Repository URL to install this package:
Version:
1.14.0 ▾
|
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Distribution Strategy-related dataset transformations."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from tensorflow.python.data.ops import dataset_ops
from tensorflow.python.data.util import nest
from tensorflow.python.data.util import structure
from tensorflow.python.framework import errors
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import gen_experimental_dataset_ops as ged_ops
class _AutoShardDataset(dataset_ops.UnaryDataset):
"""A `Dataset` that shards the `Dataset` automatically.
This dataset takes in an existing dataset and tries to automatically figure
out how to shard the dataset in a multi-worker scenario. Currently, it uses
Grappler to walk up the dataset graph until it finds a reader dataset (e.g.
CSVDataset, TFRecordDataset), then inserts a ShardDataset op before that node
so that each worker only sees some files.
Args:
num_workers: Total number of workers to shard this dataset across.
index: The current worker index (out of the total number of workers) this
dataset is for.
Raises:
NotFoundError: If we cannot find a suitable reader dataset to begin
automatically sharding the dataset.
"""
def __init__(self, input_dataset, num_workers, index):
self._input_dataset = input_dataset
self._structure = input_dataset._element_structure # pylint: disable=protected-access
variant_tensor = ged_ops.experimental_auto_shard_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
num_workers=num_workers,
index=index,
**dataset_ops.flat_structure(self))
super(_AutoShardDataset, self).__init__(input_dataset, variant_tensor)
@property
def _element_structure(self):
return self._structure
def _AutoShardDatasetV1(input_dataset, num_workers, index):
return dataset_ops.DatasetV1Adapter(
_AutoShardDataset(input_dataset, num_workers, index))
class _RebatchDataset(dataset_ops.UnaryDataset):
"""A `Dataset` that divides the batch size by `num_workers`."""
def __init__(self, input_dataset, num_workers):
self._input_dataset = input_dataset
def recalculate_output_shapes(output_shapes):
"""Recalculates the output_shapes after dividing it by num_workers."""
if len(output_shapes) < 1:
raise ValueError("Input shape should have at least one dimension.")
if (tensor_shape.dimension_value(output_shapes[0]) and
tensor_shape.dimension_value(output_shapes[0]) % num_workers != 0):
raise errors.InvalidArgumentError(
None, None,
"First dim of input shape: %d is not divisible by num_workers: %d" %
(output_shapes[0], num_workers))
output_dims = [d for d in output_shapes.dims]
output_dims[0] = output_dims[0] // num_workers
return tensor_shape.TensorShape(output_dims)
input_types = dataset_ops.get_legacy_output_types(self._input_dataset)
input_shapes = dataset_ops.get_legacy_output_shapes(self._input_dataset)
input_classes = dataset_ops.get_legacy_output_classes(self._input_dataset)
output_shapes = nest.map_structure(recalculate_output_shapes, input_shapes)
self._structure = structure.convert_legacy_structure(
input_types, output_shapes, input_classes)
variant_tensor = ged_ops.experimental_rebatch_dataset(
self._input_dataset._variant_tensor, # pylint: disable=protected-access
num_workers=num_workers,
**dataset_ops.flat_structure(self))
super(_RebatchDataset, self).__init__(input_dataset, variant_tensor)
@property
def _element_structure(self):
return self._structure
_AutoShardDatasetV1.__doc__ = _AutoShardDataset.__doc__