Repository URL to install this package:
|
Version:
9.0~240925-3.fc42 ▾
|
#include "m32r.hpp"
#include <ieee.h>
#include <cvt64.hpp>
int data_id;
// m32r register names
static const char *const RegNames[] =
{
"R0", "R1", "R2", "R3", "R4",
"R5", "R6", "R7", "R8", "R9",
"R10", "R11", "R12", "R13", "R14", "R15",
"CR0", "CR1", "CR2", "CR3", "CR6",
"PC",
"A0", "A1",
"CR4", "CR5", "CR7", "CR8", "CR9",
"CR10", "CR11", "CR12", "CR13", "CR14", "CR15",
"cs", "ds" // required by IDA kernel
};
static const char *const RegNames_alias[] =
{
"R0", "R1", "R2", "R3", "R4",
"R5", "R6", "R7", "R8", "R9",
"R10", "R11", "R12", "fp", "lr", "sp",
"psw", "cbr", "spi", "spu", "bpc",
"PC",
"A0", "A1",
"CR4", "CR5", "fpsr", "CR8", "CR9",
"CR10", "CR11", "CR12", "CR13", "CR14", "CR15",
"cs", "ds" // required by IDA kernel
};
static char const cfgname[] = "m32r.cfg";
void m32r_iohandler_t::get_cfg_filename(char *buf, size_t bufsize)
{
qstrncpy(buf, cfgname, bufsize);
}
//----------------------------------------------------------------------------
static int idaapi choose_device(int, form_actions_t &fa)
{
m32r_t &pm = *(m32r_t *)fa.get_ud();
// we do not respect the IDB_LOADED flag at this point
// should we fix it?
if ( choose_ioport_device(&pm.ioh.device, cfgname) )
pm.ioh.set_device_name(pm.ioh.device.c_str(), IORESP_NONE);
return 0;
}
//-------------------------------------------------------------------------
// read all procmod data from the idb
void m32r_t::load_from_idb()
{
idpflags = (uint32)helper.altval(-1);
handle_new_flags(/*save*/ false);
ioh.restore_device();
}
//-------------------------------------------------------------------------
void m32r_t::handle_new_flags(bool save)
{
// patch the RegNames[] array according to the use_reg_aliases parameter
if ( use_reg_aliases() )
ph.reg_names = RegNames_alias;
else
ph.reg_names = RegNames;
if ( save )
save_idpflags();
}
//----------------------------------------------------------------------------
// This function (called when opening the module related configuration in
// the general options) will create a dialog box asking the end-user if he
// wants to use synthetic instructions and register aliases.
const char *m32r_t::set_idp_options(
const char *keyword,
int /*value_type*/,
const void * /*value*/,
bool idb_loaded)
{
short opt_subs = 0;
if ( keyword != nullptr )
return IDPOPT_BADKEY;
if ( use_synthetic_insn() )
opt_subs |= 1;
if ( use_reg_aliases() )
opt_subs |= 2;
static const char form[] =
"HELP\n"
"Mitsubishi 32-Bit (m32r) related options :\n"
"\n"
" Use synthetic instructions\n"
"\n"
" If this option is on, IDA will simplify instructions and replace\n"
" them by synthetic pseudo-instructions.\n"
"\n"
" For example,\n"
"\n"
" bc label1 ; 8 bits offset \n"
" bc label2 ; 24 bits offset \n"
" ldi r1, #0xF \n"
" ldi r2, #0x123456 \n"
" st r3, @-sp \n"
" ld r4, @sp+ \n"
"\n"
" will be replaced by\n"
"\n"
" bc.s label1 \n"
" bc.l label2 \n"
" ldi8 r1, #0xF \n"
" ldi24 r2, #0x123456 \n"
" push r3 \n"
" pop r4 \n"
"\n"
" Use registers aliases\n"
"\n"
" If checked, IDA will use aliases names for the following registers :\n"
"\n"
" r13 -> fp \n"
" r14 -> lr \n"
" r15 -> sp \n"
" cr0 -> psw \n"
" cr1 -> cbr \n"
" cr2 -> spi \n"
" cr3 -> spu \n"
" cr6 -> bpc \n"
"\n"
"ENDHELP\n"
"m32r related options\n"
"%*\n"
"<##Substitutions"
"#For example, use bc.s instead of 8-Bit bc instructions#Use ~s~ynthetic instructions:C>"
"<#For example, use fp instead or r14#Use registers ~a~liases:C>>\n\n\n\n"
"<~C~hoose device name:B:0::>"
"\n\n\n";
ask_form(form, this, &opt_subs, choose_device);
idpflags = 0; // reset the configuration
if ( opt_subs & 1 )
idpflags |= IDP_SYNTHETIC;
if ( opt_subs & 2 )
idpflags |= IDP_REG_ALIASES;
handle_new_flags(idb_loaded);
// DEVICE was saved in choose_device()
return IDPOPT_OK;
}
// returns a pointer to a ioport_t object if address was found in the config file.
// otherwise, returns nullptr.
const ioport_t *m32r_t::find_sym(ea_t address)
{
return find_ioport(ioh.ports, address);
}
// GNU Assembler description
static const asm_t gnu_asm =
{
AS_COLON
|ASH_HEXF3 // hex 0x123 format
|ASB_BINF3 // bin 0b010 format
// don't display the final 0 in string declarations
|AS_ASCIIZ | AS_ASCIIC | AS_1TEXT,
0,
"m32r GNU Assembler",
0,
nullptr, // no headers
nullptr,
nullptr,
";", // comment string
'"', // string delimiter
'\'', // char delimiter
"\\\"'", // special symbols in char and string constants
".string", // ascii string directive
".byte", // byte directive
".short", // word directive
".word", // dword (4 bytes)
nullptr, // qword (8 bytes)
nullptr, // oword (16 bytes)
// Although the M32R/X/D has no hardware floating point,
// the '.float' and '.double' directives generate IEEE-format
// floating-point values for compatibility with other development tools.
".float", // float (4 bytes)
".double", // double (8 bytes)
nullptr, // tbyte (10/12 bytes)
nullptr, // packed decimal real
nullptr, // arrays (#h,#d,#v,#s(...)
"dfs %s", // uninited arrays
"equ", // Equ
nullptr, // seg prefix
"$", // current IP (instruction pointer) symbol in assembler
nullptr, // func_header
nullptr, // func_footer
".global", // public
nullptr, // weak
nullptr, // extrn
nullptr, // comm
nullptr, // get_type_name
nullptr, // align
'(', ')', // lbrace, rbrace
"%", // mod
"&", // and
"|", // or
"^", // xor
"!", // not
"<<", // shl
">>", // shr
nullptr, // sizeof
0, // flag2 ???
nullptr, // comment close string
nullptr, // low8 op
nullptr, // high8 op
"LOW(%s)", // low16 op
"HIGH(%s)" // high16 op
};
// As this time, we only support the GNU assembler.
static const asm_t *const asms[] = { &gnu_asm, nullptr };
// Short and long names for our module
#define FAMILY "Mitsubishi 32-BIT family:"
static const char *const shnames[] =
{
"m32r",
"m32rx",
nullptr
};
static const char *const lnames[] =
{
FAMILY"Mitsubishi 32-BIT family",
"Mitsubishi 32-BIT family (extended)",
nullptr
};
// Opcodes of "return" instructions. This information will be used in 2 ways:
// - if an instruction has the "return" opcode, its autogenerated label
// will be "locret" rather than "loc".
// - IDA will use the first "return" opcode to create empty subroutines.
static const uchar retcode_1[] = { 0x1F, 0xCE }; // jmp lr
static const uchar retcode_2[] = { 0x10, 0xD6 }; // rte
static const bytes_t retcodes[] =
{
{ sizeof(retcode_1), retcode_1 },
{ sizeof(retcode_2), retcode_2 },
{ 0, nullptr } // nullptr terminated array
};
//----------------------------------------------------------------------
// This old-style callback only returns the processor module object.
static ssize_t idaapi notify(void *, int msgid, va_list)
{
if ( msgid == processor_t::ev_get_procmod )
return size_t(SET_MODULE_DATA(m32r_t));
return 0;
}
//----------------------------------------------------------------------------
ssize_t idaapi m32r_t::on_event(ssize_t msgid, va_list va)
{
int code = 0;
switch ( msgid )
{
case processor_t::ev_init:
helper.create(PROCMOD_NODE_NAME);
// this processor is big endian
inf_set_be(true);
break;
case processor_t::ev_term:
ioh.ports.clear();
clr_module_data(data_id);
break;
case processor_t::ev_newfile:
if ( choose_ioport_device(&ioh.device, cfgname) )
ioh.set_device_name(ioh.device.c_str(), IORESP_ALL);
handle_new_flags();
break;
case processor_t::ev_newprc:
ptype = processor_subtype_t(va_arg(va, int));
// msg("ptype = %s\n", ptype == prc_m32r ? "m32r" : ptype == prc_m32rx ? "m32rx" : "???");
break;
case processor_t::ev_ending_undo:
// restore ptype
ptype = processor_subtype_t(ph.get_proc_index());
//fall through
case processor_t::ev_oldfile:
load_from_idb();
break;
case processor_t::ev_create_switch_xrefs:
{
ea_t insn_ea = va_arg(va, ea_t);
switch_info_t *si = va_arg(va, switch_info_t *);
return m32r_create_switch_xrefs(insn_ea, *si);
}
case processor_t::ev_calc_switch_cases:
{
casevec_t *casevec = va_arg(va, casevec_t *);
eavec_t *targets = va_arg(va, eavec_t *);
ea_t insn_ea = va_arg(va, ea_t);
switch_info_t *si = va_arg(va, switch_info_t *);
return m32r_calc_switch_cases(casevec, targets, insn_ea, *si);
}
case processor_t::ev_out_mnem:
{
outctx_t *ctx = va_arg(va, outctx_t *);
out_mnem(*ctx);
return 1;
}
case processor_t::ev_out_header:
{
outctx_t *ctx = va_arg(va, outctx_t *);
m32r_header(*ctx);
return 1;
}
case processor_t::ev_out_footer:
{
outctx_t *ctx = va_arg(va, outctx_t *);
m32r_footer(*ctx);
return 1;
}
case processor_t::ev_out_segstart:
{
outctx_t *ctx = va_arg(va, outctx_t *);
segment_t *seg = va_arg(va, segment_t *);
m32r_segstart(*ctx, seg);
return 1;
}
case processor_t::ev_ana_insn:
{
insn_t *out = va_arg(va, insn_t *);
return ana(out);
}
case processor_t::ev_emu_insn:
{
const insn_t *insn = va_arg(va, const insn_t *);
return emu(*insn) ? 1 : -1;
}
case processor_t::ev_out_insn:
{
outctx_t *ctx = va_arg(va, outctx_t *);
out_insn(*ctx);
return 1;
}
case processor_t::ev_out_operand:
{
outctx_t *ctx = va_arg(va, outctx_t *);
const op_t *op = va_arg(va, const op_t *);
return out_opnd(*ctx, *op) ? 1 : -1;
}
case processor_t::ev_can_have_type:
{
const op_t *op = va_arg(va, const op_t *);
return can_have_type(*op) ? 1 : -1;
}
case processor_t::ev_is_sp_based:
{
int *mode = va_arg(va, int *);
const insn_t *insn = va_arg(va, const insn_t *);
const op_t *op = va_arg(va, const op_t *);
*mode = is_sp_based(*insn, *op);
return 1;
}
case processor_t::ev_create_func_frame:
{
func_t *pfn = va_arg(va, func_t *);
create_func_frame(pfn);
return 1;
}
case processor_t::ev_get_frame_retsize:
{
int *frsize = va_arg(va, int *);
const func_t *pfn = va_arg(va, const func_t *);
*frsize = m32r_get_frame_retsize(pfn);
return 1;
}
case processor_t::ev_set_idp_options:
{
const char *keyword = va_arg(va, const char *);
int value_type = va_arg(va, int);
const char *value = va_arg(va, const char *);
const char **errmsg = va_arg(va, const char **);
bool idb_loaded = va_argi(va, bool);
const char *ret = set_idp_options(keyword, value_type, value, idb_loaded);
if ( ret == IDPOPT_OK )
return 1;
if ( errmsg != nullptr )
*errmsg = ret;
return -1;
}
case processor_t::ev_create_merge_handlers:
{
merge_data_t *md = va_arg(va, merge_data_t *);
create_std_procmod_handlers(*md);
}
break;
case processor_t::ev_privrange_changed:
// recreate node as it was migrated
helper.create(PROCMOD_NODE_NAME);
break;
#ifdef CVT64
case processor_t::ev_cvt64_supval:
{
static const cvt64_node_tag_t node_info[] =
{
CVT64_NODE_DEVICE,
CVT64_NODE_IDP_FLAGS,
};
return cvt64_node_supval_for_event(va, node_info, qnumber(node_info));
}
#endif
default:
break;
}
return code;
}
//-----------------------------------------------------------------------
// Processor Definition
//-----------------------------------------------------------------------
processor_t LPH =
{
IDP_INTERFACE_VERSION, // version
PLFM_M32R, // id
// flag
PR_RNAMESOK // can use register names for byte names
| PR_BINMEM // The module creates RAM/ROM segments for binary files
// (the kernel shouldn't ask the user about their sizes and addresses)
| PR_USE32
| PR_DEFSEG32,
// flag2
PR2_IDP_OPTS, // the module has processor-specific configuration options
8, // 8 bits in a byte for code segments
8, // 8 bits in a byte for other segments
shnames, // array of short processor names
// the short names are used to specify the processor
// with the -p command line switch)
lnames, // array of long processor names
// the long names are used to build the processor type
// selection menu
asms, // array of target assemblers
notify, // the kernel event notification callback
RegNames, // Regsiter names
qnumber(RegNames), // Number of registers
rVcs,rVds,
0, // size of a segment register
rVcs,rVds,
nullptr, // No known code start sequences
retcodes,
0,m32r_last,
Instructions, // instruc
0, // int tbyte_size; -- doesn't exist
{ 0, 7, 15, 0 }, // char real_width[4];
// number of symbols after decimal point
// 2byte float (0-does not exist)
// normal float
// normal double
// long double
m32r_rte, // Icode of return instruction. It is ok to give any of possible return instructions
};