Repository URL to install this package:
Version:
0.1.0-1 ▾
|
# SPDX-License-Identifier: MIT
# Copyright (C) 2022 Max Bachmann
from __future__ import annotations
from rapidfuzz.fuzz import ratio
from rapidfuzz.process_cpp_impl import FLOAT32 as _FLOAT32
from rapidfuzz.process_cpp_impl import FLOAT64 as _FLOAT64
from rapidfuzz.process_cpp_impl import INT8 as _INT8
from rapidfuzz.process_cpp_impl import INT16 as _INT16
from rapidfuzz.process_cpp_impl import INT32 as _INT32
from rapidfuzz.process_cpp_impl import INT64 as _INT64
from rapidfuzz.process_cpp_impl import UINT8 as _UINT8
from rapidfuzz.process_cpp_impl import UINT16 as _UINT16
from rapidfuzz.process_cpp_impl import UINT32 as _UINT32
from rapidfuzz.process_cpp_impl import UINT64 as _UINT64
from rapidfuzz.process_cpp_impl import cdist as _cdist
from rapidfuzz.process_cpp_impl import cpdist as _cpdist
from rapidfuzz.process_cpp_impl import extract, extract_iter, extractOne
__all__ = ["extract", "extract_iter", "extractOne", "cdist", "cpdist"]
def _dtype_to_type_num(dtype):
import numpy as np
if dtype is None:
return None
if dtype is np.int32:
return _INT32
if dtype is np.int8:
return _INT8
if dtype is np.int16:
return _INT16
if dtype is np.int64:
return _INT64
if dtype is np.uint8:
return _UINT8
if dtype is np.uint16:
return _UINT16
if dtype is np.uint32:
return _UINT32
if dtype is np.uint64:
return _UINT64
if dtype is np.float32:
return _FLOAT32
if dtype is np.float64:
return _FLOAT64
msg = "unsupported dtype"
raise TypeError(msg)
def cdist(
queries,
choices,
*,
scorer=ratio,
processor=None,
score_cutoff=None,
score_hint=None,
score_multiplier=1,
dtype=None,
workers=1,
**kwargs,
):
import numpy as np
dtype = _dtype_to_type_num(dtype)
return np.asarray(
_cdist(
queries,
choices,
scorer=scorer,
processor=processor,
score_cutoff=score_cutoff,
score_hint=score_hint,
score_multiplier=score_multiplier,
dtype=dtype,
workers=workers,
**kwargs,
)
)
def cpdist(
queries,
choices,
*,
scorer=ratio,
processor=None,
score_cutoff=None,
score_hint=None,
score_multiplier=1,
dtype=None,
workers=1,
**kwargs,
):
import numpy as np
dtype = _dtype_to_type_num(dtype)
distance_matrix = _cpdist(
queries,
choices,
scorer=scorer,
processor=processor,
score_cutoff=score_cutoff,
score_hint=score_hint,
score_multiplier=score_multiplier,
dtype=dtype,
workers=workers,
**kwargs,
)
return np.asarray(distance_matrix)