Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
scikit-learn / ensemble / __init__.py
Size: Mime:
"""
The :mod:`sklearn.ensemble` module includes ensemble-based methods for
classification and regression.
"""

from .base import BaseEnsemble
from .forest import RandomForestClassifier
from .forest import RandomForestRegressor
from .forest import RandomTreesEmbedding
from .forest import ExtraTreesClassifier
from .forest import ExtraTreesRegressor
from .bagging import BaggingClassifier
from .bagging import BaggingRegressor
from .weight_boosting import AdaBoostClassifier
from .weight_boosting import AdaBoostRegressor
from .gradient_boosting import GradientBoostingClassifier
from .gradient_boosting import GradientBoostingRegressor
from .voting_classifier import VotingClassifier

from . import bagging
from . import forest
from . import weight_boosting
from . import gradient_boosting
from . import partial_dependence

__all__ = ["BaseEnsemble",
           "RandomForestClassifier", "RandomForestRegressor",
           "RandomTreesEmbedding", "ExtraTreesClassifier",
           "ExtraTreesRegressor", "BaggingClassifier",
           "BaggingRegressor", "GradientBoostingClassifier",
           "GradientBoostingRegressor", "AdaBoostClassifier",
           "AdaBoostRegressor", "VotingClassifier",
           "bagging", "forest", "gradient_boosting",
           "partial_dependence", "weight_boosting"]