Repository URL to install this package:
|
Version:
1.0.0-7 ▾
|
#ifndef CAFFE_DATA_LAYERS_HPP_
#define CAFFE_DATA_LAYERS_HPP_
#include <vector>
#include "caffe/blob.hpp"
#include "caffe/data_transformer.hpp"
#include "caffe/internal_thread.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/util/blocking_queue.hpp"
namespace caffe {
/**
* @brief Provides base for data layers that feed blobs to the Net.
*
* TODO(dox): thorough documentation for Forward and proto params.
*/
template <typename Dtype>
class BaseDataLayer : public Layer<Dtype> {
public:
explicit BaseDataLayer(const LayerParameter& param);
// LayerSetUp: implements common data layer setup functionality, and calls
// DataLayerSetUp to do special data layer setup for individual layer types.
// This method may not be overridden except by the BasePrefetchingDataLayer.
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
// Data layers should be shared by multiple solvers in parallel
virtual inline bool ShareInParallel() const { return true; }
virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
// Data layers have no bottoms, so reshaping is trivial.
virtual void Reshape(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}
virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) {}
protected:
TransformationParameter transform_param_;
shared_ptr<DataTransformer<Dtype> > data_transformer_;
bool output_labels_;
};
template <typename Dtype>
class Batch {
public:
Blob<Dtype> data_, label_, dim_;
};
template <typename Dtype>
class BasePrefetchingDataLayer :
public BaseDataLayer<Dtype>, public InternalThread {
public:
explicit BasePrefetchingDataLayer(const LayerParameter& param);
// LayerSetUp: implements common data layer setup functionality, and calls
// DataLayerSetUp to do special data layer setup for individual layer types.
// This method may not be overridden.
void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
// Prefetches batches (asynchronously if to GPU memory)
static const int PREFETCH_COUNT = 5;
protected:
virtual void InternalThreadEntry();
virtual void load_batch(Batch<Dtype>* batch) = 0;
Batch<Dtype> prefetch_[PREFETCH_COUNT];
BlockingQueue<Batch<Dtype>*> prefetch_free_;
BlockingQueue<Batch<Dtype>*> prefetch_full_;
Blob<Dtype> transformed_data_;
};
template <typename Dtype>
class ImageDimPrefetchingDataLayer : public BasePrefetchingDataLayer<Dtype> {
public:
explicit ImageDimPrefetchingDataLayer(const LayerParameter& param)
: BasePrefetchingDataLayer<Dtype>(param) {}
virtual ~ImageDimPrefetchingDataLayer() {}
// LayerSetUp: implements common data layer setup functionality, and calls
// DataLayerSetUp to do special data layer setup for individual layer types.
// This method may not be overridden.
void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top);
// The thread's function
//virtual void InternalThreadEntry() {}
protected:
virtual void load_batch(Batch<Dtype>* batch) = 0;
Blob<Dtype> prefetch_data_dim_;
bool output_data_dim_;
};
} // namespace caffe
#endif // CAFFE_DATA_LAYERS_HPP_