Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
caffe-gpu-dev / usr / include / caffe / common_layers.hpp
Size: Mime:
#ifndef CAFFE_COMMON_LAYERS_HPP_
#define CAFFE_COMMON_LAYERS_HPP_

#include <string>
#include <utility>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/common.hpp"
#include "caffe/data_layers.hpp"
#include "caffe/layer.hpp"
#include "caffe/loss_layers.hpp"
#include "caffe/neuron_layers.hpp"
#include "caffe/proto/caffe.pb.h"

namespace caffe {

/**
 * @brief Compute the index of the @f$ K @f$ max values for each datum across
 *        all dimensions @f$ (C \times H \times W) @f$.
 *
 * Intended for use after a classification layer to produce a prediction.
 * If parameter out_max_val is set to true, output is a vector of pairs
 * (max_ind, max_val) for each image.
 *
 * NOTE: does not implement Backwards operation.
 */
template <typename Dtype>
class ArgMaxLayer : public Layer<Dtype> {
 public:
  /**
   * @param param provides ArgMaxParameter argmax_param,
   *     with ArgMaxLayer options:
   *   - top_k (\b optional uint, default 1).
   *     the number @f$ K @f$ of maximal items to output.
   *   - out_max_val (\b optional bool, default false).
   *     if set, output a vector of pairs (max_ind, max_val) for each image.
   */
  explicit ArgMaxLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_ARGMAX;
  }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int ExactNumTopBlobs() const { return 1; }

 protected:
  /**
   * @param bottom input Blob vector (length 1)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the inputs @f$ x @f$
   * @param top output Blob vector (length 1)
   *   -# @f$ (N \times 1 \times K \times 1) @f$ or, if out_max_val
   *      @f$ (N \times 2 \times K \times 1) @f$
   *      the computed outputs @f$
   *       y_n = \arg\max\limits_i x_{ni}
   *      @f$ (for @f$ K = 1 @f$).
   */
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  /// @brief Not implemented (non-differentiable function)
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {
    NOT_IMPLEMENTED;
  }
  bool out_max_val_;
  size_t top_k_;
};

/**
 * @brief Takes at least two Blob%s and concatenates them along either the num
 *        or channel dimension, outputting the result.
 */
template <typename Dtype>
class ConcatLayer : public Layer<Dtype> {
 public:
  explicit ConcatLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_CONCAT;
  }
  virtual inline int MinBottomBlobs() const { return 2; }
  virtual inline int ExactNumTopBlobs() const { return 1; }
  virtual inline DiagonalAffineMap<Dtype> coord_map() {
    return DiagonalAffineMap<Dtype>::identity(2);
  }

 protected:
  /**
   * @param bottom input Blob vector (length 2+)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the inputs @f$ x_1 @f$
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the inputs @f$ x_2 @f$
   *   -# ...
   *   - K @f$ (N \times C \times H \times W) @f$
   *      the inputs @f$ x_K @f$
   * @param top output Blob vector (length 1)
   *   -# @f$ (KN \times C \times H \times W) @f$ if concat_dim == 0, or
   *      @f$ (N \times KC \times H \times W) @f$ if concat_dim == 1:
   *      the concatenated output @f$
   *        y = [\begin{array}{cccc} x_1 & x_2 & ... & x_K \end{array}]
   *      @f$
   */
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  /**
   * @brief Computes the error gradient w.r.t. the concatenate inputs.
   *
   * @param top output Blob vector (length 1), providing the error gradient with
   *        respect to the outputs
   *   -# @f$ (KN \times C \times H \times W) @f$ if concat_dim == 0, or
   *      @f$ (N \times KC \times H \times W) @f$ if concat_dim == 1:
   *      containing error gradients @f$ \frac{\partial E}{\partial y} @f$
   *      with respect to concatenated outputs @f$ y @f$
   * @param propagate_down see Layer::Backward.
   * @param bottom input Blob vector (length K), into which the top gradient
   *        @f$ \frac{\partial E}{\partial y} @f$ is deconcatenated back to the
   *        inputs @f$
   *        \left[ \begin{array}{cccc}
   *          \frac{\partial E}{\partial x_1} &
   *          \frac{\partial E}{\partial x_2} &
   *          ... &
   *          \frac{\partial E}{\partial x_K}
   *        \end{array} \right] =
   *        \frac{\partial E}{\partial y}
   *        @f$
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  Blob<Dtype> col_bob_;
  int count_;
  int num_;
  int channels_;
  int height_;
  int width_;
  int concat_dim_;
};

/**
 * @brief Compute elementwise operations, such as product and sum,
 *        along multiple input Blobs.
 *
 * TODO(dox): thorough documentation for Forward, Backward, and proto params.
 */
template <typename Dtype>
class EltwiseLayer : public Layer<Dtype> {
 public:
  explicit EltwiseLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_ELTWISE;
  }
  virtual inline int MinBottomBlobs() const { return 2; }
  virtual inline int ExactNumTopBlobs() const { return 1; }
  virtual inline DiagonalAffineMap<Dtype> coord_map() {
    return DiagonalAffineMap<Dtype>::identity(2);
  }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  EltwiseParameter_EltwiseOp op_;
  vector<Dtype> coeffs_;
  Blob<int> max_idx_;

  bool stable_prod_grad_;
};

/**
 * @brief Reshapes the input Blob into flat vectors.
 *
 * Note: because this layer does not change the input values -- merely the
 * dimensions -- it can simply copy the input. The copy happens "virtually"
 * (thus taking effectively 0 real time) by setting, in Forward, the data
 * pointer of the top Blob to that of the bottom Blob (see Blob::ShareData),
 * and in Backward, the diff pointer of the bottom Blob to that of the top Blob
 * (see Blob::ShareDiff).
 */
template <typename Dtype>
class FlattenLayer : public Layer<Dtype> {
 public:
  explicit FlattenLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_FLATTEN;
  }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int ExactNumTopBlobs() const { return 1; }

 protected:
  /**
   * @param bottom input Blob vector (length 2+)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the inputs
   * @param top output Blob vector (length 1)
   *   -# @f$ (N \times CHW \times 1 \times 1) @f$
   *      the outputs -- i.e., the (virtually) copied, flattened inputs
   */
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  /**
   * @brief Computes the error gradient w.r.t. the concatenate inputs.
   *
   * @param top output Blob vector (length 1), providing the error gradient with
   *        respect to the outputs
   * @param propagate_down see Layer::Backward.
   * @param bottom input Blob vector (length K), into which the top error
   *        gradient is (virtually) copied
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  int count_;
};

/**
 * @brief Also known as a "fully-connected" layer, computes an inner product
 *        with a set of learned weights, and (optionally) adds biases.
 *
 * TODO(dox): thorough documentation for Forward, Backward, and proto params.
 */
template <typename Dtype>
class InnerProductLayer : public Layer<Dtype> {
 public:
  explicit InnerProductLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_INNER_PRODUCT;
  }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int ExactNumTopBlobs() const { return 1; }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  int M_;
  int K_;
  int N_;
  bool bias_term_;
  Blob<Dtype> bias_multiplier_;
};

/**
 * @brief Normalizes the input to have 0-mean and/or unit (1) variance.
 *
 * TODO(dox): thorough documentation for Forward, Backward, and proto params.
 */
template <typename Dtype>
class MVNLayer : public Layer<Dtype> {
 public:
  explicit MVNLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_MVN;
  }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int ExactNumTopBlobs() const { return 1; }
  virtual inline DiagonalAffineMap<Dtype> coord_map() {
    return DiagonalAffineMap<Dtype>::identity(2);
  }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  Blob<Dtype> mean_, variance_, temp_;

  /// sum_multiplier is used to carry out sum using BLAS
  Blob<Dtype> sum_multiplier_;
};

/**
 * @brief Ignores bottom blobs while producing no top blobs. (This is useful
 *        to suppress outputs during testing.)
 */
template <typename Dtype>
class SilenceLayer : public Layer<Dtype> {
 public:
  explicit SilenceLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {}

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_SILENCE;
  }
  virtual inline int MinBottomBlobs() const { return 1; }
  virtual inline int ExactNumTopBlobs() const { return 0; }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top) {}
  // We can't define Forward_gpu here, since STUB_GPU will provide
  // its own definition for CPU_ONLY mode.
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};

/**
 * @brief Computes the softmax function.
 *
 * TODO(dox): thorough documentation for Forward, Backward, and proto params.
 */
template <typename Dtype>
class SoftmaxLayer : public Layer<Dtype> {
 public:
  explicit SoftmaxLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_SOFTMAX;
  }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int ExactNumTopBlobs() const { return 1; }
  virtual inline DiagonalAffineMap<Dtype> coord_map() {
    return DiagonalAffineMap<Dtype>::identity(2);
  }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  /// sum_multiplier is used to carry out sum using BLAS
  Blob<Dtype> sum_multiplier_;
  /// scale is an intermediate Blob to hold temporary results.
  Blob<Dtype> scale_;
};

#ifdef USE_CUDNN
/**
 * @brief cuDNN implementation of SoftmaxLayer.
 *        Fallback to SoftmaxLayer for CPU mode.
 */
template <typename Dtype>
class CuDNNSoftmaxLayer : public SoftmaxLayer<Dtype> {
 public:
  explicit CuDNNSoftmaxLayer(const LayerParameter& param)
      : SoftmaxLayer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual ~CuDNNSoftmaxLayer();

 protected:
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  cudnnHandle_t             handle_;
  cudnnTensorDescriptor_t bottom_desc_;
  cudnnTensorDescriptor_t top_desc_;
};
#endif

/**
 * @brief Creates a "split" path in the network by copying the bottom Blob
 *        into multiple top Blob%s to be used by multiple consuming layers.
 *
 * TODO(dox): thorough documentation for Forward, Backward, and proto params.
 */
template <typename Dtype>
class SplitLayer : public Layer<Dtype> {
 public:
  explicit SplitLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_SPLIT;
  }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int MinTopBlobs() const { return 1; }
  virtual inline DiagonalAffineMap<Dtype> coord_map() {
    return DiagonalAffineMap<Dtype>::identity(2);
  }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  int count_;
};

/**
 * @brief Takes a Blob and slices it along either the num or channel dimension,
 *        outputting multiple sliced Blob results.
 *
 * TODO(dox): thorough documentation for Forward, Backward, and proto params.
 */
template <typename Dtype>
class SliceLayer : public Layer<Dtype> {
 public:
  explicit SliceLayer(const LayerParameter& param)
      : Layer<Dtype>(param) {}
  virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline LayerParameter_LayerType type() const {
    return LayerParameter_LayerType_SLICE;
  }
  virtual inline int ExactNumBottomBlobs() const { return 1; }
  virtual inline int MinTopBlobs() const { return 2; }
  virtual inline DiagonalAffineMap<Dtype> coord_map() {
    return DiagonalAffineMap<Dtype>::identity(2);
  }

 protected:
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);

  Blob<Dtype> col_bob_;
  int count_;
  int num_;
  int channels_;
  int height_;
  int width_;
  int slice_dim_;
  vector<int> slice_point_;
};

}  // namespace caffe

#endif  // CAFFE_COMMON_LAYERS_HPP_