Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
caffe-pspnet-gpu-dev / usr / include / caffe / layers / bnll_layer.hpp
Size: Mime:
#ifndef CAFFE_BNLL_LAYER_HPP_
#define CAFFE_BNLL_LAYER_HPP_

#include <vector>

#include "caffe/blob.hpp"
#include "caffe/layer.hpp"
#include "caffe/proto/caffe.pb.h"

#include "caffe/layers/neuron_layer.hpp"

namespace caffe {

/**
 * @brief Computes @f$ y = x + \log(1 + \exp(-x)) @f$ if @f$ x > 0 @f$;
 *        @f$ y = \log(1 + \exp(x)) @f$ otherwise.
 *
 * @param bottom input Blob vector (length 1)
 *   -# @f$ (N \times C \times H \times W) @f$
 *      the inputs @f$ x @f$
 * @param top output Blob vector (length 1)
 *   -# @f$ (N \times C \times H \times W) @f$
 *      the computed outputs @f$
 *      y = \left\{
 *         \begin{array}{ll}
 *            x + \log(1 + \exp(-x)) & \mbox{if } x > 0 \\
 *            \log(1 + \exp(x)) & \mbox{otherwise}
 *         \end{array} \right.
 *      @f$
 */
template <typename Dtype>
class BNLLLayer : public NeuronLayer<Dtype> {
 public:
  explicit BNLLLayer(const LayerParameter& param)
      : NeuronLayer<Dtype>(param) {}

  virtual inline const char* type() const { return "BNLL"; }

 protected:
  /// @copydoc BNLLLayer
  virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);
  virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  /**
   * @brief Computes the error gradient w.r.t. the BNLL inputs.
   *
   * @param top output Blob vector (length 1), providing the error gradient with
   *      respect to the outputs
   *   -# @f$ (N \times C \times H \times W) @f$
   *      containing error gradients @f$ \frac{\partial E}{\partial y} @f$
   *      with respect to computed outputs @f$ y @f$
   * @param propagate_down see Layer::Backward.
   * @param bottom input Blob vector (length 2)
   *   -# @f$ (N \times C \times H \times W) @f$
   *      the inputs @f$ x @f$; Backward fills their diff with
   *      gradients @f$
   *        \frac{\partial E}{\partial x}
   *      @f$ if propagate_down[0]
   */
  virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
  virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
      const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom);
};

}  // namespace caffe

#endif  // CAFFE_BNLL_LAYER_HPP_