Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
caffe-pspnet-gpu-dev / usr / include / caffe / layers / window_data_layer.hpp
Size: Mime:
#ifndef CAFFE_WINDOW_DATA_LAYER_HPP_
#define CAFFE_WINDOW_DATA_LAYER_HPP_

#include <string>
#include <utility>
#include <vector>

#include "caffe/blob.hpp"
#include "caffe/data_transformer.hpp"
#include "caffe/internal_thread.hpp"
#include "caffe/layer.hpp"
#include "caffe/layers/base_data_layer.hpp"
#include "caffe/proto/caffe.pb.h"

namespace caffe {

/**
 * @brief Provides data to the Net from windows of images files, specified
 *        by a window data file.
 *
 * TODO(dox): thorough documentation for Forward and proto params.
 */
template <typename Dtype>
class WindowDataLayer : public BasePrefetchingDataLayer<Dtype> {
 public:
  explicit WindowDataLayer(const LayerParameter& param)
      : BasePrefetchingDataLayer<Dtype>(param) {}
  virtual ~WindowDataLayer();
  virtual void DataLayerSetUp(const vector<Blob<Dtype>*>& bottom,
      const vector<Blob<Dtype>*>& top);

  virtual inline const char* type() const { return "WindowData"; }
  virtual inline int ExactNumBottomBlobs() const { return 0; }
  virtual inline int ExactNumTopBlobs() const { return 2; }

 protected:
  virtual unsigned int PrefetchRand();
  virtual void load_batch(Batch<Dtype>* batch);

  shared_ptr<Caffe::RNG> prefetch_rng_;
  vector<std::pair<std::string, vector<int> > > image_database_;
  enum WindowField { IMAGE_INDEX, LABEL, OVERLAP, X1, Y1, X2, Y2, NUM };
  vector<vector<float> > fg_windows_;
  vector<vector<float> > bg_windows_;
  Blob<Dtype> data_mean_;
  vector<Dtype> mean_values_;
  bool has_mean_file_;
  bool has_mean_values_;
  bool cache_images_;
  vector<std::pair<std::string, Datum > > image_database_cache_;
};

}  // namespace caffe

#endif  // CAFFE_WINDOW_DATA_LAYER_HPP_