Repository URL to install this package:
Version:
1.11.0 ▾
|
from __future__ import division, absolute_import, print_function
import warnings
import numpy as np
from numpy.testing import (
TestCase, run_module_suite, assert_, assert_equal, assert_array_equal,
assert_raises
)
class TestEinSum(TestCase):
def test_einsum_errors(self):
# Need enough arguments
assert_raises(ValueError, np.einsum)
assert_raises(ValueError, np.einsum, "")
# subscripts must be a string
assert_raises(TypeError, np.einsum, 0, 0)
# out parameter must be an array
assert_raises(TypeError, np.einsum, "", 0, out='test')
# order parameter must be a valid order
assert_raises(TypeError, np.einsum, "", 0, order='W')
# casting parameter must be a valid casting
assert_raises(ValueError, np.einsum, "", 0, casting='blah')
# dtype parameter must be a valid dtype
assert_raises(TypeError, np.einsum, "", 0, dtype='bad_data_type')
# other keyword arguments are rejected
assert_raises(TypeError, np.einsum, "", 0, bad_arg=0)
# issue 4528 revealed a segfault with this call
assert_raises(TypeError, np.einsum, *(None,)*63)
# number of operands must match count in subscripts string
assert_raises(ValueError, np.einsum, "", 0, 0)
assert_raises(ValueError, np.einsum, ",", 0, [0], [0])
assert_raises(ValueError, np.einsum, ",", [0])
# can't have more subscripts than dimensions in the operand
assert_raises(ValueError, np.einsum, "i", 0)
assert_raises(ValueError, np.einsum, "ij", [0, 0])
assert_raises(ValueError, np.einsum, "...i", 0)
assert_raises(ValueError, np.einsum, "i...j", [0, 0])
assert_raises(ValueError, np.einsum, "i...", 0)
assert_raises(ValueError, np.einsum, "ij...", [0, 0])
# invalid ellipsis
assert_raises(ValueError, np.einsum, "i..", [0, 0])
assert_raises(ValueError, np.einsum, ".i...", [0, 0])
assert_raises(ValueError, np.einsum, "j->..j", [0, 0])
assert_raises(ValueError, np.einsum, "j->.j...", [0, 0])
# invalid subscript character
assert_raises(ValueError, np.einsum, "i%...", [0, 0])
assert_raises(ValueError, np.einsum, "...j$", [0, 0])
assert_raises(ValueError, np.einsum, "i->&", [0, 0])
# output subscripts must appear in input
assert_raises(ValueError, np.einsum, "i->ij", [0, 0])
# output subscripts may only be specified once
assert_raises(ValueError, np.einsum, "ij->jij", [[0, 0], [0, 0]])
# dimensions much match when being collapsed
assert_raises(ValueError, np.einsum, "ii", np.arange(6).reshape(2, 3))
assert_raises(ValueError, np.einsum, "ii->i", np.arange(6).reshape(2, 3))
# broadcasting to new dimensions must be enabled explicitly
assert_raises(ValueError, np.einsum, "i", np.arange(6).reshape(2, 3))
assert_raises(ValueError, np.einsum, "i->i", [[0, 1], [0, 1]],
out=np.arange(4).reshape(2, 2))
def test_einsum_views(self):
# pass-through
a = np.arange(6)
a.shape = (2, 3)
b = np.einsum("...", a)
assert_(b.base is a)
b = np.einsum(a, [Ellipsis])
assert_(b.base is a)
b = np.einsum("ij", a)
assert_(b.base is a)
assert_equal(b, a)
b = np.einsum(a, [0, 1])
assert_(b.base is a)
assert_equal(b, a)
# output is writeable whenever input is writeable
b = np.einsum("...", a)
assert_(b.flags['WRITEABLE'])
a.flags['WRITEABLE'] = False
b = np.einsum("...", a)
assert_(not b.flags['WRITEABLE'])
# transpose
a = np.arange(6)
a.shape = (2, 3)
b = np.einsum("ji", a)
assert_(b.base is a)
assert_equal(b, a.T)
b = np.einsum(a, [1, 0])
assert_(b.base is a)
assert_equal(b, a.T)
# diagonal
a = np.arange(9)
a.shape = (3, 3)
b = np.einsum("ii->i", a)
assert_(b.base is a)
assert_equal(b, [a[i, i] for i in range(3)])
b = np.einsum(a, [0, 0], [0])
assert_(b.base is a)
assert_equal(b, [a[i, i] for i in range(3)])
# diagonal with various ways of broadcasting an additional dimension
a = np.arange(27)
a.shape = (3, 3, 3)
b = np.einsum("...ii->...i", a)
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
b = np.einsum(a, [Ellipsis, 0, 0], [Ellipsis, 0])
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)] for x in a])
b = np.einsum("ii...->...i", a)
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)]
for x in a.transpose(2, 0, 1)])
b = np.einsum(a, [0, 0, Ellipsis], [Ellipsis, 0])
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)]
for x in a.transpose(2, 0, 1)])
b = np.einsum("...ii->i...", a)
assert_(b.base is a)
assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum(a, [Ellipsis, 0, 0], [0, Ellipsis])
assert_(b.base is a)
assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum("jii->ij", a)
assert_(b.base is a)
assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum(a, [1, 0, 0], [0, 1])
assert_(b.base is a)
assert_equal(b, [a[:, i, i] for i in range(3)])
b = np.einsum("ii...->i...", a)
assert_(b.base is a)
assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
b = np.einsum(a, [0, 0, Ellipsis], [0, Ellipsis])
assert_(b.base is a)
assert_equal(b, [a.transpose(2, 0, 1)[:, i, i] for i in range(3)])
b = np.einsum("i...i->i...", a)
assert_(b.base is a)
assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
b = np.einsum(a, [0, Ellipsis, 0], [0, Ellipsis])
assert_(b.base is a)
assert_equal(b, [a.transpose(1, 0, 2)[:, i, i] for i in range(3)])
b = np.einsum("i...i->...i", a)
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)]
for x in a.transpose(1, 0, 2)])
b = np.einsum(a, [0, Ellipsis, 0], [Ellipsis, 0])
assert_(b.base is a)
assert_equal(b, [[x[i, i] for i in range(3)]
for x in a.transpose(1, 0, 2)])
# triple diagonal
a = np.arange(27)
a.shape = (3, 3, 3)
b = np.einsum("iii->i", a)
assert_(b.base is a)
assert_equal(b, [a[i, i, i] for i in range(3)])
b = np.einsum(a, [0, 0, 0], [0])
assert_(b.base is a)
assert_equal(b, [a[i, i, i] for i in range(3)])
# swap axes
a = np.arange(24)
a.shape = (2, 3, 4)
b = np.einsum("ijk->jik", a)
assert_(b.base is a)
assert_equal(b, a.swapaxes(0, 1))
b = np.einsum(a, [0, 1, 2], [1, 0, 2])
assert_(b.base is a)
assert_equal(b, a.swapaxes(0, 1))
def check_einsum_sums(self, dtype):
# Check various sums. Does many sizes to exercise unrolled loops.
# sum(a, axis=-1)
for n in range(1, 17):
a = np.arange(n, dtype=dtype)
assert_equal(np.einsum("i->", a), np.sum(a, axis=-1).astype(dtype))
assert_equal(np.einsum(a, [0], []),
np.sum(a, axis=-1).astype(dtype))
for n in range(1, 17):
a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
assert_equal(np.einsum("...i->...", a),
np.sum(a, axis=-1).astype(dtype))
assert_equal(np.einsum(a, [Ellipsis, 0], [Ellipsis]),
np.sum(a, axis=-1).astype(dtype))
# sum(a, axis=0)
for n in range(1, 17):
a = np.arange(2*n, dtype=dtype).reshape(2, n)
assert_equal(np.einsum("i...->...", a),
np.sum(a, axis=0).astype(dtype))
assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis]),
np.sum(a, axis=0).astype(dtype))
for n in range(1, 17):
a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
assert_equal(np.einsum("i...->...", a),
np.sum(a, axis=0).astype(dtype))
assert_equal(np.einsum(a, [0, Ellipsis], [Ellipsis]),
np.sum(a, axis=0).astype(dtype))
# trace(a)
for n in range(1, 17):
a = np.arange(n*n, dtype=dtype).reshape(n, n)
assert_equal(np.einsum("ii", a), np.trace(a).astype(dtype))
assert_equal(np.einsum(a, [0, 0]), np.trace(a).astype(dtype))
# multiply(a, b)
assert_equal(np.einsum("..., ...", 3, 4), 12) # scalar case
for n in range(1, 17):
a = np.arange(3*n, dtype=dtype).reshape(3, n)
b = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
assert_equal(np.einsum("..., ...", a, b), np.multiply(a, b))
assert_equal(np.einsum(a, [Ellipsis], b, [Ellipsis]),
np.multiply(a, b))
# inner(a,b)
for n in range(1, 17):
a = np.arange(2*3*n, dtype=dtype).reshape(2, 3, n)
b = np.arange(n, dtype=dtype)
assert_equal(np.einsum("...i, ...i", a, b), np.inner(a, b))
assert_equal(np.einsum(a, [Ellipsis, 0], b, [Ellipsis, 0]),
np.inner(a, b))
for n in range(1, 11):
a = np.arange(n*3*2, dtype=dtype).reshape(n, 3, 2)
b = np.arange(n, dtype=dtype)
assert_equal(np.einsum("i..., i...", a, b), np.inner(a.T, b.T).T)
assert_equal(np.einsum(a, [0, Ellipsis], b, [0, Ellipsis]),
np.inner(a.T, b.T).T)
# outer(a,b)
for n in range(1, 17):
a = np.arange(3, dtype=dtype)+1
b = np.arange(n, dtype=dtype)+1
assert_equal(np.einsum("i,j", a, b), np.outer(a, b))
assert_equal(np.einsum(a, [0], b, [1]), np.outer(a, b))
# Suppress the complex warnings for the 'as f8' tests
with warnings.catch_warnings():
warnings.simplefilter('ignore', np.ComplexWarning)
# matvec(a,b) / a.dot(b) where a is matrix, b is vector
for n in range(1, 17):
a = np.arange(4*n, dtype=dtype).reshape(4, n)
b = np.arange(n, dtype=dtype)
assert_equal(np.einsum("ij, j", a, b), np.dot(a, b))
assert_equal(np.einsum(a, [0, 1], b, [1]), np.dot(a, b))
c = np.arange(4, dtype=dtype)
np.einsum("ij,j", a, b, out=c,
dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(a.astype('f8'),
b.astype('f8')).astype(dtype))
c[...] = 0
np.einsum(a, [0, 1], b, [1], out=c,
dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(a.astype('f8'),
b.astype('f8')).astype(dtype))
for n in range(1, 17):
a = np.arange(4*n, dtype=dtype).reshape(4, n)
b = np.arange(n, dtype=dtype)
assert_equal(np.einsum("ji,j", a.T, b.T), np.dot(b.T, a.T))
assert_equal(np.einsum(a.T, [1, 0], b.T, [1]), np.dot(b.T, a.T))
c = np.arange(4, dtype=dtype)
np.einsum("ji,j", a.T, b.T, out=c, dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(b.T.astype('f8'),
a.T.astype('f8')).astype(dtype))
c[...] = 0
np.einsum(a.T, [1, 0], b.T, [1], out=c,
dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(b.T.astype('f8'),
a.T.astype('f8')).astype(dtype))
# matmat(a,b) / a.dot(b) where a is matrix, b is matrix
for n in range(1, 17):
if n < 8 or dtype != 'f2':
a = np.arange(4*n, dtype=dtype).reshape(4, n)
b = np.arange(n*6, dtype=dtype).reshape(n, 6)
assert_equal(np.einsum("ij,jk", a, b), np.dot(a, b))
assert_equal(np.einsum(a, [0, 1], b, [1, 2]), np.dot(a, b))
for n in range(1, 17):
a = np.arange(4*n, dtype=dtype).reshape(4, n)
b = np.arange(n*6, dtype=dtype).reshape(n, 6)
c = np.arange(24, dtype=dtype).reshape(4, 6)
np.einsum("ij,jk", a, b, out=c, dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(a.astype('f8'),
b.astype('f8')).astype(dtype))
c[...] = 0
np.einsum(a, [0, 1], b, [1, 2], out=c,
dtype='f8', casting='unsafe')
assert_equal(c,
np.dot(a.astype('f8'),
b.astype('f8')).astype(dtype))
# matrix triple product (note this is not currently an efficient
# way to multiply 3 matrices)
a = np.arange(12, dtype=dtype).reshape(3, 4)
b = np.arange(20, dtype=dtype).reshape(4, 5)
c = np.arange(30, dtype=dtype).reshape(5, 6)
if dtype != 'f2':
assert_equal(np.einsum("ij,jk,kl", a, b, c),
a.dot(b).dot(c))
assert_equal(np.einsum(a, [0, 1], b, [1, 2], c, [2, 3]),
a.dot(b).dot(c))
d = np.arange(18, dtype=dtype).reshape(3, 6)
np.einsum("ij,jk,kl", a, b, c, out=d,
dtype='f8', casting='unsafe')
tgt = a.astype('f8').dot(b.astype('f8'))
tgt = tgt.dot(c.astype('f8')).astype(dtype)
assert_equal(d, tgt)
d[...] = 0
np.einsum(a, [0, 1], b, [1, 2], c, [2, 3], out=d,
dtype='f8', casting='unsafe')
tgt = a.astype('f8').dot(b.astype('f8'))
tgt = tgt.dot(c.astype('f8')).astype(dtype)
assert_equal(d, tgt)
# tensordot(a, b)
if np.dtype(dtype) != np.dtype('f2'):
a = np.arange(60, dtype=dtype).reshape(3, 4, 5)
b = np.arange(24, dtype=dtype).reshape(4, 3, 2)
assert_equal(np.einsum("ijk, jil -> kl", a, b),
np.tensordot(a, b, axes=([1, 0], [0, 1])))
assert_equal(np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3]),
np.tensordot(a, b, axes=([1, 0], [0, 1])))
c = np.arange(10, dtype=dtype).reshape(5, 2)
np.einsum("ijk,jil->kl", a, b, out=c,
dtype='f8', casting='unsafe')
assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
axes=([1, 0], [0, 1])).astype(dtype))
c[...] = 0
np.einsum(a, [0, 1, 2], b, [1, 0, 3], [2, 3], out=c,
dtype='f8', casting='unsafe')
assert_equal(c, np.tensordot(a.astype('f8'), b.astype('f8'),
axes=([1, 0], [0, 1])).astype(dtype))
# logical_and(logical_and(a!=0, b!=0), c!=0)
a = np.array([1, 3, -2, 0, 12, 13, 0, 1], dtype=dtype)
b = np.array([0, 3.5, 0., -2, 0, 1, 3, 12], dtype=dtype)
c = np.array([True, True, False, True, True, False, True, True])
assert_equal(np.einsum("i,i,i->i", a, b, c,
dtype='?', casting='unsafe'),
np.logical_and(np.logical_and(a != 0, b != 0), c != 0))
assert_equal(np.einsum(a, [0], b, [0], c, [0], [0],
dtype='?', casting='unsafe'),
np.logical_and(np.logical_and(a != 0, b != 0), c != 0))
a = np.arange(9, dtype=dtype)
assert_equal(np.einsum(",i->", 3, a), 3*np.sum(a))
assert_equal(np.einsum(3, [], a, [0], []), 3*np.sum(a))
assert_equal(np.einsum("i,->", a, 3), 3*np.sum(a))
assert_equal(np.einsum(a, [0], 3, [], []), 3*np.sum(a))
# Various stride0, contiguous, and SSE aligned variants
for n in range(1, 25):
a = np.arange(n, dtype=dtype)
if np.dtype(dtype).itemsize > 1:
assert_equal(np.einsum("...,...", a, a), np.multiply(a, a))
assert_equal(np.einsum("i,i", a, a), np.dot(a, a))
assert_equal(np.einsum("i,->i", a, 2), 2*a)
assert_equal(np.einsum(",i->i", 2, a), 2*a)
assert_equal(np.einsum("i,->", a, 2), 2*np.sum(a))
assert_equal(np.einsum(",i->", 2, a), 2*np.sum(a))
assert_equal(np.einsum("...,...", a[1:], a[:-1]),
np.multiply(a[1:], a[:-1]))
assert_equal(np.einsum("i,i", a[1:], a[:-1]),
np.dot(a[1:], a[:-1]))
assert_equal(np.einsum("i,->i", a[1:], 2), 2*a[1:])
assert_equal(np.einsum(",i->i", 2, a[1:]), 2*a[1:])
assert_equal(np.einsum("i,->", a[1:], 2), 2*np.sum(a[1:]))
assert_equal(np.einsum(",i->", 2, a[1:]), 2*np.sum(a[1:]))
# An object array, summed as the data type
a = np.arange(9, dtype=object)
b = np.einsum("i->", a, dtype=dtype, casting='unsafe')
assert_equal(b, np.sum(a))
assert_equal(b.dtype, np.dtype(dtype))
b = np.einsum(a, [0], [], dtype=dtype, casting='unsafe')
assert_equal(b, np.sum(a))
assert_equal(b.dtype, np.dtype(dtype))
# A case which was failing (ticket #1885)
p = np.arange(2) + 1
q = np.arange(4).reshape(2, 2) + 3
r = np.arange(4).reshape(2, 2) + 7
assert_equal(np.einsum('z,mz,zm->', p, q, r), 253)
def test_einsum_sums_int8(self):
self.check_einsum_sums('i1')
def test_einsum_sums_uint8(self):
self.check_einsum_sums('u1')
def test_einsum_sums_int16(self):
self.check_einsum_sums('i2')
def test_einsum_sums_uint16(self):
self.check_einsum_sums('u2')
def test_einsum_sums_int32(self):
self.check_einsum_sums('i4')
def test_einsum_sums_uint32(self):
self.check_einsum_sums('u4')
def test_einsum_sums_int64(self):
self.check_einsum_sums('i8')
def test_einsum_sums_uint64(self):
self.check_einsum_sums('u8')
def test_einsum_sums_float16(self):
self.check_einsum_sums('f2')
def test_einsum_sums_float32(self):
self.check_einsum_sums('f4')
def test_einsum_sums_float64(self):
self.check_einsum_sums('f8')
def test_einsum_sums_longdouble(self):
self.check_einsum_sums(np.longdouble)
def test_einsum_sums_cfloat64(self):
self.check_einsum_sums('c8')
def test_einsum_sums_cfloat128(self):
self.check_einsum_sums('c16')
def test_einsum_sums_clongdouble(self):
self.check_einsum_sums(np.clongdouble)
def test_einsum_misc(self):
# This call used to crash because of a bug in
# PyArray_AssignZero
a = np.ones((1, 2))
b = np.ones((2, 2, 1))
assert_equal(np.einsum('ij...,j...->i...', a, b), [[[2], [2]]])
# The iterator had an issue with buffering this reduction
a = np.ones((5, 12, 4, 2, 3), np.int64)
b = np.ones((5, 12, 11), np.int64)
assert_equal(np.einsum('ijklm,ijn,ijn->', a, b, b),
np.einsum('ijklm,ijn->', a, b))
# Issue #2027, was a problem in the contiguous 3-argument
# inner loop implementation
a = np.arange(1, 3)
b = np.arange(1, 5).reshape(2, 2)
c = np.arange(1, 9).reshape(4, 2)
assert_equal(np.einsum('x,yx,zx->xzy', a, b, c),
[[[1, 3], [3, 9], [5, 15], [7, 21]],
[[8, 16], [16, 32], [24, 48], [32, 64]]])
def test_einsum_broadcast(self):
# Issue #2455 change in handling ellipsis
# remove the 'middle broadcast' error
# only use the 'RIGHT' iteration in prepare_op_axes
# adds auto broadcast on left where it belongs
# broadcast on right has to be explicit
A = np.arange(2*3*4).reshape(2,3,4)
B = np.arange(3)
ref = np.einsum('ijk,j->ijk',A, B)
assert_equal(np.einsum('ij...,j...->ij...',A, B), ref)
assert_equal(np.einsum('ij...,...j->ij...',A, B), ref)
assert_equal(np.einsum('ij...,j->ij...',A, B), ref) # used to raise error
A = np.arange(12).reshape((4,3))
B = np.arange(6).reshape((3,2))
ref = np.einsum('ik,kj->ij', A, B)
assert_equal(np.einsum('ik...,k...->i...', A, B), ref)
assert_equal(np.einsum('ik...,...kj->i...j', A, B), ref)
assert_equal(np.einsum('...k,kj', A, B), ref) # used to raise error
assert_equal(np.einsum('ik,k...->i...', A, B), ref) # used to raise error
dims = [2,3,4,5]
a = np.arange(np.prod(dims)).reshape(dims)
v = np.arange(dims[2])
ref = np.einsum('ijkl,k->ijl', a, v)
assert_equal(np.einsum('ijkl,k', a, v), ref)
assert_equal(np.einsum('...kl,k', a, v), ref) # used to raise error
assert_equal(np.einsum('...kl,k...', a, v), ref)
# no real diff from 1st
J,K,M = 160,160,120
A = np.arange(J*K*M).reshape(1,1,1,J,K,M)
B = np.arange(J*K*M*3).reshape(J,K,M,3)
ref = np.einsum('...lmn,...lmno->...o', A, B)
assert_equal(np.einsum('...lmn,lmno->...o', A, B), ref) # used to raise error
def test_einsum_fixedstridebug(self):
# Issue #4485 obscure einsum bug
# This case revealed a bug in nditer where it reported a stride
# as 'fixed' (0) when it was in fact not fixed during processing
# (0 or 4). The reason for the bug was that the check for a fixed
# stride was using the information from the 2D inner loop reuse
# to restrict the iteration dimensions it had to validate to be
# the same, but that 2D inner loop reuse logic is only triggered
# during the buffer copying step, and hence it was invalid to
# rely on those values. The fix is to check all the dimensions
# of the stride in question, which in the test case reveals that
# the stride is not fixed.
#
# NOTE: This test is triggered by the fact that the default buffersize,
# used by einsum, is 8192, and 3*2731 = 8193, is larger than that
# and results in a mismatch between the buffering and the
# striding for operand A.
A = np.arange(2*3).reshape(2,3).astype(np.float32)
B = np.arange(2*3*2731).reshape(2,3,2731).astype(np.int16)
es = np.einsum('cl,cpx->lpx', A, B)
tp = np.tensordot(A, B, axes=(0, 0))
assert_equal(es, tp)
# The following is the original test case from the bug report,
# made repeatable by changing random arrays to aranges.
A = np.arange(3*3).reshape(3,3).astype(np.float64)
B = np.arange(3*3*64*64).reshape(3,3,64,64).astype(np.float32)
es = np.einsum('cl,cpxy->lpxy', A,B)
tp = np.tensordot(A,B, axes=(0,0))
assert_equal(es, tp)
def test_einsum_fixed_collapsingbug(self):
# Issue #5147.
# The bug only occured when output argument of einssum was used.
x = np.random.normal(0, 1, (5, 5, 5, 5))
y1 = np.zeros((5, 5))
np.einsum('aabb->ab', x, out=y1)
idx = np.arange(5)
y2 = x[idx[:, None], idx[:, None], idx, idx]
assert_equal(y1, y2)
def test_einsum_all_contig_non_contig_output(self):
# Issue gh-5907, tests that the all contiguous special case
# actually checks the contiguity of the output
x = np.ones((5, 5))
out = np.ones(10)[::2]
correct_base = np.ones(10)
correct_base[::2] = 5
# Always worked (inner iteration is done with 0-stride):
np.einsum('mi,mi,mi->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 1:
out = np.ones(10)[::2]
np.einsum('im,im,im->m', x, x, x, out=out)
assert_array_equal(out.base, correct_base)
# Example 2, buffering causes x to be contiguous but
# special cases do not catch the operation before:
out = np.ones((2, 2, 2))[..., 0]
correct_base = np.ones((2, 2, 2))
correct_base[..., 0] = 2
x = np.ones((2, 2), np.float32)
np.einsum('ij,jk->ik', x, x, out=out)
assert_array_equal(out.base, correct_base)
def test_small_boolean_arrays(self):
# See gh-5946.
# Use array of True embedded in False.
a = np.zeros((16, 1, 1), dtype=np.bool_)[:2]
a[...] = True
out = np.zeros((16, 1, 1), dtype=np.bool_)[:2]
tgt = np.ones((2,1,1), dtype=np.bool_)
res = np.einsum('...ij,...jk->...ik', a, a, out=out)
assert_equal(res, tgt)
if __name__ == "__main__":
run_module_suite()