰æH‰Ú1Éè›Æë/Hs0HSHöÁ@HDòD9øuÙH‹EL¯àH‹}€LçL¯ÀL‰Âè8ÈH‹} H‹E˜H‰E¨HÿuH‹GÿP0¿èÜÅH‰EÀH…ÀL‹eˆ„œH‹M¨H‰HH‹T´HÿH‹MÀH‰A èðÃH‰E¨H…À„{H‰ÃH‹5³H‹­H‰ÇèÖÅÀˆ…L‹u¸H‹uÀL‰÷H‰Úèó)ýÿH‰EÈH…À„$!Iÿ„”HÇE¸H‹}ÀHÿ„žHÇEÀH‹}¨Hÿ„¥HÇE¨H‹}ÈHÿ„¬HÇEÈM‹´$èL‹=¯I‹^H‰ßL‰þèVÅH…À„	H‰ÇH‹@H‹ˆH…ÉtL‰öH‰ÚÿÑH‰E H…ÀuéþH‰} HÿM‹´$èL‹= ®M‹fL‰çL‰þèÿÄH…À„âH‹HH‹™H…Ût2H‰ÇL‰öL‰âÿÓH‰E¨H…À„ÔH‹HHÇEÀH;
Dt!é¥HÿH‰E¨HÇEÀH;
pD…‰H‹HH‰MÀH…É„,H‹@HÿHÿH‹}¨H‰E¨Hÿ„AH‹]ÀH‹E¨H…Û„HH‰ÇH‰Þèr"ýÿH‰EÈHÿu
H‹CH‰ßÿP0H‹EÈHÇEÀH…À„`H‹}¨Hÿ„ÈHÇE¨H‹}ÈHÿ„ÏHÇEÈèóÃH‰EH‹H‹
ñCë€H‹PH…Òt)H‰ÐL‹:M…ÿtìI9ÏtçH‹HH‹@IÿÇE€H…Éu"ë#H‹HH‹@M…ÿ„ IÿÇE€H…ÉtHÿH‰MÐH…ÀtHÿH‰E˜IÿÍM…펛HƒEˆ L‹%#Cë5H‹GÿP0H‹}¨Hÿ„&f.„HÇE¨IÿÍM…íŽXH‹}ˆL‰îèI‰ÆH‹M°H‹AL9àt@H;éBtWH‹@hH…À„–H‹@H…À„‰H‰ÏL‰öÿÐH‹M°H‰ÃH‰]ÈH…Ûu:éWH‹AJ‹ðHÿH‰]ÈH…Ûu!é>€J‹\ñHÿH‰]ÈH…Û„"H‹AL9àtBH;kBtYH‹@hH…À„`H‹@H…À„SH‰ÏL‰îÿÐH‹M°H‰ÃH‰]¨H…Ûu<éöfH‹AJ‹èHÿH‰]¨H…Ûu!éÛ€J‹\éHÿH‰]¨H…Û„¿H‹]ÈH‹AL9àt>H‹@hH…À„H‹@(H…À„
H‰ÏL‰îH‰ÚÿЉÅÛH‹M°y+éf.„H‹AJ‹<èHÿH‹AJ‰èHÿ„­H‹}ÈHÿuH‹GÿP0H‹M°HÇEÈH‹]¨H‹AL9àt;H‹@hH…À„ÝH‹@(H…À„ÐH‰ÏL‰öH‰ÚÿЉÅÛy,é±f.„H‹AJ‹<ðHÿH‹AJ‰ðHÿ„ÓýÿÿH‹}¨Hÿ…çýÿÿH‹GÿP0HÇE¨IÿÍM…íàýÿÿé3H‹GÿP0H‹M°H‹}ÈHÿ…Oÿÿÿé?ÿÿÿL‰ï芿H…À„H‹}°H‰…xÿÿÿH‹µxÿÿÿH‰Úè'ÀH‹½xÿÿÿ‰ÃHÿ…ÆþÿÿH‹GÿP0éºþÿÿL‰÷èA¿H…À„æI‰ÆH‹}°H‰ÆH‰Úèæ¿‰ÃIÿ…ÿÿÿI‹FL‰÷ÿP0éÿÿÿL‰÷è¿H…À„ÒH‹}°H‰ÃH‰Æèv¿H‰ßH‰ÃHÿuH‹GÿP0H‹M°H‰]ÈH…Û…†ýÿÿé£L‰ï輾H…À„§H‹}°H‰ÃH‰Æè.¿H‰ßH‰ÃHÿuH‹GÿP0H‹M°H‰]¨H…Û…¾ýÿÿéx€}€uIÿu
I‹GL‰ÿÿP0H‹}ÐH…ÿt	Hÿ„îH‹}˜H…ÿt	Hÿ„õHƒ} t7H‹5%®H‹} 1Òè¢#ýÿH‹} H‰ÃHÿuH‹GÿP0H…Û„THÿ„ÎE1ÿéã*H‹GÿP0HÇE¨H‹}ÈHÿ…1ûÿÿH‹GÿP0é%ûÿÿH‹GÿP0H‹]ÀH‹E¨H…Û…¸úÿÿH‹HH;
Â>„µH;
%>…šH‹HöA„ŒH‰Ç1öè/"ýÿH‰EÈHÇEÀH…À… úÿÿA¼NéÉH‹GÿP0H‹}˜H…ÿ…ÿÿÿéÿÿÿH‹GÿP0Hƒ} …ÿÿÿé2ÿÿÿH‹CH‰ßÿP0E1ÿé*²‰U€H…É…áúÿÿéßúÿÿI‹@é{ÇEЯA¼èMép"H‰Ç1ö1ÒèÃýÿH‰EÈHÇEÀH…À…úÿÿé_ÿÿÿI‹FL‰÷ÿP0HÇE¸H‹}ÀHÿ…bøÿÿH‹GÿP0HÇEÀH‹}¨Hÿ…[øÿÿH‹GÿP0HÇE¨H‹}ÈHÿ…TøÿÿH‹GÿP0éHøÿÿA¾ENL‹mH‹}ÀH…ÿ…fémA¾GNL‹mH‹}ÀH…ÿ…JéQ1ÛÇEÐsA¼ïJé!H‰ÊH…Ò„•H‹’H9Âuëé‘H‹5¦šH‰Ç1Òèl!ýÿH‰EÈHÇEÀH…À…
ùÿÿéhþÿÿH‹£<H‹8H5*.è@»H‹}˜HÿA¾ªuH‹GÿP0HÇE¨A¼ËMé$è¼H‰ÃH‰E¨H…À…ÂïÿÿA¼KA¾wé[$L‹5fšI‹VL‰ö蠼I‰ÇH‹šH‹@H‰M²L‰=N²M…ÿ„“)IÿL‹E°ëIÇEЧA¼œMé› L‹5šH‹=ܙH‹GH‹€L‰öH…À„c)ÿÐI‰ÇH…ÀL‹E°„f)L‰}ÀéüñÿÿH‹s;H‹8L‰þèFºÇEбA¼	Né7 H‹O;H‹8L‰þè"ºHÇE¨A¼NH‹} HÿÇEб… H‹Gé×H;ê:…OñÿÿH‹5ŨH‹L‰ÇH…À„£
ÿÐH‰ÃH‰EÈH…À„¦
H‹5¹¢H9ótH‹CH;Q;…›
Hƒ{u	H‹…;ëH‹l;HÿH‰E¸HÿtHÇEÈH‹]¸H;U;u!ëiH‹CH‰ßÿP0HÇEÈH‹]¸H;4;tJH;3;tAH;;t8H‰ßèZºA‰ƅÀH‹}°ˆR
Hÿt3HÇE¸E…ötAH‹ð:HÿéŒ&E1öH;æ:A”ÆH‹}°HÿuÍH‹CH‰ßÿP0H‹}°HÇE¸E…öu¿H‹5/¦H‹GH‹€H…À„¥
ÿÐH‰ÃH‰E¸H…À„¨
H‹5¢¡H9ót6H‹CH;2:…H‹CH…À~Hƒøu
H‹^:ƒ{tH‹A:ëH‹H:HÿH‰EÈHÿu
H‹CH‰ßÿP0HÇE¸H‹]ÈH;:t@H;:t7H;ý9t.H‰ßè=¹A‰ƅÀH‹}°ˆàHÿt)HÇEÈE…öu;éaE1öH;Ó9A”ÆH‹}°Hÿu×H‹CH‰ßÿP0H‹}°HÇEÈE…ö„+H‹5£H‹GH‹€H…À„pÿÐH‰ÃH‰EÈH…À„sH‹5ó¦H‹CH‹€H‰ßH…À„gÿÐH‰E¸H…À„jHÿu
H‹CH‰ßÿP0HÇEÈH‹—®H‹=€–H;G…MH‹‡®H…À„¥HÿH‹t®H‰]ÈH…Û„ÑH‹5ȤH‹CH‹€H‰ßH…À„LÿÐH‰EÀH…À„OHÿu
H‹CH‰ßÿP0HÇEÈH‹]¸L‹uÀHÿ„ñHÇE¸H‹}ÀHÿ„ûHÇEÀL9ó„H‹ý­H‹=ƕH;G…	H‹í­H…À„¥HÿH‹ڭH‰]ÀH…Û„É%H‹5®¡H‹CH‹€H‰ßH…À„HÿÐH‰E¸H…ÀH‹}°„KHÿuH‹CH‰ßÿP0H‹}°H‹5r§èœÿÿH‰EÀH…À„mHÇE¨H‹}¸H‹OH;
‰7„bH‰ÆèËýÿH‰EÈHÇE¨H‹}ÀHÿ„‹HÇEÀHƒ}È„’H‹}¸HÿuH‹GÿP0HÇE¸H‹EÈH‰E HÇEÈM‹´$èL‹=ð I‹^H‰ßL‰þè7·H…À„JH‰ÇH‹@H‹ˆH…ÉtBL‰öH‰ÚÿÑH‰E˜H…Àu8é3H‹GÿP0HÇEÀHƒ}È…nÿÿÿÇEМA¼¸LéüH‰}˜HÿL‰eˆM‹´$èL‹=Q M‹fL‰çL‰þ谶H…À„ç
H‹HH‹™H…Ût6H‰ÇL‰öL‰âÿÓH‰E¸H…À„Ù
H‹HL‹eˆHÇEÀH;
:6t%épHÿH‰E¸L‹eˆHÇEÀH;
6…PH‹HH‰MÀH…É„•H‹@HÿHÿH‹}¸H‰E¸Hÿ„H‹]ÀH‹E¸H…Û„H‰ÇH‰ÞèýÿH‰EÈHÿu
H‹CH‰ßÿP0H‹EÈHÇEÀH…À„'H‹}¸HÿuH‹GÿP0HÇE¸H‹}ÈHÿuH‹GÿP0HÇEÈ薵H‰…hÿÿÿH‹H‹
‘5ë€H‹PH…Òt,H‰ÐH‹2H…ötìH9ÎtçH‹HH‹@HÿDžxÿÿÿH…Éu%ë&H‹HH‹@H…ö„4HÿDžxÿÿÿH…ÉtHÿH‰MH‰u€H…ÀtHÿH‰EÐIÿÍM…íŽbIƒÄ L‰eˆë7H‹AJ‹<èIÿH‹AN‰<èHÿ„1f.„DIÿÍM…íŽ!L‰çL‰î詀I9ÅtäI‰ÇH‹}°H‹GH;b4t-H;y4t.H‹@hH…À„^H‹@H…À„QL‰þÿÐH‰ÃëH‹GJ‹øëJ‹\ÿHÿH‰]ÈA¾¢H…Û„¹H‹} H‹5;4H‰Ú裳…ÀˆÄHÿu
H‹CH‰ßÿP0HÇEÈH‹M°H‹AH;Í3tFH;ä3tGH‹@hH…À„H‹@H…À„÷H‰ÏL‰îÿÐH‹M°I‰ÄL‰eÈA¾£M…äu+éUH‹AN‹$èëN‹déIÿ$L‰eÈA¾£M…ä„/H‹AH;T3t<H‹@hH…À„ãH‹@(H…À„ÖH‰ÏL‰þL‰âÿЉÃL‹eˆL‹} …ÛH‹M°y&éH‹AJ‹<øIÿ$H‹AN‰$øHÿL‹eˆL‹} t#H‹}ÈHÿt.HÇEÈH‹AH;Ù2u=éþÿÿH‹GÿP0H‹M°H‹}ÈHÿuÒH‹GÿP0H‹M°HÇEÈH‹AH; 2„ßýÿÿH‹@hH…ÀtlH‹@(H…ÀtcH‰ÏL‰îL‰úÿЉÅÛ‰ãýÿÿé{H‹GÿP0éÒýÿÿL‰ÿèB±H…À„@I‰ÇH‹}°H‰ÆL‰âè籉ÃIÿ…	ÿÿÿI‹GL‰ÿÿP0éúþÿÿL‰ïè±H…À„!I‰ÆH‹}°H‰ÆL‰ú誱‰ÃIÿu€I‹FL‰÷ÿP0éqÿÿÿL‰ÿḛ̀H…À„xI‰ÆH‹}°H‰Æè>±H‰ÃIÿ…ŸýÿÿI‹FL‰÷ÿP0éýÿÿL‰ï葰H…À„bH‰ÃH‹}°H‰Æè±I‰ÄHÿu
H‹CH‰ßÿP0H‹M°L‰eÈA¾£M…ä…	þÿÿé3€½xÿÿÿH‹}€uHÿuH‹GÿP0H‹}H…ÿL‹} tHÿuH‹GÿP0H‹}ÐH…ÿtHÿuH‹GÿP0Hƒ}˜„ßH‹5âŸH‹}˜1Òè_ýÿH‹}˜H‰ÃHÿuH‹GÿP0H…Û…¢ÇEНA¼yM1Ûé5H‹GÿP0H‹]ÀH‹E¸H…Û…ñúÿÿH‹HH;
¤0„öH;
0…<H‹HöA„.H‰Ç1öèýÿH‰EÈHÇEÀH…À…ÙúÿÿA¼ÖLéÿH‹CH‰ßÿP0HÇE¸H‹}ÀHÿ…øÿÿH‹GÿP0HÇEÀL9ó…þ÷ÿÿH‹ë¥H‹=čH;G…H‹ۥH…À„XHÿH‹ȥH‰]ÀH…Û„ªH‹5ôH‹CH‹€H‰ßH…À„ÿÿÐH‰E¸H…À„Hÿu
H‹CH‰ßÿP0èƭH‰EÀH…À„/H‰ÃH‹5ëœH‹ô–H‰Ç謭…ÀˆòL‹u¸H‹59ŸL‰÷H‰ÚèÆýÿH‰EÈH…À„>Iÿ„ÚHÇE¸H‹}ÀHÿ„äHÇEÀH‹}ÈHÿ„ëHÇEÈH‹ï¤H‹=¸ŒH;G„òöÿÿL‹5÷ŒI‹VL‰öè¯H‰ÃH‹‘ŒH‹@H‰¶¤H‰·¤H…Û„fHÿéš²‰•xÿÿÿH…É…ÍùÿÿéËùÿÿH‰Ç1ö1ÒèdýÿH‰EÈHÇEÀH…À…üøÿÿéþÿÿA¼…L1ÛÇEКéÙI‹FL‰÷ÿP0HÇE¸H‹}ÀHÿ…ÿÿÿH‹GÿP0HÇEÀH‹}ÈHÿ…ÿÿÿH‹GÿP0é	ÿÿÿ»MH‹}ÀH…ÿL‹­hÿÿÿ…û
é»(MH‹}ÀH…ÿL‹­hÿÿÿ…Ý
éä
A¾¤»2MH‹}ÀH…ÿL‹­hÿÿÿ…¹
éÀ
è0­H‰ÃH‰EÈH…À…ZòÿÿÇEЍA¼-Lé	H;‰-„rH‰ߺè$­H‰E¸H…À…\òÿÿÇEЍA¼/LéÐÇEЍA¼2Lé¾H‹5æŠH‰Ç1Òè¬ýÿH‰EÈHÇEÀH…À…¤÷ÿÿéÆüÿÿH;-„›H‰ߺ讬H‰E¸H…À…àÿÿÇEÐwA¼KéZèZ¬H‰ÃH‰E¸H…À…9áÿÿÇEÐwA¼Ké3ÇEбA¼ŽNé!ÇEÐwA¼Kéè¬H‰ÃH‰E¸H…À…XòÿÿÇEБA¼QLéèèè«H‰E¸H…ÀH‹}°…µôÿÿÇEМA¼¦LéÀL‹5PŠH‹=ŠH‹GH‹€L‰öH…À„âÿÐH‰ÃH…À„åH‰]Àé6ôÿÿÇEМA¼©LérH‹OH‰M¨H…É„ôÿÿH‹GHÿHÿH‹}¸H‰E¸HÿuH‹GÿP0H‹]¨H‹}¸H‹EÀH…Û„ZôÿÿH‰ÞH‰ÂèýÿH‰EÈHÿ…NôÿÿH‹CH‰ßÿP0é?ôÿÿH‹+H‹8L‰þèò©ÇEНA¼ÆLé‹H‹û*H‹8L‰þèΩHÇE¸A¼ÈLL‹} H‹}˜HÿÇEН…xH‹Gé}HÇEÈA¾ANL‹mH‹}ÀH…ÿuë'HÇE¨A¾CNL‹mH‹}ÀH…ÿtHÿuH‹GÿP0HÇEÀH‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹}¸H…ÿtHÿuH‹GÿP0HÇE¸H‹}ÈH…ÿtHÿuH‹GÿP0HÇEÈH=¸H
äµD‰öº´ècðüÿHu¨HUÈHMÀL‰ïè_áþÿ…Àˆ‡H‹u¨H‹UÈH‹M?1Àè-ªH‰E¸H…À„jH‹] H‰ßH‰Æ1Òè‘ýÿI‰ÆHÿ„8H‹}¸Hÿ„BHÇE¸M…ö„IL;5H*t)L;5G*t L;5.*tL‰÷èn©‰ÃëA¼_Né­1ÛL;5*”ÃIÿu
I‹FL‰÷ÿP0…Ûˆÿ„H‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹}ÈH…ÿtHÿuH‹GÿP0HÇEÈH‹}ÀH…ÿtHÿuH‹GÿP0HÇEÀI‹…H‹8H‹XL‹pL‰8H‹MÐH‰HH‹M˜H‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ö„åéÿÿIÿ…ÜéÿÿI‹FL‰÷é¥êÿÿH‹CH‰ßÿP0H‹}¸Hÿ…¾þÿÿH‹GÿP0HÇE¸M…ö…·þÿÿA¼hNé‹A¼lNé€èo¨H‹M¨H‹UÈH‹uÀH‹xXH‹X`L‹phH‰HXH‰P`H‰phH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ötIÿu
I‹FL‰÷ÿP0HÇE¨HÇEÈHÇEÀA¼tNI‹…H‹8H‹XL‹pL‰8H‹MÐH‰HH‹M˜H‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ötÇEбIÿ…*I‹FL‰÷ÿP0éÇEбéL‹5…I‹VL‰öègH‰ÃH‹9…H‹@H‰~H‰H…Û„dHÿëWèҦH‰E¸H…À…ÞÿÿÇEЩA¼ªMé®L‹5…H‹=ï„H‹GH‹€L‰öH…À„&ÿÐH‰ÃH…À„)H‰]Àé¡ÝÿÿA¼µMëèj¦H‰ÃH‰EÈH…À…%ÞÿÿA¼½M1ÛÇEЪéCH;á&…H‹Ô&H‰ßÿˆé
ÞÿÿA¼¿MéH‰ßèõ¦H‹} …À„óÞÿÿé¾éÿÿH‰ßèܦH‹} …À„Yßÿÿé¥éÿÿM‰ôH‹_(€{ ˆÚßÿÿH‰ß貦H‹} …À„Æßÿÿé{éÿÿA¼ÖMé­
A¼æMA¾¯é	ÇEÐwA¼KéŠ
fWÀf.CH‹
Y&H‹b&HEÁHJÁéÙêÿÿH;æ%„ÅH‰ߺ聥H‰EÈH…À…íëÿÿÇEБA¼SLé-
è-¥H‰ÃH‰EÈH…À…ìÿÿÇEБA¼]Lé
è¥H‰E¸H…À…–ìÿÿÇEБA¼_Léâ	ÇEБL‹5kƒI‹VL‰ö荥H‰ÃH‹ƒH‹@H‰
›H‰›H…Û„ŸHÿë^螤H‰EÀH…À…±ìÿÿÇEБA¼dLéz	ÇEБL‹5ƒH‹=´‚H‹GH‹€L‰öH…À„ZÿÐH‰ÃH…À„]H‰]Èé/ìÿÿÇEБA¼bLé%	ÇEБA¼VLé	H‹{$H‹8H5‘è£ÇEÐ{A¼KéëòCf.m¯H‹
¶$H‹¿$HEÁHJÁéÏ×ÿÿA¼ñMé¸H‰ÊH…Ò„‘H‹’H9ÂuëH‰ÈL‹E°éòCf.¯H‹
_$H‹h$HEÁHJÁéêÿÿL‹5܁I‹VL‰öè¤H‰ÃH‹–H‹@H‰«™H‰¬™H…Û„NHÿëWè/£H‰E¸H…À…þóÿÿÇEВA¼xLéL‹5{H‹=LH‹GH‹€L‰öH…À„ÿÐH‰ÃH…À„H‰]ÀéƒóÿÿA¼ƒLéßôÿÿHÇEÈA¾¢»MH‹}ÀH…ÿL‹­hÿÿÿu%ë/HÇEÈA¾£»&MH‹}ÀH…ÿL‹­hÿÿÿtHÿuH‹GÿP0HÇEÀH‹}¨H…ÿtHÿuH‹GÿP0HÇE¨H‹}¸H…ÿL‹} tHÿuH‹GÿP0HÇE¸H‹}ÈH…ÿtHÿuH‹GÿP0HÇEÈH=ÆH
ò­‰ÞD‰òètèüÿHuÈHU¸HMÀL‰ïèpÙþÿ…Àˆ‹H‹uÈH‹U¸H‹M?1Àè>¢H‰E¨H…À„†H‹]˜H‰ßH‰Æ1Òè¢ýÿH‰ßH‰ÃHÿ„@H‹}¨Hÿ„GHÇE¨H…Û„NH;V"t*H;U"t!H;<"tH‰ßè|¡A‰ÆëA¼JMé±E1öH;("A”ÆHÿu
H‹CH‰ßÿP0E…öˆ„H‹}ÈH…ÿtHÿuH‹GÿP0HÇEÈH‹}¸H…ÿtHÿuH‹GÿP0HÇE¸H‹}ÀH…ÿtHÿuH‹GÿP0HÇEÀI‹…H‹8H‹XL‹pH‹M€H‰H‹MH‰HH‹MÐH‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ö„ÖIÿ…ÍI‹FL‰÷é¾H‹GÿP0H‹}¨Hÿ…¹þÿÿH‹GÿP0HÇE¨H…Û…²þÿÿA¼SMé‹A¼WMé€èx H‹MÈH‹U¸H‹uÀH‹xXH‹X`L‹phH‰HXH‰P`H‰phH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0M…ötIÿu
I‹FL‰÷ÿP0HÇEÈHÇE¸HÇEÀA¼_MI‹…H‹8H‹XL‹pH‹M€H‰H‹MH‰HH‹MÐH‰HH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0ÇEНM…ötIÿt1Ûé1I‹FL‰÷ÿP01Ûé H;L‹E°…¼ÔÿÿH‰ÈM‹xH‹5#H‹€L‰ÇH…À„ƒÿÐH‰ÃH‰E¸H…À„†H‹CH;kt/H;‚t/H‹@hH…À„tH‹@H…À„gH‰ß1öÿÐH‰ÃëH‹CH‹ëH‹[HÿH‰]¨H…Û„ßH‹}¸HÿuH‹GÿP0HÇE¸H‹]¨H‰ßèy×þÿH‰E˜HƒøÿuèBH…À…wHÿu
H‹CH‰ßÿP0HÇE¨H‹5{ˆH‹}°H‹GH‹€H…À„ÍÿÐH‰ÃH‰E¨H…À„ÐH‹5B‰H‹CH‹€H‰ßH…À„ÃÿÐH‰E¸H…À„ÆHÿu
H‹CH‰ßÿP0HÇE¨H‹]¸H‰ßèÉÖþÿI‰ÆHƒøÿu蓜H…À…ÚHÿu
H‹CH‰ßÿP0HÇE¸H‹¬“H‹=µ{H;GL‰u€…kH‹˜“H…À„»HÿH‹…“H‰]¸H…Û„ÈH‹5‘‡H‹CH‹€H‰ßH…À„cÿÐH‰E¨H…À„fHÿu
H‹CH‰ßÿP0L‰÷èvœH‰E¸H…À„“H‰ÿèRH‰EÈH…À„‹H‰X耛H‰E¸H…À„‡H‹ø’H‹=ñzH;G…H‹è’H…À„ÜHÿH‹ՒH…Û„+H‹5…‡H‹CH‹€H‰ßH…À„‡ÿÐH‰EÀH…À„ŠHÿu
H‹CH‰ßÿP0H‹}¸H‹5†H‹]ÀH‰Úèñš…ÀˆHÿu
H‹CH‰ßÿP0H‹]¨H‹uÈH‹U¸H‰ßèþýÿH‰EÀH…À„ëHÿu
H‹CH‰ßÿP0HÇE¨H‹}ÈHÿuH‹GÿP0L‰}°HÇEÈH‹}¸HÿuH‹GÿP0HÇE¸L‹}ÀHÇEÀL;={„GH‹6ŽH…À„‰I‹OH9Á„*H‹‘XH…Ò„÷H‹rH…ö~1ÿDH9Dú„ÿHÿÇH9þuíH‹®H‹:H‹QH‹HH5È1Û1ÀèšÇEЃA¼iKëÇEЂA¼XK1ÛE1ÿH‹}¨H…ÿtHÿuH‹GÿP0D‹uÐH‹}¸H…ÿtHÿuH‹GÿP0H‹}ÈH…ÿtHÿuH‹GÿP0H…ÛtHÿu
H‹CH‰ßÿP0H‹}ÀH…ÿtHÿuH‹GÿP0H=HH
t¦D‰æD‰òèõàüÿ1ÛM…ÿ…çéñèfšH‰ÃH‰E¸H…À…zûÿÿÇEÐ|A¼%Ké?ÿÿÿè?šH‰ÃH‰E¨H…À…0üÿÿA¼5KA¾}é†èšH‰E¸H…À…:üÿÿÇEÐ}A¼7KéõþÿÿL‹5…xI‹VL‰ö觚H‰ÃH‹xH‹@H‰H‰H…Û„	HÿëV踙H‰E¨H…À…šüÿÿA¼GKA¾‚éL‹5%xH‹=ÖwH‹GH‹€L‰öH…À„ËÿÐH‰ÃH…À„ÎH‰]¸L‹u€éüÿÿÇEЂA¼JKéCþÿÿÇEЂA¼LKé1þÿÿÇEЂA¼QKéþÿÿÇEЂL‹5¨wI‹VL‰öèʙH‰ÃH‹BwH‹@H‰7H‰8H…Û„Hÿé[üÿÿèؘH‰EÀH…À…vüÿÿÇEЂA¼UKé¶ýÿÿL‹5DwH‹=õvH‹GH‹€L‰öH…À„“ÿÐH‰ÃH…À…üÿÿÇEЂH‹ÂH‹8H51ÛL‰ò1ÀèB—A¼SKéTýÿÿÇEЂA¼SKé@ýÿÿ1ÿèH…À„‰I‰ÆH‰ßH‰Æè3˜H‰ÃIÿ…‹ùÿÿI‹FL‰÷ÿP0é|ùÿÿÇEЂA¼ZKéõüÿÿH‹]H‹8H5sèâ–ÇEЃA¼iK1ÛéÐüÿÿÇEÐ|A¼*Ké¹üÿÿÇEÐ}A¼:Ké§üÿÿHÇE¨A¼'KA¾|E1ÿ1ÛH‹}¸H…ÿ…¨üÿÿé¯üÿÿÇEВA¼ŽLéjüÿÿH‰ÊH…ÒtH‹’H9Âuïë
H;D…	üÿÿL‰} M‹wL‰eˆM‹¤$èL‹=³I‹\$H‰ßL‰þèù—H…À„_H‰ÇH‹@H‹ˆH…ÉL‰µxÿÿÿtL‰æH‰ÚÿÑH‰EH…ÀuéAH‰}HÿH‹EˆL‹ èL‹=9M‹t$L‰÷L‰þ藗H…À„H‹HH‹™H…ÛtH‰ÇL‰æL‰òÿÓH‰E¸H…À„H‹HëHÿH‰E¸L‹u€HÇEÈH;
…H‹HH‰MÈH…É„vH‹@HÿHÿH‹}¸H‰E¸HÿuH‹GÿP0H‹]ÈH‹E¸H…Û„ÃH‰ÇH‰ÞèõüÿH‰EÀHÿu
H‹CH‰ßÿP0H‹EÀHÇEÈH…À„ÏH‹}¸HÿuH‹GÿP0HÇE¸H‹}ÀHÿuH‹GÿP0M‰ìHÇEÀ菖H‹ˆëf.„@H‹HH…Ét0H‰ÈH‹H…ÒtìH;mtãH‹HH‹@HÿDžtÿÿÿH…Éu%ë&H‹HH‹@H…Ò„AHÿDžtÿÿÿH…ÉtHÿH…ÀtHÿH‰`ÿÿÿH‰•XÿÿÿH‰…hÿÿÿIÿÍIƒþu`M…íL‹u°L‹}˜H‹xÿÿÿŽÂHƒEˆ M¯ïMõI÷ß@IÿÌH‹}ˆL‰æè±aH¯E˜I‹H‰I‹MI‰H‹I‰EMýIƒüÍëzM…íL‹½xÿÿÿ~nHƒEˆ H‹E˜L¯èLm°H÷ØH‰EЀIÿÌH‹}ˆL‰æèQaH‰ÃH¯]˜H]°L‰ÿH‰ÞL‰òè—H‰ßL‰îL‰òè—L‰ïL‰þL‰òèý–LmÐIƒü±H‹="H‰}ÀHƒ?uH‹GÿP0HÇEÀ€½tÿÿÿL‹uH‹½XÿÿÿuHÿuH‹GÿP0H‹½`ÿÿÿH…ÿtHÿuH‹GÿP0H‹½hÿÿÿH…ÿL‹} tHÿuH‹GÿP0H‹5>ƒL‰÷1Òè¼øüÿH‰ÃIÿu
I‹FL‰÷ÿP0H…Û„UHÿu
H‹CH‰ßÿP0H‹sHÿM…ÿtIÿu
I‹GL‰ÿÿP0H‰ØHĈ[A\A]A^A_]ÃH‹HH;
ìtTH;
SunH‹HöAtdH‰Ç1öèe÷üÿH‰EÀHÇEÈH…À…1ýÿÿA¼„Ké£@¶‰µtÿÿÿH…É…¿ýÿÿé½ýÿÿH‰Ç1ö1ÒèRôüÿH‰EÀHÇEÈH…À…îüÿÿë»H‹5qH‰Ç1ÒèÊ÷üÿH‰EÀHÇEÈH…À…Æüÿÿë“H‹ÌH‹8L‰þ蟑ÇEЄA¼tKë;H‹«H‹8L‰þè~‘HÇE¸A¼vKH‹EHÿÇEЄuH‹}H‹GÿP01ÛL‹} éR÷ÿÿÇEЄA¼L1Ûé>÷ÿÿA¼cNé¥êÿÿA¼NMé‘òÿÿè‘H…À„Öÿÿë0è’I‰ÇH…ÀL‹E°…šÖÿÿH‹FH‹8H5†L‰ò1ÀèȐHÇEÀÇEЧA¼šMéÉöÿÿ軐H…À„æÿÿë,蹑H‰ÃH…À…æÿÿH‹ðH‹8H50L‰ò1ÀèrHÇEÀÇEМA¼¤LésöÿÿèeH…À„¾êÿÿë,èc‘H‰ÃH…À…×êÿÿH‹šH‹8H5ÚL‰ò1ÀèHÇEÀÇEЩA¼¨MéöÿÿH;…€H‹é×êÿÿèöH…À„Šìÿÿë,èôH‰ÃH…À…£ìÿÿH‹+H‹8H5kL‰ò1À譏HÇEÈA¼bLéµõÿÿ觏H…À„÷ÿÿë,襐H‰ÃH…À…2÷ÿÿH‹ÜH‹8H5L‰ò1Àè^HÇE¸ÇEЂA¼EKé_õÿÿèQH…À…ÕH‹=™nH‹GH‹€L‰öH…À„ÇÿÐH‰ÃH…À…¨óÿÿÇEЂH‹fH‹8H5¦
1ÛL‰ò1ÀèæŽé‚èüH‰ÃH…À…nóÿÿée÷ÿÿè؎H…À„Ôìÿÿë,è֏H‰ÃH…À…íìÿÿH‹
H‹8H5M
L‰ò1À菎HÇEÀÇEВA¼vLéôÿÿH‹5ÈmH‰ßèzégÇÿÿ1ÛE1ÿA¼SKéqôÿÿèlH‰ÃH…À…Þòÿÿé1ÿÿÿDUH‰åH‹GHÿH‹G]Ãf.„DUH‰åAVSI‰þH…öt!H‰óHÿI‹~HÿuH‹GÿP0I‰^1À[A^]ÃH‹áHÿI‹~HÿuâëÙf.„UH‰åAWAVAUATSHìèE‰ÅI‰ÌI‰ÖI‰÷H‹±H‹H‰EÐH‰Ö趎H…ÀtiH‰ÃH‹@ƒ¸¨x H‹H‹8H5L‰úL‰ñ1Àè]ë*L‹K M9ásWH‹åH‹8H5L‰úL‰ñM‰à1Àè1Hÿu
H‹CH‰ßÿP01ÛH‹+H‹H;EÐu\H‰ØHÄè[A\A]A^A_]ÃAƒýuÕM9ávÐL‰$HL­ÿÿÿ¾ÈL‰ïL‰ùM‰ðM‰á1Àèȍ1ÿL‰î1Òèތ…Ày–ëƒ迎f„UH‰åAWAVAUATSHƒìI‰ÏH‰UÈI‰õI‰þH5š袍»ÿÿÿÿH…À„šI‰ÄH‰ÇL‰îè*ŒL‰ëH…ÀtEI‰ÅH‰]ÐH‰ÇL‰ûL‰þèõ‹…Àt|L‰ïH‰Þèà‹H‹MÈH‰H…Àt>1ÛIÿ$uLI‹D$L‰çÿP0ë?H‹^
L‹8L‰÷ènjH5 L‰ÿH‰ÂH‰Ù1Àèê‹Iÿ$uI‹D$L‰çÿP0»ÿÿÿÿ‰ØHƒÄ[A\A]A^A_]ÃH‹N
L‹8L‰÷èwŒI‰ÆL‰ïèL‹H5÷L‰ÿL‰òH‹MÐI‰ØI‰Á1À舋Iÿ$u©ëœf.„UH‰åAWAVAUATSHƒìI‰ÏH‰UÈI‰õI‰þH5jèrŒ»ÿÿÿÿH…À„šI‰ÄH‰ÇL‰îèúŠL‰ëH…ÀtEI‰ÅH‰]ÐH‰ÇL‰ûL‰þèŊ…Àt|L‰ïH‰Þ谊H‹MÈH‰H…Àt>1ÛIÿ$uLI‹D$L‰çÿP0ë?H‹.L‹8L‰÷藋H5HL‰ÿH‰ÂH‰Ù1À躊Iÿ$uI‹D$L‰çÿP0»ÿÿÿÿ‰ØHƒÄ[A\A]A^A_]ÃH‹L‹8L‰÷èG‹I‰ÆL‰ïèŠH5L‰ÿL‰òH‹MÐI‰ØI‰Á1ÀèXŠIÿ$u©ëœf.„UH‰åAWAVAUATSHƒìI‰öH…Ò…èú‰I‰ÇH…À„˜IÿH‹è‚H‹=iiH;G…TH‹؂H…À„HÿH‹łH…Û„èH‹5ÝlH‹CH‹€H‰ßH…À„SÿÐI‰ÅH…À„VHÿu
H‹CH‰ßÿP0L‰ÿè[‰H…À„”H‰ÃL‰ïL‰öH‰Âè—ïüÿH…À„ŠI‰ÄIÿMtHÿtIÿt%Iÿu9ë-I‹EL‰ïÿP0HÿuåH‹CH‰ßÿP0IÿuÛI‹FL‰÷ÿP0Iÿu
I‹GL‰ÿÿP0L‰àHƒÄ[A\A]A^A_]ÃH‰ÓHÇEÐHÇEÈL}ÈLeÐH‰ßL‰þL‰â1É舅À„JH‹EÐH‹@ö€«u×H‹X
H‹8H5ðH˜E1ä1À諈ë†L‹-”hI‹UL‰îèvŠH‰ÃH‹îgH‹@H‰[H‰\H…Û„ùHÿéþÿÿ脉I‰ÅH…À…ªþÿÿA¼tQëlL‹%;hH‹=¬gH‹GH‹€L‰æH…À„ÿÐH‰ÃH…À…CþÿÿH‹€	H‹8H5ÀL‰â1ÀèˆA¼rQë:A¼wQë"A¼rQë*A¼yQHÿu
H‹CH‰ßÿP0M…ítIÿMu
I‹EL‰ïÿP0H=†H
D‰æº;è?ÏüÿE1äIÿ…8þÿÿéXþÿÿH‰ßèP‡I‰ÇH…À…hýÿÿE1äéUþÿÿ腇A¼rQH…Àu¨H‹=ËfH‹GH‹€L‰îH…ÀtDÿÐH‰ÃH…À…fýÿÿH‹£H‹8H5ãL‰ê1Àè%‡é`ÿÿÿè;ˆH‰ÃH…À…5ýÿÿéíþÿÿè%ˆH‰ÃH…À…ýÿÿ뷐UH‰åAWAVAUATSHƒìI‰öH…Ò…誆I‰ÇH…À„˜IÿH‹¨H‹=fH;G…TH‹˜H…À„HÿH‹…H…Û„èH‹5iH‹CH‹€H‰ßH…À„SÿÐI‰ÅH…À„VHÿu
H‹CH‰ßÿP0L‰ÿè†H…À„”H‰ÃL‰ïL‰öH‰ÂèGìüÿH…À„ŠI‰ÄIÿMtHÿtIÿt%Iÿu9ë-I‹EL‰ïÿP0HÿuåH‹CH‰ßÿP0IÿuÛI‹FL‰÷ÿP0Iÿu
I‹GL‰ÿÿP0L‰àHƒÄ[A\A]A^A_]ÃH‰ÓHÇEÐHÇEÈL}ÈLeÐH‰ßL‰þL‰â1Éèr……À„JH‹EÐH‹@ö€«u×H‹H‹8H5ËìH̔E1ä1Àè[…ë†L‹-DeI‹UL‰îè&‡H‰ÃH‹ždH‹@H‰~H‰~H…Û„ùHÿéþÿÿè4†I‰ÅH…À…ªþÿÿA¼ËQëlL‹%ëdH‹=\dH‹GH‹€L‰æH…À„ÿÐH‰ÃH…À…CþÿÿH‹0H‹8H5pL‰â1À貄A¼ÉQë:A¼ÎQë"A¼ÉQë*A¼ÐQHÿu
H‹CH‰ßÿP0M…ítIÿMu
I‹EL‰ïÿP0H=QH
p‘D‰æºBèïËüÿE1äIÿ…8þÿÿéXþÿÿH‰ßè„I‰ÇH…À…hýÿÿE1äéUþÿÿè5„A¼ÉQH…Àu¨H‹={cH‹GH‹€L‰îH…ÀtDÿÐH‰ÃH…À…fýÿÿH‹SH‹8H5“L‰ê1ÀèՃé`ÿÿÿèë„H‰ÃH…À…5ýÿÿéíþÿÿèՄH‰ÃH…À…ýÿÿ뷐UH‰åSHƒì(H‰ûƒtòCÇCHÇCHƒÄ([]ÃH‹H‹8ÿPf)EàH‹H‹8ÿPf(MàfÈfXÉfX
Ēf)MàfYÉf(ÁfÁòXÁf.׏sµf.Ւu{©f)EÐ蓆òY·’ò^EÐòQÀf(Uàf(ÊòYÈòKÇCfÒòYÐf(ÂHƒÄ([]ÃfUH‰åH‹H‹8ÿPò
kò\Èf(Áè2†fW6’]Ã@UH‰åSHƒìXH‰ûf.<u/z-H‹H‹8ÿPò
'ò\Èf(Áèî…fWò‘HƒÄX[]Ãf(ÈfWÀf.Èu{éòóŽf.цÛf(Âò^ÁòE¸f(ÂòMØò\ÁòE°ë!„f(ÁòM¸è†f(Màf.Ès•H‹H‹8ÿPòEÀH‹H‹8ÿPò
ˆŽò\Èf(ÁèO…òMÀfWN‘f)EàòE°f.ÁsžòVŽò\Áò^EØè…òEÀf(ÈòYMØòE°ò\ÁòM¸èy…f(Màò\MÀf.È‚lÿÿÿéüþÿÿòX
‘ò‘òYÁòQÀf(Úò^Øò]°òMØ@‹Cë<f.„ò[ÇCHÇC1ÀòE°òYÃòXÂfWÉf.È‚¿…ÀuËf.„H‹H‹8ÿPf)EàH‹H‹8ÿPf(MàfÈfXÉfX
4f(ÑfYÑf(ÂfÂòXÂf.Hs¶f.Fu{ªf)Màf)EÀèÿƒf(]àòòYò^EÀòQÀf(ËòYÈòKÇCfÛòYظé-ÿÿÿ€f(ÈòYÈòYÈòMÀH‹H‹8f)]àÿPf(]àf(ËòYËf(ÑòYȏòYÑòXœŒf.ÐwuèeƒòE¸f(Màf(ÁòY£òYÁòEàò
jŒòEÀò\ÈòM¨è+ƒòOŒòXE¨òMØòYÁòXEàf.E¸†QþÿÿòYMÀf(ÁHƒÄX[]ÃòEØòYEÀHƒÄX[]ÃUH‰åHƒìòMøè®üÿÿòYEøHƒÄ]ÃUH‰åHƒìòEøH‹H‹8ÿPò
ҋò\Èf(Á虂fWŽò^EøèåòXËHƒÄ]ÃDfWÉf.ÁuzfWÀÃUH‰åHƒìH‹H‹8òEøÿPò
q‹ò\Èf(Áè8‚fW<Žò
T‹ò^MøHƒÄ]闂DUH‰åHƒìòEøH‹H‹8ÿPò
"‹ò\Èf(ÁèéèBò‹f(Êò\Èò^Uøf(Áf(ÊHƒÄ]é;‚f„UH‰åòYüèûÿÿòXÀ]Ãf„UH‰åHƒìòEøH‰øH‹?ÿPfW‚è}còY•òQÈòEøòYÁHƒÄ]ÃfUH‰åSHƒìHf(ÐH‰ûfWÀf.ÈuzòY„H‰ßf(Âèûÿÿf(Èétf.?Šf)MÀvGòXHŠòYPH‰ßf(ÂèÌúÿÿf(ÈòXȃ{„ƒòSÇCHÇCé
H‹;f(ÁòY
òUàè¨.HÀWÀòH*ÀòXEàòYèŒH‰ßèhúÿÿòXÀf(]ÀòÂÛò
Ҍf(ÓfUÑfTØfVÚf(ÃHƒÄH[]ÃòMØfH‹H‹8ÿPf)EàH‹H‹8ÿPf(MàfÈfXÉfX
$Œf(ÑfYÑf(ÂfÂòXÂf.8‰s¶f.6Œu{ªf)Màf)E°èïf(UàòYŒò^E°òQÀf(ÊòYÈòKÇCfÒòYÐòMØf(EÀòQÀòXÂòYÀòXÈf(ÁHƒÄH[]Ã@UH‰åSHƒìòMðòEàH‰û(Êè"þÿÿòMðòYÁòEèòY
´‹f(ÁH‰ßè0ùÿÿòXÀòYEàòMèò^Èf(ÁHƒÄ[]ÃUH‰åSHƒìHH‰ûf(ÙòXÙf(Ðò^ӃòEètòcÇCHÇCé¶òMÈòUðfDH‹H‹8ÿPf)EÐH‹H‹8ÿPf(MÐfÈfXÉfX
´Šf(ÑfYÑf(ÂfÂòXÂf.ȇs¶f.Ɗu{ªf)MÐf)E°è~f(eÐòYžŠò^E°òQÀf(ÌòYÈòKÇCfäòYàòUðòEèòMÈf(ÜòYØòYÜòY
ŽŠòYËf(ãòYãòXáWÉòQÌò\ÙòYÓòXÐòUðH‹H‹8ÿPòeèò]ðf(ËòXÌf(Ôò^Ñf.ÐsòYäò^ãf(Üf(ÃHƒÄH[]Ãf.„@UH‰åSHƒì8H‰ûƒtòSÇCHÇCé¶òMØòEÐf.„H‹H‹8ÿPf)EàH‹H‹8ÿPf(MàfÈfXÉfX
D‰f(ÑfYÑf(ÂfÂòXÂf.X†s¶f.V‰u{ªf)Màf)EÀè}f(UàòY.‰ò^EÀòQÀf(ÊòYÈòKÇCfÒòYÐòEÐòMØòYÑòXÐf(ÂHƒÄ8[]Ãf.„fUH‰åSHƒì8H‰ûƒtòSÇCHÇCé¶òMØòEÐf.„H‹H‹8ÿPf)EàH‹H‹8ÿPf(MàfÈfXÉfX
Dˆf(ÑfYÑf(ÂfÂòXÂf.X…s¶f.Vˆu{ªf)Màf)EÀè|f(UàòY.ˆò^EÀòQÀf(ÊòYÈòKÇCfÒòYÐòEÐòMØòYÑòXÐf(ÂHƒÄ8[]é{„UH‰åSHƒì(H‰ûƒtòKf)MàÇCHÇCé±òEðf.„H‹H‹8ÿPf)EàH‹H‹8ÿPf(MàfÈfXÉfX
D‡f(ÑfYÑf(ÂfÂòXÂf.X„s¶f.V‡u{ªf)Màf)EÐè{òY3‡ò^EÐòQÀf(Uàf(ÊòYÈòKÇCfÒòYÐf)UàòEðòY‡H‰ßòEðèšôÿÿòMðòQÉòYMàòQÀò^Èf(ÁHƒÄ([]Ãf„UH‰åSPH‰ûò¯ƒò\Ñò^ÑòUðèMôÿÿòYEðH‹;HƒÄ[]éZ(f.„UH‰åSHƒì8H‰ûƒ„ÊòCf)EÐÇCHÇCH‹H‹8ÿPf)EàH‹H‹8ÿPf(MàfÈfXÉfX
ô…f)MàfYÉf(ÁfÁòXÁf.ƒsµf.†u{©f)EÀèÃyòYç…ò^EÀòQÀf(Uàf(ÊòYÈòKÇCfÒòYÐf(MÐfÊé¡f.„DH‹H‹8ÿPf)EàH‹H‹8ÿPf(ÈfMàfXÉfX
D…f(ÑfYÑf(ÂfÂòXÂf.X‚s¶f.V…u{ªf)MÐf)Eàèyf(MÐòY.…ò^EàòQÀòÀfYÈÇCHÇCf(ÁfÁò^Èf(ÁHƒÄ8[]ÀUH‰åSHƒìhH‰ûò܁f.Ђ,f.Ñ‚"fÁf(
¬„f)E°f^Èf)MfÉf)M DH‹H‹8ÿPf)EàH‹H‹8ÿPf)EÀ(Eà(MèÉxòEÐf(EÀ(M è¶xò]Ðò
WòXÃf.Èr­f(eÀf(UàfWÉf.Á‡·f(ÂfÄf)Eàè÷wf)EÐf(EàfÀèäwf(MÐfÈf^M°f(ÑfÑf(Áò_Âò\Èf)MÐò\Ðf)UÀf(Áè	wòEàf(EÀèúvòXEàè’wf(MÐò\Èf(ÁHƒÄh[]éØvH‰ßf)MàèIñÿÿòEÐH‰ßf(Eàè7ñÿÿò]ÐòXÃò^Øf(ÃHƒÄh[]Ãf.„DUH‰åSHƒì8)Màf)EÀH‰ûòYkƒèîðÿÿf)EÐòYƒòYEàH‰ßèÔðÿÿf(MÐfÈfXÉf(EàfEÀfYÁf(ÈfÈò^ÁHƒÄ8[]ÃfDUH‰åHƒìòEøH‹H‹8ÿPò
Òò\Èf(Áè™vfW‚òYEøHƒÄ]ÃfUH‰åSPH‰óò
ǂf.Ès4ò
‘ò\ÈWÀòH*ÃòYÁò¹‚H‰Þf.Ðs3f(Áèg(ë1WÉòH*ËòYÈò‘‚H‰ÞHƒÄf.Ñs[]é=(f(ÁèÄ1H)ÃH‰ØHƒÄ[]Ã[]é°1UH‰åAWAVAUATSHƒìXI‰ÍI‰÷I‰üHƒùŒJ:I9×H‰×INÿH‰ÑIMÏH‰MÐH‰ÆL)îL9îL‰ùH‰u I‰÷MOýòH*ÇH‰}¸òH*Èò^Áò
²~ò\ÈòI*×òYÐf(êL)øWÒòH*Ðò¶L‰m˜òI*åòYâòYàHD
ÿWÀòH*ÀòYáò^àòXãWÉòQÌòMÀò˜òYÁòX”òE€òXëòm°MwWÉòI*ÎH_WÀòH*ÃòYÁH‰MH‰U¨HD
WÉòH*Èò^ÁèvtòL,èIEWÀòH*ÀèÖòEÈH‰]ˆH‰ØL)èWÀòH*ÀèºòXEÈòEÈM)îWÀòI*Æè òXEÈòEÈL‹uÐM)þKD.IÿÆWÀòH*ÀèzòXEÈòEÈH‹E¸I9ÇINÇWÀòH*ÀòXe}òE¸òMÀòY
«€òXM°f(Áè¿sòM¸ò]ÈòM¸€I‹<$AÿT$òEÐI‹<$AÿT$òMÐòXl€òYE€ò^ÁòXE°fWÉf.ÈwÄf.E¸s½èbsòH,ØHCWÀòH*ÀèÂòEÀH‹EˆH)ØWÀòH*Àè©òXEÀòEÀM‰ýI)ÝIEWÀòH*ÀèˆòXEÀòEÀIWÀòH*ÀèmòMÐòXEÀòUÈò\Ðòšò\ÁòYÁòXºf.Ðs;f(Áò\ÂòYÁf.8|ƒÿÿÿf(ÁòUÐèøròXÀòMÐf.È‚áþÿÿH‹EH;E¨IOÝH)ØH‹M H;M˜HMÃé¡M…펖L9úL‰øHNÂòH*ÀH‰U¨J:M‰îòE°f(ÈDf.
À~vFI‹<$òMÐAÿT$WÉòH*ËòUÐò^ÑòXÂèròMÐòH,ÀWÀòH*Àò\ÈHÿËIÿÎu°òE°ò\ÁòH,ÀI)ÅL9}¨LMèL‰èë1ÀHƒÄX[A\A]A^A_]ÐUH‰å]é fDUH‰å]é¶:fDUH‰åHƒìH‰øf.}~sLH‹8òEðÿPfWØ}èÓSòEøòæzò\Eðè°qòMøò^Èf(ÁèÆpòH,ÀHƒÄ]ÃH‰ÇHƒÄ]éB8fUH‰å]é¶MfDUH‰åSHƒì8f.ÉŠøH‰ûòŠzf.Ñv!H‹;ÿSòXÀòX‚zòYâ}HƒÄ8[]ÃòË}f.ÑòEÐòMÀvò;zò^ÁòXÁòEØë\ò\}òYÁòYÁòzòXÃòQÀòXÃf(ÐòXÐòQÒò\Âf(ÑòXÑò^Âf(ÈòYÈòXËòXÀò^ÈòMØH‹;ÿSòYB}èËoòMØf(ÑòYÐòX¨yòXÁò^ÐòUÈò\ÊòYMÀòMàH‹;ÿSò
}ò]àò\ËòYËò\Èf.
n|s,f(Ëò^Èf(Áè'pòXKyò\Eàf.F|‚hÿÿÿH‹;ÿSf)EàòEÈènf(ÈfW
÷{f(UàòÂ1|fTÊfUÐfVÑòXUÐf)Uàf(yfTÂòX_|ò
g|è^oòXb|f(¢{fWÐfWÉf(]àòÂÙf(ËfUÈf(ÃfTÂfVÁHƒÄ8[]Ãò½{HƒÄ8[]ÃfDUH‰åSHƒì(f(ÈH‰ûòhxòMàò\Áè.oòEèDH‹;ÿSf.Eàƒ’H‹;òEðÿSòYEèè\nò"xò\Ðf(ÂòYÂf.EðòEðriòUØèÔnòEÐòEØèÅnòMÐò^ÈòX
àwf(ÁèQnòMðf.
Òzu‹rÿÿÿòH,ÀH…ÀŽdÿÿÿHƒÄ([]øHƒÄ([]Ãf.¸HƒÐHƒÄ([]АUH‰åH‰øH‹?ÿPÁè	ó*ÀóY{]ÃfUH‰åH‰øH‹?]ÿ`fUH‰åAWAVATSH…ö~'I‰ÖI‰÷I‰ü1ÛDI‹<$AÿT$òAÞHÿÃI9ßué[A\A^A_]ÃUH‰åAWAVATSH…ö~9I‰ÖI‰÷I‰ü1ÛDI‹<$AÿT$Áè	WÀó*ÀóYuzóAžHÿÃI9ßu×[A\A^A_]Ãf.„@UH‰åAWAVATSHƒì0H‰ûL5W|L=P„L%I¸f„H‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYÖI;×f)EÀrs„ÉtKòATÔøòAÔòMØò\ÑòU¸H‹;ÿSòYE¸òXEØòEØf(EÀfWòxè?lf.EØv†ë$H‹;ÿSfWÖxèÑNò
9zò\Èf)MÀ(EÀHƒÄ0[A\A^A_]Ãf.„DUH‰åAWAVAUATSHƒì8H‰U°H‰u¸H…öŽÞH‰ûE1äL-Q{L5JƒL=C·ëAH‹;ÿSfWSxèNNò
¶yò\Èf)MÀH‹E°f(EÀòBàIÿÄL;e¸„H‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYDÕI;Öf)EÀrµ„ÉtòAT×øòA×òMÐò\ÑòU¨H‹;ÿSòYE¨òXEÐòEÐf(EÀfW±wèþjf.EÐv…écÿÿÿHƒÄ8[A\A]A^A_]ÐUH‰åAWAVATSHƒì H‰ûL5WŠL=PŽL%I¾f„H‹;ÿS‰ÁÑéÁè	WÀó*À¶ÑóAY–A;—)EÀ‚„Ét^óAT”üóA”óMÜó\ÑóUØH‹;ÿSÁè	WÀó*ÀóY¾wóYEØóXEÜóEÜ(EÀWÔwèIj.E܆uÿÿÿë-H‹;ÿSÁè	WÀó*ÀóYwèvOó
vwó\È)MÀ(EÀHƒÄ [A\A^A_]ÃDUH‰åAWAVAUATSHƒì(H‰U°H‰u¸H…öŽûH‰ûE1äL-A‰L5:L=3½ëQH‹;ÿSÁè	WÀó*ÀóYývèôNó
ôvó\È)MÀH‹E°(EÀóB IÿÄL;e¸„–f„H‹;ÿS‰ÁÑéÁè	WÀó*À¶ÑóAYD•A;–)EÀr´„ÉtƒóAT—üóA—óMÔó\ÑóUÐH‹;ÿSÁè	WÀó*ÀóYavóYEÐóXEÔóEÔ(EÀWwvèìh.EÔ†xÿÿÿéOÿÿÿHƒÄ([A\A]A^A_]Ã@UH‰åAWAVATSH…ö~<I‰ÖI‰÷I‰ü1ÛDI‹<$AÿT$(
0uWÁè(KW!uAÞHÿÃI9ßuÔ[A\A^A_]Ãf.„UH‰åAWAVATSH…ö~MI‰ÖI‰÷I‰ü1ÛDI‹<$AÿT$Áè	WÀó*ÀóY‰uóZÀè¼JòZÀW¡uóAžHÿÃI9ßuÃ[A\A^A_]Ãf.„UH‰åAWAVAUATSHƒì(H‰ûL%UL-N—L=GŸ€H‹;ÿSI‰ÆH‰ÁHÁé	H¸ÿÿÿÿÿÿH!ÁWÀòH*ÁA¶ÆòAYÄA÷ÆtfW tI;LÅf)EÀ‚Ø…Àt\òATÇøòAÇòMÐò\ÑòU¸H‹;ÿSòYE¸òXEÐòEÐf(MÀf(ÁòYKtòYÁègf.EІWÿÿÿézfH‹;ÿSf(
¢sfWÁè™IòY	uf)EÀH‹;ÿSfW~sèyIf(UÀf(ÈfW
hsò\Èf(ÂòYÂf.Èv¦òXÎtA÷ÆtfW=sf)UÀ(EÀHƒÄ([A\A]A^A_]ÃDUH‰åAWAVATSH…ö~&I‰ÖI‰ôI‰ÿ1ÛDL‰ÿèhþÿÿòAÞHÿÃI9Üuê[A\A^A_]ÐUH‰åAWAVAUATSHƒì(H‰ûL=¥¥L%ž©L-—­€H‹;ÿSA‰ƉÁÁé	WÀó*ÁA¶ÆóAY‡A÷ÆtWqsA;„)E°‚…ÀtóAT…üóAL…óMÐó\ÑóUÌH‹;ÿSÁè	WÀó*ÀóYûróYEÌóXEÐóZÀòEÐ(E°WÉóZÈf(ÁòY‘ròYÁèZef.EІMÿÿÿ錄H‹;ÿSÁè	WÀó*Àó
œróYÁèJóY“r)E°H‹;ÿSÁè	WÀó*ÀóYorèfJ(U°(ÈW
ˆró\È(ÂóYÂ.Èv˜óXPrA÷ÆtW`r)U°(E°HƒÄ([A\A]A^A_]Ãf„UH‰åAWAVATSH…ö~&I‰ÖI‰ôI‰ÿ1ÛDL‰ÿèHþÿÿóAžHÿÃI9Üuê[A\A^A_]ÐUH‰åAWAVATSHƒìPH‰ûf.n…«Š¥L5ÃsL=¼{L%µ¯DH‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYÖI;×f)EÀ‚1„É„ÿòATÔøòAÔòMØò\ÑòU¸H‹;ÿSòYE¸òXEØòEØf(EÀfWZpè§cf.E؆zÿÿÿé×fWÒfWÉf)MÀf.Âu‹¾òDmf.І«f(Êò^ÈòM˜òE°ò\ÐòU¨L5ØrL=ÑzL%ʮë)„f(ÁòM˜èDdf(Èf(EÀf.ÁƒFH‹;ÿSòE @H‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYÖI;×f)EÀrM„Ét_òATÔøòAÔòMØò\ÑòU¸H‹;ÿSòYE¸òXEØòEØf(EÀfWBoèbf.EØv†òE¨òM f.ÁƒBÿÿÿë8H‹;ÿSfWoè
Eò
upò\Èf)MÀòE¨òM f.Áƒÿÿÿòlò\Áò^E°èÆbòEØf(ÈòYM°òE¨ò\ÁòM˜è#cf(MÀò\MØf.È‚Þþÿÿé%H‹;ÿSfWŠnè…Dò
íoò\Èf)MÀéòX—nf(Èò“nòM°òYÁòQÀf(Êò^ÈòMؐH‰ßè¨ùÿÿòUØòYÐòXGkfWÉf.ÊsÝf(ÊòYÊòYÊòM¸H‹;òEÀÿSòMÀòYÉf(ÑòY,nòYÑò
kòXÑf.ÐwYèÅaòE òMÀf(ÁòYnòYÁòEÀò
ÊjòE¸ò\ÈòM¨è‹aòXE¨òYE°òXEÀf.E †=ÿÿÿòE°òYE¸f)EÀ(EÀHƒÄP[A\A^A_]Ãf.„UH‰åAWAVATSHƒì0H‰û.n…µНL5€L=ýƒL%ö³fDH‹;ÿS‰ÁÑéÁè	WÀó*À¶ÑóAY–A;—)EÀ‚q„É„*óAT”üóA”óMÜó\ÑóUØH‹;ÿSÁè	WÀó*ÀóYjmóYEØóXEÜóEÜ(EÀW€mèõ_.E܆qÿÿÿéWÒWÉ)MÀ.Âu‹óó3m.ІÕ(Êó^ÈóM¸óEÔó\ÐóUÐL5L=ƒL%³ë"D(ÁóM¸è‹`(È(EÀ.ÁƒyH‹;ÿSÁè	WÀó*ÀóY«lóE¼fDH‹;ÿS‰ÁÑéÁè	WÀó*À¶ÑóAY–A;—)EÀr`„ÉtuóAT”üóA”óMÜó\ÑóUØH‹;ÿSÁè	WÀó*ÀóYBlóYEØóXEÜóEÜ(EÀWXlèÍ^.E܆yÿÿÿóEÐóM¼.Áƒ&ÿÿÿëD@H‹;ÿSÁè	WÀó*ÀóYìkèãCó
ãkó\È)MÀóEÐóM¼.ÁƒàþÿÿóÌkó\Áó^EÔè_óEÜ(ÈóYMÔóEÐó\ÁóM¸èB_(MÀó\MÜ.È‚µþÿÿé;H‹;ÿSÁè	WÀó*ÀóY_kèVCó
Vkó\È)MÀé
óXQk(ÈóJkóMÔóYÁóQÀ(Êó^ÈóMÜDH‰ßèh÷ÿÿóUÜóYÐóXkWÉ.Êsß(ÊóYÊóYÊóMØH‹;óEÀÿSóMÀÁè	WÀó*ÀóY½jóYÉ(ÑóYÎjóYÑó
¶jóXÑ.ÐwWè^óE¼óMÀ(ÁóY£jóYÁóEÀó
‚jóEØó\ÈóMÐèË]óXEÐóYEÔóXEÀ.E¼†2ÿÿÿóEÔóYEØ)EÀ(EÀHƒÄ0[A\A^A_]ÃUH‰åH‰øH‹?ÿPHÑè]Ãf.„@UH‰åH‰øH‹?ÿPÑè]Ãf.„DUH‰åH‰øH‹?ÿPHÑè]Ãf.„@UH‰åH‰øH‹?]ÿ`fUH‰åAVSHƒì fWÒf.ùeu‹cf.qiu‹SE1öò
>jf.Èò\ÈòH,ÁLGðWÉòI*ÎòEØòXÈò¬eò^Áf(ÑòYÀò
jòYÈòX
jòYÈòX
jòYÈòX
üiòYÈòX
øiòYÈòX
ôiòYÈòX
ðiòYÈòX
ìiòYÈòX
èiòYÈòX
äiò^ÊòX
àiòMàò
shf(ÂòUèòXÊòMÐèÐ[f(ÐòEèòYUÐòXUàò\ÐM…ö~Rò
@if.MØvC»f.„fòUàòXËdòEèòEèèx[òUàò\ÐòEèHÿÃL9ó~Îf(ÂHƒÄ [A^]ÐUH‰åHƒìòMøòEðè¹òÿÿòYEøòXEðHƒÄ]Ãf„UH‰åAWAVATSHƒì0òE¸H‰ûL5òiL=ëqL%ä¥@H‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYÖI;×f)EÀrs„ÉtKòATÔøòAÔòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfW’fèßYf.EØv†ë$H‹;ÿSfWvfèq<ò
Ùgò\Èf)MÀf(EÀòYE¸HƒÄ0[A\A^A_]Ãf„UH‰åHƒìòMøòEðH‰øH‹?ÿPòYEøòXEðHƒÄ]ÃDUH‰åHƒìòMøèîôÿÿòYEøHƒÄ]ÃUH‰åHƒìóMüèŽøÿÿóYEüHƒÄ]ÃUH‰åSHƒì8H‰ûòÜbf.ЂŒf.Ñ‚‚fÁf(
¬ef^Èf)MÀfÉf)MÐf.„H‹;ÿSòEðH‹;ÿSòEàòEð(MÀèÎYòEðòEà(MÐè»YòUðò
\bòXÂf.Èr²f.Rev¨ë(H‰ßf)Màè	ôÿÿòEðH‰ßf(Eàè÷óÿÿòUðòXÂò^Ðf(ÂHƒÄ8[]Ãf.„DUH‰åòYeè¿óÿÿòXÀ]Ãf„UH‰åSHƒì8)Màf)EÀH‰ûòYëdèŽóÿÿf)EÐòÙdòYEàH‰ßètóÿÿf(MÐfÈfXÉf(EàfEÀfYÁf(ÈfÈò^ÁHƒÄ8[]ÃfDUH‰åSPH‰ûè²ïÿÿòEðH‰ßè¥ïÿÿòMðò^Èf(ÁHƒÄ[]ÐUH‰åAWAVATSHƒì0òE¸H‰ûL5âfL=ÛnL%Ԣ@H‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYÖI;×f)EÀrs„ÉtKòATÔøòAÔòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfW‚cèÏVf.EØv†ë$H‹;ÿSfWfcèa9ò
Édò\Èf)MÀf(EÀò^E¸è“VòXq`HƒÄ0[A\A^A_]Ãf.„fUH‰åAWAVATSHƒì0fWÉf.ÁuzfWÀHƒÄ0[A\A^A_]ÃH‰ûòE¸L5ÅeL=¾mL%·¡€H‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYÖI;×f)EÀrs„ÉtKòATÔøòAÔòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfWbbè¯Uf.EØv†ë$H‹;ÿSfWFbèA8ò
©cò\Èf)MÀò
H_ò^M¸(EÀHƒÄ0[A\A^A_]é€Vf.„@UH‰åAWAVATSHƒì0òE¸H‰ûL5ÂdL=»lL%´ @H‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYÖI;×f)EÀrs„ÉtKòATÔøòAÔòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfWbaè¯Tf.EØv†ë$H‹;ÿSfWFaèA7ò
©bò\Èf)MÀf(EÀfW#aèpTò
6^f(Ñò\Ðò^M¸f(ÂHƒÄ0[A\A^A_]éfU@UH‰åSHƒìòMðòEèH‰ûf.„H‹;ÿSf.
as#f.à`væòXÀè¡TòYEðòMèòXÈë'ò
=aò\Èò\Èf(ÁèxTòYEðòMèò\Èf(ÁHƒÄ[]Ãf.„UH‰åSHƒìòMðòEèH‰ûf.„H‹;ÿSf(ÈòN]f(Âò\Áf.ÐvàèTfW`èTòYEðòMèò\Èf(ÁHƒÄ[]ÃDUH‰åSHƒìòMðòEèH‰ûf.„H‹;ÿSf.ê_vðò
Ø\ò\Èò^ÁèŸSòYEðòXEèHƒÄ[]Ãf.„UH‰åHƒìòMøòEðèéêÿÿòYEøòXEðHƒÄ]é·RDUH‰åAWAVATSHƒì0òE¸H‰ûL5"bL=jL%ž@H‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYÖI;×f)EÀrs„ÉtKòATÔøòAÔòMØò\ÑòU°H‹;ÿSòYE°òXEØòEØf(EÀfWÂ^èRf.EØv†ë$H‹;ÿSfW¦^è¡4ò
	`ò\Èf)MÀf(EÀòXÀòQÀòYE¸HƒÄ0[A\A^A_]ÐUH‰åSHƒìòEðH‰ûèÊéÿÿòEèòEðòY^òEðH‰ßè+íÿÿòMðòQÉòUèòYÑòQÀò^Ðf(ÂHƒÄ[]ÃfDUH‰åAWAVAUATSHƒìxI‰þf.Ü_sfWÉf.Á…ZŠTE1ÿéŸòQÈòMÀf)…`ÿÿÿè´QòeÀòY%£_òX%£_ò£_òYÜòXŸ_òŸ_òXÔò
›_ò^ÊòX
—_òE˜òŠ]òeÀòXÄò_ò^ÐòX}_òU€ò]òXÛòxÿÿÿf(Áè"QòE ë€òEˆò\Âf.E°ƒÕI‹>AÿVòX}]f)E°I‹>AÿVòEÈf(U°f(ÂfT+Zò
]ò\ÈòMÐò…xÿÿÿò^ÁòXEÀf(ÊòYÈòX`ÿÿÿòX
Ù^f(Áè2PòUÈòMÐòL,øf.
Á^ròE€f.ƒ9M…ÿˆ[ÿÿÿò§^f.Áv
f.чCÿÿÿf(Âè:PòXE òE°òMÐòYÉòEò^ÁòXEÀèPòM°ò\ÈòM°WÀòI*ÇòYE˜ò\…`ÿÿÿfWÒM…ÿòEˆ„ËþÿÿMoIƒý„½þÿÿWÀòI*ÅIƒýò
Q]ò\ÈòL,á¸LMàWÉòI*ÌòXÈòÃXò^Áf(ÑòYÀf(ÈòY
]òX
]òYÈòX
]òYÈòX
]òYÈòX
]òYÈòX
]òYÈòX
]òYÈòX
]òYÈòX
ÿ\òYÈòX
û\ò^ÊòX
÷\òMÈf(ÂòUÐf(ÊòX
}[òM¨èçNòMÐf(ÐòYU¨òXUÈò\ÑM…ä޳ýÿÿIƒý©ýÿÿ»@òUÈòX
ëWòMÐf(Áè™NòUÈòMÐò\ÐHÿÃL9ã~ÏéjýÿÿfW‚ZèÏMòEÈòWIÇÇÿÿÿÿf„òEÐI‹>AÿVòMÐòYÈòMÐòEÐIÿÇf.EÈw×L‰øHƒÄx[A\A]A^A_]ÃDUH‰åSPH‰ûò/Wò\Ñò^ÑòUðèíèÿÿòYEðH‰ßHƒÄ[]éÚûÿÿf.„UH‰åAWAVAUATSHì˜H‰ÓI‰öI‰ÿƒ:ò…èþÿÿtL9suòKf.Èu‹®L‰sòCÇò¨Vf(Êò\Èò]ÁòE¨òCò\Ðf)U€WÉòI*ÎòS òYÈf)M°òXÁf)EÀòC(èÚLòL,àf(U€f(E°òYÂf)E°WÉòQÈòY
i[L‰c0òe[òYÂòXÁèšLWÉòI*ÌfÁf(%ìYfXÄfC8f(ÐfÐf(Úò\Øò[Hf)•@ÿÿÿf(êòXèòkPòX
[ò5[ò^ñòX5
[òsXòDE¨òDYÃf(Íf(}ÀfÏf(U€f×f)0ÿÿÿfûf\Ïf)­Àþÿÿf(ÝfAØf(êfYëf\ÓòÕf^ÊfYáfX%FXfYáf(ÌfÆÌfK`f(ÎòXÎòX
4Uf)… ÿÿÿòYÈòKpf(ÄfÄf(Öò^ÐòMòXÑòSxòµpÿÿÿf)¥`ÿÿÿò^ôòU òXòòu˜ò³€I‹?AÿWòYE˜òEÀI‹?AÿWòUÀf(Øf(½ ÿÿÿf.׆MWÀòI*Äò…ÐþÿÿòD·WfD(m°fA(ÅòAYÀòXTf)…@þÿÿòE¨ò^E€IFWÉòH*Èò…ØþÿÿòYÈòàþÿÿIL$fA(ÅòAXÅf)…PþÿÿH‰xÿÿÿòL*ÉH‰…øþÿÿL)àòL*ÐfA(ÁòAYÁòDXYfA(Ëò^ÈòD%NYfA(äò\áò^àòD5@YfA(îò\ìò^èò%3Yf(ôò\õò^ðò-'Yf(Íò\ÎfA(ÂòAYÂL‰ðL)àòD^ØòE\ãWöòH*ðòAXðòµÿÿÿfD) þÿÿòA^ÉòD^àòE\ôò5ØXò^ÎòÿÿÿòD^ðòA\æò^àò\ìòD•ÿÿÿòA^êò^îò­ÿÿÿòAÅf)…`þÿÿf(…`ÿÿÿfÀf)…°þÿÿëJf.„f.膩I‹?AÿWòYE˜òEÀI‹?AÿWòUÀf(Øf(½ ÿÿÿf.׆Xf.U†ˆf(Ãò]°òUÀèiIòMÀf.M †Õò^…`ÿÿÿf(Àþÿÿò\Èf(ÁèâHòM°f.
cUòmÀu‹hÿÿÿòH,ØL9óZÿÿÿò\m òYéòY­`ÿÿÿéÈf.„ò\×ò…pÿÿÿò^ÐòX•0ÿÿÿòYØò
üQòXÙò…Ðþÿÿò\ÂòXUfTRò^Çò\Øf.Ù‡äþÿÿf(Âò]°è6Hòm°òH,ØëNò^…°þÿÿòX…0ÿÿÿèHòM°f.
–TòmÀu‹›þÿÿòH,ØH…Ûˆþÿÿò\mòYéòY­°þÿÿI‰ÝM)åL‰èH÷ØILÅHƒøòØþÿÿò¥àþÿÿŒHWÀòH*Àf(@þÿÿf.Ȇ.f(Èò^
šVòX
šVòYÈòX
–VfÁf^…`þÿÿf(ÈfÈòX
TòYÈf)MÀH¯ÀH÷ØWÀòH*Àò^…PþÿÿòE°f(ÅèˆGò]°f(UÀf(Èf(Ãò\Âf.Á‡WòXÚf.ˇ ýÿÿHCH‹øþÿÿH)ÙWÒòH*ÑWÀòH*Àf)…PÿÿÿfÐf)UÀf(ÂfYÂf)…pþÿÿò…ÿÿÿò^ÂòM°èGòY…ÿÿÿò…ðþÿÿWÀòI*Åf)…€þÿÿò]¨òY]Àf(M€f(•PÿÿÿòYÊf(… þÿÿfÃfÑf^Âf)…þÿÿè©Ff)…Pÿÿÿf(…þÿÿfÀèFf(PÿÿÿfÈf(…@ÿÿÿf…€þÿÿfYÁòðþÿÿòXÈfÀòXÁòX…ÿÿÿòX…ÿÿÿf(
`Sf(pþÿÿf^ËfX
\Sf^Ëf(`Sf\Ñf^Óf(
`Sf\Êf^Ëf(`Sf\Ñf^UÀf^_Sf(ÊfÊòXÈòXÊòE°f.Á‡üÿÿé¾f.„òèNL9ã~HH9xÿÿÿæûÿÿH‹…xÿÿÿòÇN€WÉòH*Èf(Ôò^Ñò\ÓòYÂHÿÀH9Ø~àé«ûÿÿ¥ûÿÿHCò‰Nf„WÉòH*Èf(Ôò^Ñò\Óò^ÂHÿÀL9à~àékûÿÿòYûf(…@ÿÿÿò\ÇòXÂè¼DòH,ØI)Þò…èþÿÿf.RQLFóL‰ðHĘ[A\A]A^A_]ÃòCòK L‹c0òS8)• ÿÿÿòS@)•@ÿÿÿòSH)•0ÿÿÿòSP)•ÀþÿÿòSXò•pÿÿÿS`ÆÒN)•`ÿÿÿòSpòUòSxòU ò“€òU˜WÒòI*ÖòE¨òYÐf)M€òYÑf)U°é—øÿÿfUH‰åAWAVATSHƒì I‰×òEÐI‰öI‰üƒ:tM9wuòAGf.EÐu‹5M‰wòMÐòAOAÇòMò\ÁòEÈòAG WÉòI*ÎòMÀèÊCòYEÀèCòEØòAGòUÀf(ÂòYEÐòAGXf(ÈòYMÈòX
¼LòQÉòY
xQòXÈf(Âò]ÁòH,ØI‰_0I‹<$AÿT$ò]Øf.Ãvx1Éf(Ëò]ØëCf.„ò\ÁL‰òH)ÊWÒòH*ÒòYUÐòYÑWÉòH*ÈòYMÈò^Ñf(Êf.ÁH‰Áv*HAH9Ø~¾I‹<$AÿT$ò]Øf(Ë1Àf.ÁH‰ÁwÚë1ÀHƒÄ [A\A^A_]ÃòAGòEØòAG òEÈI‹_0éFÿÿÿUH‰åAWAVATSHƒì01ÀfWÉf.Áu‹>I‰öH…ö„2I‰ÔI‰ÿò
ÍNf.ÈsBò%—Kf(Ìò\ÈòI*Öf(ÙòYÚòºNf.ÃsPL‰ÿL‰öf(ÁL‰âèbôÿÿéÒòI*Öf(ÚòYØò
ˆNf.˃dL‰ÿL‰öL‰âHƒÄ0[A\A^A_]é$ôÿÿAƒ<$òMÀtM9t$uòAD$f.Áu‹ŠM‰t$òAL$AÇ$f(Äò\ÁòEÐòAD$ òUÈò]¸è›AòYEÈèï@òEØòAD$òM¸òAL$XòEÐòYÁòX”JòQÀòYPOòXÁòMÈò]ÈòH,ÙI‰\$0I‹?AÿWò]Øf.ÆÎ1Éf(Ëò]ØëKf.„@ò\ÁL‰òH)ÊWÒòH*ÒòYUÀòYÑWÉòH*ÈòYMÐò^Ñf(Êf.ÁH‰Á†xHAH9Ø~ºI‹?AÿWò]Øf(Ë1Àf.ÁH‰ÁwÜéOAƒ<$òEÀtM9t$uòAL$f.Èu‹bM‰t$òAD$AÇ$ò
˜Iò\ÈòMÐòAL$ f(ÁòUÈò]¸èI@òYEÈè?òEØòAD$òM¸òAL$XòEÐòYÁòXBIòQÀòYþMòXÁòMÈò]ÈòH,ÙI‰\$0I‹?AÿWòeØf.Ɔ1Éf(Ìò]ÀòeØë?€ò\ÁL‰òH)ÊWÒòH*ÒòYÓòYÑWÉòH*ÈòYMÐò^Ñf(Êf.ÁH‰Áv7HAH9Ø~¿I‹?AÿWòeØò]Àf(Ì1Àf.ÁH‰Áw×ë1ÀI)ÆL‰ðë1ÀHƒÄ0[A\A^A_]ÃòAD$òEØòAD$ òEÐI‹\$0éáýÿÿòAD$òEØòAD$ òEÐI‹\$0éÿÿÿUH‰åSHƒìf.ÉŠÈf(ÐH‰ûfWÀf.ÈuzòY*KH‰ßf(Âé‘f.îGvSòXüGòYKH‰ßf(ÂòMèè›ÙÿÿòXÀòEðH‰ßè
Öÿÿf(ÈòEèòQÀòXÁòYÀòXEðHƒÄ[]ÃòY
¹JH‰ßf(ÁòUðèPìÿÿHÀWÀòH*ÀòXEðòYJH‰ßè0ÙÿÿòXÀHƒÄ[]Ãò}JHƒÄ[]ÃfDUH‰åSHƒìòMðòEàH‰û(ÊèòþÿÿòMðòYÁòEèòY
4Jf(ÁH‰ßèÐØÿÿòXÀòYEàòMèò^Èf(ÁHƒÄ[]ÃUH‰åSHƒìòMàòEèH‰ûf(ÙòXÙf(Ðò^ÓòUðèÕÿÿf(ØòMèòYÙòYØòEàòYÊIòYÃf(Ðf(ÃòYÃòXÂòQÀò\ØòY]ðòXÙò]ðH‹;ÿSòeðò]èf(ÌòXËf(Óò^Ñf.ÐsòYÛò^Üf(ãf(ÄHƒÄ[]Ãf.„UH‰åSHƒì8f.ÉŠˆH‰ûò
Ff.Ñv!H‹;ÿSòXÀòXFòYbIHƒÄ8[]ÃòKIf.ÑòEØvòÀEò^ÑòMÈòXÑòUÐééòAKf.Ñs{ò“Eò^ÑWÉòQÊòMàH‰ßèËÓÿÿòYEàòXEØò
ùHòXÈf(ÐòÂðHfTÊfUÐfVÑò
ìJòXÊò¸HòÂÂfTÈfUÂfVÁHƒÄ8[]ÃòPHòYÑòYÑò%EòXÔòQÚòXÜf(ÓòXÓòQÒò\ÚòMÈf(ÑòXÑò^Úf(ËòYËòXÌòXÛò^ËòMÐfH‹;ÿSòY2Hè»:òMÐf(ÑòYÐòX˜DòXÁò^ÐòUÀò\ÊòYMÈòMàH‹;ÿSò
÷Gò]àò\ËòYËò\Èf.
^Gs,f(Ëò^Èf(Áè;òX;Dò\Eàf.6G‚hÿÿÿH‹;ÿSf)EàòEÀè9f(ÈfW
çFf(UàòÂ!GfTÊfUÐfVÑòXUØf)Uàf(DfTÂòXOGò
WGèN:òXRGf(’FfWÐfWÉf(]àòÂÙf(ËfUÈfTÚfVÙf(ÃHƒÄ8[]Ãò­FHƒÄ8[]ÃfDUH‰åSHƒì8f(ÈH‰ûf(8Ff)MÀfWÁè*òEèDH‹;ÿSf.EÀƒ’H‹;òEðÿSòYEèèL9òCò\Ðf(ÂòYÂf.EðòEðriòUàèÄ9òEØòEàèµ9òMØò^ÈòX
ÐBf(ÁèA9òMðf.
ÂEu‹rÿÿÿòH,ÀH…ÀŽdÿÿÿHƒÄ8[]øHƒÄ8[]Ãf.¸HƒÐHƒÄ8[]Ãf.„UH‰åHƒìòEøH‰øH‹?ÿPò]ø¸f.Ãv+ò
BBò\˸f(ÓDòYÙòXÓHÿÀf.ÂwïHƒÄ]Ãf„UH‰åAWAVATSHƒì@f)E H‰ûL5²GL=«OL%¤ƒ@H‹;ÿSH‰ÁHÁéHÁèWÀòH*À¶ÑòAYÖI;×f)EÀrs„ÉtKòATÔøòAÔòMØò\ÑòU¸H‹;ÿSòYE¸òXEØòEØf(EÀfWRDèŸ7f.EØv†ë$H‹;ÿSfW6Dè1ò
™Eò\Èf)MÀf(
Df(EÀfWÁf)EÀf(E fWÁèüf(MÀò^Èf(Áè7òH,ÀHƒÄ@[A\A^A_]ÄUH‰åHƒìH‰øf.MDs
H‰ÇHƒÄ]é¾þÿÿH‹8òEøÿPò]ø¸f.Ãv4ò
«@ò\˸f(Óf.„@òYÙòXÓHÿÀf.ÂwïHƒÄ]Ãf„UH‰åSHƒì8H‰ûòXt@òEèèŠ6òb@f(Êò^MèòMàf(ÈòXÊfÈf)MÀf.„H‹;ÿSò
@ò\ÈòMðH‹;ÿSòEØòEðòMàèA7èd6f.’EwÀf(ÐòÔ?f.Âw®ò
Æ?f(Áò^ÂòXÁòMèòUðèý6òUðò]ØòYÚf(ÈòX
©?òYËfÈf^MÀf(ÁfÁf.Á‚RÿÿÿòH,ÂHƒÄ8[]ÃfDUH‰åHƒì0H‰øòUØò\ÐòMèòEàò\ÈòMðòUøò^ÊòMÐH‹?ÿPòMÐf.Ès8ò]Øf(Ëò\MèòYMøòÿ>ò\ÐòYÑWÀòQÂò\Øf(ÃHƒÄ0]ÃòMðòYMøòYÈòQÙòX]àf(ÃHƒÄ0]ÐUH‰åAWAVSPH…ötqI‰öH‰ûH‰ðHÑèH	ðH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈI‰ÇIÁï I	ÇH‰ðHÁè u€H‹;ÿSD!øL9ðwòëH‹;ÿSL!øL9ðwòë1ÀHƒÄ[A^A_]ÃUH‰åAWAVATSI‰öH…Ò„I‰ÌI‰×H‰ûH‰ÐHÁè u¸ÿÿÿÿI9Çu3H‹;ÿSëCIƒÿÿtGE„ÀtPf.„H‹;ÿSL!àL9øwòIÆéÂE„ÀtxDH‹;ÿSD!àD9øwò‰ÀIÆé H‹;ÿSIÆé’MgH‹;ÿSI÷äH‰ÑL9øwzH‰ÆI÷×L‰ø1ÒI÷ôH9òvgI‰×f.„DH‹;ÿSI÷äI9ÇwòH‰ÑëBEgH‹;ÿS‰ÁI¯ÌA9Ïr)A÷×D‰ø1ÒA÷ô9ÊvA‰×fDH‹;ÿS‰ÁI¯ÌA9ÏwïHÁé IÎL‰ð[A\A^A_]Ãf.„fUH‰åAWAVATSA‰ö…ÒtyA‰×H‰ûƒúÿuH‹;ÿSAÆëcE„ÀtA‰ÌH‹;ÿSD!àD9øwòAÆëHEgH‹;ÿS‰ÁI¯ÌD9ùw)A÷×D‰ø1ÒA÷ô9ÊvA‰×fDH‹;ÿS‰ÁI¯ÌA9ÏwïHÁé DñA‰ÎD‰ð[A\A^A_]Ãf„UH‰åAWAVAUATSPA‰ÕfE…í„CM‰ÌI‰ÿL‹ufAƒýÿuAƒ<$„‚A·FA‰A‹$ÿÈé‚E„	uÔtB‰ËA‹$ë%fDA·FA‰A‹$ÿÈA‰$A·f!ÙfD9év0…ÀuÝI‹?AÿWA‰¸ëÚA]Aƒ<$t:A·FA‰A‹$ÿÉë9MԉÎé¥I‹?‰óAÿW‰ÞA‰¸A‰$fA6é…I‹?AÿWA‰¹A‰$A‹6·þ·Ã¯øD·ÇA9ÀsUA‰ÁA÷ÕD‰è1Òf÷ó·ÚA9Øs?E‰Íë%@ÁîA‰6A‹$ÿÉA‰$A‹6·þA¯ý·Ç9Øs…ÉuÛI‹?AÿWA‰¹ëÖÁï‹uÔþ·ÆHƒÄ[A\A]A^A_]ÃUH‰åAWAVAUATSPA‰ÕE„í„(M‰ÌI‰ÿL‹uA€ýÿuAƒ<$tnAÁ.A‹$ÿÈëuE„	uÔt9‰ËA‹$ëAÁ.A‹$ÿÈA‰$A¶ ÙD8év,…ÀuãI‹?AÿWA‰¸ëÜA]Aƒ<$t5AÁ.A‹$ÿÉë8MԉÎé£I‹?‰óAÿW‰ÞA‰¸A‰$A6é„I‹?AÿWA‰¹A‰$A‹¶ò¶Ã¯ð@¶þ9ÇsVA‰ÀAöÕA¶Åöó¶Ä9ÇsC‰ÇE‰Åë#ÁêA‰A‹$ÿÉA‰$A‹¶òA¯õ@¶Æ9øs…ÉuډûI‹?AÿW‰ßA‰¹ëÑÁî@uÔ@¶ÆHƒÄ[A\A]A^A_]Ãf.„„Òt;UH‰åAVSL‰ËL‹uAƒ9t	AÑ.‹ÿÈëH‰øH‹?ÿPA‰¸‰AŠ6@€æ[A^]@¶ÆÃf.„fUH‰åAWAVAUATSHƒì(M‰ÏH…ÒtXI‰ÕI‰üH‰ÐHÁè L‰}¸H‰MÈH‰uÐuW¸ÿÿÿÿI9Å…ÕH…ÉŽ‘1ÛI‹<$AÿT$‰ÀHEÐI‰ßHÿÃH9]ÈuäékH…ÉŽbHƒùƒ1ÀéEIƒýÿ„8E„À„aH…ÉŽ5L‰èHÑèL	èH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÃHÁë H	ÃE1öf.„I‹<$AÿT$H!ØL9èwïHEÐK‰÷IÿÆL;uÈuÞéÅE„À„fH…É޳L‰èHÑèL	èH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÃHÁë 	ÃE1öf.„I‹<$AÿT$!ØD9èwð‰ÀHEÐK‰÷IÿÆL;uÈuÝéDH‰ÈHƒàüfHnÆfpÀDHXüH‰ÚHÁêHÿ‰׃çHƒûƒ01ÛéÈH…ÉŽ1Û„I‹<$AÿT$HEÐI‰ßHÿÃH9]ÈuæéÝH…ÉŽÔMuL‰èH÷ÐH‰EÀ1ÛëfDHMÐH‹E¸H‰ØHÿÃH;]È„£I‹<$AÿT$I÷æH‰ÑL9èwÓH‰ÆH‹EÀ1ÒI÷öH9òvÂI‰×f.„DI‹<$AÿT$I÷æI9ÇwïH‰ÑëšH…ÉŽMEuD‰è÷ЉEÀ1ÛëHÁé HMÐH‹E¸H‰ØHÿÃH;]È„I‹<$AÿT$‰ÁI¯ÎA9ÍrϋEÀ1ÒA÷ö9ÊvÃA‰×I‹<$AÿT$‰ÁI¯ÎA9ÏwìëªH)ú1ÛDóAßóADßóADß óADß0óADß@óADßPóADß`óADßpóA„߀óA„ߐóA„ߠóA„߰óA„ßÀóA„ßÐóA„ßàóA„ßðHƒÃ HƒÂø…kÿÿÿH…ÿt(ITßH÷ßf.„@óBðóHƒÂ HÿÇuîH9Ètf„I‰4ÇHÿÀH9ÁuôHƒÄ([A\A]A^A_]ÃDUH‰åAWAVAUATSHƒì(M‰υÒ„™A‰ÕI‰üƒúÿH‰MȉuÔ„E„À„ÃH…ÉŽHD‰èH‰ÁHÑéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ËHÁë 	ËE1öf.„fI‹<$AÿT$!ØD9èwðEÔC‰·IÿÆL;uÈuàé×H…ÉŽÎHƒùƒ®1Àé±H…ÉŽ´1ÛfDI‹<$AÿT$EÔA‰ŸHÿÃH9]ÈuçéŽH…ÉŽ…EuD‰è÷ЉEÄ1ÛL‰}¸ë DHÁé MÔH‹E¸‰˜HÿÃH;]È„QI‹<$AÿT$‰ÁI¯ÎD9éwыEÄ1ÒA÷ö9ÊvÅA‰×fI‹<$AÿT$‰ÁI¯ÎA9ÏwìëªH‰ÈHƒàøfnÆfpÀHXøH‰ÚHÁêHÿ‰׃çHƒû8s1ÛéŸH)ú1ÛDóAŸóADŸóADŸ óADŸ0óADŸ@óADŸPóADŸ`óADŸpóA„Ÿ€óA„ŸóA„Ÿ óA„Ÿ°óA„ŸÀóA„ŸÐóA„ŸàóA„ŸðHƒÃ@HƒÂø…kÿÿÿH…ÿt(ITŸH÷ßf.„@óBðóHƒÂ HÿÇuîH9Ètf„A‰4‡HÿÀH9ÁuôHƒÄ([A\A]A^A_]ÃDUH‰åAWAVAUATSHƒì(A‰ÔH‰uÐfE…䄱I‰ýfAƒüÿ„ÀE„ÀL‰MÀ„H…ÉŽ×I‰ÏA·ÄH‰ÁHÑéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ËHÁë 	ËE1ö1É1ÀëÁèÿɉÂ!ÚfD9âv…ÉuíI‹}AÿU¹‰Â!ÚfD9âwåUÐH‹uÀfB‰vIÿÆM9þuÑéJH…ÉŽAH‰ËHƒûƒ#1ÀéH…ÉŽ$M‰ÎI‰Ï1Û1É1Àë%f„ÁèÿÉH‹UÐÂfA‰^HÿÃI9ß„ñ…ÉuàI‹}AÿU¹ëÖH‰M¸H…ÉŽÑAD$‰EÌD·øA÷ÔE1ö1ö1Éë(f.„fÁï}ÐH‹EÀfB‰<pIÿÆL;u¸„‘…ötÁéÿÎëf„I‹}AÿU‰~·ùA¯ÿD·ÇE9øs±D‰à1Òf÷uÌ·ÚA9Ør'ëžf.„@ÁéÿηùA¯ÿ·Ç9؃yÿÿÿ…öuåI‹}AÿU‰~ëÙI‰ØH‰ØHƒàðfnEÐòpÀàfpÀHpðH‰òHÁêHÿ‰уáHƒþps
1öL‰ÏéH)Ê1öL‰ÏówóDwóDw óDw0óDw@óDwPóDw`óDwpó„w€ó„wó„w ó„w°ó„wÀó„wÐó„wàó„wðHƒî€HƒÂø…{ÿÿÿH…Ét(HTwH÷Ùf.„@óBðóHƒÂ HÿÁuîL9ÀtH‹MÐDfA‰AHÿÀH9ÃuóHƒÄ([A\A]A^A_]Ã@UH‰åAWAVAUATSHƒì(L‰MÀA‰ÔH‰uÈE„äH‰MЄ¨I‰ýA€üÿ„ºE„À„H…ÉޱA¶ÄH‰ÁHÑéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ÈHÁèH	ÈH‰ÁHÁéH	ÁH‰ËHÁë 	ËE1ö1É1ÀëÁèÿɉ ÚD8âv…ÉuîI‹}AÿU¹‰Â ÚD8âwæUÈH‹uÀBˆ6IÿÆL;uÐuÒé(H…ÉŽ¶uÈH‹}ÀH‹UÐè­%é	H…ÉŽ1Û1É1Àë1f.„DÁèÿÉH‹uÐH‹UÈÂH‹}HÿÃH9Þ„Ç…ÉuÚI‹}AÿU¹ëÐH…ÉŽ«AD$‰E¼D¶ðAöÔE1ÿE¶ä1Ò1ÉëfDÁî@uÈH‹EÀBˆ48IÿÇL;}Ðtq…ÒtÁéÿÊëf.„I‹}AÿU‰z¶ñA¯ö@¶þD9÷s±D‰àöu¼¶Ü9ßrë¢fÁéÿʶñA¯ö@¶Æ9ØsŒ…ÒuèI‹}AÿU‰zëÜHƒÄ([A\A]A^A_]ÄUH‰åAWAVATSH…É~VM‰ÎI‰̄Òt=I‰ÿ1Û1É1Àë f.„Ñèÿɉ€âAˆHÿÃI9Üt!…ÉuçI‹?AÿW¹ëÝ@¶öL‰÷L‰âè"$[A\A^A_]ÐUH‰åAWAVAUATSHƒì(L‰MÀH‰UÐH‰óL‰ÀL‰EÈMxÿM…ÿ~YI‰ÍI‰þò
¶,E1äòM¸òCDåò^ÁL‰÷H‰ÞH‹UÀè±àÿÿòM¸H‹MÐJ‰áH)ÃH…Û~#òC\LåIÿÄM9çu½ëH…Û~
H‹EÈH‹MÐH‰\ÁøHƒÄ([A\A]A^A_]АUH‰åHƒì Ûm ÛmÝ]èòEèÝ]ðòMðèo#òEøÝEøHƒÄ ]Ãf.„DUH‰å]éH#fDUH‰åHƒìÛmÛ<$èk#HƒÄ]ÀUH‰åHƒìÛmÛ<$èé!HƒÄ]ÀUH‰å]éX#fDUH‰å]é#fDUH‰å]é¬!fDUH‰å]é"#fDUH‰åÛmÙá]ÃDUH‰åHƒìÛmÛ<$èÓ!HƒÄ]ÀUH‰åHƒìÛmÛ<$è5!HƒÄ]ÀUH‰åHƒìÛmÛ<$èw"HƒÄ]ÀUH‰åHƒìÛmÛ<$è±"HƒÄ]ÀUH‰åÛmÙú]ÃDUH‰åHƒìÛmÛ<$è£!HƒÄ]ÀUH‰åHƒìÛmÛ<$è³!HƒÄ]ÀUH‰åHƒìÛmÛ<$èÍ HƒÄ]ÀUH‰å]éÈ fDUH‰å]é fDUH‰å]éÐfDUH‰å]é fDUH‰å]éÎfDUH‰å]éšfDUH‰å]éäfDUH‰å]éî fDUH‰åHƒìÛmÛ<$è! HƒÄ]ÀUH‰åHƒìÛmÛ<$èÇ HƒÄ]ÀUH‰å]élfDUH‰å]éR fDUH‰åÛmÛm Û}ðÙáöEù€ÙÀÙàÙÉÛÉÝÙ]ÐUH‰åHƒìPÛm ÛmÙÀÙáÙÂÙáÙÊÛëzWÙwÙËßë@’ÆÙÉßêÝÙ’ÀÙîÙÊÛêÝÚšÁ•ÂÛèz@ðÊ ÂuÛ}èÛ}ôè÷ÛmôÛmèÙÉÛ|$Û<$è›HƒÄP]ÃÛ}èÙÊÛ}ôÙÉÛ}ÐÛ}ÜèÈÛmÜÛmÐÛmôÛmèÙÉÙËÙÊÙÉé{ÿÿÿf.„DUH‰å]éðfDUH‰å]étfDUH‰å]é@fDUH‰å]é|fDUH‰å]éæfDUH‰å]étfDUH‰å]éêfDUH‰å]éÂfDUH‰å]éPfDUH‰å]éÆfDUH‰åTE(]ÃUH‰å]é€fDUH‰å]éòfDUH‰å]éDfDUH‰å]éŽfDUH‰åòQÀ]ÃfDUH‰å]éfDUH‰å]ézfDUH‰å]éÈfDUH‰å]éÜfDUH‰å]éfDUH‰å]éÒfDUH‰å]é
fDUH‰å]éâfDUH‰å]é®fDUH‰å]éøfDUH‰å]éfDUH‰å]é>fDUH‰å]éôfDUH‰å]é fDUH‰å]é†fDUH‰åT
¥)Tî&VÁ]Ãf„UH‰åHƒì@f(%Ð&f(ØfTÜfTáf.ÁzWò¶tf.â@’Æf.Ú’ÀfWÒf.ÊšÁ•Âf.Àz"@ðÊ Âuf)Màf)Eðè+f(Eðf(MàHƒÄ@]éÃf)Màf)Eðf)]Àf)eÐèþf(eÐf(]Àf(Eðf(MàéwÿÿÿDUH‰å]é$fDUH‰å]é¨fDUH‰å]étfDUH‰å]é°fDUH‰å]é,fDUH‰å]éºfDUH‰å]é0fDUH‰å]éfDUH‰å]é–fDUH‰å]éfDUH‰åT5s]ÃUH‰å]éÆfDUH‰å]é8fDUH‰å]éŠfDUH‰å]éÔfDUH‰åóQÀ]ÃfDUH‰å]éÖfDUH‰å]éöfDUH‰å]é fDUH‰å]é"fDUH‰å]éLfDUH‰å]éfDUH‰å]ébfDUH‰å]é(fDUH‰å]éôfDUH‰å]é>fDUH‰å]éHfDUH‰å]é„fDUH‰å]é:fDUH‰å]éæfDUH‰å]éÌfDUH‰å]é^fDUH‰åT
Å'TÎqVÁ]Ãf„UH‰åHƒì@(%±q(ØTÜTá.ÁzNó{q.â@’Æ.Ú’ÀWÒ.ÊšÁ•Â.Àz@ðÊ Âu)Mà)Eðèg(Eð(MàHƒÄ@]é)Mà)Eð)]À)eÐè@(eÐ(]À(Eð(Màë‹f.„@UH‰å]éjfDUH‰å]éîfDUH‰å]éºfDUH‰å]éöfDUH‰å.Àz'WÒ.Âuz(Á]ÃóÂÂó
&UÁ(È(Á]Ãó
Œp(Á]ÃUH‰åóY|p]ÃfUH‰åóYpp]ÃfUH‰åè‰óY_p]Ãf.„UH‰åóYHp]éÊf.„@UH‰åHƒì(Ð.ÁuzóXp(ÂHƒÄ]Ã(Âó\ÁWÛ.ÃvW÷%óUüë
.ØrØóMüè[èþóXEüHƒÄ]ÐUH‰åHƒì(Ð.ÁuzóXš%(ÂHƒÄ]Ã(Âó\ÁWÛ.ÃvW—%óUüë
.ØrØóMüèïèžóYtoóXEüHƒÄ]Ãf„UH‰åHƒìWÒ.Êu{H}øèUóEøHƒÄ]Ã.ÁóMôóEüz$.Àzè1óEüóMôèÔóEøHƒÄ]ÃèóEü.À{ÒëÕfDUH‰åAVSHƒì0I‰þ.Á)Mà)EЊ+(áàT%ÔnóÔó¨n.Ó’À.ã’ÂWÒ.ʚÕÁ.ÀzÐÙ Áu
èž(Mà(EÐèC(Uà(Ø.k$u‹›(EÐ(àó\ãó^âWÉ.Ùu{U.Ê—À.Ë—Á8ÈtóXÚóX%>nWÉ.áu{C)]à(Ä)eÐèÌ(MÐó\È.
$vóXç#(]àë(ö#TÚWÉ.áu¿z½ó^ÂTÞ#óAHƒÄ0[A^]ÃWÀ(MÐ.Èó^Ê(Átß)EÐ)]àè(]à(EÐëÈè±(EàEÐT¢m)EÀè™(eÀ(Mà(EÐé´þÿÿ„UH‰åHƒìWÒ.Êu{H}øèeþÿÿHƒÄ]Ã.Âó^ÁóEütèóEüHƒÄ]Ãè<óEüHƒÄ]ÐUH‰åf.Àz,fWÒf.Âuz(Á]ÃòÂÂò
(fUÁf(Èf(Á]Ãò
B"(Á]Ãf.„UH‰åòY,m]ÃfUH‰åòY$m]ÃfUH‰åèÃòYm]Ãf.„UH‰åòYm]éf.„@UH‰åHƒìf(Ðf.ÁuzòXÔlf(ÂHƒÄ]Ãf(Âò\ÁfWÛf.ÃvfW@!òUøëf.ØrÓòMøè{è0òXEøHƒÄ]Ãf„UH‰åHƒìf(Ðf.ÁuzòXf(ÂHƒÄ]Ãf(Âò\ÁfWÛf.ÃvfWÐ òUøëf.ØrÓòMøèèÀòYlòXEøHƒÄ]ÐUH‰åHƒì fWÒf.Êu{H}ðèSòEðHƒÄ ]Ãf.ÁòMèòEøz%f.Àzè]òEøòMèèúòEðHƒÄ ]Ãè>òEøf.À{ÑëԐUH‰åAVSHƒì0I‰þf.Áf)Màf)EЊWf(áfàfT%Nf(ÔfÔò>kf.Ó’Àf.ã’ÂfWÒf.ʚÕÁf.ÀzÐÙ Áuè¿f(Màf(EÐè\f(Uàf(Øf.Çu‹®f(EÐf(àò\ãò^âfWÉf.Ùu{_f.Ê—Àf.Ë—Á8ÈtòXÚòX%”fWÉf.áu{Mf)]àf(Äf)eÐè×f(MÐò\Èf.
tvòXBf(]àë$f(fTÚfWÉf.áuµz³ò^ÂfT÷òAHƒÄ0[A^]ÃfWÀf(MÐf.Èò^Êf(ÁtÛf)EÐf)]àè“f(]àf(EÐëÀè²(EàfEÐTò)EÀè™f(eÀf(Màf(EÐé‡þÿÿDUH‰åHƒìfWÒf.Êu{H}ðè3þÿÿHƒÄ]Ãf.Âò^ÁòEøtèòEøHƒÄ]Ãè9òEøHƒÄ]Ãf.„@UH‰åÛm ÛmÙôhÙÉÛèzÝÙÙîÙÉÛéÝÙÙîÙÊÙÉuzÝØÝÙ]ÃÝÙÝÙÙîÛéÝÙÙèÛÑÝÙÙîÙîÙÊÙÉÝØÝÙ]ÃfUH‰åÛmÛ-ÓhÞÉ]Ãf.„DUH‰åÛmÛ-ÃhÞÉ]Ãf.„DUH‰åHƒìÛmÛ<$è•Û-§hÞÉHƒÄ]Ãf.„DUH‰åHƒìÛmÛ-hÞÉÛ<$èÇHƒÄ]Ãf.„DUH‰åHƒì Ûm ÛmÛéuzÝÙÛ-ThÞÁHƒÄ ]ÃÙÀØâÙîÙÉÛéÝÙvÝÚÙÉÙàëÝÙÙîßésÝÙHƒÄ ]ÃÛ<$Û}ôèKÛ<$èëÛmôÞÁHƒÄ ]ÄUH‰åHƒì Ûm ÛmÛéuzÝÙÙèÞÁHƒÄ ]ÃÙÀØâÙîÙÉÛéÝÙvÝÚÙÉÙàëÝÙÙîßésÝÙHƒÄ ]ÃÛ<$Û}ôèÓÛ<$èÛ-‘gÞÉÛmôÞÁHƒÄ ]Ã@UH‰åHƒìPÛm ÛmÙîÙÊÛêÝÚu{ÙÉÛ|$Û<$H}ÐèTÝØÛmÐHƒÄP]ÃÛéÙÉÛ}èÙÀÛ}ôz&ßèzèÛmèÛ|$ÛmôÛ<$è¨ÙÀÛ}ÐHƒÄP]ÃÝØèÞÛmôßè{ÐëÓDUH‰åAVSHì€I‰þÛm ÛmÛéÙÁÛ}ØÙÀÛ}äŠCÙÀÙáÙÂÙáÙÉÙËÙÉÙÊÙqfÙÌßì’ÀÙÊßëÝÚ’ÂÙîÙÊÛêÝښÕÁÛèzÐÙ ÁuÝØÝØè^ÛmØÛmäÙÉÛ|$Û<$èÛmØÙîÙÉÛéÝÙu‹²ÛmäÙÀØãØòÙîÙÌÛìÝÜu{ÙîÛë—Àßì—Á8Èt%ÙËØÂÙèÙàÞÄëÝÛÙÁÛ}°öE¹€ÙîÙÀÙàÙÉÛÉÝÙëÙËÙîÙÌÛìÝÜu{2ÝÙÝÙÛ}äÙÀÛ<$Û}ØèqÛmØØáÙ¤ÙÉßéÝØvÙèÞÁÛmäÙÉëÝÛÞñÛ}ÀöEɀÙîÙÀÙàÙÉÛÉÝÙÙÉAÛ>HĀ[A^]ÃÛmäÜñÙîÙÉßéÝØtàÙÉÛ}äÛ}Øè9
ÛmØë°ÝØÝØè[
ÛmäÙáÛ}˜ÛmØÙáÛ}¤èF
Ûm˜Ûm¤ÛmØÛmäéžþÿÿDUH‰åHƒì@Ûm ÛmÙîÙÊÛêÝÚu{ÙÉÛ|$Û<$H}àè4þÿÿHƒÄ@]ÃÜñÙÉÛ}ôÙîÙÉßéÝØtè¸	ÛmôHƒÄ@]ÃèÚ	ÛmôHƒÄ@]ÐUH‰å‰ð…ÿt‰ú@‰Ñ1Ò÷ñ‰ȅÒuô‰È]ÉIÈ]Ãf.„UH‰å…ÿt‰ú‰ð@‰Ñ1Ò÷ñ‰ȅÒuôë‰ñ…öt‰ø1Ò÷ñ¯Æ]Ã1À]Ãf.„UH‰åH‰ðH…ÿtH‰úH‰Ñ1ÒH÷ñH‰ÈH…ÒuðH‰È]ÃH‰ÁH‰È]ÃUH‰åH…ÿtH‰úH‰ðH‰Ñ1ÒH÷ñH‰ÈH…ÒuðëH‰ñH…ötH‰ø1ÒH÷ñH¯Æ]Ã1À]Ã@UH‰åH‰ðH…ÿtH‰úH‰Ñ1ÒH÷ñH‰ÈH…ÒuðH‰È]ÃH‰ÁH‰È]ÃUH‰åH…ÿtH‰úH‰ðH‰Ñ1ÒH÷ñH‰ÈH…ÒuðëH‰ñH…ötH‰ø1ÒH÷ñH¯Æ]Ã1À]Ã@UH‰å‰ú÷ÚL׉ð÷ØLƅÒtf.„‰Ñ1Ò÷ñ‰ȅÒuô‰È]ÉIÈ]Ãf.„UH‰åH‰úH÷ÚHL×H‰ðH÷ØHLÆH…ÒtH‰Ñ1ÒH÷ñH‰ÈH…ÒuðH‰È]ÃH‰ÁH‰È]ÃUH‰åH‰úH÷ÚHL×H‰ðH÷ØHLÆH…ÒtH‰Ñ1ÒH÷ñH‰ÈH…ÒuðH‰È]ÃH‰ÁH‰È]ÃUH‰å‰ù÷ÙLω÷÷ßLþ…Ét‰ʉøfD‰Ö1Ò÷ö‰ð…Òuôë‰þ…ÿt‰È1Ò÷ö¯Ç]Ã1À]Ãf.„UH‰åH‰ùH÷ÙHLÏH‰÷H÷ßHLþH…Ét%H‰ÊH‰øf.„H‰Ö1ÒH÷öH‰ðH…ÒuðëH‰þH…ÿtH‰È1ÒH÷öH¯Ç]Ã1À]Ã@UH‰åH‰ùH÷ÙHLÏH‰÷H÷ßHLþH…Ét%H‰ÊH‰øf.„H‰Ö1ÒH÷öH‰ðH…ÒuðëH‰þH…ÿtH‰È1ÒH÷öH¯Ç]Ã1À]Ã@UH‰å‰ñÓç€ùs@¶Ç]Ã1ÿ@¶Ç]ÃDUH‰å‰ñÓï€ùs@¶Ç]Ã1ÿ@¶Ç]ÃDUH‰å‰ñÓç€ùs@¾Ç]Ã1ÿ@¾Ç]ÃDUH‰å‰ñ‰øÓø€ùs¾À]Ã@Àÿ‰ø¾À]ÐUH‰å‰ñÓçfƒùs·Ç]Ã1ÿ·Ç]ÃfDUH‰å‰ñÓïfƒùs·Ç]Ã1ÿ·Ç]ÃfDUH‰å‰ñÓçfƒùs¿Ç]Ã1ÿ¿Ç]ÃfDUH‰å‰ñ‰øÓøfƒùs˜]ÃÁï‰ø˜]ÃDUH‰å‰ñ‰øÓàƒþ s]Ã1À]Ãf.„UH‰å‰ñ‰øÓèƒþ s]Ã1À]Ãf.„UH‰å‰ñ‰øÓàƒþ s]Ã1À]Ãf.„UH‰å‰ñ‰øƒþsÓø]ùÓø]ÃfDUH‰åH‰ñH‰øHÓàHƒþ@s]Ã1À]ÀUH‰åH‰ñH‰øHÓèHƒþ@s]Ã1À]ÀUH‰åH‰ñH‰øHÓàHƒþ@s]Ã1À]ÀUH‰åH‰ñH‰øHƒþ?sHÓø]ù?HÓø]ÐUH‰åH‰ñH‰øHÓàHƒþ@s]Ã1À]ÀUH‰åH‰ñH‰øHÓèHƒþ@s]Ã1À]ÀUH‰åH‰ñH‰øHÓàHƒþ@s]Ã1À]ÀUH‰åH‰ñH‰øHƒþ?sHÓø]ù?HÓø]ÐUH‰å(
%_TÈ.
û^r
ó
õ^(Á]Ãf~	Aáÿÿÿ(ȁù€w…Ét$ÿ	Aá€tAù€uM(ÈóXÈó\È(Á]ÃÇEüóUüó
1_.ÑuÞzÜóMüó\È(Á]Ã(ÈóYÈóMüóMü.ÈfnÈó\È(Á]ÃUH‰åf(
ÄfTÈf.
¸^r
ò
®(Á]ÃfH~ÁH‰ÈHÁè ‰âÿÿÿúðr²€	Îf(Èt
ò\Èf(Á]Ã	Êt*ƒÁƒÐ‰âðtFúðuTf(ÈòXÈò\Èf(Á]ÃHÇEøòUøò
b^f.Ñu­z«òMøò\Èf(Á]Ãf(ÈòYÈòMøòMøf.ÈHÁà ‰ÉH	ÁfHnÉò\Èf(Á]Ãf.„UH‰åHƒì@ÛmH‹…H‹H‰EøÙÀÙáÙQ]ÙG]ÙÊßêÝÙƒÎÝØÙÀÛ}ÀÙÀÛ}àH‹UEè‰ƁæÿH‰ÑHÁé þÿÙîuÝ؋uÈ·öHÁæ H	Î	ÖÙÀ…ƒÝØÙîÙÉÛéÝÙu,z*HÇEà%ÿÿÿ‰EèÛmàÙÀØÉÛ}ÐÛmÐßéuTzRÝØÛmÐëKÿ‰UàuÿIMäu‰Aá€ÿÿÿÀ%ÿ	ȉEè%ÿt=ÿuÛmàÜÀëÛmàÙÀØÉÛ}ÐÛmÐÝØëÛmàÞáÙîÙÉÝÙH‹„H‹H;EøuHƒÄ@]ÃÝØèôf.„@UH‰å]é¼fDUH‰å]é¦fDUH‰å]é¢fDUH‰åSP¿è´‰ÃÆE÷ÁèƒàÁãƒã	Ãt
¿èˆ‰ØHƒÄ[]ÀUH‰åAVSHƒìI‰þ¿èl‰ÃM…ötAŠˆEï‰ØÁèƒàÁãƒã	Ãt
¿è7‰ØHƒÄ[A^]Ã@UH‰åHƒì¿è"ÆEÿ‰ÁÁéƒáƒàÁHƒÄ]ÃfDUH‰åSPH‰û¿èñH…ÛtŠˆM÷‰ÁÁéƒáƒàÁHƒÄ[]Ãf.„@UH‰å¿]鯐UH‰å¿]韐UH‰å¿]鏐UH‰å¿]éÿ%‚‚ÿ%„‚ÿ%†‚ÿ%ˆ‚ÿ%Š‚ÿ%Œ‚ÿ%Ž‚ÿ%‚ÿ%’‚ÿ%”‚ÿ%–‚ÿ%˜‚ÿ%š‚ÿ%œ‚ÿ%ž‚ÿ% ‚ÿ%¢‚ÿ%¤‚ÿ%¦‚ÿ%¨‚ÿ%ª‚ÿ%¬‚ÿ%®‚ÿ%°‚ÿ%²‚ÿ%´‚ÿ%¶‚ÿ%¸‚ÿ%º‚ÿ%¼‚ÿ%¾‚ÿ%ÿ%‚ÿ%Ăÿ%Ƃÿ%Ȃÿ%ʂÿ%̂ÿ%΂ÿ%Ђÿ%҂ÿ%Ԃÿ%ւÿ%؂ÿ%ڂÿ%܂ÿ%ނÿ%à‚ÿ%â‚ÿ%ä‚ÿ%æ‚ÿ%è‚ÿ%ê‚ÿ%ì‚ÿ%î‚ÿ%ð‚ÿ%ò‚ÿ%ô‚ÿ%ö‚ÿ%ø‚ÿ%ú‚ÿ%ü‚ÿ%þ‚ÿ%ƒÿ%ƒÿ%ƒÿ%ƒÿ%ƒÿ%
ƒÿ%ƒÿ%ƒÿ%ƒÿ%ƒÿ%ƒÿ%ƒÿ%ƒÿ%ƒÿ%ƒÿ%ƒÿ% ƒÿ%"ƒÿ%$ƒÿ%&ƒÿ%(ƒÿ%*ƒÿ%,ƒÿ%.ƒÿ%0ƒÿ%2ƒÿ%4ƒÿ%6ƒÿ%8ƒÿ%:ƒÿ%<ƒÿ%>ƒÿ%@ƒÿ%Bƒÿ%Dƒÿ%Fƒÿ%Hƒÿ%Jƒÿ%Lƒÿ%Nƒÿ%Pƒÿ%Rƒÿ%Tƒÿ%Vƒÿ%Xƒÿ%Zƒÿ%\ƒÿ%^ƒÿ%`ƒÿ%bƒÿ%dƒÿ%fƒÿ%hƒÿ%jƒÿ%lƒÿ%nƒÿ%pƒÿ%rƒÿ%tƒÿ%vƒÿ%xƒÿ%zƒÿ%|ƒÿ%~ƒÿ%€ƒÿ%‚ƒÿ%„ƒÿ%†ƒÿ%ˆƒÿ%Šƒÿ%Œƒÿ%Žƒÿ%ƒÿ%’ƒÿ%”ƒÿ%–ƒÿ%˜ƒÿ%šƒÿ%œƒÿ%žƒÿ% ƒÿ%¢ƒÿ%¤ƒÿ%¦ƒÿ%¨ƒÿ%ªƒÿ%¬ƒÿ%®ƒÿ%°ƒÿ%²ƒÿ%´ƒÿ%¶ƒÿ%¸ƒÿ%ºƒÿ%¼ƒÿ%¾ƒÿ%ÿ%ƒÿ%ăÿ%ƃÿ%ȃÿ%ʃÿ%̃ÿ%΃ÿ%Ѓÿ%҃ÿ%ԃÿ%փÿ%؃ÿ%ڃÿ%܃ÿ%ރÿ%àƒÿ%âƒÿ%äƒÿ%æƒÿ%èƒÿ%êƒÿ%ìƒÿ%îƒÿ%ðƒÿ%òƒÿ%ôƒÿ%öƒÿ%øƒÿ%úƒÿ%üƒÿ%þƒÿ%„ÿ%„ÿ%„ÿ%„ÿ%„ÿ%
„ÿ%„ÿ%„ÿ%„ÿ%„ÿ%„ÿ%„ÿ%„ÿ%„ÿ%„ÿ%„héh"éh<éþhVéôhséêhéàh£éÖh¶éÌhÊéÂhçé¸hé®hé¤h.éšhEéhbé†hvé|hŠérh©éhh¾é^hâéThéJhé@h2é6hJé,h_é"hxéh’éh­éhÊéúhäéðhéæhéÜh9éÒhMéÈhhé¾h‡é´h¥éªhÎé hïé–héŒhé‚h/éxhEénh^édhvéZh‘éPh«éFhÀé<hÖé2hïé(héh!éh<é
hQéhméöhéìh§éâh½éØh×éÎhòéÄhéºh"é°h8é¦hbéœhzé’h–éˆh¯é~hÎéthçéjhé`héVh2éLhJéBh_é8h|é.h•é$h´éhÍéhãéhÿéühéòh0éèhDéÞh^éÔhwéÊh‹éÀh é¶h¸é¬hÍé¢hçé˜h	éŽh	é„h6	ézhS	éphw	éfhš	é\h°	éRhÆ	éHhè	é>h
é4h!
é*hE
é h\
éh‚
éh›
éLqxASÿ%yyhº
éæÿÿÿhÓ
éÜÿÿÿhà
éÒÿÿÿhî
éÈÿÿÿhü
é¾ÿÿÿhé´ÿÿÿhéªÿÿÿh(é ÿÿÿh5é–ÿÿÿhCéŒÿÿÿhQé‚ÿÿÿh`éxÿÿÿhoénÿÿÿh}édÿÿÿhŠéZÿÿÿh˜éPÿÿÿh§éFÿÿÿh¶é<ÿÿÿhÄé2ÿÿÿhÒé(ÿÿÿháéÿÿÿhðéÿÿÿhþé
ÿÿÿhéÿÿÿhéöþÿÿh'éìþÿÿh4éâþÿÿhBéØþÿÿhPéÎþÿÿh\éÄþÿÿhiéºþÿÿhvé°þÿÿh„é¦þÿÿh’éœþÿÿhŸé’þÿÿh«éˆþÿÿh¸é~þÿÿhÆétþÿÿhÔéjþÿÿháé`þÿÿhîéVþÿÿhüéLþÿÿh
éBþÿÿh
é8þÿÿh0
é.þÿÿhF
é$þÿÿh[
éþÿÿhi
éþÿÿhx
éþÿÿh‡
éüýÿÿh”
éòýÿÿh¢
éèýÿÿh°
éÞýÿÿh¾
éÔýÿÿhÍ
éÊýÿÿhÜ
éÀýÿÿhê
é¶ýÿÿhù
é¬ýÿÿhé¢ýÿÿhé˜ýÿÿh%éŽýÿÿh4é„ýÿÿh@ézýÿÿhNépýÿÿh]éfýÿÿhlé\ýÿÿhzéRýÿÿh‰éHýÿÿh˜é>ýÿÿh¥é4ýÿÿh³é*ýÿÿhÁé ýÿÿhÎéýÿÿhÛéýÿÿhêéýÿÿhùéøüÿÿhéîüÿÿhéäüÿÿh#éÚüÿÿh1éÐüÿÿhCéÆüÿÿhVé¼üÿÿhié²üÿÿhué¨üÿÿh‚éžüÿÿhé”üÿÿhéŠüÿÿh«é€üÿÿh·évüÿÿhÄélüÿÿhÑébüÿÿhßéXüÿÿhíéNüÿÿhúéDüÿÿhé:üÿÿhé0üÿÿh é&üÿÿh.éüÿÿh<éüÿÿhIéüÿÿhWéþûÿÿhféôûÿÿð?:Œ0âŽyE>q¬‹Ûhð?ð¿˜ð?ÿÿÿÿÿÿÿÿÿÿÿÿÿÿnumpy.random.mtrandmtrand.pyxCannot take a larger sample than population when 'replace=False'DeprecationWarningFewer non-zero entries in p than sizeImportErrorIndexErrorInvalid bit generator. The bit generator must be instantized._MT19937MT19937Negative dimensions are not allowedOverflowErrorProviding a dtype with a non-native byteorder is not supported. If you require platform-independent byteorder, call byteswap when required.
In future version, providing byteorder will raise a ValueErrorRandomStateRandomState.binomial (line 3280)RandomState.bytes (line 771)RandomState.chisquare (line 1854)RandomState.choice (line 807)RandomState.dirichlet (line 4274)RandomState.f (line 1676)RandomState.gamma (line 1593)RandomState.geometric (line 3685)RandomState.gumbel (line 2697)RandomState.hypergeometric (line 3746)RandomState.laplace (line 2604)RandomState.logistic (line 2820)RandomState.lognormal (line 2905)RandomState.logseries (line 3879)RandomState.multinomial (line 4141)RandomState.multivariate_normal (line 3967)RandomState.negative_binomial (line 3431)RandomState.noncentral_chisquare (line 1929)RandomState.noncentral_f (line 1769)RandomState.normal (line 1406)RandomState.pareto (line 2291)RandomState.permutation (line 4543)RandomState.poisson (line 3517)RandomState.power (line 2496)RandomState.rand (line 1137)RandomState.randint (line 646)RandomState.randn (line 1181)RandomState.random_integers (line 1245)RandomState.random_sample (line 374)RandomState.rayleigh (line 3020)RandomState.seed (line 224)RandomState.shuffle (line 4422)RandomState.standard_cauchy (line 2016)RandomState.standard_exponential (line 546)RandomState.standard_gamma (line 1513)RandomState.standard_normal (line 1341)RandomState.standard_t (line 2089)RandomState.tomaxint (line 588)RandomState.triangular (line 3172)RandomState.uniform (line 1014)RandomState.vonmises (line 2203)RandomState.wald (line 3096)RandomState.weibull (line 2393)RandomState.zipf (line 3599)Range exceeds valid boundsRuntimeWarningSequenceShuffling a one dimensional array subclass containing objects gives incorrect results for most array subclasses.  Please us the new random number API instead: https://numpy.org/doc/stable/reference/random/index.html
The new API fixes this issue. This version will not be fixed due to stability guarantees of the API.TThis function is deprecated. Please call randint(1, {low} + 1) insteadThis function is deprecated. Please call randint({low}, {high} + 1) insteadTypeErrorUnsupported dtype %r for randintUserWarningValueError()a'a' and 'p' must have same size'a' cannot be empty unless no samples are takena must be 1-dimensionala must be 1-dimensional or an integera must be greater than 0 unless no samples are takenaddall__all__allclosealphaalpha <= 0anyarangeargsarrayasarrayastype at 0x{:X}atolb
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the ``binomial`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        bit_generatorbool_
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the ``bytes`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        can only re-seed a MT19937 BitGeneratorcapsulecastingcheck_validcheck_valid must equal 'warn', 'raise', or 'ignore'
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the ``chisquare`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the ``choice`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        __class__cline_in_tracebackcollections.abccompatcopycount_nonzerocovcov must be 2 dimensional and squarecovariance is not positive-semidefinite.cumsumdfdfdendfnum
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the ``dirichlet`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        -------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        dotemptyempty_like__enter__epsequal__exit__
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the ``f`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        finfofloat64format
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the ``gamma`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        gauss
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the ``geometric`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        getget_state and legacy can only be used with the MT19937 BitGenerator. To silence this warning, set `legacy` to False.greater
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the ``gumbel`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        has_gausshigh
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the ``hypergeometric`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        idignore__import__indexint16int32int64int8intpisfiniteisnanisnativeisscalarissubdtypeitemitemsizekappakeykwargsllam
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the ``laplace`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        leftleft > modeleft == rightlegacy_legacy_seedinglessless_equalloclocklogical_or
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the ``logistic`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the ``lognormal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.product(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 < ``p`` < 1.

        .. note::
            New code should use the ``logseries`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range (0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        longlow__main__may_share_memorymeanmean and cov must have same lengthmean must be 1 dimensionalmodemode > right_mt19937mu
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the ``multinomial`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the ``multivariate_normal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        The following is probably true, given that 0.6 is roughly twice the
        standard deviation:

        >>> list((x[0,0,:] - mean) < 0.6)
        [True, True] # random

        n__name__nbadndim
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the ``negative_binomial`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        newbyteorderngoodngood + nbad < nsamplenonc
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the ``noncentral_chisquare`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the ``noncentral_f`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the ``normal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from N(3, 6.25):

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        npnsamplenumpy.core.multiarray failed to importnumpy.core.umath failed to importnumpy.linalgobject_' object which is not a subclass of 'Sequence'; `shuffle` is not guaranteed to behave correctly. E.g., non-numpy array/tensor objects with view semantics may contain duplicates after shuffling.operatorp'p' must be 1-dimensional
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the ``pareto`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the ``permutation`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        _pickle
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the ``poisson`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        _poisson_lam_maxpos
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the ``power`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a < 1.

        See Also
        --------
        Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        probabilities are not non-negativeprobabilities contain NaNprobabilities do not sum to 1prodpvals__pyx_vtable__raise_rand
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the ``integers`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the ``standard_normal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use:

        ``sigma * np.random.randn(...) + mu``

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from N(3, 6.25):

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the ``random`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        __randomstate_ctorrangeravel
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the ``rayleigh`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        reducereplacereshapereturn_indexreversedrightrtolscalesearchsorted
        seed(self, seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        set_state can only be used with legacy MT19937state instances.shape
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the ``shuffle`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        sidesigmasizesortsqrtstacklevel
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the ``standard_cauchy`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the ``standard_exponential`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the ``standard_gamma`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the ``standard_normal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from :math:`N(3, 6.25)`:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the ``standard_t`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        statestate dictionary is not valid.state must be a dict or a tuple.__str__stridessubtractsumsum(pvals[:-1]) > 1.0sum(pvals[:-1].astype(np.float64)) > 1.0. The pvals array is cast to 64-bit floating point prior to checking the sum. Precision changes when casting may cause problems even if the sum of the original pvals is valid.svdtake__test__tobytestol
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the ``triangular`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        <u4uint16uint32uint64uint8
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the ``uniform`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        uniqueunsafe
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the ``vonmises`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the ``wald`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        warnwarnings
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the ``weibull`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        x must be an integer or at least 1-dimensionalyou are shuffling a 'zeros
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        continuous probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the ``zipf`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(x) = \frac{x^{-a}}{\zeta(a)},

        where :math:`\zeta` is the Riemann Zeta function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 2. # parameter
        >>> s = np.random.zipf(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import special  # doctest: +SKIP

        Truncate s values at 50 so plot is interesting:

        >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)
        >>> x = np.arange(1., 50.)
        >>> y = x**(-a) / special.zetac(a)  # doctest: +SKIP
        >>> plt.plot(x, y/max(y), linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        seedget_stateset_staterandom_samplerandombetaexponentialstandard_exponentialrandintbyteschoiceuniformrandrandnrandom_integersstandard_normalnormalstandard_gammagammafnoncentral_fchisquarenoncentral_chisquarestandard_cauchystandard_tvonmisesparetoweibullpowerlaplacegumbellogisticlognormalrayleighwaldtriangularbinomialnegative_binomialpoissonzipfgeometrichypergeometriclogseriesmultivariate_normalmultinomialdirichletshufflepermutationtypenumpydtypedoublesampleranfð¿ð¿€€ð?ð?ÀUUUUUUտ"@mÅþ²{ò ¿à?ø@>@˜3?Írû?q¼ÓëÃì?0@à¿ÀUUUUUUÕ?ñh㈵øä>-DTû!	@@-DTû!@-DTû!	À4´ÉNö@SŒ¾¤Ýi@€?«ªª¾Aޓ½?€€€€à?à?€aÀ€aÀÀX@ÀX@€`@€`@à|@à|@¸Ê@¸Ê@€MA€MAƒ»~)ÙÉ@Áè lªƒѿ3­	‚´;
@@5gGö¿…8–þÆ?—SˆBž¿¤A¤Az?<™ٰj_¿$ÿ+•K?88C¿  J?lÁlÁf¿UUUUUUµ?´¾dÈñgí?$@=
ףp=@˜nƒÀÊí?[¶Ö	m™?h‘í|?5®¿333333ÀrŠŽäòò?$—ÿ~ûñ?B>è٬úÀrù鷯í?…ëQ¸…Û?ìQ¸…ë±?9´Èv¾ŸŠ?Âõ(\@ffffff™™™™™.@€4@ôýÔxé&Á?€a@ÀX@€`@à|@¸Ê@€MA@ä?UUUUUUÅ?€„.A-DTû!ÀàCÁ]¿”ìdÑ<A]‹X`<+M[I²Öj<º[©5“q<s*Jåæ"u<€zÂûPx<̷yïÑ8{<˜½m·Øì}<<\ÆIð;€<pöÖ$Ûp<3&ڐ˜‚<Ên=þˆ³ƒ<!þÆń<ÃJøͅ<½+§ð@φ<ÐÚÍɇ<o`ÓTY¾ˆ<Ò7"U€­‰<R]¾ȗŠ<ģÝݥ}‹<‰?Œ×{_Œ<6|ñM¢=<ZsñxfŽ<ªO_ÏðŽ<	2h]Òď<XujívK<ü€›GH³<¯õI‡ó‘< ßK댑<çI>é&ä‘<.ÿ8eÒG’<h#ឪ’<KÚ&¥š“<‚mâÒm“< b!ÑSΓ<HgpÊ(.”<ç5_\”<“Íkøë”<Mox)J•<ý¾¸=ާ•<Ï.Ýǘ–<àhm-a–<D©úbS½–<»yy—<sy#nt—<r~|oϗ<™ÕþS*˜<ìá+/w„˜<*ÅÐPˆޘ<D¢ý½S8™<8­Bޑ™<¿ÿu,ë™<Jˆ¾BDš<aҖS%š<É$òDØõš<›—Ly_N›<‰?³¾¦›<™þY“ùþ›<ŸÒpšWœ<ÛZÂ+¯œ<ûæðŽò<kØñ½^<WBju¶<þ1|÷ž<Dσ´ež<bâåA½ž<Ÿ”âÆŸ<µþW+FlŸ<¡©eÂß<Ù<šŸ
 <b±
ö]9 <øvre <rK»㐠<7q­¼ <f/z |è <¬9R¡<¾}po0@¡<ûwál¡<–#=©	˜¡<ƒR=Ýġ<âĩð¡<±Ó'¢<)£³MH¢<ŸÐ;ƒt¢<ª͋tɠ¢<];¥d!͢<!Œù¢<vû|
&£<¡ŠªR£<ð…šF£<üïÏL¬£<m3ÀÝأ<Ä	Oôͤ<ÐlFæ×2¤<§lq”ü_¤<ăÈü<¤<¤kšº¤<êEËôè¤<ûف®¥<øµ,ÄgC¥<'o1¼Aq¥<ùœNk=Ÿ¥<5“Ô[ͥ<&ÏVúû¥<.sã*¦<Œ›\–‘X¦<îëÓE‡¦<ß<~ ¶¦<¦YË$å¦<û©PS§<úa¬C§<0ÑwÑ1s§<
$±v䢧<÷}kÅҧ<wrÎÌÕ¨<*æߺ3¨<çaY‰c¨<T¤Ï.”¨<”`ÌHŨ<þóö¨<ásŽ\'©<Š‚5²ØX©<ô»@9ŽŠ©<]ÇÚ}¼©<QéÝܨî©<-YЊ!ª<ÆV5¶Sª<óÐ2›†ª<zeß9ª<ÿ¬ʝ(íª<µ‹nÖÓ «<B%ÏøÃT«<¶O2{úˆ«<&Ûx½«<…ý-@ò«<-àBNS'¬<¤±ꂲ\¬<û##Ø_’¬<l¥•ó\Ȭ<€q탫þ¬<­ò0AM5­<þ£íCl­<
¥S‘£­<5ÒJ7ۭ<›P&´7®<R¤|”K®<#ôšO„®<xvJk½®<h‘[üèö®<¼ nË0¯<Ð^Q˜k¯<åáï³ƥ¯<Ø	Ý
äà¯<Ôùz7°<9ï4,°<£$’žkJ°<Û&ÏÜh°<­:ω‡°<È3÷s¦°<o”©œŰ<·ÏïPå°<Îïf¯±<J’jœ$±<+:oìÍD±<ÁąEe±<ž®o݆±< x¢§
§±<Z*x¦aȱ<p3›ªê±<¢ôð“ò²<PåOR3.²<º;@æÆP²<¦ÚÇa¯s²<+SBé<QÛE´‡º²<p-–|޲<eY&Yγ<Ч*'³<eÉ;³–L³<V¨Œør³<CQ4œõ—³<ƒ‹zD¾³<ÐޭŒå³<­îõé/´<øB½ÉÒ3´<,É…í[´<2”Әƒ„´<L¡]§˜­´<'±{0״<•¹Oµ<²ª¬qø+µ<Z§ø1Wµ<aDLý‚µ<á8úa¯µ<ž½ˆdܵ<y—
¶<”.{$U8¶<2ôÃ`Og¶<îH—Jý–¶<{š/eǶ<%ô±ø¶<Ò\Î}*·<Ãq½â<]·<ùqkµҐ·<Óv}Gŷ<né£ú·<þÀ,ñ0¸<Bsh9h¸<«[i΅ ¸<•6;‚âٸ<DuóÒZ¹<*ü4ûO¹<؍ñЌ¹<êÙ$:êʹ<xñI>V
º<;LèC%Kº<ꆭÂhº<ÄE؂3Ѻ<
¶»<ê‘P±]»<^Úvґ¦»<wïKÞTñ»<§àÂA>¼<ôÈÈBôŒ¼<©òì޼<Å8'k1½<ì;ìo”‡½<ŸñN¯Pà½<`	nò;¾<Có*¯š¾<JêPgÂü¾<§÷‘—nb¿<åÆöCþ˿<.ìb³âÀ<ïŽõ‹VÀ<N¥ËÍQÀ< H]x1ÐÀ<¦’C¨Á<*DugxVÁ<Ö³¼ŸÁ<|úɠ¼ëÁ<Ÿ‘Y¶+=Â<¥ªI®õ“Â<ðDŠãðÂ<^÷Ì'îTÃ<a¸ÈÇNÁÃ<bäf—7Ä<ÑQGÍ׹Ä<ösÏ<ØJÅ<ÒsázîÅ<r¿KmgªÆ</ÆêÖP‡Ç<íò染È<…{H
ÜéÉ<üqÚQžÃË<ƒ»~)ÙÉÎ<Ɨ$'R~1œ×[}<?Žõn®°2·›|D÷'Ñeˆ•r9\-þ²kÕ[~p,Ý4Éȝ¬ß	6xÔq{3¢·|‹Zlo	B{>®¯
—žðN±õ®Ve´½ÃΙ‡ðöÕˆVn®æÐ6Ênô¤ÔÝvK¶–§ãz÷ñicp%Eò t¨Q®)2U¹±1ÁWQ9Linëâ?úˆ×23F:¿L"3\L‡QÀìÃ	¡V–™	Ùf[ŒÐ‚à_rWDÝdx–…ö	hæ+*Åkôä2=Ko:ñq rÖ	M—ÈuÀ\Çxô?AŸ{ŠŸFS~8â;æ€b‘­=Zƒ¹V`±…bB²‰í‡út“uЬ9=ºŒJÐEÌŽ>ñàXƒ–½‘دG¬w“Úd‹O •’8cx¸–’ˆ–A˜€ºFẙi¼&›zqV…œØÏYםΡagŸÀ6	X 83:뇡üÄko­¢‚Îɣ¢jî_ۤ|	Mªä¥‚gä^å¦Ä¥Üݧt¨æ|Ψî_Γ·©X¸­p™ª2‚X^t«„t£H¬蟿‚­W;ޭlò ®~°$\¯z[°ô߁İúñ¶Pp±:–²ž²J¨ß+º²N!X³¾ɦñ³֬ᆴü“ÇóµªýÅ¥µXþ7(.¶
Ɉ³¶˜µ?5·¨}Üh³·ºÖ.¸öG{¥¸tš•¹rº…й&oyaø¹†âî=cºìA/˺D‘´H0»⤮œ’»žÈ<ò»”)Ò9O¼Ô@ᣩ¼žTнœrÞûV½j֋ª½@?˷ú½ÞdsI¾^iÉ@•¾(±†0߾taÞö&¿⊂žl¿Ä©1°¿°ýºñ¿ˆEA1À²T[ÏnÀ&‹mªÀŠi™#äÀdŠ)ùÁB}õQÁJw†Á´tž}¸ÁBê éÁÞÕîÂþƒ<
EÂÂO†vpÂc/šÂF€é<´ÆҢèÂì"Ae
Üއ0ÃÆ~RÃøfßúqÆ(*QÃú—t­ÃH3DÈÃ@«ÌäáèMŽ÷ùÃ`P¸}Ähýwx%Äƿµè8Ä*ÏJÄèGô+[ÄElÿiIJPIwĸû+	ƒÄöE>Äҙç•İ0ݝÄ2´y‘¢ÄüŽŽ¦ÄŒûëø¨ÄžêΩÄ4úA©Ä (N­¦Ät.Ȱ¢Äâ-æÄô-…̕ÄÀ^&܌Äz#ì;‚ÄæޖæuÄ‚~ÖgÄ6XÄ .pmFĘË3Än
ËÄ��ÄbËH²íÃ<Y>ÄÒô‘޵ÃLa™õ–Ã’EZvÃp“óRÃ(²Á-Èx½_Ãbò˿ÜžŸ¹ӰÂðüŒ‚ÂdñyÚQžӶ¬ÂVgŒñèÁ<»7–°ÁÍ܆uÁ¶Öt®7Á$»ööÀ¤MH³À𯋉lÀdó’ "À¸rqտŽH)݄¿
Æ/Å0¿ÆwپÚ}2€}¾¦K	¾D5zº½&ø¹§R½ Æcæ¼äM,}u¼ª·c¿ÿ»¢æ?ò„»ŒѠÙ»¬p5º¶’¿ó¹ü«Ô.b¹J3ʸT[vv+¸\‰[œ…·”UÕ@ضBiÙ÷"¶à7oLeµÒi¿¿ž´FçÈγ>œSÏô²R(D2²–Z> ±ÂáB0$°¦yÄ1¯ágW®r-¿ެ
@樫(ÿ™óaª¢foe©<P³š§òÑ&¦ê‹Ô{¤”ÀœƢó}ôô 
¾k3Ÿ¼ùy+ñœīD¸š¸/x[U˜x?ЫÕòñΩý’äšÚüø…sž¹Œ–Gì*‰ŽÛùE…š6Ãý€&é9xB|Ì*X£w$ q*5·4‚jfâ¨cÄãOfZrÎNrPÚo\fÇD¢YŠ£å6
4P4&{>æËWú®öˆ¡ŒÓ°-¦¢|&‹ÇaY°¬+öÝÀèäÙMÛe'‹5ìÄ2’µV2­™Œ27©2ˆ„Â2ÆÙ2Æfï2‚ß3ن3À3Hœ3®(&3Åo.3z63oN>3ËòE3lM3F¾T3/í[3ßûb3íi34Ãp3f€w3“&~3·[‚3Bš…3œψ3gü‹37!3“>’3÷T•3Õd˜3—n›3Ÿrž3Fq¡3ãj¤3Ã_§31Pª3r<­3Æ$°3k	³3›êµ3Œȸ3q£»3|{¾3ÛPÁ3¹#Ä3CôÆ3žÂÉ3òŽÌ3dYÏ3"Ò3+éÔ3®×3ürÚ3ö5Ý3Í÷ß3¸â3xå3”7è3ðõê3«³í3àpð3¤-ó3êõ37¦ø31bû3þ3ùl4ðÊ4ù(4‡4hå4áC4’¢4ƒ
4¿`4MÀ47 4…€4?á4nB4¤4L4i4aÌ4T04í”45ú42`4îÆ4p. 4¿–!4åÿ"4èi$4ÑÔ%4¨@'4t­(4>*4Š+4ëù,4ßj.4ðÜ/4'P14Ä24):44±54&)74™¢84c:4™;4$=4+–>4®@4¶˜A4KC4v¡D4B(F4¸°G4à:I4ÆÆJ4rTL4ïãM4GuO4„Q4²R4Ú4T4ÎU4EiW4ŸY4 ¦Z4ÔG\4Çë]4’_4š:a4”åb4ÿ’d4èBf4\õg4jªi4bk4‹m4ºÙn4¾™p4¤\r4}"t4Yëu4H·w4[†y4¥X{46.}4 4¼q€4§a4]S‚4æFƒ4N<„4 3…4å,†4+(‡4{%ˆ4ã$‰4o&Š4,*‹4'0Œ4m84
CŽ4P4•_4›q‘47†’4{“4w·”4>ԕ4àó–4s˜4<™4¶dš4›4­¿œ4$ò4(Ÿ4a 4–ž¡4lߢ4$¤4Ål¥4„¹¦4x
¨4Ä_©4ˆ¹ª4ê¬4{­4 ã®4EP°4©±4{:³4귴4);¶4nķ4îS¹4çéº4–†¼4<*¾4տ4‰‡Á4ÈAÃ4.Å4ÏÆ4עÈ4ÚÊ4ˆfÌ4RWÎ4²RÐ4*YÒ4FkÔ4œ‰Ö4δØ4‹íÚ44Ý4§Šß4²ðá4¢gä4ðæ4kŒé4¤<ì4…ï4“ßñ4yÕô4æ÷4uû4ò_þ4ç5Œ°5Ž5Œ5@5ó
5ø5å]5^é5­Ÿ5‡5q§5v
5»¼!5¾Î%5ÂV*5×s/5;S55‡:<5ÿœD5àNO5ó^5ÉNv5QHqoõMֻaÝnj DotTrùotoùuÓ$w'xîÍx,jyíy7\z׻zô{ÜW{S˜{»Ñ{.|Œ3|Ž]|ȃ|¸¦|ÆÆ|Iä|Œÿ|Í}C0}F}„Z}›m}‚}S}( }¯}-½}‚Ê}"×}ã}|î}Mù}™~i
~Æ~¶~B(~o0~C8~Ä?~öF~ßM~T~âZ~a~ìf~›l~r~]w~v|~`~ †~¶Š~$~m“~“—~•›~wŸ~:£~ަ~fª~ѭ~#±~Z´~y·~€º~q½~KÀ~Ã~ÁÅ~^È~éÊ~aÍ~ÇÏ~Ò~`Ô~”Ö~¹Ø~ÎÚ~ÕÜ~ÎÞ~¸à~–â~fä~*æ~âç~é~-ë~Áì~Jî~Éï~=ñ~§ò~ô~\õ~¨ö~ë÷~$ù~Uú~}û~œü~²ý~Áþ~Çÿ~Å»ª‘pHâ¤`	Â	i
	£6ÂH
È
A´!ˆèB–ä+m¨Ý5XtŠš¤§¤›‹tW3	ØŸ`Ìw·K×\Ø
L
·sÃ


G	{¤ÂÖßÜͲ‹Vÿ~þ~Ãü~dû~öù~xø~êö~Kõ~šó~Öñ~ÿï~î~ì~ýé~Ïç~‰å~)ã~®à~Þ~aÛ~ŒØ~•Õ~{Ò~;Ï~ÓË~AÈ~Ä~‘À~m¼~¸~z³~¤®~ˆ©~"¤~kž~]˜~ï‘~‹~ԃ~|~Ås~áj~Ua~W~÷K~ó?~æ2~¬$~~÷~
ñ}Ü}€Ä}	ª}Œ}ši}ÉA}}—Û|Q˜|øD|¼Ú{3N{˜Šz‡eyÙww7msyÙx;IÏ<Æöý㍋<´[,<¯P’<a;D8¹|•<§/èü˜<¼ÐL.#š<÷a8/Mœ<trtZ/¬<ÃÕL-H2Ÿ<­»Ž'2M <C];õ <w6A—¦’¡<õz¢'¢<€Øc8.µ¢<õ‘WÀ?<£</±¢^½£<U›ÿï9¤<§þ=6»±¤<tÓbu%¥<–Χ€•¥<ê~ÙÏ1¦<=|£aÒk¦<p’¢Ҧ<¦øFÓÚ6§<w*³­˜§<CõF­Eø§<w
CSÌU¨<šv{žd±¨<˜ÏN©.©<ê,‚Gc©<FÅ8Žɹ©<,§¤Ü̪<YÍwmgbª<0n­´ª<œlm±«<)zB‡„U«<:ŸRŽ6¤«<2‚¿*Öñ«<óNYùp>¬<a;2¥Ь<‹&rþÉԬ<H·€Ÿ­<ä)g­<ø#ί­<Svñ©:÷­<þíҵë=®<oz3郮<΂ù½:ɮ<&bð„ç
¯<ˆöØTöQ¯<®ׇžm•¯<¬.ú}Sد<ì4BàV
°<š9õ@.°<ü¥žêN°< r[Vo°<ôq†°<a¼„}¯°<ÌKf=ϰ<kKÈî°<î•2 ±<¾1G-±<A‘ŽŸ>L±< Ŀk±<4Úx§‰±<ˆmîQ¨±<Ë*øøfƱ<.ÔӋä±<Ÿ @™Š²<éÆÄre ²<Ãé}>²<ûk©´[²<Óf*y²<×ǁ–²<Ú.¸b»³²<S¸ábØв<Ž©ËèÙí²<×Hn
Á
³<0¹ôáŽ'³<¡^&pDD³<ÕRʺâ`³<jX¾j}³<d²²oݙ³<=¸¿;¶³<àV˜†ҳ<ƒZr޾î³<tžàqå
´<]t¦-û&´<¤0<èC´<]ÇÊs÷^´<6Ãfžßz´</H2º–´<]A��<ܳ¬Iδ<¦8ê´<bU^﫵<Z‹
òM!µ<OfjÕæ<µ<ȲNwXµ<x_Utµ<…Ɓµ<Y$#ýªµ<=s}ÑrƵ<ӌ/{ãáµ<8^ŸÈOýµ<ã`¸¶<¢°¢è4¶<&·O¶<r–ÉWâj¶<71±ƒB†¶<±²P)¢¡¶<»C³è½¶<RÓ(abض<Tøa1Äó¶<ëh‹÷'·<ÆiQŽ*·<ÜîpÜ÷E·<så5ea·<IôïúÖ|·<“½ºÈM˜·<	‹<ʳ·<û"ÛóLϷ<çÞsŒÖê·<ꆤg¸<v†ÈÚ"¸<Ÿ‰΢=¸<½õÑNY¸<Å~zou¸<-÷G_и<CÀ’ެ¸<œ¡«eȸ<'jDQIä¸<µs):¹<Gƒ(Ü8¹<ü
ïF8¹<Š¢ybT¹<îÕp»Žp¹<1*.‰ˌ¹<¿™?“©¹<,ÙՌyŹ<to+ìá¹<JÒú&rþ¹<’6ù9º<[Ȣ!»7º<ˆ»žTº<¤©JrZqº<=1 dLŽº<ñŸ>V«º<ÎõZÍxȺ<6³‹á´åº<¡ÃO»<[˜šð| »<à 
>»<=ÎAµ[»<'‰?¹}y»<<÷åñd—»<n%…Ûkµ»<¢À.k“ӻ<ƒ®›Üñ»< ìlH¼<-zðå×.¼<
nŒM¼<‡ìfl¼<¦ëàf‹¼<«¢6½ª¼<Ö;Çáɼ<7àh0^é¼<n‹2	½< ï7Û(½<GÆ3ÞH½<#ñç–i½<¥û×ôs‰½<pn ™	ª½<IüøÒʽ<7.R•Ñë½<ÒIû
¾<öFêÄt.¾<ˆÑYP¾<%þ—/r¾<
¿*K!”¾<o÷¶¾<:§v#پ<©ìaü¾<!SŠ2¿<mM·¤B¿<hÉ _f¿<‚—‰fŠ¿<¿"q»®¿<…ç/Ò`ӿ<öÁYø¿<u ÓGÔÀ<Gɏ¨!À<«©ƒ©4À<Çõ>NÚGÀ<~³­ö;[À<h&§#ÐnÀ<.c˜‚À<T¢è—–À<ÄÀquͪÀ<HÔîÑ=¿À<0=ª4êÓÀ<“eÏÔèÀ<¶Ÿ¦ïÿýÀ<Ap nÁ<5]»›!)Á<m	Äi?Á<;.`HdUÁ<óî;ùkÁ<aÒt߂Á<¬ëNVšÁ<Ž/w­±Á<”¦q©œÉÁ<9®äûëáÁ<ÙâŸúÁ<Ì¼Â<îÓozG-Â<$œ¬¤EGÂ<àXvǼaÂ<.Y¨ú²|Â<xwÍ.˜Â<R
*S7´Â<—ۖ1ÔÐÂ<õx©±
îÂ<î®VÒìÃ<£¤h^{*Ã<£®ÄIÃ<@¨3zÒiÃ<
AV’³ŠÃ<úˆ®pu¬Ã<¦³'ÏÃ<uô`ªÛòÃ<Ú幜¤Ä<”^T˜=Ä<:§DÎdÄ<¼CœubÄ<'Zks·Ä<‰Í
%ãÄ<A¬éSŸÅ<B~:R@Å<äJ©±qÅ<ٍq‹%Å<þÐ:$ŠÜÅ<L†ÏiÆ<êj{ÎSÆ<Ã埾@•Æ<2â	kÛÆ<4z_ð('Ç<s	V•yÇ<ŒÎÖô-ÔÇ<4ò)9È<|ª¿«È<–Do”à.É<«W@îËÉ<Zw”x܏Ê<±ýx8˜Ë<3­	‚´;Í<jï%€=ó¨Æû˜¾B½úT£
êîÁ~öQ~÷ÓéU²¹Ê~KïªDú
GËÿaí7\%a•FO–£ä¥a¤–SuzpšD(ì²|ÓWcñ†Þ%ƒW¦ÚÐMÇ$—	õÛ©túõ`£øK[Þo¨ÜTÓ`ñ¬¹gû°ÆtSŸ´wþf#ì·å¡éìºí«½Wlÿ`0ÀH¢7‚ÂÑ[âz¦Ä1îz—¢Æ¤–(©zÈ…ÞK^2Ê#éÌËÄ9øMÍ™ìMµÎ0É¿ÐæÄÖMFÑPôâ¨rÒÉðOŽÓx´™šÔS’¸˜Õ왎	Ö2èȩn×è{THØŒ,­‹Ùҭ§ÝÙŒ^p™Ú .À]MÛÐü[\ùÛ}š¹ëÜr;ݐ/4ˆÒÝdŸ6dcÞNQpîÞ.´¦tß@í™eôßò$¼äoàX¢%ÂæàL¸(<Yá™?¼ŒÇáªÛé1â‘څ˜â†AµûâJU3[ã*Й·ã­žéä4wÔFgä\	LӺä$•Үåx¼N÷Yåäȥ剆>ïåxÙo6æxÕÆu{æªf¾æòôåUÿæ§Y>ç9ž>‚{ç¢ppã¶çCBwðçŒðS(è:5û^èd„ܓè¼ÎðAÇèöN}8ù蛇Ì)éêˆÓ	Y颚“û†éfHq¬³éն”&ßé|æ«s	ê¤fñœ2ê,•2«Zêtզêðޗ§ê Ùó…Ìê<æexðêì/vëJ*þ…5ë´b1®Vëú„âôvë æ_–ë|Ïô´ëÐIô¸Òë>.n±ïëè½ãìZ±R'ìӯBì–ñ)ý[ìôîl@uì´Pҍì‘¶¥ìþ'Äð¼ìûT„Óì³Ȉtéì·‘Äþì(…5wíI„'íL/$;ínX­ûMíÝØT`íèOArí‚©äWƒíÈ,¤”í·…+¤í´jtȳíRfAßÂíRn¤qÑíӊ<ß퀙ííÔúíÄK®îZÙÀîàWî$eKs)î¼ä
4î<›¸=>îô‚)îG'QîA@éYî.´(5bîñ—Xjîz>lqî‚{2Xxîº{Ï~î²JH҄îCc¶`ŠîQÈÌzîÚ%~ ”îê)¨Q˜î\HœîôsrUŸî®Ìb'¢î¬Bkƒ¤îq-üh¦îúÖnקî
úΨî;3èK©îd)P©î^À٨îTv‰ç§î$Hx¦îƒž¢Š¤îÚä"¢î$ 5.Ÿî.¯&¼›îäò$ŗî:
<G“îuU@Žîzœ6®ˆîý=Ž‚îˆ¸§Þ{îÿ7ÿ›tî^½©Ãlî~žRdîˆ(£E[î¶WN™QîÏJGîP,áS<îØ*à²0î‚­b$îZ<¸^îG*¢	îÌIã'ûíl!vêëí~"äÛíÓ9ÎËíô,d¹íÉ8éܦíé7r“í6¨8í+9Òií®Sí"¤ÞA<íØ/jç#íDæ/s
í4þÚï츷Ôì´n•·ìÁ0¶˜ìx©
yìþ1õWìbɆf5ì5³´LìÐoŽ”ëë’¶ )ÄëÜîõšëB…Éáoëž­ÓBëK-°ëéYâêW"™®®ê&㎍xêåsýÏ?êöٍLê;V/ÖÅé¤G©;„é(GG?éÖÅv½öèæèÄ]ªèê±zàYè@©öèÀ3‚H«ç¥juLç¢*èæث¶ }æ~08ŸæB÷8s”å€r—påXô6ԋä7ý¿ù㜱î5]ãþä/µâWU™âƒx‚<á°gîÄhàªq+°‚ߪþ~ŇÞý;Æ	uÝ¿)åFÜ‚.øøÚuº²á…ÙÏHïæ×e½­ÖðâIÔ¬Ǵ§¡Ñžvâβ^بË"-ÍnÒÇí"/+Ã:¸e½4TĶt(*X@¬˜E—žü¤Hú‰,0ð÷ÅfJ3KZð?‡ðyÉjDï?©l[T·î?wð'à?î?•Þ§oÓí?ò¼W’pí?Ü¡xIí?ë-§¨3½ì?x©Î^jì?êºîÙì?‚ÜáNëÎë?Rõ:e…ë?Ý4‚:>ë?¢èl?*ùê?%zñþµê?áÉPՋtê?¯õýª4ê?Øeî;öé?$"¹é?ÁzaWF}é?Gz‘Bé?Oq1½ñé?¨
æOUÐè?ߺH­˜è?¬¼7üëaè?nÏV,è?Ëâ Kíöç?XhœwšÂç?հ <ç?VØp\ç?m?ôå)ç?îzêºPøæ?‰ZcžXÇæ?*;Q^÷–æ?#ã’*'gæ?U˜â7æ?e&€˜$	æ?jÿJoèÚå?‰\Ȭ)­å?L&äå?FžðSå?ÕleZµ&å?g¶ èÄúä?ÀNIO?Ïä?xRÜr!¤ä?Pß_hyä?y6IJOä?ã_5Š%ä?‚[X™~ûã?£1¯>Òã?Íb¦U©ã?ÕÚ+Àã?éPõ‹„Xã?5:pɗ0ã?ï8dýúã?î;êU¬áâ?J•תºâ?͓Žò“â?í)„mâ?„ېZ]Gâ?ò÷/©|!â? –’©àûá?i™Tþ‡Öá?Ñ?Wq±á?P<›p›Œá?Ú9†há?œ©^­Cá?81H’á?Y2¢³ûà? BAØà?®Ùp¦´à?]™v‘à?6<ðÌ}nà?.?¦¯¼Kà?*‚‹á1)à?Äʸ…Üà?¡½{ŒwÉß?Ê©§…ß?óz/Ë)Bß?•~qÿÞ?T½ n¼Þ?ÅÃNj#zÞ?…›_ê88Þ?	:vG­öÝ?±V2µÝ?3Þ&d­tÝ?€¡64Ý?m[®´ôÜ?H¨ÀsU´Ü?Ç×»ètÜ?¸,oÒ5Ü?ja|÷Û?‘mq֤¸Û?x‹zÛ?Ê1³bÄ<Û?R…¡žNÿÚ?žZ_:)ÂÚ?€ؤJS…Ú?MÀ êËHÚ?>„F9’Ú?ߓ^¥ÐÙ?ÆÀ„•Ù?“ŸàۮYÙ?Ë3›£Ù?ñ¹üáãØ?ˆ‘Þ?i©Ø?¶Z¬¨8oØ?Ù
ªO5Ø?ٸ­û×?°ô¯PÂ×?ëR’¯9‰×?í±ÇigP×?La©;Ù×?ªL†ŽßÖ?!ވ­†§Ö?âË%ÁoÖ?å{7=8Ö?ÈҀtúÖ?DÂvCøÉÕ?¾îÖ6“Õ?=p³\Õ?í;SÂo&Õ?’m¿ŽjðÔ?¢œW£ºÔ?Ôj­Ÿ…Ô?þ$ÃïÌOÔ?z5ѼÔ?ÛҎÐèåÓ?®Cñ|P±Ó?yhó|Ó?žÑù%ÑHÓ?/öZMéÓ?f!w;áÒ?Ý?–>ǭÒ?±MAŒzÒ?‰ÞŠGÒ?žÌ÷yÀÒ?ö.âÑ?PðÂ9կÑ?èTTí²}Ñ?gî4»ÇKÑ?#$ÏOÑ?Ä	‡Y•èÐ?ÚB²ˆM·Ð?6C;†Ð?ÙéB"_UÐ?~tÇö·$Ð?œ߉‹èÏ?52¸ŒˆÏ?Ҙélþ'Ï?DœɤTÈÎ?Ý<(²iÎ?„qE8
Î?
ÇUīÍ?OQ²ø¶MÍ?Ìo^ŠðÌ?Sßq™͒Ì?Gطð5Ì?¡¾zxÙË?ª1‡zd}Ë?:ÑÌR´!Ë?W¢gÆÊ?~&~kÊ?=~-2÷Ê?ZþҿҶÉ?'|j_]É?iút¿¯É?[’‘°ªÈ?8šŠRÈ?uqbÕùÇ?#£hÓø¡Ç?¦µzœ|JÇ?G–~`óÆ?\ò!>¤œÆ?œñ­¢GFÆ?ùƒøvJðÅ?l󈬚Å?5hȩmEÅ?Á㭍ðÄ?-ÎõlœÄ?ÕuÂéGÄ?®1i‹%ôÃ?î×調 Ã?ˆ«´¸MÃ?e*|„ûÂ?zèÂ?·^ƒ¢ÕVÂ?4<%FÂ?B}u’´Á?c-¨å@cÁ?¹n¢ËÁ?º	R=³ÂÀ?…¿¸KùrÀ?*}T#À?,"kË>©¿?R)ÿ¿?K¥šò{o¾?èvaµӽ?命¹«8½?
t;I_ž¼?hм?3âòxÿk»?3öÊéìӺ?†bê3™<º?[Ü¦¹?« ¤u0¹?R(¿{¸?Öï>Êæ·?vªZ9S·?LJisk6?M…$a.¶?¤ftWµ?®+ú›µ?"@á|´?†š&#ïí³?p>ÙäÅ_³?1›ÏfҲ?‘
ÝDÓE²?}‰—¾º±?òÐ/±?%–,�?—ä0ž—°?5nl+,&¯?Q²GÕ®?bñ­þ.	­?,*(>ý«?p_8óª?cU)ùê©?«µh*àã¨?'¯wûާ?dИ³éۦ?ԭò<²ڥ?]']ۤ?Ëî˜Îòݣ?—ô=è|â¢?¼jŸé¡?€–.˜ñ ?ĥׁøŸ?uŒ‚Ûž?	̓0œ?øë"NŸRš?
Á¶Ñy˜?‚¿ôڥ–?d°ûòê֔?^«8
“?0`4I‘?IÝrO*?¬O'¤‹?x¤
Aˆ?àÏB–ë„?’/•)’¥?7hìø`á|?]¸٨žv?ý±°Šp?g°ÁCŸ_e?÷¹¶¦T?ÜIú4_hÜ2z…3Êå+3ç@3aQ3i`3{am3A’y3‘i‚3*¨‡35•Œ3=‘3r©•3þá™3öì3|ϡ3ڍ¥3«+©3¬¬3ް3“^³3•¶3׶¹3iż3-¿3c®Â3%‹Å3uYÈ3<Ë3LÎÍ3gvÐ3;Ó3k¥Õ3‹-Ø3$¬Ú3´!Ý3±Žß3ˆóá3Pä3P¦æ3øôè3é<ë3p~í3չï3^ïñ3Jô3ÖIö3<oø3³ú3m«ü3œÂþ3·j4r4Uw4³z45|4ì{4ëy4Bv4q48j	4õa
4FX49M4Û@
4834]$4U4,4ìð4 Ý4SÉ4´4۝4Æ4Ïn4V4w<4$"44Vë4ëÎ4ޱ45”4÷u4,W 4Ù7!4"4¼÷"4ýÖ#4ҵ$4@”%4Mr&4P'4_-(4p
)47ç)4ºÃ*4 +4|,4éW-4—3.4/4~ê/4ÃÅ04ï 14|24W34244
54è54Ã64"ž74@y84sT94¿/:4*;4¸æ;4nÂ<4Rž=4hz>4´V?4=3@4A4íA4qÊB4¨C4†D4udE4-CF4K"G4ÑH4ÇáH41ÂI4£J4v„K4\fL4ÍHM4Ì+N4aO4‘óO4bØP4ٽQ4ý£R4ԊS4crT4²ZU4ÆCV4§-W4ZX4èY4UðY4ªÝZ4îË[4(»\4_«]4›œ^4åŽ_4C‚`4¿va4alb40cc47[d4~Te4Of4òJg42Hh4ÙFi4ñFj4…Hk4 Kl4MPm4˜Vn4^o48hp4¦sq4å€r4s4
¡t4´u4Év4Càw4”ùx4 z4ù2{40S|4Ùu}4›~4ÎÂ4¢v€4@
4L¥4Ò>‚4àق4vƒ4Ä„4¸´„4lV…4ïù…4RŸ†4¦F‡4ÿï‡4p›ˆ4
I‰4ëø‰4"«Š4Ê_‹4üŒ4ÓЌ4l4åLŽ4`4þԏ4坐4<j‘4-:’4æ
“4˜å“4vT4»¡•4¢†–4np—4g_˜4ÛS™4 Nš4”N›4Uœ4¬c4>yž4ݖŸ4%½ 4Áì¡4r&£4k¤4»¥4(§4û„¨4‹ª4«4.­4Qä®4N³°4tž²4ª´4\۶4H9¹4«̻4p¡¾4ÈÁ4~XÅ4wÉ4p_Î4ä~Ô4úÀÜ4¤Ýé4ì™wõE`¨m´r¯’u\zw8Êxk¿y5zz/
{ԃ{—å{ˆ7|3}|&¹|Hí|}C}‹g}ۇ}ü¤}a¿}g×}]í}ƒ~~4%~5~ÕC~“Q~g^~ij~ªu~>€~2Š~•“~rœ~դ~Ƭ~N´~u»~CÂ~¼È~èÎ~ÌÔ~kÚ~Ëß~ïä~Üé~”î~ó~t÷~ û~£ÿ~6Ê
<ÄÜÚ½‡ :#×%](Ð*.-z/³1Ü3ó5û7ó9Ü;·=„?EAøBŸD:FÊGNIÈJ8LMùNLP•QÕR
T=UdV„WœX¬YµZ¸[³\¨]–^~__`;abàbªcod.eèeœfLgögœh<iÙipjk‘kl l!mžmnŒnünhoÑo5p–pópLq¡qòq?r‰rÏrsPs‹sÃsös'tSt|t¡tÃtàtûtu$u3u?uFuJuKuGu?u4u$uuùtÞt¾tštrtEttßs¥sfs#sÚrr:rãq†q#q»pMpÙo_oßnXnËm7mœlùkOkœjâiiThg¡f¸eÆdÈcÀb«aŠ`]_!^Ø\[ZžXWuUÄSþQ"P/N"LúI¶GSEÏB(@Z=d:A7í3e0¤,¤(_$Îê©ä	Fü~>ô~¨ë~7â~È×~/Ì~7¿~°~
 ~
~w~G]~“>~Y~,ë}6°}b}¹ô|ÒO|06{ÒÒx€?V#z?£ºu?øq?}›n?„k?L¢h?ée?öRc?çØ`?Zw^?*+\?ÔñY?RÉW?ø¯U?_¤S?X¥Q?߱O?ÉM?3êK?ŽJ?ŽGH?ª‚F?jÅD?`C?(`A?j·??Ô>?x<?øà:?0O9?†Â7?Å:6?»·4?993?¿1?%I0?C×.?Mi-?!ÿ+? ˜*?«5)?'Ö'?úy&?!%?CË#?Šx"?Ì(!?õÛ?ñ‘?­J??$Ä?¾„?ØG?c
?QÕ?”Ÿ?!l?ë:?å?ß?@´?‹‹
?Üd?)@?i
?’ü?Ý?À?4¥?±‹?îs?å]?I?ä6?¼Kþ>í,ü>Nú>Ôø÷>qãõ>Ñó>ÇÁñ>jµï>ú«í>k¥ë>µ¡é>Πç>¬¢å>F§ã>“®á>Œ¸ß>'ÅÝ>\ÔÛ>#æÙ>uú×>JÖ>š*Ô>_FÒ>’dÐ>+…Î>$¨Ì>wÍÊ>õÈ>Ç>JKÅ>ÅyÃ>|ªÁ>iݿ>…¾>ÍI¼>;ƒº>ʾ¸>tü¶>5<µ>	~³>êq>Ô°>ÂO®>±™¬>œåª>~3©>Tƒ§>ե>Í(¤>g~¢>çՠ>G/Ÿ>„Š>›ç›>‰Fš>J§˜>Ü	—>:n•>bԓ>Q<’>¦>x>ª~>—í‹>>^Š>šЈ>«D‡>lº…>Ü1„>ùª‚>À%>\D>„@|>ó?y>¥Bv>–Hs>ÁQp>#^m>¸mj>|€g>m–d>†¯a>ÄË^>$ë[>£
Y>=3V>ð[S>º‡P>–¶M>ƒèJ>~H>…UE>”B>«Î?>Ç=>åS:>›7>"å4>=22>T‚/>dÕ,>m+*>m„'>cà$>N?">,¡>ý>Àm>tØ>F>­¶>1*>¥ 
>>Y–>š>ʗ>ë>öIý=ù_ø=à{ó=«î=^Åé=úòä=ƒ&à=ü_Û=gŸÖ=ÊäÑ='0Í=„È=åØÃ=P6¿=˙º=\¶=	s±=Ûè¬=Ød¨=
ç£=yoŸ=/þš=6“–=š.’=fЍ=§x‰=i'…=½܀=a1y=ª¶p=xIh=ðé_==˜W=ˆTO=G=Ü÷>=Nß6=’Õ.=èÚ&=–ï=ç=-H=L=Äÿ<אð<̀á<ú”Ò<ŽÎÃ<Ø.µ<X·¦<Äi˜<HŠ<R©x<i$]< B<²\'<‘,
<ç;Gõ´;øP„;úü*;.0¥:ð?7ˆåEî?ñÿP¦Ðì?'{ë{åë?*æ!ë?çúb¥ºvê?›mU—Þé?9ªUÄ1Té?/ÒÓv£Ôè?¸Åxè]è?&1$-Šîç?~Ô	›n…ç?cK©[»!ç?Æ„IÃÂæ?\Omúgæ?f¯§Áíæ?u¬Li=½å?s‡ڂ˜lå?š‰xºå?¯øQÁfÓä?iàŽûjŠä?%ᨯ™Cä?€‹±+Ëþã?ÑáDܻã?Ùݧ­zã?cE#;ã?^ÚEã#ýâ?$O¶˜Àâ?½2m…â?£PŒ"ŽKâ?È>ºêâ?‰{‡sÛá?%;Ç¥á?îoÎmÎoá?œ3¼‡;á?ÃJ9á?++ØÕà?*ÐTˆ[¤à?};î1¹sà?HeÒëèCà?$ó`±âà?vE!þ=Íß?úſŽ-rß?MBëцß?–K=ÀÞ?QÓ}6EiÞ?ü7áu“Þ?!§ˆ¿Ý?zí¹}ÙkÝ?~é½Ý?’à@ÜÁÈÜ?`ûƒÙÜxÜ?ƒ¥Ð*Ü?µî®8ÜÛ?ˆ™QiÛ?o€T”“CÛ?_ï(4°øÚ?åöýָ®Ú?@£j§eÚ?ô!u vÚ?’7ZiÖÙ?¨{	òÙ?šŸìIÙ?]TŒÙ?9]·çÀØ?Œ?¼„‰}Ø?8aDµé:Ø?Yζiù×?€Ɲҷ×?ãr^sSw×?ꍰ0‚7×?žd>[øÖ?œéä%۹Ö?Ÿ
Əþ{Ö?ä'HBÂ>Ö?vXï#Ö?lî1&ÆÕ?ï©:l°ŠÕ?磽!×OÕ?õ‰ލÕ?ù&×ÛÔ?Óڋ«¢Ô?タ+	jÔ?âAëî1Ô?N¡0ZúÓ?…²«0HÃÓ?ï}±G·ŒÓ?ÝÐü(¥VÓ?5$1Æ!Ó?pB9 õëÒ?b"®FS·Ò?)vEW(ƒÒ?ývG}rOÒ?ÿ~ñ/Ò?Û	{÷^éÑ?Z¼šáý¶Ñ?‚…Ñ?ï‘âބSÑ?ºŸºÌi"Ñ?l¦ÙR¸ñÐ?3SønÁÐ?>éNŒ‘Ð?Ґ]ðbÐ?,|y€õ2Ð?jG“«>Ð?T“ÿLҫÏ?~>–\çOÏ?›àèºôÎ?ò@YHšÎ?§ƒ/֎@Î?9O"HŒçÍ?¸îã>Í?ý1´ ¢7Í?ŸÐö8¶àÌ?ÎOxŠÌ?]æ4Ì?5D9gþßË?¥är|¾‹Ë?>ïܸ$8Ë?[ëB/åÊ?I<ÀKܒÊ?¼\ß*AÊ?ÅäÑðÉ?#>䠟É?¡’æžÆOÉ?y»%d†É?ÕbPŸޱÈ?ùŒÄÍcÈ?æç”PRÈ?®…ÈjÉÇ?þFŸ¹}Ç?9(¹Q1Ç?ê„îcæÆ?(ڦ^w›Æ?¬Ñ0U^QÆ?1j°úÐÆ?¶ÂT	ξÅ?õx.BTvÅ?IŒmb.Å?ú¶<X÷æÄ?–0˜Ø Ä?ÆÌ-ɰYÄ?šj8ÓÄ?©ø…wÎÃ?ÉՔ&‰Ã?¯úßBEÃ?n}¾ªgÃ?4Ï…
¾Â?@™`r*{Â?xè»{Æ8Â?eÊ=¯ÝöÁ?fÖ1 oµÁ?x®ðæytÁ?/qÉ ý3Á? ìï÷óÀ?/¶T{i´À?¾¥·îPuÀ?nz­6À?ê˦üð¿?f…u¿?<îóú¾?̹ŽF¾?ûºaõz¾?˜“­‘½?×M‘‡½?Wý€k[£¼?¯.ô.¼?&qWš¹»?He5TF»?eTe±CӺ?·8Ù=]aº?(ôFÐMð¹?pk3G€¹?¹t刯¹?;SZƒ¢¸?ºÄ;,`4¸?ó¦׀sǷ?<†W[·?¶„Hð¶? ¶0܍…¶?÷ÞÊ\Þ¶?>»‘íû²µ?6ÐY¹åJµ?)ِòšã´?\˜CÓ}´?±%d´?žŸ›™w²³?çÆSN³?э”vöê²?pÎaˆ²?Œ,Q’&²?@£o¨‰ű?’SuFe±?PÊV‡È±?;‡§°?Èõ×I°?v–iºÐׯ?4èD™ô¯?å².¥žg®?X1Iα­?Jyƒý¬?é!d¼J¬?…پz™«?„€j»éª?8ñG;ª?L|{‚ʎ©?mw€n—ã¨?k9:è9¨?ž«´¼‘§?R¯¶yë¦?A &ÇòE¦?ÊÒÅU¢¥?ëŖò<¥?k&«_¤?ÿÿG #?®?~#£?ÀVÉ#‡¢?Ôó_´ì¡?¡³ŸÐS¡?QÖ|z¼ ?îú
Y²& ?˜¯Çö$Ÿ?htQz®ÿ?3Tݜ?pXúP¡¾›?›N’æ梚?H*gŠ™?g™ìS(u˜?–ü‡Ú1c—?w@¢r‹T–?Q«¦=I•?¾ð‡ÎQA”?„]1%Ò<“?2:¹áÉ;’?__rTE>‘?ð	RD?ÎljÞý›Ž?W'n¹¶Œ?-ÉBUú؊?½§hê‰?õtªæ¶4‡?Ëä“n…?boQx°ƒ?qv³íiû?ù×_)òN€?Å]túQW}?6H—Ôé#z? 6ì7Ÿw?ý"ãΗús?C@Wi=q?Ḱ³Xl?ÿþ¡óˆØf?$£á¨k”a?%>Tµ+Y?¹ü÷
²O?KŸ2Ã=?€?/*p?3…f?(_?xY?յS?¹ôN?Ž¡J?¥F?DïB?Qt??u+<?Û
9?6?Ó?3?n‡0?ëé-?Äd+?Ñõ(?6›&?XS$?Í"?Yö?âÞ?mÕ?Ù?é?Æ?i+?q\?V—?™Û?Æ(
?s~?>Ü	?ÊA?Į?Ü"?ʝ?G?§?ðiþ>l‘û>7Äø>êö>*Jó>œœð>ìøí>Ì^ë>ïÍè>Fæ>çÆã>7Pá>ÁáÞ>K{Ü>Ú>‚Å×>ÇuÕ>;-Ó>±ëÐ>û°Î>ð|Ì>eOÊ>4(È>8Æ>LìÃ>N×Á>ȿ>•¾½>œº»>¼¹>Ú·>Ùε>ô߳>ö±>°>ñ0®>ƒU¬>¹~ª>|¬¨>¸ަ>Y¥>IP£>w¡>Ðҟ>Bž>ºeœ>)µš>~™>©_—>šº•>C”>”{’>€á>øJ>﷍>X(Œ>'œŠ>N‰>͇>x†>bŒ„>xƒ>¬—>õ!€>’^}>;z>Хw>@Òt>wr>b<o>ñyl>½i>²g>ÂSd>3§a>óÿ^>ô]\>&ÁY>z)W>â–T>P	R>·€O>ýL>5~J>3H>õŽE>nC>’²@>VK>>®è;>ŽŠ9>ë07>»Û4>óŠ2>ˆ>0>pö->¢²+>s)>»7'>%>†Í">˜ž >¼s>éL>*>=>Tð>TÙ>4Æ>í¶>y«
>ϣ>éŸ	>>L£>‡ª>lµ>å‡ÿ=+¬û=×÷=0
ô=ØCð=‰„ì=8Ìè=Ûå=hpá=ÓÌÝ=0Ú=šÖ=ê
Ó=n‚Ï=¢Ì=|…È=ôÅ=£Á=œ;¾=¼ں=Z€·=o,´=óް=ߗ­=.Wª=ا=×è£=%» =½“=™rš=´W—=	C”=“4‘=M,Ž=4*‹=D.ˆ=y8…=ÏH‚=†¾~=¥÷x=õ<s=rŽm=ìg=ãUb=ÑË\=ÞMW=
ÜQ=TvL=»G=AÏA=æ<=¬X7=–/2=©-=è(=Yý"==ì=9=£e=…ž
=Ðã=“5=¶'ù<týï<ƒìæ<õÝ<7Õ<8SÌ<C©Ã<»<\¤²<íIª<Ž
¢<‘æ™<Oޑ<+ò‰<"‚<ïßt<ɵe<ÓÇV<SH<·¥9<˜t+<ƅ<OÛ<‘w<ºê;OÑ;ú$¸;¾ԟ;ë9ˆ;œÅb;HÄ6;]£;«]É:X}:âî9€Àà.eB5úŽ<;ª¸?r1?€¿ÿÿÿÿÿÿÿÿÿÿÿÿýÓà.å@®Èé”5úŽù?¼ð\);ª¸ÿ?¬yÏÑ÷r±þ?ðøÁcܥL@9R¢Fߑ?þ‚+eG÷?ï9úþB.æ?mtrandnameloader__loader__origin__file__parent__package__submodule_search_locations__path__Interpreter change detected - this module can only be loaded into one interpreter per process.Module 'mtrand' has already been imported. Re-initialisation is not supported.builtinscython_runtime__builtins__init numpy.random.mtrand%d.%d%scompiletime version %s of module '%.100s' does not match runtime version %s__init__.pxd4294967296numpy.random.mtrand.RandomState
    RandomState(seed=None)

    Container for the slow Mersenne Twister pseudo-random number generator.
    Consider using a different BitGenerator with the Generator container
    instead.

    `RandomState` and `Generator` expose a number of methods for generating
    random numbers drawn from a variety of probability distributions. In
    addition to the distribution-specific arguments, each method takes a
    keyword argument `size` that defaults to ``None``. If `size` is ``None``,
    then a single value is generated and returned. If `size` is an integer,
    then a 1-D array filled with generated values is returned. If `size` is a
    tuple, then an array with that shape is filled and returned.

    **Compatibility Guarantee**

    A fixed bit generator using a fixed seed and a fixed series of calls to
    'RandomState' methods using the same parameters will always produce the
    same results up to roundoff error except when the values were incorrect.
    `RandomState` is effectively frozen and will only receive updates that
    are required by changes in the the internals of Numpy. More substantial
    changes, including algorithmic improvements, are reserved for
    `Generator`.

    Parameters
    ----------
    seed : {None, int, array_like, BitGenerator}, optional
        Random seed used to initialize the pseudo-random number generator or
        an instantized BitGenerator.  If an integer or array, used as a seed for
        the MT19937 BitGenerator. Values can be any integer between 0 and
        2**32 - 1 inclusive, an array (or other sequence) of such integers,
        or ``None`` (the default).  If `seed` is ``None``, then the `MT19937`
        BitGenerator is initialized by reading data from ``/dev/urandom``
        (or the Windows analogue) if available or seed from the clock
        otherwise.

    Notes
    -----
    The Python stdlib module "random" also contains a Mersenne Twister
    pseudo-random number generator with a number of methods that are similar
    to the ones available in `RandomState`. `RandomState`, besides being
    NumPy-aware, has the advantage that it provides a much larger number
    of probability distributions to choose from.

    See Also
    --------
    Generator
    MT19937
    numpy.random.BitGenerator

    numpy.random.mtrand.RandomState.__repr__ while calling a Python objectNULL result without error in PyObject_Callnumpy.random.mtrand.RandomState.__str____getstate____setstate____reduce__tomaxintnumpy.random.mtrand.RandomState.__getstate__numpy.random.mtrand.RandomState.__setstate__numpy.random.mtrand.RandomState.__reduce__numpy.random.mtrand.RandomState.seed%.200s() keywords must be strings%s() got an unexpected keyword argument '%U'%s() got multiple values for keyword argument '%U'at leastat most%.200s() takes %.8s %zd positional argument%.1s (%zd given)scalling %R should have returned an instance of BaseException, not %Rraise: exception class must be a subclass of BaseExceptionnumpy.random.mtrand.RandomState.get_statenumpy.random.mtrand.RandomState.set_statevalue too large to convert to intintan integer is required__int__ returned non-int (type %.200s).  The ability to return an instance of a strict subclass of int is deprecated, and may be removed in a future version of Python.__%.4s__ returned non-%.4s (type %.200s)numpy.random.mtrand.RandomState.random_samplenumpy.random.mtrand.RandomState.randomnumpy.random.mtrand.RandomState.betanumpy.random.mtrand.RandomState.exponentialnumpy.random.mtrand.RandomState.standard_exponentialnumpy.random.mtrand.RandomState.tomaxintnumpy.random.mtrand.RandomState.randintnumpy.random.mtrand.RandomState.bytes'%.200s' object is unsliceablenumpy.random.mtrand.RandomState.choiceMissing type objectCannot convert %.200s to %.200stoo many values to unpack (expected %zd)need more than %zd value%.1s to unpack'%.200s' object does not support slice %.10sassignment'%.200s' object is not subscriptablecannot fit '%.200s' into an index-sized integernumpy.random.mtrand.RandomState.uniformnumpy.random.mtrand.RandomState.randnumpy.random.mtrand.RandomState.randnnumpy.random.mtrand.RandomState.random_integersnumpy.random.mtrand.RandomState.standard_normalnumpy.random.mtrand.RandomState.normalnumpy.random.mtrand.RandomState.standard_gammanumpy.random.mtrand.RandomState.gammanumpy.random.mtrand.RandomState.fnumpy.random.mtrand.RandomState.noncentral_fnumpy.random.mtrand.RandomState.chisquarenumpy.random.mtrand.RandomState.noncentral_chisquarenumpy.random.mtrand.RandomState.standard_cauchynumpy.random.mtrand.RandomState.standard_tnumpy.random.mtrand.RandomState.vonmisesnumpy.random.mtrand.RandomState.paretonumpy.random.mtrand.RandomState.weibullnumpy.random.mtrand.RandomState.powernumpy.random.mtrand.RandomState.laplacenumpy.random.mtrand.RandomState.gumbelnumpy.random.mtrand.RandomState.logisticnumpy.random.mtrand.RandomState.lognormalnumpy.random.mtrand.RandomState.rayleighnumpy.random.mtrand.RandomState.waldnumpy.random.mtrand.RandomState.triangularnumpy.random.mtrand.RandomState.binomialnumpy.PyArray_MultiIterNew2numpy.PyArray_MultiIterNew3numpy.random.mtrand.RandomState.negative_binomialnumpy.random.mtrand.int64_to_longnumpy.random.mtrand.RandomState.poissonnumpy.random.mtrand.RandomState.zipfnumpy.random.mtrand.RandomState.geometricnumpy.random.mtrand.RandomState.hypergeometricnumpy.random.mtrand.RandomState.logseriesnumpy.random.mtrand.RandomState.multivariate_normalnumpy.random.mtrand.RandomState.multinomialnumpy.random.mtrand.RandomState.dirichletnumpy.random.mtrand.RandomState.shufflejoin() result is too long for a Python stringnumpy.random.mtrand.RandomState.permutation_bit_generator__init__numpy.random.mtrand.RandomState.__init__BitGeneratorhasattr(): attribute name must be stringboolcomplexflatiterbroadcastndarraygenericnumberintegersignedintegerunsignedintegerinexactfloatingcomplexfloatingflexiblecharacterufuncnumpy.random.bit_generatorSeedSequenceSeedlessSequence%.200s.%.200s is not a type object%.200s.%.200s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObject%s.%s size changed, may indicate binary incompatibility. Expected %zd from C header, got %zd from PyObjectinvalid vtable found for imported typenumpy.random._commonPOISSON_LAM_MAXLEGACY_POISSON_LAM_MAXMAXSIZEuint64_t__pyx_capi__%.200s does not export expected C variable %.200sC variable %.200s.%.200s has wrong signature (expected %.500s, got %.500s)numpy.random._bounded_integers_rand_uint64PyObject *(PyObject *, PyObject *, PyObject *, int, int, bitgen_t *, PyObject *)_rand_uint32_rand_uint16_rand_uint8_rand_bool_rand_int64_rand_int32_rand_int16_rand_int8check_constraintint (double, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)check_array_constraintint (PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)kahan_sumdouble (double *, npy_intp)double_fillPyObject *(void *, bitgen_t *, PyObject *, PyObject *, PyObject *)validate_output_shapePyObject *(PyObject *, PyArrayObject *)contPyObject *(void *, void *, PyObject *, PyObject *, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *)discPyObject *(void *, void *, PyObject *, PyObject *, int, int, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)cont_broadcast_3PyObject *(void *, void *, PyObject *, PyObject *, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type, PyArrayObject *, PyObject *, __pyx_t_5numpy_6random_7_common_constraint_type)discrete_broadcast_iii%.200s does not export expected C function %.200sC function %.200s.%.200s has wrong signature (expected %.500s, got %.500s)cannot import name %Snumpy.import_arraynumpy.core._multiarray_umath_ARRAY_API_ARRAY_API not found_ARRAY_API is not PyCapsule object_ARRAY_API is NULL pointermodule compiled against ABI version 0x%x but this version of numpy is 0x%xmodule compiled against API version 0x%x but this version of numpy is 0x%xFATAL: module compiled as unknown endianFATAL: module compiled as little endian, but detected different endianness at runtimename '%U' is not definednumpy.random.mtrand.samplenumpy.random.mtrand.ranf%s (%s:%d)numpy/random/mtrand.c44ÑX!a0)LL~Ldœ  £@£¤ ¤°§`ª°ª«€µàµж@¸»à»м¾@¿Pj`j… †@ˆŒ€pސ< =ð>°?`D EÇ°ÇÈ ÒðÒ Ó`Öð×€âÀâPã0çÐçðê ë°ìÀíÀîðïÀð0òpòôðû`üðý þÿ€ÿp0`Àðà@0p@ ` €!"#°#@$ &ð(@)5€506PAÐB EÐF€I K T`T°TàT Ulƒvƒ€ƒŠƒ”ƒžƒ¨ƒ²ƒ¼ƒƃЃڃäƒîƒøƒ„„„ „*„4„>„H„R„\„f„p„z„„„Ž„˜„¢„¬„¶„ʄԄބè„ò„ü„………$….…8…B…L…V…`…j…t…~…ˆ…’…œ…¦…°…º…ą΅؅â…ì…ö…†
†††(†2†<†F†P†Z†d†n†x†‚†Œ†–† †ª†´†¾†Ȇ҆܆æ†ð†ú†‡‡‡"‡,‡6‡@‡J‡T‡^‡h‡r‡|‡˜‡¢‡¬‡¶‡ʇԇއè‡ò‡ü‡ˆˆˆ$ˆ.ˆ8ˆBˆLˆVˆ`ˆjˆtˆ~ˆˆˆ’ˆœˆ¦ˆ°ˆºˆĈΈ؈âˆìˆöˆ‰
‰‰‰(‰2‰<‰F‰P‰Z‰d‰n‰x‰‚‰Œ‰–‰ ‰ª‰´‰¾‰ȉ҉܉æ‰ð‰ú‰ŠŠŠ"Š,Š6Š@ŠJŠTŠ^ŠhŠrŠ|Š†ŠŠšŠ¤Š®Š¸ŠŠ̊֊àŠêŠôŠþŠ‹‹‹&‹0‹:‹D‹N‹X‹b‹l‹v‹€‹Š‹0h	ŒA8h	`Œ@h	€Œ&Hh	¦ŒPh	²ŒXh	>À^	þŒ	°^	`h	hh	$ph	4xh	PË€h	Že	Ž(g	0Ž!xe	`Ž8f	€Ž"ˆe	°Ž¸g	Ў"f	f	 hg	@"Èf	pxg	'¸f	 Øf	à!èf	"ˆg	@"¨g	p$˜g	 ,8g	А*Hf	‘-(f	0‘%èe	`‘ˆf	€‘Øg	 ‘$Hg	Б ¨f	ð‘¨e	’he	0’¸e	P’Èe	p’(8e	 ’%øf	В!(e	“Èg	 “ Xf	@“(He	p“,øe	 “'Øe	Г(hf	”#Xe	0” g	P”#˜e	€” xf	 ”!g	Д˜f	ð” Xg	•ˆh	0•h	K•^	Z•	˜h	p•= h	­–¨h	°–G°h	—L¸h	L—
Àh	`—!Èh	—Ðh	—Øh	à‹àh	˜—èh	š—ðh	œ—øh	œ—i	 — i	0i	ð—i	˜& i	@˜5(i	u˜0i	y˜ e	}˜8i	…˜	@i	Ž˜Hi	”˜Pi	Ÿ˜Xi	£˜`i	ª˜hi	¯˜pi	µ˜xi	½˜€i	Ęˆi	Ϙi	Ԙ˜i	Ԙ_	]Œˆc	]Œ_	¤	c	¤	0g	à˜Ò i	²§¨i	'0_	Œ˜c	Œ€e	Чm°i	@ª(¸i	hªÀi	hªÈi	pªÐi	xªØi	ª4H_	ûŒ
 c	ûŒ
@f	Ъ	`_	“Œ¨c	“Œe	ೞ
ài	~Á
èi	Á˜^	°Áði	ÀÁøi	ÇÁj	ÌÁj	ÚÁj	àÁ%j	Â) j	9Â(j	@Â0j	@Â8j	CÂ@j	CÂHj	IÂPj	IÂx_	 Ž
°c	 Ž
Àg	PÂ1Xj	Î`j	OŽhj	IŽpj	…Îxj	‹Î€j	–Î
ˆj	 Îj	¤Î˜j	ªÎ	_	bŒ¸c	bŒ¨_	ìŒÀc	ìŒ f	ÀÎë
 j	«Ü¨j	±Ü°j	¹ÜÀ_	æŒÈc	æŒf	ÀÜÞ¸j	žèð_	ύ
Ðc	ύ
pg	°èJÀj	úïØ_	4Œ
Øc	4Œ
Èj	ðuÐj	uð`	qàc	qÐf	€ððØj	p
àj	z `	ٍèc	ٍ€g	€1èj	±ðj	´øj	»k	Æk	Ìk	Òk	Ø k	Þ(k	ã0k	è	8k	ñ@k	÷	Hk		Pk		Xk	`k		hk	"pk	"xk	(€k	,ˆk	3k	5˜k	58`	iðc	iÀf	@¡
 k	á!¨k	æ!°k	ò!¸k	"Àk	"Èk	 "Ðk	%"Øk	0"àk	0"èk	4"ðk	9"P`	x	øc	x	àf	P"?h`	
d	
ðf	. €`	è
d	è
g	0@Äøk	ôKl	ùKx^	ýK	l	Ll	!Ll	!L l	0L#(l	`L0l	{L8l	€L
¸^	L	@l	ŒHl	–LPl	–L˜`	Žd	Ž°g	 L °`	Žd	Ž g	ÀX”Xl	Tj`l	Tjp^	Vj	hl	_jpl	_jxl	djÈ`	° d	°@g	pjG
€l	·w
ˆl	Äwl	Äw˜l	Ðw l	çw¨l	çwà`	(d	Pf	ðwÄø`	îŒ
0d	îŒ
0f	3
a	Ќ8d	Ќðe	‘e¨^	e °l	h ¸l	h  ^	CŽÀl	p 'Èl	  "Ðl	 
pc	ð‹Øl	Ϡàl	à Â€^	¢¡	èl	«¡ðl	«¡øl	°¡(a	T@d	Tf	СÆ@a	2ŽHd	2Žàg	 ±³m	S¶Xa	Pd	Pg	`¶Î	Ø^	0Àm	AÀpa	cXd	c°f	PÀ¾
m	Î#m	@Î m	`Î(m	~Î0m	ƒÎ8m	ƒÎ@m	‰ÎHm	˜Îˆa	¢Œ`d	¢Œè^	žÎ°e	°Îq a	…Œhd	…Œpe	0ÓE¸a	§Œpd	§ŒÀe	€ÞuÐa	VŒxd	VŒèa	°Œ€d	°ŒÐe	çb	HŒˆd	HŒ@e	 òƒPm	°ø€c	]ސd	]ŽXm	Ãø`m	Éøb	‹	˜d	‹	g	Ðøï	hm	¿pm	Æxm	΀m	Ö
ˆm	ã	m	ì˜m	ì m	òxc	VŽ d	Vލm	÷°m	÷¸m	ý
0b	/Œ¨d	/Œ0e	}Hb	>Œ
°d	>Œ
Àm	?Èm	ÏÐm	Ï`b	*ޏd	*ŽÐg	àØm	_
àm	d
èm	d
ðm	j
øm	o
n	t
n	y
xb	0Àd	0`f	

b	pŒÈd	pŒPe	 ù¨b	׌Ðd	׌f	 â
Àb	Ød	àe	#ÐØb	@àd	@pf	`+Qn	±<n	±< n	À<(n	à<!0n	=8n		=@n	=	Hn	=Pn	 =Xn	@=Ø`n	>hn	>èg	!>	pn	*>xn	2>`e	@>Sðb	™èd	™ g	 C[
€n	>Žˆn	ûMn	ÿM˜n	N n	
N¨n	Nc	šŒðd	šŒ e	 N0
°n	P[¸n	W[ c	K	ød	K	€f	`[Ò8c	”e	”g	@h:Àn	zsÈn	zsˆ^	s	Pc	[e	[ f	s½
Ðn	P/Øn	€àn	–hc	ʍe	ʍ`g	 
Ú^	ÐIP)ð+ÿÿÿÿÿÿÿÿVްô0]	]Žø ]	ÆÛð0ÍÐÍàÐDæÛÓàÓàK€R@Ô°Þ}åæŠå0ç—åpè/ŒàìÐR4ŒàñPU>Œ@üÐYHŒ€à`VŒ€	pg]Œ@0hbŒð€npŒàÐv¢åÐz…Œ@'0€Œ@W€‹“Œ@_ðšŒ°b›¢Œ0y(§Œ|@­°Œð5 ’àÀЌД°È׌€˜ ØæŒp›ãìŒ ŸðîîŒТàüûŒ°¦ 
 ©00P­@€¯)Kp²p:T ¶PG[¹ Wc¼àdið¾ rq ÂP€xPÆ@“Ê€Ÿ‹°Í ±” Ð»™PÔPƤðô°Ð°pß`àìʍ"°öύÐ%@	ٍ)	èPNÐ	ސQ $	Ž€U@6	 Ž s`B	*Ž€“ N	2ސ“ S	SòÀðàð
        seed(self, seed=None)

        Reseed a legacy MT19937 BitGenerator

        Notes
        -----
        This is a convenience, legacy function.

        The best practice is to **not** reseed a BitGenerator, rather to
        recreate a new one. This method is here for legacy reasons.
        This example demonstrates best practice.

        >>> from numpy.random import MT19937
        >>> from numpy.random import RandomState, SeedSequence
        >>> rs = RandomState(MT19937(SeedSequence(123456789)))
        # Later, you want to restart the stream
        >>> rs = RandomState(MT19937(SeedSequence(987654321)))
        
        get_state()

        Return a tuple representing the internal state of the generator.

        For more details, see `set_state`.

        Parameters
        ----------
        legacy : bool, optional
            Flag indicating to return a legacy tuple state when the BitGenerator
            is MT19937, instead of a dict.

        Returns
        -------
        out : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The returned tuple has the following items:

            1. the string 'MT19937'.
            2. a 1-D array of 624 unsigned integer keys.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If `legacy` is False, or the BitGenerator is not MT19937, then
            state is returned as a dictionary.

        See Also
        --------
        set_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        
        set_state(state)

        Set the internal state of the generator from a tuple.

        For use if one has reason to manually (re-)set the internal state of
        the bit generator used by the RandomState instance. By default,
        RandomState uses the "Mersenne Twister"[1]_ pseudo-random number
        generating algorithm.

        Parameters
        ----------
        state : {tuple(str, ndarray of 624 uints, int, int, float), dict}
            The `state` tuple has the following items:

            1. the string 'MT19937', specifying the Mersenne Twister algorithm.
            2. a 1-D array of 624 unsigned integers ``keys``.
            3. an integer ``pos``.
            4. an integer ``has_gauss``.
            5. a float ``cached_gaussian``.

            If state is a dictionary, it is directly set using the BitGenerators
            `state` property.

        Returns
        -------
        out : None
            Returns 'None' on success.

        See Also
        --------
        get_state

        Notes
        -----
        `set_state` and `get_state` are not needed to work with any of the
        random distributions in NumPy. If the internal state is manually altered,
        the user should know exactly what he/she is doing.

        For backwards compatibility, the form (str, array of 624 uints, int) is
        also accepted although it is missing some information about the cached
        Gaussian value: ``state = ('MT19937', keys, pos)``.

        References
        ----------
        .. [1] M. Matsumoto and T. Nishimura, "Mersenne Twister: A
           623-dimensionally equidistributed uniform pseudorandom number
           generator," *ACM Trans. on Modeling and Computer Simulation*,
           Vol. 8, No. 1, pp. 3-30, Jan. 1998.

        
        random_sample(size=None)

        Return random floats in the half-open interval [0.0, 1.0).

        Results are from the "continuous uniform" distribution over the
        stated interval.  To sample :math:`Unif[a, b), b > a` multiply
        the output of `random_sample` by `(b-a)` and add `a`::

          (b - a) * random_sample() + a

        .. note::
            New code should use the ``random`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray of floats
            Array of random floats of shape `size` (unless ``size=None``, in which
            case a single float is returned).

        See Also
        --------
        Generator.random: which should be used for new code.

        Examples
        --------
        >>> np.random.random_sample()
        0.47108547995356098 # random
        >>> type(np.random.random_sample())
        <class 'float'>
        >>> np.random.random_sample((5,))
        array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

        Three-by-two array of random numbers from [-5, 0):

        >>> 5 * np.random.random_sample((3, 2)) - 5
        array([[-3.99149989, -0.52338984], # random
               [-2.99091858, -0.79479508],
               [-1.23204345, -1.75224494]])

        
        random(size=None)

        Return random floats in the half-open interval [0.0, 1.0). Alias for
        `random_sample` to ease forward-porting to the new random API.
        
        beta(a, b, size=None)

        Draw samples from a Beta distribution.

        The Beta distribution is a special case of the Dirichlet distribution,
        and is related to the Gamma distribution.  It has the probability
        distribution function

        .. math:: f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
                                                         (1 - x)^{\beta - 1},

        where the normalization, B, is the beta function,

        .. math:: B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
                                     (1 - t)^{\beta - 1} dt.

        It is often seen in Bayesian inference and order statistics.

        .. note::
            New code should use the ``beta`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Alpha, positive (>0).
        b : float or array_like of floats
            Beta, positive (>0).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` and ``b`` are both scalars.
            Otherwise, ``np.broadcast(a, b).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized beta distribution.

        See Also
        --------
        Generator.beta: which should be used for new code.
        
        exponential(scale=1.0, size=None)

        Draw samples from an exponential distribution.

        Its probability density function is

        .. math:: f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

        for ``x > 0`` and 0 elsewhere. :math:`\beta` is the scale parameter,
        which is the inverse of the rate parameter :math:`\lambda = 1/\beta`.
        The rate parameter is an alternative, widely used parameterization
        of the exponential distribution [3]_.

        The exponential distribution is a continuous analogue of the
        geometric distribution.  It describes many common situations, such as
        the size of raindrops measured over many rainstorms [1]_, or the time
        between page requests to Wikipedia [2]_.

        .. note::
            New code should use the ``exponential`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats
            The scale parameter, :math:`\beta = 1/\lambda`. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized exponential distribution.

        See Also
        --------
        Generator.exponential: which should be used for new code.

        References
        ----------
        .. [1] Peyton Z. Peebles Jr., "Probability, Random Variables and
               Random Signal Principles", 4th ed, 2001, p. 57.
        .. [2] Wikipedia, "Poisson process",
               https://en.wikipedia.org/wiki/Poisson_process
        .. [3] Wikipedia, "Exponential distribution",
               https://en.wikipedia.org/wiki/Exponential_distribution

        
        standard_exponential(size=None)

        Draw samples from the standard exponential distribution.

        `standard_exponential` is identical to the exponential distribution
        with a scale parameter of 1.

        .. note::
            New code should use the ``standard_exponential`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            Drawn samples.

        See Also
        --------
        Generator.standard_exponential: which should be used for new code.

        Examples
        --------
        Output a 3x8000 array:

        >>> n = np.random.standard_exponential((3, 8000))

        
        tomaxint(size=None)

        Return a sample of uniformly distributed random integers in the interval
        [0, ``np.iinfo(np.int_).max``]. The `np.int_` type translates to the C long
        integer type and its precision is platform dependent.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            Drawn samples, with shape `size`.

        See Also
        --------
        randint : Uniform sampling over a given half-open interval of integers.
        random_integers : Uniform sampling over a given closed interval of
            integers.

        Examples
        --------
        >>> rs = np.random.RandomState() # need a RandomState object
        >>> rs.tomaxint((2,2,2))
        array([[[1170048599, 1600360186], # random
                [ 739731006, 1947757578]],
               [[1871712945,  752307660],
                [1601631370, 1479324245]]])
        >>> rs.tomaxint((2,2,2)) < np.iinfo(np.int_).max
        array([[[ True,  True],
                [ True,  True]],
               [[ True,  True],
                [ True,  True]]])

        
        randint(low, high=None, size=None, dtype=int)

        Return random integers from `low` (inclusive) to `high` (exclusive).

        Return random integers from the "discrete uniform" distribution of
        the specified dtype in the "half-open" interval [`low`, `high`). If
        `high` is None (the default), then results are from [0, `low`).

        .. note::
            New code should use the ``integers`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : int or array-like of ints
            Lowest (signed) integers to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is one above the
            *highest* such integer).
        high : int or array-like of ints, optional
            If provided, one above the largest (signed) integer to be drawn
            from the distribution (see above for behavior if ``high=None``).
            If array-like, must contain integer values
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        dtype : dtype, optional
            Desired dtype of the result. Byteorder must be native.
            The default value is int.

            .. versionadded:: 1.11.0

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        random_integers : similar to `randint`, only for the closed
            interval [`low`, `high`], and 1 is the lowest value if `high` is
            omitted.
        Generator.integers: which should be used for new code.

        Examples
        --------
        >>> np.random.randint(2, size=10)
        array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
        >>> np.random.randint(1, size=10)
        array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

        Generate a 2 x 4 array of ints between 0 and 4, inclusive:

        >>> np.random.randint(5, size=(2, 4))
        array([[4, 0, 2, 1], # random
               [3, 2, 2, 0]])

        Generate a 1 x 3 array with 3 different upper bounds

        >>> np.random.randint(1, [3, 5, 10])
        array([2, 2, 9]) # random

        Generate a 1 by 3 array with 3 different lower bounds

        >>> np.random.randint([1, 5, 7], 10)
        array([9, 8, 7]) # random

        Generate a 2 by 4 array using broadcasting with dtype of uint8

        >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
        array([[ 8,  6,  9,  7], # random
               [ 1, 16,  9, 12]], dtype=uint8)
        
        bytes(length)

        Return random bytes.

        .. note::
            New code should use the ``bytes`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        length : int
            Number of random bytes.

        Returns
        -------
        out : bytes
            String of length `length`.

        See Also
        --------
        Generator.bytes: which should be used for new code.

        Examples
        --------
        >>> np.random.bytes(10)
        b' eh\x85\x022SZ\xbf\xa4' #random
        
        choice(a, size=None, replace=True, p=None)

        Generates a random sample from a given 1-D array

        .. versionadded:: 1.7.0

        .. note::
            New code should use the ``choice`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : 1-D array-like or int
            If an ndarray, a random sample is generated from its elements.
            If an int, the random sample is generated as if it were ``np.arange(a)``
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.
        replace : boolean, optional
            Whether the sample is with or without replacement. Default is True,
            meaning that a value of ``a`` can be selected multiple times.
        p : 1-D array-like, optional
            The probabilities associated with each entry in a.
            If not given, the sample assumes a uniform distribution over all
            entries in ``a``.

        Returns
        -------
        samples : single item or ndarray
            The generated random samples

        Raises
        ------
        ValueError
            If a is an int and less than zero, if a or p are not 1-dimensional,
            if a is an array-like of size 0, if p is not a vector of
            probabilities, if a and p have different lengths, or if
            replace=False and the sample size is greater than the population
            size

        See Also
        --------
        randint, shuffle, permutation
        Generator.choice: which should be used in new code

        Notes
        -----
        Setting user-specified probabilities through ``p`` uses a more general but less
        efficient sampler than the default. The general sampler produces a different sample
        than the optimized sampler even if each element of ``p`` is 1 / len(a).

        Sampling random rows from a 2-D array is not possible with this function,
        but is possible with `Generator.choice` through its ``axis`` keyword.

        Examples
        --------
        Generate a uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3)
        array([0, 3, 4]) # random
        >>> #This is equivalent to np.random.randint(0,5,3)

        Generate a non-uniform random sample from np.arange(5) of size 3:

        >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
        array([3, 3, 0]) # random

        Generate a uniform random sample from np.arange(5) of size 3 without
        replacement:

        >>> np.random.choice(5, 3, replace=False)
        array([3,1,0]) # random
        >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

        Generate a non-uniform random sample from np.arange(5) of size
        3 without replacement:

        >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
        array([2, 3, 0]) # random

        Any of the above can be repeated with an arbitrary array-like
        instead of just integers. For instance:

        >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
        >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
        array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
              dtype='<U11')

        
        uniform(low=0.0, high=1.0, size=None)

        Draw samples from a uniform distribution.

        Samples are uniformly distributed over the half-open interval
        ``[low, high)`` (includes low, but excludes high).  In other words,
        any value within the given interval is equally likely to be drawn
        by `uniform`.

        .. note::
            New code should use the ``uniform`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        low : float or array_like of floats, optional
            Lower boundary of the output interval.  All values generated will be
            greater than or equal to low.  The default value is 0.
        high : float or array_like of floats
            Upper boundary of the output interval.  All values generated will be
            less than or equal to high.  The default value is 1.0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``low`` and ``high`` are both scalars.
            Otherwise, ``np.broadcast(low, high).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized uniform distribution.

        See Also
        --------
        randint : Discrete uniform distribution, yielding integers.
        random_integers : Discrete uniform distribution over the closed
                          interval ``[low, high]``.
        random_sample : Floats uniformly distributed over ``[0, 1)``.
        random : Alias for `random_sample`.
        rand : Convenience function that accepts dimensions as input, e.g.,
               ``rand(2,2)`` would generate a 2-by-2 array of floats,
               uniformly distributed over ``[0, 1)``.
        Generator.uniform: which should be used for new code.

        Notes
        -----
        The probability density function of the uniform distribution is

        .. math:: p(x) = \frac{1}{b - a}

        anywhere within the interval ``[a, b)``, and zero elsewhere.

        When ``high`` == ``low``, values of ``low`` will be returned.
        If ``high`` < ``low``, the results are officially undefined
        and may eventually raise an error, i.e. do not rely on this
        function to behave when passed arguments satisfying that
        inequality condition. The ``high`` limit may be included in the
        returned array of floats due to floating-point rounding in the
        equation ``low + (high-low) * random_sample()``. For example:

        >>> x = np.float32(5*0.99999999)
        >>> x
        5.0


        Examples
        --------
        Draw samples from the distribution:

        >>> s = np.random.uniform(-1,0,1000)

        All values are within the given interval:

        >>> np.all(s >= -1)
        True
        >>> np.all(s < 0)
        True

        Display the histogram of the samples, along with the
        probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 15, density=True)
        >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
        >>> plt.show()

        
        rand(d0, d1, ..., dn)

        Random values in a given shape.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `random_sample`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        Create an array of the given shape and populate it with
        random samples from a uniform distribution
        over ``[0, 1)``.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        out : ndarray, shape ``(d0, d1, ..., dn)``
            Random values.

        See Also
        --------
        random

        Examples
        --------
        >>> np.random.rand(3,2)
        array([[ 0.14022471,  0.96360618],  #random
               [ 0.37601032,  0.25528411],  #random
               [ 0.49313049,  0.94909878]]) #random

        
        randn(d0, d1, ..., dn)

        Return a sample (or samples) from the "standard normal" distribution.

        .. note::
            This is a convenience function for users porting code from Matlab,
            and wraps `standard_normal`. That function takes a
            tuple to specify the size of the output, which is consistent with
            other NumPy functions like `numpy.zeros` and `numpy.ones`.

        .. note::
            New code should use the ``standard_normal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        If positive int_like arguments are provided, `randn` generates an array
        of shape ``(d0, d1, ..., dn)``, filled
        with random floats sampled from a univariate "normal" (Gaussian)
        distribution of mean 0 and variance 1. A single float randomly sampled
        from the distribution is returned if no argument is provided.

        Parameters
        ----------
        d0, d1, ..., dn : int, optional
            The dimensions of the returned array, must be non-negative.
            If no argument is given a single Python float is returned.

        Returns
        -------
        Z : ndarray or float
            A ``(d0, d1, ..., dn)``-shaped array of floating-point samples from
            the standard normal distribution, or a single such float if
            no parameters were supplied.

        See Also
        --------
        standard_normal : Similar, but takes a tuple as its argument.
        normal : Also accepts mu and sigma arguments.
        Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use:

        ``sigma * np.random.randn(...) + mu``

        Examples
        --------
        >>> np.random.randn()
        2.1923875335537315  # random

        Two-by-four array of samples from N(3, 6.25):

        >>> 3 + 2.5 * np.random.randn(2, 4)
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        random_integers(low, high=None, size=None)

        Random integers of type `np.int_` between `low` and `high`, inclusive.

        Return random integers of type `np.int_` from the "discrete uniform"
        distribution in the closed interval [`low`, `high`].  If `high` is
        None (the default), then results are from [1, `low`]. The `np.int_`
        type translates to the C long integer type and its precision
        is platform dependent.

        This function has been deprecated. Use randint instead.

        .. deprecated:: 1.11.0

        Parameters
        ----------
        low : int
            Lowest (signed) integer to be drawn from the distribution (unless
            ``high=None``, in which case this parameter is the *highest* such
            integer).
        high : int, optional
            If provided, the largest (signed) integer to be drawn from the
            distribution (see above for behavior if ``high=None``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : int or ndarray of ints
            `size`-shaped array of random integers from the appropriate
            distribution, or a single such random int if `size` not provided.

        See Also
        --------
        randint : Similar to `random_integers`, only for the half-open
            interval [`low`, `high`), and 0 is the lowest value if `high` is
            omitted.

        Notes
        -----
        To sample from N evenly spaced floating-point numbers between a and b,
        use::

          a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

        Examples
        --------
        >>> np.random.random_integers(5)
        4 # random
        >>> type(np.random.random_integers(5))
        <class 'numpy.int64'>
        >>> np.random.random_integers(5, size=(3,2))
        array([[5, 4], # random
               [3, 3],
               [4, 5]])

        Choose five random numbers from the set of five evenly-spaced
        numbers between 0 and 2.5, inclusive (*i.e.*, from the set
        :math:`{0, 5/8, 10/8, 15/8, 20/8}`):

        >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
        array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

        Roll two six sided dice 1000 times and sum the results:

        >>> d1 = np.random.random_integers(1, 6, 1000)
        >>> d2 = np.random.random_integers(1, 6, 1000)
        >>> dsums = d1 + d2

        Display results as a histogram:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
        >>> plt.show()

        
        standard_normal(size=None)

        Draw samples from a standard Normal distribution (mean=0, stdev=1).

        .. note::
            New code should use the ``standard_normal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : float or ndarray
            A floating-point array of shape ``size`` of drawn samples, or a
            single sample if ``size`` was not specified.

        See Also
        --------
        normal :
            Equivalent function with additional ``loc`` and ``scale`` arguments
            for setting the mean and standard deviation.
        Generator.standard_normal: which should be used for new code.

        Notes
        -----
        For random samples from :math:`N(\mu, \sigma^2)`, use one of::

            mu + sigma * np.random.standard_normal(size=...)
            np.random.normal(mu, sigma, size=...)

        Examples
        --------
        >>> np.random.standard_normal()
        2.1923875335537315 #random

        >>> s = np.random.standard_normal(8000)
        >>> s
        array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
               -0.38672696, -0.4685006 ])                                # random
        >>> s.shape
        (8000,)
        >>> s = np.random.standard_normal(size=(3, 4, 2))
        >>> s.shape
        (3, 4, 2)

        Two-by-four array of samples from :math:`N(3, 6.25)`:

        >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        normal(loc=0.0, scale=1.0, size=None)

        Draw random samples from a normal (Gaussian) distribution.

        The probability density function of the normal distribution, first
        derived by De Moivre and 200 years later by both Gauss and Laplace
        independently [2]_, is often called the bell curve because of
        its characteristic shape (see the example below).

        The normal distributions occurs often in nature.  For example, it
        describes the commonly occurring distribution of samples influenced
        by a large number of tiny, random disturbances, each with its own
        unique distribution [2]_.

        .. note::
            New code should use the ``normal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats
            Mean ("centre") of the distribution.
        scale : float or array_like of floats
            Standard deviation (spread or "width") of the distribution. Must be
            non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized normal distribution.

        See Also
        --------
        scipy.stats.norm : probability density function, distribution or
            cumulative density function, etc.
        Generator.normal: which should be used for new code.

        Notes
        -----
        The probability density for the Gaussian distribution is

        .. math:: p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
                         e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

        where :math:`\mu` is the mean and :math:`\sigma` the standard
        deviation. The square of the standard deviation, :math:`\sigma^2`,
        is called the variance.

        The function has its peak at the mean, and its "spread" increases with
        the standard deviation (the function reaches 0.607 times its maximum at
        :math:`x + \sigma` and :math:`x - \sigma` [2]_).  This implies that
        normal is more likely to return samples lying close to the mean, rather
        than those far away.

        References
        ----------
        .. [1] Wikipedia, "Normal distribution",
               https://en.wikipedia.org/wiki/Normal_distribution
        .. [2] P. R. Peebles Jr., "Central Limit Theorem" in "Probability,
               Random Variables and Random Signal Principles", 4th ed., 2001,
               pp. 51, 51, 125.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 0, 0.1 # mean and standard deviation
        >>> s = np.random.normal(mu, sigma, 1000)

        Verify the mean and the variance:

        >>> abs(mu - np.mean(s))
        0.0  # may vary

        >>> abs(sigma - np.std(s, ddof=1))
        0.1  # may vary

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
        ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Two-by-four array of samples from N(3, 6.25):

        >>> np.random.normal(3, 2.5, size=(2, 4))
        array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
               [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

        
        standard_gamma(shape, size=None)

        Draw samples from a standard Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        shape (sometimes designated "k") and scale=1.

        .. note::
            New code should use the ``standard_gamma`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            Parameter, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` is a scalar.  Otherwise,
            ``np.array(shape).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        Generator.standard_gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 1. # mean and width
        >>> s = np.random.standard_gamma(shape, 1000000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/  # doctest: +SKIP
        ...                       (sps.gamma(shape) * scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        gamma(shape, scale=1.0, size=None)

        Draw samples from a Gamma distribution.

        Samples are drawn from a Gamma distribution with specified parameters,
        `shape` (sometimes designated "k") and `scale` (sometimes designated
        "theta"), where both parameters are > 0.

        .. note::
            New code should use the ``gamma`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        shape : float or array_like of floats
            The shape of the gamma distribution. Must be non-negative.
        scale : float or array_like of floats, optional
            The scale of the gamma distribution. Must be non-negative.
            Default is equal to 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``shape`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(shape, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized gamma distribution.

        See Also
        --------
        scipy.stats.gamma : probability density function, distribution or
            cumulative density function, etc.
        Generator.gamma: which should be used for new code.

        Notes
        -----
        The probability density for the Gamma distribution is

        .. math:: p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

        where :math:`k` is the shape and :math:`\theta` the scale,
        and :math:`\Gamma` is the Gamma function.

        The Gamma distribution is often used to model the times to failure of
        electronic components, and arises naturally in processes for which the
        waiting times between Poisson distributed events are relevant.

        References
        ----------
        .. [1] Weisstein, Eric W. "Gamma Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/GammaDistribution.html
        .. [2] Wikipedia, "Gamma distribution",
               https://en.wikipedia.org/wiki/Gamma_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
        >>> s = np.random.gamma(shape, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> import scipy.special as sps  # doctest: +SKIP
        >>> count, bins, ignored = plt.hist(s, 50, density=True)
        >>> y = bins**(shape-1)*(np.exp(-bins/scale) /  # doctest: +SKIP
        ...                      (sps.gamma(shape)*scale**shape))
        >>> plt.plot(bins, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        f(dfnum, dfden, size=None)

        Draw samples from an F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters must be greater than
        zero.

        The random variate of the F distribution (also known as the
        Fisher distribution) is a continuous probability distribution
        that arises in ANOVA tests, and is the ratio of two chi-square
        variates.

        .. note::
            New code should use the ``f`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Degrees of freedom in numerator, must be > 0.
        dfden : float or array_like of float
            Degrees of freedom in denominator, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum`` and ``dfden`` are both scalars.
            Otherwise, ``np.broadcast(dfnum, dfden).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Fisher distribution.

        See Also
        --------
        scipy.stats.f : probability density function, distribution or
            cumulative density function, etc.
        Generator.f: which should be used for new code.

        Notes
        -----
        The F statistic is used to compare in-group variances to between-group
        variances. Calculating the distribution depends on the sampling, and
        so it is a function of the respective degrees of freedom in the
        problem.  The variable `dfnum` is the number of samples minus one, the
        between-groups degrees of freedom, while `dfden` is the within-groups
        degrees of freedom, the sum of the number of samples in each group
        minus the number of groups.

        References
        ----------
        .. [1] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [2] Wikipedia, "F-distribution",
               https://en.wikipedia.org/wiki/F-distribution

        Examples
        --------
        An example from Glantz[1], pp 47-40:

        Two groups, children of diabetics (25 people) and children from people
        without diabetes (25 controls). Fasting blood glucose was measured,
        case group had a mean value of 86.1, controls had a mean value of
        82.2. Standard deviations were 2.09 and 2.49 respectively. Are these
        data consistent with the null hypothesis that the parents diabetic
        status does not affect their children's blood glucose levels?
        Calculating the F statistic from the data gives a value of 36.01.

        Draw samples from the distribution:

        >>> dfnum = 1. # between group degrees of freedom
        >>> dfden = 48. # within groups degrees of freedom
        >>> s = np.random.f(dfnum, dfden, 1000)

        The lower bound for the top 1% of the samples is :

        >>> np.sort(s)[-10]
        7.61988120985 # random

        So there is about a 1% chance that the F statistic will exceed 7.62,
        the measured value is 36, so the null hypothesis is rejected at the 1%
        level.

        
        noncentral_f(dfnum, dfden, nonc, size=None)

        Draw samples from the noncentral F distribution.

        Samples are drawn from an F distribution with specified parameters,
        `dfnum` (degrees of freedom in numerator) and `dfden` (degrees of
        freedom in denominator), where both parameters > 1.
        `nonc` is the non-centrality parameter.

        .. note::
            New code should use the ``noncentral_f`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        dfnum : float or array_like of floats
            Numerator degrees of freedom, must be > 0.

            .. versionchanged:: 1.14.0
               Earlier NumPy versions required dfnum > 1.
        dfden : float or array_like of floats
            Denominator degrees of freedom, must be > 0.
        nonc : float or array_like of floats
            Non-centrality parameter, the sum of the squares of the numerator
            means, must be >= 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``dfnum``, ``dfden``, and ``nonc``
            are all scalars.  Otherwise, ``np.broadcast(dfnum, dfden, nonc).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral Fisher distribution.

        See Also
        --------
        Generator.noncentral_f: which should be used for new code.

        Notes
        -----
        When calculating the power of an experiment (power = probability of
        rejecting the null hypothesis when a specific alternative is true) the
        non-central F statistic becomes important.  When the null hypothesis is
        true, the F statistic follows a central F distribution. When the null
        hypothesis is not true, then it follows a non-central F statistic.

        References
        ----------
        .. [1] Weisstein, Eric W. "Noncentral F-Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NoncentralF-Distribution.html
        .. [2] Wikipedia, "Noncentral F-distribution",
               https://en.wikipedia.org/wiki/Noncentral_F-distribution

        Examples
        --------
        In a study, testing for a specific alternative to the null hypothesis
        requires use of the Noncentral F distribution. We need to calculate the
        area in the tail of the distribution that exceeds the value of the F
        distribution for the null hypothesis.  We'll plot the two probability
        distributions for comparison.

        >>> dfnum = 3 # between group deg of freedom
        >>> dfden = 20 # within groups degrees of freedom
        >>> nonc = 3.0
        >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
        >>> NF = np.histogram(nc_vals, bins=50, density=True)
        >>> c_vals = np.random.f(dfnum, dfden, 1000000)
        >>> F = np.histogram(c_vals, bins=50, density=True)
        >>> import matplotlib.pyplot as plt
        >>> plt.plot(F[1][1:], F[0])
        >>> plt.plot(NF[1][1:], NF[0])
        >>> plt.show()

        
        chisquare(df, size=None)

        Draw samples from a chi-square distribution.

        When `df` independent random variables, each with standard normal
        distributions (mean 0, variance 1), are squared and summed, the
        resulting distribution is chi-square (see Notes).  This distribution
        is often used in hypothesis testing.

        .. note::
            New code should use the ``chisquare`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
             Number of degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized chi-square distribution.

        Raises
        ------
        ValueError
            When `df` <= 0 or when an inappropriate `size` (e.g. ``size=-1``)
            is given.

        See Also
        --------
        Generator.chisquare: which should be used for new code.

        Notes
        -----
        The variable obtained by summing the squares of `df` independent,
        standard normally distributed random variables:

        .. math:: Q = \sum_{i=0}^{\mathtt{df}} X^2_i

        is chi-square distributed, denoted

        .. math:: Q \sim \chi^2_k.

        The probability density function of the chi-squared distribution is

        .. math:: p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
                         x^{k/2 - 1} e^{-x/2},

        where :math:`\Gamma` is the gamma function,

        .. math:: \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

        References
        ----------
        .. [1] NIST "Engineering Statistics Handbook"
               https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

        Examples
        --------
        >>> np.random.chisquare(2,4)
        array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random
        
        noncentral_chisquare(df, nonc, size=None)

        Draw samples from a noncentral chi-square distribution.

        The noncentral :math:`\chi^2` distribution is a generalization of
        the :math:`\chi^2` distribution.

        .. note::
            New code should use the ``noncentral_chisquare`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.

            .. versionchanged:: 1.10.0
               Earlier NumPy versions required dfnum > 1.
        nonc : float or array_like of floats
            Non-centrality, must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` and ``nonc`` are both scalars.
            Otherwise, ``np.broadcast(df, nonc).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized noncentral chi-square distribution.

        See Also
        --------
        Generator.noncentral_chisquare: which should be used for new code.

        Notes
        -----
        The probability density function for the noncentral Chi-square
        distribution is

        .. math:: P(x;df,nonc) = \sum^{\infty}_{i=0}
                               \frac{e^{-nonc/2}(nonc/2)^{i}}{i!}
                               P_{Y_{df+2i}}(x),

        where :math:`Y_{q}` is the Chi-square with q degrees of freedom.

        References
        ----------
        .. [1] Wikipedia, "Noncentral chi-squared distribution"
               https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> import matplotlib.pyplot as plt
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        Draw values from a noncentral chisquare with very small noncentrality,
        and compare to a chisquare.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
        ...                   bins=np.arange(0., 25, .1), density=True)
        >>> values2 = plt.hist(np.random.chisquare(3, 100000),
        ...                    bins=np.arange(0., 25, .1), density=True)
        >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
        >>> plt.show()

        Demonstrate how large values of non-centrality lead to a more symmetric
        distribution.

        >>> plt.figure()
        >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
        ...                   bins=200, density=True)
        >>> plt.show()

        
        standard_cauchy(size=None)

        Draw samples from a standard Cauchy distribution with mode = 0.

        Also known as the Lorentz distribution.

        .. note::
            New code should use the ``standard_cauchy`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        samples : ndarray or scalar
            The drawn samples.

        See Also
        --------
        Generator.standard_cauchy: which should be used for new code.

        Notes
        -----
        The probability density function for the full Cauchy distribution is

        .. math:: P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
                  (\frac{x-x_0}{\gamma})^2 \bigr] }

        and the Standard Cauchy distribution just sets :math:`x_0=0` and
        :math:`\gamma=1`

        The Cauchy distribution arises in the solution to the driven harmonic
        oscillator problem, and also describes spectral line broadening. It
        also describes the distribution of values at which a line tilted at
        a random angle will cut the x axis.

        When studying hypothesis tests that assume normality, seeing how the
        tests perform on data from a Cauchy distribution is a good indicator of
        their sensitivity to a heavy-tailed distribution, since the Cauchy looks
        very much like a Gaussian distribution, but with heavier tails.

        References
        ----------
        .. [1] NIST/SEMATECH e-Handbook of Statistical Methods, "Cauchy
              Distribution",
              https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm
        .. [2] Weisstein, Eric W. "Cauchy Distribution." From MathWorld--A
              Wolfram Web Resource.
              http://mathworld.wolfram.com/CauchyDistribution.html
        .. [3] Wikipedia, "Cauchy distribution"
              https://en.wikipedia.org/wiki/Cauchy_distribution

        Examples
        --------
        Draw samples and plot the distribution:

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_cauchy(1000000)
        >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
        >>> plt.hist(s, bins=100)
        >>> plt.show()

        
        standard_t(df, size=None)

        Draw samples from a standard Student's t distribution with `df` degrees
        of freedom.

        A special case of the hyperbolic distribution.  As `df` gets
        large, the result resembles that of the standard normal
        distribution (`standard_normal`).

        .. note::
            New code should use the ``standard_t`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        df : float or array_like of floats
            Degrees of freedom, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``df`` is a scalar.  Otherwise,
            ``np.array(df).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized standard Student's t distribution.

        See Also
        --------
        Generator.standard_t: which should be used for new code.

        Notes
        -----
        The probability density function for the t distribution is

        .. math:: P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
                  \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

        The t test is based on an assumption that the data come from a
        Normal distribution. The t test provides a way to test whether
        the sample mean (that is the mean calculated from the data) is
        a good estimate of the true mean.

        The derivation of the t-distribution was first published in
        1908 by William Gosset while working for the Guinness Brewery
        in Dublin. Due to proprietary issues, he had to publish under
        a pseudonym, and so he used the name Student.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics With R",
               Springer, 2002.
        .. [2] Wikipedia, "Student's t-distribution"
               https://en.wikipedia.org/wiki/Student's_t-distribution

        Examples
        --------
        From Dalgaard page 83 [1]_, suppose the daily energy intake for 11
        women in kilojoules (kJ) is:

        >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
        ...                    7515, 8230, 8770])

        Does their energy intake deviate systematically from the recommended
        value of 7725 kJ? Our null hypothesis will be the absence of deviation,
        and the alternate hypothesis will be the presence of an effect that could be
        either positive or negative, hence making our test 2-tailed. 

        Because we are estimating the mean and we have N=11 values in our sample,
        we have N-1=10 degrees of freedom. We set our significance level to 95% and 
        compute the t statistic using the empirical mean and empirical standard 
        deviation of our intake. We use a ddof of 1 to base the computation of our 
        empirical standard deviation on an unbiased estimate of the variance (note:
        the final estimate is not unbiased due to the concave nature of the square 
        root).

        >>> np.mean(intake)
        6753.636363636364
        >>> intake.std(ddof=1)
        1142.1232221373727
        >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
        >>> t
        -2.8207540608310198

        We draw 1000000 samples from Student's t distribution with the adequate
        degrees of freedom.

        >>> import matplotlib.pyplot as plt
        >>> s = np.random.standard_t(10, size=1000000)
        >>> h = plt.hist(s, bins=100, density=True)

        Does our t statistic land in one of the two critical regions found at 
        both tails of the distribution?

        >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
        0.018318  #random < 0.05, statistic is in critical region

        The probability value for this 2-tailed test is about 1.83%, which is 
        lower than the 5% pre-determined significance threshold. 

        Therefore, the probability of observing values as extreme as our intake
        conditionally on the null hypothesis being true is too low, and we reject 
        the null hypothesis of no deviation. 

        
        vonmises(mu, kappa, size=None)

        Draw samples from a von Mises distribution.

        Samples are drawn from a von Mises distribution with specified mode
        (mu) and dispersion (kappa), on the interval [-pi, pi].

        The von Mises distribution (also known as the circular normal
        distribution) is a continuous probability distribution on the unit
        circle.  It may be thought of as the circular analogue of the normal
        distribution.

        .. note::
            New code should use the ``vonmises`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mu : float or array_like of floats
            Mode ("center") of the distribution.
        kappa : float or array_like of floats
            Dispersion of the distribution, has to be >=0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mu`` and ``kappa`` are both scalars.
            Otherwise, ``np.broadcast(mu, kappa).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized von Mises distribution.

        See Also
        --------
        scipy.stats.vonmises : probability density function, distribution, or
            cumulative density function, etc.
        Generator.vonmises: which should be used for new code.

        Notes
        -----
        The probability density for the von Mises distribution is

        .. math:: p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

        where :math:`\mu` is the mode and :math:`\kappa` the dispersion,
        and :math:`I_0(\kappa)` is the modified Bessel function of order 0.

        The von Mises is named for Richard Edler von Mises, who was born in
        Austria-Hungary, in what is now the Ukraine.  He fled to the United
        States in 1939 and became a professor at Harvard.  He worked in
        probability theory, aerodynamics, fluid mechanics, and philosophy of
        science.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] von Mises, R., "Mathematical Theory of Probability
               and Statistics", New York: Academic Press, 1964.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, kappa = 0.0, 4.0 # mean and dispersion
        >>> s = np.random.vonmises(mu, kappa, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy.special import i0  # doctest: +SKIP
        >>> plt.hist(s, 50, density=True)
        >>> x = np.linspace(-np.pi, np.pi, num=51)
        >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))  # doctest: +SKIP
        >>> plt.plot(x, y, linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        pareto(a, size=None)

        Draw samples from a Pareto II or Lomax distribution with
        specified shape.

        The Lomax or Pareto II distribution is a shifted Pareto
        distribution. The classical Pareto distribution can be
        obtained from the Lomax distribution by adding 1 and
        multiplying by the scale parameter ``m`` (see Notes).  The
        smallest value of the Lomax distribution is zero while for the
        classical Pareto distribution it is ``mu``, where the standard
        Pareto distribution has location ``mu = 1``.  Lomax can also
        be considered as a simplified version of the Generalized
        Pareto distribution (available in SciPy), with the scale set
        to one and the location set to zero.

        The Pareto distribution must be greater than zero, and is
        unbounded above.  It is also known as the "80-20 rule".  In
        this distribution, 80 percent of the weights are in the lowest
        20 percent of the range, while the other 20 percent fill the
        remaining 80 percent of the range.

        .. note::
            New code should use the ``pareto`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape of the distribution. Must be positive.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Pareto distribution.

        See Also
        --------
        scipy.stats.lomax : probability density function, distribution or
            cumulative density function, etc.
        scipy.stats.genpareto : probability density function, distribution or
            cumulative density function, etc.
        Generator.pareto: which should be used for new code.

        Notes
        -----
        The probability density for the Pareto distribution is

        .. math:: p(x) = \frac{am^a}{x^{a+1}}

        where :math:`a` is the shape and :math:`m` the scale.

        The Pareto distribution, named after the Italian economist
        Vilfredo Pareto, is a power law probability distribution
        useful in many real world problems.  Outside the field of
        economics it is generally referred to as the Bradford
        distribution. Pareto developed the distribution to describe
        the distribution of wealth in an economy.  It has also found
        use in insurance, web page access statistics, oil field sizes,
        and many other problems, including the download frequency for
        projects in Sourceforge [1]_.  It is one of the so-called
        "fat-tailed" distributions.

        References
        ----------
        .. [1] Francis Hunt and Paul Johnson, On the Pareto Distribution of
               Sourceforge projects.
        .. [2] Pareto, V. (1896). Course of Political Economy. Lausanne.
        .. [3] Reiss, R.D., Thomas, M.(2001), Statistical Analysis of Extreme
               Values, Birkhauser Verlag, Basel, pp 23-30.
        .. [4] Wikipedia, "Pareto distribution",
               https://en.wikipedia.org/wiki/Pareto_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a, m = 3., 2.  # shape and mode
        >>> s = (np.random.pareto(a, 1000) + 1) * m

        Display the histogram of the samples, along with the probability
        density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, _ = plt.hist(s, 100, density=True)
        >>> fit = a*m**a / bins**(a+1)
        >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
        >>> plt.show()

        
        weibull(a, size=None)

        Draw samples from a Weibull distribution.

        Draw samples from a 1-parameter Weibull distribution with the given
        shape parameter `a`.

        .. math:: X = (-ln(U))^{1/a}

        Here, U is drawn from the uniform distribution over (0,1].

        The more common 2-parameter Weibull, including a scale parameter
        :math:`\lambda` is just :math:`X = \lambda(-ln(U))^{1/a}`.

        .. note::
            New code should use the ``weibull`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Shape parameter of the distribution.  Must be nonnegative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Weibull distribution.

        See Also
        --------
        scipy.stats.weibull_max
        scipy.stats.weibull_min
        scipy.stats.genextreme
        gumbel
        Generator.weibull: which should be used for new code.

        Notes
        -----
        The Weibull (or Type III asymptotic extreme value distribution
        for smallest values, SEV Type III, or Rosin-Rammler
        distribution) is one of a class of Generalized Extreme Value
        (GEV) distributions used in modeling extreme value problems.
        This class includes the Gumbel and Frechet distributions.

        The probability density for the Weibull distribution is

        .. math:: p(x) = \frac{a}
                         {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

        where :math:`a` is the shape and :math:`\lambda` the scale.

        The function has its peak (the mode) at
        :math:`\lambda(\frac{a-1}{a})^{1/a}`.

        When ``a = 1``, the Weibull distribution reduces to the exponential
        distribution.

        References
        ----------
        .. [1] Waloddi Weibull, Royal Technical University, Stockholm,
               1939 "A Statistical Theory Of The Strength Of Materials",
               Ingeniorsvetenskapsakademiens Handlingar Nr 151, 1939,
               Generalstabens Litografiska Anstalts Forlag, Stockholm.
        .. [2] Waloddi Weibull, "A Statistical Distribution Function of
               Wide Applicability", Journal Of Applied Mechanics ASME Paper
               1951.
        .. [3] Wikipedia, "Weibull distribution",
               https://en.wikipedia.org/wiki/Weibull_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> s = np.random.weibull(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> x = np.arange(1,100.)/50.
        >>> def weib(x,n,a):
        ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

        >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
        >>> x = np.arange(1,100.)/50.
        >>> scale = count.max()/weib(x, 1., 5.).max()
        >>> plt.plot(x, weib(x, 1., 5.)*scale)
        >>> plt.show()

        
        power(a, size=None)

        Draws samples in [0, 1] from a power distribution with positive
        exponent a - 1.

        Also known as the power function distribution.

        .. note::
            New code should use the ``power`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Parameter of the distribution. Must be non-negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar.  Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized power distribution.

        Raises
        ------
        ValueError
            If a < 1.

        See Also
        --------
        Generator.power: which should be used for new code.

        Notes
        -----
        The probability density function is

        .. math:: P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

        The power function distribution is just the inverse of the Pareto
        distribution. It may also be seen as a special case of the Beta
        distribution.

        It is used, for example, in modeling the over-reporting of insurance
        claims.

        References
        ----------
        .. [1] Christian Kleiber, Samuel Kotz, "Statistical size distributions
               in economics and actuarial sciences", Wiley, 2003.
        .. [2] Heckert, N. A. and Filliben, James J. "NIST Handbook 148:
               Dataplot Reference Manual, Volume 2: Let Subcommands and Library
               Functions", National Institute of Standards and Technology
               Handbook Series, June 2003.
               https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 5. # shape
        >>> samples = 1000
        >>> s = np.random.power(a, samples)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=30)
        >>> x = np.linspace(0, 1, 100)
        >>> y = a*x**(a-1.)
        >>> normed_y = samples*np.diff(bins)[0]*y
        >>> plt.plot(x, normed_y)
        >>> plt.show()

        Compare the power function distribution to the inverse of the Pareto.

        >>> from scipy import stats # doctest: +SKIP
        >>> rvs = np.random.power(5, 1000000)
        >>> rvsp = np.random.pareto(5, 1000000)
        >>> xx = np.linspace(0,1,100)
        >>> powpdf = stats.powerlaw.pdf(xx,5)  # doctest: +SKIP

        >>> plt.figure()
        >>> plt.hist(rvs, bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('np.random.power(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of 1 + np.random.pareto(5)')

        >>> plt.figure()
        >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
        >>> plt.plot(xx,powpdf,'r-')  # doctest: +SKIP
        >>> plt.title('inverse of stats.pareto(5)')

        
        laplace(loc=0.0, scale=1.0, size=None)

        Draw samples from the Laplace or double exponential distribution with
        specified location (or mean) and scale (decay).

        The Laplace distribution is similar to the Gaussian/normal distribution,
        but is sharper at the peak and has fatter tails. It represents the
        difference between two independent, identically distributed exponential
        random variables.

        .. note::
            New code should use the ``laplace`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The position, :math:`\mu`, of the distribution peak. Default is 0.
        scale : float or array_like of floats, optional
            :math:`\lambda`, the exponential decay. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Laplace distribution.

        See Also
        --------
        Generator.laplace: which should be used for new code.

        Notes
        -----
        It has the probability density function

        .. math:: f(x; \mu, \lambda) = \frac{1}{2\lambda}
                                       \exp\left(-\frac{|x - \mu|}{\lambda}\right).

        The first law of Laplace, from 1774, states that the frequency
        of an error can be expressed as an exponential function of the
        absolute magnitude of the error, which leads to the Laplace
        distribution. For many problems in economics and health
        sciences, this distribution seems to model the data better
        than the standard Gaussian distribution.

        References
        ----------
        .. [1] Abramowitz, M. and Stegun, I. A. (Eds.). "Handbook of
               Mathematical Functions with Formulas, Graphs, and Mathematical
               Tables, 9th printing," New York: Dover, 1972.
        .. [2] Kotz, Samuel, et. al. "The Laplace Distribution and
               Generalizations, " Birkhauser, 2001.
        .. [3] Weisstein, Eric W. "Laplace Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LaplaceDistribution.html
        .. [4] Wikipedia, "Laplace distribution",
               https://en.wikipedia.org/wiki/Laplace_distribution

        Examples
        --------
        Draw samples from the distribution

        >>> loc, scale = 0., 1.
        >>> s = np.random.laplace(loc, scale, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> x = np.arange(-8., 8., .01)
        >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
        >>> plt.plot(x, pdf)

        Plot Gaussian for comparison:

        >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
        ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
        >>> plt.plot(x,g)

        
        gumbel(loc=0.0, scale=1.0, size=None)

        Draw samples from a Gumbel distribution.

        Draw samples from a Gumbel distribution with specified location and
        scale.  For more information on the Gumbel distribution, see
        Notes and References below.

        .. note::
            New code should use the ``gumbel`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            The location of the mode of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            The scale parameter of the distribution. Default is 1. Must be non-
            negative.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Gumbel distribution.

        See Also
        --------
        scipy.stats.gumbel_l
        scipy.stats.gumbel_r
        scipy.stats.genextreme
        weibull
        Generator.gumbel: which should be used for new code.

        Notes
        -----
        The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme
        Value Type I) distribution is one of a class of Generalized Extreme
        Value (GEV) distributions used in modeling extreme value problems.
        The Gumbel is a special case of the Extreme Value Type I distribution
        for maximums from distributions with "exponential-like" tails.

        The probability density for the Gumbel distribution is

        .. math:: p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
                  \beta}},

        where :math:`\mu` is the mode, a location parameter, and
        :math:`\beta` is the scale parameter.

        The Gumbel (named for German mathematician Emil Julius Gumbel) was used
        very early in the hydrology literature, for modeling the occurrence of
        flood events. It is also used for modeling maximum wind speed and
        rainfall rates.  It is a "fat-tailed" distribution - the probability of
        an event in the tail of the distribution is larger than if one used a
        Gaussian, hence the surprisingly frequent occurrence of 100-year
        floods. Floods were initially modeled as a Gaussian process, which
        underestimated the frequency of extreme events.

        It is one of a class of extreme value distributions, the Generalized
        Extreme Value (GEV) distributions, which also includes the Weibull and
        Frechet.

        The function has a mean of :math:`\mu + 0.57721\beta` and a variance
        of :math:`\frac{\pi^2}{6}\beta^2`.

        References
        ----------
        .. [1] Gumbel, E. J., "Statistics of Extremes,"
               New York: Columbia University Press, 1958.
        .. [2] Reiss, R.-D. and Thomas, M., "Statistical Analysis of Extreme
               Values from Insurance, Finance, Hydrology and Other Fields,"
               Basel: Birkhauser Verlag, 2001.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, beta = 0, 0.1 # location and scale
        >>> s = np.random.gumbel(mu, beta, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 30, density=True)
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
        ...          linewidth=2, color='r')
        >>> plt.show()

        Show how an extreme value distribution can arise from a Gaussian process
        and compare to a Gaussian:

        >>> means = []
        >>> maxima = []
        >>> for i in range(0,1000) :
        ...    a = np.random.normal(mu, beta, 1000)
        ...    means.append(a.mean())
        ...    maxima.append(a.max())
        >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
        >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
        >>> mu = np.mean(maxima) - 0.57721*beta
        >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
        ...          * np.exp(-np.exp(-(bins - mu)/beta)),
        ...          linewidth=2, color='r')
        >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
        ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
        ...          linewidth=2, color='g')
        >>> plt.show()

        
        logistic(loc=0.0, scale=1.0, size=None)

        Draw samples from a logistic distribution.

        Samples are drawn from a logistic distribution with specified
        parameters, loc (location or mean, also median), and scale (>0).

        .. note::
            New code should use the ``logistic`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        loc : float or array_like of floats, optional
            Parameter of the distribution. Default is 0.
        scale : float or array_like of floats, optional
            Parameter of the distribution. Must be non-negative.
            Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``loc`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(loc, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logistic distribution.

        See Also
        --------
        scipy.stats.logistic : probability density function, distribution or
            cumulative density function, etc.
        Generator.logistic: which should be used for new code.

        Notes
        -----
        The probability density for the Logistic distribution is

        .. math:: P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

        where :math:`\mu` = location and :math:`s` = scale.

        The Logistic distribution is used in Extreme Value problems where it
        can act as a mixture of Gumbel distributions, in Epidemiology, and by
        the World Chess Federation (FIDE) where it is used in the Elo ranking
        system, assuming the performance of each player is a logistically
        distributed random variable.

        References
        ----------
        .. [1] Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of
               Extreme Values, from Insurance, Finance, Hydrology and Other
               Fields," Birkhauser Verlag, Basel, pp 132-133.
        .. [2] Weisstein, Eric W. "Logistic Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/LogisticDistribution.html
        .. [3] Wikipedia, "Logistic-distribution",
               https://en.wikipedia.org/wiki/Logistic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> loc, scale = 10, 1
        >>> s = np.random.logistic(loc, scale, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, bins=50)

        #   plot against distribution

        >>> def logist(x, loc, scale):
        ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
        >>> lgst_val = logist(bins, loc, scale)
        >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
        >>> plt.show()

        
        lognormal(mean=0.0, sigma=1.0, size=None)

        Draw samples from a log-normal distribution.

        Draw samples from a log-normal distribution with specified mean,
        standard deviation, and array shape.  Note that the mean and standard
        deviation are not the values for the distribution itself, but of the
        underlying normal distribution it is derived from.

        .. note::
            New code should use the ``lognormal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats, optional
            Mean value of the underlying normal distribution. Default is 0.
        sigma : float or array_like of floats, optional
            Standard deviation of the underlying normal distribution. Must be
            non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``sigma`` are both scalars.
            Otherwise, ``np.broadcast(mean, sigma).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized log-normal distribution.

        See Also
        --------
        scipy.stats.lognorm : probability density function, distribution,
            cumulative density function, etc.
        Generator.lognormal: which should be used for new code.

        Notes
        -----
        A variable `x` has a log-normal distribution if `log(x)` is normally
        distributed.  The probability density function for the log-normal
        distribution is:

        .. math:: p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
                         e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

        where :math:`\mu` is the mean and :math:`\sigma` is the standard
        deviation of the normally distributed logarithm of the variable.
        A log-normal distribution results if a random variable is the *product*
        of a large number of independent, identically-distributed variables in
        the same way that a normal distribution results if the variable is the
        *sum* of a large number of independent, identically-distributed
        variables.

        References
        ----------
        .. [1] Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal
               Distributions across the Sciences: Keys and Clues,"
               BioScience, Vol. 51, No. 5, May, 2001.
               https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf
        .. [2] Reiss, R.D. and Thomas, M., "Statistical Analysis of Extreme
               Values," Basel: Birkhauser Verlag, 2001, pp. 31-32.

        Examples
        --------
        Draw samples from the distribution:

        >>> mu, sigma = 3., 1. # mean and standard deviation
        >>> s = np.random.lognormal(mu, sigma, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, linewidth=2, color='r')
        >>> plt.axis('tight')
        >>> plt.show()

        Demonstrate that taking the products of random samples from a uniform
        distribution can be fit well by a log-normal probability density
        function.

        >>> # Generate a thousand samples: each is the product of 100 random
        >>> # values, drawn from a normal distribution.
        >>> b = []
        >>> for i in range(1000):
        ...    a = 10. + np.random.standard_normal(100)
        ...    b.append(np.product(a))

        >>> b = np.array(b) / np.min(b) # scale values to be positive
        >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
        >>> sigma = np.std(np.log(b))
        >>> mu = np.mean(np.log(b))

        >>> x = np.linspace(min(bins), max(bins), 10000)
        >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
        ...        / (x * sigma * np.sqrt(2 * np.pi)))

        >>> plt.plot(x, pdf, color='r', linewidth=2)
        >>> plt.show()

        
        rayleigh(scale=1.0, size=None)

        Draw samples from a Rayleigh distribution.

        The :math:`\chi` and Weibull distributions are generalizations of the
        Rayleigh.

        .. note::
            New code should use the ``rayleigh`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        scale : float or array_like of floats, optional
            Scale, also equals the mode. Must be non-negative. Default is 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``scale`` is a scalar.  Otherwise,
            ``np.array(scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Rayleigh distribution.

        See Also
        --------
        Generator.rayleigh: which should be used for new code.

        Notes
        -----
        The probability density function for the Rayleigh distribution is

        .. math:: P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

        The Rayleigh distribution would arise, for example, if the East
        and North components of the wind velocity had identical zero-mean
        Gaussian distributions.  Then the wind speed would have a Rayleigh
        distribution.

        References
        ----------
        .. [1] Brighton Webs Ltd., "Rayleigh Distribution,"
               https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp
        .. [2] Wikipedia, "Rayleigh distribution"
               https://en.wikipedia.org/wiki/Rayleigh_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram

        >>> from matplotlib.pyplot import hist
        >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

        Wave heights tend to follow a Rayleigh distribution. If the mean wave
        height is 1 meter, what fraction of waves are likely to be larger than 3
        meters?

        >>> meanvalue = 1
        >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
        >>> s = np.random.rayleigh(modevalue, 1000000)

        The percentage of waves larger than 3 meters is:

        >>> 100.*sum(s>3)/1000000.
        0.087300000000000003 # random

        
        wald(mean, scale, size=None)

        Draw samples from a Wald, or inverse Gaussian, distribution.

        As the scale approaches infinity, the distribution becomes more like a
        Gaussian. Some references claim that the Wald is an inverse Gaussian
        with mean equal to 1, but this is by no means universal.

        The inverse Gaussian distribution was first studied in relationship to
        Brownian motion. In 1956 M.C.K. Tweedie used the name inverse Gaussian
        because there is an inverse relationship between the time to cover a
        unit distance and distance covered in unit time.

        .. note::
            New code should use the ``wald`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : float or array_like of floats
            Distribution mean, must be > 0.
        scale : float or array_like of floats
            Scale parameter, must be > 0.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``mean`` and ``scale`` are both scalars.
            Otherwise, ``np.broadcast(mean, scale).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Wald distribution.

        See Also
        --------
        Generator.wald: which should be used for new code.

        Notes
        -----
        The probability density function for the Wald distribution is

        .. math:: P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
                                    \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

        As noted above the inverse Gaussian distribution first arise
        from attempts to model Brownian motion. It is also a
        competitor to the Weibull for use in reliability modeling and
        modeling stock returns and interest rate processes.

        References
        ----------
        .. [1] Brighton Webs Ltd., Wald Distribution,
               https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp
        .. [2] Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian
               Distribution: Theory : Methodology, and Applications", CRC Press,
               1988.
        .. [3] Wikipedia, "Inverse Gaussian distribution"
               https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
        >>> plt.show()

        
        triangular(left, mode, right, size=None)

        Draw samples from the triangular distribution over the
        interval ``[left, right]``.

        The triangular distribution is a continuous probability
        distribution with lower limit left, peak at mode, and upper
        limit right. Unlike the other distributions, these parameters
        directly define the shape of the pdf.

        .. note::
            New code should use the ``triangular`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        left : float or array_like of floats
            Lower limit.
        mode : float or array_like of floats
            The value where the peak of the distribution occurs.
            The value must fulfill the condition ``left <= mode <= right``.
        right : float or array_like of floats
            Upper limit, must be larger than `left`.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``left``, ``mode``, and ``right``
            are all scalars.  Otherwise, ``np.broadcast(left, mode, right).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized triangular distribution.

        See Also
        --------
        Generator.triangular: which should be used for new code.

        Notes
        -----
        The probability density function for the triangular distribution is

        .. math:: P(x;l, m, r) = \begin{cases}
                  \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\
                  \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m \leq x \leq r$},\\
                  0& \text{otherwise}.
                  \end{cases}

        The triangular distribution is often used in ill-defined
        problems where the underlying distribution is not known, but
        some knowledge of the limits and mode exists. Often it is used
        in simulations.

        References
        ----------
        .. [1] Wikipedia, "Triangular distribution"
               https://en.wikipedia.org/wiki/Triangular_distribution

        Examples
        --------
        Draw values from the distribution and plot the histogram:

        >>> import matplotlib.pyplot as plt
        >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
        ...              density=True)
        >>> plt.show()

        
        binomial(n, p, size=None)

        Draw samples from a binomial distribution.

        Samples are drawn from a binomial distribution with specified
        parameters, n trials and p probability of success where
        n an integer >= 0 and p is in the interval [0,1]. (n may be
        input as a float, but it is truncated to an integer in use)

        .. note::
            New code should use the ``binomial`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int or array_like of ints
            Parameter of the distribution, >= 0. Floats are also accepted,
            but they will be truncated to integers.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized binomial distribution, where
            each sample is equal to the number of successes over the n trials.

        See Also
        --------
        scipy.stats.binom : probability density function, distribution or
            cumulative density function, etc.
        Generator.binomial: which should be used for new code.

        Notes
        -----
        The probability density for the binomial distribution is

        .. math:: P(N) = \binom{n}{N}p^N(1-p)^{n-N},

        where :math:`n` is the number of trials, :math:`p` is the probability
        of success, and :math:`N` is the number of successes.

        When estimating the standard error of a proportion in a population by
        using a random sample, the normal distribution works well unless the
        product p*n <=5, where p = population proportion estimate, and n =
        number of samples, in which case the binomial distribution is used
        instead. For example, a sample of 15 people shows 4 who are left
        handed, and 11 who are right handed. Then p = 4/15 = 27%. 0.27*15 = 4,
        so the binomial distribution should be used in this case.

        References
        ----------
        .. [1] Dalgaard, Peter, "Introductory Statistics with R",
               Springer-Verlag, 2002.
        .. [2] Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill,
               Fifth Edition, 2002.
        .. [3] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [4] Weisstein, Eric W. "Binomial Distribution." From MathWorld--A
               Wolfram Web Resource.
               http://mathworld.wolfram.com/BinomialDistribution.html
        .. [5] Wikipedia, "Binomial distribution",
               https://en.wikipedia.org/wiki/Binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> n, p = 10, .5  # number of trials, probability of each trial
        >>> s = np.random.binomial(n, p, 1000)
        # result of flipping a coin 10 times, tested 1000 times.

        A real world example. A company drills 9 wild-cat oil exploration
        wells, each with an estimated probability of success of 0.1. All nine
        wells fail. What is the probability of that happening?

        Let's do 20,000 trials of the model, and count the number that
        generate zero positive results.

        >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
        # answer = 0.38885, or 38%.

        
        negative_binomial(n, p, size=None)

        Draw samples from a negative binomial distribution.

        Samples are drawn from a negative binomial distribution with specified
        parameters, `n` successes and `p` probability of success where `n`
        is > 0 and `p` is in the interval [0, 1].

        .. note::
            New code should use the ``negative_binomial`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : float or array_like of floats
            Parameter of the distribution, > 0.
        p : float or array_like of floats
            Parameter of the distribution, >= 0 and <=1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``n`` and ``p`` are both scalars.
            Otherwise, ``np.broadcast(n, p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized negative binomial distribution,
            where each sample is equal to N, the number of failures that
            occurred before a total of n successes was reached.

        See Also
        --------
        Generator.negative_binomial: which should be used for new code.

        Notes
        -----
        The probability mass function of the negative binomial distribution is

        .. math:: P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

        where :math:`n` is the number of successes, :math:`p` is the
        probability of success, :math:`N+n` is the number of trials, and
        :math:`\Gamma` is the gamma function. When :math:`n` is an integer,
        :math:`\frac{\Gamma(N+n)}{N!\Gamma(n)} = \binom{N+n-1}{N}`, which is
        the more common form of this term in the the pmf. The negative
        binomial distribution gives the probability of N failures given n
        successes, with a success on the last trial.

        If one throws a die repeatedly until the third time a "1" appears,
        then the probability distribution of the number of non-"1"s that
        appear before the third "1" is a negative binomial distribution.

        References
        ----------
        .. [1] Weisstein, Eric W. "Negative Binomial Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/NegativeBinomialDistribution.html
        .. [2] Wikipedia, "Negative binomial distribution",
               https://en.wikipedia.org/wiki/Negative_binomial_distribution

        Examples
        --------
        Draw samples from the distribution:

        A real world example. A company drills wild-cat oil
        exploration wells, each with an estimated probability of
        success of 0.1.  What is the probability of having one success
        for each successive well, that is what is the probability of a
        single success after drilling 5 wells, after 6 wells, etc.?

        >>> s = np.random.negative_binomial(1, 0.1, 100000)
        >>> for i in range(1, 11): # doctest: +SKIP
        ...    probability = sum(s<i) / 100000.
        ...    print(i, "wells drilled, probability of one success =", probability)

        
        poisson(lam=1.0, size=None)

        Draw samples from a Poisson distribution.

        The Poisson distribution is the limit of the binomial distribution
        for large N.

        .. note::
            New code should use the ``poisson`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        lam : float or array_like of floats
            Expected number of events occurring in a fixed-time interval,
            must be >= 0. A sequence must be broadcastable over the requested
            size.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``lam`` is a scalar. Otherwise,
            ``np.array(lam).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Poisson distribution.

        See Also
        --------
        Generator.poisson: which should be used for new code.

        Notes
        -----
        The Poisson distribution

        .. math:: f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

        For events with an expected separation :math:`\lambda` the Poisson
        distribution :math:`f(k; \lambda)` describes the probability of
        :math:`k` events occurring within the observed
        interval :math:`\lambda`.

        Because the output is limited to the range of the C int64 type, a
        ValueError is raised when `lam` is within 10 sigma of the maximum
        representable value.

        References
        ----------
        .. [1] Weisstein, Eric W. "Poisson Distribution."
               From MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/PoissonDistribution.html
        .. [2] Wikipedia, "Poisson distribution",
               https://en.wikipedia.org/wiki/Poisson_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> import numpy as np
        >>> s = np.random.poisson(5, 10000)

        Display histogram of the sample:

        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s, 14, density=True)
        >>> plt.show()

        Draw each 100 values for lambda 100 and 500:

        >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

        
        zipf(a, size=None)

        Draw samples from a Zipf distribution.

        Samples are drawn from a Zipf distribution with specified parameter
        `a` > 1.

        The Zipf distribution (also known as the zeta distribution) is a
        continuous probability distribution that satisfies Zipf's law: the
        frequency of an item is inversely proportional to its rank in a
        frequency table.

        .. note::
            New code should use the ``zipf`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        a : float or array_like of floats
            Distribution parameter. Must be greater than 1.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``a`` is a scalar. Otherwise,
            ``np.array(a).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized Zipf distribution.

        See Also
        --------
        scipy.stats.zipf : probability density function, distribution, or
            cumulative density function, etc.
        Generator.zipf: which should be used for new code.

        Notes
        -----
        The probability density for the Zipf distribution is

        .. math:: p(x) = \frac{x^{-a}}{\zeta(a)},

        where :math:`\zeta` is the Riemann Zeta function.

        It is named for the American linguist George Kingsley Zipf, who noted
        that the frequency of any word in a sample of a language is inversely
        proportional to its rank in the frequency table.

        References
        ----------
        .. [1] Zipf, G. K., "Selected Studies of the Principle of Relative
               Frequency in Language," Cambridge, MA: Harvard Univ. Press,
               1932.

        Examples
        --------
        Draw samples from the distribution:

        >>> a = 2. # parameter
        >>> s = np.random.zipf(a, 1000)

        Display the histogram of the samples, along with
        the probability density function:

        >>> import matplotlib.pyplot as plt
        >>> from scipy import special  # doctest: +SKIP

        Truncate s values at 50 so plot is interesting:

        >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)
        >>> x = np.arange(1., 50.)
        >>> y = x**(-a) / special.zetac(a)  # doctest: +SKIP
        >>> plt.plot(x, y/max(y), linewidth=2, color='r')  # doctest: +SKIP
        >>> plt.show()

        
        geometric(p, size=None)

        Draw samples from the geometric distribution.

        Bernoulli trials are experiments with one of two outcomes:
        success or failure (an example of such an experiment is flipping
        a coin).  The geometric distribution models the number of trials
        that must be run in order to achieve success.  It is therefore
        supported on the positive integers, ``k = 1, 2, ...``.

        The probability mass function of the geometric distribution is

        .. math:: f(k) = (1 - p)^{k - 1} p

        where `p` is the probability of success of an individual trial.

        .. note::
            New code should use the ``geometric`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            The probability of success of an individual trial.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized geometric distribution.

        See Also
        --------
        Generator.geometric: which should be used for new code.

        Examples
        --------
        Draw ten thousand values from the geometric distribution,
        with the probability of an individual success equal to 0.35:

        >>> z = np.random.geometric(p=0.35, size=10000)

        How many trials succeeded after a single run?

        >>> (z == 1).sum() / 10000.
        0.34889999999999999 #random

        
        hypergeometric(ngood, nbad, nsample, size=None)

        Draw samples from a Hypergeometric distribution.

        Samples are drawn from a hypergeometric distribution with specified
        parameters, `ngood` (ways to make a good selection), `nbad` (ways to make
        a bad selection), and `nsample` (number of items sampled, which is less
        than or equal to the sum ``ngood + nbad``).

        .. note::
            New code should use the ``hypergeometric`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        ngood : int or array_like of ints
            Number of ways to make a good selection.  Must be nonnegative.
        nbad : int or array_like of ints
            Number of ways to make a bad selection.  Must be nonnegative.
        nsample : int or array_like of ints
            Number of items sampled.  Must be at least 1 and at most
            ``ngood + nbad``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if `ngood`, `nbad`, and `nsample`
            are all scalars.  Otherwise, ``np.broadcast(ngood, nbad, nsample).size``
            samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized hypergeometric distribution. Each
            sample is the number of good items within a randomly selected subset of
            size `nsample` taken from a set of `ngood` good items and `nbad` bad items.

        See Also
        --------
        scipy.stats.hypergeom : probability density function, distribution or
            cumulative density function, etc.
        Generator.hypergeometric: which should be used for new code.

        Notes
        -----
        The probability density for the Hypergeometric distribution is

        .. math:: P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

        where :math:`0 \le x \le n` and :math:`n-b \le x \le g`

        for P(x) the probability of ``x`` good results in the drawn sample,
        g = `ngood`, b = `nbad`, and n = `nsample`.

        Consider an urn with black and white marbles in it, `ngood` of them
        are black and `nbad` are white. If you draw `nsample` balls without
        replacement, then the hypergeometric distribution describes the
        distribution of black balls in the drawn sample.

        Note that this distribution is very similar to the binomial
        distribution, except that in this case, samples are drawn without
        replacement, whereas in the Binomial case samples are drawn with
        replacement (or the sample space is infinite). As the sample space
        becomes large, this distribution approaches the binomial.

        References
        ----------
        .. [1] Lentner, Marvin, "Elementary Applied Statistics", Bogden
               and Quigley, 1972.
        .. [2] Weisstein, Eric W. "Hypergeometric Distribution." From
               MathWorld--A Wolfram Web Resource.
               http://mathworld.wolfram.com/HypergeometricDistribution.html
        .. [3] Wikipedia, "Hypergeometric distribution",
               https://en.wikipedia.org/wiki/Hypergeometric_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> ngood, nbad, nsamp = 100, 2, 10
        # number of good, number of bad, and number of samples
        >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
        >>> from matplotlib.pyplot import hist
        >>> hist(s)
        #   note that it is very unlikely to grab both bad items

        Suppose you have an urn with 15 white and 15 black marbles.
        If you pull 15 marbles at random, how likely is it that
        12 or more of them are one color?

        >>> s = np.random.hypergeometric(15, 15, 15, 100000)
        >>> sum(s>=12)/100000. + sum(s<=3)/100000.
        #   answer = 0.003 ... pretty unlikely!

        
        logseries(p, size=None)

        Draw samples from a logarithmic series distribution.

        Samples are drawn from a log series distribution with specified
        shape parameter, 0 < ``p`` < 1.

        .. note::
            New code should use the ``logseries`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        p : float or array_like of floats
            Shape parameter for the distribution.  Must be in the range (0, 1).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  If size is ``None`` (default),
            a single value is returned if ``p`` is a scalar.  Otherwise,
            ``np.array(p).size`` samples are drawn.

        Returns
        -------
        out : ndarray or scalar
            Drawn samples from the parameterized logarithmic series distribution.

        See Also
        --------
        scipy.stats.logser : probability density function, distribution or
            cumulative density function, etc.
        Generator.logseries: which should be used for new code.

        Notes
        -----
        The probability density for the Log Series distribution is

        .. math:: P(k) = \frac{-p^k}{k \ln(1-p)},

        where p = probability.

        The log series distribution is frequently used to represent species
        richness and occurrence, first proposed by Fisher, Corbet, and
        Williams in 1943 [2].  It may also be used to model the numbers of
        occupants seen in cars [3].

        References
        ----------
        .. [1] Buzas, Martin A.; Culver, Stephen J.,  Understanding regional
               species diversity through the log series distribution of
               occurrences: BIODIVERSITY RESEARCH Diversity & Distributions,
               Volume 5, Number 5, September 1999 , pp. 187-195(9).
        .. [2] Fisher, R.A,, A.S. Corbet, and C.B. Williams. 1943. The
               relation between the number of species and the number of
               individuals in a random sample of an animal population.
               Journal of Animal Ecology, 12:42-58.
        .. [3] D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small
               Data Sets, CRC Press, 1994.
        .. [4] Wikipedia, "Logarithmic distribution",
               https://en.wikipedia.org/wiki/Logarithmic_distribution

        Examples
        --------
        Draw samples from the distribution:

        >>> a = .6
        >>> s = np.random.logseries(a, 10000)
        >>> import matplotlib.pyplot as plt
        >>> count, bins, ignored = plt.hist(s)

        #   plot against distribution

        >>> def logseries(k, p):
        ...     return -p**k/(k*np.log(1-p))
        >>> plt.plot(bins, logseries(bins, a)*count.max()/
        ...          logseries(bins, a).max(), 'r')
        >>> plt.show()

        
        multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)

        Draw random samples from a multivariate normal distribution.

        The multivariate normal, multinormal or Gaussian distribution is a
        generalization of the one-dimensional normal distribution to higher
        dimensions.  Such a distribution is specified by its mean and
        covariance matrix.  These parameters are analogous to the mean
        (average or "center") and variance (standard deviation, or "width,"
        squared) of the one-dimensional normal distribution.

        .. note::
            New code should use the ``multivariate_normal`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        mean : 1-D array_like, of length N
            Mean of the N-dimensional distribution.
        cov : 2-D array_like, of shape (N, N)
            Covariance matrix of the distribution. It must be symmetric and
            positive-semidefinite for proper sampling.
        size : int or tuple of ints, optional
            Given a shape of, for example, ``(m,n,k)``, ``m*n*k`` samples are
            generated, and packed in an `m`-by-`n`-by-`k` arrangement.  Because
            each sample is `N`-dimensional, the output shape is ``(m,n,k,N)``.
            If no shape is specified, a single (`N`-D) sample is returned.
        check_valid : { 'warn', 'raise', 'ignore' }, optional
            Behavior when the covariance matrix is not positive semidefinite.
        tol : float, optional
            Tolerance when checking the singular values in covariance matrix.
            cov is cast to double before the check.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        Generator.multivariate_normal: which should be used for new code.

        Notes
        -----
        The mean is a coordinate in N-dimensional space, which represents the
        location where samples are most likely to be generated.  This is
        analogous to the peak of the bell curve for the one-dimensional or
        univariate normal distribution.

        Covariance indicates the level to which two variables vary together.
        From the multivariate normal distribution, we draw N-dimensional
        samples, :math:`X = [x_1, x_2, ... x_N]`.  The covariance matrix
        element :math:`C_{ij}` is the covariance of :math:`x_i` and :math:`x_j`.
        The element :math:`C_{ii}` is the variance of :math:`x_i` (i.e. its
        "spread").

        Instead of specifying the full covariance matrix, popular
        approximations include:

          - Spherical covariance (`cov` is a multiple of the identity matrix)
          - Diagonal covariance (`cov` has non-negative elements, and only on
            the diagonal)

        This geometrical property can be seen in two dimensions by plotting
        generated data-points:

        >>> mean = [0, 0]
        >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

        Diagonal covariance means that points are oriented along x or y-axis:

        >>> import matplotlib.pyplot as plt
        >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
        >>> plt.plot(x, y, 'x')
        >>> plt.axis('equal')
        >>> plt.show()

        Note that the covariance matrix must be positive semidefinite (a.k.a.
        nonnegative-definite). Otherwise, the behavior of this method is
        undefined and backwards compatibility is not guaranteed.

        References
        ----------
        .. [1] Papoulis, A., "Probability, Random Variables, and Stochastic
               Processes," 3rd ed., New York: McGraw-Hill, 1991.
        .. [2] Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern
               Classification," 2nd ed., New York: Wiley, 2001.

        Examples
        --------
        >>> mean = (1, 2)
        >>> cov = [[1, 0], [0, 1]]
        >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
        >>> x.shape
        (3, 3, 2)

        The following is probably true, given that 0.6 is roughly twice the
        standard deviation:

        >>> list((x[0,0,:] - mean) < 0.6)
        [True, True] # random

        
        multinomial(n, pvals, size=None)

        Draw samples from a multinomial distribution.

        The multinomial distribution is a multivariate generalization of the
        binomial distribution.  Take an experiment with one of ``p``
        possible outcomes.  An example of such an experiment is throwing a dice,
        where the outcome can be 1 through 6.  Each sample drawn from the
        distribution represents `n` such experiments.  Its values,
        ``X_i = [X_0, X_1, ..., X_p]``, represent the number of times the
        outcome was ``i``.

        .. note::
            New code should use the ``multinomial`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        n : int
            Number of experiments.
        pvals : sequence of floats, length p
            Probabilities of each of the ``p`` different outcomes.  These
            must sum to 1 (however, the last element is always assumed to
            account for the remaining probability, as long as
            ``sum(pvals[:-1]) <= 1)``.
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n, k)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            single value is returned.

        Returns
        -------
        out : ndarray
            The drawn samples, of shape *size*, if that was provided.  If not,
            the shape is ``(N,)``.

            In other words, each entry ``out[i,j,...,:]`` is an N-dimensional
            value drawn from the distribution.

        See Also
        --------
        Generator.multinomial: which should be used for new code.

        Examples
        --------
        Throw a dice 20 times:

        >>> np.random.multinomial(20, [1/6.]*6, size=1)
        array([[4, 1, 7, 5, 2, 1]]) # random

        It landed 4 times on 1, once on 2, etc.

        Now, throw the dice 20 times, and 20 times again:

        >>> np.random.multinomial(20, [1/6.]*6, size=2)
        array([[3, 4, 3, 3, 4, 3], # random
               [2, 4, 3, 4, 0, 7]])

        For the first run, we threw 3 times 1, 4 times 2, etc.  For the second,
        we threw 2 times 1, 4 times 2, etc.

        A loaded die is more likely to land on number 6:

        >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
        array([11, 16, 14, 17, 16, 26]) # random

        The probability inputs should be normalized. As an implementation
        detail, the value of the last entry is ignored and assumed to take
        up any leftover probability mass, but this should not be relied on.
        A biased coin which has twice as much weight on one side as on the
        other should be sampled like so:

        >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
        array([38, 62]) # random

        not like:

        >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
        Traceback (most recent call last):
        ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

        
        dirichlet(alpha, size=None)

        Draw samples from the Dirichlet distribution.

        Draw `size` samples of dimension k from a Dirichlet distribution. A
        Dirichlet-distributed random variable can be seen as a multivariate
        generalization of a Beta distribution. The Dirichlet distribution
        is a conjugate prior of a multinomial distribution in Bayesian
        inference.

        .. note::
            New code should use the ``dirichlet`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        alpha : sequence of floats, length k
            Parameter of the distribution (length ``k`` for sample of
            length ``k``).
        size : int or tuple of ints, optional
            Output shape.  If the given shape is, e.g., ``(m, n)``, then
            ``m * n * k`` samples are drawn.  Default is None, in which case a
            vector of length ``k`` is returned.

        Returns
        -------
        samples : ndarray,
            The drawn samples, of shape ``(size, k)``.

        Raises
        -------
        ValueError
            If any value in ``alpha`` is less than or equal to zero

        See Also
        --------
        Generator.dirichlet: which should be used for new code.

        Notes
        -----
        The Dirichlet distribution is a distribution over vectors
        :math:`x` that fulfil the conditions :math:`x_i>0` and
        :math:`\sum_{i=1}^k x_i = 1`.

        The probability density function :math:`p` of a
        Dirichlet-distributed random vector :math:`X` is
        proportional to

        .. math:: p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

        where :math:`\alpha` is a vector containing the positive
        concentration parameters.

        The method uses the following property for computation: let :math:`Y`
        be a random vector which has components that follow a standard gamma
        distribution, then :math:`X = \frac{1}{\sum_{i=1}^k{Y_i}} Y`
        is Dirichlet-distributed

        References
        ----------
        .. [1] David McKay, "Information Theory, Inference and Learning
               Algorithms," chapter 23,
               http://www.inference.org.uk/mackay/itila/
        .. [2] Wikipedia, "Dirichlet distribution",
               https://en.wikipedia.org/wiki/Dirichlet_distribution

        Examples
        --------
        Taking an example cited in Wikipedia, this distribution can be used if
        one wanted to cut strings (each of initial length 1.0) into K pieces
        with different lengths, where each piece had, on average, a designated
        average length, but allowing some variation in the relative sizes of
        the pieces.

        >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

        >>> import matplotlib.pyplot as plt
        >>> plt.barh(range(20), s[0])
        >>> plt.barh(range(20), s[1], left=s[0], color='g')
        >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
        >>> plt.title("Lengths of Strings")

        
        shuffle(x)

        Modify a sequence in-place by shuffling its contents.

        This function only shuffles the array along the first axis of a
        multi-dimensional array. The order of sub-arrays is changed but
        their contents remains the same.

        .. note::
            New code should use the ``shuffle`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : ndarray or MutableSequence
            The array, list or mutable sequence to be shuffled.

        Returns
        -------
        None

        See Also
        --------
        Generator.shuffle: which should be used for new code.

        Examples
        --------
        >>> arr = np.arange(10)
        >>> np.random.shuffle(arr)
        >>> arr
        [1 7 5 2 9 4 3 6 0 8] # random

        Multi-dimensional arrays are only shuffled along the first axis:

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.shuffle(arr)
        >>> arr
        array([[3, 4, 5], # random
               [6, 7, 8],
               [0, 1, 2]])

        
        permutation(x)

        Randomly permute a sequence, or return a permuted range.

        If `x` is a multi-dimensional array, it is only shuffled along its
        first index.

        .. note::
            New code should use the ``permutation`` method of a ``default_rng()``
            instance instead; please see the :ref:`random-quick-start`.

        Parameters
        ----------
        x : int or array_like
            If `x` is an integer, randomly permute ``np.arange(x)``.
            If `x` is an array, make a copy and shuffle the elements
            randomly.

        Returns
        -------
        out : ndarray
            Permuted sequence or array range.

        See Also
        --------
        Generator.permutation: which should be used for new code.

        Examples
        --------
        >>> np.random.permutation(10)
        array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

        >>> np.random.permutation([1, 4, 9, 12, 15])
        array([15,  1,  9,  4, 12]) # random

        >>> arr = np.arange(9).reshape((3, 3))
        >>> np.random.permutation(arr)
        array([[6, 7, 8], # random
               [0, 1, 2],
               [3, 4, 5]])

        0b	¸k	ðm	ðm	ðh	i	ðm	¨m	ðm	ðm	ðm	l	àj	ðm	hj	ðh	ðm	pm	èl	l	àj	ðm	l	àj	ðm	ðm	Øk	¨m	ðm	Èm	ðm	Èm	¨m	ðm	Hj	8j	ðm	Hj	8j	 l	ðm	(j	ðm	(j	 l	ðm	ðm	(j	ðm	Hl	hk	ðm	ðh	ðm	ðh	ðm	ðh	ðm	Øk	¨m	ðm	Øk	¨m	ðm	Øk	¨m	ðm	l	àm	ðm	¨m	ðm	l	¨m	ðm	 k	0l	m	ðm	Xl	èl	ðm	Xl	èl	ðm	k	ðm	ðh	ðm	èl	ðm	ˆl	hl	°l	ðm	èl	ðm	l	j	ðm	Ði	xn	Xl	0m	ðm	@i	ðm	0b	
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    
    This is an alias of `random_sample`. See `random_sample`  for the complete
    documentation.
    !˜`ÑCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRCRNpREppRASAppp p(p SDpp(ppXRBRBRBRASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASASAp S0Ȋ€SARBppTBTBSASApSARBSASATBRBSApRBSARBRBRBSASASASARBSATBSASARBRBRBTBRBUASARBQ>@_PyBaseObject_TypeQq@_PyBool_Type@_PyCFunction_Type@_PyCapsule_Type@_PyDict_Type@_PyExc_AttributeError@_PyExc_DeprecationWarning@_PyExc_Exception@_PyExc_ImportError@_PyExc_IndexError@_PyExc_KeyError@_PyExc_NameError@_PyExc_OverflowError@_PyExc_RuntimeError@_PyExc_StopIteration@_PyExc_SystemError@_PyExc_TypeError@_PyExc_ValueError@_PyFloat_Type@_PyFrame_Type@_PyFunction_Type@_PyList_Type@_PyLong_Type@_PyMethod_Type@_PyObject_GenericGetAttr@_PyTuple_Type@_PyUnicode_Type@__Py_CheckRecursionLimit@__Py_EllipsisObject@__Py_FalseStruct@__Py_NoneStruct@__Py_TrueStruct@___stack_chk_guard@dyld_stub_binderq˜>@_PyBytes_FromStringAndSizeq >@_PyCFunction_NewExq¨>@_PyCapsule_GetNameq°>@_PyCapsule_GetPointerq¸>@_PyCapsule_IsValidqÀ>@_PyCapsule_NewqÈ>@_PyCode_NewqÐ>@_PyDict_CopyqØ>@_PyDict_GetItemStringqà>@_PyDict_GetItemWithErrorqè>@_PyDict_Newqð>@_PyDict_Nextqø>@_PyDict_SetItemq€>@_PyDict_SetItemStringqˆ>@_PyDict_Sizeq>@_PyErr_Clearq˜>@_PyErr_ExceptionMatchesq >@_PyErr_Formatq¨>@_PyErr_GivenExceptionMatchesq°>@_PyErr_NormalizeExceptionq¸>@_PyErr_OccurredqÀ>@_PyErr_SetObjectqÈ>@_PyErr_SetStringqÐ>@_PyErr_WarnExqØ>@_PyErr_WarnFormatqà>@_PyEval_EvalCodeExqè>@_PyEval_EvalFrameExqð>@_PyEval_RestoreThreadqø>@_PyEval_SaveThreadq€>@_PyException_SetTracebackqˆ>@_PyFloat_AsDoubleq>@_PyFloat_FromDoubleq˜>@_PyFrame_Newq >@_PyImport_AddModuleq¨>@_PyImport_GetModuleDictq°>@_PyImport_ImportModuleq¸>@_PyImport_ImportModuleLevelObjectqÀ>@_PyInterpreterState_GetIDqÈ>@_PyList_AppendqÐ>@_PyList_AsTupleqØ>@_PyList_Newqà>@_PyLong_AsLongqè>@_PyLong_AsSsize_tqð>@_PyLong_FromLongqø>@_PyLong_FromSsize_tq€>@_PyLong_FromStringqˆ>@_PyMem_Mallocq>@_PyMem_Reallocq˜>@_PyModuleDef_Initq >@_PyModule_GetDictq¨>@_PyModule_GetNameq°>@_PyModule_NewObjectq¸>@_PyNumber_AddqÀ>@_PyNumber_InPlaceAddqÈ>@_PyNumber_InPlaceTrueDivideqÐ>@_PyNumber_IndexqØ>@_PyNumber_Longqà>@_PyNumber_Multiplyqè>@_PyNumber_Remainderqð>@_PyNumber_Subtractqø>@_PyOS_snprintfq€>@_PyObject_Callqˆ>@_PyObject_CallFinalizerFromDeallocq>@_PyObject_Formatq˜>@_PyObject_GC_UnTrackq >@_PyObject_GetAttrq¨>@_PyObject_GetAttrStringq°>@_PyObject_GetItemq¸>@_PyObject_GetIterqÀ>@_PyObject_HashqÈ>@_PyObject_IsInstanceqÐ>@_PyObject_IsTrueqØ>@_PyObject_Notqà>@_PyObject_RichCompareqè>@_PyObject_SetAttrqð>@_PyObject_SetAttrStringqø>@_PyObject_SetItemq€>@_PyObject_Sizeqˆ>@_PySequence_Containsq>@_PySequence_Listq˜>@_PySequence_Tupleq >@_PySlice_Newq¨>@_PyThreadState_Getq°>@_PyTraceBack_Hereq¸>@_PyTuple_NewqÀ>@_PyTuple_PackqÈ>@_PyType_ModifiedqÐ>@_PyType_ReadyqØ>@_PyUnicode_Compareqà>@_PyUnicode_Decodeqè>@_PyUnicode_Formatqð>@_PyUnicode_FromFormatqø>@_PyUnicode_FromStringq€>@_PyUnicode_FromStringAndSizeqˆ>@_PyUnicode_InternFromStringq>@_PyUnicode_Newq˜>@_Py_GetVersionq >@__PyDict_GetItem_KnownHashq¨>@__PyDict_NewPresizedq°>@__PyObject_GetDictPtrq¸>@__PyThreadState_UncheckedGetqÀ>@__PyType_LookupqÈ>@__PyUnicode_FastCopyCharactersqÐ>@__PyUnicode_ReadyqØ>@__Py_CheckRecursiveCallqà@___stack_chk_failqè@_acosqð@_acosfqø@_acoshq€	@_acoshfqˆ	@_acoshlq	@_acoslq˜	@_asinq 	@_asinfq¨	@_asinhq°	@_asinhfq¸	@_asinhlqÀ	@_asinlqÈ	@_atanqÐ	@_atan2qØ	@_atan2fqà	@_atan2lqè	@_atanfqð	@_atanhqø	@_atanhfq€
@_atanhlqˆ
@_atanlq
@_cbrtq˜
@_cbrtfq 
@_cbrtlq¨
@_ceilq°
@_ceilfq¸
@_ceillqÀ
@_cosqÈ
@_cosfqÐ
@_coshqØ
@_coshfqà
@_coshlqè
@_coslqð
@_expqø
@_exp2q€@_exp2fqˆ@_exp2lq@_expfq˜@_explq @_expm1q¨@_expm1fq°@_expm1lq¸@_feclearexceptqÀ@_feraiseexceptqÈ@_fetestexceptqÐ@_floorqØ@_floorfqà@_floorlqè@_fmodqð@_fmodfqø@_fmodlq€@_frexpqˆ@_frexpfq@_frexplq˜@_hypotq @_hypotfq¨@_hypotlq°@_ldexpq¸@_ldexpfqÀ@_ldexplqÈ@_logqÐ@_log10qØ@_log10fqà@_log10lqè@_log1pqð@_log1pfqø@_log1plq€
@_log2qˆ
@_log2fq
@_log2lq˜
@_logfq 
@_loglq¨
@_memcmpq°
@_memcpyq¸
@_memsetqÀ
@_modfqÈ
@_modffqÐ
@_modflqØ
@_nextafterqà
@_nextafterfqè
@_nextafterlqð
@_powqø
@_powfq€@_rintqˆ@_rintfq@_rintlq˜@_sinq @_sinfq¨@_sinhq°@_sinhfq¸@_sinhlqÀ@_sinlqÈ@_tanqÐ@_tanfqØ@_tanhqà@_tanhfqè@_tanhlqð@_tanlqø@_truncq€@_truncfqˆ@_truncl_PyInit_mtrand]legacy_brandom_énpy_Î
__pyx_module_is_main_numpy__random__mtrandò°Rga¼standard_Ðp‡wžchisquare»raÁnÚlog²betaÞfäexponentialêvonmisesÝussÊmmaÐöexponentialõgammaûtÌcauchyØ øÐøÿareto˜owerµ°ÿeibull¯ald¦€€à€yleighÔndom_ðàoóegative_binomialÒncentral_ˆrmal¬chisquarešf  ‚à…	normalÆseriesã
à °“°—binomial¹hypergeometric¿poissonÅzipfËgeometricÑmultinomial×ð—€™à ð €¡ð¡€¢ ¦standard_ôpåu±lÈn€	exponential´	gÀ	bí	chisquare¢
f¨
wº
rayleighï
vonmisesÛzipf™triangularŸinterval¥multinomialÈ
uniform¬exponentialÙnormal§gammaÔcauchy®
tõ
_f¶Â ¨illÈ(Ш_fӐ©ð©_ãfôinv_fill–illÿŠà«_fð­ð¯ ²_f¡€³ð³_f²ill½Èà¶_fΠ·°ºðº_fß°Âoóareto´
sitive_intwerÑ
issonû
64Ÿ32¥« ÊÀÊàÊintÂniformº	€ËogØaplace×
gamúisticã
normalé
seriesáËo™	egative_binomialrmal®	ncentral_· ÎÐÎÀÐammaÜ	umbelÝ
eometricçðÐ_fç	Ñetaœ
inomial‡ounded_«uffered_bounded_ò°Ñ ÓÀÓ°ÔàÔeibullË
aldÕàրِ۠ܐÝðݠސàðààè_±btpe¥inversion« é°üÀÿchisquareÉfÏð†àˆ	€‹°_ð“search‡inversion°’“°•°–à™uintÀbool_fillÂ
64ä32_fill°
16_fill¶
8_fill¼
ðš_fillª
uint‚
bool¤
32’
16˜
8ž
°О! ¤ð¤à¬€²°¸<°½pow—s°cët²f€rÉlšexpåaŒhÆmodf‡d–gÅnextafterÞl ¦à¾ ¿fÎinØqrt‹pacing¿et_floatstatus_«låhÓð¿oeilºbrt´lear_floatstatusýsŸpysignél¬hâÍпanÀruncülÍhñ×ð¿lÜá€ÀlëëÀlúõ Àabsœloor«modørexp¥l¥ÿ°Àl´‰ÀÀlÝàÀintíad2deg‡emainderøshiftülö§€Ál…± Ál”»ÀÁogµdexp–cmðshift×1Ælß2¨Ï0ÐpŠlÙÅÐÁðÁl÷m1ý2™âÂl†ì°Âsin cos³tanÆl­hÝöÀÂlÀhì€ÐÂl×hû2·ŠàÂlæ”ðÂlõž€Ãl„¨Ãl“² Ãl¢¼°Ãl±ÌÐÃlÀÜðÃypotÚeavisideølãæ€ÄlòðÄlú°Äl„àÅlŸŽðÅl®˜€Æl½¢Æ Æf¬°Æf²ÀÆf¸ÐÆf¾àÆfÄðÆfÊ€ÇfАÇfÖ_divide– ÇfܰÇfâÀÇfèÐÇfîàÇfôðÇfúaddexpÖ€Èf€Èf† ÈfŒ°Èf’ÀÈf˜ÐÈfžàÈf¤ðÈfª€Éf°Éf¶_m1Ç Éf¼_1p¸°ÉfÂÀÉfÈÐÉfÔðÉfÚ Ëfà°ËfæÀËfìÐËfòàËðˀ̠̰̐ÌÀÌÐÌàÌð̀͐͠ͰÍÀÍÐÍàÍð̀ΐΠΰÎÀÎÐÎàÎð΀ϐϠÏÀÏàÐðЀѐÑf¥ Ñf¯àÑeg2rad©ivmod‡f²¹ðÑfÁÀÒfÐÍ Òfã2é×ÀÒfòá ÓfëÔfõ€ÕfŸÿ€ØÐØl‰ Ùl°Ùl•ÀÙl›àÙl¡€Úl§ðÚl­àÛl³ÐÜl¹€àl¿àà°áÐáðá âÐâÀã°ä°åÐècdÝet_floatstatus”u棰élƒuù½àél êl—ÐêlëÀë€ìl­Àìl·€íÀílǐîlÑðîuäh¡ëhí×hö¿Ðïu‰h°õh’áh›ÅðïhªËðh¹Ñ°ðÐðððñ°ñÐñlÿðñl‰òl“°òlÐòl§ðòl­ól³°ól¹Ðóðóô°ôfÈÎÐô€ölØð÷fçí ú°úl÷ÀúÐú_barrierސûàû_barrier¥üdivbyzeroÚoverflowàunderflowæinvalidìÐüàüðü€ýˆ¼%°R  гÐÀ À °P`ð`ððÐÐð°Àð€
àÀ€À°ð°°$€`€ð€-àà°%°°ð°°àð°°ð°ððð°°°°ð° A€Mð°ÀÀÀJÀð <à?°6 ðÐððÀÀÖ ÐÀ°	Àà‰{ P °°ÐÐÐ0À P`` @À`€€€ @p@àp € @`𐀰`pð@@Àð   0ð0  ð p0€ p`0ð`ð@°ð`À°€` € À ðàP𠰐p°@            ° °  @  `pp€PP  ppp°`P  00pp€ `0@0@0@@@@P``                    °ð°@P0@ÔW$„b$y „’X˜ Ÿ´¢˜¦4­¶| ,Æ ÜÉ ŒÍ 4ÔÐôXH4NLU(ˆs˜¶ԹÄh4nMP)að+zÀňÆœPÌ×pÌ0ÍGÐ̀àиÓîàÓ! @ÔZ °Þ‹ ߦ àÀ páß @äù å!æK!0çˆ!pèÄ!àìú!àñ5"@üp"€¯"€	ç"@#ðZ#à #Ú#@'$@WJ$@_‚$°b»$0yñ$|(%ði% ’ª%Дâ%€˜"&p›Y& ŸŒ&ТÊ&°¦' ©K'P­Œ'€¯È'p²( ¶:(¹s(¼ª(ð¾ã( Â)PÆU)ʐ)°ÍÊ) Ð*PÔ<*ðôv*p¹*`ò*"(+Ð%c+)£+PNÞ+Q$,€Ub, sž,€“Ø,“-.,-P¯I-p±V-`²n-p´…-5™-°¶³- ·È-0¹ä-ð¹.0e4.ÐfW. hl.àhš.m².Pnø.0³2/Àðu/àð¸/0ñÊ/Pòß/€óõ/°ô0øE0Œo0`Œ‹0€Œµ0¦ŒÊ0²ŒÞ01þŒ1,1V14m1P—1ެ10ŽÔ1`Žø1€Ž!2°ŽF2Ўo22 µ2@Þ2p3-3T3à|3¥3@Î3pø3 !4АK4‘u40‘Ÿ4`‘Å4€‘ë4 ‘5Б<5ð‘a5’…50’«5P’Ð5p’ú5 ’$6ВL6“o6 “–6@“À6p“ê6 “7Г=7”g70”Ž7P”¸7€”ß7 ”8Д+8ð”R8•v80•š8K•²8Z•Ä8p•î8­–ù8°–#9—O9L—b9`—‹9— 9—´9˜—À9š—Ì9œ—×9 —ü9%:ð—F:˜p:@˜™:u˜¦:y˜³:}˜Â:…˜Ô:Ž˜ã:”˜ô:Ÿ˜;£˜;ª˜;¯˜.;µ˜?;½˜O;Ę`;Ϙn;Ԙy;à˜¢;²§¹;'Ç;Чð;@ª<hª+<pª<<xªQ<ª{<Ъ¤<à³Í<~ÁÜ<Áø<°Á=ÀÁ!=ÇÁ/=ÌÁF=ÚÁS=àÁ}=§=9·=@ÂÃ=CÂÒ=IÂá=PÂ	>Î>…Î%>‹Î9>–ÎH> ÎU>¤Îd>ªÎr>ÀΛ>«Üª>±Ü»>¹ÜË>ÀÜô>žè?°è,?úï9?ðc?uðt?€ð?p°?z¾?€ç?±ó?´@»@Æ"@Ì1@Ò@@ØO@Þ]@ãk@è}@ñŒ@÷ž@°@	Ä@Ò@ä@"ó@(A,A3A5(A@PAá!^Aæ!qAò!…A"•A"­A "»A%"ÏA0"ÜA4"êA9"þAP"'B.PB0@yBôK‡BùK”BýK¢BL¼B!LÊB0LôB`LC{L&C€L:CLKC–LWC L€CÀX©CTj´CVjÂC_jÐCdjÞCpjD·wDÄw,DÐwHDçwVDðwD¨D‘ÑDe ÝDh îDp E  AE WEϠgEࠏE¢¡¡E«¡¬E°¡ÍEСöE ±FS¶.F`¶VF0ÀoFAÀ|FPÀ¥FÎÏF@ÎòF`ÎG~Î'GƒÎ6G‰ÎJG˜ÎYGžÎiG°Î‘G0ÓºG€ÞâGçH ò3H°øMHÃø\HÉøkHÐø”H¿¤HƵHÎÆHÖÜHãîHìýHòI÷Iý0IYI‚IÏ‘Ià¹I_
ÇId
ÖIj
äIo
òIt
Jy
J
<J dJ ŒJ#´J`+ÝJ±<ìJÀ<Kà<<K=IK	=ZK=lK=yK =’K@=»K>ÈK>ÖK!>äK*>õK2>L@>+L CTLûM`LÿMpLN€L
NLNŸL NÈLP[ØLW[èL`[M@h9MzsGMsYMs‚MP¬M€ÉM–ØM N`‘N`™N`¡!N`¥+N`©6N`±AN`¹LN`ÁVN`Å`N`ÉjN`ÍuN`ÕN
‘N`I¢NÐI¹NJíNJO(JAOHJpOàK¢O€RÔOÐRPPUGPÐYƒPà`ÃPpgüP0h3Q€nqQÐv¸QÐzóQ0€-R€‹eRðžR›ØR(S@­GS5‰SàÀËS°ÈT ØETã}Tðî±TàüðT 
,U0sUµU)òUp:-VPGfV W VàdØV rWP€KW@“†W€ŸÂW ±ýW»4XPÆqX°Ð¬XßðXàì*Y°öaY@	Y	ÞYÐ	Z $	aZ@6	 Z`B	ÝZ N	[ S	W[àW	ž[ðW	ê[X	:\X	ƒ\ X	Ê\@X	]`X	o]pX	º]€X	^°X	M^àX	—^Y	é^ Y	;_0Y	„_PY	Õ_pY	`Y	a`°Y	°`àY	ü`Z	Sa Z	¥a0Z	òaPZ	=bpZ	†bZ	Ðb°Z	cÐZ	bcðZ	«c[	öc0[	BdP[	dp[	Ôd[	!eÀ[	leà[	Àe\	
f \	Qf@\	f`\	îf\	:g°\	‘gà\	àg]	-h ]	wh0]	 h ]	Èh
^	×h
0^	àh
8^	i
@^	i
H^	'i
P^	<i
X^	Ei
`^	Ni
h^	di
p^	ti
x^	„i
€^	˜i
ˆ^	¬i
^	Ài
˜^	Ûi
 ^	ìi
¨^	úi
°^	j
¸^	"j
À^	5j
È^	gj
Ð^	—j
Ø^	²j
à^	¿j
è^	Ñj
ð^	ýj
ø^	.k
_	>k
_	mk
_	¡k
_	µk
 _	äk
(_	l
0_	)l
8_	Xl
@_	Œl
H_	¡l
P_	Ðl
X_	m
`_	m
h_	Em
p_	ym
x_	Žm
€_	½m
ˆ_	ñm
_	n
˜_	7n
 _	kn
¨_	xn
°_	§n
¸_	Ûn
À_	ìn
È_	o
Ð_	Oo
Ø_	do
à_	“o
è_	Ço
ð_	Üo
ø_	p
`	?p
`	Qp
`	€p
`	´p
 `	Îp
(`	ýp
0`	1q
8`	Dq
@`	sq
H`	§q
P`	»q
X`	êq
``	r
h`	3r
p`	br
x`	–r
€`	«r
ˆ`	Úr
`	s
˜`	%s
 `	Ts
¨`	ˆs
°`	§s
¸`	Ös
À`	
t
È`	't
Ð`	Vt
Ø`	Št
à`	ªt
è`	Ùt
ð`	
u
ø`	%u
a	Tu
a	ˆu
a	šu
a	Éu
 a	ýu
(a	v
0a	>v
8a	rv
@a	‰v
Ha	¸v
Pa	ìv
Xa	ÿv
`a	.w
ha	bw
pa	sw
xa	¢w
€a	Öw
ˆa	æw
a	x
˜a	Ix
 a	\x
¨a	‹x
°a	¿x
¸a	Ðx
Àa	ÿx
Èa	3y
Ða	Ey
Øa	ty
àa	¨y
èa	Ãy
ða	òy
øa	&z
b	?z
b	nz
b	¢z
b	¶z
 b	åz
(b	{
0b	){
8b	X{
@b	Œ{
Hb	¡{
Pb	Ð{
Xb	|
`b	|
hb	F|
pb	z|
xb	•|
€b	Ä|
ˆb	ø|
b	}
˜b	G}
 b	{}
¨b	•}
°b	Ä}
¸b	ø}
Àb	~
Èb	B~
Ðb	v~
Øb	Œ~
àb	»~
èb	ð~
ðb	
øb	6
c	k
c	~
c	®
c	ã
 c	÷
(c	'€
0c	\€
8c	l€
@c	œ€
Hc	р
Pc	ä€
Xc	
`c	I
hc	Y
pc	x
xc	Ё
€c	š
ˆc	ª
c	¾
˜c	ρ
 c	ä
¨c	ö
°c	‚
¸c	"‚
Àc	/‚
Èc	@‚
Ðc	U‚
Øc	j‚
àc	|‚
èc	–‚
ðc	©‚
øc	½‚
d	҂
d	ç‚
d	þ‚
d	ƒ
 d	:ƒ
(d	Zƒ
0d	rƒ
8d	„ƒ
@d	–ƒ
Hd	­ƒ
Pd	
Xd	у
`d	áƒ
hd	ôƒ
pd	„
xd	„
€d	2„
ˆd	K„
d	[„
˜d	o„
 d	„
¨d	‘„
°d	¦„
¸d	¹„
Àd	Ԅ
Èd	ô„
Ðd	…
Ød	)…
àd	?…
èd	U…
ðd	h…
ød	|…
e	Œ…
e	Ÿ…
e	¯…
e	ƅ
 e	ׅ
(e	ý…
0e	)†
8e	V†
@e	†
He	®†
Pe	ن
Xe	‡
`e	/‡
he	X‡
pe	„‡
xe	«‡
€e	ׇ
ˆe	ÿ‡
e	+ˆ
˜e	Uˆ
 e	ˆ
¨e	¨ˆ
°e	ӈ
¸e	ûˆ
Àe	&‰
Èe	S‰
Ðe	‰
Øe	¬‰
àe	׉
èe	Š
ðe	,Š
øe	XŠ
f	ƒŠ
f	«Š
f	׊
f	ûŠ
 f	'‹
(f	T‹
0f	€‹
8f	¬‹
@f	؋
Hf	Œ
Pf	1Œ
Xf	^Œ
`f	‰Œ
hf	¶Œ
pf	âŒ
xf	

€f	9
ˆf	b
f	Ž
˜f	¸
 f	ä
¨f	Ž
°f	8Ž
¸f	bŽ
Àf	Ž
Èf	¶Ž
Ðf	âŽ
Øf	

àf	9
èf	e
ðf	‘
øf	¼
g	è
g	
g	:
g	g
 g	“
(g	¾
0g	ê
8g	‘
@g	C‘
Hg	m‘
Pg	˜‘
Xg	¿‘
`g	ë‘
hg	’
pg	C’
xg	o’
€g	›’
ˆg	ǒ
g	ó’
˜g	“
 g	K“
¨g	x“
°g	¤“
¸g	Г
Àg	û“
Èg	%”
Ðg	P”
Øg	}”
àg	¨”
èg	¸”
ðg	ɔ
øg	ڔ
h	ï”
h	•
h	•
h	•
 h	3•
(h	D•
0h	q•
8h	•
@h	¼•
Hh	ӕ
Ph	é•
Xh	–
`h	+–
hh	X–
ph	q–
xh	ž–
€h	µ–
ˆh	ܖ
h	ö–
˜h	#—
 h	0—
¨h	]—
°h	Œ—
¸h	¡—
Àh	͗
Èh	ä—
Ðh	ú—
Øh	
˜
àh	˜
èh	(˜
ðh	5˜
øh	B˜
i	j˜
i	–˜
i	º˜
i	ç˜
 i	™
(i	"™
0i	1™
8i	E™
@i	V™
Hi	j™
Pi	y™
Xi	‹™
`i	›™
hi	ª
pi	¿™
xi	љ
€i	å™
ˆi	õ™
i	š
˜i	š
 i	(š
¨i	8š
°i	eš
¸i	xš
Ài	‹š
Èi	žš
Ði	µš
Øi	âš
ài	óš
èi	›
ði	#›
øi	3›
j	L›
j	[›
j	ˆ›
j	µ›
 j	Ǜ
(j	՛
0j	ã›
8j	ô›
@j	œ
Hj	œ
Pj	'œ
Xj	6œ
`j	Hœ
hj	Yœ
pj	jœ
xj	€œ
€j	‘œ
ˆj	 œ
j	±œ
˜j	\
 j	Ҝ
¨j	åœ
°j	÷œ
¸j	
Àj	
Èj	D
Ðj	W
Øj	l
àj	|
èj	Š
ðj	œ
øj	®
k	¿
k	Н
k	á
k	ò
 k	ž
(k	ž
0k	&ž
8k	7ž
@k	Kž
Hk	_ž
Pk	už
Xk	…ž
`k	™ž
hk	ªž
pk	»ž
xk	ʞ
€k	ܞ
ˆk	éž
k	øž
˜k	Ÿ
 k	Ÿ
¨k	-Ÿ
°k	DŸ
¸k	VŸ
Àk	pŸ
Èk	€Ÿ
Ðk	–Ÿ
Øk	¥Ÿ
àk	´Ÿ
èk	ğ
ðk	ڟ
øk	êŸ
l	ùŸ
l	 
l	% 
l	5 
 l	b 
(l	‰ 
0l	™ 
8l	° 
@l	Ǡ
Hl	ՠ
Pl	ã 
Xl	ð 
`l	ý 
hl	
¡
pl	¡
xl	-¡
€l	E¡
ˆl	V¡
l	g¡
˜l	†¡
 l	–¡
¨l	¦¡
°l	¹¡
¸l	̡
Àl	ø¡
Èl	%¢
Ðl	=¢
Øl	O¢
àl	z¢
èl	‡¢
ðl	”¢
øl	¸¢
m	ʢ
m	٢
m	£
m	,£
 m	V£
(m	f£
0m	w£
8m	ˆ£
@m	ž£
Hm	¯£
Pm	ˣ
Xm	ܣ
`m	í£
hm	ÿ£
pm	¤
xm	%¤
€m	=¤
ˆm	Q¤
m	b¤
˜m	s¤
 m	ƒ¤
¨m	”¤
°m	¥¤
¸m	½¤
Àm	é¤
Èm	ú¤
Ðm	¥
Øm	¥
àm	,¥
èm	=¥
ðm	M¥
øm	]¥
n	m¥
n	Ĵ
n	Ӵ
n	¥¥
 n	ϥ
(n	û¥
0n	
¦
8n	¦
@n	1¦
Hn	@¦
Pn	\¦
Xn	ˆ¦
`n	—¦
hn	§¦
pn	º¦
xn	ɦ
€n	٦
ˆn	è¦
n	ú¦
˜n	§
 n	§
¨n	/§
°n	A§
¸n	S§
Àn	c§
Èn	s§
Ðn	 §
Øn	'
àn	ѧ
èn	ë§
ðn	ý§
øn	¨
o	4¨
o	I¨
o	k¨
o	ˆ¨
 o	£¨
(o	Ȭ
0o	ը
8o	ð¨
@o	þ¨
Ho	©
Po	©
Xo	.©
`o	>©
ho	N©
po	^©
xo	o©
€o	€©
ˆo	‘©
o	¢©
˜o	³©
 o	ĩ
¨o	թ
°o	æ©
¸o	÷©
Ào	ª
Èo	ª
Ðo	*ª
Øo	;ª
ào	Lª
èo	]ª
ðo	nª
øo	ª
p	ª
p	¡ª
p	²ª
p	ê
 p	Ԫ
(p	åª
0p	öª
8p	«
@p	«
Hp	)«
Pp	:«
Xp	K«
`p	\«
hp	m«
pp	~«
xp	«
€p	 «
ˆp	±«
p	«
˜p	ӫ
 p	ä«
¨p	÷«
°p	¬
¸p	¬
Àp	L¬
Ðp	~¬
Øp	Ǭ
àp	­
èp	c­
ðp	¶­
øp	ã­
q		®
q	V®
q	¨®
q	ù®
 q	O¯
(q	\¯
0q	v¯
8q	¯
@q	°
Hq	c°
Pq	¸°
Xq	ð°
`q	@±
hq	•±
pq	ͱ
xq	²
€q	r²
ˆq	ª²
q	ú²
˜q	O³
 q	†³
¨q	ֳ
°q	+´
¸q	d´
Àq	´´
Èq		µ
Ðq	Bµ
Øq	’µ
àq	çµ
èq	 ¶
ðq	p¶
øq	Ŷ
r	ý¶
r	M·
r	¢·
r	ٷ
 r	)¸
(r	~¸
0r	θ
8r	#¹
@r	m¹
Hr	¼¹
Pr	º
Xr	Wº
`r	¦º
hr	úº
pr	I»
xr	»
€r	ì»
ˆr	@¼
r	¼
˜r	ã¼
 r	2½
¨r	†½
°r	ս
¸r	)¾
Àr	E¾
Èr	”¾
Ðr	è¾
Ør	¿
àr	T¿
èr	¨¿
ðr	÷¿
ør	KÀ
s	vÀ
s	ÅÀ
s	Á
s	hÁ
 s	¼Á
(s	Â
0s	_Â
8s	®Â
@s	Ã
Hs	QÃ
Ps	¥Ã
Xs	ôÃ
`s	HÄ
hs	—Ä
ps	ëÄ
xs	:Å
€s	ŽÅ
ˆs	ÝÅ
s	1Æ
˜s	€Æ
 s	ÔÆ
¨s	 Ç
°s	qÇ
¸s	ÁÇ
Às	È
Ès	fÈ
Ðs	»È
Øs	É
às	`É
ès	´É
ðs	
Ê
øs	eÊ
t	ÂÊ
t	Ë
t	eË
t	¸Ë
 t	Ì
(t	cÌ
0t	»Ì
8t	Í
@t	fÍ
Ht	¹Í
Pt	Î
Xt	dÎ
`t	¼Î
ht	îÎ
pt	&Ï
xt	sÏ
€t	ÅÏ
ˆt	ãÏ
t	4Ð
˜t	ŠÐ
 t	ÁÐ
¨t	óÐ
°t	DÑ
¸t	šÑ
Àt	ÀÑ
Èt	Ò
Ðt	GÒ
Øt	šÒ
àt	òÒ
èt	IÓ
ðt	¥Ó
øt	üÓ
u	XÔ
u	¯Ô
u	Õ
u	bÕ
 u	¾Õ
(u	Ö
0u	qÖ
8u	©Ö
@u	×
Hu	`×
Pu	½×
Xu	Ø
`u	;Ø
hu	˜Ø
pu	úØ
xu	WÙ
€u	¹Ù
ˆu	Ú
u	xÚ
˜u	ÕÚ
 u	7Û
¨u	”Û
°u	öÛ
¸u	SÜ
Àu	µÜ
Èu	Ý
Ðu	\Ý
Øu	±Ý
àu	Þ
èu	`Þ
ðu	ºÞ
øu		ß
v	]ß
v	°ß
v	à
v	[à
 v	³à
(v	á
0v	^á
8v	±á
@v		â
Hv	Vâ
Pv	¨â
Xv	ùâ
`v	Oã
hv	 ã
pv	öã
xv	Gä
€v	ä
ˆv	îä
v	Då
˜v	•å
 v	ëå
¨v	<æ
°v	’æ
¸v	ãæ
Àv	9ç
Èv	Žç
Ðv	èç
Øv	=è
àv	—è
èv	ìè
ðv	Fé
øv	›é
w	õé
w	Jê
w	¤ê
w	ïê
 w	?ë
(w	Žë
0w	âë
8w	ì
@w	$ì
Hw	Kì
Pw	hì
Xw	„ì
`w	Ÿì
hw	Áì
pw	åì
xw	í
€w	%í
ˆw	Bí
w	`í
˜w	zí
 w	³í
¨w	ìí
°w	'î
¸w	dî
Àw	î
Èw	Çî
Ðw	ï
Øw	Bï
àw	|ï
èw	»ï
ðw	çï
øw	ð
x	,ð
x	@ð
x	Tðdðdˆðf`a.0)Ýð$0)ìð„$ N .P)ñ$P)$ N .ð+ñ$ð+/ñ„$ЙNЙ.ÀÅ|ñ$ÀÅ$ÐNÐ.ÆŠñ$Æ$ÀNÀ.P̞ñ$PÌ$ N .pÌÙñ$pÌ$ÀNÀ.0Íò$0Í$ N .ÐÍIò$ÐÍ$N.àЂò$àÐ$°N°.Óºò$Ó$PNP.àÓðò$àÓ$`N`.@Ô#ó$@Ô$p
Np
.°Þ\ó$°Þ$`N`.ߍó$ß$ðNð.à¨ó$à$pNp.páÂó$pá$ÐNÐ.@äáó$@ä$ÐNÐ.åûó$å$ðNð.æô$æ$0N0.0çMô$0ç$@N@.pèŠô$pè$pNp.àìÆô$àì$N.àñüô$àñ$`
N`
.@ü7õ$@ü$@N@.€rõ$€$N.€	±õ$€	$ÀNÀ.@éõ$@$°N°.ðö$ð$ðNð.à\ö$à$0N0.¢ö$$0N0.@'Üö$@'$0N0.@W÷$@W$N.@_L÷$@_$pNp.°b„÷$°b$€N€.0y½÷$0y$`N`.|ó÷$|$`N`.ð*ø$ð$°N°. ’kø$ ’$0N0.Д¬ø$Д$°N°.€˜äø$€˜$ðNð.p›$ù$p›$°N°. Ÿ[ù$ Ÿ$°N°.ТŽù$Т$àNà.°¦Ìù$°¦$ðNð. ©ú$ ©$°N°.P­Mú$P­$0N0.€¯Žú$€¯$ðNð.p²Êú$p²$°N°. ¶û$ ¶$ðNð.¹<û$¹$ðNð.¼uû$¼$ðNð.ð¾¬û$ð¾$°N°. Âåû$ Â$°N°.PÆü$PÆ$°N°.ÊWü$Ê$°N°.°Í’ü$°Í$ðNð. ÐÌü$ Ð$°N°.PÔý$PÔ$  N  .ðô>ý$ðô$€&N€&.pxý$p$ðNð.`»ý$`$0N0."ôý$"$@N@.Ð%*þ$Ð%$@N@.)eþ$)$@%N@%.PN¥þ$PN$@N@.Qàþ$Q$ðNð.€U&ÿ$€U$ N . sdÿ$ s$àNà.€“ ÿ$€“$N.“Úÿ$“$0N0..$.$N.P¯.$P¯$ N .p±K$p±$ðNð.`²X$`²$N.p´p$p´$PNP.5‡$5$ðNð.°¶›$°¶$ðNð. ·µ$ ·$N.0¹Ê$0¹$ÀNÀ.ð¹æ$ð¹$@«N@«.0e$0e$ N .Ðf6$Ðf$PNP. hY$ h$ÀNÀ.àhn$àh$°N°.mœ$m$ÀNÀ.Pn´$Pn$àDNàD.0³ú$0³$=N=.Àð4$Àð$ N .àðw$àð$PNP.0ñº$0ñ$ N .PòÌ$Pò$0N0.€óá$€ó$0N0.°ô÷$°ô$PNP.ø $ø$ONOG&Œq&`Œ&€Œ·&¦ŒÌ&²Œà&
&þŒ&.&X&4o&P™&Ž®&0ŽÖ&`Žú&€Ž#&°ŽH&Ўq&’& ·&@à&p&/&V&à~&§&@Ð&pú& #&АM&‘w&0‘¡&`‘Ç&€‘í& ‘&Б>&ð‘c&’‡&0’­&P’Ò&p’ü& ’&	&ВN	&“q	& “˜	&@“Â	&p“ì	& “
&Г?
&”i
&0”
&PӼ
&€”á
& ”	&Д-&ð”T&•x&0•œ&K•´&Z•Æ&p•ð&­–û&°–%&—Q&L—d&`—&—¢&—¶&˜—Â&š—Î&œ—Ù& —þ&'
&ð—H
&˜r
&@˜›
&u˜¨
&y˜µ
&}˜Ä
&…˜Ö
&Ž˜å
&”˜ö
&Ÿ˜&£˜&ª˜!&¯˜0&µ˜A&½˜Q&Ęb&Ϙp&Ԙ{&à˜¤&²§»&'É&Чò&@ª&hª-&pª>&xªS&ª}&Ъ¦&à³Ï&~ÁÞ&Áú&°Á&ÀÁ#&ÇÁ1&ÌÁH&ÚÁU&àÁ&©&9¹&@ÂÅ&CÂÔ&IÂã&PÂ&Î&…Î'&‹Î;&–ÎJ& ÎW&¤Îf&ªÎt&ÀΝ&«Ü¬&±Ü½&¹ÜÍ&ÀÜö&žè&°è.&úï;&ðe&uðv&€ðŸ&p²&zÀ&€é&±õ&´&»&Æ$&Ì3&ÒB&ØQ&Þ_&ãm&è&ñŽ&÷ &²&	Æ&Ô&æ&"õ&(&,&3&5*&@R&á!`&æ!s&ò!‡&"—&"¯& "½&%"Ñ&0"Þ&4"ì&9"&P")&.R&0@{&ôK‰&ùK–&ýK¤&L¾&!LÌ&0Lö&`L&{L(&€L<&LM&–LY& L‚&ÀX«&Tj¶&VjÄ&_jÒ&djà&pj	&·w&Äw.&ÐwJ&çwX&ðw&ª&‘Ó&e ß&h ð&p &  C& Y&Ϡi&à ‘&¢¡£&«¡®&°¡Ï&Сø& ± &S¶0&`¶X&0Àq&AÀ~&PÀ§&ÎÑ&@Îô&`Î&~Î)&ƒÎ8&‰ÎL&˜Î[&žÎk&°Î“&0Ó¼&€Þä&ç
& ò5&°øO&Ãø^&Éøm&Ðø–&¿¦&Æ·&ÎÈ&ÖÞ&ãð&ìÿ&ò
&÷&ý2&[&„&Ï“&à»&_
É&d
Ø&j
æ&o
ô&t
&y
&
>& f& Ž&#¶&`+ß&±<î&À<&à<>&=K&	=\&=n&={& =”&@=½&>Ê&>Ø&!>æ&*>÷&2>&@>-& CV&ûMb&ÿMr&N‚&
N’&N¡& NÊ&P[Ú&W[ê&`[ &@h; &zsI &s[ &s„ &P® &€Ë &–Ú & !&
!&`I&!&ÐI=!&Jq!&Jœ!&(JÅ!&HJô!&àK&"&€RX"&ÐR"&PUË"&ÐY#&à`G#&pg€#&0h·#&€nõ#&Ðv<$&Ðzw$&0€±$&€‹é$&ð"%&›\%&(“%&@­Ë%&5
&&àÀO&&°Èˆ&& ØÉ&&ã'&ðî5'&àüt'& 
°'&0÷'&9(&)v(&p:±(&PGê(& W$)&àd\)& r–)&P€Ï)&@“
*&€ŸF*& ±*&»¸*&PÆõ*&°Ð0+&ßt+&àì®+&°öå+&@	!,&	b,&Ð	ž,& $	å,&@6	$-&`B	a-& N	œ-& S	Û-&àW	".&ðW	n.&X	¾.&X	/& X	N/&@X	œ/&`X	ó/&pX	>0&€X	ˆ0&°X	Ñ0&àX	1&Y	m1& Y	¿1&0Y	2&PY	Y2&pY	¡2&Y	å2&°Y	43&àY	€3&Z	×3& Z	)4&0Z	v4&PZ	Á4&pZ	
5&Z	T5&°Z	œ5&ÐZ	æ5&ðZ	/6&[	z6&0[	Æ6&P[	7&p[	X7&[	¥7&À[	ð7&à[	D8&\	Ž8& \	Õ8&@\	!9&`\	r9&\	¾9&°\	:&à\	d:&]	±:& ]	û:&0]	$;& ]	L; x;&
^	‡;&
0^	;&
8^	±;&
@^	Ä;&
H^	×;&
P^	ì;&
X^	õ;&
`^	þ;&
h^	<&
p^	$<&
x^	4<&
€^	H<&
ˆ^	\<&
^	p<&
˜^	‹<&
 ^	œ<&
¨^	ª<&
°^	¿<&
¸^	Ò<&
À^	å<&
È^	=&
Ð^	G=&
Ø^	b=&
à^	o=&
è^	=&
ð^	­=&
ø^	Þ=&
_	î=&
_	>&
_	Q>&
_	e>&
 _	”>&
(_	È>&
0_	Ù>&
8_	?&
@_	<?&
H_	Q?&
P_	€?&
X_	´?&
`_	Æ?&
h_	õ?&
p_	)@&
x_	>@&
€_	m@&
ˆ_	¡@&
_	¸@&
˜_	ç@&
 _	A&
¨_	(A&
°_	WA&
¸_	‹A&
À_	œA&
È_	ËA&
Ð_	ÿA&
Ø_	B&
à_	CB&
è_	wB&
ð_	ŒB&
ø_	»B&
`	ïB&
`	C&
`	0C&
`	dC&
 `	~C&
(`	­C&
0`	áC&
8`	ôC&
@`	#D&
H`	WD&
P`	kD&
X`	šD&
``	ÎD&
h`	ãD&
p`	E&
x`	FE&
€`	[E&
ˆ`	ŠE&
`	¾E&
˜`	ÕE&
 `	F&
¨`	8F&
°`	WF&
¸`	†F&
À`	ºF&
È`	×F&
Ð`	G&
Ø`	:G&
à`	ZG&
è`	‰G&
ð`	½G&
ø`	ÕG&
a	H&
a	8H&
a	JH&
a	yH&
 a	­H&
(a	¿H&
0a	îH&
8a	"I&
@a	9I&
Ha	hI&
Pa	œI&
Xa	¯I&
`a	ÞI&
ha	J&
pa	#J&
xa	RJ&
€a	†J&
ˆa	–J&
a	ÅJ&
˜a	ùJ&
 a	K&
¨a	;K&
°a	oK&
¸a	€K&
Àa	¯K&
Èa	ãK&
Ða	õK&
Øa	$L&
àa	XL&
èa	sL&
ða	¢L&
øa	ÖL&
b	ïL&
b	M&
b	RM&
b	fM&
 b	•M&
(b	ÉM&
0b	ÙM&
8b	N&
@b	<N&
Hb	QN&
Pb	€N&
Xb	´N&
`b	ÇN&
hb	öN&
pb	*O&
xb	EO&
€b	tO&
ˆb	¨O&
b	ÈO&
˜b	÷O&
 b	+P&
¨b	EP&
°b	tP&
¸b	¨P&
Àb	ÃP&
Èb	òP&
Ðb	&Q&
Øb	<Q&
àb	kQ&
èb	 Q&
ðb	¶Q&
øb	æQ&
c	R&
c	.R&
c	^R&
c	“R&
 c	§R&
(c	×R&
0c	S&
8c	S&
@c	LS&
Hc	S&
Pc	”S&
Xc	ÄS&
`c	ùS&
hc		T&
pc	(T&
xc	:T&
€c	JT&
ˆc	ZT&
c	nT&
˜c	T&
 c	”T&
¨c	¦T&
°c	»T&
¸c	ÒT&
Àc	ßT&
Èc	ðT&
Ðc	U&
Øc	U&
àc	,U&
èc	FU&
ðc	YU&
øc	mU&
d	‚U&
d	—U&
d	®U&
d	ÍU&
 d	êU&
(d	
V&
0d	"V&
8d	4V&
@d	FV&
Hd	]V&
Pd	pV&
Xd	V&
`d	‘V&
hd	¤V&
pd	µV&
xd	ÇV&
€d	âV&
ˆd	ûV&
d	W&
˜d	W&
 d	1W&
¨d	AW&
°d	VW&
¸d	iW&
Àd	„W&
Èd	¤W&
Ðd	¾W&
Ød	ÙW&
àd	ïW&
èd	X&
ðd	X&
ød	,X&
e	<X&
e	OX&
e	_X&
e	vX&
 e	‡X&
(e	­X&
0e	ÙX&
8e	Y&
@e	1Y&
He	^Y&
Pe	‰Y&
Xe	³Y&
`e	ßY&
he	Z&
pe	4Z&
xe	[Z&
€e	‡Z&
ˆe	¯Z&
e	ÛZ&
˜e	[&
 e	1[&
¨e	X[&
°e	ƒ[&
¸e	«[&
Àe	Ö[&
Èe	\&
Ðe	/\&
Øe	\\&
àe	‡\&
èe	°\&
ðe	Ü\&
øe	]&
f	3]&
f	[]&
f	‡]&
f	«]&
 f	×]&
(f	^&
0f	0^&
8f	\^&
@f	ˆ^&
Hf	µ^&
Pf	á^&
Xf	_&
`f	9_&
hf	f_&
pf	’_&
xf	½_&
€f	é_&
ˆf	`&
f	>`&
˜f	h`&
 f	”`&
¨f	¼`&
°f	è`&
¸f	a&
Àf	=a&
Èf	fa&
Ðf	’a&
Øf	½a&
àf	éa&
èf	b&
ðf	Ab&
øf	lb&
g	˜b&
g	¿b&
g	êb&
g	c&
 g	Cc&
(g	nc&
0g	šc&
8g	Çc&
@g	óc&
Hg	d&
Pg	Hd&
Xg	od&
`g	›d&
hg	Çd&
pg	ód&
xg	e&
€g	Ke&
ˆg	we&
g	£e&
˜g	Ïe&
 g	ûe&
¨g	(f&
°g	Tf&
¸g	€f&
Àg	«f&
Èg	Õf&
Ðg	g&
Øg	-g&
àg	Xg&
èg	hg&
ðg	yg&
øg	Šg&
h	Ÿg&
h	³g&
h	Àg&
h	Íg&
 h	ãg&
(h	ôg&
0h	!h&
8h	?h&
@h	lh&
Hh	ƒh&
Ph	™h&
Xh	Æh&
`h	Ûh&
hh	i&
ph	!i&
xh	Ni&
€h	ei&
ˆh	Œi&
h	¦i&
˜h	Ói&
 h	ài&
¨h	
j&
°h	<j&
¸h	Qj&
Àh	}j&
Èh	”j&
Ðh	ªj&
Øh	ºj&
àh	Éj&
èh	Øj&
ðh	åj&
øh	òj&
i	k&
i	Fk&
i	jk&
i	—k&
 i	Ãk&
(i	Òk&
0i	ák&
8i	õk&
@i	l&
Hi	l&
Pi	)l&
Xi	;l&
`i	Kl&
hi	\l&
pi	ol&
xi	l&
€i	•l&
ˆi	¥l&
i	²l&
˜i	¿l&
 i	Øl&
¨i	èl&
°i	m&
¸i	(m&
Ài	;m&
Èi	Nm&
Ði	em&
Øi	’m&
ài	£m&
èi	Ám&
ði	Óm&
øi	ãm&
j	üm&
j	n&
j	8n&
j	en&
 j	wn&
(j	…n&
0j	“n&
8j	¤n&
@j	µn&
Hj	Æn&
Pj	×n&
Xj	æn&
`j	øn&
hj		o&
pj	o&
xj	0o&
€j	Ao&
ˆj	Po&
j	ao&
˜j	qo&
 j	‚o&
¨j	•o&
°j	§o&
¸j	¸o&
Àj	Ço&
Èj	ôo&
Ðj	p&
Øj	p&
àj	,p&
èj	:p&
ðj	Lp&
øj	^p&
k	op&
k	€p&
k	‘p&
k	¢p&
 k	²p&
(k	Âp&
0k	Öp&
8k	çp&
@k	ûp&
Hk	q&
Pk	%q&
Xk	5q&
`k	Iq&
hk	Zq&
pk	kq&
xk	zq&
€k	Œq&
ˆk	™q&
k	¨q&
˜k	·q&
 k	Çq&
¨k	Ýq&
°k	ôq&
¸k	r&
Àk	 r&
Èk	0r&
Ðk	Fr&
Øk	Ur&
àk	dr&
èk	tr&
ðk	Šr&
øk	šr&
l	©r&
l	År&
l	Õr&
l	år&
 l	s&
(l	9s&
0l	Is&
8l	`s&
@l	ws&
Hl	…s&
Pl	“s&
Xl	 s&
`l	­s&
hl	½s&
pl	Ís&
xl	Ýs&
€l	õs&
ˆl	t&
l	t&
˜l	6t&
 l	Ft&
¨l	Vt&
°l	it&
¸l	|t&
Àl	¨t&
Èl	Õt&
Ðl	ít&
Øl	ÿt&
àl	*u&
èl	7u&
ðl	Du&
øl	hu&
m	zu&
m	‰u&
m	¶u&
m	Üu&
 m	v&
(m	v&
0m	'v&
8m	8v&
@m	Nv&
Hm	_v&
Pm	{v&
Xm	Œv&
`m	v&
hm	¯v&
pm	Âv&
xm	Õv&
€m	ív&
ˆm	w&
m	w&
˜m	#w&
 m	3w&
¨m	Dw&
°m	Uw&
¸m	mw&
Àm	™w&
Èm	ªw&
Ðm	»w&
Øm	Ëw&
àm	Üw&
èm	íw&
ðm	ýw&
øm	
x&
n	x&
n	3x&
n	Dx&
n	Ux&
 n	x&
(n	«x&
0n	ºx&
8n	Íx&
@n	áx&
Hn	ðx&
Pn	y&
Xn	8y&
`n	Gy&
hn	Wy&
pn	jy&
xn	yy&
€n	‰y&
ˆn	˜y&
n	ªy&
˜n	¼y&
 n	Îy&
¨n	ßy&
°n	ñy&
¸n	z&
Àn	z&
Èn	#z&
Ðn	Pz&
Øn	pz&
àn	z&
èn	›z&
ðn	­z&
øn	Æz&
o	äz&
o	ùz&
o	{&
o	8{&
 o	S{&
(o	k{&
0o	…{&
8o	 {&
@o	®{&
Ho	¾{&
Po	Î{&
Xo	Þ{&
`o	î{&
ho	þ{&
po	|&
xo	|&
€o	0|&
ˆo	A|&
o	R|&
˜o	c|&
 o	t|&
¨o	…|&
°o	–|&
¸o	§|&
Ào	¸|&
Èo	É|&
Ðo	Ú|&
Øo	ë|&
ào	ü|&
èo	
}&
ðo	}&
øo	/}&
p	@}&
p	Q}&
p	b}&
p	s}&
 p	„}&
(p	•}&
0p	¦}&
8p	·}&
@p	È}&
Hp	Ù}&
Pp	ê}&
Xp	û}&
`p	~&
hp	~&
pp	.~&
xp	?~&
€p	P~&
ˆp	a~&
p	r~&
˜p	ƒ~&
 p	”~&
¨p	§~&
°p	¸~&
¸p	Ë~&
Àp	ü~&
Ðp	.&
Øp	w&
àp	Å&
èp	€&
ðp	f€&
øp	“€&
q	¹€&
q	&
q	X&
q	©&
 q	ÿ&
(q	‚&
0q	&‚&
8q	r‚&
@q	Â&
Hq	ƒ&
Pq	hƒ&
Xq	 ƒ&
`q	ðƒ&
hq	E„&
pq	}„&
xq	̈́&
€q	"…&
ˆq	Z…&
q	ª…&
˜q	ÿ…&
 q	6†&
¨q	††&
°q	ۆ&
¸q	‡&
Àq	d‡&
Èq	¹‡&
Ðq	ò‡&
Øq	Bˆ&
àq	—ˆ&
èq	Ј&
ðq	 ‰&
øq	u‰&
r	­‰&
r	ý‰&
r	RŠ&
r	‰Š&
 r	ي&
(r	.‹&
0r	~‹&
8r	Ӌ&
@r	Œ&
Hr	lŒ&
Pr	·Œ&
Xr	&
`r	V&
hr	ª&
pr	ù&
xr	MŽ&
€r	œŽ&
ˆr	ðŽ&
r	?&
˜r	“&
 r	â&
¨r	6&
°r	…&
¸r	ِ&
Àr	õ&
Èr	D‘&
Ðr	˜‘&
Ør	µ‘&
àr	’&
èr	X’&
ðr	§’&
ør	û’&
s	&“&
s	u“&
s	ɓ&
s	”&
 s	l”&
(s	»”&
0s	•&
8s	^•&
@s	²•&
Hs	–&
Ps	U–&
Xs	¤–&
`s	ø–&
hs	G—&
ps	›—&
xs	ê—&
€s	>˜&
ˆs	˜&
s	á˜&
˜s	0™&
 s	„™&
¨s	Й&
°s	!š&
¸s	qš&
Às	ƚ&
Ès	›&
Ðs	k›&
Øs	»›&
às	œ&
ès	dœ&
ðs	½œ&
øs	&
t	r&
t	]&
t	ž&
t	hž&
 t	&
(t	Ÿ&
0t	kŸ&
8t	¾Ÿ&
@t	 &
Ht	i &
Pt	`&
Xt	¡&
`t	l¡&
ht	ž¡&
pt	֡&
xt	#¢&
€t	u¢&
ˆt	“¢&
t	ä¢&
˜t	:£&
 t	q£&
¨t	££&
°t	ô£&
¸t	J¤&
Àt	p¤&
Èt	±¤&
Ðt	÷¤&
Øt	J¥&
àt	¢¥&
èt	ù¥&
ðt	U¦&
øt	¬¦&
u	§&
u	_§&
u	»§&
u	¨&
 u	n¨&
(u	Ũ&
0u	!©&
8u	Y©&
@u	²©&
Hu	ª&
Pu	mª&
Xu	Ϫ&
`u	ëª&
hu	H«&
pu	ª«&
xu	¬&
€u	i¬&
ˆu	Ƭ&
u	(­&
˜u	…­&
 u	ç­&
¨u	D®&
°u	¦®&
¸u	¯&
Àu	e¯&
Èu	¶¯&
Ðu	°&
Øu	a°&
àu	»°&
èu	±&
ðu	j±&
øu	¹±&
v	
²&
v	`²&
v	¸²&
v	³&
 v	c³&
(v	¶³&
0v	´&
8v	a´&
@v	¹´&
Hv	µ&
Pv	Xµ&
Xv	©µ&
`v	ÿµ&
hv	P¶&
pv	¦¶&
xv	÷¶&
€v	M·&
ˆv	ž·&
v	ô·&
˜v	E¸&
 v	›¸&
¨v	ì¸&
°v	B¹&
¸v	“¹&
Àv	é¹&
Èv	>º&
Ðv	˜º&
Øv	íº&
àv	G»&
èv	œ»&
ðv	ö»&
øv	K¼&
w	¥¼&
w	ú¼&
w	T½&
w	Ÿ½&
 w	ï½&
(w	>¾&
0w	’¾&
8w	³¾&
@w	Ծ&
Hw	û¾&
Pw	¿&
Xw	4¿&
`w	O¿&
hw	q¿&
pw	•¿&
xw	±¿&
€w	տ&
ˆw	ò¿&
w	À&
˜w	*À&
 w	cÀ&
¨w	œÀ&
°w	×À&
¸w	Á&
Àw	MÁ&
Èw	wÁ&
Ðw	²Á&
Øw	òÁ&
àw	,Â&
èw	kÂ&
ðw	—Â&
øw	ÈÂ&
x	ÜÂ&
x	ðÂ&
x	dÃd:ÃdQÃf`a.Pû¿Ã$PûÍÄ$ÐNÐ. üüÃ$ ü$0N0.PüÄ$Pü$@N@.ÿ0Ä$ÿ$ N .°ÿ>Ä$°ÿ$PNP.MÄ$$`N`.`]Ä$`$`N`.ÀkÄ$À$ N .à}Ä$àŽÄ„$@N@. ¾Ä$ $ÀNÀ.àÛÄ$à$`N`.@ðÄ$@$€N€.ÀýÄ$À$N.ÀÅ$À$N.ÀÅ$À$ N .à1Å$à$@N@. KÅ$ $N.°	cÅ$°	$N.@pÅ$@$pNp.°zÅ$°$@N@.ðŽÅ$ð$N.€¦Å$€$àNà.`ÄÅ$`$N.pÛÅ$p$N.€ïÅ$€$pNp.ðÆ$ð$N.#Æ$4Æ„$ N . €Æ$ $óNód’ÆdÏÆd߯f`a. MÇ$ hÇ„$ N .@—Ç$@$N.P°Ç$P$@N@.ÎÇ$$`N`.ðîÇ$ð$ðNð.àÈ$à$N.ð-È$ð$N.ðLÈ$ð$0N0. pÈ$ $`N`.€–È$€$pNp.ð¾È$ð$pNp.`ÖÈ$`$@N@. óÈ$ $N.0
É$0$@N@.p,É$p$ÀNÀ.0!CÉ$0!$ðNð. %\É$ %$ N .@%sÉ$@%$ N .`%ŠÉ$`%$ N .€%ŸÉ$€%$N.%¬É$%$N. '»É$ '$0N0.P'ÊÉ$P'$ðNð.@(ÞÉ$@($0N0.p(îÉ$p($ N .(üÉ$($ N .°(Ê$°($ðNð. )Ê$ )$ N .À)+Ê$À)$pNp.0*5Ê$0*$0N0.`*MÊ$`*$N.`+\Ê$`+$ N .€,lÊ$€,$N.-zÊ$-$N. .ŠÊ$ .$pNp..™Ê$.$`N`.ð.ªÊ$ð.$0N0. /¼Ê$ /$ðNð.0ÍÊ$0$`N`.p0àÊ$p0$ðNð.`4ðÊ$`4$@N@. 4
Ë$ 4$	N	.0> Ë$0>$N.À?;Ë$À?$°N°.pCLË$pC$ðNð.`DiË$`D$`N`.ÀD~Ë$ÀD$ÀNÀ.€E‹Ë$€E$°N°.0HœË$0H$N.0I®Ë$0I$`N`.IÇË$I$ N .°JãË$°J$€N€.0KõË$0K$N.@LÌ$@L$ N .àLÌ$àL$N.pM&Ì$pM$@N@.°N=Ì$°N$ N .PO]Ì$PO$pNp.ÀP}Ì$ÀP$`N`. RœÌ$ R$PNP.pRºÌ$pR$ðNð.`VÖÌ$`V$ N .YòÌ$Y$0N0.0\Í$0\$N.@^)Í$@^$pNp.°^CÍ$°^$¦N¦WÍ&`‘bÍ&`™mÍ&`¡wÍ&`¥Í&`©ŒÍ&`±—Í&`¹¢Í&`Á¬Í&`ŶÍ&`ÉÀÍ&`ÍËÍ&`ÕdÕÍd
ÎdÎfv_a.`_mÎ$`_w΄$@N@. _¦Î$ _$N.°_¯Î$°_$ N .Ð_¹Î$Ð_$ N .ð_ÃÎ$ð_$N.`ÍÎ$`$N.`ØÎ$`$N. `ãÎ$ `$N.0`îÎ$0`$N.@`ùÎ$@`$ N .``Ï$``$ N .€`Ï$€`$ N . `Ï$ `$ N .À`'Ï$À`$N.Ð`2Ï$Ð`$ N .ð`>Ï$ð`$ N .aHÏ$a$ N .0aRÏ$0a$N.@a^Ï$@a$N.PaiÏ$Pa$N.`atÏ$`a$N.paÏ$pa$N.€a‹Ï$€a$N.a—Ï$a$N. a£Ï$ a$N.°a¯Ï$°a$ N .ÐaºÏ$Ða$ N .ðaÅÏ$ða$N.bÑÏ$b$N.bÝÏ$b$ N .0bìÏ$0b$°N°.àb÷Ï$àb$N.ðbÐ$ðb$N.cÐ$c$N.cÐ$c$N. c%Ð$ c$N.0c.Ð$0c$N.@c7Ð$@c$N.Pc@Ð$Pc$N.`cJÐ$`c$N.pcTÐ$pc$N.€c^Ð$€c$N.chÐ$c$N. csÐ$ c$N.°c}Ð$°c$N.Àc‡Ð$Àc$N.Ðc’Ð$Ðc$N.àcœÐ$àc$N.ðc§Ð$ðc$N.d°Ð$d$N.d¹Ð$d$N. dÄÐ$ d$N.0dÎÐ$0d$N.@dØÐ$@d$N.PdâÐ$Pd$N.`díÐ$`d$N.pdøÐ$pd$N.€dÑ$€d$N.dÑ$d$N. dÑ$ d$N.°d"Ñ$°d$N.Àd-Ñ$Àd$N.Ðd8Ñ$Ðd$ N .ðdFÑ$ðd$°N°. ePÑ$ e$N.°eZÑ$°e$N.ÀeeÑ$Àe$N.ÐepÑ$Ðe$N.àezÑ$àe$N.ðe„Ñ$ðe$N.fŽÑ$f$N.f˜Ñ$f$N. f£Ñ$ f$N.0f®Ñ$0f$N.@f¹Ñ$@f$N.PfÄÑ$Pf$N.`fÐÑ$`f$N.pfÛÑ$pf$N.€fæÑ$€f$N.fòÑ$f$N. fýÑ$ f$N.°f	Ò$°f$N.ÀfÒ$Àf$N.ÐfÒ$Ðf$N.àf)Ò$àf$N.ðf4Ò$ðf$N.g?Ò$g$N.gJÒ$g$N. gVÒ$ g$N.0gbÒ$0g$N.@gnÒ$@g$N.PgzÒ$Pg$N.`g…Ò$`g$N.pgÒ$pg$N.€gœÒ$€g$N.g¨Ò$g$N. g²Ò$ g$ N .ÀgÁÒ$Àg$ N .`hÌÒ$`h$N.ph×Ò$ph$N.€hãÒ$€h$N.hïÒ$h$N. húÒ$ h$@N@.àh
Ó$àh$N.ðhÓ$ðh$N.i&Ó$i$ N . i4Ó$ i$ N .@iBÓ$@i$`N`. iRÓ$ i$pNp.jcÓ$j$pNp.€jsÓ$€j$€N€.l€Ó$l$PNP.Pl“Ó$Pl$PNP. l¢Ó$ l$N.°l¯Ó$°l$N.Àl¼Ó$Àl$ N .àlÉÓ$àl$ N .mÖÓ$m$pNp.pmåÓ$pm$pNp.àmõÓ$àm$pNp.PnÔ$Pn$°N°.pÔ$p$`N`.`p"Ô$`p$PNP.°p2Ô$°p$ N .Ðp@Ô$Ðp$ N .ðpNÔ$ðp$0N0. q\Ô$ q$0N0.PqjÔ$Pq$pNp.ÀqzÔ$Àq$pNp.0r‹Ô$0r$€N€.°r›Ô$°r$ N .Pt¨Ô$Pt$`N`.°t»Ô$°t$0N0.àtÅÔ$àt$@N@. uÏÔ$ u$0N0.PuÚÔ$Pu$@N@.uåÔ$u$0N0.ÀuñÔ$Àu$@N@.výÔ$v$@N@.@vÕ$@v$@N@.€vÕ$€v$@N@.ÀvÕ$Àv$PNP.w$Õ$w$`N`.pw.Õ$pw$`N`.Ðw9Õ$Ðw$ N .ðwHÕ$ðw$ N .xWÕ$x$ N .0xeÕ$0x$ N .PxsÕ$Px$ N .pxÕ$px$ N .xÕ$x$ N .°xœÕ$°x$ N .Ðx©Õ$Ðx$ N .ðx¶Õ$ðx$ N .yÃÕ$y$ N .0yÏÕ$0y$ N .PyÛÕ$Py$ N .pyéÕ$py$ N .y÷Õ$y$ N .°yÖ$°y$ N .ÐyÖ$Ðy$ N .ðy Ö$ðy$ N .z/Ö$z$ N .0z=Ö$0z$NdKÖd¡Öd«Öfv_a.Pz×$Pzׄ$°N°.{5×${$ðNð.ð{B×$ð{$0N0. }P×$ }$N.0}`×$0}$N.@}o×$@}$N.P}×$P}$@N@.}–×$}$PNP.à}µ×$à}$0N0.~Ê×$~$@N@.P~ç×$P~$N.`~Ø$`~$N.p~$Ø$p~$N.€~CØ$€~$Nd0)^	=°	JÀ\°p@zÿˆPû–À¨ ºàÔ ñàÀ°ÿ$`2ðJ€c€ðœ`³pÇàØ ð ü
Pü$À7H@Ue0doðfz`d… g‘€aPa¨ d²àf½PdÈgÔpaà@aë@dõ°dpgðag#pd.0g:aF`aQÐe[hfcq c{`f†``‘P}¨}ÇÐdÕ gäbó0cüðe`c f`&Ð_0°l=ðhKÐpYPne€jr°rdˆd’àlŸ i­ q»PgưaÑÀfÛaådðÐfü0a€c@f0`(c3pElXPtkPfw@`ƒðdÀg˜0b£Àe®€hºcÆvÏ@vÙ€vä°tî uùuà}~7PlF hV`pfÀdq€g}b‰Àv’wœpw§àt±Pu¼ÀuȰeÓphßðbëðcôàcÿ fÐ`€d"@g. a: dDÀlQi_ðpm`gxÐaƒm’pm¢ i³ÀqÄ@iÔPqä°fîð`øyxxy,z:ÐxGPxUÐwdPyrÐy e‹`h–àb¡0}° }À@}Р_ِgã`_í lúàh	°p	àm%	j5	0rE	°cO	pfZ	€`e	0yq	°x~	0xŒ	°y™	0z§	ðx´	pxÂ	ðwÑ	pyß	ðyî	P~
€~*
`~H
p~g
 cp
àez
Pc„
f
`š
°_¤
{±
Pz¿
ð{Í
Ðc×
fâ
À`í
@cö
fpc
0f ` ð_*Àc5€fA `M°(ZÀ?k 40>œ@^¶YÒ`VîpMpR!0\< RZPOz°NšÀP¹ )ËP'ßÀ)ép(÷(
°J
I5
0IN
 .]
àLn
-~
%
.ž
ð.°
0HÂ
°^Ö
`4ð
pC
`D" '1`*@p0P`%e@%| %“€,¡ /²0*Êðçðà(ðL r€šp±0!Êðâ ü`080K@d P½@LЀ%Ý@(í€EþÀD`+0K(þ;þHþcþvþˆþ›þ±þÄþÓþãþïþüþþ+þ7þDþTþjþwþ„þ‘þ©þ·þÔþîþþþþ þ.þ@þSþgþ}þþ¦þÀþÑþäþöþþþ,þ@þUþhþyþ‹þ¥þ·þËþÙþæþôþþþ1þHþjþ„þ“þ£þ¯þ¼þËþÝþîþþþ"þ0þ?þNþ`þrþ„þ˜þ¦þ»þ×þçþöþ	þþ0þ?þNþqþ‚þ—þ°þÂþÚþìþþþ
þ"þ3þAþWþiþþ“þ¢þ·þÈþÚþçþúþþþ'þ5þFþTþgþyþ‹þ¡þ·þÔþðþÿþþþ9þNþdþþ‘þ°þÂþÛþóþþþ(þ8J]cjqyˆŽ•œ¤¬³¹ÀÈÐ×Þæîõû	"(.5<BGMT[agnv~œª±¹ÁÇÎÕÜäìóû
&.6=EMSZagmu}…‹’™¤°¼ÁÇÍÔÛàæìóú%,4<ëìîïðñóôõö÷øùúûýþÿ	
 !"#$%&()*+,./123456789:;<=>?@ACDEFGHIJKLMNOPQRSTUVWYZ[\]^_`abdefghijkmrtuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖר@éêíòü
'-0BXclnopqsÙëìîïðñóôõö÷øùúûýþÿ	
 !"#$%&()*+,./123456789:;<=>?@ACDEFGHIJKLMNOPQRSTUVWYZ[\]^_`abdefghijkmrtuvwxyz{|}~€‚ƒ„…†‡ˆ‰Š‹ŒŽ‘’“”•–—˜™š›œžŸ ¡¢£¤¥¦§¨©ª«¬­®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖר _PyInit_mtrand___pyx_module_is_main_numpy__random__mtrand_legacy_beta_legacy_chisquare_legacy_exponential_legacy_f_legacy_gamma_legacy_gauss_legacy_lognormal_legacy_logseries_legacy_negative_binomial_legacy_noncentral_chisquare_legacy_noncentral_f_legacy_normal_legacy_pareto_legacy_power_legacy_random_binomial_legacy_random_geometric_legacy_random_hypergeometric_legacy_random_multinomial_legacy_random_poisson_legacy_random_zipf_legacy_rayleigh_legacy_standard_cauchy_legacy_standard_exponential_legacy_standard_gamma_legacy_standard_t_legacy_vonmises_legacy_wald_legacy_weibull_npy_acos_npy_acosf_npy_acosh_npy_acoshf_npy_acoshl_npy_acosl_npy_asin_npy_asinf_npy_asinh_npy_asinhf_npy_asinhl_npy_asinl_npy_atan_npy_atan2_npy_atan2f_npy_atan2l_npy_atanf_npy_atanh_npy_atanhf_npy_atanhl_npy_atanl_npy_cbrt_npy_cbrtf_npy_cbrtl_npy_ceil_npy_ceilf_npy_ceill_npy_clear_floatstatus_npy_clear_floatstatus_barrier_npy_copysign_npy_copysignf_npy_copysignl_npy_cos_npy_cosf_npy_cosh_npy_coshf_npy_coshl_npy_cosl_npy_deg2rad_npy_deg2radf_npy_deg2radl_npy_divmod_npy_divmodf_npy_divmodl_npy_exp_npy_exp2_npy_exp2_m1_npy_exp2_m1f_npy_exp2_m1l_npy_exp2f_npy_exp2l_npy_expf_npy_expl_npy_expm1_npy_expm1f_npy_expm1l_npy_fabs_npy_fabsf_npy_fabsl_npy_floor_npy_floor_divide_npy_floor_dividef_npy_floor_dividel_npy_floorf_npy_floorl_npy_fmod_npy_fmodf_npy_fmodl_npy_frexp_npy_frexpf_npy_frexpl_npy_gcd_npy_gcdl_npy_gcdll_npy_gcdu_npy_gcdul_npy_gcdull_npy_get_floatstatus_npy_get_floatstatus_barrier_npy_heaviside_npy_heavisidef_npy_heavisidel_npy_hypot_npy_hypotf_npy_hypotl_npy_lcm_npy_lcml_npy_lcmll_npy_lcmu_npy_lcmul_npy_lcmull_npy_ldexp_npy_ldexpf_npy_ldexpl_npy_log_npy_log10_npy_log10f_npy_log10l_npy_log1p_npy_log1pf_npy_log1pl_npy_log2_npy_log2_1p_npy_log2_1pf_npy_log2_1pl_npy_log2f_npy_log2l_npy_logaddexp_npy_logaddexp2_npy_logaddexp2f_npy_logaddexp2l_npy_logaddexpf_npy_logaddexpl_npy_logf_npy_logl_npy_lshift_npy_lshifth_npy_lshifthh_npy_lshiftl_npy_lshiftll_npy_lshiftu_npy_lshiftuh_npy_lshiftuhh_npy_lshiftul_npy_lshiftull_npy_modf_npy_modff_npy_modfl_npy_nextafter_npy_nextafterf_npy_nextafterl_npy_pow_npy_powf_npy_powl_npy_rad2deg_npy_rad2degf_npy_rad2degl_npy_remainder_npy_remainderf_npy_remainderl_npy_rint_npy_rintf_npy_rintl_npy_rshift_npy_rshifth_npy_rshifthh_npy_rshiftl_npy_rshiftll_npy_rshiftu_npy_rshiftuh_npy_rshiftuhh_npy_rshiftul_npy_rshiftull_npy_set_floatstatus_divbyzero_npy_set_floatstatus_invalid_npy_set_floatstatus_overflow_npy_set_floatstatus_underflow_npy_sin_npy_sinf_npy_sinh_npy_sinhf_npy_sinhl_npy_sinl_npy_spacing_npy_spacingf_npy_spacingl_npy_sqrt_npy_sqrtf_npy_sqrtl_npy_tan_npy_tanf_npy_tanh_npy_tanhf_npy_tanhl_npy_tanl_npy_trunc_npy_truncf_npy_truncl_random_beta_random_binomial_random_binomial_btpe_random_binomial_inversion_random_bounded_bool_fill_random_bounded_uint16_fill_random_bounded_uint32_fill_random_bounded_uint64_random_bounded_uint64_fill_random_bounded_uint8_fill_random_buffered_bounded_bool_random_buffered_bounded_uint16_random_buffered_bounded_uint32_random_buffered_bounded_uint8_random_chisquare_random_exponential_random_f_random_gamma_random_gamma_f_random_geometric_random_geometric_inversion_random_geometric_search_random_gumbel_random_interval_random_laplace_random_loggam_random_logistic_random_lognormal_random_logseries_random_multinomial_random_negative_binomial_random_noncentral_chisquare_random_noncentral_f_random_normal_random_pareto_random_poisson_random_positive_int_random_positive_int32_random_positive_int64_random_power_random_rayleigh_random_standard_cauchy_random_standard_exponential_random_standard_exponential_f_random_standard_exponential_fill_random_standard_exponential_fill_f_random_standard_exponential_inv_fill_random_standard_exponential_inv_fill_f_random_standard_gamma_random_standard_gamma_f_random_standard_normal_random_standard_normal_f_random_standard_normal_fill_random_standard_normal_fill_f_random_standard_t_random_standard_uniform_random_standard_uniform_f_random_standard_uniform_fill_random_standard_uniform_fill_f_random_triangular_random_uint_random_uniform_random_vonmises_random_wald_random_weibull_random_zipf_PyBaseObject_Type_PyBool_Type_PyBytes_FromStringAndSize_PyCFunction_NewEx_PyCFunction_Type_PyCapsule_GetName_PyCapsule_GetPointer_PyCapsule_IsValid_PyCapsule_New_PyCapsule_Type_PyCode_New_PyDict_Copy_PyDict_GetItemString_PyDict_GetItemWithError_PyDict_New_PyDict_Next_PyDict_SetItem_PyDict_SetItemString_PyDict_Size_PyDict_Type_PyErr_Clear_PyErr_ExceptionMatches_PyErr_Format_PyErr_GivenExceptionMatches_PyErr_NormalizeException_PyErr_Occurred_PyErr_SetObject_PyErr_SetString_PyErr_WarnEx_PyErr_WarnFormat_PyEval_EvalCodeEx_PyEval_EvalFrameEx_PyEval_RestoreThread_PyEval_SaveThread_PyExc_AttributeError_PyExc_DeprecationWarning_PyExc_Exception_PyExc_ImportError_PyExc_IndexError_PyExc_KeyError_PyExc_NameError_PyExc_OverflowError_PyExc_RuntimeError_PyExc_StopIteration_PyExc_SystemError_PyExc_TypeError_PyExc_ValueError_PyException_SetTraceback_PyFloat_AsDouble_PyFloat_FromDouble_PyFloat_Type_PyFrame_New_PyFrame_Type_PyFunction_Type_PyImport_AddModule_PyImport_GetModuleDict_PyImport_ImportModule_PyImport_ImportModuleLevelObject_PyInterpreterState_GetID_PyList_Append_PyList_AsTuple_PyList_New_PyList_Type_PyLong_AsLong_PyLong_AsSsize_t_PyLong_FromLong_PyLong_FromSsize_t_PyLong_FromString_PyLong_Type_PyMem_Malloc_PyMem_Realloc_PyMethod_Type_PyModuleDef_Init_PyModule_GetDict_PyModule_GetName_PyModule_NewObject_PyNumber_Add_PyNumber_InPlaceAdd_PyNumber_InPlaceTrueDivide_PyNumber_Index_PyNumber_Long_PyNumber_Multiply_PyNumber_Remainder_PyNumber_Subtract_PyOS_snprintf_PyObject_Call_PyObject_CallFinalizerFromDealloc_PyObject_Format_PyObject_GC_UnTrack_PyObject_GenericGetAttr_PyObject_GetAttr_PyObject_GetAttrString_PyObject_GetItem_PyObject_GetIter_PyObject_Hash_PyObject_IsInstance_PyObject_IsTrue_PyObject_Not_PyObject_RichCompare_PyObject_SetAttr_PyObject_SetAttrString_PyObject_SetItem_PyObject_Size_PySequence_Contains_PySequence_List_PySequence_Tuple_PySlice_New_PyThreadState_Get_PyTraceBack_Here_PyTuple_New_PyTuple_Pack_PyTuple_Type_PyType_Modified_PyType_Ready_PyUnicode_Compare_PyUnicode_Decode_PyUnicode_Format_PyUnicode_FromFormat_PyUnicode_FromString_PyUnicode_FromStringAndSize_PyUnicode_InternFromString_PyUnicode_New_PyUnicode_Type_Py_GetVersion__PyDict_GetItem_KnownHash__PyDict_NewPresized__PyObject_GetDictPtr__PyThreadState_UncheckedGet__PyType_Lookup__PyUnicode_FastCopyCharacters__PyUnicode_Ready__Py_CheckRecursionLimit__Py_CheckRecursiveCall__Py_EllipsisObject__Py_FalseStruct__Py_NoneStruct__Py_TrueStruct___stack_chk_fail___stack_chk_guard_acos_acosf_acosh_acoshf_acoshl_acosl_asin_asinf_asinh_asinhf_asinhl_asinl_atan_atan2_atan2f_atan2l_atanf_atanh_atanhf_atanhl_atanl_cbrt_cbrtf_cbrtl_ceil_ceilf_ceill_cos_cosf_cosh_coshf_coshl_cosl_exp_exp2_exp2f_exp2l_expf_expl_expm1_expm1f_expm1l_feclearexcept_feraiseexcept_fetestexcept_floor_floorf_floorl_fmod_fmodf_fmodl_frexp_frexpf_frexpl_hypot_hypotf_hypotl_ldexp_ldexpf_ldexpl_log_log10_log10f_log10l_log1p_log1pf_log1pl_log2_log2f_log2l_logf_logl_memcmp_memcpy_memset_modf_modff_modfl_nextafter_nextafterf_nextafterl_pow_powf_rint_rintf_rintl_sin_sinf_sinh_sinhf_sinhl_sinl_tan_tanf_tanh_tanhf_tanhl_tanl_trunc_truncf_truncldyld_stub_binder___pyx_pymod_create___pyx_pymod_exec_mtrand___Pyx_Import___Pyx_AddTraceback___pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss___pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw___pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState___pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr_____pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str_____pyx_tp_traverse_5numpy_6random_6mtrand_RandomState___pyx_tp_clear_5numpy_6random_6mtrand_RandomState___pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init_____pyx_tp_new_5numpy_6random_6mtrand_RandomState___Pyx_PyObject_CallOneArg___Pyx_PyObject_Call2Args___Pyx_PyFunction_FastCallDict___Pyx_PyObject_CallMethO___Pyx_PyObject_Call___pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate_____pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate_____pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce_____pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed___pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state___pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state___pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample___pyx_pw_5numpy_6random_6mtrand_11RandomState_21random___pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta___pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential___pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential___pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint___pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint___pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes___pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice___pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform___pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand___pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn___pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers___pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma___pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma___pyx_pw_5numpy_6random_6mtrand_11RandomState_53f___pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f___pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare___pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare___pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy___pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t___pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises___pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto___pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull___pyx_pw_5numpy_6random_6mtrand_11RandomState_71power___pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace___pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel___pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic___pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal___pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh___pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald___pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular___pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson___pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf___pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric___pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric___pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries___pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet___pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle___pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation___Pyx_PyDict_GetItem___Pyx_ParseOptionalKeywords___Pyx_Raise___Pyx_PyUnicode_Equals___Pyx_GetItemInt_Fast___Pyx_PyInt_As_int___Pyx_PyNumber_IntOrLong___Pyx__GetException___Pyx_PyInt_As_Py_intptr_t___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice___Pyx_PyObject_GetItem___Pyx_PyErr_GivenExceptionMatches___Pyx_PyInt_As_long___pyx_f_5numpy_6random_6mtrand_int64_to_long___Pyx_PyInt_As_int64_t___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle___pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generator___pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator___Pyx_ImportType___Pyx_ImportVoidPtr___Pyx_ImportFunction___pyx_pw_5numpy_6random_6mtrand_1sample___pyx_pw_5numpy_6random_6mtrand_3ranf___pyx_k_Cannot_take_a_larger_sample_than___pyx_k_DeprecationWarning___pyx_k_Fewer_non_zero_entries_in_p_than___pyx_k_ImportError___pyx_k_IndexError___pyx_k_Invalid_bit_generator_The_bit_ge___pyx_k_MT19937___pyx_k_MT19937_2___pyx_k_Negative_dimensions_are_not_allo___pyx_k_OverflowError___pyx_k_Providing_a_dtype_with_a_non_nat___pyx_k_RandomState___pyx_k_RandomState_binomial_line_3280___pyx_k_RandomState_bytes_line_771___pyx_k_RandomState_chisquare_line_1854___pyx_k_RandomState_choice_line_807___pyx_k_RandomState_dirichlet_line_4274___pyx_k_RandomState_f_line_1676___pyx_k_RandomState_gamma_line_1593___pyx_k_RandomState_geometric_line_3685___pyx_k_RandomState_gumbel_line_2697___pyx_k_RandomState_hypergeometric_line___pyx_k_RandomState_laplace_line_2604___pyx_k_RandomState_logistic_line_2820___pyx_k_RandomState_lognormal_line_2905___pyx_k_RandomState_logseries_line_3879___pyx_k_RandomState_multinomial_line_414___pyx_k_RandomState_multivariate_normal___pyx_k_RandomState_negative_binomial_li___pyx_k_RandomState_noncentral_chisquare___pyx_k_RandomState_noncentral_f_line_17___pyx_k_RandomState_normal_line_1406___pyx_k_RandomState_pareto_line_2291___pyx_k_RandomState_permutation_line_454___pyx_k_RandomState_poisson_line_3517___pyx_k_RandomState_power_line_2496___pyx_k_RandomState_rand_line_1137___pyx_k_RandomState_randint_line_646___pyx_k_RandomState_randn_line_1181___pyx_k_RandomState_random_integers_line___pyx_k_RandomState_random_sample_line_3___pyx_k_RandomState_rayleigh_line_3020___pyx_k_RandomState_seed_line_224___pyx_k_RandomState_shuffle_line_4422___pyx_k_RandomState_standard_cauchy_line___pyx_k_RandomState_standard_exponential___pyx_k_RandomState_standard_gamma_line___pyx_k_RandomState_standard_normal_line___pyx_k_RandomState_standard_t_line_2089___pyx_k_RandomState_tomaxint_line_588___pyx_k_RandomState_triangular_line_3172___pyx_k_RandomState_uniform_line_1014___pyx_k_RandomState_vonmises_line_2203___pyx_k_RandomState_wald_line_3096___pyx_k_RandomState_weibull_line_2393___pyx_k_RandomState_zipf_line_3599___pyx_k_Range_exceeds_valid_bounds___pyx_k_RuntimeWarning___pyx_k_Sequence___pyx_k_Shuffling_a_one_dimensional_arra___pyx_k_T___pyx_k_This_function_is_deprecated_Plea___pyx_k_This_function_is_deprecated_Plea_2___pyx_k_TypeError___pyx_k_Unsupported_dtype_r_for_randint___pyx_k_UserWarning___pyx_k_ValueError___pyx_k__3___pyx_k__4___pyx_k_a___pyx_k_a_and_p_must_have_same_size___pyx_k_a_cannot_be_empty_unless_no_sam___pyx_k_a_must_be_1_dimensional___pyx_k_a_must_be_1_dimensional_or_an_in___pyx_k_a_must_be_greater_than_0_unless___pyx_k_add___pyx_k_all___pyx_k_all_2___pyx_k_allclose___pyx_k_alpha___pyx_k_alpha_0___pyx_k_any___pyx_k_arange___pyx_k_args___pyx_k_array___pyx_k_asarray___pyx_k_astype___pyx_k_at_0x_X___pyx_k_atol___pyx_k_b___pyx_k_binomial_n_p_size_None_Draw_sam___pyx_k_bit_generator___pyx_k_bool___pyx_k_bytes_length_Return_random_byte___pyx_k_can_only_re_seed_a_MT19937_BitGe___pyx_k_capsule___pyx_k_casting___pyx_k_check_valid___pyx_k_check_valid_must_equal_warn_rais___pyx_k_chisquare_df_size_None_Draw_sam___pyx_k_choice_a_size_None_replace_True___pyx_k_class___pyx_k_cline_in_traceback___pyx_k_collections_abc___pyx_k_compat___pyx_k_copy___pyx_k_count_nonzero___pyx_k_cov___pyx_k_cov_must_be_2_dimensional_and_sq___pyx_k_covariance_is_not_positive_semid___pyx_k_cumsum___pyx_k_df___pyx_k_dfden___pyx_k_dfnum___pyx_k_dirichlet_alpha_size_None_Draw___pyx_k_dot___pyx_k_empty___pyx_k_empty_like___pyx_k_enter___pyx_k_eps___pyx_k_equal___pyx_k_exit___pyx_k_f_dfnum_dfden_size_None_Draw_sa___pyx_k_finfo___pyx_k_float64___pyx_k_format___pyx_k_gamma_shape_scale_1_0_size_None___pyx_k_gauss___pyx_k_geometric_p_size_None_Draw_samp___pyx_k_get___pyx_k_get_state_and_legacy_can_only_be___pyx_k_greater___pyx_k_gumbel_loc_0_0_scale_1_0_size_N___pyx_k_has_gauss___pyx_k_high___pyx_k_hypergeometric_ngood_nbad_nsamp___pyx_k_id___pyx_k_ignore___pyx_k_import___pyx_k_index___pyx_k_int16___pyx_k_int32___pyx_k_int64___pyx_k_int8___pyx_k_intp___pyx_k_isfinite___pyx_k_isnan___pyx_k_isnative___pyx_k_isscalar___pyx_k_issubdtype___pyx_k_item___pyx_k_itemsize___pyx_k_kappa___pyx_k_key___pyx_k_kwargs___pyx_k_l___pyx_k_lam___pyx_k_laplace_loc_0_0_scale_1_0_size___pyx_k_left___pyx_k_left_mode___pyx_k_left_right___pyx_k_legacy___pyx_k_legacy_seeding___pyx_k_less___pyx_k_less_equal___pyx_k_loc___pyx_k_lock___pyx_k_logical_or___pyx_k_logistic_loc_0_0_scale_1_0_size___pyx_k_lognormal_mean_0_0_sigma_1_0_si___pyx_k_logseries_p_size_None_Draw_samp___pyx_k_long___pyx_k_low___pyx_k_main___pyx_k_may_share_memory___pyx_k_mean___pyx_k_mean_and_cov_must_have_same_leng___pyx_k_mean_must_be_1_dimensional___pyx_k_mode___pyx_k_mode_right___pyx_k_mt19937___pyx_k_mu___pyx_k_multinomial_n_pvals_size_None_D___pyx_k_multivariate_normal_mean_cov_si___pyx_k_n___pyx_k_name___pyx_k_nbad___pyx_k_ndim___pyx_k_negative_binomial_n_p_size_None___pyx_k_newbyteorder___pyx_k_ngood___pyx_k_ngood_nbad_nsample___pyx_k_nonc___pyx_k_noncentral_chisquare_df_nonc_si___pyx_k_noncentral_f_dfnum_dfden_nonc_s___pyx_k_normal_loc_0_0_scale_1_0_size_N___pyx_k_np___pyx_k_nsample___pyx_k_numpy_core_multiarray_failed_to___pyx_k_numpy_core_umath_failed_to_impor___pyx_k_numpy_linalg___pyx_k_object___pyx_k_object_which_is_not_a_subclass___pyx_k_operator___pyx_k_p___pyx_k_p_must_be_1_dimensional___pyx_k_pareto_a_size_None_Draw_samples___pyx_k_permutation_x_Randomly_permute___pyx_k_pickle___pyx_k_poisson_lam_1_0_size_None_Draw___pyx_k_poisson_lam_max___pyx_k_pos___pyx_k_power_a_size_None_Draws_samples___pyx_k_probabilities_are_not_non_negati___pyx_k_probabilities_contain_NaN___pyx_k_probabilities_do_not_sum_to_1___pyx_k_prod___pyx_k_pvals___pyx_k_pyx_vtable___pyx_k_raise___pyx_k_rand_2___pyx_k_rand_d0_d1_dn_Random_values_in___pyx_k_randint_low_high_None_size_None___pyx_k_randn_d0_d1_dn_Return_a_sample___pyx_k_random_integers_low_high_None_s___pyx_k_random_sample_size_None_Return___pyx_k_randomstate_ctor___pyx_k_range___pyx_k_ravel___pyx_k_rayleigh_scale_1_0_size_None_Dr___pyx_k_reduce___pyx_k_replace___pyx_k_reshape___pyx_k_return_index___pyx_k_reversed___pyx_k_right___pyx_k_rtol___pyx_k_scale___pyx_k_searchsorted___pyx_k_seed_self_seed_None_Reseed_a_le___pyx_k_set_state_can_only_be_used_with___pyx_k_shape___pyx_k_shuffle_x_Modify_a_sequence_in___pyx_k_side___pyx_k_sigma___pyx_k_size___pyx_k_sort___pyx_k_sqrt___pyx_k_stacklevel___pyx_k_standard_cauchy_size_None_Draw___pyx_k_standard_exponential_size_None___pyx_k_standard_gamma_shape_size_None___pyx_k_standard_normal_size_None_Draw___pyx_k_standard_t_df_size_None_Draw_sa___pyx_k_state___pyx_k_state_dictionary_is_not_valid___pyx_k_state_must_be_a_dict_or_a_tuple___pyx_k_str___pyx_k_strides___pyx_k_subtract___pyx_k_sum___pyx_k_sum_pvals_1_1_0___pyx_k_sum_pvals_1_astype_np_float64_1___pyx_k_svd___pyx_k_take___pyx_k_test___pyx_k_tobytes___pyx_k_tol___pyx_k_tomaxint_size_None_Return_a_sam___pyx_k_triangular_left_mode_right_size___pyx_k_u4___pyx_k_uint16___pyx_k_uint32___pyx_k_uint64___pyx_k_uint8___pyx_k_uniform_low_0_0_high_1_0_size_N___pyx_k_unique___pyx_k_unsafe___pyx_k_vonmises_mu_kappa_size_None_Dra___pyx_k_wald_mean_scale_size_None_Draw___pyx_k_warn___pyx_k_warnings___pyx_k_weibull_a_size_None_Draw_sample___pyx_k_x_must_be_an_integer_or_at_least___pyx_k_you_are_shuffling_a___pyx_k_zeros___pyx_k_zipf_a_size_None_Draw_samples_f_we_double_ke_double_we_float_ke_float_wi_double_ki_double_fi_double_wi_float_ki_float_fi_float_fe_double_fe_float___pyx_string_tab___pyx_moduledef___pyx_moduledef_slots___Pyx_check_single_interpreter.main_interpreter_id___pyx_mdef_5numpy_6random_6mtrand_1sample___pyx_mdef_5numpy_6random_6mtrand_3ranf___pyx_type_5numpy_6random_6mtrand_RandomState___pyx_methods_5numpy_6random_6mtrand_RandomState___pyx_getsets_5numpy_6random_6mtrand_RandomState___pyx_doc_5numpy_6random_6mtrand_11RandomState_12seed___pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state___pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_state___pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_sample___pyx_doc_5numpy_6random_6mtrand_11RandomState_20random___pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta___pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential___pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential___pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxint___pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint___pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes___pyx_doc_5numpy_6random_6mtrand_11RandomState_34choice___pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniform___pyx_doc_5numpy_6random_6mtrand_11RandomState_38rand___pyx_doc_5numpy_6random_6mtrand_11RandomState_40randn___pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integers___pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma___pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma___pyx_doc_5numpy_6random_6mtrand_11RandomState_52f___pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_f___pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare___pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare___pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy___pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t___pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises___pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto___pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull___pyx_doc_5numpy_6random_6mtrand_11RandomState_70power___pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace___pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel___pyx_doc_5numpy_6random_6mtrand_11RandomState_76logistic___pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormal___pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleigh___pyx_doc_5numpy_6random_6mtrand_11RandomState_82wald___pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangular___pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_90poisson___pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf___pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometric___pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric___pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries___pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet___pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle___pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutation___pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_21random.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_53f.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_71power.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init__.__pyx_pyargnames___pyx_doc_5numpy_6random_6mtrand_sample___pyx_doc_5numpy_6random_6mtrand_2ranf___pyx_methods___pyx_m___pyx_pyframe_localsplus_offset___pyx_empty_tuple___pyx_empty_bytes___pyx_empty_unicode___pyx_d___pyx_b___pyx_cython_runtime___pyx_n_s_name___pyx_n_s_main___pyx_n_s_operator___pyx_n_s_warnings___pyx_n_s_Sequence___pyx_n_s_collections_abc___pyx_n_s_numpy___pyx_n_s_np___pyx_n_s_MT19937_2___pyx_n_s_mt19937___pyx_n_s_MT19937___pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX___pyx_ptype_5numpy_6random_6mtrand_RandomState___pyx_n_s_poisson_lam_max___pyx_k__14___pyx_n_s_rand_2___pyx_pymod_exec_mtrand.__pyx_dict_version___pyx_pymod_exec_mtrand.__pyx_dict_cached_value___pyx_n_s_beta___pyx_pymod_exec_mtrand.__pyx_dict_version.17___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.18___pyx_n_s_binomial___pyx_pymod_exec_mtrand.__pyx_dict_version.19___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.20___pyx_n_s_bytes___pyx_pymod_exec_mtrand.__pyx_dict_version.21___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.22___pyx_n_s_chisquare___pyx_pymod_exec_mtrand.__pyx_dict_version.23___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.24___pyx_n_s_choice___pyx_pymod_exec_mtrand.__pyx_dict_version.25___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.26___pyx_n_s_dirichlet___pyx_pymod_exec_mtrand.__pyx_dict_version.27___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.28___pyx_n_s_exponential___pyx_pymod_exec_mtrand.__pyx_dict_version.29___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.30___pyx_n_s_f___pyx_pymod_exec_mtrand.__pyx_dict_version.31___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.32___pyx_n_s_gamma___pyx_pymod_exec_mtrand.__pyx_dict_version.33___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.34___pyx_n_s_get_state___pyx_pymod_exec_mtrand.__pyx_dict_version.35___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.36___pyx_n_s_geometric___pyx_pymod_exec_mtrand.__pyx_dict_version.37___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.38___pyx_n_s_gumbel___pyx_pymod_exec_mtrand.__pyx_dict_version.39___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.40___pyx_n_s_hypergeometric___pyx_pymod_exec_mtrand.__pyx_dict_version.41___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.42___pyx_n_s_laplace___pyx_pymod_exec_mtrand.__pyx_dict_version.43___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.44___pyx_n_s_logistic___pyx_pymod_exec_mtrand.__pyx_dict_version.45___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.46___pyx_n_s_lognormal___pyx_pymod_exec_mtrand.__pyx_dict_version.47___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.48___pyx_n_s_logseries___pyx_pymod_exec_mtrand.__pyx_dict_version.49___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.50___pyx_n_s_multinomial___pyx_pymod_exec_mtrand.__pyx_dict_version.51___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.52___pyx_n_s_multivariate_normal___pyx_pymod_exec_mtrand.__pyx_dict_version.53___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.54___pyx_n_s_negative_binomial___pyx_pymod_exec_mtrand.__pyx_dict_version.55___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.56___pyx_n_s_noncentral_chisquare___pyx_pymod_exec_mtrand.__pyx_dict_version.57___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.58___pyx_n_s_noncentral_f___pyx_pymod_exec_mtrand.__pyx_dict_version.59___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.60___pyx_n_s_normal___pyx_pymod_exec_mtrand.__pyx_dict_version.61___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.62___pyx_n_s_pareto___pyx_pymod_exec_mtrand.__pyx_dict_version.63___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.64___pyx_n_s_permutation___pyx_pymod_exec_mtrand.__pyx_dict_version.65___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.66___pyx_n_s_poisson___pyx_pymod_exec_mtrand.__pyx_dict_version.67___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.68___pyx_n_s_power___pyx_pymod_exec_mtrand.__pyx_dict_version.69___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.70___pyx_n_s_rand___pyx_pymod_exec_mtrand.__pyx_dict_version.71___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.72___pyx_n_s_randint___pyx_pymod_exec_mtrand.__pyx_dict_version.73___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.74___pyx_n_s_randn___pyx_pymod_exec_mtrand.__pyx_dict_version.75___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.76___pyx_n_s_random___pyx_pymod_exec_mtrand.__pyx_dict_version.77___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.78___pyx_n_s_random_integers___pyx_pymod_exec_mtrand.__pyx_dict_version.79___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.80___pyx_n_s_random_sample___pyx_pymod_exec_mtrand.__pyx_dict_version.81___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.82___pyx_n_s_rayleigh___pyx_pymod_exec_mtrand.__pyx_dict_version.83___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.84___pyx_n_s_seed___pyx_pymod_exec_mtrand.__pyx_dict_version.85___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.86___pyx_n_s_set_state___pyx_pymod_exec_mtrand.__pyx_dict_version.87___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.88___pyx_n_s_shuffle___pyx_pymod_exec_mtrand.__pyx_dict_version.89___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.90___pyx_n_s_standard_cauchy___pyx_pymod_exec_mtrand.__pyx_dict_version.91___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.92___pyx_n_s_standard_exponential___pyx_pymod_exec_mtrand.__pyx_dict_version.93___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.94___pyx_n_s_standard_gamma___pyx_pymod_exec_mtrand.__pyx_dict_version.95___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.96___pyx_n_s_standard_normal___pyx_pymod_exec_mtrand.__pyx_dict_version.97___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.98___pyx_n_s_standard_t___pyx_pymod_exec_mtrand.__pyx_dict_version.99___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.100___pyx_n_s_triangular___pyx_pymod_exec_mtrand.__pyx_dict_version.101___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.102___pyx_n_s_uniform___pyx_pymod_exec_mtrand.__pyx_dict_version.103___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.104___pyx_n_s_vonmises___pyx_pymod_exec_mtrand.__pyx_dict_version.105___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.106___pyx_n_s_wald___pyx_pymod_exec_mtrand.__pyx_dict_version.107___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.108___pyx_n_s_weibull___pyx_pymod_exec_mtrand.__pyx_dict_version.109___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.110___pyx_n_s_zipf___pyx_n_s_numpy_random_mtrand___pyx_n_s_sample___pyx_n_s_ranf___pyx_n_u_beta___pyx_n_u_binomial___pyx_n_u_bytes___pyx_n_u_chisquare___pyx_n_u_choice___pyx_n_u_dirichlet___pyx_n_u_exponential___pyx_n_u_f___pyx_n_u_gamma___pyx_n_u_geometric___pyx_n_u_get_state___pyx_n_u_gumbel___pyx_n_u_hypergeometric___pyx_n_u_laplace___pyx_n_u_logistic___pyx_n_u_lognormal___pyx_n_u_logseries___pyx_n_u_multinomial___pyx_n_u_multivariate_normal___pyx_n_u_negative_binomial___pyx_n_u_noncentral_chisquare___pyx_n_u_noncentral_f___pyx_n_u_normal___pyx_n_u_pareto___pyx_n_u_permutation___pyx_n_u_poisson___pyx_n_u_power___pyx_n_u_rand___pyx_n_u_randint___pyx_n_u_randn___pyx_n_u_random___pyx_n_u_random_integers___pyx_n_u_random_sample___pyx_n_u_ranf___pyx_n_u_rayleigh___pyx_n_u_sample___pyx_n_u_seed___pyx_n_u_set_state___pyx_n_u_shuffle___pyx_n_u_standard_cauchy___pyx_n_u_standard_exponential___pyx_n_u_standard_gamma___pyx_n_u_standard_normal___pyx_n_u_standard_t___pyx_n_u_triangular___pyx_n_u_uniform___pyx_n_u_vonmises___pyx_n_u_wald___pyx_n_u_weibull___pyx_n_u_zipf___pyx_n_u_RandomState___pyx_n_s_all_2___pyx_kp_u_RandomState_seed_line_224___pyx_kp_u_seed_self_seed_None_Reseed_a_le___pyx_kp_u_RandomState_random_sample_line_3___pyx_kp_u_random_sample_size_None_Return___pyx_kp_u_RandomState_standard_exponential___pyx_kp_u_standard_exponential_size_None___pyx_kp_u_RandomState_tomaxint_line_588___pyx_kp_u_tomaxint_size_None_Return_a_sam___pyx_kp_u_RandomState_randint_line_646___pyx_kp_u_randint_low_high_None_size_None___pyx_kp_u_RandomState_bytes_line_771___pyx_kp_u_bytes_length_Return_random_byte___pyx_kp_u_RandomState_choice_line_807___pyx_kp_u_choice_a_size_None_replace_True___pyx_kp_u_RandomState_uniform_line_1014___pyx_kp_u_uniform_low_0_0_high_1_0_size_N___pyx_kp_u_RandomState_rand_line_1137___pyx_kp_u_rand_d0_d1_dn_Random_values_in___pyx_kp_u_RandomState_randn_line_1181___pyx_kp_u_randn_d0_d1_dn_Return_a_sample___pyx_kp_u_RandomState_random_integers_line___pyx_kp_u_random_integers_low_high_None_s___pyx_kp_u_RandomState_standard_normal_line___pyx_kp_u_standard_normal_size_None_Draw___pyx_kp_u_RandomState_normal_line_1406___pyx_kp_u_normal_loc_0_0_scale_1_0_size_N___pyx_kp_u_RandomState_standard_gamma_line___pyx_kp_u_standard_gamma_shape_size_None___pyx_kp_u_RandomState_gamma_line_1593___pyx_kp_u_gamma_shape_scale_1_0_size_None___pyx_kp_u_RandomState_f_line_1676___pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa___pyx_kp_u_RandomState_noncentral_f_line_17___pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s___pyx_kp_u_RandomState_chisquare_line_1854___pyx_kp_u_chisquare_df_size_None_Draw_sam___pyx_kp_u_RandomState_noncentral_chisquare___pyx_kp_u_noncentral_chisquare_df_nonc_si___pyx_kp_u_RandomState_standard_cauchy_line___pyx_kp_u_standard_cauchy_size_None_Draw___pyx_kp_u_RandomState_standard_t_line_2089___pyx_kp_u_standard_t_df_size_None_Draw_sa___pyx_kp_u_RandomState_vonmises_line_2203___pyx_kp_u_vonmises_mu_kappa_size_None_Dra___pyx_kp_u_RandomState_pareto_line_2291___pyx_kp_u_pareto_a_size_None_Draw_samples___pyx_kp_u_RandomState_weibull_line_2393___pyx_kp_u_weibull_a_size_None_Draw_sample___pyx_kp_u_RandomState_power_line_2496___pyx_kp_u_power_a_size_None_Draws_samples___pyx_kp_u_RandomState_laplace_line_2604___pyx_kp_u_laplace_loc_0_0_scale_1_0_size___pyx_kp_u_RandomState_gumbel_line_2697___pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N___pyx_kp_u_RandomState_logistic_line_2820___pyx_kp_u_logistic_loc_0_0_scale_1_0_size___pyx_kp_u_RandomState_lognormal_line_2905___pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si___pyx_kp_u_RandomState_rayleigh_line_3020___pyx_kp_u_rayleigh_scale_1_0_size_None_Dr___pyx_kp_u_RandomState_wald_line_3096___pyx_kp_u_wald_mean_scale_size_None_Draw___pyx_kp_u_RandomState_triangular_line_3172___pyx_kp_u_triangular_left_mode_right_size___pyx_kp_u_RandomState_binomial_line_3280___pyx_kp_u_binomial_n_p_size_None_Draw_sam___pyx_kp_u_RandomState_negative_binomial_li___pyx_kp_u_negative_binomial_n_p_size_None___pyx_kp_u_RandomState_poisson_line_3517___pyx_kp_u_poisson_lam_1_0_size_None_Draw___pyx_kp_u_RandomState_zipf_line_3599___pyx_kp_u_zipf_a_size_None_Draw_samples_f___pyx_kp_u_RandomState_geometric_line_3685___pyx_kp_u_geometric_p_size_None_Draw_samp___pyx_kp_u_RandomState_hypergeometric_line___pyx_kp_u_hypergeometric_ngood_nbad_nsamp___pyx_kp_u_RandomState_logseries_line_3879___pyx_kp_u_logseries_p_size_None_Draw_samp___pyx_kp_u_RandomState_multivariate_normal___pyx_kp_u_multivariate_normal_mean_cov_si___pyx_kp_u_RandomState_multinomial_line_414___pyx_kp_u_multinomial_n_pvals_size_None_D___pyx_kp_u_RandomState_dirichlet_line_4274___pyx_kp_u_dirichlet_alpha_size_None_Draw___pyx_kp_u_RandomState_shuffle_line_4422___pyx_kp_u_shuffle_x_Modify_a_sequence_in___pyx_kp_u_RandomState_permutation_line_454___pyx_kp_u_permutation_x_Randomly_permute___pyx_n_s_test___pyx_float_0_0___pyx_float_1_0___pyx_float_1eneg_8___pyx_float_1_0001___pyx_int_0___pyx_int_1___pyx_int_4294967296___pyx_int_neg_1___pyx_kp_u_Cannot_take_a_larger_sample_than___pyx_n_s_DeprecationWarning___pyx_kp_u_Fewer_non_zero_entries_in_p_than___pyx_n_s_ImportError___pyx_n_s_IndexError___pyx_kp_u_Invalid_bit_generator_The_bit_ge___pyx_n_u_MT19937_2___pyx_kp_u_Negative_dimensions_are_not_allo___pyx_n_s_OverflowError___pyx_kp_u_Providing_a_dtype_with_a_non_nat___pyx_n_s_RandomState___pyx_kp_u_Range_exceeds_valid_bounds___pyx_n_s_RuntimeWarning___pyx_kp_u_Shuffling_a_one_dimensional_arra___pyx_n_s_T___pyx_kp_u_This_function_is_deprecated_Plea___pyx_kp_u_This_function_is_deprecated_Plea_2___pyx_n_s_TypeError___pyx_kp_u_Unsupported_dtype_r_for_randint___pyx_n_s_UserWarning___pyx_n_s_ValueError___pyx_kp_u__12___pyx_kp_u__3___pyx_kp_u__4___pyx_n_s_a___pyx_n_u_a___pyx_kp_u_a_and_p_must_have_same_size___pyx_kp_u_a_cannot_be_empty_unless_no_sam___pyx_kp_u_a_must_be_1_dimensional___pyx_kp_u_a_must_be_1_dimensional_or_an_in___pyx_kp_u_a_must_be_greater_than_0_unless___pyx_n_s_add___pyx_n_s_all___pyx_n_s_allclose___pyx_n_s_alpha___pyx_kp_u_alpha_0___pyx_n_s_any___pyx_n_s_arange___pyx_n_s_args___pyx_n_s_array___pyx_n_s_asarray___pyx_n_s_astype___pyx_kp_u_at_0x_X___pyx_n_s_atol___pyx_n_s_b___pyx_n_u_b___pyx_n_u_bit_generator___pyx_n_s_bool___pyx_kp_u_can_only_re_seed_a_MT19937_BitGe___pyx_n_s_capsule___pyx_n_u_capsule___pyx_n_s_casting___pyx_n_s_check_valid___pyx_kp_u_check_valid_must_equal_warn_rais___pyx_n_s_class___pyx_n_s_cline_in_traceback___pyx_n_s_compat___pyx_n_s_copy___pyx_n_s_count_nonzero___pyx_n_s_cov___pyx_kp_u_cov_must_be_2_dimensional_and_sq___pyx_kp_u_covariance_is_not_positive_semid___pyx_n_s_cumsum___pyx_n_s_df___pyx_n_u_df___pyx_n_s_dfden___pyx_n_u_dfden___pyx_n_s_dfnum___pyx_n_u_dfnum___pyx_n_s_dot___pyx_n_s_double___pyx_n_s_dtype___pyx_n_s_empty___pyx_n_s_empty_like___pyx_n_s_enter___pyx_n_s_eps___pyx_n_s_equal___pyx_n_s_exit___pyx_n_s_finfo___pyx_n_s_float64___pyx_n_s_format___pyx_n_u_gauss___pyx_n_s_get___pyx_kp_u_get_state_and_legacy_can_only_be___pyx_n_s_greater___pyx_n_u_has_gauss___pyx_n_s_high___pyx_n_s_id___pyx_n_u_ignore___pyx_n_s_import___pyx_n_s_index___pyx_n_s_int16___pyx_n_s_int32___pyx_n_s_int64___pyx_n_s_int8___pyx_n_s_intp___pyx_n_s_isfinite___pyx_n_s_isnan___pyx_n_s_isnative___pyx_n_s_isscalar___pyx_n_s_issubdtype___pyx_n_s_item___pyx_n_s_itemsize___pyx_n_s_kappa___pyx_n_u_kappa___pyx_n_u_key___pyx_n_s_kwargs___pyx_n_u_l___pyx_n_s_lam___pyx_n_u_lam___pyx_n_s_left___pyx_kp_u_left_mode___pyx_kp_u_left_right___pyx_n_s_legacy___pyx_n_s_legacy_seeding___pyx_n_s_less___pyx_n_s_less_equal___pyx_n_s_loc___pyx_n_u_loc___pyx_n_s_lock___pyx_n_s_logical_or___pyx_n_s_long___pyx_n_s_low___pyx_n_s_may_share_memory___pyx_n_s_mean___pyx_n_u_mean___pyx_kp_u_mean_and_cov_must_have_same_leng___pyx_kp_u_mean_must_be_1_dimensional___pyx_n_s_mode___pyx_kp_u_mode_right___pyx_kp_s_mtrand_pyx___pyx_n_s_mu___pyx_n_u_mu___pyx_n_s_n___pyx_n_u_n___pyx_n_s_nbad___pyx_n_u_nbad___pyx_n_s_ndim___pyx_n_s_newbyteorder___pyx_n_s_ngood___pyx_n_u_ngood___pyx_kp_u_ngood_nbad_nsample___pyx_n_s_nonc___pyx_n_u_nonc___pyx_n_s_nsample___pyx_n_u_nsample___pyx_kp_u_numpy_core_multiarray_failed_to___pyx_kp_u_numpy_core_umath_failed_to_impor___pyx_n_s_numpy_linalg___pyx_n_s_object___pyx_kp_u_object_which_is_not_a_subclass___pyx_n_s_p___pyx_n_u_p___pyx_kp_u_p_must_be_1_dimensional___pyx_n_s_pickle___pyx_n_u_pos___pyx_kp_u_probabilities_are_not_non_negati___pyx_kp_u_probabilities_contain_NaN___pyx_kp_u_probabilities_do_not_sum_to_1___pyx_n_s_prod___pyx_n_s_pvals___pyx_n_u_pvals___pyx_n_s_pyx_vtable___pyx_n_u_raise___pyx_n_s_randomstate_ctor___pyx_n_s_range___pyx_n_s_ravel___pyx_n_s_reduce___pyx_n_s_replace___pyx_n_s_reshape___pyx_n_s_return_index___pyx_n_s_reversed___pyx_n_s_right___pyx_n_u_right___pyx_n_s_rtol___pyx_n_s_scale___pyx_n_u_scale___pyx_n_s_searchsorted___pyx_kp_u_set_state_can_only_be_used_with___pyx_n_s_shape___pyx_n_u_shape___pyx_n_s_side___pyx_n_s_sigma___pyx_n_u_sigma___pyx_n_s_size___pyx_n_s_sort___pyx_n_s_sqrt___pyx_n_s_stacklevel___pyx_n_s_state___pyx_n_u_state___pyx_kp_u_state_dictionary_is_not_valid___pyx_kp_u_state_must_be_a_dict_or_a_tuple___pyx_n_s_str___pyx_n_s_strides___pyx_n_s_subtract___pyx_n_s_sum___pyx_kp_u_sum_pvals_1_1_0___pyx_kp_u_sum_pvals_1_astype_np_float64_1___pyx_n_s_svd___pyx_n_s_take___pyx_n_s_tobytes___pyx_n_s_tol___pyx_n_s_type___pyx_kp_u_u4___pyx_n_s_uint16___pyx_n_s_uint32___pyx_n_s_uint64___pyx_n_s_uint8___pyx_n_s_unique___pyx_n_u_unsafe___pyx_n_s_warn___pyx_n_u_warn___pyx_kp_u_x_must_be_an_integer_or_at_least___pyx_kp_u_you_are_shuffling_a___pyx_n_s_zeros___pyx_builtin_ValueError___pyx_builtin_id___pyx_builtin_TypeError___pyx_builtin_RuntimeWarning___pyx_builtin_range___pyx_builtin_DeprecationWarning___pyx_builtin_OverflowError___pyx_builtin_UserWarning___pyx_builtin_reversed___pyx_builtin_IndexError___pyx_builtin_ImportError___pyx_tuple____pyx_tuple__2___pyx_tuple__5___pyx_tuple__6___pyx_tuple__7___pyx_tuple__8___pyx_tuple__9___pyx_tuple__10___pyx_tuple__11___pyx_tuple__13___pyx_tuple__15___pyx_tuple__16___pyx_tuple__17___pyx_tuple__18___pyx_tuple__19___pyx_tuple__20___pyx_tuple__21___pyx_tuple__22___pyx_tuple__23___pyx_tuple__24___pyx_tuple__25___pyx_tuple__26___pyx_tuple__27___pyx_tuple__28___pyx_tuple__29___pyx_tuple__30___pyx_tuple__31___pyx_tuple__32___pyx_tuple__33___pyx_tuple__34___pyx_tuple__35___pyx_tuple__36___pyx_tuple__37___pyx_slice__38___pyx_tuple__39___pyx_tuple__40___pyx_tuple__41___pyx_tuple__42___pyx_tuple__43___pyx_tuple__44___pyx_tuple__45___pyx_tuple__46___pyx_tuple__47___pyx_tuple__48___pyx_tuple__49___pyx_codeobj__50___pyx_tuple__51___pyx_codeobj__52___pyx_vtable_5numpy_6random_6mtrand_RandomState___pyx_vtabptr_5numpy_6random_6mtrand_RandomState___pyx_pf_5numpy_6random_6mtrand_11RandomState_12seed.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_12seed.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_14get_state.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_14get_state.__pyx_dict_cached_value___pyx_f_5numpy_6random_7_common_double_fill___pyx_f_5numpy_6random_7_common_cont___pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint.__pyx_dict_version.211___pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint.__pyx_dict_cached_value.212_PyArray_API___pyx_ptype_5numpy_dtype___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.214___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.215___pyx_f_5numpy_6random_17_bounded_integers__rand_int32___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.216___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.217___pyx_f_5numpy_6random_17_bounded_integers__rand_int64___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.218___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.219___pyx_f_5numpy_6random_17_bounded_integers__rand_int16___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.220___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.221___pyx_f_5numpy_6random_17_bounded_integers__rand_int8___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.222___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.223___pyx_f_5numpy_6random_17_bounded_integers__rand_uint64___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.224___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.225___pyx_f_5numpy_6random_17_bounded_integers__rand_uint32___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.226___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.227___pyx_f_5numpy_6random_17_bounded_integers__rand_uint16___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.228___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.229___pyx_f_5numpy_6random_17_bounded_integers__rand_uint8___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.230___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.231___pyx_f_5numpy_6random_17_bounded_integers__rand_bool___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.232___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.233___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.234___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.235___pyx_pf_5numpy_6random_6mtrand_11RandomState_32bytes.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_32bytes.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.241___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.242___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.243___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.244___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.245___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.246___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.247___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.248___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.249___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.250___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.251___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.252___pyx_ptype_5numpy_ndarray___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.253___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.254___pyx_ptype_5numpy_floating___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.255___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.256___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.257___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.258___pyx_f_5numpy_6random_7_common_kahan_sum___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.259___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.260___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.261___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.262___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.263___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.264___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.265___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.266___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.267___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.268___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.269___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.270___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.271___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.272___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.273___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.274___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.275___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.276___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.277___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.278___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_version.289___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_cached_value.290___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_version.291___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_cached_value.292___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_version.293___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_cached_value.294___pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers.__pyx_dict_version.298___pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers.__pyx_dict_cached_value.299___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.321___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.322___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.323___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.324___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.325___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.326___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.327___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.328___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.329___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.330___pyx_f_5numpy_6random_7_common_cont_broadcast_3___pyx_f_5numpy_6random_7_common_check_array_constraint___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_cached_value___pyx_ptype_5numpy_broadcast___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_version.332___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_cached_value.333___pyx_f_5numpy_6random_7_common_validate_output_shape___pyx_f_5numpy_6random_7_common_check_constraint___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_version.334___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_cached_value.335___pyx_f_5numpy_6random_7_common_disc___pyx_f_5numpy_6random_6mtrand_int64_to_long.__pyx_dict_version___pyx_f_5numpy_6random_6mtrand_int64_to_long.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.348___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.349___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.350___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.351___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.352___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.353___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.354___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.355___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.356___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.357___pyx_f_5numpy_6random_7_common_discrete_broadcast_iii___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.360___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.361___pyx_ptype_5numpy_integer___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.362___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.363___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.364___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.365___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.366___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.367___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.368___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.369___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.370___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.371___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.372___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.373___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_version.375___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_cached_value.376___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_version.377___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_cached_value.378___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version.380___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value.381___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version.382___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value.383___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version.384___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value.385___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version.386___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value.387___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.388___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.389___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.391___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.392___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.393___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.394___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.395___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.396___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.397___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.398___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.399___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.400___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.402___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.403___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.404___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.405___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.406___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.407___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.408___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.409___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.410___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.411___pyx_pf_5numpy_6random_6mtrand_11RandomState___init__.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState___init__.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState___init__.__pyx_dict_version.416___pyx_pf_5numpy_6random_6mtrand_11RandomState___init__.__pyx_dict_cached_value.417___pyx_ptype_7cpython_4type_type___pyx_ptype_7cpython_4bool_bool___pyx_ptype_7cpython_7complex_complex___pyx_ptype_5numpy_flatiter___pyx_ptype_5numpy_generic___pyx_ptype_5numpy_number___pyx_ptype_5numpy_signedinteger___pyx_ptype_5numpy_unsignedinteger___pyx_ptype_5numpy_inexact___pyx_ptype_5numpy_complexfloating___pyx_ptype_5numpy_flexible___pyx_ptype_5numpy_character___pyx_ptype_5numpy_ufunc___pyx_ptype_5numpy_6random_13bit_generator_BitGenerator___pyx_ptype_5numpy_6random_13bit_generator_SeedSequence___pyx_vtabptr_5numpy_6random_13bit_generator_SeedSequence___pyx_ptype_5numpy_6random_13bit_generator_SeedlessSequence___pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX___pyx_vp_5numpy_6random_7_common_MAXSIZE___pyx_pf_5numpy_6random_6mtrand_sample.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_sample.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_2ranf.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_2ranf.__pyx_dict_cached_value___Pyx_CLineForTraceback.__pyx_dict_version___Pyx_CLineForTraceback.__pyx_dict_cached_value___pyx_code_cache.0___pyx_code_cache.1___pyx_code_cache.2/Users/runner/work/1/s/numpy/numpy/random/mtrand.c/Users/runner/work/1/s/numpy/build/temp.macosx-10.9-x86_64-3.7/numpy/random/mtrand.o_PyInit_mtrandnumpy/random/mtrand.c___pyx_pymod_create___pyx_pymod_exec_mtrandbuild/src.macosx-10.9-x86_64-3.7/numpy/core/include/numpy/__multiarray_api.h___Pyx_Import___Pyx_AddTraceback___pyx_f_5numpy_6random_6mtrand_11RandomState__reset_gauss___pyx_f_5numpy_6random_6mtrand_11RandomState__shuffle_raw___pyx_tp_dealloc_5numpy_6random_6mtrand_RandomState___pyx_pw_5numpy_6random_6mtrand_11RandomState_3__repr_____pyx_pw_5numpy_6random_6mtrand_11RandomState_5__str_____pyx_tp_traverse_5numpy_6random_6mtrand_RandomState___pyx_tp_clear_5numpy_6random_6mtrand_RandomState___pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init_____pyx_tp_new_5numpy_6random_6mtrand_RandomState___Pyx_PyObject_CallOneArg___Pyx_PyObject_Call2Args___Pyx_PyFunction_FastCallDict___Pyx_PyObject_CallMethO___Pyx_PyObject_Call___pyx_pw_5numpy_6random_6mtrand_11RandomState_7__getstate_____pyx_pw_5numpy_6random_6mtrand_11RandomState_9__setstate_____pyx_pw_5numpy_6random_6mtrand_11RandomState_11__reduce_____pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed___pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state___pyx_pw_5numpy_6random_6mtrand_11RandomState_17set_state___pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample___pyx_pw_5numpy_6random_6mtrand_11RandomState_21random___pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta___pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential___pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential___pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint___pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint___pyx_pw_5numpy_6random_6mtrand_11RandomState_33bytes___pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice___pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform___pyx_pw_5numpy_6random_6mtrand_11RandomState_39rand___pyx_pw_5numpy_6random_6mtrand_11RandomState_41randn___pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers___pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma___pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma___pyx_pw_5numpy_6random_6mtrand_11RandomState_53f___pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f___pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare___pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare___pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy___pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t___pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises___pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto___pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull___pyx_pw_5numpy_6random_6mtrand_11RandomState_71power___pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace___pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel___pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic___pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal___pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh___pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald___pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular___pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson___pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf___pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric___pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric___pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries___pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal___pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial___pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet___pyx_pw_5numpy_6random_6mtrand_11RandomState_107shuffle___pyx_pw_5numpy_6random_6mtrand_11RandomState_109permutation___Pyx_PyDict_GetItem___Pyx_ParseOptionalKeywords___Pyx_Raise___Pyx_PyUnicode_Equals___Pyx_GetItemInt_Fast___Pyx_PyInt_As_int___Pyx_PyNumber_IntOrLong___Pyx__GetException___Pyx_PyInt_As_Py_intptr_t___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice___Pyx_PyObject_GetItem___Pyx_PyErr_GivenExceptionMatches___Pyx_PyInt_As_long___pyx_f_5numpy_6random_6mtrand_int64_to_long___Pyx_PyInt_As_int64_t___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle___pyx_getprop_5numpy_6random_6mtrand_11RandomState__bit_generator___pyx_setprop_5numpy_6random_6mtrand_11RandomState__bit_generator___Pyx_ImportType___Pyx_ImportVoidPtr___Pyx_ImportFunction___pyx_pw_5numpy_6random_6mtrand_1sample___pyx_pw_5numpy_6random_6mtrand_3ranf___pyx_k_Cannot_take_a_larger_sample_than___pyx_k_DeprecationWarning___pyx_k_Fewer_non_zero_entries_in_p_than___pyx_k_ImportError___pyx_k_IndexError___pyx_k_Invalid_bit_generator_The_bit_ge___pyx_k_MT19937___pyx_k_MT19937_2___pyx_k_Negative_dimensions_are_not_allo___pyx_k_OverflowError___pyx_k_Providing_a_dtype_with_a_non_nat___pyx_k_RandomState___pyx_k_RandomState_binomial_line_3280___pyx_k_RandomState_bytes_line_771___pyx_k_RandomState_chisquare_line_1854___pyx_k_RandomState_choice_line_807___pyx_k_RandomState_dirichlet_line_4274___pyx_k_RandomState_f_line_1676___pyx_k_RandomState_gamma_line_1593___pyx_k_RandomState_geometric_line_3685___pyx_k_RandomState_gumbel_line_2697___pyx_k_RandomState_hypergeometric_line___pyx_k_RandomState_laplace_line_2604___pyx_k_RandomState_logistic_line_2820___pyx_k_RandomState_lognormal_line_2905___pyx_k_RandomState_logseries_line_3879___pyx_k_RandomState_multinomial_line_414___pyx_k_RandomState_multivariate_normal___pyx_k_RandomState_negative_binomial_li___pyx_k_RandomState_noncentral_chisquare___pyx_k_RandomState_noncentral_f_line_17___pyx_k_RandomState_normal_line_1406___pyx_k_RandomState_pareto_line_2291___pyx_k_RandomState_permutation_line_454___pyx_k_RandomState_poisson_line_3517___pyx_k_RandomState_power_line_2496___pyx_k_RandomState_rand_line_1137___pyx_k_RandomState_randint_line_646___pyx_k_RandomState_randn_line_1181___pyx_k_RandomState_random_integers_line___pyx_k_RandomState_random_sample_line_3___pyx_k_RandomState_rayleigh_line_3020___pyx_k_RandomState_seed_line_224___pyx_k_RandomState_shuffle_line_4422___pyx_k_RandomState_standard_cauchy_line___pyx_k_RandomState_standard_exponential___pyx_k_RandomState_standard_gamma_line___pyx_k_RandomState_standard_normal_line___pyx_k_RandomState_standard_t_line_2089___pyx_k_RandomState_tomaxint_line_588___pyx_k_RandomState_triangular_line_3172___pyx_k_RandomState_uniform_line_1014___pyx_k_RandomState_vonmises_line_2203___pyx_k_RandomState_wald_line_3096___pyx_k_RandomState_weibull_line_2393___pyx_k_RandomState_zipf_line_3599___pyx_k_Range_exceeds_valid_bounds___pyx_k_RuntimeWarning___pyx_k_Sequence___pyx_k_Shuffling_a_one_dimensional_arra___pyx_k_T___pyx_k_This_function_is_deprecated_Plea___pyx_k_This_function_is_deprecated_Plea_2___pyx_k_TypeError___pyx_k_Unsupported_dtype_r_for_randint___pyx_k_UserWarning___pyx_k_ValueError___pyx_k__3___pyx_k__4___pyx_k_a___pyx_k_a_and_p_must_have_same_size___pyx_k_a_cannot_be_empty_unless_no_sam___pyx_k_a_must_be_1_dimensional___pyx_k_a_must_be_1_dimensional_or_an_in___pyx_k_a_must_be_greater_than_0_unless___pyx_k_add___pyx_k_all___pyx_k_all_2___pyx_k_allclose___pyx_k_alpha___pyx_k_alpha_0___pyx_k_any___pyx_k_arange___pyx_k_args___pyx_k_array___pyx_k_asarray___pyx_k_astype___pyx_k_at_0x_X___pyx_k_atol___pyx_k_b___pyx_k_binomial_n_p_size_None_Draw_sam___pyx_k_bit_generator___pyx_k_bool___pyx_k_bytes_length_Return_random_byte___pyx_k_can_only_re_seed_a_MT19937_BitGe___pyx_k_capsule___pyx_k_casting___pyx_k_check_valid___pyx_k_check_valid_must_equal_warn_rais___pyx_k_chisquare_df_size_None_Draw_sam___pyx_k_choice_a_size_None_replace_True___pyx_k_class___pyx_k_cline_in_traceback___pyx_k_collections_abc___pyx_k_compat___pyx_k_copy___pyx_k_count_nonzero___pyx_k_cov___pyx_k_cov_must_be_2_dimensional_and_sq___pyx_k_covariance_is_not_positive_semid___pyx_k_cumsum___pyx_k_df___pyx_k_dfden___pyx_k_dfnum___pyx_k_dirichlet_alpha_size_None_Draw___pyx_k_dot___pyx_k_empty___pyx_k_empty_like___pyx_k_enter___pyx_k_eps___pyx_k_equal___pyx_k_exit___pyx_k_f_dfnum_dfden_size_None_Draw_sa___pyx_k_finfo___pyx_k_float64___pyx_k_format___pyx_k_gamma_shape_scale_1_0_size_None___pyx_k_gauss___pyx_k_geometric_p_size_None_Draw_samp___pyx_k_get___pyx_k_get_state_and_legacy_can_only_be___pyx_k_greater___pyx_k_gumbel_loc_0_0_scale_1_0_size_N___pyx_k_has_gauss___pyx_k_high___pyx_k_hypergeometric_ngood_nbad_nsamp___pyx_k_id___pyx_k_ignore___pyx_k_import___pyx_k_index___pyx_k_int16___pyx_k_int32___pyx_k_int64___pyx_k_int8___pyx_k_intp___pyx_k_isfinite___pyx_k_isnan___pyx_k_isnative___pyx_k_isscalar___pyx_k_issubdtype___pyx_k_item___pyx_k_itemsize___pyx_k_kappa___pyx_k_key___pyx_k_kwargs___pyx_k_l___pyx_k_lam___pyx_k_laplace_loc_0_0_scale_1_0_size___pyx_k_left___pyx_k_left_mode___pyx_k_left_right___pyx_k_legacy___pyx_k_legacy_seeding___pyx_k_less___pyx_k_less_equal___pyx_k_loc___pyx_k_lock___pyx_k_logical_or___pyx_k_logistic_loc_0_0_scale_1_0_size___pyx_k_lognormal_mean_0_0_sigma_1_0_si___pyx_k_logseries_p_size_None_Draw_samp___pyx_k_long___pyx_k_low___pyx_k_main___pyx_k_may_share_memory___pyx_k_mean___pyx_k_mean_and_cov_must_have_same_leng___pyx_k_mean_must_be_1_dimensional___pyx_k_mode___pyx_k_mode_right___pyx_k_mt19937___pyx_k_mu___pyx_k_multinomial_n_pvals_size_None_D___pyx_k_multivariate_normal_mean_cov_si___pyx_k_n___pyx_k_name___pyx_k_nbad___pyx_k_ndim___pyx_k_negative_binomial_n_p_size_None___pyx_k_newbyteorder___pyx_k_ngood___pyx_k_ngood_nbad_nsample___pyx_k_nonc___pyx_k_noncentral_chisquare_df_nonc_si___pyx_k_noncentral_f_dfnum_dfden_nonc_s___pyx_k_normal_loc_0_0_scale_1_0_size_N___pyx_k_np___pyx_k_nsample___pyx_k_numpy_core_multiarray_failed_to___pyx_k_numpy_core_umath_failed_to_impor___pyx_k_numpy_linalg___pyx_k_object___pyx_k_object_which_is_not_a_subclass___pyx_k_operator___pyx_k_p___pyx_k_p_must_be_1_dimensional___pyx_k_pareto_a_size_None_Draw_samples___pyx_k_permutation_x_Randomly_permute___pyx_k_pickle___pyx_k_poisson_lam_1_0_size_None_Draw___pyx_k_poisson_lam_max___pyx_k_pos___pyx_k_power_a_size_None_Draws_samples___pyx_k_probabilities_are_not_non_negati___pyx_k_probabilities_contain_NaN___pyx_k_probabilities_do_not_sum_to_1___pyx_k_prod___pyx_k_pvals___pyx_k_pyx_vtable___pyx_k_raise___pyx_k_rand_2___pyx_k_rand_d0_d1_dn_Random_values_in___pyx_k_randint_low_high_None_size_None___pyx_k_randn_d0_d1_dn_Return_a_sample___pyx_k_random_integers_low_high_None_s___pyx_k_random_sample_size_None_Return___pyx_k_randomstate_ctor___pyx_k_range___pyx_k_ravel___pyx_k_rayleigh_scale_1_0_size_None_Dr___pyx_k_reduce___pyx_k_replace___pyx_k_reshape___pyx_k_return_index___pyx_k_reversed___pyx_k_right___pyx_k_rtol___pyx_k_scale___pyx_k_searchsorted___pyx_k_seed_self_seed_None_Reseed_a_le___pyx_k_set_state_can_only_be_used_with___pyx_k_shape___pyx_k_shuffle_x_Modify_a_sequence_in___pyx_k_side___pyx_k_sigma___pyx_k_size___pyx_k_sort___pyx_k_sqrt___pyx_k_stacklevel___pyx_k_standard_cauchy_size_None_Draw___pyx_k_standard_exponential_size_None___pyx_k_standard_gamma_shape_size_None___pyx_k_standard_normal_size_None_Draw___pyx_k_standard_t_df_size_None_Draw_sa___pyx_k_state___pyx_k_state_dictionary_is_not_valid___pyx_k_state_must_be_a_dict_or_a_tuple___pyx_k_str___pyx_k_strides___pyx_k_subtract___pyx_k_sum___pyx_k_sum_pvals_1_1_0___pyx_k_sum_pvals_1_astype_np_float64_1___pyx_k_svd___pyx_k_take___pyx_k_test___pyx_k_tobytes___pyx_k_tol___pyx_k_tomaxint_size_None_Return_a_sam___pyx_k_triangular_left_mode_right_size___pyx_k_u4___pyx_k_uint16___pyx_k_uint32___pyx_k_uint64___pyx_k_uint8___pyx_k_uniform_low_0_0_high_1_0_size_N___pyx_k_unique___pyx_k_unsafe___pyx_k_vonmises_mu_kappa_size_None_Dra___pyx_k_wald_mean_scale_size_None_Draw___pyx_k_warn___pyx_k_warnings___pyx_k_weibull_a_size_None_Draw_sample___pyx_k_x_must_be_an_integer_or_at_least___pyx_k_you_are_shuffling_a___pyx_k_zeros___pyx_k_zipf_a_size_None_Draw_samples_f___pyx_string_tab___pyx_moduledef___pyx_moduledef_slots___Pyx_check_single_interpreter.main_interpreter_id___pyx_mdef_5numpy_6random_6mtrand_1sample___pyx_mdef_5numpy_6random_6mtrand_3ranf___pyx_type_5numpy_6random_6mtrand_RandomState___pyx_methods_5numpy_6random_6mtrand_RandomState___pyx_getsets_5numpy_6random_6mtrand_RandomState___pyx_doc_5numpy_6random_6mtrand_11RandomState_12seed___pyx_doc_5numpy_6random_6mtrand_11RandomState_14get_state___pyx_doc_5numpy_6random_6mtrand_11RandomState_16set_state___pyx_doc_5numpy_6random_6mtrand_11RandomState_18random_sample___pyx_doc_5numpy_6random_6mtrand_11RandomState_20random___pyx_doc_5numpy_6random_6mtrand_11RandomState_22beta___pyx_doc_5numpy_6random_6mtrand_11RandomState_24exponential___pyx_doc_5numpy_6random_6mtrand_11RandomState_26standard_exponential___pyx_doc_5numpy_6random_6mtrand_11RandomState_28tomaxint___pyx_doc_5numpy_6random_6mtrand_11RandomState_30randint___pyx_doc_5numpy_6random_6mtrand_11RandomState_32bytes___pyx_doc_5numpy_6random_6mtrand_11RandomState_34choice___pyx_doc_5numpy_6random_6mtrand_11RandomState_36uniform___pyx_doc_5numpy_6random_6mtrand_11RandomState_38rand___pyx_doc_5numpy_6random_6mtrand_11RandomState_40randn___pyx_doc_5numpy_6random_6mtrand_11RandomState_42random_integers___pyx_doc_5numpy_6random_6mtrand_11RandomState_44standard_normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_46normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_48standard_gamma___pyx_doc_5numpy_6random_6mtrand_11RandomState_50gamma___pyx_doc_5numpy_6random_6mtrand_11RandomState_52f___pyx_doc_5numpy_6random_6mtrand_11RandomState_54noncentral_f___pyx_doc_5numpy_6random_6mtrand_11RandomState_56chisquare___pyx_doc_5numpy_6random_6mtrand_11RandomState_58noncentral_chisquare___pyx_doc_5numpy_6random_6mtrand_11RandomState_60standard_cauchy___pyx_doc_5numpy_6random_6mtrand_11RandomState_62standard_t___pyx_doc_5numpy_6random_6mtrand_11RandomState_64vonmises___pyx_doc_5numpy_6random_6mtrand_11RandomState_66pareto___pyx_doc_5numpy_6random_6mtrand_11RandomState_68weibull___pyx_doc_5numpy_6random_6mtrand_11RandomState_70power___pyx_doc_5numpy_6random_6mtrand_11RandomState_72laplace___pyx_doc_5numpy_6random_6mtrand_11RandomState_74gumbel___pyx_doc_5numpy_6random_6mtrand_11RandomState_76logistic___pyx_doc_5numpy_6random_6mtrand_11RandomState_78lognormal___pyx_doc_5numpy_6random_6mtrand_11RandomState_80rayleigh___pyx_doc_5numpy_6random_6mtrand_11RandomState_82wald___pyx_doc_5numpy_6random_6mtrand_11RandomState_84triangular___pyx_doc_5numpy_6random_6mtrand_11RandomState_86binomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_88negative_binomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_90poisson___pyx_doc_5numpy_6random_6mtrand_11RandomState_92zipf___pyx_doc_5numpy_6random_6mtrand_11RandomState_94geometric___pyx_doc_5numpy_6random_6mtrand_11RandomState_96hypergeometric___pyx_doc_5numpy_6random_6mtrand_11RandomState_98logseries___pyx_doc_5numpy_6random_6mtrand_11RandomState_100multivariate_normal___pyx_doc_5numpy_6random_6mtrand_11RandomState_102multinomial___pyx_doc_5numpy_6random_6mtrand_11RandomState_104dirichlet___pyx_doc_5numpy_6random_6mtrand_11RandomState_106shuffle___pyx_doc_5numpy_6random_6mtrand_11RandomState_108permutation___pyx_pw_5numpy_6random_6mtrand_11RandomState_13seed.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_15get_state.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_19random_sample.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_21random.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_23beta.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_25exponential.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_27standard_exponential.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_29tomaxint.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_31randint.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_35choice.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_37uniform.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_43random_integers.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_45standard_normal.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_47normal.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_49standard_gamma.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_51gamma.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_53f.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_55noncentral_f.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_57chisquare.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_59noncentral_chisquare.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_61standard_cauchy.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_63standard_t.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_65vonmises.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_67pareto.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_69weibull.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_71power.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_73laplace.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_75gumbel.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_77logistic.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_79lognormal.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_81rayleigh.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_83wald.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_85triangular.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_87binomial.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_89negative_binomial.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_91poisson.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_93zipf.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_95geometric.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_97hypergeometric.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_99logseries.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_101multivariate_normal.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_103multinomial.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_105dirichlet.__pyx_pyargnames___pyx_pw_5numpy_6random_6mtrand_11RandomState_1__init__.__pyx_pyargnames___pyx_doc_5numpy_6random_6mtrand_sample___pyx_doc_5numpy_6random_6mtrand_2ranf___pyx_module_is_main_numpy__random__mtrand___pyx_methods___pyx_m___pyx_pyframe_localsplus_offset___pyx_empty_tuple___pyx_empty_bytes___pyx_empty_unicode___pyx_d___pyx_b___pyx_cython_runtime___pyx_n_s_name___pyx_n_s_main___pyx_n_s_operator___pyx_n_s_warnings___pyx_n_s_Sequence___pyx_n_s_collections_abc___pyx_n_s_numpy___pyx_n_s_np___pyx_n_s_MT19937_2___pyx_n_s_mt19937___pyx_n_s_MT19937___pyx_vp_5numpy_6random_7_common_POISSON_LAM_MAX___pyx_ptype_5numpy_6random_6mtrand_RandomState___pyx_n_s_poisson_lam_max___pyx_k__14___pyx_n_s_rand_2___pyx_pymod_exec_mtrand.__pyx_dict_version___pyx_pymod_exec_mtrand.__pyx_dict_cached_value___pyx_n_s_beta___pyx_pymod_exec_mtrand.__pyx_dict_version.17___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.18___pyx_n_s_binomial___pyx_pymod_exec_mtrand.__pyx_dict_version.19___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.20___pyx_n_s_bytes___pyx_pymod_exec_mtrand.__pyx_dict_version.21___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.22___pyx_n_s_chisquare___pyx_pymod_exec_mtrand.__pyx_dict_version.23___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.24___pyx_n_s_choice___pyx_pymod_exec_mtrand.__pyx_dict_version.25___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.26___pyx_n_s_dirichlet___pyx_pymod_exec_mtrand.__pyx_dict_version.27___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.28___pyx_n_s_exponential___pyx_pymod_exec_mtrand.__pyx_dict_version.29___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.30___pyx_n_s_f___pyx_pymod_exec_mtrand.__pyx_dict_version.31___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.32___pyx_n_s_gamma___pyx_pymod_exec_mtrand.__pyx_dict_version.33___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.34___pyx_n_s_get_state___pyx_pymod_exec_mtrand.__pyx_dict_version.35___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.36___pyx_n_s_geometric___pyx_pymod_exec_mtrand.__pyx_dict_version.37___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.38___pyx_n_s_gumbel___pyx_pymod_exec_mtrand.__pyx_dict_version.39___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.40___pyx_n_s_hypergeometric___pyx_pymod_exec_mtrand.__pyx_dict_version.41___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.42___pyx_n_s_laplace___pyx_pymod_exec_mtrand.__pyx_dict_version.43___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.44___pyx_n_s_logistic___pyx_pymod_exec_mtrand.__pyx_dict_version.45___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.46___pyx_n_s_lognormal___pyx_pymod_exec_mtrand.__pyx_dict_version.47___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.48___pyx_n_s_logseries___pyx_pymod_exec_mtrand.__pyx_dict_version.49___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.50___pyx_n_s_multinomial___pyx_pymod_exec_mtrand.__pyx_dict_version.51___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.52___pyx_n_s_multivariate_normal___pyx_pymod_exec_mtrand.__pyx_dict_version.53___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.54___pyx_n_s_negative_binomial___pyx_pymod_exec_mtrand.__pyx_dict_version.55___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.56___pyx_n_s_noncentral_chisquare___pyx_pymod_exec_mtrand.__pyx_dict_version.57___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.58___pyx_n_s_noncentral_f___pyx_pymod_exec_mtrand.__pyx_dict_version.59___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.60___pyx_n_s_normal___pyx_pymod_exec_mtrand.__pyx_dict_version.61___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.62___pyx_n_s_pareto___pyx_pymod_exec_mtrand.__pyx_dict_version.63___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.64___pyx_n_s_permutation___pyx_pymod_exec_mtrand.__pyx_dict_version.65___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.66___pyx_n_s_poisson___pyx_pymod_exec_mtrand.__pyx_dict_version.67___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.68___pyx_n_s_power___pyx_pymod_exec_mtrand.__pyx_dict_version.69___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.70___pyx_n_s_rand___pyx_pymod_exec_mtrand.__pyx_dict_version.71___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.72___pyx_n_s_randint___pyx_pymod_exec_mtrand.__pyx_dict_version.73___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.74___pyx_n_s_randn___pyx_pymod_exec_mtrand.__pyx_dict_version.75___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.76___pyx_n_s_random___pyx_pymod_exec_mtrand.__pyx_dict_version.77___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.78___pyx_n_s_random_integers___pyx_pymod_exec_mtrand.__pyx_dict_version.79___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.80___pyx_n_s_random_sample___pyx_pymod_exec_mtrand.__pyx_dict_version.81___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.82___pyx_n_s_rayleigh___pyx_pymod_exec_mtrand.__pyx_dict_version.83___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.84___pyx_n_s_seed___pyx_pymod_exec_mtrand.__pyx_dict_version.85___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.86___pyx_n_s_set_state___pyx_pymod_exec_mtrand.__pyx_dict_version.87___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.88___pyx_n_s_shuffle___pyx_pymod_exec_mtrand.__pyx_dict_version.89___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.90___pyx_n_s_standard_cauchy___pyx_pymod_exec_mtrand.__pyx_dict_version.91___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.92___pyx_n_s_standard_exponential___pyx_pymod_exec_mtrand.__pyx_dict_version.93___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.94___pyx_n_s_standard_gamma___pyx_pymod_exec_mtrand.__pyx_dict_version.95___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.96___pyx_n_s_standard_normal___pyx_pymod_exec_mtrand.__pyx_dict_version.97___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.98___pyx_n_s_standard_t___pyx_pymod_exec_mtrand.__pyx_dict_version.99___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.100___pyx_n_s_triangular___pyx_pymod_exec_mtrand.__pyx_dict_version.101___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.102___pyx_n_s_uniform___pyx_pymod_exec_mtrand.__pyx_dict_version.103___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.104___pyx_n_s_vonmises___pyx_pymod_exec_mtrand.__pyx_dict_version.105___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.106___pyx_n_s_wald___pyx_pymod_exec_mtrand.__pyx_dict_version.107___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.108___pyx_n_s_weibull___pyx_pymod_exec_mtrand.__pyx_dict_version.109___pyx_pymod_exec_mtrand.__pyx_dict_cached_value.110___pyx_n_s_zipf___pyx_n_s_numpy_random_mtrand___pyx_n_s_sample___pyx_n_s_ranf___pyx_n_u_beta___pyx_n_u_binomial___pyx_n_u_bytes___pyx_n_u_chisquare___pyx_n_u_choice___pyx_n_u_dirichlet___pyx_n_u_exponential___pyx_n_u_f___pyx_n_u_gamma___pyx_n_u_geometric___pyx_n_u_get_state___pyx_n_u_gumbel___pyx_n_u_hypergeometric___pyx_n_u_laplace___pyx_n_u_logistic___pyx_n_u_lognormal___pyx_n_u_logseries___pyx_n_u_multinomial___pyx_n_u_multivariate_normal___pyx_n_u_negative_binomial___pyx_n_u_noncentral_chisquare___pyx_n_u_noncentral_f___pyx_n_u_normal___pyx_n_u_pareto___pyx_n_u_permutation___pyx_n_u_poisson___pyx_n_u_power___pyx_n_u_rand___pyx_n_u_randint___pyx_n_u_randn___pyx_n_u_random___pyx_n_u_random_integers___pyx_n_u_random_sample___pyx_n_u_ranf___pyx_n_u_rayleigh___pyx_n_u_sample___pyx_n_u_seed___pyx_n_u_set_state___pyx_n_u_shuffle___pyx_n_u_standard_cauchy___pyx_n_u_standard_exponential___pyx_n_u_standard_gamma___pyx_n_u_standard_normal___pyx_n_u_standard_t___pyx_n_u_triangular___pyx_n_u_uniform___pyx_n_u_vonmises___pyx_n_u_wald___pyx_n_u_weibull___pyx_n_u_zipf___pyx_n_u_RandomState___pyx_n_s_all_2___pyx_kp_u_RandomState_seed_line_224___pyx_kp_u_seed_self_seed_None_Reseed_a_le___pyx_kp_u_RandomState_random_sample_line_3___pyx_kp_u_random_sample_size_None_Return___pyx_kp_u_RandomState_standard_exponential___pyx_kp_u_standard_exponential_size_None___pyx_kp_u_RandomState_tomaxint_line_588___pyx_kp_u_tomaxint_size_None_Return_a_sam___pyx_kp_u_RandomState_randint_line_646___pyx_kp_u_randint_low_high_None_size_None___pyx_kp_u_RandomState_bytes_line_771___pyx_kp_u_bytes_length_Return_random_byte___pyx_kp_u_RandomState_choice_line_807___pyx_kp_u_choice_a_size_None_replace_True___pyx_kp_u_RandomState_uniform_line_1014___pyx_kp_u_uniform_low_0_0_high_1_0_size_N___pyx_kp_u_RandomState_rand_line_1137___pyx_kp_u_rand_d0_d1_dn_Random_values_in___pyx_kp_u_RandomState_randn_line_1181___pyx_kp_u_randn_d0_d1_dn_Return_a_sample___pyx_kp_u_RandomState_random_integers_line___pyx_kp_u_random_integers_low_high_None_s___pyx_kp_u_RandomState_standard_normal_line___pyx_kp_u_standard_normal_size_None_Draw___pyx_kp_u_RandomState_normal_line_1406___pyx_kp_u_normal_loc_0_0_scale_1_0_size_N___pyx_kp_u_RandomState_standard_gamma_line___pyx_kp_u_standard_gamma_shape_size_None___pyx_kp_u_RandomState_gamma_line_1593___pyx_kp_u_gamma_shape_scale_1_0_size_None___pyx_kp_u_RandomState_f_line_1676___pyx_kp_u_f_dfnum_dfden_size_None_Draw_sa___pyx_kp_u_RandomState_noncentral_f_line_17___pyx_kp_u_noncentral_f_dfnum_dfden_nonc_s___pyx_kp_u_RandomState_chisquare_line_1854___pyx_kp_u_chisquare_df_size_None_Draw_sam___pyx_kp_u_RandomState_noncentral_chisquare___pyx_kp_u_noncentral_chisquare_df_nonc_si___pyx_kp_u_RandomState_standard_cauchy_line___pyx_kp_u_standard_cauchy_size_None_Draw___pyx_kp_u_RandomState_standard_t_line_2089___pyx_kp_u_standard_t_df_size_None_Draw_sa___pyx_kp_u_RandomState_vonmises_line_2203___pyx_kp_u_vonmises_mu_kappa_size_None_Dra___pyx_kp_u_RandomState_pareto_line_2291___pyx_kp_u_pareto_a_size_None_Draw_samples___pyx_kp_u_RandomState_weibull_line_2393___pyx_kp_u_weibull_a_size_None_Draw_sample___pyx_kp_u_RandomState_power_line_2496___pyx_kp_u_power_a_size_None_Draws_samples___pyx_kp_u_RandomState_laplace_line_2604___pyx_kp_u_laplace_loc_0_0_scale_1_0_size___pyx_kp_u_RandomState_gumbel_line_2697___pyx_kp_u_gumbel_loc_0_0_scale_1_0_size_N___pyx_kp_u_RandomState_logistic_line_2820___pyx_kp_u_logistic_loc_0_0_scale_1_0_size___pyx_kp_u_RandomState_lognormal_line_2905___pyx_kp_u_lognormal_mean_0_0_sigma_1_0_si___pyx_kp_u_RandomState_rayleigh_line_3020___pyx_kp_u_rayleigh_scale_1_0_size_None_Dr___pyx_kp_u_RandomState_wald_line_3096___pyx_kp_u_wald_mean_scale_size_None_Draw___pyx_kp_u_RandomState_triangular_line_3172___pyx_kp_u_triangular_left_mode_right_size___pyx_kp_u_RandomState_binomial_line_3280___pyx_kp_u_binomial_n_p_size_None_Draw_sam___pyx_kp_u_RandomState_negative_binomial_li___pyx_kp_u_negative_binomial_n_p_size_None___pyx_kp_u_RandomState_poisson_line_3517___pyx_kp_u_poisson_lam_1_0_size_None_Draw___pyx_kp_u_RandomState_zipf_line_3599___pyx_kp_u_zipf_a_size_None_Draw_samples_f___pyx_kp_u_RandomState_geometric_line_3685___pyx_kp_u_geometric_p_size_None_Draw_samp___pyx_kp_u_RandomState_hypergeometric_line___pyx_kp_u_hypergeometric_ngood_nbad_nsamp___pyx_kp_u_RandomState_logseries_line_3879___pyx_kp_u_logseries_p_size_None_Draw_samp___pyx_kp_u_RandomState_multivariate_normal___pyx_kp_u_multivariate_normal_mean_cov_si___pyx_kp_u_RandomState_multinomial_line_414___pyx_kp_u_multinomial_n_pvals_size_None_D___pyx_kp_u_RandomState_dirichlet_line_4274___pyx_kp_u_dirichlet_alpha_size_None_Draw___pyx_kp_u_RandomState_shuffle_line_4422___pyx_kp_u_shuffle_x_Modify_a_sequence_in___pyx_kp_u_RandomState_permutation_line_454___pyx_kp_u_permutation_x_Randomly_permute___pyx_n_s_test___pyx_float_0_0___pyx_float_1_0___pyx_float_1eneg_8___pyx_float_1_0001___pyx_int_0___pyx_int_1___pyx_int_4294967296___pyx_int_neg_1___pyx_kp_u_Cannot_take_a_larger_sample_than___pyx_n_s_DeprecationWarning___pyx_kp_u_Fewer_non_zero_entries_in_p_than___pyx_n_s_ImportError___pyx_n_s_IndexError___pyx_kp_u_Invalid_bit_generator_The_bit_ge___pyx_n_u_MT19937_2___pyx_kp_u_Negative_dimensions_are_not_allo___pyx_n_s_OverflowError___pyx_kp_u_Providing_a_dtype_with_a_non_nat___pyx_n_s_RandomState___pyx_kp_u_Range_exceeds_valid_bounds___pyx_n_s_RuntimeWarning___pyx_kp_u_Shuffling_a_one_dimensional_arra___pyx_n_s_T___pyx_kp_u_This_function_is_deprecated_Plea___pyx_kp_u_This_function_is_deprecated_Plea_2___pyx_n_s_TypeError___pyx_kp_u_Unsupported_dtype_r_for_randint___pyx_n_s_UserWarning___pyx_n_s_ValueError___pyx_kp_u__12___pyx_kp_u__3___pyx_kp_u__4___pyx_n_s_a___pyx_n_u_a___pyx_kp_u_a_and_p_must_have_same_size___pyx_kp_u_a_cannot_be_empty_unless_no_sam___pyx_kp_u_a_must_be_1_dimensional___pyx_kp_u_a_must_be_1_dimensional_or_an_in___pyx_kp_u_a_must_be_greater_than_0_unless___pyx_n_s_add___pyx_n_s_all___pyx_n_s_allclose___pyx_n_s_alpha___pyx_kp_u_alpha_0___pyx_n_s_any___pyx_n_s_arange___pyx_n_s_args___pyx_n_s_array___pyx_n_s_asarray___pyx_n_s_astype___pyx_kp_u_at_0x_X___pyx_n_s_atol___pyx_n_s_b___pyx_n_u_b___pyx_n_u_bit_generator___pyx_n_s_bool___pyx_kp_u_can_only_re_seed_a_MT19937_BitGe___pyx_n_s_capsule___pyx_n_u_capsule___pyx_n_s_casting___pyx_n_s_check_valid___pyx_kp_u_check_valid_must_equal_warn_rais___pyx_n_s_class___pyx_n_s_cline_in_traceback___pyx_n_s_compat___pyx_n_s_copy___pyx_n_s_count_nonzero___pyx_n_s_cov___pyx_kp_u_cov_must_be_2_dimensional_and_sq___pyx_kp_u_covariance_is_not_positive_semid___pyx_n_s_cumsum___pyx_n_s_df___pyx_n_u_df___pyx_n_s_dfden___pyx_n_u_dfden___pyx_n_s_dfnum___pyx_n_u_dfnum___pyx_n_s_dot___pyx_n_s_double___pyx_n_s_dtype___pyx_n_s_empty___pyx_n_s_empty_like___pyx_n_s_enter___pyx_n_s_eps___pyx_n_s_equal___pyx_n_s_exit___pyx_n_s_finfo___pyx_n_s_float64___pyx_n_s_format___pyx_n_u_gauss___pyx_n_s_get___pyx_kp_u_get_state_and_legacy_can_only_be___pyx_n_s_greater___pyx_n_u_has_gauss___pyx_n_s_high___pyx_n_s_id___pyx_n_u_ignore___pyx_n_s_import___pyx_n_s_index___pyx_n_s_int16___pyx_n_s_int32___pyx_n_s_int64___pyx_n_s_int8___pyx_n_s_intp___pyx_n_s_isfinite___pyx_n_s_isnan___pyx_n_s_isnative___pyx_n_s_isscalar___pyx_n_s_issubdtype___pyx_n_s_item___pyx_n_s_itemsize___pyx_n_s_kappa___pyx_n_u_kappa___pyx_n_u_key___pyx_n_s_kwargs___pyx_n_u_l___pyx_n_s_lam___pyx_n_u_lam___pyx_n_s_left___pyx_kp_u_left_mode___pyx_kp_u_left_right___pyx_n_s_legacy___pyx_n_s_legacy_seeding___pyx_n_s_less___pyx_n_s_less_equal___pyx_n_s_loc___pyx_n_u_loc___pyx_n_s_lock___pyx_n_s_logical_or___pyx_n_s_long___pyx_n_s_low___pyx_n_s_may_share_memory___pyx_n_s_mean___pyx_n_u_mean___pyx_kp_u_mean_and_cov_must_have_same_leng___pyx_kp_u_mean_must_be_1_dimensional___pyx_n_s_mode___pyx_kp_u_mode_right___pyx_kp_s_mtrand_pyx___pyx_n_s_mu___pyx_n_u_mu___pyx_n_s_n___pyx_n_u_n___pyx_n_s_nbad___pyx_n_u_nbad___pyx_n_s_ndim___pyx_n_s_newbyteorder___pyx_n_s_ngood___pyx_n_u_ngood___pyx_kp_u_ngood_nbad_nsample___pyx_n_s_nonc___pyx_n_u_nonc___pyx_n_s_nsample___pyx_n_u_nsample___pyx_kp_u_numpy_core_multiarray_failed_to___pyx_kp_u_numpy_core_umath_failed_to_impor___pyx_n_s_numpy_linalg___pyx_n_s_object___pyx_kp_u_object_which_is_not_a_subclass___pyx_n_s_p___pyx_n_u_p___pyx_kp_u_p_must_be_1_dimensional___pyx_n_s_pickle___pyx_n_u_pos___pyx_kp_u_probabilities_are_not_non_negati___pyx_kp_u_probabilities_contain_NaN___pyx_kp_u_probabilities_do_not_sum_to_1___pyx_n_s_prod___pyx_n_s_pvals___pyx_n_u_pvals___pyx_n_s_pyx_vtable___pyx_n_u_raise___pyx_n_s_randomstate_ctor___pyx_n_s_range___pyx_n_s_ravel___pyx_n_s_reduce___pyx_n_s_replace___pyx_n_s_reshape___pyx_n_s_return_index___pyx_n_s_reversed___pyx_n_s_right___pyx_n_u_right___pyx_n_s_rtol___pyx_n_s_scale___pyx_n_u_scale___pyx_n_s_searchsorted___pyx_kp_u_set_state_can_only_be_used_with___pyx_n_s_shape___pyx_n_u_shape___pyx_n_s_side___pyx_n_s_sigma___pyx_n_u_sigma___pyx_n_s_size___pyx_n_s_sort___pyx_n_s_sqrt___pyx_n_s_stacklevel___pyx_n_s_state___pyx_n_u_state___pyx_kp_u_state_dictionary_is_not_valid___pyx_kp_u_state_must_be_a_dict_or_a_tuple___pyx_n_s_str___pyx_n_s_strides___pyx_n_s_subtract___pyx_n_s_sum___pyx_kp_u_sum_pvals_1_1_0___pyx_kp_u_sum_pvals_1_astype_np_float64_1___pyx_n_s_svd___pyx_n_s_take___pyx_n_s_tobytes___pyx_n_s_tol___pyx_n_s_type___pyx_kp_u_u4___pyx_n_s_uint16___pyx_n_s_uint32___pyx_n_s_uint64___pyx_n_s_uint8___pyx_n_s_unique___pyx_n_u_unsafe___pyx_n_s_warn___pyx_n_u_warn___pyx_kp_u_x_must_be_an_integer_or_at_least___pyx_kp_u_you_are_shuffling_a___pyx_n_s_zeros___pyx_builtin_ValueError___pyx_builtin_id___pyx_builtin_TypeError___pyx_builtin_RuntimeWarning___pyx_builtin_range___pyx_builtin_DeprecationWarning___pyx_builtin_OverflowError___pyx_builtin_UserWarning___pyx_builtin_reversed___pyx_builtin_IndexError___pyx_builtin_ImportError___pyx_tuple____pyx_tuple__2___pyx_tuple__5___pyx_tuple__6___pyx_tuple__7___pyx_tuple__8___pyx_tuple__9___pyx_tuple__10___pyx_tuple__11___pyx_tuple__13___pyx_tuple__15___pyx_tuple__16___pyx_tuple__17___pyx_tuple__18___pyx_tuple__19___pyx_tuple__20___pyx_tuple__21___pyx_tuple__22___pyx_tuple__23___pyx_tuple__24___pyx_tuple__25___pyx_tuple__26___pyx_tuple__27___pyx_tuple__28___pyx_tuple__29___pyx_tuple__30___pyx_tuple__31___pyx_tuple__32___pyx_tuple__33___pyx_tuple__34___pyx_tuple__35___pyx_tuple__36___pyx_tuple__37___pyx_slice__38___pyx_tuple__39___pyx_tuple__40___pyx_tuple__41___pyx_tuple__42___pyx_tuple__43___pyx_tuple__44___pyx_tuple__45___pyx_tuple__46___pyx_tuple__47___pyx_tuple__48___pyx_tuple__49___pyx_codeobj__50___pyx_tuple__51___pyx_codeobj__52___pyx_vtable_5numpy_6random_6mtrand_RandomState___pyx_vtabptr_5numpy_6random_6mtrand_RandomState___pyx_pf_5numpy_6random_6mtrand_11RandomState_12seed.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_12seed.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_14get_state.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_14get_state.__pyx_dict_cached_value___pyx_f_5numpy_6random_7_common_double_fill___pyx_f_5numpy_6random_7_common_cont___pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint.__pyx_dict_version.211___pyx_pf_5numpy_6random_6mtrand_11RandomState_28tomaxint.__pyx_dict_cached_value.212_PyArray_API___pyx_ptype_5numpy_dtype___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.214___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.215___pyx_f_5numpy_6random_17_bounded_integers__rand_int32___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.216___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.217___pyx_f_5numpy_6random_17_bounded_integers__rand_int64___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.218___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.219___pyx_f_5numpy_6random_17_bounded_integers__rand_int16___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.220___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.221___pyx_f_5numpy_6random_17_bounded_integers__rand_int8___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.222___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.223___pyx_f_5numpy_6random_17_bounded_integers__rand_uint64___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.224___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.225___pyx_f_5numpy_6random_17_bounded_integers__rand_uint32___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.226___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.227___pyx_f_5numpy_6random_17_bounded_integers__rand_uint16___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.228___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.229___pyx_f_5numpy_6random_17_bounded_integers__rand_uint8___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.230___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.231___pyx_f_5numpy_6random_17_bounded_integers__rand_bool___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.232___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.233___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_version.234___pyx_pf_5numpy_6random_6mtrand_11RandomState_30randint.__pyx_dict_cached_value.235___pyx_pf_5numpy_6random_6mtrand_11RandomState_32bytes.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_32bytes.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.241___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.242___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.243___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.244___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.245___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.246___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.247___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.248___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.249___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.250___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.251___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.252___pyx_ptype_5numpy_ndarray___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.253___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.254___pyx_ptype_5numpy_floating___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.255___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.256___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.257___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.258___pyx_f_5numpy_6random_7_common_kahan_sum___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.259___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.260___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.261___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.262___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.263___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.264___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.265___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.266___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.267___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.268___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.269___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.270___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.271___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.272___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.273___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.274___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.275___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.276___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_version.277___pyx_pf_5numpy_6random_6mtrand_11RandomState_34choice.__pyx_dict_cached_value.278___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_version.289___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_cached_value.290___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_version.291___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_cached_value.292___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_version.293___pyx_pf_5numpy_6random_6mtrand_11RandomState_36uniform.__pyx_dict_cached_value.294___pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers.__pyx_dict_version.298___pyx_pf_5numpy_6random_6mtrand_11RandomState_42random_integers.__pyx_dict_cached_value.299___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.321___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.322___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.323___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.324___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.325___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.326___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.327___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.328___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_version.329___pyx_pf_5numpy_6random_6mtrand_11RandomState_84triangular.__pyx_dict_cached_value.330___pyx_f_5numpy_6random_7_common_cont_broadcast_3___pyx_f_5numpy_6random_7_common_check_array_constraint___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_cached_value___pyx_ptype_5numpy_broadcast___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_version.332___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_cached_value.333___pyx_f_5numpy_6random_7_common_validate_output_shape___pyx_f_5numpy_6random_7_common_check_constraint___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_version.334___pyx_pf_5numpy_6random_6mtrand_11RandomState_86binomial.__pyx_dict_cached_value.335___pyx_f_5numpy_6random_7_common_disc___pyx_f_5numpy_6random_6mtrand_int64_to_long.__pyx_dict_version___pyx_f_5numpy_6random_6mtrand_int64_to_long.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.348___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.349___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.350___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.351___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.352___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.353___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.354___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.355___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_version.356___pyx_pf_5numpy_6random_6mtrand_11RandomState_96hypergeometric.__pyx_dict_cached_value.357___pyx_f_5numpy_6random_7_common_discrete_broadcast_iii___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.360___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.361___pyx_ptype_5numpy_integer___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.362___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.363___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.364___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.365___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.366___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.367___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.368___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.369___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.370___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.371___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_version.372___pyx_pf_5numpy_6random_6mtrand_11RandomState_100multivariate_normal.__pyx_dict_cached_value.373___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_version.375___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_cached_value.376___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_version.377___pyx_pf_5numpy_6random_6mtrand_11RandomState_102multinomial.__pyx_dict_cached_value.378___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version.380___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value.381___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version.382___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value.383___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version.384___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value.385___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_version.386___pyx_pf_5numpy_6random_6mtrand_11RandomState_104dirichlet.__pyx_dict_cached_value.387___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.388___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.389___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.391___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.392___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.393___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.394___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.395___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.396___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.397___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.398___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_version.399___pyx_pf_5numpy_6random_6mtrand_11RandomState_106shuffle.__pyx_dict_cached_value.400___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.402___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.403___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.404___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.405___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.406___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.407___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.408___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.409___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_version.410___pyx_pf_5numpy_6random_6mtrand_11RandomState_108permutation.__pyx_dict_cached_value.411___pyx_pf_5numpy_6random_6mtrand_11RandomState___init__.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_11RandomState___init__.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_11RandomState___init__.__pyx_dict_version.416___pyx_pf_5numpy_6random_6mtrand_11RandomState___init__.__pyx_dict_cached_value.417___pyx_ptype_7cpython_4type_type___pyx_ptype_7cpython_4bool_bool___pyx_ptype_7cpython_7complex_complex___pyx_ptype_5numpy_flatiter___pyx_ptype_5numpy_generic___pyx_ptype_5numpy_number___pyx_ptype_5numpy_signedinteger___pyx_ptype_5numpy_unsignedinteger___pyx_ptype_5numpy_inexact___pyx_ptype_5numpy_complexfloating___pyx_ptype_5numpy_flexible___pyx_ptype_5numpy_character___pyx_ptype_5numpy_ufunc___pyx_ptype_5numpy_6random_13bit_generator_BitGenerator___pyx_ptype_5numpy_6random_13bit_generator_SeedSequence___pyx_vtabptr_5numpy_6random_13bit_generator_SeedSequence___pyx_ptype_5numpy_6random_13bit_generator_SeedlessSequence___pyx_vp_5numpy_6random_7_common_LEGACY_POISSON_LAM_MAX___pyx_vp_5numpy_6random_7_common_MAXSIZE___pyx_pf_5numpy_6random_6mtrand_sample.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_sample.__pyx_dict_cached_value___pyx_pf_5numpy_6random_6mtrand_2ranf.__pyx_dict_version___pyx_pf_5numpy_6random_6mtrand_2ranf.__pyx_dict_cached_value___Pyx_CLineForTraceback.__pyx_dict_version___Pyx_CLineForTraceback.__pyx_dict_cached_value___pyx_code_cache.0___pyx_code_cache.1___pyx_code_cache.2/Users/runner/work/1/s/numpy/numpy/random/src/legacy/legacy-distributions.c/Users/runner/work/1/s/numpy/build/temp.macosx-10.9-x86_64-3.7/numpy/random/src/legacy/legacy-distributions.o_legacy_gaussnumpy/random/src/legacy/legacy-distributions.c_legacy_standard_exponential_legacy_standard_gamma_legacy_gamma_legacy_pareto_legacy_weibull_legacy_power_legacy_chisquare_legacy_rayleighnumpy/core/include/numpy/random/distributions.h_legacy_noncentral_chisquare_legacy_noncentral_f_legacy_wald_legacy_normal_legacy_lognormal_legacy_standard_t_legacy_negative_binomial_legacy_standard_cauchy_legacy_beta_legacy_f_legacy_exponential_legacy_random_binomial_legacy_random_hypergeometric_legacy_random_poisson_legacy_random_zipf_legacy_random_geometric_legacy_random_multinomial_legacy_vonmises/Library/Developer/CommandLineTools/SDKs/MacOSX10.15.sdk/usr/include/math.h_legacy_logseries/Users/runner/work/1/s/numpy/numpy/random/src/distributions/distributions.c/Users/runner/work/1/s/numpy/build/temp.macosx-10.9-x86_64-3.7/numpy/random/src/distributions/distributions.o_random_standard_uniform_fnumpy/random/src/distributions/distributions.c_random_standard_uniform_random_standard_uniform_fill_random_standard_uniform_fill_f_random_standard_exponential_random_standard_exponential_fill_random_standard_exponential_f_random_standard_exponential_fill_f_random_standard_exponential_inv_fill_random_standard_exponential_inv_fill_f_random_standard_normal_random_standard_normal_fill_random_standard_normal_f_random_standard_normal_fill_f_random_standard_gamma_random_standard_gamma_f_random_positive_int64_random_positive_int32_random_positive_int_random_uint_random_loggam_random_normal_random_exponential_random_uniform_random_gamma_random_gamma_f_random_beta_random_chisquare_random_f_random_standard_cauchy_random_pareto_random_weibull_random_power_random_laplace_random_gumbel_random_logistic_random_lognormal_random_rayleigh_random_standard_t_random_poisson_random_negative_binomial_random_binomial_btpe_random_binomial_inversion_random_binomial_random_noncentral_chisquare_random_noncentral_f_random_wald_random_vonmises_random_logseries_random_geometric_search_random_geometric_inversion_random_geometric_random_zipf_random_triangular_random_interval_random_bounded_uint64_random_buffered_bounded_uint32_random_buffered_bounded_uint16_random_buffered_bounded_uint8_random_buffered_bounded_bool_random_bounded_uint64_fill_random_bounded_uint32_fill_random_bounded_uint16_fill_random_bounded_uint8_fill_random_bounded_bool_fill_random_multinomial_we_double_ke_double_we_float_ke_float_wi_double_ki_double_fi_double_wi_float_ki_float_fi_float_fe_double_fe_float/Users/runner/work/1/s/numpy/numpy/core/src/npymath/npy_math.c/Users/runner/work/1/s/numpy/build/temp.macosx-10.9-x86_64-3.7/libnpymath.a(npy_math.o)_npy_powlnumpy/core/src/npymath/npy_math_internal.h.src_npy_pow_npy_sinl_npy_cosl_npy_tanl_npy_sinhl_npy_coshl_npy_tanhl_npy_fabsl_npy_floorl_npy_ceill_npy_rintl_npy_truncl_npy_sqrtl_npy_log10l_npy_logl_npy_expl_npy_expm1l_npy_asinl_npy_acosl_npy_atanl_npy_asinhl_npy_acoshl_npy_atanhl_npy_log1pl_npy_exp2l_npy_log2l_npy_atan2l_npy_hypotl_npy_copysignl_npy_fmodl_npy_modfl_npy_ldexpl_npy_frexpl_npy_cbrtl_npy_sin_npy_cos_npy_tan_npy_sinh_npy_cosh_npy_tanh_npy_fabs_npy_floor_npy_ceil_npy_rint_npy_trunc_npy_sqrt_npy_log10_npy_log_npy_exp_npy_expm1_npy_asin_npy_acos_npy_atan_npy_asinh_npy_acosh_npy_atanh_npy_log1p_npy_exp2_npy_log2_npy_atan2_npy_hypot_npy_copysign_npy_fmod_npy_modf_npy_ldexp_npy_frexp_npy_cbrt_npy_sinf_npy_cosf_npy_tanf_npy_sinhf_npy_coshf_npy_tanhf_npy_fabsf_npy_floorf_npy_ceilf_npy_rintf_npy_truncf_npy_sqrtf_npy_log10f_npy_logf_npy_expf_npy_expm1f_npy_asinf_npy_acosf_npy_atanf_npy_asinhf_npy_acoshf_npy_atanhf_npy_log1pf_npy_exp2f_npy_log2f_npy_atan2f_npy_hypotf_npy_powf_npy_copysignf_npy_fmodf_npy_modff_npy_ldexpf_npy_frexpf_npy_cbrtf_npy_heavisidef_npy_rad2degf_npy_deg2radf_npy_log2_1pf_npy_exp2_m1f_npy_logaddexpf_npy_logaddexp2f_npy_remainderf_npy_divmodf_npy_floor_dividef_npy_heaviside_npy_rad2deg_npy_deg2rad_npy_log2_1p_npy_exp2_m1_npy_logaddexp_npy_logaddexp2_npy_remainder_npy_divmod_npy_floor_divide_npy_heavisidel_npy_rad2degl_npy_deg2radl_npy_log2_1pl_npy_exp2_m1l_npy_logaddexpl_npy_logaddexp2l_npy_remainderl_npy_divmodl_npy_floor_dividel_npy_gcdu_npy_lcmu_npy_gcdul_npy_lcmul_npy_gcdull_npy_lcmull_npy_gcd_npy_gcdl_npy_gcdll_npy_lcm_npy_lcml_npy_lcmll_npy_lshiftuhh_npy_rshiftuhh_npy_lshifthh_npy_rshifthh_npy_lshiftuh_npy_rshiftuh_npy_lshifth_npy_rshifth_npy_lshiftu_npy_rshiftu_npy_lshift_npy_rshift_npy_lshiftul_npy_rshiftul_npy_lshiftl_npy_rshiftl_npy_lshiftull_npy_rshiftull_npy_lshiftll_npy_rshiftll/Users/runner/work/1/s/numpy/build/src.macosx-10.9-x86_64-3.7/numpy/core/src/npymath/ieee754.c/Users/runner/work/1/s/numpy/build/temp.macosx-10.9-x86_64-3.7/libnpymath.a(ieee754.o)_npy_spacingfnumpy/core/src/npymath/ieee754.c.src_npy_spacing_npy_spacingl_npy_nextafterf_npy_nextafter_npy_nextafterl_npy_clear_floatstatus_npy_clear_floatstatus_barrier_npy_get_floatstatus_npy_get_floatstatus_barrier_npy_set_floatstatus_divbyzero_npy_set_floatstatus_overflow_npy_set_floatstatus_underflow_npy_set_floatstatus_invalid