Repository URL to install this package:
|
Version:
0.3.2 ▾
|
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from reportlab.platypus.flowables import HRFlowable
from reportlab.lib.colors import HexColor
from reportlab.lib.styles import ParagraphStyle, TA_CENTER
import tia.rlab as rlab
from tia.analysis.model.port import PortfolioSummary
import tia.analysis.perf as perf
from tia.util.fmt import new_datetime_formatter
from tia.util.mplot import AxesFormat, FigureHelper
from tia.analysis.util import insert_level
class _Result(object):
def __init__(self, port, sid, desc):
self.port = port
self.buyhold = port.buy_and_hold()
self.sid = sid
self.desc = desc
class ShortTermReport(object):
"""Used when showing 2 years or less worth of portfolio returns"""
def __init__(self, path, title, author=None, table_style=None):
self.path = path
self.pdf = None
self.results = []
self.title = title
self.author = author
self.table_style = table_style or rlab.Style.Black
self.figures = FigureHelper(dpi=300)
self.long_color = plt.rcParams["axes.color_cycle"][0]
self.short_color = plt.rcParams["axes.color_cycle"][1]
def add_port(self, port, sid, desc):
self.results.append(_Result(port, sid, desc))
def create_ax(self, figsize=(5, 3)):
return plt.subplots(1, 1, figsize=figsize)
def define_portfolio_summary_template(self):
t = rlab.GridTemplate("portfolio", 100, 100)
r1 = slice(5, 30)
r2 = slice(30, 55)
r3 = slice(55, 100)
c1 = slice(1, 33)
c2 = slice(33, 65)
c3 = slice(66, 98)
t.define_frames(
{
"F1": t[r1, c1],
"F2": t[r1, c2],
"F3": t[r1, c3],
"F4": t[r2, c1],
"F5": t[r2, c2],
"F6": t[r2, c3],
"F7": t[r3, c1],
"F8": t[r3, 33:],
"HDR": t[:5, :],
}
)
t.register(self.pdf)
def define_position_summary_template(self):
t = rlab.GridTemplate("positions", 100, 100)
r1 = slice(5, 30)
r2 = slice(30, 55)
r3 = slice(55, 100)
c1 = slice(1, 50)
c2 = slice(50, 98)
t.define_frames(
{
"F1": t[r1, c1],
"F2": t[5:55, c2],
"F3": t[r2, c1],
"F5": t[r3, 1:33],
"F6": t[r3, 33:],
"HDR": t[:5, :],
}
)
t.register(self.pdf)
def define_summary_template(self):
t = rlab.GridTemplate("summary", 100, 100)
t.define_frames({"F1": t[1:99, 1:99]})
t.register(self.pdf)
def add_summary_page(self):
"""Build a table which is shown on the first page which gives an overview of the portfolios"""
s = PortfolioSummary()
s.include_long_short()
pieces = []
for r in self.results:
tmp = s(r.port, PortfolioSummary.analyze_returns)
tmp["desc"] = r.desc
tmp["sid"] = r.sid
tmp = tmp.set_index(["sid", "desc"], append=1).reorder_levels([2, 1, 0])
pieces.append(tmp)
frame = pd.concat(pieces)
tf = self.pdf.table_formatter(frame)
tf.apply_basic_style(cmap=self.table_style)
# [col.guess_format(pcts=1, trunc_dot_zeros=1) for col in tf.cells.iter_cols()]
tf.cells.match_column_labels(
["nmonths", "cnt", "win cnt", "lose cnt", "dur max"]
).int_format()
tf.cells.match_column_labels(["sharpe ann", "sortino", "dur avg"]).float_format(
precision=1
)
tf.cells.match_column_labels(["maxdd dt"]).apply_format(
new_datetime_formatter("%d-%b-%y")
)
tf.cells.match_column_labels(
[
"cagr",
"mret avg",
"mret std ann",
"ret std",
"mret avg ann",
"maxdd",
"avg dd",
"winpct",
"ret avg",
"ret min",
"ret max",
]
).percent_format()
self.pdf.build_page("summary", {"F1": tf.build()})
def title_bar(self, title):
# Build a title bar for top of page
w, t, c = "100%", 2, HexColor("#404040")
title = "<b>{0}</b>".format(title)
return [
HRFlowable(
width=w,
thickness=t,
color=c,
spaceAfter=2,
vAlign="MIDDLE",
lineCap="square",
),
self.pdf.new_paragraph(title, "TitleBar"),
HRFlowable(
width=w,
thickness=t,
color=c,
spaceBefore=2,
vAlign="MIDDLE",
lineCap="square",
),
]
def run(self):
cp = rlab.CoverPage(self.title, subtitle2=self.author)
self.pdf = pdf = rlab.PdfBuilder(self.path, coverpage=cp)
# Setup stylesheet
tb = ParagraphStyle(
"TitleBar",
parent=pdf.stylesheet["Normal"],
fontName="Helvetica-Bold",
fontSize=10,
leading=10,
alignment=TA_CENTER,
)
"TitleBar" not in pdf.stylesheet and pdf.stylesheet.add(tb)
# define templates
self.define_portfolio_summary_template()
self.define_position_summary_template()
self.define_summary_template()
# Show the summary page
self.add_summary_page()
# Build the portfolio and position details for each result
for r in self.results:
self.add_portfolio_page(r)
self.add_position_page(r)
pdf.save()
def add_portfolio_page(self, result):
def alpha_beta(p, bm):
model = pd.ols(x=bm.rets, y=p.rets)
beta = model.beta[0]
alpha = p.total_ann - beta * bm.total_ann
s = pd.Series({"alpha": alpha, "beta": beta})
return s
def rs(port1, port2, kind="dly_ret_stats"):
stats = getattr(port1, kind)
ab = alpha_beta(stats, getattr(port2, kind))
tmp = stats.series.append(ab)
tmp.name = stats.series.name
return tmp
def dofmt(t):
t.apply_basic_style(cmap=self.table_style)
[row.guess_format(pcts=1, trunc_dot_zeros=1) for row in t.cells.iter_rows()]
ncols = len(t.formatted_values.columns)
t.set_col_widths(pcts=[1.0 / ncols] * ncols)
def do_rename(df):
d = {
"consecutive_win_cnt_max": "win_streak",
"consecutive_loss_cnt_max": "lose_streak",
}
return df.rename(index=lambda c: d.get(c, c))
# Build the pdf tables
pdf = self.pdf
figures = self.figures
port = result.port
buyhold = result.buyhold
sframe = pd.DataFrame(
[
rs(port, buyhold, "dly_ret_stats"),
rs(port, buyhold, "weekly_ret_stats"),
rs(port, buyhold, "monthly_ret_stats"),
rs(port, buyhold, "quarterly_ret_stats"),
]
).T
tf = pdf.table_formatter(insert_level(sframe, "Portfolio", copy=True))
dofmt(tf)
stable = tf.build()
s = PortfolioSummary()
s.include_long_short().include_win_loss()
dframe = s(port, PortfolioSummary.analyze_returns).T
tf = pdf.table_formatter(
do_rename(insert_level(dframe.ix["port"], "Portfolio", copy=True))
)
dofmt(tf)
dtable = tf.build()
# Return on $1 image
f, ax = self.create_ax()
buyhold.plot_ret_on_dollar("B", label="Buy & Hold", ax=ax)
port.plot_ret_on_dollar("B", label=result.desc, ax=ax, color="k")
ax.legend(loc="upper left")
ax.set_title("vs Buy & Hold")
plt.tight_layout()
figures.savefig(key="buyhold", clear=1)
# Drawdown image
f, ax = self.create_ax()
port.dly_ret_stats.plot_ltd(ax=ax)
plt.tight_layout()
figures.savefig(key="dd", clear=1)
# Long / Short Returns
f, ax = self.create_ax()
port.plot_ret_on_dollar("B", label="All", color="k", ax=ax)
port.long.plot_ret_on_dollar("B", label="Long", ax=ax)
port.short.plot_ret_on_dollar("B", label="Short", ax=ax)
ax.legend(loc="upper left")
figures.savefig(key="ls", clear=1)
# Sharpe / Ann Vol
f, ax = self.create_ax()
perf.sharpe_annualized(port.monthly_rets, expanding=1).iloc[3:].plot(
ax=ax, color="k", label="sharpe"
)
ax.set_ylabel("sharpe ann", color="k")
ax2 = ax.twinx()
perf.std_annualized(port.monthly_rets, expanding=1).iloc[3:].plot(
ax=ax2, label="vol", color="b", alpha=1
)
ax2.set_ylabel("vol ann", color="b")
plt.tight_layout()
figures.savefig(key="sharpe", clear=1)
# Monthly Returns Bar Chart
f, ax = self.create_ax()
tmp = pd.DataFrame(
{
"All": port.monthly_rets.to_period("M"),
"Long": port.long.monthly_rets.to_period("M"),
"Short": port.short.monthly_rets.to_period("M"),
}
)
tmp.plot(kind="bar", ax=ax, color=["k", self.long_color, self.short_color])
AxesFormat().Y.percent().X.rotate().apply()
plt.tight_layout()
ax.set_title("Monthly Returns")
figures.savefig(key="mrets", clear=1)
# Monthly Returns Box Plot
f, ax = self.create_ax()
sns.boxplot(tmp, ax=ax, color=["gray", self.long_color, self.short_color])
ax.set_title("Monthly Returns")
AxesFormat().Y.percent().apply()
plt.tight_layout()
figures.savefig(key="mrets_box", clear=1)
# Build the PDF Page
toimg = lambda path: rlab.new_dynamic_image(path)
itms = {
"F1": toimg(figures["buyhold"]),
"F2": toimg(figures["dd"]),
"F3": toimg(figures["ls"]),
"F4": toimg(figures["mrets"]),
"F5": toimg(figures["sharpe"]),
"F6": toimg(figures["mrets_box"]),
"F7": stable,
"F8": dtable,
"HDR": self.title_bar(
"{0} - {1} - portfolio summary".format(result.sid, result.desc)
),
}
pdf.build_page("portfolio", itms)
def add_position_page(self, result):
def dofmt(t):
t.apply_basic_style(cmap=self.table_style)
[row.guess_format(pcts=1, trunc_dot_zeros=1) for row in t.cells.iter_rows()]
ncols = len(t.formatted_values.columns)
t.set_col_widths(pcts=[1.0 / ncols] * ncols)
return t
def do_rename(df):
d = {
"consecutive_win_cnt_max": "win_streak",
"consecutive_loss_cnt_max": "lose_streak",
}
return df.rename(index=lambda c: d.get(c, c))
pdf = self.pdf
figures = self.figures
port = result.port
buyhold = result.buyhold
sframe = pd.DataFrame(
{
"all": port.positions.stats.series,
"long": port.long.positions.stats.series,
"short": port.short.positions.stats.series,
}
)
tf = pdf.table_formatter(insert_level(sframe, "Position", copy=True))
stable = dofmt(tf).build()
s = PortfolioSummary()
s.include_long_short().include_win_loss()
dframe = s(port, PortfolioSummary.analyze_returns).T.ix["pos"]
tf = pdf.table_formatter(do_rename(insert_level(dframe, "Position", copy=True)))
dtable = dofmt(tf).build()
# Plot Position Returns
f, ax = self.create_ax()
port.positions.plot_rets(ax=ax)
plt.tight_layout()
figures.savefig(key="pos_ls", clear=1)
# Plot Position Ranges
f, ax = self.create_ax(figsize=(8, 3))
port.positions.plot_ret_range(ls=1, dur=1, ax=ax)
plt.tight_layout()
figures.savefig(key="pos_rng", clear=1)
# Plot Long Short Positions with regression line
tmp = port.position_frame[["side", "ret"]].reset_index()
g = sns.lmplot("pid", "ret", col="side", hue="side", data=tmp, size=3)
AxesFormat().Y.percent().apply()
figures.savefig(key="pos_ls", clear=1)
# Plot Return vs Duration
tmp = port.position_frame[["ret", "duration", "side"]]
diag_kws = {}
if len(port.position_frame.index) <= 1:
diag_kws = {"range": (-100, 100)}
sns.pairplot(tmp, hue="side", size=3, diag_kws=diag_kws)
figures.savefig(key="pos_pair", clear=1)
toimg = lambda path: rlab.new_dynamic_image(path)
itms = {
"F1": toimg(figures["pos_rng"]),
"F3": toimg(figures["pos_ls"]),
"F2": toimg(figures["pos_pair"]),
"F5": stable,
"F6": dtable,
"HDR": self.title_bar(
"{0} - {1} - position summary".format(result.sid, result.desc)
),
}
pdf.build_page("positions", itms)